aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-17 22:31:40 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-17 22:31:40 +0000
commitbdc1b73ffab854f18aec23d459ff66ec1f8b8b6e (patch)
tree7dee0835b9714a790a6abf812c7101ec1d253a0f /src/share
parentcffd2746785e6b40b8d4f2b44ab0b4a936cd6f24 (diff)
downloadopen-axiom-bdc1b73ffab854f18aec23d459ff66ec1f8b8b6e.tar.gz
* algebra/catdef.spad.pamphlet (DifferentialSpaceExtension): New.
(DifferentialModuleExtension): Likewise.
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase3340
-rw-r--r--src/share/algebra/category.daase6542
-rw-r--r--src/share/algebra/compress.daase1328
-rw-r--r--src/share/algebra/interp.daase10657
-rw-r--r--src/share/algebra/operation.daase32304
5 files changed, 27105 insertions, 27066 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 4162b8c7..6f27bc35 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2265884 . 3485764565)
+(2274045 . 3485769903)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4456 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4457 . T) (-4451 . T))
+((-4458 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1396)
+(-32 R -1398)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
+((|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
+((|HasAttribute| |#1| (QUOTE -4461)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1396 UP UPUP -1500)
+(-40 -1398 UP UPUP -1440)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
-(-41 R -1396)
+((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2838 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2838 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2838 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2838 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2838 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))))
+(-41 R -1398)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -440) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-315))))
+((|HasCategory| |#1| (QUOTE (-317))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
+((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T))
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4459 . T) (-4460 . T))
-((-2833 (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|))))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))))
+((-4461 . T) (-4462 . T))
+((-2838 (-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|))))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4456 . T))
+((-4458 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1396)
+(-54 |Base| R -1398)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-61 -2039)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-61 -2041)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2039)
+(-62 -2041)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2039)
+(-63 -2041)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2039)
+(-64 -2041)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2039)
+(-65 -2041)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2039)
+(-66 -2041)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2039)
+(-67 -2041)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2039)
+(-68 -2041)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2039)
+(-69 -2041)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2039)
+(-70 -2041)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2039)
+(-71 -2041)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2039)
+(-72 -2041)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2039)
+(-73 -2041)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2039)
+(-74 -2041)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,66 +236,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2039)
+(-77 -2041)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2039)
+(-78 -2041)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2039)
+(-79 -2041)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2039)
+(-80 -2041)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2039)
+(-81 -2041)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2039)
+(-82 -2041)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2039)
+(-83 -2041)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2039)
+(-84 -2041)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2039)
+(-85 -2041)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2039)
+(-86 -2041)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2039)
+(-87 -2041)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2039)
+(-88 -2041)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2039)
+(-89 -2041)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))))
+((|HasCategory| |#1| (QUOTE (-374))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4459 . T))
+((-4461 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4459 . T) ((-4461 "*") . T) (-4460 . T) (-4456 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4457 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4455 . T) (-4458 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4446 . T))
+((-4461 . T) ((-4463 "*") . T) (-4462 . T) (-4458 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4457 . T) (-4460 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4448 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4456 . T))
+((-4458 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4461 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4463 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4459 . T))
+((-4461 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4460 . T))
+((-4462 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-2838 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -392,22 +392,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -1396 UP)
+(-116 -1398 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-923))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-117 |#1|) (QUOTE (-1038))) (|HasCategory| (-117 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-117 |#1|) (QUOTE (-830))) (|HasCategory| (-117 |#1|) (QUOTE (-860)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-1168))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-315))) (|HasCategory| (-117 |#1|) (QUOTE (-555))) (|HasCategory| (-117 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-923)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-117 |#1|) (QUOTE (-925))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1040))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (-2838 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1170))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-925)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
+((|HasAttribute| |#1| (QUOTE -4462)))
(-120 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -418,15 +418,15 @@ NIL
NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-124)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
(-125 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -434,20 +434,20 @@ NIL
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130)))))) (-2833 (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116)))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-130) (QUOTE (-1116))) (|HasCategory| (-130) (LIST (QUOTE -317) (QUOTE (-130))))))
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2838 (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1118)))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-130) (QUOTE (-1118))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -470,13 +470,13 @@ NIL
NIL
(-135)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4461 "*") . T))
+(((-4463 "*") . T))
NIL
-(-136 |minix| -4106 S T$)
+(-136 |minix| -4111 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4106 R)
+(-137 |minix| -4111 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -498,8 +498,8 @@ NIL
NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4459 . T) (-4449 . T) (-4460 . T))
-((-2833 (-12 (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-377))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
+((-4461 . T) (-4451 . T) (-4462 . T))
+((-2838 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4456 . T))
+((-4458 . T))
NIL
(-147 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -522,9 +522,9 @@ NIL
NIL
(-148)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-149 -1396 UP UPUP)
+(-149 -1398 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -535,14 +535,14 @@ NIL
(-151 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasAttribute| |#1| (QUOTE -4459)))
+((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasAttribute| |#1| (QUOTE -4461)))
(-152 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-153 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4454 . T) (-4453 . T) (-4456 . T))
+((-4456 . T) (-4455 . T) (-4458 . T))
NIL
(-154)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -1396)
+(-159 R -1398)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -595,10 +595,10 @@ NIL
(-166 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1219))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4455)) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))))
+((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4452 -2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4455 |has| |#1| (-6 -4455)) (-4458 |has| |#1| (-6 -4458)) (-3536 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 -2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-3541 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4452 -2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4455 |has| |#1| (-6 -4455)) (-4458 |has| |#1| (-6 -4458)) (-3536 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-377)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1219)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-923))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-923))))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1219)))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1219)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasAttribute| |#1| (QUOTE -4455)) (|HasAttribute| |#1| (QUOTE -4458)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-358)))))
+((-4454 -2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-3541 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-379)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-840)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-1221)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-925))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-925))))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4460)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-360)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -626,7 +626,7 @@ NIL
NIL
(-174)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-175)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -634,7 +634,7 @@ NIL
NIL
(-176 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4461 "*") . T) (-4452 . T) (-4457 . T) (-4451 . T) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-177)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -651,7 +651,7 @@ NIL
(-180 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-966 |#2|) (LIST (QUOTE -897) (|devaluate| |#1|))))
+((|HasCategory| (-968 |#2|) (LIST (QUOTE -899) (|devaluate| |#1|))))
(-181 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -1396)
+(-190 R -1398)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -1396 UP UPUP R)
+(-217 -1398 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -1396 FP)
+(-218 -1398 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-2838 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -1396)
+(-221 R -1398)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -826,19 +826,19 @@ NIL
NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-226 R -1396)
+(-226 R -1398)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-3530 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -846,23 +846,23 @@ NIL
NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-231 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4460 . T))
+((-4462 . T))
NIL
(-232 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))))
+((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))))
(-233 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4456 . T))
+((-4458 . T))
NIL
(-234 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -874,7 +874,7 @@ NIL
NIL
(-236 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
(-237 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -886,36 +886,36 @@ NIL
NIL
(-239)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-4456 . T))
+((-4458 . T))
NIL
(-240 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)))
+((|HasAttribute| |#1| (QUOTE -4461)))
(-241 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4460 . T))
+((-4462 . T))
NIL
(-242)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-243 S -4106 R)
+(-243 S -4111 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasAttribute| |#3| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-1116))))
-(-244 -4106 R)
+((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-1118))))
+(-244 -4111 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) (-4459 . T))
+((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T))
NIL
-(-245 -4106 A B)
+(-245 -4111 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-246 -4106 R)
+(-246 -4111 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
+((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2838 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-2838 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-2838 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
(-247)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -926,7 +926,7 @@ NIL
NIL
(-249)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4452 . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
(-250 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -934,16 +934,16 @@ NIL
NIL
(-251 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
(-252 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-253 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-254)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -958,23 +958,23 @@ NIL
NIL
(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4456 -2833 (-2095 (|has| |#4| (-1065)) (|has| |#4| (-239))) (|has| |#4| (-6 -4456)) (-2095 (|has| |#4| (-1065)) (|has| |#4| (-912 (-1193))))) (-4453 |has| |#4| (-1065)) (-4454 |has| |#4| (-1065)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#4| (QUOTE (-372))) (-2833 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-1065)))) (-2833 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-372)))) (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (QUOTE (-803))) (-2833 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (QUOTE (-860)))) (|HasCategory| |#4| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-377)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-736)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-803)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-860)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1065))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-736))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-803))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#4| (QUOTE (-1065))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (QUOTE (-1116)))) (-2833 (|HasAttribute| |#4| (QUOTE -4456)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1065)))) (-12 (|HasCategory| |#4| (QUOTE (-1065))) (|HasCategory| |#4| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))))
+((-4458 -2838 (-2096 (|has| |#4| (-1067)) (|has| |#4| (-239))) (|has| |#4| (-6 -4458)) (-2096 (|has| |#4| (-1067)) (|has| |#4| (-914 (-1195))))) (-4455 |has| |#4| (-1067)) (-4456 |has| |#4| (-1067)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2838 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1067)))) (-2838 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-2838 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1067))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576))))) (-2838 (|HasCategory| |#4| (QUOTE (-1067))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1118)))) (-2838 (|HasAttribute| |#4| (QUOTE -4458)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1067)))) (-12 (|HasCategory| |#4| (QUOTE (-1067))) (|HasCategory| |#4| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))))
(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4456 -2833 (-2095 (|has| |#3| (-1065)) (|has| |#3| (-239))) (|has| |#3| (-6 -4456)) (-2095 (|has| |#3| (-1065)) (|has| |#3| (-912 (-1193))))) (-4453 |has| |#3| (-1065)) (-4454 |has| |#3| (-1065)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#3| (QUOTE (-372))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2833 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (-2833 (|HasAttribute| |#3| (QUOTE -4456)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
+((-4458 -2838 (-2096 (|has| |#3| (-1067)) (|has| |#3| (-239))) (|has| |#3| (-6 -4458)) (-2096 (|has| |#3| (-1067)) (|has| |#3| (-914 (-1195))))) (-4455 |has| |#3| (-1067)) (-4456 |has| |#3| (-1067)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2838 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2838 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-2838 (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (-2838 (|HasAttribute| |#3| (QUOTE -4458)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))))
(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-239))))
(-260 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
(-261 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
(-262)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -1012,4177 +1012,4185 @@ NIL
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-271 R S V)
+(-271 S R)
+((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
+NIL
+((|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))))
+(-272 R)
+((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
+NIL
+NIL
+(-273 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-272 A S)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-274 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-273 S)
+(-275 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-274)
+(-276)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-275)
+(-277)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-276)
+(-278)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-277)
+(-279)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-278)
+(-280)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-279)
+(-281)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-280)
+(-282)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-281)
+(-283)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-282)
+(-284)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-283 R -1396)
+(-285 R -1398)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-284 R -1396)
+(-286 R -1398)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-285 |Coef| UTS ULS)
+(-287 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))))
-(-286 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-288 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))))
-(-287)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-289)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-288)
+(-290)
((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}.")))
NIL
NIL
-(-289 A S)
+(-291 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))))
-(-290 S)
+((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))))
+(-292 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-291 S)
+(-293 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-292)
+(-294)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-293 |Coef| UTS)
+(-295 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-294 S T$)
+(-296 S T$)
((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}.")))
NIL
NIL
-(-295 S |Dom| |Im|)
+(-297 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
-(-296 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4462)))
+(-298 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-297 S R |Mod| -3992 -2470 |exactQuo|)
+(-299 S R |Mod| -3504 -1383 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-298)
+(-300)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4452 . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-299)
+(-301)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-300 R)
+(-302 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-301 S R)
+(-303 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-302 S)
+(-304 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4456 -2833 (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4453 |has| |#1| (-1065)) (-4454 |has| |#1| (-1065)))
-((|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736)))) (|HasCategory| |#1| (QUOTE (-483))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-1116)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1128)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-310))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-483)))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-736))))
-(-303 |Key| |Entry|)
+((-4458 -2838 (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4455 |has| |#1| (-1067)) (-4456 |has| |#1| (-1067)))
+((|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-738))))
+(-305 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-304)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-306)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-305 -1396 S)
+(-307 -1398 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-306 E -1396)
+(-308 E -1398)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-307 A B)
+(-309 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-308)
+(-310)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-309 S)
+(-311 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1065))))
-(-310)
+((|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1067))))
+(-312)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-311 R1)
+(-313 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-312 R1 R2)
+(-314 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-313)
+(-315)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-314 S)
+(-316 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-315)
+(-317)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-316 S R)
+(-318 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-317 R)
+(-319 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-318 -1396)
+(-320 -1398)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-319)
+(-321)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-320)
+(-322)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-321 R FE |var| |cen|)
+(-323 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1038))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-1168))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -317) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (LIST (QUOTE -294) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1270) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-315))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-555))) (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146)))) (-2833 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1270 |#1| |#2| |#3| |#4|) (QUOTE (-923))) (|HasCategory| $ (QUOTE (-146))))))
-(-322 R S)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1040))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-2838 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1170))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| $ (QUOTE (-146)))) (-2838 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-925))) (|HasCategory| $ (QUOTE (-146))))))
+(-324 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-323 R FE)
+(-325 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-324 R)
+(-326 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4456 -2833 (-12 (|has| |#1| (-566)) (-2833 (|has| |#1| (-1065)) (|has| |#1| (-483)))) (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566)))
-((-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (QUOTE (-1065))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1128)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1128)))) (-2833 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))))) (-2833 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-1065)))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-325 R -1396)
+((-4458 -2838 (-12 (|has| |#1| (-568)) (-2838 (|has| |#1| (-1067)) (|has| |#1| (-485)))) (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568)))
+((-2838 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-21))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (QUOTE (-1067))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2838 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2838 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2838 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1067)))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-327 R -1398)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
-(-326)
+(-328)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-327 FE |var| |cen|)
+(-329 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-328 M)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-330 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-329 E OV R P)
+(-331 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-330 S)
+(-332 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4454 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-802))))
-(-331 S E)
+((-4456 . T) (-4455 . T))
+((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-804))))
+(-333 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-332 S)
+(-334 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-781) (QUOTE (-802))))
-(-333 S R E)
+((|HasCategory| (-783) (QUOTE (-804))))
+(-335 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
-(-334 R E)
+((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))))
+(-336 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-335 S)
+(-337 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-336 S -1396)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-338 S -1398)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-377))))
-(-337 -1396)
+((|HasCategory| |#2| (QUOTE (-379))))
+(-339 -1398)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-338)
+(-340)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
NIL
NIL
-(-339 E)
+(-341 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-340)
+(-342)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
NIL
NIL
-(-341)
+(-343)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-343 S -1396 UP UPUP R)
+(-345 S -1398 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-344 -1396 UP UPUP R)
+(-346 -1398 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-345 -1396 UP UPUP R)
+(-347 -1398 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-346 S R)
+(-348 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-347 R)
+((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-349 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-348 |basicSymbols| |subscriptedSymbols| R)
+(-350 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-388)))) (|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-349 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-350 S -1396 UP UPUP)
+(-352 S -1398 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-372))))
-(-351 -1396 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374))))
+(-353 -1398 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-352 |p| |extdeg|)
+(-354 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
-(-353 GF |defpol|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146))))
+(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-354 GF |extdeg|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-356 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-355 GF)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-357 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-356 F1 GF F2)
+(-358 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-357 S)
+(-359 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-358)
+(-360)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-359 R UP -1396)
+(-361 R UP -1398)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-360 |p| |extdeg|)
+(-362 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
-(-361 GF |uni|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146))))
+(-363 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-362 GF |extdeg|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-364 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-363 |p| |n|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-365 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| (-924 |#1|) (QUOTE (-146))) (|HasCategory| (-924 |#1|) (QUOTE (-377)))) (|HasCategory| (-924 |#1|) (QUOTE (-148))) (|HasCategory| (-924 |#1|) (QUOTE (-377))) (|HasCategory| (-924 |#1|) (QUOTE (-146))))
-(-364 GF |defpol|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| (-926 |#1|) (QUOTE (-146))) (|HasCategory| (-926 |#1|) (QUOTE (-379)))) (|HasCategory| (-926 |#1|) (QUOTE (-148))) (|HasCategory| (-926 |#1|) (QUOTE (-379))) (|HasCategory| (-926 |#1|) (QUOTE (-146))))
+(-366 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-365 -1396 GF)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-367 -1398 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-366 GF)
+(-368 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-367 -1396 FP FPP)
+(-369 -1398 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-368 GF |n|)
+(-370 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-146))))
-(-369 R |ls|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-371 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-370 S)
+(-372 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-371 S)
+(-373 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-372)
+(-374)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-373 |Name| S)
+(-375 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-374 S)
+(-376 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-375 S R)
+(-377 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-566))))
-(-376 R)
+((|HasCategory| |#2| (QUOTE (-568))))
+(-378 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
+((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T))
NIL
-(-377)
+(-379)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-378 S R UP)
+(-380 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-372))))
-(-379 R UP)
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374))))
+(-381 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-380 S A R B)
+(-382 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-381 A S)
+(-383 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))))
-(-382 S)
+((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))))
+(-384 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4459 . T))
+((-4461 . T))
NIL
-(-383 |VarSet| R)
+(-385 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T))
NIL
-(-384 S V)
+(-386 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-385 S R)
+(-387 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))
-(-386 R)
+((|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))
+(-388 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
-(-387 |Par|)
+(-389 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-388)
+(-390)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4442 . T) (-4450 . T) (-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4444 . T) (-4452 . T) (-3530 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-389 |Par|)
+(-391 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-390 R S)
+(-392 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-391 R |Basis|)
+(-393 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-392)
+(-394)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-393)
+(-395)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-394 R S)
+(-396 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-395 S)
+(-397 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-396 S)
+(-398 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-860))))
-(-397)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-399)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-398)
+(-400)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-399)
+(-401)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-400 |n| |class| R)
+(-402 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-401)
+(-403)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-402 -1396 UP UPUP R)
+(-404 -1398 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-403 S)
+(-405 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-404)
+(-406)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-405)
+(-407)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-406)
+(-408)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-407)
+(-409)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-408 -2039 |returnType| -1572 |symbols|)
+(-410 -2041 |returnType| -1574 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-409 -1396 UP)
+(-411 -1398 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-410 R)
+(-412 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-411 S)
+(-413 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-412)
+(-414)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-413 S)
+(-415 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#1| (QUOTE -4450)))
-(-414)
+((|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4452)))
+(-416)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-3530 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-415 R S)
+(-417 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-416 A B)
+(-418 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-417 S)
+(-419 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4446 -12 (|has| |#1| (-6 -4457)) (|has| |#1| (-462)) (|has| |#1| (-6 -4446))) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-830))) (-2833 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-860)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-555))) (-12 (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-462)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-418 S R UP)
+((-4448 -12 (|has| |#1| (-6 -4459)) (|has| |#1| (-464)) (|has| |#1| (-6 -4448))) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-832))) (-2838 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-862)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-420 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-419 R UP)
+(-421 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-420 A S)
+(-422 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-421 S)
+((|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-423 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-422 R1 F1 U1 A1 R2 F2 U2 A2)
+(-424 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-423 R -1396 UP A)
+(-425 R -1398 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-424 R -1396 UP A |ibasis|)
+(-426 R -1398 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1054) (|devaluate| |#2|))))
-(-425 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1056) (|devaluate| |#2|))))
+(-427 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-426 S R)
+(-428 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))))
-(-427 R)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-429 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4456 |has| |#1| (-566)) (-4454 . T) (-4453 . T))
+((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T))
NIL
-(-428 R)
+(-430 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -317) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1238))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-1238)))) (|HasCategory| |#1| (QUOTE (-1038))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -294) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-462))))
-(-429 R)
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1240))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1240)))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464))))
+(-431 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-430 R FE |x| |cen|)
+(-432 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-431 R A S B)
+(-433 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-432 R FE |Expon| UPS TRAN |x|)
+(-434 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-433 S A R B)
+(-435 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-434 A S)
+(-436 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
-(-435 S)
+((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))))
+(-437 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4459 . T) (-4449 . T) (-4460 . T))
+((-4461 . T) (-4451 . T) (-4462 . T))
NIL
-(-436 R -1396)
+(-438 R -1398)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-437 R E)
+(-439 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4446 -12 (|has| |#1| (-6 -4446)) (|has| |#2| (-6 -4446))) (-4453 . T) (-4454 . T) (-4456 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#2| (QUOTE -4446))))
-(-438 R -1396)
+((-4448 -12 (|has| |#1| (-6 -4448)) (|has| |#2| (-6 -4448))) (-4455 . T) (-4456 . T) (-4458 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#2| (QUOTE -4448))))
+(-440 R -1398)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-439 S R)
+(-441 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
-(-440 R)
+((|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))))
+(-442 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4456 -2833 (|has| |#1| (-1065)) (|has| |#1| (-483))) (-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) ((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-566)) (-4451 |has| |#1| (-566)))
+((-4458 -2838 (|has| |#1| (-1067)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568)))
NIL
-(-441 R -1396)
+(-443 R -1398)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-442 R -1396)
+(-444 R -1398)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-443 R -1396)
+(-445 R -1398)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-444)
+(-446)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-445 R -1396 UP)
+(-447 R -1398 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-48)))))
-(-446)
+((|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-48)))))
+(-448)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-447)
+(-449)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-448 |f|)
+(-450 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-449)
+(-451)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-450)
+(-452)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-451)
+(-453)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-452 UP)
+(-454 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-453 R UP -1396)
+(-455 R UP -1398)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-454 R UP)
+(-456 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-455 R)
+(-457 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-414))))
-(-456)
+((|HasCategory| |#1| (QUOTE (-416))))
+(-458)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-457 |Dom| |Expon| |VarSet| |Dpol|)
+(-459 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-458 |Dom| |Expon| |VarSet| |Dpol|)
+(-460 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-459 |Dom| |Expon| |VarSet| |Dpol|)
+(-461 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-460 |Dom| |Expon| |VarSet| |Dpol|)
+(-462 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))))
-(-461 S)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-463 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-462)
+(-464)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-463 R |n| |ls| |gamma|)
+(-465 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4456 |has| (-417 (-966 |#1|)) (-566)) (-4454 . T) (-4453 . T))
-((|HasCategory| (-417 (-966 |#1|)) (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-417 (-966 |#1|)) (QUOTE (-566))))
-(-464 |vl| R E)
+((-4458 |has| (-419 (-968 |#1|)) (-568)) (-4456 . T) (-4455 . T))
+((|HasCategory| (-419 (-968 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-968 |#1|)) (QUOTE (-568))))
+(-466 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-465 R BP)
+(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-467 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-466 OV E S R P)
+(-468 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-467 E OV R P)
+(-469 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-468 R)
+(-470 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-469 R FE)
+(-471 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-470 RP TP)
+(-472 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-471 |vl| R IS E |ff| P)
+(-473 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-472 E V R P Q)
+(-474 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-473 R E |VarSet| P)
+(-475 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-474 S R E)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-476 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-475 R E)
+(-477 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-476)
+(-478)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-477)
+(-479)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-478)
+(-480)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-479 S R E)
+(-481 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-480 R E)
+(-482 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-481 |lv| -1396 R)
+(-483 |lv| -1398 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-482 S)
+(-484 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-483)
+(-485)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-484 |Coef| |var| |cen|)
+(-486 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-485 |Key| |Entry| |Tbl| |dent|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-487 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))))
-(-486 R E V P)
+((-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))))
+(-488 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-487)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-489)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-488)
+(-490)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-489 |Key| |Entry| |hashfn|)
+(-491 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-490)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-492)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-491 |vl| R)
+(-493 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-492 -4106 S)
+(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-494 -4111 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
-(-493)
+((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2838 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-2838 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-2838 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
+(-495)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-494 S)
+(-496 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-495 -1396 UP UPUP R)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-497 -1398 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-496 BP)
+(-498 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-497)
+(-499)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
-(-498 A S)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-2838 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146)))))
+(-500 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-499 S)
+((|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-501 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-500 S)
+(-502 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-501)
+(-503)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-502 S)
+(-504 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-503)
+(-505)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-504 -1396 UP |AlExt| |AlPol|)
+(-506 -1398 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-505)
+(-507)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| $ (QUOTE (-1065))) (|HasCategory| $ (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-506 S |mn|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| $ (QUOTE (-1067))) (|HasCategory| $ (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-508 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-507 R |mnRow| |mnCol|)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-509 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-508 K R UP)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-510 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-509 R UP -1396)
+(-511 R UP -1398)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-510 |mn|)
+(-512 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -317) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-112) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-112) (QUOTE (-1116))) (|HasCategory| (-112) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-511 K R UP L)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1118))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-513 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-512)
+(-514)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-513 R Q A B)
+(-515 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-514 -1396 |Expon| |VarSet| |DPoly|)
+(-516 -1398 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-1193)))))
-(-515 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1195)))))
+(-517 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-516)
+(-518)
((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-517 A S)
+(-519 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-518 A S)
+(-520 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-519 A S)
+(-521 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-520 A S)
+(-522 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-521 A S)
+(-523 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-522 A S)
+(-524 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-523 S A B)
+(-525 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-524 A B)
+(-526 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-525 S E |un|)
+(-527 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-802))))
-(-526 S |mn|)
+((|HasCategory| |#2| (QUOTE (-804))))
+(-528 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-527)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-529)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-528 |p| |n|)
+(-530 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| (-591 |#1|) (QUOTE (-146))) (|HasCategory| (-591 |#1|) (QUOTE (-377)))) (|HasCategory| (-591 |#1|) (QUOTE (-148))) (|HasCategory| (-591 |#1|) (QUOTE (-377))) (|HasCategory| (-591 |#1|) (QUOTE (-146))))
-(-529 R |mnRow| |mnCol| |Row| |Col|)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146))))
+(-531 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-530 S |mn|)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-532 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-531 R |Row| |Col| M)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-533 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4460)))
-(-532 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4462)))
+(-534 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4460)))
-(-533 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4462)))
+(-535 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-534)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-536)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-535)
+(-537)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-536 S)
+(-538 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-537)
+(-539)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-538 GF)
+(-540 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-539)
+(-541)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-540 R)
+(-542 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-541 |Varset|)
+(-543 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-542 K -1396 |Par|)
+(-544 K -1398 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-543)
+(-545)
NIL
NIL
NIL
-(-544)
+(-546)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-545 R)
+(-547 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-546)
+(-548)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-547 |Coef| UTS)
+(-549 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-548 K -1396 |Par|)
+(-550 K -1398 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-549 R BP |pMod| |nextMod|)
+(-551 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-550 OV E R P)
+(-552 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-551 K UP |Coef| UTS)
+(-553 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-552 |Coef| UTS)
+(-554 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-553 R UP)
+(-555 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-554 S)
+(-556 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-555)
+(-557)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-556)
+(-558)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-557)
+(-559)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-558)
+(-560)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-559)
+(-561)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-560 |Key| |Entry| |addDom|)
+(-562 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-561 R -1396)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-563 R -1398)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-562 R0 -1396 UP UPUP R)
+(-564 R0 -1398 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-563)
+(-565)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-564 R)
+(-566 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-3530 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-565 S)
+(-567 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-566)
+(-568)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-567 R -1396)
+(-569 R -1398)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-568 I)
+(-570 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-569)
+(-571)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-570 R -1396 L)
+(-572 R -1398 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
-(-571)
+((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|))))
+(-573)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-572 -1396 UP UPUP R)
+(-574 -1398 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-573 -1396 UP)
+(-575 -1398 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-574)
+(-576)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4441 . T) (-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4443 . T) (-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-575)
+(-577)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-576 R -1396 L)
+(-578 R -1398 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -666) (|devaluate| |#2|))))
-(-577 R -1396)
+((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|))))
+(-579 R -1398)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1155)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-639)))))
-(-578 -1396 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1157)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641)))))
+(-580 -1398 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-579 S)
+(-581 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-580 -1396)
+(-582 -1398)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-581 R)
+(-583 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3525 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-3530 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-582)
+(-584)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-583 R -1396)
+(-585 R -1398)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-292))) (|HasCategory| |#2| (QUOTE (-639))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-292)))) (|HasCategory| |#1| (QUOTE (-566))))
-(-584 -1396 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568))))
+(-586 -1398 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-585 R -1396)
+(-587 R -1398)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-586)
+(-588)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-587)
+(-589)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-588)
+(-590)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-589)
+(-591)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-590 |p| |unBalanced?|)
+(-592 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-591 |p|)
+(-593 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
-(-592)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379))))
+(-594)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-593 R -1396)
+(-595 R -1398)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-594 E -1396)
+(-596 E -1398)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-595)
+(-597)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-596 -1396)
+(-598 -1398)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4454 . T) (-4453 . T))
-((|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-1193)))))
-(-597 I)
+((-4456 . T) (-4455 . T))
+((|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-1195)))))
+(-599 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-598 GF)
+(-600 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-599 R)
+(-601 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-148))))
-(-600)
+(-602)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-601 R E V P TS)
+(-603 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-602)
+(-604)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-603 |mn|)
+(-605 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (-2833 (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
-(-604 E V R P)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2838 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
+(-606 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-605 |Coef|)
+(-607 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))) (|HasCategory| (-574) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))))
-(-606 |Coef|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))))
+(-608 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4461 "*") |has| |#1| (-566)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-566))))
-(-607)
+(((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-568))))
+(-609)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-608 A B)
+(-610 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-609 A B C)
+(-611 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-610 R -1396 FG)
+(-612 R -1398 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-611 S)
+(-613 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-612 R |mn|)
+(-614 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-613 S |Index| |Entry|)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-615 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-1116))))
-(-614 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-1118))))
+(-616 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-615)
+(-617)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-616)
+(-618)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-617 R A)
+(-619 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T))
-((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
-(-618 |Entry|)
+((-4458 -2838 (-2096 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T))
+((-2838 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))))
+(-620 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-619 S |Key| |Entry|)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-621 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-620 |Key| |Entry|)
+(-622 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-621 R S)
+(-623 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-622 S)
+(-624 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))))
-(-623 S)
+((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))))
+(-625 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-624 S)
+(-626 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-625 -1396 UP)
+(-627 -1398 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-626 S)
+(-628 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-627)
+(-629)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-628 S)
+(-630 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-629 S R)
+(-631 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-630 R)
+(-632 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-631 A R S)
+(-633 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-858))))
-(-632 R -1396)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-860))))
+(-634 R -1398)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-633 R UP)
+(-635 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4452 . T) (-4456 . T))
-((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-634 R E V P TS ST)
+((-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4458 . T))
+((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-636 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-635 OV E Z P)
+(-637 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-636)
+(-638)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-637 |VarSet| R |Order|)
+(-639 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-638 R |ls|)
+(-640 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-639)
+(-641)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-640 R -1396)
+(-642 R -1398)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-641 |lv| -1396)
+(-643 |lv| -1398)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-642)
+(-644)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-1175) (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (QUOTE (-1116))))
-(-643 S R)
+((-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1177) (QUOTE (-862))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (QUOTE (-1118))))
+(-645 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))))
-(-644 R)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-646 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T))
NIL
-(-645 R A)
+(-647 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4456 -2833 (-2095 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))) (-4454 . T) (-4453 . T))
-((-2833 (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -427) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -376) (|devaluate| |#1|))))
-(-646 R FE)
+((-4458 -2838 (-2096 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T))
+((-2838 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))))
+(-648 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-647 R)
+(-649 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-648 S R)
+(-650 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2084 (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-372))))
-(-649 R)
+((-2085 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374))))
+(-651 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-650 S)
+(-652 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-651 A B)
+(-653 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-652 A B)
+(-654 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-653 A B C)
+(-655 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-654 S)
+(-656 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-655 T$)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-657 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-656 S)
+(-658 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-657 S)
+(-659 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-658 R)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-660 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-659 S E |un|)
+(-661 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-660 A S)
+(-662 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
-(-661 S)
+((|HasAttribute| |#1| (QUOTE -4462)))
+(-663 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-662 R -1396 L)
+(-664 R -1398 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-663 A)
+(-665 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-664 A M)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-666 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-665 S A)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-667 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))))
-(-666 A)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-668 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-667 -1396 UP)
+(-669 -1398 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-668 A -1671)
+(-670 A -2530)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-669 A L)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-671 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-670 S)
+(-672 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-671)
+(-673)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-672 M R S)
+(-674 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4454 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-801))))
-(-673 R)
+((-4456 . T) (-4455 . T))
+((|HasCategory| |#1| (QUOTE (-803))))
+(-675 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-674 |VarSet| R)
+(-676 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4454 . T) (-4453 . T))
-((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-174))))
-(-675 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T))
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174))))
+(-677 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-676 S)
+(-678 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-677 -1396)
+(-679 -1398)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-678 -1396 |Row| |Col| M)
+(-680 -1398 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-679 R E OV P)
+(-681 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-680 |n| R)
+(-682 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4456 . T) (-4459 . T) (-4453 . T) (-4454 . T))
-((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-681)
+((-4458 . T) (-4461 . T) (-4455 . T) (-4456 . T))
+((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2838 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-683)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-682 |VarSet|)
+(-684 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-683 A S)
+(-685 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-684 S)
+(-686 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-685 R)
+(-687 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-686)
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-688)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-687 |VarSet|)
+(-689 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-688 A)
+(-690 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-689 A C)
+(-691 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-690 A B C)
+(-692 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-691)
+(-693)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-692 A)
+(-694 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-693 A C)
+(-695 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-694 A B C)
+(-696 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-695 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-697 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-696 S R |Row| |Col|)
+(-698 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-566))))
-(-697 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))))
+(-699 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
-(-698 R |Row| |Col| M)
+(-700 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))))
-(-699 R)
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))))
+(-701 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4459 . T) (-4460 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-566))) (|HasAttribute| |#1| (QUOTE (-4461 "*"))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-700 R)
+((-4461 . T) (-4462 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-702 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-701 T$)
+(-703 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-702 S -1396 FLAF FLAS)
+(-704 S -1398 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-703 R Q)
+(-705 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-704)
+(-706)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4452 . T) (-4457 |has| (-709) (-372)) (-4451 |has| (-709) (-372)) (-3536 . T) (-4458 |has| (-709) (-6 -4458)) (-4455 |has| (-709) (-6 -4455)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-709) (QUOTE (-148))) (|HasCategory| (-709) (QUOTE (-146))) (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-377))) (|HasCategory| (-709) (QUOTE (-372))) (-2833 (|HasCategory| (-709) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-239))) (-2833 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (LIST (QUOTE -294) (QUOTE (-709)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -317) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-709)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-709) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-709) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (-2833 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-358)))) (|HasCategory| (-709) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-709) (QUOTE (-1038))) (|HasCategory| (-709) (QUOTE (-1219))) (-12 (|HasCategory| (-709) (QUOTE (-1018))) (|HasCategory| (-709) (QUOTE (-1219)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-372))) (|HasCategory| (-709) (QUOTE (-923)))) (-12 (|HasCategory| (-709) (QUOTE (-358))) (|HasCategory| (-709) (QUOTE (-923))))) (|HasCategory| (-709) (QUOTE (-555))) (-12 (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-1219)))) (|HasCategory| (-709) (QUOTE (-1076))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-566)))) (-12 (|HasCategory| (-709) (QUOTE (-239))) (|HasCategory| (-709) (QUOTE (-372)))) (-12 (|HasCategory| (-709) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-709) (QUOTE (-372)))) (|HasCategory| (-709) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-709) (QUOTE (-566))) (|HasAttribute| (-709) (QUOTE -4458)) (|HasAttribute| (-709) (QUOTE -4455)) (-12 (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-146)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-709) (QUOTE (-315))) (|HasCategory| (-709) (QUOTE (-923)))) (|HasCategory| (-709) (QUOTE (-358)))))
-(-705 S)
+((-4454 . T) (-4459 |has| (-711) (-374)) (-4453 |has| (-711) (-374)) (-3541 . T) (-4460 |has| (-711) (-6 -4460)) (-4457 |has| (-711) (-6 -4457)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2838 (|HasCategory| (-711) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-239))) (-2838 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-2838 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1040))) (|HasCategory| (-711) (QUOTE (-1221))) (-12 (|HasCategory| (-711) (QUOTE (-1020))) (|HasCategory| (-711) (QUOTE (-1221)))) (-2838 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-925))))) (-2838 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-925)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-925))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1078))) (|HasCategory| (-711) (QUOTE (-1221)))) (|HasCategory| (-711) (QUOTE (-1078))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925))) (-2838 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2838 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-239))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4460)) (|HasAttribute| (-711) (QUOTE -4457)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-925)))) (|HasCategory| (-711) (QUOTE (-360)))))
+(-707 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-706 U)
+(-708 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-707)
+(-709)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-708 OV E -1396 PG)
+(-710 OV E -1398 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-709)
+(-711)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3525 . T) (-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-3530 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-710 R)
+(-712 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-711)
+(-713)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4458 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4460 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-712 S D1 D2 I)
+(-714 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-713 S)
+(-715 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-714 S)
+(-716 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-715 S T$)
+(-717 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-716 S -3585 I)
+(-718 S -3590 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-717 E OV R P)
+(-719 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-718 R)
+(-720 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-719 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-721 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-720)
+(-722)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-721 R |Mod| -3992 -2470 |exactQuo|)
+(-723 R |Mod| -3504 -1383 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-722 R |Rep|)
+(-724 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-723 IS E |ff|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-725 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-724 R M)
+(-726 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
+((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-725 R |Mod| -3992 -2470 |exactQuo|)
+(-727 R |Mod| -3504 -1383 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-726 S R)
+(-728 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-727 R)
+(-729 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-728 -1396)
+(-730 -1398)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-729 S)
+(-731 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-730)
+(-732)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-731 S)
+(-733 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-732)
+(-734)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-733 S R UP)
+(-735 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))))
-(-734 R UP)
+((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))))
+(-736 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-735 S)
+(-737 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-736)
+(-738)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-737 -1396 UP)
+(-739 -1398 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-738 |VarSet| E1 E2 R S PR PS)
+(-740 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-739 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-741 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-740 E OV R PPR)
+(-742 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-741 |vl| R)
+(-743 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-874 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-742 E OV R PRF)
+(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-744 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-743 E OV R P)
+(-745 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-744 R S M)
+(-746 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-745 R M)
+(-747 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-860))))
-(-746 S)
+((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862))))
+(-748 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4449 . T) (-4460 . T))
+((-4451 . T) (-4462 . T))
NIL
-(-747 S)
+(-749 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4459 . T) (-4449 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-748)
+((-4461 . T) (-4451 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-750)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-749 S)
+(-751 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-750 |Coef| |Var|)
+(-752 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-751 OV E R P)
+(-753 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-752 E OV R P)
+(-754 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-753 S R)
+(-755 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-754 R)
+(-756 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-755)
+(-757)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-756)
+(-758)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-757)
+(-759)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-758)
+(-760)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-759)
+(-761)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-760)
+(-762)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-761)
+(-763)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-762)
+(-764)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-763)
+(-765)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-764)
+(-766)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-765)
+(-767)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-766)
+(-768)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-767)
+(-769)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-768)
+(-770)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-769)
+(-771)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-770 S)
+(-772 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-771)
+(-773)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-772 S)
+(-774 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-773)
+(-775)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-774 |Par|)
+(-776 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-775 -1396)
+(-777 -1398)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-776 P -1396)
+(-778 P -1398)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-777 T$)
+(-779 T$)
NIL
NIL
NIL
-(-778 UP -1396)
+(-780 UP -1398)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-779)
+(-781)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-780 R)
+(-782 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-781)
+(-783)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4461 "*") . T))
+(((-4463 "*") . T))
NIL
-(-782 R -1396)
+(-784 R -1398)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-783 S)
+(-785 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-784)
+(-786)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-785 R |PolR| E |PolE|)
+(-787 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-786 R E V P TS)
+(-788 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-787 -1396 |ExtF| |SUEx| |ExtP| |n|)
+(-789 -1398 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-788 BP E OV R P)
+(-790 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-789 |Par|)
+(-791 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-790 R |VarSet|)
+(-792 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (QUOTE (-555)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-574))))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-1193)))) (-2084 (|HasCategory| |#1| (LIST (QUOTE -1008) (QUOTE (-574))))))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-791 R S)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2085 (|HasCategory| |#1| (QUOTE (-557)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2085 (|HasCategory| |#1| (LIST (QUOTE -1010) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-793 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-792 R)
+(-794 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-793 R)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-795 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-794 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-796 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-795 S)
+(-797 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-174))))
-(-796)
+((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-174))))
+(-798)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-797)
+(-799)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-798)
+(-800)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-799)
+(-801)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-800 |Curve|)
+(-802 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-801)
+(-803)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-802)
+(-804)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-803)
+(-805)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-804)
+(-806)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-805)
+(-807)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-806 S R)
+(-808 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-377))))
-(-807 R)
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))))
+(-809 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-808 -2833 R OS S)
+(-810 -2838 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-809 R)
+(-811 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1015 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-810)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2838 (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1017 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-812)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-811 R -1396 L)
+(-813 R -1398 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-812 R -1396)
+(-814 R -1398)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-813)
+(-815)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-814 R -1396)
+(-816 R -1398)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-815)
+(-817)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-816 -1396 UP UPUP R)
+(-818 -1398 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-817 -1396 UP L LQ)
+(-819 -1398 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-818)
+(-820)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-819 -1396 UP L LQ)
+(-821 -1398 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-820 -1396 UP)
+(-822 -1398 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-821 -1396 L UP A LO)
+(-823 -1398 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-822 -1396 UP)
+(-824 -1398 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-823 -1396 LO)
+(-825 -1398 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-824 -1396 LODO)
+(-826 -1398 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-825 -4106 S |f|)
+(-827 -4111 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4453 |has| |#2| (-1065)) (-4454 |has| |#2| (-1065)) (-4456 |has| |#2| (-6 -4456)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (-2833 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1065)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-377)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-736)))) (-2833 (|HasCategory| |#2| (QUOTE (-1065))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-1116)))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))))
-(-826 R)
+((-4455 |has| |#2| (-1067)) (-4456 |has| |#2| (-1067)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2838 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1067)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195))))) (-2838 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-2838 (|HasCategory| |#2| (QUOTE (-1067))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1118)))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
+(-828 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-828 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-827 |Kernels| R |var|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-829 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4461 "*") |has| |#2| (-372)) (-4452 |has| |#2| (-372)) (-4457 |has| |#2| (-372)) (-4451 |has| |#2| (-372)) (-4456 . T) (-4454 . T) (-4453 . T))
-((|HasCategory| |#2| (QUOTE (-372))))
-(-828 S)
+(((-4463 "*") |has| |#2| (-374)) (-4454 |has| |#2| (-374)) (-4459 |has| |#2| (-374)) (-4453 |has| |#2| (-374)) (-4458 . T) (-4456 . T) (-4455 . T))
+((|HasCategory| |#2| (QUOTE (-374))))
+(-830 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-829 S)
+(-831 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-860))))
-(-830)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-832)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-831)
+(-833)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-832)
+(-834)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-833)
+(-835)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-834)
+(-836)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-835)
+(-837)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-836 R)
+(-838 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-837 P R)
+(-839 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239))))
-(-838)
+(-840)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-839)
+(-841)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-840 S)
+(-842 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4459 . T) (-4449 . T) (-4460 . T))
+((-4461 . T) (-4451 . T) (-4462 . T))
NIL
-(-841)
+(-843)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-842 R S)
+(-844 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-843 R)
+(-845 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4456 |has| |#1| (-858)))
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
-(-844 A S)
+((-4458 |has| |#1| (-860)))
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-846 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-845 S)
+(-847 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-846 R)
+(-848 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
+((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-847)
+(-849)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-848)
+(-850)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-849)
+(-851)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-850)
+(-852)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-851)
+(-853)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-852 R S)
+(-854 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-853 R)
+(-855 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4456 |has| |#1| (-858)))
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-21))) (-2833 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-555))))
-(-854)
+((-4458 |has| |#1| (-860)))
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2838 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-856)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-855 -4106 S)
+(-857 -4111 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-856)
+(-858)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-857 S)
+(-859 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-858)
+(-860)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-859 S)
+(-861 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-860)
+(-862)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-861 S R)
+(-863 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))))
-(-862 R)
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))))
+(-864 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-863 R C)
+(-865 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566))))
-(-864 R |sigma| -2083)
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))))
+(-866 R |sigma| -2084)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-372))))
-(-865 |x| R |sigma| -2083)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-867 |x| R |sigma| -2084)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-372))))
-(-866 R)
+((-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374))))
+(-868 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-867)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-869)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-868)
+(-870)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-869 S)
+(-871 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-870)
+(-872)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-871)
+(-873)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-872)
+(-874)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-873)
+(-875)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-874 |VariableList|)
+(-876 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-875)
+(-877)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-876 R |vl| |wl| |wtlevel|)
+(-878 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
-(-877 R PS UP)
+((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))))
+(-879 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-878 R |x| |pt|)
+(-880 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-879 |p|)
+(-881 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-880 |p|)
+(-882 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-881 |p|)
+(-883 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-880 |#1|) (QUOTE (-923))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-148))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-880 |#1|) (QUOTE (-1038))) (|HasCategory| (-880 |#1|) (QUOTE (-830))) (-2833 (|HasCategory| (-880 |#1|) (QUOTE (-830))) (|HasCategory| (-880 |#1|) (QUOTE (-860)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-1168))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| (-880 |#1|) (QUOTE (-239))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -317) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (LIST (QUOTE -294) (LIST (QUOTE -880) (|devaluate| |#1|)) (LIST (QUOTE -880) (|devaluate| |#1|)))) (|HasCategory| (-880 |#1|) (QUOTE (-315))) (|HasCategory| (-880 |#1|) (QUOTE (-555))) (|HasCategory| (-880 |#1|) (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-880 |#1|) (QUOTE (-923)))) (|HasCategory| (-880 |#1|) (QUOTE (-146)))))
-(-882 |p| PADIC)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-882 |#1|) (QUOTE (-925))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-148))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-882 |#1|) (QUOTE (-1040))) (|HasCategory| (-882 |#1|) (QUOTE (-832))) (-2838 (|HasCategory| (-882 |#1|) (QUOTE (-832))) (|HasCategory| (-882 |#1|) (QUOTE (-862)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-1170))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-239))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -882) (|devaluate| |#1|)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-317))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (|HasCategory| (-882 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-925)))) (|HasCategory| (-882 |#1|) (QUOTE (-146)))))
+(-884 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (-2833 (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-860))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-883 S T$)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-832))) (-2838 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1170))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-885 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))))
-(-884)
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))))
+(-886)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-885)
+(-887)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-886)
+(-888)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-887 CF1 CF2)
+(-889 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-888 |ComponentFunction|)
+(-890 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-889 CF1 CF2)
+(-891 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-890 |ComponentFunction|)
+(-892 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-891)
+(-893)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-892 CF1 CF2)
+(-894 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-893 |ComponentFunction|)
+(-895 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-894)
+(-896)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-895 R)
+(-897 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-896 R S L)
+(-898 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-897 S)
+(-899 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-898 |Base| |Subject| |Pat|)
+(-900 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2084 (|HasCategory| |#2| (QUOTE (-1065)))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#2| (QUOTE (-1065))) (-2084 (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))
-(-899 R A B)
+((-12 (-2085 (|HasCategory| |#2| (QUOTE (-1067)))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (-12 (|HasCategory| |#2| (QUOTE (-1067))) (-2085 (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))
+(-901 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-900 R S)
+(-902 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-901 R -3585)
+(-903 R -3590)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-902 R S)
+(-904 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-903 R)
+(-905 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-904 |VarSet|)
+(-906 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-905 UP R)
+(-907 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-906 A T$ S)
+(-908 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-907 T$ S)
+(-909 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-908)
+(-910)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-909 UP -1396)
+(-911 UP -1398)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-910)
+(-912)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-911)
+(-913)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-912 S)
+(-914 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-913 A S)
+(-915 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-914 S)
+(-916 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-915 S)
+(-917 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-916 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-918 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-917 S)
+(-919 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-918 S)
+(-920 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-919 S)
+(-921 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4456 . T))
-((-2833 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-860))))
-(-920 R E |VarSet| S)
+((-4458 . T))
+((-2838 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862))))
+(-922 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-921 R S)
+(-923 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-922 S)
+(-924 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-923)
+(-925)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-924 |p|)
+(-926 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-377))))
-(-925 R0 -1396 UP UPUP R)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379))))
+(-927 R0 -1398 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-926 UP UPUP R)
+(-928 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-927 UP UPUP)
+(-929 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-928 R)
+(-930 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-929 R)
+(-931 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-930 E OV R P)
+(-932 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-931)
+(-933)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-932 -1396)
+(-934 -1398)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-933 R)
+(-935 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-934)
+(-936)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-935)
+(-937)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4461 "*") . T))
+(((-4463 "*") . T))
NIL
-(-936 -1396 P)
+(-938 -1398 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-937 |xx| -1396)
+(-939 |xx| -1398)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-938 R |Var| |Expon| GR)
+(-940 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-939 S)
+(-941 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-940)
+(-942)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-941)
+(-943)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-942)
+(-944)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-943 R -1396)
+(-945 R -1398)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-944)
+(-946)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-945 S A B)
+(-947 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-946 S R -1396)
+(-948 S R -1398)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-947 I)
+(-949 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-948 S E)
+(-950 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-949 S R L)
+(-951 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-950 S E V R P)
+(-952 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -897) (|devaluate| |#1|))))
-(-951 R -1396 -3585)
+((|HasCategory| |#3| (LIST (QUOTE -899) (|devaluate| |#1|))))
+(-953 R -1398 -3590)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-952 -3585)
+(-954 -3590)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-953 S R Q)
+(-955 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-954 S)
+(-956 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-955 S R P)
+(-957 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-956)
+(-958)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-957 R)
+(-959 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-958 |lv| R)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-960 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-959 |TheField| |ThePols|)
+(-961 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-960 R S)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-962 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-961 |x| R)
+(-963 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-962 S R E |VarSet|)
+(-964 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-923))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#4| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))))
-(-963 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-925))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))))
+(-965 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-964 E V R P -1396)
+(-966 E V R P -1398)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-965 E |Vars| R P S)
+(-967 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-966 R)
+(-968 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1193) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-967 E V R P -1396)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-969 E V R P -1398)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-462))))
-(-968)
+((|HasCategory| |#3| (QUOTE (-464))))
+(-970)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-969)
+(-971)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-970 R L)
+(-972 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-971 A B)
+(-973 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-972 S)
+(-974 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-973)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-975)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-974 -1396)
+(-976 -1398)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-975 I)
+(-977 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-976)
+(-978)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-977 R E)
+(-979 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4457)))
-(-978 A B)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4459)))
+(-980 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4456 -12 (|has| |#2| (-483)) (|has| |#1| (-483))))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736))))) (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-377)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-803))))) (-12 (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-736)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860)))))
-(-979)
+((-4458 -12 (|has| |#2| (-485)) (|has| |#1| (-485))))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862)))))
+(-981)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-980 T$)
+(-982 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-981 T$)
+(-983 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-982 S T$)
+(-984 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-983)
+(-985)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-984 S)
+(-986 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
-(-985 R |polR|)
+(-987 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-462))))
-(-986)
+((|HasCategory| |#1| (QUOTE (-464))))
+(-988)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-987)
+(-989)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-988 S |Coef| |Expon| |Var|)
+(-990 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-989 |Coef| |Expon| |Var|)
+(-991 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-990)
+(-992)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-991 S R E |VarSet| P)
+(-993 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-566))))
-(-992 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-568))))
+(-994 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4459 . T))
+((-4461 . T))
NIL
-(-993 R E V P)
+(-995 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-462))))
-(-994 K)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464))))
+(-996 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-995 |VarSet| E RC P)
+(-997 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-996 R)
+(-998 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-997 R1 R2)
+(-999 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-998 R)
+(-1000 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-999 K)
+(-1001 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-1000 R E OV PPR)
+(-1002 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1001 K R UP -1396)
+(-1003 K R UP -1398)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1002 |vl| |nv|)
+(-1004 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-1003 R |Var| |Expon| |Dpoly|)
+(-1005 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-315)))))
-(-1004 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))))
+(-1006 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1005)
+(-1007)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-1006 A B R S)
+(-1008 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1007 A S)
+(-1009 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-1038))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-1168))))
-(-1008 S)
+((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1170))))
+(-1010 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1009 |n| K)
+(-1011 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1010)
+(-1012)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1011 S)
+(-1013 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
-(-1012 S R)
+(-1014 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-298))))
-(-1013 R)
+((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300))))
+(-1015 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1014 QR R QS S)
+(-1016 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1015 R)
+(-1017 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4452 |has| |#1| (-298)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -294) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-555))))
-(-1016 S)
+((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-557))))
+(-1018 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1017 S)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1019 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1018)
+(-1020)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1019 -1396 UP UPUP |radicnd| |n|)
+(-1021 -1398 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4452 |has| (-417 |#2|) (-372)) (-4457 |has| (-417 |#2|) (-372)) (-4451 |has| (-417 |#2|) (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-417 |#2|) (QUOTE (-146))) (|HasCategory| (-417 |#2|) (QUOTE (-148))) (|HasCategory| (-417 |#2|) (QUOTE (-358))) (-2833 (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (QUOTE (-372))) (|HasCategory| (-417 |#2|) (QUOTE (-377))) (-2833 (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-358))))) (-2833 (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (QUOTE (-358)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 |#2|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-12 (|HasCategory| (-417 |#2|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))) (-12 (|HasCategory| (-417 |#2|) (QUOTE (-239))) (|HasCategory| (-417 |#2|) (QUOTE (-372)))))
-(-1020 |bb|)
+((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2838 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2838 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2838 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2838 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2838 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))))
+(-1022 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-574) (QUOTE (-923))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| (-574) (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-148))) (|HasCategory| (-574) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-1038))) (|HasCategory| (-574) (QUOTE (-830))) (-2833 (|HasCategory| (-574) (QUOTE (-830))) (|HasCategory| (-574) (QUOTE (-860)))) (|HasCategory| (-574) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-1168))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| (-574) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| (-574) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| (-574) (QUOTE (-239))) (|HasCategory| (-574) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| (-574) (LIST (QUOTE -524) (QUOTE (-1193)) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -317) (QUOTE (-574)))) (|HasCategory| (-574) (LIST (QUOTE -294) (QUOTE (-574)) (QUOTE (-574)))) (|HasCategory| (-574) (QUOTE (-315))) (|HasCategory| (-574) (QUOTE (-555))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-574) (LIST (QUOTE -649) (QUOTE (-574)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-574) (QUOTE (-923)))) (|HasCategory| (-574) (QUOTE (-146)))))
-(-1021)
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-576) (QUOTE (-925))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1040))) (|HasCategory| (-576) (QUOTE (-832))) (-2838 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1170))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-239))) (|HasCategory| (-576) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-925)))) (|HasCategory| (-576) (QUOTE (-146)))))
+(-1023)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1022)
+(-1024)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1023 RP)
+(-1025 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1024 S)
+(-1026 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1025 A S)
+(-1027 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-1116))))
-(-1026 S)
+((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-1118))))
+(-1028 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1027 S)
+(-1029 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1028)
+(-1030)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T))
+((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T))
NIL
-(-1029 R -1396)
+(-1031 R -1398)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1030 R -1396)
+(-1032 R -1398)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1031 -1396 UP)
+(-1033 -1398 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1032 -1396 UP)
+(-1034 -1398 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1033 S)
+(-1035 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1034 F1 UP UPUP R F2)
+(-1036 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1035)
+(-1037)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1036 |Pol|)
+(-1038 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1037 |Pol|)
+(-1039 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1038)
+(-1040)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1039)
+(-1041)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1040 |TheField|)
+(-1042 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4452 . T) (-4457 . T) (-4451 . T) (-4454 . T) (-4453 . T) ((-4461 "*") . T) (-4456 . T))
-((-2833 (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-417 (-574)) (LIST (QUOTE -1054) (QUOTE (-574)))))
-(-1041 -1396 L)
+((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T))
+((-2838 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1056) (QUOTE (-576)))))
+(-1043 -1398 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1042 S)
+(-1044 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1116))))
-(-1043 R E V P)
+((|HasCategory| |#1| (QUOTE (-1118))))
+(-1045 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1044 R)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1046 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4461 "*"))))
-(-1045 R)
+((|HasAttribute| |#1| (QUOTE (-4463 "*"))))
+(-1047 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-315))))
-(-1046 S)
+((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))))
+(-1048 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1047)
+(-1049)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1048 S)
+(-1050 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1049 S)
+(-1051 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1050 -1396 |Expon| |VarSet| |FPol| |LFPol|)
+(-1052 -1398 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1051)
+(-1053)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1052)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1054)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1053 A S)
+(-1055 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1054 S)
+(-1056 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1055 Q R)
+(-1057 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1056)
+(-1058)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1057 UP)
+(-1059 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1058 R)
+(-1060 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1059 R)
+(-1061 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1060 T$)
+(-1062 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1061 T$)
+(-1063 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1062 R |ls|)
+(-1064 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -790) (|devaluate| |#1|) (LIST (QUOTE -874) (|devaluate| |#2|)))))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-790 |#1| (-874 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| (-874 |#2|) (QUOTE (-377))) (|HasCategory| (-790 |#1| (-874 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1063)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1118))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -876) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-876 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1065)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1064 S)
+(-1066 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1065)
+(-1067)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4456 . T))
+((-4458 . T))
NIL
-(-1066 |xx| -1396)
+(-1068 |xx| -1398)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1067 S)
+(-1069 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1068 S |m| |n| R |Row| |Col|)
+(-1070 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-315))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (QUOTE (-566))) (|HasCategory| |#4| (QUOTE (-174))))
-(-1069 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174))))
+(-1071 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4459 . T) (-4454 . T) (-4453 . T))
+((-4461 . T) (-4456 . T) (-4455 . T))
NIL
-(-1070 |m| |n| R)
+(-1072 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4459 . T) (-4454 . T) (-4453 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-2833 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (QUOTE (-315))) (|HasCategory| |#3| (QUOTE (-566))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1071 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4461 . T) (-4456 . T) (-4455 . T))
+((|HasCategory| |#3| (QUOTE (-174))) (-2838 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1073 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1072 R)
+(-1074 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1073 S T$)
+(-1075 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1116))))
-(-1074)
+((|HasCategory| |#1| (QUOTE (-1118))))
+(-1076)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1075 S)
+(-1077 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1076)
+(-1078)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1077 |TheField| |ThePolDom|)
+(-1079 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1078)
+(-1080)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1079)
+(-1081)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1193))) (LIST (QUOTE |:|) (QUOTE -1916) (QUOTE (-52))))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-52) (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| (-52) (QUOTE (-1116))) (|HasCategory| (-52) (LIST (QUOTE -317) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (QUOTE (-1116))) (|HasCategory| (-1193) (QUOTE (-860))) (|HasCategory| (-52) (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-52) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1080 S R E V)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -1918) (QUOTE (-52))))))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-52) (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1118))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (QUOTE (-1118))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1082 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1008) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-1193)))))
-(-1081 R E V)
+((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1010) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1195)))))
+(-1083 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-1082)
+(-1084)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1083 S |TheField| |ThePols|)
+(-1085 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1084 |TheField| |ThePols|)
+(-1086 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1085 R E V P TS)
+(-1087 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1086 S R E V P)
+(-1088 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1087 R E V P)
+(-1089 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1088 R E V P TS)
+(-1090 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1089)
+(-1091)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1090)
+(-1092)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1091 |f|)
+(-1093 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1092 |Base| R -1396)
+(-1094 |Base| R -1398)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1093 |Base| R -1396)
+(-1095 |Base| R -1398)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1094 R |ls|)
+(-1096 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1095 UP SAE UPA)
+(-1097 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1096 R UP M)
+(-1098 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4452 |has| |#1| (-372)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-358))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-358)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))))
-(-1097 UP SAE UPA)
+((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))))
+(-1099 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1098)
+(-1100)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1099)
+(-1101)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1100 S)
+(-1102 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1101)
+(-1103)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1102 R)
+(-1104 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1103 R)
+(-1105 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1104 (-1193)) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1104 S)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1106 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1106 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1105 R S)
+(-1107 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-1106)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1108)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1107 R S)
+(-1109 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1108 S)
+(-1110 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1110 |#1|) (QUOTE (-1116))))
-(-1109 S)
+((|HasCategory| (-1112 |#1|) (QUOTE (-1118))))
+(-1111 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1110 S)
+(-1112 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116))))
-(-1111 S L)
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1118))))
+(-1113 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1112)
+(-1114)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1113 A S)
+(-1115 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1114 S)
+(-1116 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-1115 S)
+(-1117 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1116)
+(-1118)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1117 |m| |n|)
+(-1119 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1118 S)
+(-1120 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4459 . T) (-4449 . T) (-4460 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-377))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-1119 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4461 . T) (-4451 . T) (-4462 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-1121 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1120)
+(-1122)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1121 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1123 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1122 R FS)
+(-1124 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1123 R E V P TS)
+(-1125 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1124 R E V P TS)
+(-1126 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1125 R E V P)
+(-1127 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1126)
+(-1128)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1127 S)
+(-1129 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1128)
+(-1130)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1129 |dimtot| |dim1| S)
+(-1131 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4453 |has| |#3| (-1065)) (-4454 |has| |#3| (-1065)) (-4456 |has| |#3| (-6 -4456)) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#3| (QUOTE (-372))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-372)))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (-2833 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-377))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574)))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (QUOTE (-1116)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-1065)))) (-2833 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-377)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-736)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-803)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-860)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-736))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-803))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (|HasCategory| (-574) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1065)))) (-12 (|HasCategory| |#3| (QUOTE (-1065))) (|HasCategory| |#3| (LIST (QUOTE -912) (QUOTE (-1193))))) (-2833 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-736)))) (-2833 (|HasCategory| |#3| (QUOTE (-1065))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574)))))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#3| (QUOTE (-1116)))) (|HasAttribute| |#3| (QUOTE -4456)) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#3| (QUOTE (-1116))) (|HasCategory| |#3| (LIST (QUOTE -317) (|devaluate| |#3|)))))
-(-1130 R |x|)
+((-4455 |has| |#3| (-1067)) (-4456 |has| |#3| (-1067)) (-4458 |has| |#3| (-6 -4458)) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#3| (QUOTE (-374))) (-2838 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2838 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (QUOTE (-1118)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1067)))) (-2838 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118))))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1067)))) (-12 (|HasCategory| |#3| (QUOTE (-1067))) (|HasCategory| |#3| (LIST (QUOTE -914) (QUOTE (-1195))))) (-2838 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-738)))) (-2838 (|HasCategory| |#3| (QUOTE (-1067))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1118)))) (|HasAttribute| |#3| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1118))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))))
+(-1132 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-462))))
-(-1131)
+((|HasCategory| |#1| (QUOTE (-464))))
+(-1133)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1132 R -1396)
+(-1134 R -1398)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1133 R)
+(-1135 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1134)
+(-1136)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1135)
+(-1137)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1136)
+(-1138)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4447 . T) (-4451 . T) (-4446 . T) (-4457 . T) (-4458 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1137 S)
+(-1139 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4459 . T) (-4460 . T))
+((-4461 . T) (-4462 . T))
NIL
-(-1138 S |ndim| R |Row| |Col|)
+(-1140 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-372))) (|HasAttribute| |#3| (QUOTE (-4461 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
-(-1139 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4463 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
+(-1141 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4459 . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4461 . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1140 R |Row| |Col| M)
+(-1142 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1141 R |VarSet|)
+(-1143 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1142 |Coef| |Var| SMP)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1144 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1143 R E V P)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1145 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1144 UP -1396)
+(-1146 UP -1398)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1145 R)
+(-1147 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1146 R)
+(-1148 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1147 R)
+(-1149 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1148 S A)
+(-1150 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-860))))
-(-1149 R)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-1151 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1150 R)
+(-1152 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1151)
+(-1153)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1152)
+(-1154)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1153)
+(-1155)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1154)
+(-1156)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1155)
+(-1157)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1156 V C)
+(-1158 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1157 V C)
+(-1159 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))) (-2833 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -317) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1156 |#1| |#2|) (QUOTE (-1116))))) (|HasCategory| (-1156 |#1| |#2|) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1158 |ndim| R)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118))) (-2838 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1158 |#1| |#2|) (QUOTE (-1118))))) (|HasCategory| (-1158 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1160 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4456 . T) (-4448 |has| |#2| (-6 (-4461 "*"))) (-4459 . T) (-4453 . T) (-4454 . T))
-((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (QUOTE (-315))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-372))) (-2833 (|HasAttribute| |#2| (QUOTE (-4461 "*"))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-1159 S)
+((-4458 . T) (-4450 |has| |#2| (-6 (-4463 "*"))) (-4461 . T) (-4455 . T) (-4456 . T))
+((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-374))) (-2838 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-1161 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1160)
+(-1162)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1161 R E V P TS)
+(-1163 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1162 R E V P)
+(-1164 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1163 S)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1165 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1164 A S)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1166 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1165 S)
+(-1167 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1166 |Key| |Ent| |dent|)
+(-1168 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))))
-(-1167)
+((-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))))
+(-1169)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1168)
+(-1170)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1169 |Coef|)
+(-1171 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1170 S)
+(-1172 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1171 A B)
+(-1173 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1172 A B C)
+(-1174 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1173 S)
+(-1175 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1174)
+((-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1176)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1175)
+(-1177)
NIL
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| (-145) (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| (-145) (QUOTE (-1116))) (|HasCategory| (-145) (LIST (QUOTE -317) (QUOTE (-145))))))
-(-1176 |Entry|)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1118))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
+(-1178 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#1|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (QUOTE (-1116))) (|HasCategory| (-1175) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1177 A)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#1|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (QUOTE (-1118))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1179 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-1178 |Coef|)
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-1180 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1179 |Coef|)
+(-1181 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1180 R UP)
+(-1182 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-315))))
-(-1181 |n| R)
+((|HasCategory| |#1| (QUOTE (-317))))
+(-1183 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1182 S1 S2)
+(-1184 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1183)
+(-1185)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1184 |Coef| |var| |cen|)
+(-1186 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1191 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1191) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1191 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1185 R -1396)
+(((-4463 "*") -2838 (-2096 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-925)))) (-4454 -2838 (-2096 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2096 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1187 R -1398)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1186 R)
+(-1188 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1187 R S)
+(-1189 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1188 E OV R P)
+(-1190 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1189 R)
+(-1191 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#1| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1168))) (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1190 |Coef| |var| |cen|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1170))) (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1192 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-1191 |Coef| |var| |cen|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-1193 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-1192)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1130))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-1194)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1193)
+(-1195)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1194 R)
+(-1196 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1195 R)
+(-1197 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-6 -4457)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-462))) (-12 (|HasCategory| (-987) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasAttribute| |#1| (QUOTE -4457)))
-(-1196)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-989) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4459)))
+(-1198)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1197)
+(-1199)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1198)
+(-1200)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1199 N)
+(-1201 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1200 N)
+(-1202 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1201)
+(-1203)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1202 R)
+(-1204 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1203)
+(-1205)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1204 S)
+(-1206 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1205 S)
+(-1207 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1206 |Key| |Entry|)
+(-1208 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4459 . T) (-4460 . T))
-((-12 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -317) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3667) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1916) (|devaluate| |#2|)))))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-1116)))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -624) (QUOTE (-546)))) (-12 (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1116))) (-2833 (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-872)))) (|HasCategory| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1207 S)
+((-4461 . T) (-4462 . T))
+((-12 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3672) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1918) (|devaluate| |#2|)))))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#2| (QUOTE (-1118)))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1118))) (-2838 (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1209 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1208 R)
+(-1210 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1209 S |Key| |Entry|)
+(-1211 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1210 |Key| |Entry|)
+(-1212 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-1211 |Key| |Entry|)
+(-1213 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1212)
+(-1214)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1213 S)
+(-1215 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1214)
+(-1216)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1215)
+(-1217)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1216 R)
+(-1218 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1217)
+(-1219)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1218 S)
+(-1220 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1219)
+(-1221)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1220 S)
+(-1222 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1116))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1221 S)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1118))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1223 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1222)
+(-1224)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1223 R -1396)
+(-1225 R -1398)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1224 R |Row| |Col| M)
+(-1226 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1225 R -1396)
+(-1227 R -1398)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -897) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -897) (|devaluate| |#1|)))))
-(-1226 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -899) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -899) (|devaluate| |#1|)))))
+(-1228 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-377))))
-(-1227 R E V P)
+((|HasCategory| |#4| (QUOTE (-379))))
+(-1229 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1228 |Coef|)
+(-1230 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1229 |Curve|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1231 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1230)
+(-1232)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1231 S)
+(-1233 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1232 -1396)
+((|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1234 -1398)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1233)
+(-1235)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1234)
+(-1236)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1235 S)
+(-1237 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-860))))
-(-1236)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-1238)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1237 S)
+(-1239 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1238)
+(-1240)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1239)
+(-1241)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1240)
+(-1242)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1241)
+(-1243)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1242)
+(-1244)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1243 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1245 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1244 |Coef|)
+(-1246 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1245 S |Coef| UTS)
+(-1247 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-372))))
-(-1246 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-1248 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1247 |Coef| UTS)
+(-1249 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))) (-2833 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-148))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860))))) (-2833 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1038)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-1193)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -294) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -317) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -524) (QUOTE (-1193)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-923))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-315)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-146))))))
-(-1248 |Coef| |var| |cen|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2838 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2838 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-1195)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-925))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))))
+(-1250 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4461 "*") -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-174)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4452 -2833 (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-830))) (|has| |#1| (-566)) (-2095 (|has| |#1| (-372)) (|has| (-1276 |#1| |#2| |#3|) (-923)))) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-574)) (|devaluate| |#1|))))) (|HasCategory| (-574) (QUOTE (-1128))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1038))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-1168))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -294) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -317) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -524) (QUOTE (-1193)) (LIST (QUOTE -1276) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-574))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-315))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-923))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| (-1276 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1249 ZP)
+(((-4463 "*") -2838 (-2096 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2096 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-925)))) (-4454 -2838 (-2096 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2096 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-925)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1130))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1170))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1251 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1250 R S)
+(-1252 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))))
-(-1251 S)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1253 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1116))))
-(-1252 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1118))))
+(-1254 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1253 R Q UP)
+(-1255 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1254 R UP)
+(-1256 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1255 R UP)
+(-1257 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1256 R U)
+(-1258 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1257 |x| R)
+(-1259 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4461 "*") |has| |#2| (-174)) (-4452 |has| |#2| (-566)) (-4455 |has| |#2| (-372)) (-4457 |has| |#2| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-923))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-566)))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-388)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-388))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -897) (QUOTE (-574)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-574))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-388)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -624) (LIST (QUOTE -903) (QUOTE (-574)))))) (-12 (|HasCategory| (-1098) (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-546))))) (|HasCategory| |#2| (LIST (QUOTE -649) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (QUOTE (-574)))) (-2833 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| |#2| (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (-2833 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-1168))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasCategory| |#2| (QUOTE (-462))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (-2833 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-923)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-1258 R PR S PS)
+(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4457 |has| |#2| (-374)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1100) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (QUOTE (-576)))) (-2838 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (-2838 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1170))) (|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (-2838 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-925)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-1260 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1259 S R)
+(-1261 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-462))) (|HasCategory| |#2| (QUOTE (-566))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1168))))
-(-1260 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1170))))
+(-1262 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4455 |has| |#1| (-372)) (-4457 |has| |#1| (-6 -4457)) (-4454 . T) (-4453 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-1261 S |Coef| |Expon|)
+(-1263 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1128))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2951) (LIST (|devaluate| |#2|) (QUOTE (-1193))))))
-(-1262 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2956) (LIST (|devaluate| |#2|) (QUOTE (-1195))))))
+(-1264 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1263 RC P)
+(-1265 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1264 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1266 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1265 |Coef|)
+(-1267 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1266 S |Coef| ULS)
+(-1268 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1267 |Coef| ULS)
+(-1269 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1268 |Coef| ULS)
+(-1270 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))))
-(-1269 |Coef| |var| |cen|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-1271 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4457 |has| |#1| (-372)) (-4451 |has| |#1| (-372)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#1| (QUOTE (-174))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574))) (|devaluate| |#1|)))) (|HasCategory| (-417 (-574)) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-2833 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-566)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -417) (QUOTE (-574)))))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-1270 R FE |var| |cen|)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2838 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-1272 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4461 "*") |has| (-1269 |#2| |#3| |#4|) (-174)) (-4452 |has| (-1269 |#2| |#3| |#4|) (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-174))) (-2833 (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574)))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (LIST (QUOTE -1054) (QUOTE (-574)))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-372))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-462))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-566))))
-(-1271 A S)
+(((-4463 "*") |has| (-1271 |#2| |#3| |#4|) (-174)) (-4454 |has| (-1271 |#2| |#3| |#4|) (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-174))) (-2838 (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1056) (QUOTE (-576)))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-568))))
+(-1273 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
-(-1272 S)
+((|HasAttribute| |#1| (QUOTE -4462)))
+(-1274 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1273 |Coef1| |Coef2| UTS1 UTS2)
+(-1275 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1274 S |Coef|)
+(-1276 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-1219))) (|HasSignature| |#2| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3083) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1193))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#2| (QUOTE (-372))))
-(-1275 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-975))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasSignature| |#2| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2254) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))))
+(-1277 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1276 |Coef| |var| |cen|)
+(-1278 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4461 "*") |has| |#1| (-174)) (-4452 |has| |#1| (-566)) (-4453 . T) (-4454 . T) (-4456 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasCategory| |#1| (QUOTE (-566))) (-2833 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-1193)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-781)) (|devaluate| |#1|)))) (|HasCategory| (-781) (QUOTE (-1128))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasSignature| |#1| (LIST (QUOTE -2951) (LIST (|devaluate| |#1|) (QUOTE (-1193)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-781))))) (|HasCategory| |#1| (QUOTE (-372))) (-2833 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-574)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1219))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasSignature| |#1| (LIST (QUOTE -3083) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1193))))) (|HasSignature| |#1| (LIST (QUOTE -4350) (LIST (LIST (QUOTE -654) (QUOTE (-1193))) (|devaluate| |#1|)))))))
-(-1277 |Coef| UTS)
+(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2838 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -914) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1130))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2956) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2838 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-975))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2254) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -4352) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))))
+(-1279 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1278 -1396 UP L UTS)
+(-1280 -1398 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-566))))
-(-1279)
+((|HasCategory| |#1| (QUOTE (-568))))
+(-1281)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1280 |sym|)
+(-1282 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1281 S R)
+(-1283 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-736))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1282 R)
+((|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1284 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4460 . T) (-4459 . T))
+((-4462 . T) (-4461 . T))
NIL
-(-1283 A B)
+(-1285 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1284 R)
+(-1286 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4460 . T) (-4459 . T))
-((-2833 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|))))) (-2833 (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-546)))) (-2833 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-574) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-736))) (|HasCategory| |#1| (QUOTE (-1065))) (-12 (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1065)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-872)))) (-12 (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (LIST (QUOTE -317) (|devaluate| |#1|)))))
-(-1285)
+((-4462 . T) (-4461 . T))
+((-2838 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2838 (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2838 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1067))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1067)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-1287)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1286)
+(-1288)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1287)
+(-1289)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1288)
+(-1290)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1289)
+(-1291)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1290 A S)
+(-1292 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1291 S)
+(-1293 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4454 . T) (-4453 . T))
+((-4456 . T) (-4455 . T))
NIL
-(-1292 R)
+(-1294 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1293 K R UP -1396)
+(-1295 K R UP -1398)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1294)
+(-1296)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1295)
+(-1297)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1296 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1298 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4454 |has| |#1| (-174)) (-4453 |has| |#1| (-174)) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))))
-(-1297 R E V P)
+((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1299 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4460 . T) (-4459 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#4| (LIST (QUOTE -317) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-546)))) (|HasCategory| |#4| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-566))) (|HasCategory| |#3| (QUOTE (-377))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-872)))))
-(-1298 R)
+((-4462 . T) (-4461 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1300 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4453 . T) (-4454 . T) (-4456 . T))
+((-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1299 |vl| R)
+(-1301 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4456 . T) (-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452)))
-(-1300 R |VarSet| XPOLY)
+((-4458 . T) (-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454)))
+(-1302 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1301 |vl| R)
+(-1303 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
+((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-1302 S -1396)
+(-1304 S -1398)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-377))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1303 -1396)
+((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
+(-1305 -1398)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4451 . T) (-4457 . T) (-4452 . T) ((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
-(-1304 |VarSet| R)
+(-1306 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -727) (LIST (QUOTE -417) (QUOTE (-574))))) (|HasAttribute| |#2| (QUOTE -4452)))
-(-1305 |vl| R)
+((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4454)))
+(-1307 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
+((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T))
NIL
-(-1306 R)
+(-1308 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4452)))
-(-1307 R E)
+((-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4454)))
+(-1309 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4456 . T) (-4457 |has| |#1| (-6 -4457)) (-4452 |has| |#1| (-6 -4452)) (-4454 . T) (-4453 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-372))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4452)))
-(-1308 |VarSet| R)
+((-4458 . T) (-4459 |has| |#1| (-6 -4459)) (-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4454)))
+(-1310 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4452 |has| |#2| (-6 -4452)) (-4454 . T) (-4453 . T) (-4456 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4452)))
-(-1309)
+((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454)))
+(-1311)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1310 A)
+(-1312 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1311 R |ls| |ls2|)
+(-1313 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1312 R)
+(-1314 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1313 |p|)
+(-1315 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4461 "*") . T) (-4453 . T) (-4454 . T) (-4456 . T))
+(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T))
NIL
NIL
NIL
@@ -5200,4 +5208,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2265864 2265869 2265874 2265879) (-2 NIL 2265844 2265849 2265854 2265859) (-1 NIL 2265824 2265829 2265834 2265839) (0 NIL 2265804 2265809 2265814 2265819) (-1313 "ZMOD.spad" 2265613 2265626 2265742 2265799) (-1312 "ZLINDEP.spad" 2264679 2264690 2265603 2265608) (-1311 "ZDSOLVE.spad" 2254624 2254646 2264669 2264674) (-1310 "YSTREAM.spad" 2254119 2254130 2254614 2254619) (-1309 "YDIAGRAM.spad" 2253753 2253762 2254109 2254114) (-1308 "XRPOLY.spad" 2252973 2252993 2253609 2253678) (-1307 "XPR.spad" 2250768 2250781 2252691 2252790) (-1306 "XPOLY.spad" 2250323 2250334 2250624 2250693) (-1305 "XPOLYC.spad" 2249642 2249658 2250249 2250318) (-1304 "XPBWPOLY.spad" 2248079 2248099 2249422 2249491) (-1303 "XF.spad" 2246542 2246557 2247981 2248074) (-1302 "XF.spad" 2244985 2245002 2246426 2246431) (-1301 "XFALG.spad" 2242033 2242049 2244911 2244980) (-1300 "XEXPPKG.spad" 2241284 2241310 2242023 2242028) (-1299 "XDPOLY.spad" 2240898 2240914 2241140 2241209) (-1298 "XALG.spad" 2240558 2240569 2240854 2240893) (-1297 "WUTSET.spad" 2236397 2236414 2240204 2240231) (-1296 "WP.spad" 2235596 2235640 2236255 2236322) (-1295 "WHILEAST.spad" 2235394 2235403 2235586 2235591) (-1294 "WHEREAST.spad" 2235065 2235074 2235384 2235389) (-1293 "WFFINTBS.spad" 2232728 2232750 2235055 2235060) (-1292 "WEIER.spad" 2230950 2230961 2232718 2232723) (-1291 "VSPACE.spad" 2230623 2230634 2230918 2230945) (-1290 "VSPACE.spad" 2230316 2230329 2230613 2230618) (-1289 "VOID.spad" 2229993 2230002 2230306 2230311) (-1288 "VIEW.spad" 2227673 2227682 2229983 2229988) (-1287 "VIEWDEF.spad" 2222874 2222883 2227663 2227668) (-1286 "VIEW3D.spad" 2206835 2206844 2222864 2222869) (-1285 "VIEW2D.spad" 2194726 2194735 2206825 2206830) (-1284 "VECTOR.spad" 2193400 2193411 2193651 2193678) (-1283 "VECTOR2.spad" 2192039 2192052 2193390 2193395) (-1282 "VECTCAT.spad" 2189943 2189954 2192007 2192034) (-1281 "VECTCAT.spad" 2187654 2187667 2189720 2189725) (-1280 "VARIABLE.spad" 2187434 2187449 2187644 2187649) (-1279 "UTYPE.spad" 2187078 2187087 2187424 2187429) (-1278 "UTSODETL.spad" 2186373 2186397 2187034 2187039) (-1277 "UTSODE.spad" 2184589 2184609 2186363 2186368) (-1276 "UTS.spad" 2179393 2179421 2183056 2183153) (-1275 "UTSCAT.spad" 2176872 2176888 2179291 2179388) (-1274 "UTSCAT.spad" 2173995 2174013 2176416 2176421) (-1273 "UTS2.spad" 2173590 2173625 2173985 2173990) (-1272 "URAGG.spad" 2168263 2168274 2173580 2173585) (-1271 "URAGG.spad" 2162900 2162913 2168219 2168224) (-1270 "UPXSSING.spad" 2160545 2160571 2161981 2162114) (-1269 "UPXS.spad" 2157699 2157727 2158677 2158826) (-1268 "UPXSCONS.spad" 2155458 2155478 2155831 2155980) (-1267 "UPXSCCA.spad" 2154029 2154049 2155304 2155453) (-1266 "UPXSCCA.spad" 2152742 2152764 2154019 2154024) (-1265 "UPXSCAT.spad" 2151331 2151347 2152588 2152737) (-1264 "UPXS2.spad" 2150874 2150927 2151321 2151326) (-1263 "UPSQFREE.spad" 2149288 2149302 2150864 2150869) (-1262 "UPSCAT.spad" 2147075 2147099 2149186 2149283) (-1261 "UPSCAT.spad" 2144568 2144594 2146681 2146686) (-1260 "UPOLYC.spad" 2139608 2139619 2144410 2144563) (-1259 "UPOLYC.spad" 2134540 2134553 2139344 2139349) (-1258 "UPOLYC2.spad" 2134011 2134030 2134530 2134535) (-1257 "UP.spad" 2131210 2131225 2131597 2131750) (-1256 "UPMP.spad" 2130110 2130123 2131200 2131205) (-1255 "UPDIVP.spad" 2129675 2129689 2130100 2130105) (-1254 "UPDECOMP.spad" 2127920 2127934 2129665 2129670) (-1253 "UPCDEN.spad" 2127129 2127145 2127910 2127915) (-1252 "UP2.spad" 2126493 2126514 2127119 2127124) (-1251 "UNISEG.spad" 2125846 2125857 2126412 2126417) (-1250 "UNISEG2.spad" 2125343 2125356 2125802 2125807) (-1249 "UNIFACT.spad" 2124446 2124458 2125333 2125338) (-1248 "ULS.spad" 2115004 2115032 2116091 2116520) (-1247 "ULSCONS.spad" 2107400 2107420 2107770 2107919) (-1246 "ULSCCAT.spad" 2105137 2105157 2107246 2107395) (-1245 "ULSCCAT.spad" 2102982 2103004 2105093 2105098) (-1244 "ULSCAT.spad" 2101214 2101230 2102828 2102977) (-1243 "ULS2.spad" 2100728 2100781 2101204 2101209) (-1242 "UINT8.spad" 2100605 2100614 2100718 2100723) (-1241 "UINT64.spad" 2100481 2100490 2100595 2100600) (-1240 "UINT32.spad" 2100357 2100366 2100471 2100476) (-1239 "UINT16.spad" 2100233 2100242 2100347 2100352) (-1238 "UFD.spad" 2099298 2099307 2100159 2100228) (-1237 "UFD.spad" 2098425 2098436 2099288 2099293) (-1236 "UDVO.spad" 2097306 2097315 2098415 2098420) (-1235 "UDPO.spad" 2094799 2094810 2097262 2097267) (-1234 "TYPE.spad" 2094731 2094740 2094789 2094794) (-1233 "TYPEAST.spad" 2094650 2094659 2094721 2094726) (-1232 "TWOFACT.spad" 2093302 2093317 2094640 2094645) (-1231 "TUPLE.spad" 2092788 2092799 2093201 2093206) (-1230 "TUBETOOL.spad" 2089655 2089664 2092778 2092783) (-1229 "TUBE.spad" 2088302 2088319 2089645 2089650) (-1228 "TS.spad" 2086901 2086917 2087867 2087964) (-1227 "TSETCAT.spad" 2074028 2074045 2086869 2086896) (-1226 "TSETCAT.spad" 2061141 2061160 2073984 2073989) (-1225 "TRMANIP.spad" 2055507 2055524 2060847 2060852) (-1224 "TRIMAT.spad" 2054470 2054495 2055497 2055502) (-1223 "TRIGMNIP.spad" 2052997 2053014 2054460 2054465) (-1222 "TRIGCAT.spad" 2052509 2052518 2052987 2052992) (-1221 "TRIGCAT.spad" 2052019 2052030 2052499 2052504) (-1220 "TREE.spad" 2050594 2050605 2051626 2051653) (-1219 "TRANFUN.spad" 2050433 2050442 2050584 2050589) (-1218 "TRANFUN.spad" 2050270 2050281 2050423 2050428) (-1217 "TOPSP.spad" 2049944 2049953 2050260 2050265) (-1216 "TOOLSIGN.spad" 2049607 2049618 2049934 2049939) (-1215 "TEXTFILE.spad" 2048168 2048177 2049597 2049602) (-1214 "TEX.spad" 2045314 2045323 2048158 2048163) (-1213 "TEX1.spad" 2044870 2044881 2045304 2045309) (-1212 "TEMUTL.spad" 2044425 2044434 2044860 2044865) (-1211 "TBCMPPK.spad" 2042518 2042541 2044415 2044420) (-1210 "TBAGG.spad" 2041568 2041591 2042498 2042513) (-1209 "TBAGG.spad" 2040626 2040651 2041558 2041563) (-1208 "TANEXP.spad" 2040034 2040045 2040616 2040621) (-1207 "TALGOP.spad" 2039758 2039769 2040024 2040029) (-1206 "TABLE.spad" 2038169 2038192 2038439 2038466) (-1205 "TABLEAU.spad" 2037650 2037661 2038159 2038164) (-1204 "TABLBUMP.spad" 2034453 2034464 2037640 2037645) (-1203 "SYSTEM.spad" 2033681 2033690 2034443 2034448) (-1202 "SYSSOLP.spad" 2031164 2031175 2033671 2033676) (-1201 "SYSPTR.spad" 2031063 2031072 2031154 2031159) (-1200 "SYSNNI.spad" 2030245 2030256 2031053 2031058) (-1199 "SYSINT.spad" 2029649 2029660 2030235 2030240) (-1198 "SYNTAX.spad" 2025855 2025864 2029639 2029644) (-1197 "SYMTAB.spad" 2023923 2023932 2025845 2025850) (-1196 "SYMS.spad" 2019946 2019955 2023913 2023918) (-1195 "SYMPOLY.spad" 2018953 2018964 2019035 2019162) (-1194 "SYMFUNC.spad" 2018454 2018465 2018943 2018948) (-1193 "SYMBOL.spad" 2015957 2015966 2018444 2018449) (-1192 "SWITCH.spad" 2012728 2012737 2015947 2015952) (-1191 "SUTS.spad" 2009633 2009661 2011195 2011292) (-1190 "SUPXS.spad" 2006774 2006802 2007765 2007914) (-1189 "SUP.spad" 2003587 2003598 2004360 2004513) (-1188 "SUPFRACF.spad" 2002692 2002710 2003577 2003582) (-1187 "SUP2.spad" 2002084 2002097 2002682 2002687) (-1186 "SUMRF.spad" 2001058 2001069 2002074 2002079) (-1185 "SUMFS.spad" 2000695 2000712 2001048 2001053) (-1184 "SULS.spad" 1991240 1991268 1992340 1992769) (-1183 "SUCHTAST.spad" 1991009 1991018 1991230 1991235) (-1182 "SUCH.spad" 1990691 1990706 1990999 1991004) (-1181 "SUBSPACE.spad" 1982806 1982821 1990681 1990686) (-1180 "SUBRESP.spad" 1981976 1981990 1982762 1982767) (-1179 "STTF.spad" 1978075 1978091 1981966 1981971) (-1178 "STTFNC.spad" 1974543 1974559 1978065 1978070) (-1177 "STTAYLOR.spad" 1967178 1967189 1974424 1974429) (-1176 "STRTBL.spad" 1965683 1965700 1965832 1965859) (-1175 "STRING.spad" 1965092 1965101 1965106 1965133) (-1174 "STRICAT.spad" 1964880 1964889 1965060 1965087) (-1173 "STREAM.spad" 1961798 1961809 1964405 1964420) (-1172 "STREAM3.spad" 1961371 1961386 1961788 1961793) (-1171 "STREAM2.spad" 1960499 1960512 1961361 1961366) (-1170 "STREAM1.spad" 1960205 1960216 1960489 1960494) (-1169 "STINPROD.spad" 1959141 1959157 1960195 1960200) (-1168 "STEP.spad" 1958342 1958351 1959131 1959136) (-1167 "STEPAST.spad" 1957576 1957585 1958332 1958337) (-1166 "STBL.spad" 1956102 1956130 1956269 1956284) (-1165 "STAGG.spad" 1955177 1955188 1956092 1956097) (-1164 "STAGG.spad" 1954250 1954263 1955167 1955172) (-1163 "STACK.spad" 1953607 1953618 1953857 1953884) (-1162 "SREGSET.spad" 1951311 1951328 1953253 1953280) (-1161 "SRDCMPK.spad" 1949872 1949892 1951301 1951306) (-1160 "SRAGG.spad" 1945015 1945024 1949840 1949867) (-1159 "SRAGG.spad" 1940178 1940189 1945005 1945010) (-1158 "SQMATRIX.spad" 1937850 1937868 1938766 1938853) (-1157 "SPLTREE.spad" 1932402 1932415 1937286 1937313) (-1156 "SPLNODE.spad" 1928990 1929003 1932392 1932397) (-1155 "SPFCAT.spad" 1927799 1927808 1928980 1928985) (-1154 "SPECOUT.spad" 1926351 1926360 1927789 1927794) (-1153 "SPADXPT.spad" 1917946 1917955 1926341 1926346) (-1152 "spad-parser.spad" 1917411 1917420 1917936 1917941) (-1151 "SPADAST.spad" 1917112 1917121 1917401 1917406) (-1150 "SPACEC.spad" 1901311 1901322 1917102 1917107) (-1149 "SPACE3.spad" 1901087 1901098 1901301 1901306) (-1148 "SORTPAK.spad" 1900636 1900649 1901043 1901048) (-1147 "SOLVETRA.spad" 1898399 1898410 1900626 1900631) (-1146 "SOLVESER.spad" 1896927 1896938 1898389 1898394) (-1145 "SOLVERAD.spad" 1892953 1892964 1896917 1896922) (-1144 "SOLVEFOR.spad" 1891415 1891433 1892943 1892948) (-1143 "SNTSCAT.spad" 1891015 1891032 1891383 1891410) (-1142 "SMTS.spad" 1889287 1889313 1890580 1890677) (-1141 "SMP.spad" 1886762 1886782 1887152 1887279) (-1140 "SMITH.spad" 1885607 1885632 1886752 1886757) (-1139 "SMATCAT.spad" 1883717 1883747 1885551 1885602) (-1138 "SMATCAT.spad" 1881759 1881791 1883595 1883600) (-1137 "SKAGG.spad" 1880722 1880733 1881727 1881754) (-1136 "SINT.spad" 1879662 1879671 1880588 1880717) (-1135 "SIMPAN.spad" 1879390 1879399 1879652 1879657) (-1134 "SIG.spad" 1878720 1878729 1879380 1879385) (-1133 "SIGNRF.spad" 1877838 1877849 1878710 1878715) (-1132 "SIGNEF.spad" 1877117 1877134 1877828 1877833) (-1131 "SIGAST.spad" 1876502 1876511 1877107 1877112) (-1130 "SHP.spad" 1874430 1874445 1876458 1876463) (-1129 "SHDP.spad" 1864525 1864552 1865034 1865133) (-1128 "SGROUP.spad" 1864133 1864142 1864515 1864520) (-1127 "SGROUP.spad" 1863739 1863750 1864123 1864128) (-1126 "SGCF.spad" 1856878 1856887 1863729 1863734) (-1125 "SFRTCAT.spad" 1855808 1855825 1856846 1856873) (-1124 "SFRGCD.spad" 1854871 1854891 1855798 1855803) (-1123 "SFQCMPK.spad" 1849508 1849528 1854861 1854866) (-1122 "SFORT.spad" 1848947 1848961 1849498 1849503) (-1121 "SEXOF.spad" 1848790 1848830 1848937 1848942) (-1120 "SEX.spad" 1848682 1848691 1848780 1848785) (-1119 "SEXCAT.spad" 1846463 1846503 1848672 1848677) (-1118 "SET.spad" 1844787 1844798 1845884 1845923) (-1117 "SETMN.spad" 1843237 1843254 1844777 1844782) (-1116 "SETCAT.spad" 1842559 1842568 1843227 1843232) (-1115 "SETCAT.spad" 1841879 1841890 1842549 1842554) (-1114 "SETAGG.spad" 1838428 1838439 1841859 1841874) (-1113 "SETAGG.spad" 1834985 1834998 1838418 1838423) (-1112 "SEQAST.spad" 1834688 1834697 1834975 1834980) (-1111 "SEGXCAT.spad" 1833844 1833857 1834678 1834683) (-1110 "SEG.spad" 1833657 1833668 1833763 1833768) (-1109 "SEGCAT.spad" 1832582 1832593 1833647 1833652) (-1108 "SEGBIND.spad" 1832340 1832351 1832529 1832534) (-1107 "SEGBIND2.spad" 1832038 1832051 1832330 1832335) (-1106 "SEGAST.spad" 1831752 1831761 1832028 1832033) (-1105 "SEG2.spad" 1831187 1831200 1831708 1831713) (-1104 "SDVAR.spad" 1830463 1830474 1831177 1831182) (-1103 "SDPOL.spad" 1827889 1827900 1828180 1828307) (-1102 "SCPKG.spad" 1825978 1825989 1827879 1827884) (-1101 "SCOPE.spad" 1825131 1825140 1825968 1825973) (-1100 "SCACHE.spad" 1823827 1823838 1825121 1825126) (-1099 "SASTCAT.spad" 1823736 1823745 1823817 1823822) (-1098 "SAOS.spad" 1823608 1823617 1823726 1823731) (-1097 "SAERFFC.spad" 1823321 1823341 1823598 1823603) (-1096 "SAE.spad" 1821275 1821291 1821886 1822021) (-1095 "SAEFACT.spad" 1820976 1820996 1821265 1821270) (-1094 "RURPK.spad" 1818635 1818651 1820966 1820971) (-1093 "RULESET.spad" 1818088 1818112 1818625 1818630) (-1092 "RULE.spad" 1816328 1816352 1818078 1818083) (-1091 "RULECOLD.spad" 1816180 1816193 1816318 1816323) (-1090 "RTVALUE.spad" 1815915 1815924 1816170 1816175) (-1089 "RSTRCAST.spad" 1815632 1815641 1815905 1815910) (-1088 "RSETGCD.spad" 1812010 1812030 1815622 1815627) (-1087 "RSETCAT.spad" 1801946 1801963 1811978 1812005) (-1086 "RSETCAT.spad" 1791902 1791921 1801936 1801941) (-1085 "RSDCMPK.spad" 1790354 1790374 1791892 1791897) (-1084 "RRCC.spad" 1788738 1788768 1790344 1790349) (-1083 "RRCC.spad" 1787120 1787152 1788728 1788733) (-1082 "RPTAST.spad" 1786822 1786831 1787110 1787115) (-1081 "RPOLCAT.spad" 1766182 1766197 1786690 1786817) (-1080 "RPOLCAT.spad" 1745255 1745272 1765765 1765770) (-1079 "ROUTINE.spad" 1741138 1741147 1743902 1743929) (-1078 "ROMAN.spad" 1740466 1740475 1741004 1741133) (-1077 "ROIRC.spad" 1739546 1739578 1740456 1740461) (-1076 "RNS.spad" 1738449 1738458 1739448 1739541) (-1075 "RNS.spad" 1737438 1737449 1738439 1738444) (-1074 "RNG.spad" 1737173 1737182 1737428 1737433) (-1073 "RNGBIND.spad" 1736333 1736347 1737128 1737133) (-1072 "RMODULE.spad" 1736098 1736109 1736323 1736328) (-1071 "RMCAT2.spad" 1735518 1735575 1736088 1736093) (-1070 "RMATRIX.spad" 1734342 1734361 1734685 1734724) (-1069 "RMATCAT.spad" 1729921 1729952 1734298 1734337) (-1068 "RMATCAT.spad" 1725390 1725423 1729769 1729774) (-1067 "RLINSET.spad" 1724945 1724956 1725380 1725385) (-1066 "RINTERP.spad" 1724833 1724853 1724935 1724940) (-1065 "RING.spad" 1724303 1724312 1724813 1724828) (-1064 "RING.spad" 1723781 1723792 1724293 1724298) (-1063 "RIDIST.spad" 1723173 1723182 1723771 1723776) (-1062 "RGCHAIN.spad" 1721756 1721772 1722658 1722685) (-1061 "RGBCSPC.spad" 1721537 1721549 1721746 1721751) (-1060 "RGBCMDL.spad" 1721067 1721079 1721527 1721532) (-1059 "RF.spad" 1718709 1718720 1721057 1721062) (-1058 "RFFACTOR.spad" 1718171 1718182 1718699 1718704) (-1057 "RFFACT.spad" 1717906 1717918 1718161 1718166) (-1056 "RFDIST.spad" 1716902 1716911 1717896 1717901) (-1055 "RETSOL.spad" 1716321 1716334 1716892 1716897) (-1054 "RETRACT.spad" 1715749 1715760 1716311 1716316) (-1053 "RETRACT.spad" 1715175 1715188 1715739 1715744) (-1052 "RETAST.spad" 1714987 1714996 1715165 1715170) (-1051 "RESULT.spad" 1713047 1713056 1713634 1713661) (-1050 "RESRING.spad" 1712394 1712441 1712985 1713042) (-1049 "RESLATC.spad" 1711718 1711729 1712384 1712389) (-1048 "REPSQ.spad" 1711449 1711460 1711708 1711713) (-1047 "REP.spad" 1709003 1709012 1711439 1711444) (-1046 "REPDB.spad" 1708710 1708721 1708993 1708998) (-1045 "REP2.spad" 1698368 1698379 1708552 1708557) (-1044 "REP1.spad" 1692564 1692575 1698318 1698323) (-1043 "REGSET.spad" 1690361 1690378 1692210 1692237) (-1042 "REF.spad" 1689696 1689707 1690316 1690321) (-1041 "REDORDER.spad" 1688902 1688919 1689686 1689691) (-1040 "RECLOS.spad" 1687685 1687705 1688389 1688482) (-1039 "REALSOLV.spad" 1686825 1686834 1687675 1687680) (-1038 "REAL.spad" 1686697 1686706 1686815 1686820) (-1037 "REAL0Q.spad" 1683995 1684010 1686687 1686692) (-1036 "REAL0.spad" 1680839 1680854 1683985 1683990) (-1035 "RDUCEAST.spad" 1680560 1680569 1680829 1680834) (-1034 "RDIV.spad" 1680215 1680240 1680550 1680555) (-1033 "RDIST.spad" 1679782 1679793 1680205 1680210) (-1032 "RDETRS.spad" 1678646 1678664 1679772 1679777) (-1031 "RDETR.spad" 1676785 1676803 1678636 1678641) (-1030 "RDEEFS.spad" 1675884 1675901 1676775 1676780) (-1029 "RDEEF.spad" 1674894 1674911 1675874 1675879) (-1028 "RCFIELD.spad" 1672080 1672089 1674796 1674889) (-1027 "RCFIELD.spad" 1669352 1669363 1672070 1672075) (-1026 "RCAGG.spad" 1667280 1667291 1669342 1669347) (-1025 "RCAGG.spad" 1665135 1665148 1667199 1667204) (-1024 "RATRET.spad" 1664495 1664506 1665125 1665130) (-1023 "RATFACT.spad" 1664187 1664199 1664485 1664490) (-1022 "RANDSRC.spad" 1663506 1663515 1664177 1664182) (-1021 "RADUTIL.spad" 1663262 1663271 1663496 1663501) (-1020 "RADIX.spad" 1660183 1660197 1661729 1661822) (-1019 "RADFF.spad" 1658340 1658377 1658459 1658615) (-1018 "RADCAT.spad" 1657935 1657944 1658330 1658335) (-1017 "RADCAT.spad" 1657528 1657539 1657925 1657930) (-1016 "QUEUE.spad" 1656876 1656887 1657135 1657162) (-1015 "QUAT.spad" 1655277 1655288 1655620 1655685) (-1014 "QUATCT2.spad" 1654897 1654916 1655267 1655272) (-1013 "QUATCAT.spad" 1653067 1653078 1654827 1654892) (-1012 "QUATCAT.spad" 1650988 1651001 1652750 1652755) (-1011 "QUAGG.spad" 1649815 1649826 1650956 1650983) (-1010 "QQUTAST.spad" 1649583 1649592 1649805 1649810) (-1009 "QFORM.spad" 1649201 1649216 1649573 1649578) (-1008 "QFCAT.spad" 1647903 1647914 1649103 1649196) (-1007 "QFCAT.spad" 1646196 1646209 1647398 1647403) (-1006 "QFCAT2.spad" 1645888 1645905 1646186 1646191) (-1005 "QEQUAT.spad" 1645446 1645455 1645878 1645883) (-1004 "QCMPACK.spad" 1640192 1640212 1645436 1645441) (-1003 "QALGSET.spad" 1636270 1636303 1640106 1640111) (-1002 "QALGSET2.spad" 1634265 1634284 1636260 1636265) (-1001 "PWFFINTB.spad" 1631680 1631702 1634255 1634260) (-1000 "PUSHVAR.spad" 1631018 1631038 1631670 1631675) (-999 "PTRANFN.spad" 1627146 1627156 1631008 1631013) (-998 "PTPACK.spad" 1624234 1624244 1627136 1627141) (-997 "PTFUNC2.spad" 1624057 1624071 1624224 1624229) (-996 "PTCAT.spad" 1623312 1623322 1624025 1624052) (-995 "PSQFR.spad" 1622619 1622643 1623302 1623307) (-994 "PSEUDLIN.spad" 1621505 1621515 1622609 1622614) (-993 "PSETPK.spad" 1606938 1606954 1621383 1621388) (-992 "PSETCAT.spad" 1600858 1600881 1606918 1606933) (-991 "PSETCAT.spad" 1594752 1594777 1600814 1600819) (-990 "PSCURVE.spad" 1593735 1593743 1594742 1594747) (-989 "PSCAT.spad" 1592518 1592547 1593633 1593730) (-988 "PSCAT.spad" 1591391 1591422 1592508 1592513) (-987 "PRTITION.spad" 1590089 1590097 1591381 1591386) (-986 "PRTDAST.spad" 1589808 1589816 1590079 1590084) (-985 "PRS.spad" 1579370 1579387 1589764 1589769) (-984 "PRQAGG.spad" 1578805 1578815 1579338 1579365) (-983 "PROPLOG.spad" 1578377 1578385 1578795 1578800) (-982 "PROPFUN2.spad" 1578000 1578013 1578367 1578372) (-981 "PROPFUN1.spad" 1577398 1577409 1577990 1577995) (-980 "PROPFRML.spad" 1575966 1575977 1577388 1577393) (-979 "PROPERTY.spad" 1575454 1575462 1575956 1575961) (-978 "PRODUCT.spad" 1573136 1573148 1573420 1573475) (-977 "PR.spad" 1571528 1571540 1572227 1572354) (-976 "PRINT.spad" 1571280 1571288 1571518 1571523) (-975 "PRIMES.spad" 1569533 1569543 1571270 1571275) (-974 "PRIMELT.spad" 1567614 1567628 1569523 1569528) (-973 "PRIMCAT.spad" 1567241 1567249 1567604 1567609) (-972 "PRIMARR.spad" 1566246 1566256 1566424 1566451) (-971 "PRIMARR2.spad" 1565013 1565025 1566236 1566241) (-970 "PREASSOC.spad" 1564395 1564407 1565003 1565008) (-969 "PPCURVE.spad" 1563532 1563540 1564385 1564390) (-968 "PORTNUM.spad" 1563307 1563315 1563522 1563527) (-967 "POLYROOT.spad" 1562156 1562178 1563263 1563268) (-966 "POLY.spad" 1559491 1559501 1560006 1560133) (-965 "POLYLIFT.spad" 1558756 1558779 1559481 1559486) (-964 "POLYCATQ.spad" 1556874 1556896 1558746 1558751) (-963 "POLYCAT.spad" 1550344 1550365 1556742 1556869) (-962 "POLYCAT.spad" 1543152 1543175 1549552 1549557) (-961 "POLY2UP.spad" 1542604 1542618 1543142 1543147) (-960 "POLY2.spad" 1542201 1542213 1542594 1542599) (-959 "POLUTIL.spad" 1541142 1541171 1542157 1542162) (-958 "POLTOPOL.spad" 1539890 1539905 1541132 1541137) (-957 "POINT.spad" 1538728 1538738 1538815 1538842) (-956 "PNTHEORY.spad" 1535430 1535438 1538718 1538723) (-955 "PMTOOLS.spad" 1534205 1534219 1535420 1535425) (-954 "PMSYM.spad" 1533754 1533764 1534195 1534200) (-953 "PMQFCAT.spad" 1533345 1533359 1533744 1533749) (-952 "PMPRED.spad" 1532824 1532838 1533335 1533340) (-951 "PMPREDFS.spad" 1532278 1532300 1532814 1532819) (-950 "PMPLCAT.spad" 1531358 1531376 1532210 1532215) (-949 "PMLSAGG.spad" 1530943 1530957 1531348 1531353) (-948 "PMKERNEL.spad" 1530522 1530534 1530933 1530938) (-947 "PMINS.spad" 1530102 1530112 1530512 1530517) (-946 "PMFS.spad" 1529679 1529697 1530092 1530097) (-945 "PMDOWN.spad" 1528969 1528983 1529669 1529674) (-944 "PMASS.spad" 1527979 1527987 1528959 1528964) (-943 "PMASSFS.spad" 1526946 1526962 1527969 1527974) (-942 "PLOTTOOL.spad" 1526726 1526734 1526936 1526941) (-941 "PLOT.spad" 1521649 1521657 1526716 1526721) (-940 "PLOT3D.spad" 1518113 1518121 1521639 1521644) (-939 "PLOT1.spad" 1517270 1517280 1518103 1518108) (-938 "PLEQN.spad" 1504560 1504587 1517260 1517265) (-937 "PINTERP.spad" 1504182 1504201 1504550 1504555) (-936 "PINTERPA.spad" 1503966 1503982 1504172 1504177) (-935 "PI.spad" 1503575 1503583 1503940 1503961) (-934 "PID.spad" 1502545 1502553 1503501 1503570) (-933 "PICOERCE.spad" 1502202 1502212 1502535 1502540) (-932 "PGROEB.spad" 1500803 1500817 1502192 1502197) (-931 "PGE.spad" 1492420 1492428 1500793 1500798) (-930 "PGCD.spad" 1491310 1491327 1492410 1492415) (-929 "PFRPAC.spad" 1490459 1490469 1491300 1491305) (-928 "PFR.spad" 1487122 1487132 1490361 1490454) (-927 "PFOTOOLS.spad" 1486380 1486396 1487112 1487117) (-926 "PFOQ.spad" 1485750 1485768 1486370 1486375) (-925 "PFO.spad" 1485169 1485196 1485740 1485745) (-924 "PF.spad" 1484743 1484755 1484974 1485067) (-923 "PFECAT.spad" 1482425 1482433 1484669 1484738) (-922 "PFECAT.spad" 1480135 1480145 1482381 1482386) (-921 "PFBRU.spad" 1478023 1478035 1480125 1480130) (-920 "PFBR.spad" 1475583 1475606 1478013 1478018) (-919 "PERM.spad" 1471390 1471400 1475413 1475428) (-918 "PERMGRP.spad" 1466160 1466170 1471380 1471385) (-917 "PERMCAT.spad" 1464821 1464831 1466140 1466155) (-916 "PERMAN.spad" 1463353 1463367 1464811 1464816) (-915 "PENDTREE.spad" 1462694 1462704 1462982 1462987) (-914 "PDSPC.spad" 1461507 1461517 1462684 1462689) (-913 "PDSPC.spad" 1460318 1460330 1461497 1461502) (-912 "PDRING.spad" 1460160 1460170 1460298 1460313) (-911 "PDEPROB.spad" 1459175 1459183 1460150 1460155) (-910 "PDEPACK.spad" 1453215 1453223 1459165 1459170) (-909 "PDECOMP.spad" 1452685 1452702 1453205 1453210) (-908 "PDECAT.spad" 1451041 1451049 1452675 1452680) (-907 "PDDOM.spad" 1450479 1450492 1451031 1451036) (-906 "PDDOM.spad" 1449915 1449930 1450469 1450474) (-905 "PCOMP.spad" 1449768 1449781 1449905 1449910) (-904 "PBWLB.spad" 1448356 1448373 1449758 1449763) (-903 "PATTERN.spad" 1442895 1442905 1448346 1448351) (-902 "PATTERN2.spad" 1442633 1442645 1442885 1442890) (-901 "PATTERN1.spad" 1440969 1440985 1442623 1442628) (-900 "PATRES.spad" 1438544 1438556 1440959 1440964) (-899 "PATRES2.spad" 1438216 1438230 1438534 1438539) (-898 "PATMATCH.spad" 1436413 1436444 1437924 1437929) (-897 "PATMAB.spad" 1435842 1435852 1436403 1436408) (-896 "PATLRES.spad" 1434928 1434942 1435832 1435837) (-895 "PATAB.spad" 1434692 1434702 1434918 1434923) (-894 "PARTPERM.spad" 1432700 1432708 1434682 1434687) (-893 "PARSURF.spad" 1432134 1432162 1432690 1432695) (-892 "PARSU2.spad" 1431931 1431947 1432124 1432129) (-891 "script-parser.spad" 1431451 1431459 1431921 1431926) (-890 "PARSCURV.spad" 1430885 1430913 1431441 1431446) (-889 "PARSC2.spad" 1430676 1430692 1430875 1430880) (-888 "PARPCURV.spad" 1430138 1430166 1430666 1430671) (-887 "PARPC2.spad" 1429929 1429945 1430128 1430133) (-886 "PARAMAST.spad" 1429057 1429065 1429919 1429924) (-885 "PAN2EXPR.spad" 1428469 1428477 1429047 1429052) (-884 "PALETTE.spad" 1427439 1427447 1428459 1428464) (-883 "PAIR.spad" 1426426 1426439 1427027 1427032) (-882 "PADICRC.spad" 1423760 1423778 1424931 1425024) (-881 "PADICRAT.spad" 1421775 1421787 1421996 1422089) (-880 "PADIC.spad" 1421470 1421482 1421701 1421770) (-879 "PADICCT.spad" 1420019 1420031 1421396 1421465) (-878 "PADEPAC.spad" 1418708 1418727 1420009 1420014) (-877 "PADE.spad" 1417460 1417476 1418698 1418703) (-876 "OWP.spad" 1416700 1416730 1417318 1417385) (-875 "OVERSET.spad" 1416273 1416281 1416690 1416695) (-874 "OVAR.spad" 1416054 1416077 1416263 1416268) (-873 "OUT.spad" 1415140 1415148 1416044 1416049) (-872 "OUTFORM.spad" 1404532 1404540 1415130 1415135) (-871 "OUTBFILE.spad" 1403950 1403958 1404522 1404527) (-870 "OUTBCON.spad" 1402956 1402964 1403940 1403945) (-869 "OUTBCON.spad" 1401960 1401970 1402946 1402951) (-868 "OSI.spad" 1401435 1401443 1401950 1401955) (-867 "OSGROUP.spad" 1401353 1401361 1401425 1401430) (-866 "ORTHPOL.spad" 1399838 1399848 1401270 1401275) (-865 "OREUP.spad" 1399291 1399319 1399518 1399557) (-864 "ORESUP.spad" 1398592 1398616 1398971 1399010) (-863 "OREPCTO.spad" 1396449 1396461 1398512 1398517) (-862 "OREPCAT.spad" 1390596 1390606 1396405 1396444) (-861 "OREPCAT.spad" 1384633 1384645 1390444 1390449) (-860 "ORDSET.spad" 1383805 1383813 1384623 1384628) (-859 "ORDSET.spad" 1382975 1382985 1383795 1383800) (-858 "ORDRING.spad" 1382365 1382373 1382955 1382970) (-857 "ORDRING.spad" 1381763 1381773 1382355 1382360) (-856 "ORDMON.spad" 1381618 1381626 1381753 1381758) (-855 "ORDFUNS.spad" 1380750 1380766 1381608 1381613) (-854 "ORDFIN.spad" 1380570 1380578 1380740 1380745) (-853 "ORDCOMP.spad" 1379035 1379045 1380117 1380146) (-852 "ORDCOMP2.spad" 1378328 1378340 1379025 1379030) (-851 "OPTPROB.spad" 1376966 1376974 1378318 1378323) (-850 "OPTPACK.spad" 1369375 1369383 1376956 1376961) (-849 "OPTCAT.spad" 1367054 1367062 1369365 1369370) (-848 "OPSIG.spad" 1366708 1366716 1367044 1367049) (-847 "OPQUERY.spad" 1366257 1366265 1366698 1366703) (-846 "OP.spad" 1365999 1366009 1366079 1366146) (-845 "OPERCAT.spad" 1365465 1365475 1365989 1365994) (-844 "OPERCAT.spad" 1364929 1364941 1365455 1365460) (-843 "ONECOMP.spad" 1363674 1363684 1364476 1364505) (-842 "ONECOMP2.spad" 1363098 1363110 1363664 1363669) (-841 "OMSERVER.spad" 1362104 1362112 1363088 1363093) (-840 "OMSAGG.spad" 1361892 1361902 1362060 1362099) (-839 "OMPKG.spad" 1360508 1360516 1361882 1361887) (-838 "OM.spad" 1359481 1359489 1360498 1360503) (-837 "OMLO.spad" 1358906 1358918 1359367 1359406) (-836 "OMEXPR.spad" 1358740 1358750 1358896 1358901) (-835 "OMERR.spad" 1358285 1358293 1358730 1358735) (-834 "OMERRK.spad" 1357319 1357327 1358275 1358280) (-833 "OMENC.spad" 1356663 1356671 1357309 1357314) (-832 "OMDEV.spad" 1350972 1350980 1356653 1356658) (-831 "OMCONN.spad" 1350381 1350389 1350962 1350967) (-830 "OINTDOM.spad" 1350144 1350152 1350307 1350376) (-829 "OFMONOID.spad" 1348267 1348277 1350100 1350105) (-828 "ODVAR.spad" 1347528 1347538 1348257 1348262) (-827 "ODR.spad" 1347172 1347198 1347340 1347489) (-826 "ODPOL.spad" 1344554 1344564 1344894 1345021) (-825 "ODP.spad" 1334785 1334805 1335158 1335257) (-824 "ODETOOLS.spad" 1333434 1333453 1334775 1334780) (-823 "ODESYS.spad" 1331128 1331145 1333424 1333429) (-822 "ODERTRIC.spad" 1327137 1327154 1331085 1331090) (-821 "ODERED.spad" 1326536 1326560 1327127 1327132) (-820 "ODERAT.spad" 1324151 1324168 1326526 1326531) (-819 "ODEPRRIC.spad" 1321188 1321210 1324141 1324146) (-818 "ODEPROB.spad" 1320445 1320453 1321178 1321183) (-817 "ODEPRIM.spad" 1317779 1317801 1320435 1320440) (-816 "ODEPAL.spad" 1317165 1317189 1317769 1317774) (-815 "ODEPACK.spad" 1303831 1303839 1317155 1317160) (-814 "ODEINT.spad" 1303266 1303282 1303821 1303826) (-813 "ODEIFTBL.spad" 1300661 1300669 1303256 1303261) (-812 "ODEEF.spad" 1296152 1296168 1300651 1300656) (-811 "ODECONST.spad" 1295689 1295707 1296142 1296147) (-810 "ODECAT.spad" 1294287 1294295 1295679 1295684) (-809 "OCT.spad" 1292423 1292433 1293137 1293176) (-808 "OCTCT2.spad" 1292069 1292090 1292413 1292418) (-807 "OC.spad" 1289865 1289875 1292025 1292064) (-806 "OC.spad" 1287386 1287398 1289548 1289553) (-805 "OCAMON.spad" 1287234 1287242 1287376 1287381) (-804 "OASGP.spad" 1287049 1287057 1287224 1287229) (-803 "OAMONS.spad" 1286571 1286579 1287039 1287044) (-802 "OAMON.spad" 1286432 1286440 1286561 1286566) (-801 "OAGROUP.spad" 1286294 1286302 1286422 1286427) (-800 "NUMTUBE.spad" 1285885 1285901 1286284 1286289) (-799 "NUMQUAD.spad" 1273861 1273869 1285875 1285880) (-798 "NUMODE.spad" 1265215 1265223 1273851 1273856) (-797 "NUMINT.spad" 1262781 1262789 1265205 1265210) (-796 "NUMFMT.spad" 1261621 1261629 1262771 1262776) (-795 "NUMERIC.spad" 1253735 1253745 1261426 1261431) (-794 "NTSCAT.spad" 1252243 1252259 1253703 1253730) (-793 "NTPOLFN.spad" 1251794 1251804 1252160 1252165) (-792 "NSUP.spad" 1244840 1244850 1249380 1249533) (-791 "NSUP2.spad" 1244232 1244244 1244830 1244835) (-790 "NSMP.spad" 1240462 1240481 1240770 1240897) (-789 "NREP.spad" 1238840 1238854 1240452 1240457) (-788 "NPCOEF.spad" 1238086 1238106 1238830 1238835) (-787 "NORMRETR.spad" 1237684 1237723 1238076 1238081) (-786 "NORMPK.spad" 1235586 1235605 1237674 1237679) (-785 "NORMMA.spad" 1235274 1235300 1235576 1235581) (-784 "NONE.spad" 1235015 1235023 1235264 1235269) (-783 "NONE1.spad" 1234691 1234701 1235005 1235010) (-782 "NODE1.spad" 1234178 1234194 1234681 1234686) (-781 "NNI.spad" 1233073 1233081 1234152 1234173) (-780 "NLINSOL.spad" 1231699 1231709 1233063 1233068) (-779 "NIPROB.spad" 1230240 1230248 1231689 1231694) (-778 "NFINTBAS.spad" 1227800 1227817 1230230 1230235) (-777 "NETCLT.spad" 1227774 1227785 1227790 1227795) (-776 "NCODIV.spad" 1225990 1226006 1227764 1227769) (-775 "NCNTFRAC.spad" 1225632 1225646 1225980 1225985) (-774 "NCEP.spad" 1223798 1223812 1225622 1225627) (-773 "NASRING.spad" 1223394 1223402 1223788 1223793) (-772 "NASRING.spad" 1222988 1222998 1223384 1223389) (-771 "NARNG.spad" 1222340 1222348 1222978 1222983) (-770 "NARNG.spad" 1221690 1221700 1222330 1222335) (-769 "NAGSP.spad" 1220767 1220775 1221680 1221685) (-768 "NAGS.spad" 1210428 1210436 1220757 1220762) (-767 "NAGF07.spad" 1208859 1208867 1210418 1210423) (-766 "NAGF04.spad" 1203261 1203269 1208849 1208854) (-765 "NAGF02.spad" 1197330 1197338 1203251 1203256) (-764 "NAGF01.spad" 1193091 1193099 1197320 1197325) (-763 "NAGE04.spad" 1186791 1186799 1193081 1193086) (-762 "NAGE02.spad" 1177451 1177459 1186781 1186786) (-761 "NAGE01.spad" 1173453 1173461 1177441 1177446) (-760 "NAGD03.spad" 1171457 1171465 1173443 1173448) (-759 "NAGD02.spad" 1164204 1164212 1171447 1171452) (-758 "NAGD01.spad" 1158497 1158505 1164194 1164199) (-757 "NAGC06.spad" 1154372 1154380 1158487 1158492) (-756 "NAGC05.spad" 1152873 1152881 1154362 1154367) (-755 "NAGC02.spad" 1152140 1152148 1152863 1152868) (-754 "NAALG.spad" 1151681 1151691 1152108 1152135) (-753 "NAALG.spad" 1151242 1151254 1151671 1151676) (-752 "MULTSQFR.spad" 1148200 1148217 1151232 1151237) (-751 "MULTFACT.spad" 1147583 1147600 1148190 1148195) (-750 "MTSCAT.spad" 1145677 1145698 1147481 1147578) (-749 "MTHING.spad" 1145336 1145346 1145667 1145672) (-748 "MSYSCMD.spad" 1144770 1144778 1145326 1145331) (-747 "MSET.spad" 1142728 1142738 1144476 1144515) (-746 "MSETAGG.spad" 1142573 1142583 1142696 1142723) (-745 "MRING.spad" 1139550 1139562 1142281 1142348) (-744 "MRF2.spad" 1139120 1139134 1139540 1139545) (-743 "MRATFAC.spad" 1138666 1138683 1139110 1139115) (-742 "MPRFF.spad" 1136706 1136725 1138656 1138661) (-741 "MPOLY.spad" 1134177 1134192 1134536 1134663) (-740 "MPCPF.spad" 1133441 1133460 1134167 1134172) (-739 "MPC3.spad" 1133258 1133298 1133431 1133436) (-738 "MPC2.spad" 1132904 1132937 1133248 1133253) (-737 "MONOTOOL.spad" 1131255 1131272 1132894 1132899) (-736 "MONOID.spad" 1130574 1130582 1131245 1131250) (-735 "MONOID.spad" 1129891 1129901 1130564 1130569) (-734 "MONOGEN.spad" 1128639 1128652 1129751 1129886) (-733 "MONOGEN.spad" 1127409 1127424 1128523 1128528) (-732 "MONADWU.spad" 1125439 1125447 1127399 1127404) (-731 "MONADWU.spad" 1123467 1123477 1125429 1125434) (-730 "MONAD.spad" 1122627 1122635 1123457 1123462) (-729 "MONAD.spad" 1121785 1121795 1122617 1122622) (-728 "MOEBIUS.spad" 1120521 1120535 1121765 1121780) (-727 "MODULE.spad" 1120391 1120401 1120489 1120516) (-726 "MODULE.spad" 1120281 1120293 1120381 1120386) (-725 "MODRING.spad" 1119616 1119655 1120261 1120276) (-724 "MODOP.spad" 1118281 1118293 1119438 1119505) (-723 "MODMONOM.spad" 1118012 1118030 1118271 1118276) (-722 "MODMON.spad" 1114807 1114823 1115526 1115679) (-721 "MODFIELD.spad" 1114169 1114208 1114709 1114802) (-720 "MMLFORM.spad" 1113029 1113037 1114159 1114164) (-719 "MMAP.spad" 1112771 1112805 1113019 1113024) (-718 "MLO.spad" 1111230 1111240 1112727 1112766) (-717 "MLIFT.spad" 1109842 1109859 1111220 1111225) (-716 "MKUCFUNC.spad" 1109377 1109395 1109832 1109837) (-715 "MKRECORD.spad" 1108981 1108994 1109367 1109372) (-714 "MKFUNC.spad" 1108388 1108398 1108971 1108976) (-713 "MKFLCFN.spad" 1107356 1107366 1108378 1108383) (-712 "MKBCFUNC.spad" 1106851 1106869 1107346 1107351) (-711 "MINT.spad" 1106290 1106298 1106753 1106846) (-710 "MHROWRED.spad" 1104801 1104811 1106280 1106285) (-709 "MFLOAT.spad" 1103321 1103329 1104691 1104796) (-708 "MFINFACT.spad" 1102721 1102743 1103311 1103316) (-707 "MESH.spad" 1100503 1100511 1102711 1102716) (-706 "MDDFACT.spad" 1098714 1098724 1100493 1100498) (-705 "MDAGG.spad" 1098005 1098015 1098694 1098709) (-704 "MCMPLX.spad" 1094016 1094024 1094630 1094831) (-703 "MCDEN.spad" 1093226 1093238 1094006 1094011) (-702 "MCALCFN.spad" 1090348 1090374 1093216 1093221) (-701 "MAYBE.spad" 1089632 1089643 1090338 1090343) (-700 "MATSTOR.spad" 1086940 1086950 1089622 1089627) (-699 "MATRIX.spad" 1085644 1085654 1086128 1086155) (-698 "MATLIN.spad" 1082988 1083012 1085528 1085533) (-697 "MATCAT.spad" 1074717 1074739 1082956 1082983) (-696 "MATCAT.spad" 1066318 1066342 1074559 1074564) (-695 "MATCAT2.spad" 1065600 1065648 1066308 1066313) (-694 "MAPPKG3.spad" 1064515 1064529 1065590 1065595) (-693 "MAPPKG2.spad" 1063853 1063865 1064505 1064510) (-692 "MAPPKG1.spad" 1062681 1062691 1063843 1063848) (-691 "MAPPAST.spad" 1061996 1062004 1062671 1062676) (-690 "MAPHACK3.spad" 1061808 1061822 1061986 1061991) (-689 "MAPHACK2.spad" 1061577 1061589 1061798 1061803) (-688 "MAPHACK1.spad" 1061221 1061231 1061567 1061572) (-687 "MAGMA.spad" 1059011 1059028 1061211 1061216) (-686 "MACROAST.spad" 1058590 1058598 1059001 1059006) (-685 "M3D.spad" 1056310 1056320 1057968 1057973) (-684 "LZSTAGG.spad" 1053548 1053558 1056300 1056305) (-683 "LZSTAGG.spad" 1050784 1050796 1053538 1053543) (-682 "LWORD.spad" 1047489 1047506 1050774 1050779) (-681 "LSTAST.spad" 1047273 1047281 1047479 1047484) (-680 "LSQM.spad" 1045559 1045573 1045953 1046004) (-679 "LSPP.spad" 1045094 1045111 1045549 1045554) (-678 "LSMP.spad" 1043944 1043972 1045084 1045089) (-677 "LSMP1.spad" 1041762 1041776 1043934 1043939) (-676 "LSAGG.spad" 1041431 1041441 1041730 1041757) (-675 "LSAGG.spad" 1041120 1041132 1041421 1041426) (-674 "LPOLY.spad" 1040074 1040093 1040976 1041045) (-673 "LPEFRAC.spad" 1039345 1039355 1040064 1040069) (-672 "LO.spad" 1038746 1038760 1039279 1039306) (-671 "LOGIC.spad" 1038348 1038356 1038736 1038741) (-670 "LOGIC.spad" 1037948 1037958 1038338 1038343) (-669 "LODOOPS.spad" 1036878 1036890 1037938 1037943) (-668 "LODO.spad" 1036262 1036278 1036558 1036597) (-667 "LODOF.spad" 1035308 1035325 1036219 1036224) (-666 "LODOCAT.spad" 1033974 1033984 1035264 1035303) (-665 "LODOCAT.spad" 1032638 1032650 1033930 1033935) (-664 "LODO2.spad" 1031911 1031923 1032318 1032357) (-663 "LODO1.spad" 1031311 1031321 1031591 1031630) (-662 "LODEEF.spad" 1030113 1030131 1031301 1031306) (-661 "LNAGG.spad" 1026260 1026270 1030103 1030108) (-660 "LNAGG.spad" 1022371 1022383 1026216 1026221) (-659 "LMOPS.spad" 1019139 1019156 1022361 1022366) (-658 "LMODULE.spad" 1018907 1018917 1019129 1019134) (-657 "LMDICT.spad" 1018194 1018204 1018458 1018485) (-656 "LLINSET.spad" 1017752 1017762 1018184 1018189) (-655 "LITERAL.spad" 1017658 1017669 1017742 1017747) (-654 "LIST.spad" 1015393 1015403 1016805 1016832) (-653 "LIST3.spad" 1014704 1014718 1015383 1015388) (-652 "LIST2.spad" 1013406 1013418 1014694 1014699) (-651 "LIST2MAP.spad" 1010309 1010321 1013396 1013401) (-650 "LINSET.spad" 1010088 1010098 1010299 1010304) (-649 "LINEXP.spad" 1009226 1009236 1010078 1010083) (-648 "LINDEP.spad" 1008035 1008047 1009138 1009143) (-647 "LIMITRF.spad" 1005963 1005973 1008025 1008030) (-646 "LIMITPS.spad" 1004866 1004879 1005953 1005958) (-645 "LIE.spad" 1002882 1002894 1004156 1004301) (-644 "LIECAT.spad" 1002358 1002368 1002808 1002877) (-643 "LIECAT.spad" 1001862 1001874 1002314 1002319) (-642 "LIB.spad" 1000075 1000083 1000521 1000536) (-641 "LGROBP.spad" 997428 997447 1000065 1000070) (-640 "LF.spad" 996383 996399 997418 997423) (-639 "LFCAT.spad" 995442 995450 996373 996378) (-638 "LEXTRIPK.spad" 990945 990960 995432 995437) (-637 "LEXP.spad" 988948 988975 990925 990940) (-636 "LETAST.spad" 988647 988655 988938 988943) (-635 "LEADCDET.spad" 987045 987062 988637 988642) (-634 "LAZM3PK.spad" 985749 985771 987035 987040) (-633 "LAUPOL.spad" 984341 984354 985241 985310) (-632 "LAPLACE.spad" 983924 983940 984331 984336) (-631 "LA.spad" 983364 983378 983846 983885) (-630 "LALG.spad" 983140 983150 983344 983359) (-629 "LALG.spad" 982924 982936 983130 983135) (-628 "KVTFROM.spad" 982659 982669 982914 982919) (-627 "KTVLOGIC.spad" 982171 982179 982649 982654) (-626 "KRCFROM.spad" 981909 981919 982161 982166) (-625 "KOVACIC.spad" 980632 980649 981899 981904) (-624 "KONVERT.spad" 980354 980364 980622 980627) (-623 "KOERCE.spad" 980091 980101 980344 980349) (-622 "KERNEL.spad" 978746 978756 979875 979880) (-621 "KERNEL2.spad" 978449 978461 978736 978741) (-620 "KDAGG.spad" 977558 977580 978429 978444) (-619 "KDAGG.spad" 976675 976699 977548 977553) (-618 "KAFILE.spad" 975638 975654 975873 975900) (-617 "JORDAN.spad" 973467 973479 974928 975073) (-616 "JOINAST.spad" 973161 973169 973457 973462) (-615 "JAVACODE.spad" 973027 973035 973151 973156) (-614 "IXAGG.spad" 971160 971184 973017 973022) (-613 "IXAGG.spad" 969148 969174 971007 971012) (-612 "IVECTOR.spad" 967918 967933 968073 968100) (-611 "ITUPLE.spad" 967079 967089 967908 967913) (-610 "ITRIGMNP.spad" 965918 965937 967069 967074) (-609 "ITFUN3.spad" 965424 965438 965908 965913) (-608 "ITFUN2.spad" 965168 965180 965414 965419) (-607 "ITFORM.spad" 964523 964531 965158 965163) (-606 "ITAYLOR.spad" 962517 962532 964387 964484) (-605 "ISUPS.spad" 954954 954969 961491 961588) (-604 "ISUMP.spad" 954455 954471 954944 954949) (-603 "ISTRING.spad" 953543 953556 953624 953651) (-602 "ISAST.spad" 953262 953270 953533 953538) (-601 "IRURPK.spad" 951979 951998 953252 953257) (-600 "IRSN.spad" 949951 949959 951969 951974) (-599 "IRRF2F.spad" 948436 948446 949907 949912) (-598 "IRREDFFX.spad" 948037 948048 948426 948431) (-597 "IROOT.spad" 946376 946386 948027 948032) (-596 "IR.spad" 944177 944191 946231 946258) (-595 "IRFORM.spad" 943501 943509 944167 944172) (-594 "IR2.spad" 942529 942545 943491 943496) (-593 "IR2F.spad" 941735 941751 942519 942524) (-592 "IPRNTPK.spad" 941495 941503 941725 941730) (-591 "IPF.spad" 941060 941072 941300 941393) (-590 "IPADIC.spad" 940821 940847 940986 941055) (-589 "IP4ADDR.spad" 940378 940386 940811 940816) (-588 "IOMODE.spad" 939900 939908 940368 940373) (-587 "IOBFILE.spad" 939261 939269 939890 939895) (-586 "IOBCON.spad" 939126 939134 939251 939256) (-585 "INVLAPLA.spad" 938775 938791 939116 939121) (-584 "INTTR.spad" 932157 932174 938765 938770) (-583 "INTTOOLS.spad" 929912 929928 931731 931736) (-582 "INTSLPE.spad" 929232 929240 929902 929907) (-581 "INTRVL.spad" 928798 928808 929146 929227) (-580 "INTRF.spad" 927222 927236 928788 928793) (-579 "INTRET.spad" 926654 926664 927212 927217) (-578 "INTRAT.spad" 925381 925398 926644 926649) (-577 "INTPM.spad" 923766 923782 925024 925029) (-576 "INTPAF.spad" 921630 921648 923698 923703) (-575 "INTPACK.spad" 912004 912012 921620 921625) (-574 "INT.spad" 911452 911460 911858 911999) (-573 "INTHERTR.spad" 910726 910743 911442 911447) (-572 "INTHERAL.spad" 910396 910420 910716 910721) (-571 "INTHEORY.spad" 906835 906843 910386 910391) (-570 "INTG0.spad" 900568 900586 906767 906772) (-569 "INTFTBL.spad" 894597 894605 900558 900563) (-568 "INTFACT.spad" 893656 893666 894587 894592) (-567 "INTEF.spad" 892041 892057 893646 893651) (-566 "INTDOM.spad" 890664 890672 891967 892036) (-565 "INTDOM.spad" 889349 889359 890654 890659) (-564 "INTCAT.spad" 887608 887618 889263 889344) (-563 "INTBIT.spad" 887115 887123 887598 887603) (-562 "INTALG.spad" 886303 886330 887105 887110) (-561 "INTAF.spad" 885803 885819 886293 886298) (-560 "INTABL.spad" 884321 884352 884484 884511) (-559 "INT8.spad" 884201 884209 884311 884316) (-558 "INT64.spad" 884080 884088 884191 884196) (-557 "INT32.spad" 883959 883967 884070 884075) (-556 "INT16.spad" 883838 883846 883949 883954) (-555 "INS.spad" 881341 881349 883740 883833) (-554 "INS.spad" 878930 878940 881331 881336) (-553 "INPSIGN.spad" 878378 878391 878920 878925) (-552 "INPRODPF.spad" 877474 877493 878368 878373) (-551 "INPRODFF.spad" 876562 876586 877464 877469) (-550 "INNMFACT.spad" 875537 875554 876552 876557) (-549 "INMODGCD.spad" 875025 875055 875527 875532) (-548 "INFSP.spad" 873322 873344 875015 875020) (-547 "INFPROD0.spad" 872402 872421 873312 873317) (-546 "INFORM.spad" 869601 869609 872392 872397) (-545 "INFORM1.spad" 869226 869236 869591 869596) (-544 "INFINITY.spad" 868778 868786 869216 869221) (-543 "INETCLTS.spad" 868755 868763 868768 868773) (-542 "INEP.spad" 867293 867315 868745 868750) (-541 "INDE.spad" 867022 867039 867283 867288) (-540 "INCRMAPS.spad" 866443 866453 867012 867017) (-539 "INBFILE.spad" 865515 865523 866433 866438) (-538 "INBFF.spad" 861309 861320 865505 865510) (-537 "INBCON.spad" 859599 859607 861299 861304) (-536 "INBCON.spad" 857887 857897 859589 859594) (-535 "INAST.spad" 857548 857556 857877 857882) (-534 "IMPTAST.spad" 857256 857264 857538 857543) (-533 "IMATRIX.spad" 856201 856227 856713 856740) (-532 "IMATQF.spad" 855295 855339 856157 856162) (-531 "IMATLIN.spad" 853900 853924 855251 855256) (-530 "ILIST.spad" 852558 852573 853083 853110) (-529 "IIARRAY2.spad" 851946 851984 852165 852192) (-528 "IFF.spad" 851356 851372 851627 851720) (-527 "IFAST.spad" 850970 850978 851346 851351) (-526 "IFARRAY.spad" 848463 848478 850153 850180) (-525 "IFAMON.spad" 848325 848342 848419 848424) (-524 "IEVALAB.spad" 847730 847742 848315 848320) (-523 "IEVALAB.spad" 847133 847147 847720 847725) (-522 "IDPO.spad" 846931 846943 847123 847128) (-521 "IDPOAMS.spad" 846687 846699 846921 846926) (-520 "IDPOAM.spad" 846407 846419 846677 846682) (-519 "IDPC.spad" 845345 845357 846397 846402) (-518 "IDPAM.spad" 845090 845102 845335 845340) (-517 "IDPAG.spad" 844837 844849 845080 845085) (-516 "IDENT.spad" 844487 844495 844827 844832) (-515 "IDECOMP.spad" 841726 841744 844477 844482) (-514 "IDEAL.spad" 836675 836714 841661 841666) (-513 "ICDEN.spad" 835864 835880 836665 836670) (-512 "ICARD.spad" 835055 835063 835854 835859) (-511 "IBPTOOLS.spad" 833662 833679 835045 835050) (-510 "IBITS.spad" 832865 832878 833298 833325) (-509 "IBATOOL.spad" 829842 829861 832855 832860) (-508 "IBACHIN.spad" 828349 828364 829832 829837) (-507 "IARRAY2.spad" 827337 827363 827956 827983) (-506 "IARRAY1.spad" 826382 826397 826520 826547) (-505 "IAN.spad" 824605 824613 826198 826291) (-504 "IALGFACT.spad" 824208 824241 824595 824600) (-503 "HYPCAT.spad" 823632 823640 824198 824203) (-502 "HYPCAT.spad" 823054 823064 823622 823627) (-501 "HOSTNAME.spad" 822862 822870 823044 823049) (-500 "HOMOTOP.spad" 822605 822615 822852 822857) (-499 "HOAGG.spad" 819887 819897 822595 822600) (-498 "HOAGG.spad" 816944 816956 819654 819659) (-497 "HEXADEC.spad" 815046 815054 815411 815504) (-496 "HEUGCD.spad" 814081 814092 815036 815041) (-495 "HELLFDIV.spad" 813671 813695 814071 814076) (-494 "HEAP.spad" 813063 813073 813278 813305) (-493 "HEADAST.spad" 812596 812604 813053 813058) (-492 "HDP.spad" 802823 802839 803200 803299) (-491 "HDMP.spad" 800037 800052 800653 800780) (-490 "HB.spad" 798288 798296 800027 800032) (-489 "HASHTBL.spad" 796758 796789 796969 796996) (-488 "HASAST.spad" 796474 796482 796748 796753) (-487 "HACKPI.spad" 795965 795973 796376 796469) (-486 "GTSET.spad" 794904 794920 795611 795638) (-485 "GSTBL.spad" 793423 793458 793597 793612) (-484 "GSERIES.spad" 790594 790621 791555 791704) (-483 "GROUP.spad" 789867 789875 790574 790589) (-482 "GROUP.spad" 789148 789158 789857 789862) (-481 "GROEBSOL.spad" 787642 787663 789138 789143) (-480 "GRMOD.spad" 786213 786225 787632 787637) (-479 "GRMOD.spad" 784782 784796 786203 786208) (-478 "GRIMAGE.spad" 777671 777679 784772 784777) (-477 "GRDEF.spad" 776050 776058 777661 777666) (-476 "GRAY.spad" 774513 774521 776040 776045) (-475 "GRALG.spad" 773590 773602 774503 774508) (-474 "GRALG.spad" 772665 772679 773580 773585) (-473 "GPOLSET.spad" 772119 772142 772347 772374) (-472 "GOSPER.spad" 771388 771406 772109 772114) (-471 "GMODPOL.spad" 770536 770563 771356 771383) (-470 "GHENSEL.spad" 769619 769633 770526 770531) (-469 "GENUPS.spad" 765912 765925 769609 769614) (-468 "GENUFACT.spad" 765489 765499 765902 765907) (-467 "GENPGCD.spad" 765075 765092 765479 765484) (-466 "GENMFACT.spad" 764527 764546 765065 765070) (-465 "GENEEZ.spad" 762478 762491 764517 764522) (-464 "GDMP.spad" 759534 759551 760308 760435) (-463 "GCNAALG.spad" 753457 753484 759328 759395) (-462 "GCDDOM.spad" 752633 752641 753383 753452) (-461 "GCDDOM.spad" 751871 751881 752623 752628) (-460 "GB.spad" 749397 749435 751827 751832) (-459 "GBINTERN.spad" 745417 745455 749387 749392) (-458 "GBF.spad" 741184 741222 745407 745412) (-457 "GBEUCLID.spad" 739066 739104 741174 741179) (-456 "GAUSSFAC.spad" 738379 738387 739056 739061) (-455 "GALUTIL.spad" 736705 736715 738335 738340) (-454 "GALPOLYU.spad" 735159 735172 736695 736700) (-453 "GALFACTU.spad" 733332 733351 735149 735154) (-452 "GALFACT.spad" 723521 723532 733322 733327) (-451 "FVFUN.spad" 720544 720552 723511 723516) (-450 "FVC.spad" 719596 719604 720534 720539) (-449 "FUNDESC.spad" 719274 719282 719586 719591) (-448 "FUNCTION.spad" 719123 719135 719264 719269) (-447 "FT.spad" 717420 717428 719113 719118) (-446 "FTEM.spad" 716585 716593 717410 717415) (-445 "FSUPFACT.spad" 715485 715504 716521 716526) (-444 "FST.spad" 713571 713579 715475 715480) (-443 "FSRED.spad" 713051 713067 713561 713566) (-442 "FSPRMELT.spad" 711933 711949 713008 713013) (-441 "FSPECF.spad" 710024 710040 711923 711928) (-440 "FS.spad" 704292 704302 709799 710019) (-439 "FS.spad" 698338 698350 703847 703852) (-438 "FSINT.spad" 697998 698014 698328 698333) (-437 "FSERIES.spad" 697189 697201 697818 697917) (-436 "FSCINT.spad" 696506 696522 697179 697184) (-435 "FSAGG.spad" 695623 695633 696462 696501) (-434 "FSAGG.spad" 694702 694714 695543 695548) (-433 "FSAGG2.spad" 693445 693461 694692 694697) (-432 "FS2UPS.spad" 687936 687970 693435 693440) (-431 "FS2.spad" 687583 687599 687926 687931) (-430 "FS2EXPXP.spad" 686708 686731 687573 687578) (-429 "FRUTIL.spad" 685662 685672 686698 686703) (-428 "FR.spad" 679137 679147 684445 684514) (-427 "FRNAALG.spad" 674406 674416 679079 679132) (-426 "FRNAALG.spad" 669687 669699 674362 674367) (-425 "FRNAAF2.spad" 669143 669161 669677 669682) (-424 "FRMOD.spad" 668553 668583 669074 669079) (-423 "FRIDEAL.spad" 667778 667799 668533 668548) (-422 "FRIDEAL2.spad" 667382 667414 667768 667773) (-421 "FRETRCT.spad" 666893 666903 667372 667377) (-420 "FRETRCT.spad" 666270 666282 666751 666756) (-419 "FRAMALG.spad" 664618 664631 666226 666265) (-418 "FRAMALG.spad" 662998 663013 664608 664613) (-417 "FRAC.spad" 660097 660107 660500 660673) (-416 "FRAC2.spad" 659702 659714 660087 660092) (-415 "FR2.spad" 659038 659050 659692 659697) (-414 "FPS.spad" 655853 655861 658928 659033) (-413 "FPS.spad" 652696 652706 655773 655778) (-412 "FPC.spad" 651742 651750 652598 652691) (-411 "FPC.spad" 650874 650884 651732 651737) (-410 "FPATMAB.spad" 650636 650646 650864 650869) (-409 "FPARFRAC.spad" 649123 649140 650626 650631) (-408 "FORTRAN.spad" 647629 647672 649113 649118) (-407 "FORT.spad" 646578 646586 647619 647624) (-406 "FORTFN.spad" 643748 643756 646568 646573) (-405 "FORTCAT.spad" 643432 643440 643738 643743) (-404 "FORMULA.spad" 640906 640914 643422 643427) (-403 "FORMULA1.spad" 640385 640395 640896 640901) (-402 "FORDER.spad" 640076 640100 640375 640380) (-401 "FOP.spad" 639277 639285 640066 640071) (-400 "FNLA.spad" 638701 638723 639245 639272) (-399 "FNCAT.spad" 637296 637304 638691 638696) (-398 "FNAME.spad" 637188 637196 637286 637291) (-397 "FMTC.spad" 636986 636994 637114 637183) (-396 "FMONOID.spad" 636651 636661 636942 636947) (-395 "FMONCAT.spad" 633804 633814 636641 636646) (-394 "FM.spad" 633499 633511 633738 633765) (-393 "FMFUN.spad" 630529 630537 633489 633494) (-392 "FMC.spad" 629581 629589 630519 630524) (-391 "FMCAT.spad" 627249 627267 629549 629576) (-390 "FM1.spad" 626606 626618 627183 627210) (-389 "FLOATRP.spad" 624341 624355 626596 626601) (-388 "FLOAT.spad" 617655 617663 624207 624336) (-387 "FLOATCP.spad" 615086 615100 617645 617650) (-386 "FLINEXP.spad" 614808 614818 615076 615081) (-385 "FLINEXP.spad" 614474 614486 614744 614749) (-384 "FLASORT.spad" 613800 613812 614464 614469) (-383 "FLALG.spad" 611446 611465 613726 613795) (-382 "FLAGG.spad" 608488 608498 611426 611441) (-381 "FLAGG.spad" 605431 605443 608371 608376) (-380 "FLAGG2.spad" 604156 604172 605421 605426) (-379 "FINRALG.spad" 602217 602230 604112 604151) (-378 "FINRALG.spad" 600204 600219 602101 602106) (-377 "FINITE.spad" 599356 599364 600194 600199) (-376 "FINAALG.spad" 588477 588487 599298 599351) (-375 "FINAALG.spad" 577610 577622 588433 588438) (-374 "FILE.spad" 577193 577203 577600 577605) (-373 "FILECAT.spad" 575719 575736 577183 577188) (-372 "FIELD.spad" 575125 575133 575621 575714) (-371 "FIELD.spad" 574617 574627 575115 575120) (-370 "FGROUP.spad" 573264 573274 574597 574612) (-369 "FGLMICPK.spad" 572051 572066 573254 573259) (-368 "FFX.spad" 571426 571441 571767 571860) (-367 "FFSLPE.spad" 570929 570950 571416 571421) (-366 "FFPOLY.spad" 562191 562202 570919 570924) (-365 "FFPOLY2.spad" 561251 561268 562181 562186) (-364 "FFP.spad" 560648 560668 560967 561060) (-363 "FF.spad" 560096 560112 560329 560422) (-362 "FFNBX.spad" 558608 558628 559812 559905) (-361 "FFNBP.spad" 557121 557138 558324 558417) (-360 "FFNB.spad" 555586 555607 556802 556895) (-359 "FFINTBAS.spad" 553100 553119 555576 555581) (-358 "FFIELDC.spad" 550677 550685 553002 553095) (-357 "FFIELDC.spad" 548340 548350 550667 550672) (-356 "FFHOM.spad" 547088 547105 548330 548335) (-355 "FFF.spad" 544523 544534 547078 547083) (-354 "FFCGX.spad" 543370 543390 544239 544332) (-353 "FFCGP.spad" 542259 542279 543086 543179) (-352 "FFCG.spad" 541051 541072 541940 542033) (-351 "FFCAT.spad" 534224 534246 540890 541046) (-350 "FFCAT.spad" 527476 527500 534144 534149) (-349 "FFCAT2.spad" 527223 527263 527466 527471) (-348 "FEXPR.spad" 518940 518986 526979 527018) (-347 "FEVALAB.spad" 518648 518658 518930 518935) (-346 "FEVALAB.spad" 518141 518153 518425 518430) (-345 "FDIV.spad" 517583 517607 518131 518136) (-344 "FDIVCAT.spad" 515647 515671 517573 517578) (-343 "FDIVCAT.spad" 513709 513735 515637 515642) (-342 "FDIV2.spad" 513365 513405 513699 513704) (-341 "FCTRDATA.spad" 512373 512381 513355 513360) (-340 "FCPAK1.spad" 510940 510948 512363 512368) (-339 "FCOMP.spad" 510319 510329 510930 510935) (-338 "FC.spad" 500326 500334 510309 510314) (-337 "FAXF.spad" 493297 493311 500228 500321) (-336 "FAXF.spad" 486320 486336 493253 493258) (-335 "FARRAY.spad" 484470 484480 485503 485530) (-334 "FAMR.spad" 482606 482618 484368 484465) (-333 "FAMR.spad" 480726 480740 482490 482495) (-332 "FAMONOID.spad" 480394 480404 480680 480685) (-331 "FAMONC.spad" 478690 478702 480384 480389) (-330 "FAGROUP.spad" 478314 478324 478586 478613) (-329 "FACUTIL.spad" 476518 476535 478304 478309) (-328 "FACTFUNC.spad" 475712 475722 476508 476513) (-327 "EXPUPXS.spad" 472545 472568 473844 473993) (-326 "EXPRTUBE.spad" 469833 469841 472535 472540) (-325 "EXPRODE.spad" 466993 467009 469823 469828) (-324 "EXPR.spad" 462168 462178 462882 463177) (-323 "EXPR2UPS.spad" 458290 458303 462158 462163) (-322 "EXPR2.spad" 457995 458007 458280 458285) (-321 "EXPEXPAN.spad" 454935 454960 455567 455660) (-320 "EXIT.spad" 454606 454614 454925 454930) (-319 "EXITAST.spad" 454342 454350 454596 454601) (-318 "EVALCYC.spad" 453802 453816 454332 454337) (-317 "EVALAB.spad" 453374 453384 453792 453797) (-316 "EVALAB.spad" 452944 452956 453364 453369) (-315 "EUCDOM.spad" 450518 450526 452870 452939) (-314 "EUCDOM.spad" 448154 448164 450508 450513) (-313 "ESTOOLS.spad" 440000 440008 448144 448149) (-312 "ESTOOLS2.spad" 439603 439617 439990 439995) (-311 "ESTOOLS1.spad" 439288 439299 439593 439598) (-310 "ES.spad" 432103 432111 439278 439283) (-309 "ES.spad" 424824 424834 432001 432006) (-308 "ESCONT.spad" 421617 421625 424814 424819) (-307 "ESCONT1.spad" 421366 421378 421607 421612) (-306 "ES2.spad" 420871 420887 421356 421361) (-305 "ES1.spad" 420441 420457 420861 420866) (-304 "ERROR.spad" 417768 417776 420431 420436) (-303 "EQTBL.spad" 416240 416262 416449 416476) (-302 "EQ.spad" 411045 411055 413832 413944) (-301 "EQ2.spad" 410763 410775 411035 411040) (-300 "EP.spad" 407089 407099 410753 410758) (-299 "ENV.spad" 405767 405775 407079 407084) (-298 "ENTIRER.spad" 405435 405443 405711 405762) (-297 "EMR.spad" 404723 404764 405361 405430) (-296 "ELTAGG.spad" 402977 402996 404713 404718) (-295 "ELTAGG.spad" 401195 401216 402933 402938) (-294 "ELTAB.spad" 400670 400683 401185 401190) (-293 "ELFUTS.spad" 400057 400076 400660 400665) (-292 "ELEMFUN.spad" 399746 399754 400047 400052) (-291 "ELEMFUN.spad" 399433 399443 399736 399741) (-290 "ELAGG.spad" 397404 397414 399413 399428) (-289 "ELAGG.spad" 395312 395324 397323 397328) (-288 "ELABOR.spad" 394658 394666 395302 395307) (-287 "ELABEXPR.spad" 393590 393598 394648 394653) (-286 "EFUPXS.spad" 390366 390396 393546 393551) (-285 "EFULS.spad" 387202 387225 390322 390327) (-284 "EFSTRUC.spad" 385217 385233 387192 387197) (-283 "EF.spad" 379993 380009 385207 385212) (-282 "EAB.spad" 378269 378277 379983 379988) (-281 "E04UCFA.spad" 377805 377813 378259 378264) (-280 "E04NAFA.spad" 377382 377390 377795 377800) (-279 "E04MBFA.spad" 376962 376970 377372 377377) (-278 "E04JAFA.spad" 376498 376506 376952 376957) (-277 "E04GCFA.spad" 376034 376042 376488 376493) (-276 "E04FDFA.spad" 375570 375578 376024 376029) (-275 "E04DGFA.spad" 375106 375114 375560 375565) (-274 "E04AGNT.spad" 370956 370964 375096 375101) (-273 "DVARCAT.spad" 367846 367856 370946 370951) (-272 "DVARCAT.spad" 364734 364746 367836 367841) (-271 "DSMP.spad" 362201 362215 362506 362633) (-270 "DROPT.spad" 356160 356168 362191 362196) (-269 "DROPT1.spad" 355825 355835 356150 356155) (-268 "DROPT0.spad" 350682 350690 355815 355820) (-267 "DRAWPT.spad" 348855 348863 350672 350677) (-266 "DRAW.spad" 341731 341744 348845 348850) (-265 "DRAWHACK.spad" 341039 341049 341721 341726) (-264 "DRAWCX.spad" 338509 338517 341029 341034) (-263 "DRAWCURV.spad" 338056 338071 338499 338504) (-262 "DRAWCFUN.spad" 327588 327596 338046 338051) (-261 "DQAGG.spad" 325766 325776 327556 327583) (-260 "DPOLCAT.spad" 321115 321131 325634 325761) (-259 "DPOLCAT.spad" 316550 316568 321071 321076) (-258 "DPMO.spad" 309493 309509 309631 309844) (-257 "DPMM.spad" 302449 302467 302574 302787) (-256 "DOMTMPLT.spad" 302220 302228 302439 302444) (-255 "DOMCTOR.spad" 301975 301983 302210 302215) (-254 "DOMAIN.spad" 301062 301070 301965 301970) (-253 "DMP.spad" 298322 298337 298892 299019) (-252 "DLP.spad" 297674 297684 298312 298317) (-251 "DLIST.spad" 296253 296263 296857 296884) (-250 "DLAGG.spad" 294670 294680 296243 296248) (-249 "DIVRING.spad" 294212 294220 294614 294665) (-248 "DIVRING.spad" 293798 293808 294202 294207) (-247 "DISPLAY.spad" 291988 291996 293788 293793) (-246 "DIRPROD.spad" 281952 281968 282592 282691) (-245 "DIRPROD2.spad" 280770 280788 281942 281947) (-244 "DIRPCAT.spad" 279963 279979 280666 280765) (-243 "DIRPCAT.spad" 278783 278801 279488 279493) (-242 "DIOSP.spad" 277608 277616 278773 278778) (-241 "DIOPS.spad" 276604 276614 277588 277603) (-240 "DIOPS.spad" 275574 275586 276560 276565) (-239 "DIFRING.spad" 275412 275420 275554 275569) (-238 "DIFFSPC.spad" 274991 274999 275402 275407) (-237 "DIFFSPC.spad" 274568 274578 274981 274986) (-236 "DIFFMOD.spad" 274057 274067 274536 274563) (-235 "DIFFDOM.spad" 273222 273233 274047 274052) (-234 "DIFFDOM.spad" 272385 272398 273212 273217) (-233 "DIFEXT.spad" 271556 271566 272365 272380) (-232 "DIFEXT.spad" 270644 270656 271455 271460) (-231 "DIAGG.spad" 270274 270284 270624 270639) (-230 "DIAGG.spad" 269912 269924 270264 270269) (-229 "DHMATRIX.spad" 268224 268234 269369 269396) (-228 "DFSFUN.spad" 261864 261872 268214 268219) (-227 "DFLOAT.spad" 258595 258603 261754 261859) (-226 "DFINTTLS.spad" 256826 256842 258585 258590) (-225 "DERHAM.spad" 254740 254772 256806 256821) (-224 "DEQUEUE.spad" 254064 254074 254347 254374) (-223 "DEGRED.spad" 253681 253695 254054 254059) (-222 "DEFINTRF.spad" 251218 251228 253671 253676) (-221 "DEFINTEF.spad" 249728 249744 251208 251213) (-220 "DEFAST.spad" 249096 249104 249718 249723) (-219 "DECIMAL.spad" 247202 247210 247563 247656) (-218 "DDFACT.spad" 245015 245032 247192 247197) (-217 "DBLRESP.spad" 244615 244639 245005 245010) (-216 "DBASE.spad" 243279 243289 244605 244610) (-215 "DATAARY.spad" 242741 242754 243269 243274) (-214 "D03FAFA.spad" 242569 242577 242731 242736) (-213 "D03EEFA.spad" 242389 242397 242559 242564) (-212 "D03AGNT.spad" 241475 241483 242379 242384) (-211 "D02EJFA.spad" 240937 240945 241465 241470) (-210 "D02CJFA.spad" 240415 240423 240927 240932) (-209 "D02BHFA.spad" 239905 239913 240405 240410) (-208 "D02BBFA.spad" 239395 239403 239895 239900) (-207 "D02AGNT.spad" 234209 234217 239385 239390) (-206 "D01WGTS.spad" 232528 232536 234199 234204) (-205 "D01TRNS.spad" 232505 232513 232518 232523) (-204 "D01GBFA.spad" 232027 232035 232495 232500) (-203 "D01FCFA.spad" 231549 231557 232017 232022) (-202 "D01ASFA.spad" 231017 231025 231539 231544) (-201 "D01AQFA.spad" 230463 230471 231007 231012) (-200 "D01APFA.spad" 229887 229895 230453 230458) (-199 "D01ANFA.spad" 229381 229389 229877 229882) (-198 "D01AMFA.spad" 228891 228899 229371 229376) (-197 "D01ALFA.spad" 228431 228439 228881 228886) (-196 "D01AKFA.spad" 227957 227965 228421 228426) (-195 "D01AJFA.spad" 227480 227488 227947 227952) (-194 "D01AGNT.spad" 223547 223555 227470 227475) (-193 "CYCLOTOM.spad" 223053 223061 223537 223542) (-192 "CYCLES.spad" 219845 219853 223043 223048) (-191 "CVMP.spad" 219262 219272 219835 219840) (-190 "CTRIGMNP.spad" 217762 217778 219252 219257) (-189 "CTOR.spad" 217453 217461 217752 217757) (-188 "CTORKIND.spad" 217056 217064 217443 217448) (-187 "CTORCAT.spad" 216305 216313 217046 217051) (-186 "CTORCAT.spad" 215552 215562 216295 216300) (-185 "CTORCALL.spad" 215141 215151 215542 215547) (-184 "CSTTOOLS.spad" 214386 214399 215131 215136) (-183 "CRFP.spad" 208110 208123 214376 214381) (-182 "CRCEAST.spad" 207830 207838 208100 208105) (-181 "CRAPACK.spad" 206881 206891 207820 207825) (-180 "CPMATCH.spad" 206385 206400 206806 206811) (-179 "CPIMA.spad" 206090 206109 206375 206380) (-178 "COORDSYS.spad" 201099 201109 206080 206085) (-177 "CONTOUR.spad" 200510 200518 201089 201094) (-176 "CONTFRAC.spad" 196260 196270 200412 200505) (-175 "CONDUIT.spad" 196018 196026 196250 196255) (-174 "COMRING.spad" 195692 195700 195956 196013) (-173 "COMPPROP.spad" 195210 195218 195682 195687) (-172 "COMPLPAT.spad" 194977 194992 195200 195205) (-171 "COMPLEX.spad" 189114 189124 189358 189619) (-170 "COMPLEX2.spad" 188829 188841 189104 189109) (-169 "COMPILER.spad" 188378 188386 188819 188824) (-168 "COMPFACT.spad" 187980 187994 188368 188373) (-167 "COMPCAT.spad" 186052 186062 187714 187975) (-166 "COMPCAT.spad" 183852 183864 185516 185521) (-165 "COMMUPC.spad" 183600 183618 183842 183847) (-164 "COMMONOP.spad" 183133 183141 183590 183595) (-163 "COMM.spad" 182944 182952 183123 183128) (-162 "COMMAAST.spad" 182707 182715 182934 182939) (-161 "COMBOPC.spad" 181622 181630 182697 182702) (-160 "COMBINAT.spad" 180389 180399 181612 181617) (-159 "COMBF.spad" 177771 177787 180379 180384) (-158 "COLOR.spad" 176608 176616 177761 177766) (-157 "COLONAST.spad" 176274 176282 176598 176603) (-156 "CMPLXRT.spad" 175985 176002 176264 176269) (-155 "CLLCTAST.spad" 175647 175655 175975 175980) (-154 "CLIP.spad" 171755 171763 175637 175642) (-153 "CLIF.spad" 170410 170426 171711 171750) (-152 "CLAGG.spad" 166915 166925 170400 170405) (-151 "CLAGG.spad" 163291 163303 166778 166783) (-150 "CINTSLPE.spad" 162622 162635 163281 163286) (-149 "CHVAR.spad" 160760 160782 162612 162617) (-148 "CHARZ.spad" 160675 160683 160740 160755) (-147 "CHARPOL.spad" 160185 160195 160665 160670) (-146 "CHARNZ.spad" 159938 159946 160165 160180) (-145 "CHAR.spad" 157812 157820 159928 159933) (-144 "CFCAT.spad" 157140 157148 157802 157807) (-143 "CDEN.spad" 156336 156350 157130 157135) (-142 "CCLASS.spad" 154485 154493 155747 155786) (-141 "CATEGORY.spad" 153527 153535 154475 154480) (-140 "CATCTOR.spad" 153418 153426 153517 153522) (-139 "CATAST.spad" 153036 153044 153408 153413) (-138 "CASEAST.spad" 152750 152758 153026 153031) (-137 "CARTEN.spad" 148117 148141 152740 152745) (-136 "CARTEN2.spad" 147507 147534 148107 148112) (-135 "CARD.spad" 144802 144810 147481 147502) (-134 "CAPSLAST.spad" 144576 144584 144792 144797) (-133 "CACHSET.spad" 144200 144208 144566 144571) (-132 "CABMON.spad" 143755 143763 144190 144195) (-131 "BYTEORD.spad" 143430 143438 143745 143750) (-130 "BYTE.spad" 142857 142865 143420 143425) (-129 "BYTEBUF.spad" 140716 140724 142026 142053) (-128 "BTREE.spad" 139789 139799 140323 140350) (-127 "BTOURN.spad" 138794 138804 139396 139423) (-126 "BTCAT.spad" 138186 138196 138762 138789) (-125 "BTCAT.spad" 137598 137610 138176 138181) (-124 "BTAGG.spad" 137064 137072 137566 137593) (-123 "BTAGG.spad" 136550 136560 137054 137059) (-122 "BSTREE.spad" 135291 135301 136157 136184) (-121 "BRILL.spad" 133488 133499 135281 135286) (-120 "BRAGG.spad" 132428 132438 133478 133483) (-119 "BRAGG.spad" 131332 131344 132384 132389) (-118 "BPADICRT.spad" 129313 129325 129568 129661) (-117 "BPADIC.spad" 128977 128989 129239 129308) (-116 "BOUNDZRO.spad" 128633 128650 128967 128972) (-115 "BOP.spad" 123815 123823 128623 128628) (-114 "BOP1.spad" 121281 121291 123805 123810) (-113 "BOOLE.spad" 120931 120939 121271 121276) (-112 "BOOLEAN.spad" 120369 120377 120921 120926) (-111 "BMODULE.spad" 120081 120093 120337 120364) (-110 "BITS.spad" 119502 119510 119717 119744) (-109 "BINDING.spad" 118915 118923 119492 119497) (-108 "BINARY.spad" 117026 117034 117382 117475) (-107 "BGAGG.spad" 116231 116241 117006 117021) (-106 "BGAGG.spad" 115444 115456 116221 116226) (-105 "BFUNCT.spad" 115008 115016 115424 115439) (-104 "BEZOUT.spad" 114148 114175 114958 114963) (-103 "BBTREE.spad" 110993 111003 113755 113782) (-102 "BASTYPE.spad" 110665 110673 110983 110988) (-101 "BASTYPE.spad" 110335 110345 110655 110660) (-100 "BALFACT.spad" 109794 109807 110325 110330) (-99 "AUTOMOR.spad" 109245 109254 109774 109789) (-98 "ATTREG.spad" 105968 105975 108997 109240) (-97 "ATTRBUT.spad" 101991 101998 105948 105963) (-96 "ATTRAST.spad" 101708 101715 101981 101986) (-95 "ATRIG.spad" 101178 101185 101698 101703) (-94 "ATRIG.spad" 100646 100655 101168 101173) (-93 "ASTCAT.spad" 100550 100557 100636 100641) (-92 "ASTCAT.spad" 100452 100461 100540 100545) (-91 "ASTACK.spad" 99791 99800 100059 100086) (-90 "ASSOCEQ.spad" 98617 98628 99747 99752) (-89 "ASP9.spad" 97698 97711 98607 98612) (-88 "ASP8.spad" 96741 96754 97688 97693) (-87 "ASP80.spad" 96063 96076 96731 96736) (-86 "ASP7.spad" 95223 95236 96053 96058) (-85 "ASP78.spad" 94674 94687 95213 95218) (-84 "ASP77.spad" 94043 94056 94664 94669) (-83 "ASP74.spad" 93135 93148 94033 94038) (-82 "ASP73.spad" 92406 92419 93125 93130) (-81 "ASP6.spad" 91273 91286 92396 92401) (-80 "ASP55.spad" 89782 89795 91263 91268) (-79 "ASP50.spad" 87599 87612 89772 89777) (-78 "ASP4.spad" 86894 86907 87589 87594) (-77 "ASP49.spad" 85893 85906 86884 86889) (-76 "ASP42.spad" 84300 84339 85883 85888) (-75 "ASP41.spad" 82879 82918 84290 84295) (-74 "ASP35.spad" 81867 81880 82869 82874) (-73 "ASP34.spad" 81168 81181 81857 81862) (-72 "ASP33.spad" 80728 80741 81158 81163) (-71 "ASP31.spad" 79868 79881 80718 80723) (-70 "ASP30.spad" 78760 78773 79858 79863) (-69 "ASP29.spad" 78226 78239 78750 78755) (-68 "ASP28.spad" 69499 69512 78216 78221) (-67 "ASP27.spad" 68396 68409 69489 69494) (-66 "ASP24.spad" 67483 67496 68386 68391) (-65 "ASP20.spad" 66947 66960 67473 67478) (-64 "ASP1.spad" 66328 66341 66937 66942) (-63 "ASP19.spad" 61014 61027 66318 66323) (-62 "ASP12.spad" 60428 60441 61004 61009) (-61 "ASP10.spad" 59699 59712 60418 60423) (-60 "ARRAY2.spad" 59059 59068 59306 59333) (-59 "ARRAY1.spad" 57896 57905 58242 58269) (-58 "ARRAY12.spad" 56609 56620 57886 57891) (-57 "ARR2CAT.spad" 52383 52404 56577 56604) (-56 "ARR2CAT.spad" 48177 48200 52373 52378) (-55 "ARITY.spad" 47549 47556 48167 48172) (-54 "APPRULE.spad" 46809 46831 47539 47544) (-53 "APPLYORE.spad" 46428 46441 46799 46804) (-52 "ANY.spad" 45287 45294 46418 46423) (-51 "ANY1.spad" 44358 44367 45277 45282) (-50 "ANTISYM.spad" 42803 42819 44338 44353) (-49 "ANON.spad" 42496 42503 42793 42798) (-48 "AN.spad" 40805 40812 42312 42405) (-47 "AMR.spad" 38990 39001 40703 40800) (-46 "AMR.spad" 37012 37025 38727 38732) (-45 "ALIST.spad" 34424 34445 34774 34801) (-44 "ALGSC.spad" 33559 33585 34296 34349) (-43 "ALGPKG.spad" 29342 29353 33515 33520) (-42 "ALGMFACT.spad" 28535 28549 29332 29337) (-41 "ALGMANIP.spad" 26009 26024 28368 28373) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2274025 2274030 2274035 2274040) (-2 NIL 2274005 2274010 2274015 2274020) (-1 NIL 2273985 2273990 2273995 2274000) (0 NIL 2273965 2273970 2273975 2273980) (-1315 "ZMOD.spad" 2273774 2273787 2273903 2273960) (-1314 "ZLINDEP.spad" 2272840 2272851 2273764 2273769) (-1313 "ZDSOLVE.spad" 2262785 2262807 2272830 2272835) (-1312 "YSTREAM.spad" 2262280 2262291 2262775 2262780) (-1311 "YDIAGRAM.spad" 2261914 2261923 2262270 2262275) (-1310 "XRPOLY.spad" 2261134 2261154 2261770 2261839) (-1309 "XPR.spad" 2258929 2258942 2260852 2260951) (-1308 "XPOLY.spad" 2258484 2258495 2258785 2258854) (-1307 "XPOLYC.spad" 2257803 2257819 2258410 2258479) (-1306 "XPBWPOLY.spad" 2256240 2256260 2257583 2257652) (-1305 "XF.spad" 2254703 2254718 2256142 2256235) (-1304 "XF.spad" 2253146 2253163 2254587 2254592) (-1303 "XFALG.spad" 2250194 2250210 2253072 2253141) (-1302 "XEXPPKG.spad" 2249445 2249471 2250184 2250189) (-1301 "XDPOLY.spad" 2249059 2249075 2249301 2249370) (-1300 "XALG.spad" 2248719 2248730 2249015 2249054) (-1299 "WUTSET.spad" 2244558 2244575 2248365 2248392) (-1298 "WP.spad" 2243757 2243801 2244416 2244483) (-1297 "WHILEAST.spad" 2243555 2243564 2243747 2243752) (-1296 "WHEREAST.spad" 2243226 2243235 2243545 2243550) (-1295 "WFFINTBS.spad" 2240889 2240911 2243216 2243221) (-1294 "WEIER.spad" 2239111 2239122 2240879 2240884) (-1293 "VSPACE.spad" 2238784 2238795 2239079 2239106) (-1292 "VSPACE.spad" 2238477 2238490 2238774 2238779) (-1291 "VOID.spad" 2238154 2238163 2238467 2238472) (-1290 "VIEW.spad" 2235834 2235843 2238144 2238149) (-1289 "VIEWDEF.spad" 2231035 2231044 2235824 2235829) (-1288 "VIEW3D.spad" 2214996 2215005 2231025 2231030) (-1287 "VIEW2D.spad" 2202887 2202896 2214986 2214991) (-1286 "VECTOR.spad" 2201561 2201572 2201812 2201839) (-1285 "VECTOR2.spad" 2200200 2200213 2201551 2201556) (-1284 "VECTCAT.spad" 2198104 2198115 2200168 2200195) (-1283 "VECTCAT.spad" 2195815 2195828 2197881 2197886) (-1282 "VARIABLE.spad" 2195595 2195610 2195805 2195810) (-1281 "UTYPE.spad" 2195239 2195248 2195585 2195590) (-1280 "UTSODETL.spad" 2194534 2194558 2195195 2195200) (-1279 "UTSODE.spad" 2192750 2192770 2194524 2194529) (-1278 "UTS.spad" 2187554 2187582 2191217 2191314) (-1277 "UTSCAT.spad" 2185033 2185049 2187452 2187549) (-1276 "UTSCAT.spad" 2182156 2182174 2184577 2184582) (-1275 "UTS2.spad" 2181751 2181786 2182146 2182151) (-1274 "URAGG.spad" 2176424 2176435 2181741 2181746) (-1273 "URAGG.spad" 2171061 2171074 2176380 2176385) (-1272 "UPXSSING.spad" 2168706 2168732 2170142 2170275) (-1271 "UPXS.spad" 2165860 2165888 2166838 2166987) (-1270 "UPXSCONS.spad" 2163619 2163639 2163992 2164141) (-1269 "UPXSCCA.spad" 2162190 2162210 2163465 2163614) (-1268 "UPXSCCA.spad" 2160903 2160925 2162180 2162185) (-1267 "UPXSCAT.spad" 2159492 2159508 2160749 2160898) (-1266 "UPXS2.spad" 2159035 2159088 2159482 2159487) (-1265 "UPSQFREE.spad" 2157449 2157463 2159025 2159030) (-1264 "UPSCAT.spad" 2155236 2155260 2157347 2157444) (-1263 "UPSCAT.spad" 2152729 2152755 2154842 2154847) (-1262 "UPOLYC.spad" 2147769 2147780 2152571 2152724) (-1261 "UPOLYC.spad" 2142701 2142714 2147505 2147510) (-1260 "UPOLYC2.spad" 2142172 2142191 2142691 2142696) (-1259 "UP.spad" 2139371 2139386 2139758 2139911) (-1258 "UPMP.spad" 2138271 2138284 2139361 2139366) (-1257 "UPDIVP.spad" 2137836 2137850 2138261 2138266) (-1256 "UPDECOMP.spad" 2136081 2136095 2137826 2137831) (-1255 "UPCDEN.spad" 2135290 2135306 2136071 2136076) (-1254 "UP2.spad" 2134654 2134675 2135280 2135285) (-1253 "UNISEG.spad" 2134007 2134018 2134573 2134578) (-1252 "UNISEG2.spad" 2133504 2133517 2133963 2133968) (-1251 "UNIFACT.spad" 2132607 2132619 2133494 2133499) (-1250 "ULS.spad" 2123165 2123193 2124252 2124681) (-1249 "ULSCONS.spad" 2115561 2115581 2115931 2116080) (-1248 "ULSCCAT.spad" 2113298 2113318 2115407 2115556) (-1247 "ULSCCAT.spad" 2111143 2111165 2113254 2113259) (-1246 "ULSCAT.spad" 2109375 2109391 2110989 2111138) (-1245 "ULS2.spad" 2108889 2108942 2109365 2109370) (-1244 "UINT8.spad" 2108766 2108775 2108879 2108884) (-1243 "UINT64.spad" 2108642 2108651 2108756 2108761) (-1242 "UINT32.spad" 2108518 2108527 2108632 2108637) (-1241 "UINT16.spad" 2108394 2108403 2108508 2108513) (-1240 "UFD.spad" 2107459 2107468 2108320 2108389) (-1239 "UFD.spad" 2106586 2106597 2107449 2107454) (-1238 "UDVO.spad" 2105467 2105476 2106576 2106581) (-1237 "UDPO.spad" 2102960 2102971 2105423 2105428) (-1236 "TYPE.spad" 2102892 2102901 2102950 2102955) (-1235 "TYPEAST.spad" 2102811 2102820 2102882 2102887) (-1234 "TWOFACT.spad" 2101463 2101478 2102801 2102806) (-1233 "TUPLE.spad" 2100949 2100960 2101362 2101367) (-1232 "TUBETOOL.spad" 2097816 2097825 2100939 2100944) (-1231 "TUBE.spad" 2096463 2096480 2097806 2097811) (-1230 "TS.spad" 2095062 2095078 2096028 2096125) (-1229 "TSETCAT.spad" 2082189 2082206 2095030 2095057) (-1228 "TSETCAT.spad" 2069302 2069321 2082145 2082150) (-1227 "TRMANIP.spad" 2063668 2063685 2069008 2069013) (-1226 "TRIMAT.spad" 2062631 2062656 2063658 2063663) (-1225 "TRIGMNIP.spad" 2061158 2061175 2062621 2062626) (-1224 "TRIGCAT.spad" 2060670 2060679 2061148 2061153) (-1223 "TRIGCAT.spad" 2060180 2060191 2060660 2060665) (-1222 "TREE.spad" 2058755 2058766 2059787 2059814) (-1221 "TRANFUN.spad" 2058594 2058603 2058745 2058750) (-1220 "TRANFUN.spad" 2058431 2058442 2058584 2058589) (-1219 "TOPSP.spad" 2058105 2058114 2058421 2058426) (-1218 "TOOLSIGN.spad" 2057768 2057779 2058095 2058100) (-1217 "TEXTFILE.spad" 2056329 2056338 2057758 2057763) (-1216 "TEX.spad" 2053475 2053484 2056319 2056324) (-1215 "TEX1.spad" 2053031 2053042 2053465 2053470) (-1214 "TEMUTL.spad" 2052586 2052595 2053021 2053026) (-1213 "TBCMPPK.spad" 2050679 2050702 2052576 2052581) (-1212 "TBAGG.spad" 2049729 2049752 2050659 2050674) (-1211 "TBAGG.spad" 2048787 2048812 2049719 2049724) (-1210 "TANEXP.spad" 2048195 2048206 2048777 2048782) (-1209 "TALGOP.spad" 2047919 2047930 2048185 2048190) (-1208 "TABLE.spad" 2046330 2046353 2046600 2046627) (-1207 "TABLEAU.spad" 2045811 2045822 2046320 2046325) (-1206 "TABLBUMP.spad" 2042614 2042625 2045801 2045806) (-1205 "SYSTEM.spad" 2041842 2041851 2042604 2042609) (-1204 "SYSSOLP.spad" 2039325 2039336 2041832 2041837) (-1203 "SYSPTR.spad" 2039224 2039233 2039315 2039320) (-1202 "SYSNNI.spad" 2038406 2038417 2039214 2039219) (-1201 "SYSINT.spad" 2037810 2037821 2038396 2038401) (-1200 "SYNTAX.spad" 2034016 2034025 2037800 2037805) (-1199 "SYMTAB.spad" 2032084 2032093 2034006 2034011) (-1198 "SYMS.spad" 2028107 2028116 2032074 2032079) (-1197 "SYMPOLY.spad" 2027114 2027125 2027196 2027323) (-1196 "SYMFUNC.spad" 2026615 2026626 2027104 2027109) (-1195 "SYMBOL.spad" 2024118 2024127 2026605 2026610) (-1194 "SWITCH.spad" 2020889 2020898 2024108 2024113) (-1193 "SUTS.spad" 2017794 2017822 2019356 2019453) (-1192 "SUPXS.spad" 2014935 2014963 2015926 2016075) (-1191 "SUP.spad" 2011748 2011759 2012521 2012674) (-1190 "SUPFRACF.spad" 2010853 2010871 2011738 2011743) (-1189 "SUP2.spad" 2010245 2010258 2010843 2010848) (-1188 "SUMRF.spad" 2009219 2009230 2010235 2010240) (-1187 "SUMFS.spad" 2008856 2008873 2009209 2009214) (-1186 "SULS.spad" 1999401 1999429 2000501 2000930) (-1185 "SUCHTAST.spad" 1999170 1999179 1999391 1999396) (-1184 "SUCH.spad" 1998852 1998867 1999160 1999165) (-1183 "SUBSPACE.spad" 1990967 1990982 1998842 1998847) (-1182 "SUBRESP.spad" 1990137 1990151 1990923 1990928) (-1181 "STTF.spad" 1986236 1986252 1990127 1990132) (-1180 "STTFNC.spad" 1982704 1982720 1986226 1986231) (-1179 "STTAYLOR.spad" 1975339 1975350 1982585 1982590) (-1178 "STRTBL.spad" 1973844 1973861 1973993 1974020) (-1177 "STRING.spad" 1973253 1973262 1973267 1973294) (-1176 "STRICAT.spad" 1973041 1973050 1973221 1973248) (-1175 "STREAM.spad" 1969959 1969970 1972566 1972581) (-1174 "STREAM3.spad" 1969532 1969547 1969949 1969954) (-1173 "STREAM2.spad" 1968660 1968673 1969522 1969527) (-1172 "STREAM1.spad" 1968366 1968377 1968650 1968655) (-1171 "STINPROD.spad" 1967302 1967318 1968356 1968361) (-1170 "STEP.spad" 1966503 1966512 1967292 1967297) (-1169 "STEPAST.spad" 1965737 1965746 1966493 1966498) (-1168 "STBL.spad" 1964263 1964291 1964430 1964445) (-1167 "STAGG.spad" 1963338 1963349 1964253 1964258) (-1166 "STAGG.spad" 1962411 1962424 1963328 1963333) (-1165 "STACK.spad" 1961768 1961779 1962018 1962045) (-1164 "SREGSET.spad" 1959472 1959489 1961414 1961441) (-1163 "SRDCMPK.spad" 1958033 1958053 1959462 1959467) (-1162 "SRAGG.spad" 1953176 1953185 1958001 1958028) (-1161 "SRAGG.spad" 1948339 1948350 1953166 1953171) (-1160 "SQMATRIX.spad" 1946011 1946029 1946927 1947014) (-1159 "SPLTREE.spad" 1940563 1940576 1945447 1945474) (-1158 "SPLNODE.spad" 1937151 1937164 1940553 1940558) (-1157 "SPFCAT.spad" 1935960 1935969 1937141 1937146) (-1156 "SPECOUT.spad" 1934512 1934521 1935950 1935955) (-1155 "SPADXPT.spad" 1926107 1926116 1934502 1934507) (-1154 "spad-parser.spad" 1925572 1925581 1926097 1926102) (-1153 "SPADAST.spad" 1925273 1925282 1925562 1925567) (-1152 "SPACEC.spad" 1909472 1909483 1925263 1925268) (-1151 "SPACE3.spad" 1909248 1909259 1909462 1909467) (-1150 "SORTPAK.spad" 1908797 1908810 1909204 1909209) (-1149 "SOLVETRA.spad" 1906560 1906571 1908787 1908792) (-1148 "SOLVESER.spad" 1905088 1905099 1906550 1906555) (-1147 "SOLVERAD.spad" 1901114 1901125 1905078 1905083) (-1146 "SOLVEFOR.spad" 1899576 1899594 1901104 1901109) (-1145 "SNTSCAT.spad" 1899176 1899193 1899544 1899571) (-1144 "SMTS.spad" 1897448 1897474 1898741 1898838) (-1143 "SMP.spad" 1894923 1894943 1895313 1895440) (-1142 "SMITH.spad" 1893768 1893793 1894913 1894918) (-1141 "SMATCAT.spad" 1891878 1891908 1893712 1893763) (-1140 "SMATCAT.spad" 1889920 1889952 1891756 1891761) (-1139 "SKAGG.spad" 1888883 1888894 1889888 1889915) (-1138 "SINT.spad" 1887823 1887832 1888749 1888878) (-1137 "SIMPAN.spad" 1887551 1887560 1887813 1887818) (-1136 "SIG.spad" 1886881 1886890 1887541 1887546) (-1135 "SIGNRF.spad" 1885999 1886010 1886871 1886876) (-1134 "SIGNEF.spad" 1885278 1885295 1885989 1885994) (-1133 "SIGAST.spad" 1884663 1884672 1885268 1885273) (-1132 "SHP.spad" 1882591 1882606 1884619 1884624) (-1131 "SHDP.spad" 1871261 1871288 1871770 1871869) (-1130 "SGROUP.spad" 1870869 1870878 1871251 1871256) (-1129 "SGROUP.spad" 1870475 1870486 1870859 1870864) (-1128 "SGCF.spad" 1863614 1863623 1870465 1870470) (-1127 "SFRTCAT.spad" 1862544 1862561 1863582 1863609) (-1126 "SFRGCD.spad" 1861607 1861627 1862534 1862539) (-1125 "SFQCMPK.spad" 1856244 1856264 1861597 1861602) (-1124 "SFORT.spad" 1855683 1855697 1856234 1856239) (-1123 "SEXOF.spad" 1855526 1855566 1855673 1855678) (-1122 "SEX.spad" 1855418 1855427 1855516 1855521) (-1121 "SEXCAT.spad" 1853199 1853239 1855408 1855413) (-1120 "SET.spad" 1851523 1851534 1852620 1852659) (-1119 "SETMN.spad" 1849973 1849990 1851513 1851518) (-1118 "SETCAT.spad" 1849295 1849304 1849963 1849968) (-1117 "SETCAT.spad" 1848615 1848626 1849285 1849290) (-1116 "SETAGG.spad" 1845164 1845175 1848595 1848610) (-1115 "SETAGG.spad" 1841721 1841734 1845154 1845159) (-1114 "SEQAST.spad" 1841424 1841433 1841711 1841716) (-1113 "SEGXCAT.spad" 1840580 1840593 1841414 1841419) (-1112 "SEG.spad" 1840393 1840404 1840499 1840504) (-1111 "SEGCAT.spad" 1839318 1839329 1840383 1840388) (-1110 "SEGBIND.spad" 1839076 1839087 1839265 1839270) (-1109 "SEGBIND2.spad" 1838774 1838787 1839066 1839071) (-1108 "SEGAST.spad" 1838488 1838497 1838764 1838769) (-1107 "SEG2.spad" 1837923 1837936 1838444 1838449) (-1106 "SDVAR.spad" 1837199 1837210 1837913 1837918) (-1105 "SDPOL.spad" 1834625 1834636 1834916 1835043) (-1104 "SCPKG.spad" 1832714 1832725 1834615 1834620) (-1103 "SCOPE.spad" 1831867 1831876 1832704 1832709) (-1102 "SCACHE.spad" 1830563 1830574 1831857 1831862) (-1101 "SASTCAT.spad" 1830472 1830481 1830553 1830558) (-1100 "SAOS.spad" 1830344 1830353 1830462 1830467) (-1099 "SAERFFC.spad" 1830057 1830077 1830334 1830339) (-1098 "SAE.spad" 1828011 1828027 1828622 1828757) (-1097 "SAEFACT.spad" 1827712 1827732 1828001 1828006) (-1096 "RURPK.spad" 1825371 1825387 1827702 1827707) (-1095 "RULESET.spad" 1824824 1824848 1825361 1825366) (-1094 "RULE.spad" 1823064 1823088 1824814 1824819) (-1093 "RULECOLD.spad" 1822916 1822929 1823054 1823059) (-1092 "RTVALUE.spad" 1822651 1822660 1822906 1822911) (-1091 "RSTRCAST.spad" 1822368 1822377 1822641 1822646) (-1090 "RSETGCD.spad" 1818746 1818766 1822358 1822363) (-1089 "RSETCAT.spad" 1808682 1808699 1818714 1818741) (-1088 "RSETCAT.spad" 1798638 1798657 1808672 1808677) (-1087 "RSDCMPK.spad" 1797090 1797110 1798628 1798633) (-1086 "RRCC.spad" 1795474 1795504 1797080 1797085) (-1085 "RRCC.spad" 1793856 1793888 1795464 1795469) (-1084 "RPTAST.spad" 1793558 1793567 1793846 1793851) (-1083 "RPOLCAT.spad" 1772918 1772933 1793426 1793553) (-1082 "RPOLCAT.spad" 1751991 1752008 1772501 1772506) (-1081 "ROUTINE.spad" 1747874 1747883 1750638 1750665) (-1080 "ROMAN.spad" 1747202 1747211 1747740 1747869) (-1079 "ROIRC.spad" 1746282 1746314 1747192 1747197) (-1078 "RNS.spad" 1745185 1745194 1746184 1746277) (-1077 "RNS.spad" 1744174 1744185 1745175 1745180) (-1076 "RNG.spad" 1743909 1743918 1744164 1744169) (-1075 "RNGBIND.spad" 1743069 1743083 1743864 1743869) (-1074 "RMODULE.spad" 1742834 1742845 1743059 1743064) (-1073 "RMCAT2.spad" 1742254 1742311 1742824 1742829) (-1072 "RMATRIX.spad" 1741078 1741097 1741421 1741460) (-1071 "RMATCAT.spad" 1736657 1736688 1741034 1741073) (-1070 "RMATCAT.spad" 1732126 1732159 1736505 1736510) (-1069 "RLINSET.spad" 1731681 1731692 1732116 1732121) (-1068 "RINTERP.spad" 1731569 1731589 1731671 1731676) (-1067 "RING.spad" 1731039 1731048 1731549 1731564) (-1066 "RING.spad" 1730517 1730528 1731029 1731034) (-1065 "RIDIST.spad" 1729909 1729918 1730507 1730512) (-1064 "RGCHAIN.spad" 1728492 1728508 1729394 1729421) (-1063 "RGBCSPC.spad" 1728273 1728285 1728482 1728487) (-1062 "RGBCMDL.spad" 1727803 1727815 1728263 1728268) (-1061 "RF.spad" 1725445 1725456 1727793 1727798) (-1060 "RFFACTOR.spad" 1724907 1724918 1725435 1725440) (-1059 "RFFACT.spad" 1724642 1724654 1724897 1724902) (-1058 "RFDIST.spad" 1723638 1723647 1724632 1724637) (-1057 "RETSOL.spad" 1723057 1723070 1723628 1723633) (-1056 "RETRACT.spad" 1722485 1722496 1723047 1723052) (-1055 "RETRACT.spad" 1721911 1721924 1722475 1722480) (-1054 "RETAST.spad" 1721723 1721732 1721901 1721906) (-1053 "RESULT.spad" 1719783 1719792 1720370 1720397) (-1052 "RESRING.spad" 1719130 1719177 1719721 1719778) (-1051 "RESLATC.spad" 1718454 1718465 1719120 1719125) (-1050 "REPSQ.spad" 1718185 1718196 1718444 1718449) (-1049 "REP.spad" 1715739 1715748 1718175 1718180) (-1048 "REPDB.spad" 1715446 1715457 1715729 1715734) (-1047 "REP2.spad" 1705104 1705115 1715288 1715293) (-1046 "REP1.spad" 1699300 1699311 1705054 1705059) (-1045 "REGSET.spad" 1697097 1697114 1698946 1698973) (-1044 "REF.spad" 1696432 1696443 1697052 1697057) (-1043 "REDORDER.spad" 1695638 1695655 1696422 1696427) (-1042 "RECLOS.spad" 1694421 1694441 1695125 1695218) (-1041 "REALSOLV.spad" 1693561 1693570 1694411 1694416) (-1040 "REAL.spad" 1693433 1693442 1693551 1693556) (-1039 "REAL0Q.spad" 1690731 1690746 1693423 1693428) (-1038 "REAL0.spad" 1687575 1687590 1690721 1690726) (-1037 "RDUCEAST.spad" 1687296 1687305 1687565 1687570) (-1036 "RDIV.spad" 1686951 1686976 1687286 1687291) (-1035 "RDIST.spad" 1686518 1686529 1686941 1686946) (-1034 "RDETRS.spad" 1685382 1685400 1686508 1686513) (-1033 "RDETR.spad" 1683521 1683539 1685372 1685377) (-1032 "RDEEFS.spad" 1682620 1682637 1683511 1683516) (-1031 "RDEEF.spad" 1681630 1681647 1682610 1682615) (-1030 "RCFIELD.spad" 1678816 1678825 1681532 1681625) (-1029 "RCFIELD.spad" 1676088 1676099 1678806 1678811) (-1028 "RCAGG.spad" 1674016 1674027 1676078 1676083) (-1027 "RCAGG.spad" 1671871 1671884 1673935 1673940) (-1026 "RATRET.spad" 1671231 1671242 1671861 1671866) (-1025 "RATFACT.spad" 1670923 1670935 1671221 1671226) (-1024 "RANDSRC.spad" 1670242 1670251 1670913 1670918) (-1023 "RADUTIL.spad" 1669998 1670007 1670232 1670237) (-1022 "RADIX.spad" 1666919 1666933 1668465 1668558) (-1021 "RADFF.spad" 1665076 1665113 1665195 1665351) (-1020 "RADCAT.spad" 1664671 1664680 1665066 1665071) (-1019 "RADCAT.spad" 1664264 1664275 1664661 1664666) (-1018 "QUEUE.spad" 1663612 1663623 1663871 1663898) (-1017 "QUAT.spad" 1662013 1662024 1662356 1662421) (-1016 "QUATCT2.spad" 1661633 1661652 1662003 1662008) (-1015 "QUATCAT.spad" 1659803 1659814 1661563 1661628) (-1014 "QUATCAT.spad" 1657724 1657737 1659486 1659491) (-1013 "QUAGG.spad" 1656551 1656562 1657692 1657719) (-1012 "QQUTAST.spad" 1656319 1656328 1656541 1656546) (-1011 "QFORM.spad" 1655937 1655952 1656309 1656314) (-1010 "QFCAT.spad" 1654639 1654650 1655839 1655932) (-1009 "QFCAT.spad" 1652932 1652945 1654134 1654139) (-1008 "QFCAT2.spad" 1652624 1652641 1652922 1652927) (-1007 "QEQUAT.spad" 1652182 1652191 1652614 1652619) (-1006 "QCMPACK.spad" 1646928 1646948 1652172 1652177) (-1005 "QALGSET.spad" 1643006 1643039 1646842 1646847) (-1004 "QALGSET2.spad" 1641001 1641020 1642996 1643001) (-1003 "PWFFINTB.spad" 1638416 1638438 1640991 1640996) (-1002 "PUSHVAR.spad" 1637754 1637774 1638406 1638411) (-1001 "PTRANFN.spad" 1633881 1633892 1637744 1637749) (-1000 "PTPACK.spad" 1630968 1630979 1633871 1633876) (-999 "PTFUNC2.spad" 1630791 1630805 1630958 1630963) (-998 "PTCAT.spad" 1630046 1630056 1630759 1630786) (-997 "PSQFR.spad" 1629353 1629377 1630036 1630041) (-996 "PSEUDLIN.spad" 1628239 1628249 1629343 1629348) (-995 "PSETPK.spad" 1613672 1613688 1628117 1628122) (-994 "PSETCAT.spad" 1607592 1607615 1613652 1613667) (-993 "PSETCAT.spad" 1601486 1601511 1607548 1607553) (-992 "PSCURVE.spad" 1600469 1600477 1601476 1601481) (-991 "PSCAT.spad" 1599252 1599281 1600367 1600464) (-990 "PSCAT.spad" 1598125 1598156 1599242 1599247) (-989 "PRTITION.spad" 1596823 1596831 1598115 1598120) (-988 "PRTDAST.spad" 1596542 1596550 1596813 1596818) (-987 "PRS.spad" 1586104 1586121 1596498 1596503) (-986 "PRQAGG.spad" 1585539 1585549 1586072 1586099) (-985 "PROPLOG.spad" 1585111 1585119 1585529 1585534) (-984 "PROPFUN2.spad" 1584734 1584747 1585101 1585106) (-983 "PROPFUN1.spad" 1584132 1584143 1584724 1584729) (-982 "PROPFRML.spad" 1582700 1582711 1584122 1584127) (-981 "PROPERTY.spad" 1582188 1582196 1582690 1582695) (-980 "PRODUCT.spad" 1579870 1579882 1580154 1580209) (-979 "PR.spad" 1578262 1578274 1578961 1579088) (-978 "PRINT.spad" 1578014 1578022 1578252 1578257) (-977 "PRIMES.spad" 1576267 1576277 1578004 1578009) (-976 "PRIMELT.spad" 1574348 1574362 1576257 1576262) (-975 "PRIMCAT.spad" 1573975 1573983 1574338 1574343) (-974 "PRIMARR.spad" 1572980 1572990 1573158 1573185) (-973 "PRIMARR2.spad" 1571747 1571759 1572970 1572975) (-972 "PREASSOC.spad" 1571129 1571141 1571737 1571742) (-971 "PPCURVE.spad" 1570266 1570274 1571119 1571124) (-970 "PORTNUM.spad" 1570041 1570049 1570256 1570261) (-969 "POLYROOT.spad" 1568890 1568912 1569997 1570002) (-968 "POLY.spad" 1566225 1566235 1566740 1566867) (-967 "POLYLIFT.spad" 1565490 1565513 1566215 1566220) (-966 "POLYCATQ.spad" 1563608 1563630 1565480 1565485) (-965 "POLYCAT.spad" 1557078 1557099 1563476 1563603) (-964 "POLYCAT.spad" 1549886 1549909 1556286 1556291) (-963 "POLY2UP.spad" 1549338 1549352 1549876 1549881) (-962 "POLY2.spad" 1548935 1548947 1549328 1549333) (-961 "POLUTIL.spad" 1547876 1547905 1548891 1548896) (-960 "POLTOPOL.spad" 1546624 1546639 1547866 1547871) (-959 "POINT.spad" 1545462 1545472 1545549 1545576) (-958 "PNTHEORY.spad" 1542164 1542172 1545452 1545457) (-957 "PMTOOLS.spad" 1540939 1540953 1542154 1542159) (-956 "PMSYM.spad" 1540488 1540498 1540929 1540934) (-955 "PMQFCAT.spad" 1540079 1540093 1540478 1540483) (-954 "PMPRED.spad" 1539558 1539572 1540069 1540074) (-953 "PMPREDFS.spad" 1539012 1539034 1539548 1539553) (-952 "PMPLCAT.spad" 1538092 1538110 1538944 1538949) (-951 "PMLSAGG.spad" 1537677 1537691 1538082 1538087) (-950 "PMKERNEL.spad" 1537256 1537268 1537667 1537672) (-949 "PMINS.spad" 1536836 1536846 1537246 1537251) (-948 "PMFS.spad" 1536413 1536431 1536826 1536831) (-947 "PMDOWN.spad" 1535703 1535717 1536403 1536408) (-946 "PMASS.spad" 1534713 1534721 1535693 1535698) (-945 "PMASSFS.spad" 1533680 1533696 1534703 1534708) (-944 "PLOTTOOL.spad" 1533460 1533468 1533670 1533675) (-943 "PLOT.spad" 1528383 1528391 1533450 1533455) (-942 "PLOT3D.spad" 1524847 1524855 1528373 1528378) (-941 "PLOT1.spad" 1524004 1524014 1524837 1524842) (-940 "PLEQN.spad" 1511294 1511321 1523994 1523999) (-939 "PINTERP.spad" 1510916 1510935 1511284 1511289) (-938 "PINTERPA.spad" 1510700 1510716 1510906 1510911) (-937 "PI.spad" 1510309 1510317 1510674 1510695) (-936 "PID.spad" 1509279 1509287 1510235 1510304) (-935 "PICOERCE.spad" 1508936 1508946 1509269 1509274) (-934 "PGROEB.spad" 1507537 1507551 1508926 1508931) (-933 "PGE.spad" 1499154 1499162 1507527 1507532) (-932 "PGCD.spad" 1498044 1498061 1499144 1499149) (-931 "PFRPAC.spad" 1497193 1497203 1498034 1498039) (-930 "PFR.spad" 1493856 1493866 1497095 1497188) (-929 "PFOTOOLS.spad" 1493114 1493130 1493846 1493851) (-928 "PFOQ.spad" 1492484 1492502 1493104 1493109) (-927 "PFO.spad" 1491903 1491930 1492474 1492479) (-926 "PF.spad" 1491477 1491489 1491708 1491801) (-925 "PFECAT.spad" 1489159 1489167 1491403 1491472) (-924 "PFECAT.spad" 1486869 1486879 1489115 1489120) (-923 "PFBRU.spad" 1484757 1484769 1486859 1486864) (-922 "PFBR.spad" 1482317 1482340 1484747 1484752) (-921 "PERM.spad" 1478124 1478134 1482147 1482162) (-920 "PERMGRP.spad" 1472894 1472904 1478114 1478119) (-919 "PERMCAT.spad" 1471555 1471565 1472874 1472889) (-918 "PERMAN.spad" 1470087 1470101 1471545 1471550) (-917 "PENDTREE.spad" 1469428 1469438 1469716 1469721) (-916 "PDSPC.spad" 1468241 1468251 1469418 1469423) (-915 "PDSPC.spad" 1467052 1467064 1468231 1468236) (-914 "PDRING.spad" 1466894 1466904 1467032 1467047) (-913 "PDEPROB.spad" 1465909 1465917 1466884 1466889) (-912 "PDEPACK.spad" 1459949 1459957 1465899 1465904) (-911 "PDECOMP.spad" 1459419 1459436 1459939 1459944) (-910 "PDECAT.spad" 1457775 1457783 1459409 1459414) (-909 "PDDOM.spad" 1457213 1457226 1457765 1457770) (-908 "PDDOM.spad" 1456649 1456664 1457203 1457208) (-907 "PCOMP.spad" 1456502 1456515 1456639 1456644) (-906 "PBWLB.spad" 1455090 1455107 1456492 1456497) (-905 "PATTERN.spad" 1449629 1449639 1455080 1455085) (-904 "PATTERN2.spad" 1449367 1449379 1449619 1449624) (-903 "PATTERN1.spad" 1447703 1447719 1449357 1449362) (-902 "PATRES.spad" 1445278 1445290 1447693 1447698) (-901 "PATRES2.spad" 1444950 1444964 1445268 1445273) (-900 "PATMATCH.spad" 1443147 1443178 1444658 1444663) (-899 "PATMAB.spad" 1442576 1442586 1443137 1443142) (-898 "PATLRES.spad" 1441662 1441676 1442566 1442571) (-897 "PATAB.spad" 1441426 1441436 1441652 1441657) (-896 "PARTPERM.spad" 1439434 1439442 1441416 1441421) (-895 "PARSURF.spad" 1438868 1438896 1439424 1439429) (-894 "PARSU2.spad" 1438665 1438681 1438858 1438863) (-893 "script-parser.spad" 1438185 1438193 1438655 1438660) (-892 "PARSCURV.spad" 1437619 1437647 1438175 1438180) (-891 "PARSC2.spad" 1437410 1437426 1437609 1437614) (-890 "PARPCURV.spad" 1436872 1436900 1437400 1437405) (-889 "PARPC2.spad" 1436663 1436679 1436862 1436867) (-888 "PARAMAST.spad" 1435791 1435799 1436653 1436658) (-887 "PAN2EXPR.spad" 1435203 1435211 1435781 1435786) (-886 "PALETTE.spad" 1434173 1434181 1435193 1435198) (-885 "PAIR.spad" 1433160 1433173 1433761 1433766) (-884 "PADICRC.spad" 1430494 1430512 1431665 1431758) (-883 "PADICRAT.spad" 1428509 1428521 1428730 1428823) (-882 "PADIC.spad" 1428204 1428216 1428435 1428504) (-881 "PADICCT.spad" 1426753 1426765 1428130 1428199) (-880 "PADEPAC.spad" 1425442 1425461 1426743 1426748) (-879 "PADE.spad" 1424194 1424210 1425432 1425437) (-878 "OWP.spad" 1423434 1423464 1424052 1424119) (-877 "OVERSET.spad" 1423007 1423015 1423424 1423429) (-876 "OVAR.spad" 1422788 1422811 1422997 1423002) (-875 "OUT.spad" 1421874 1421882 1422778 1422783) (-874 "OUTFORM.spad" 1411266 1411274 1421864 1421869) (-873 "OUTBFILE.spad" 1410684 1410692 1411256 1411261) (-872 "OUTBCON.spad" 1409690 1409698 1410674 1410679) (-871 "OUTBCON.spad" 1408694 1408704 1409680 1409685) (-870 "OSI.spad" 1408169 1408177 1408684 1408689) (-869 "OSGROUP.spad" 1408087 1408095 1408159 1408164) (-868 "ORTHPOL.spad" 1406572 1406582 1408004 1408009) (-867 "OREUP.spad" 1406025 1406053 1406252 1406291) (-866 "ORESUP.spad" 1405326 1405350 1405705 1405744) (-865 "OREPCTO.spad" 1403183 1403195 1405246 1405251) (-864 "OREPCAT.spad" 1397330 1397340 1403139 1403178) (-863 "OREPCAT.spad" 1391367 1391379 1397178 1397183) (-862 "ORDSET.spad" 1390539 1390547 1391357 1391362) (-861 "ORDSET.spad" 1389709 1389719 1390529 1390534) (-860 "ORDRING.spad" 1389099 1389107 1389689 1389704) (-859 "ORDRING.spad" 1388497 1388507 1389089 1389094) (-858 "ORDMON.spad" 1388352 1388360 1388487 1388492) (-857 "ORDFUNS.spad" 1387484 1387500 1388342 1388347) (-856 "ORDFIN.spad" 1387304 1387312 1387474 1387479) (-855 "ORDCOMP.spad" 1385769 1385779 1386851 1386880) (-854 "ORDCOMP2.spad" 1385062 1385074 1385759 1385764) (-853 "OPTPROB.spad" 1383700 1383708 1385052 1385057) (-852 "OPTPACK.spad" 1376109 1376117 1383690 1383695) (-851 "OPTCAT.spad" 1373788 1373796 1376099 1376104) (-850 "OPSIG.spad" 1373442 1373450 1373778 1373783) (-849 "OPQUERY.spad" 1372991 1372999 1373432 1373437) (-848 "OP.spad" 1372733 1372743 1372813 1372880) (-847 "OPERCAT.spad" 1372199 1372209 1372723 1372728) (-846 "OPERCAT.spad" 1371663 1371675 1372189 1372194) (-845 "ONECOMP.spad" 1370408 1370418 1371210 1371239) (-844 "ONECOMP2.spad" 1369832 1369844 1370398 1370403) (-843 "OMSERVER.spad" 1368838 1368846 1369822 1369827) (-842 "OMSAGG.spad" 1368626 1368636 1368794 1368833) (-841 "OMPKG.spad" 1367242 1367250 1368616 1368621) (-840 "OM.spad" 1366215 1366223 1367232 1367237) (-839 "OMLO.spad" 1365640 1365652 1366101 1366140) (-838 "OMEXPR.spad" 1365474 1365484 1365630 1365635) (-837 "OMERR.spad" 1365019 1365027 1365464 1365469) (-836 "OMERRK.spad" 1364053 1364061 1365009 1365014) (-835 "OMENC.spad" 1363397 1363405 1364043 1364048) (-834 "OMDEV.spad" 1357706 1357714 1363387 1363392) (-833 "OMCONN.spad" 1357115 1357123 1357696 1357701) (-832 "OINTDOM.spad" 1356878 1356886 1357041 1357110) (-831 "OFMONOID.spad" 1355001 1355011 1356834 1356839) (-830 "ODVAR.spad" 1354262 1354272 1354991 1354996) (-829 "ODR.spad" 1353906 1353932 1354074 1354223) (-828 "ODPOL.spad" 1351288 1351298 1351628 1351755) (-827 "ODP.spad" 1340094 1340114 1340467 1340566) (-826 "ODETOOLS.spad" 1338743 1338762 1340084 1340089) (-825 "ODESYS.spad" 1336437 1336454 1338733 1338738) (-824 "ODERTRIC.spad" 1332446 1332463 1336394 1336399) (-823 "ODERED.spad" 1331845 1331869 1332436 1332441) (-822 "ODERAT.spad" 1329460 1329477 1331835 1331840) (-821 "ODEPRRIC.spad" 1326497 1326519 1329450 1329455) (-820 "ODEPROB.spad" 1325754 1325762 1326487 1326492) (-819 "ODEPRIM.spad" 1323088 1323110 1325744 1325749) (-818 "ODEPAL.spad" 1322474 1322498 1323078 1323083) (-817 "ODEPACK.spad" 1309140 1309148 1322464 1322469) (-816 "ODEINT.spad" 1308575 1308591 1309130 1309135) (-815 "ODEIFTBL.spad" 1305970 1305978 1308565 1308570) (-814 "ODEEF.spad" 1301461 1301477 1305960 1305965) (-813 "ODECONST.spad" 1300998 1301016 1301451 1301456) (-812 "ODECAT.spad" 1299596 1299604 1300988 1300993) (-811 "OCT.spad" 1297732 1297742 1298446 1298485) (-810 "OCTCT2.spad" 1297378 1297399 1297722 1297727) (-809 "OC.spad" 1295174 1295184 1297334 1297373) (-808 "OC.spad" 1292695 1292707 1294857 1294862) (-807 "OCAMON.spad" 1292543 1292551 1292685 1292690) (-806 "OASGP.spad" 1292358 1292366 1292533 1292538) (-805 "OAMONS.spad" 1291880 1291888 1292348 1292353) (-804 "OAMON.spad" 1291741 1291749 1291870 1291875) (-803 "OAGROUP.spad" 1291603 1291611 1291731 1291736) (-802 "NUMTUBE.spad" 1291194 1291210 1291593 1291598) (-801 "NUMQUAD.spad" 1279170 1279178 1291184 1291189) (-800 "NUMODE.spad" 1270524 1270532 1279160 1279165) (-799 "NUMINT.spad" 1268090 1268098 1270514 1270519) (-798 "NUMFMT.spad" 1266930 1266938 1268080 1268085) (-797 "NUMERIC.spad" 1259044 1259054 1266735 1266740) (-796 "NTSCAT.spad" 1257552 1257568 1259012 1259039) (-795 "NTPOLFN.spad" 1257103 1257113 1257469 1257474) (-794 "NSUP.spad" 1250149 1250159 1254689 1254842) (-793 "NSUP2.spad" 1249541 1249553 1250139 1250144) (-792 "NSMP.spad" 1245771 1245790 1246079 1246206) (-791 "NREP.spad" 1244149 1244163 1245761 1245766) (-790 "NPCOEF.spad" 1243395 1243415 1244139 1244144) (-789 "NORMRETR.spad" 1242993 1243032 1243385 1243390) (-788 "NORMPK.spad" 1240895 1240914 1242983 1242988) (-787 "NORMMA.spad" 1240583 1240609 1240885 1240890) (-786 "NONE.spad" 1240324 1240332 1240573 1240578) (-785 "NONE1.spad" 1240000 1240010 1240314 1240319) (-784 "NODE1.spad" 1239487 1239503 1239990 1239995) (-783 "NNI.spad" 1238382 1238390 1239461 1239482) (-782 "NLINSOL.spad" 1237008 1237018 1238372 1238377) (-781 "NIPROB.spad" 1235549 1235557 1236998 1237003) (-780 "NFINTBAS.spad" 1233109 1233126 1235539 1235544) (-779 "NETCLT.spad" 1233083 1233094 1233099 1233104) (-778 "NCODIV.spad" 1231299 1231315 1233073 1233078) (-777 "NCNTFRAC.spad" 1230941 1230955 1231289 1231294) (-776 "NCEP.spad" 1229107 1229121 1230931 1230936) (-775 "NASRING.spad" 1228703 1228711 1229097 1229102) (-774 "NASRING.spad" 1228297 1228307 1228693 1228698) (-773 "NARNG.spad" 1227649 1227657 1228287 1228292) (-772 "NARNG.spad" 1226999 1227009 1227639 1227644) (-771 "NAGSP.spad" 1226076 1226084 1226989 1226994) (-770 "NAGS.spad" 1215737 1215745 1226066 1226071) (-769 "NAGF07.spad" 1214168 1214176 1215727 1215732) (-768 "NAGF04.spad" 1208570 1208578 1214158 1214163) (-767 "NAGF02.spad" 1202639 1202647 1208560 1208565) (-766 "NAGF01.spad" 1198400 1198408 1202629 1202634) (-765 "NAGE04.spad" 1192100 1192108 1198390 1198395) (-764 "NAGE02.spad" 1182760 1182768 1192090 1192095) (-763 "NAGE01.spad" 1178762 1178770 1182750 1182755) (-762 "NAGD03.spad" 1176766 1176774 1178752 1178757) (-761 "NAGD02.spad" 1169513 1169521 1176756 1176761) (-760 "NAGD01.spad" 1163806 1163814 1169503 1169508) (-759 "NAGC06.spad" 1159681 1159689 1163796 1163801) (-758 "NAGC05.spad" 1158182 1158190 1159671 1159676) (-757 "NAGC02.spad" 1157449 1157457 1158172 1158177) (-756 "NAALG.spad" 1156990 1157000 1157417 1157444) (-755 "NAALG.spad" 1156551 1156563 1156980 1156985) (-754 "MULTSQFR.spad" 1153509 1153526 1156541 1156546) (-753 "MULTFACT.spad" 1152892 1152909 1153499 1153504) (-752 "MTSCAT.spad" 1150986 1151007 1152790 1152887) (-751 "MTHING.spad" 1150645 1150655 1150976 1150981) (-750 "MSYSCMD.spad" 1150079 1150087 1150635 1150640) (-749 "MSET.spad" 1148037 1148047 1149785 1149824) (-748 "MSETAGG.spad" 1147882 1147892 1148005 1148032) (-747 "MRING.spad" 1144859 1144871 1147590 1147657) (-746 "MRF2.spad" 1144429 1144443 1144849 1144854) (-745 "MRATFAC.spad" 1143975 1143992 1144419 1144424) (-744 "MPRFF.spad" 1142015 1142034 1143965 1143970) (-743 "MPOLY.spad" 1139486 1139501 1139845 1139972) (-742 "MPCPF.spad" 1138750 1138769 1139476 1139481) (-741 "MPC3.spad" 1138567 1138607 1138740 1138745) (-740 "MPC2.spad" 1138213 1138246 1138557 1138562) (-739 "MONOTOOL.spad" 1136564 1136581 1138203 1138208) (-738 "MONOID.spad" 1135883 1135891 1136554 1136559) (-737 "MONOID.spad" 1135200 1135210 1135873 1135878) (-736 "MONOGEN.spad" 1133948 1133961 1135060 1135195) (-735 "MONOGEN.spad" 1132718 1132733 1133832 1133837) (-734 "MONADWU.spad" 1130748 1130756 1132708 1132713) (-733 "MONADWU.spad" 1128776 1128786 1130738 1130743) (-732 "MONAD.spad" 1127936 1127944 1128766 1128771) (-731 "MONAD.spad" 1127094 1127104 1127926 1127931) (-730 "MOEBIUS.spad" 1125830 1125844 1127074 1127089) (-729 "MODULE.spad" 1125700 1125710 1125798 1125825) (-728 "MODULE.spad" 1125590 1125602 1125690 1125695) (-727 "MODRING.spad" 1124925 1124964 1125570 1125585) (-726 "MODOP.spad" 1123590 1123602 1124747 1124814) (-725 "MODMONOM.spad" 1123321 1123339 1123580 1123585) (-724 "MODMON.spad" 1120116 1120132 1120835 1120988) (-723 "MODFIELD.spad" 1119478 1119517 1120018 1120111) (-722 "MMLFORM.spad" 1118338 1118346 1119468 1119473) (-721 "MMAP.spad" 1118080 1118114 1118328 1118333) (-720 "MLO.spad" 1116539 1116549 1118036 1118075) (-719 "MLIFT.spad" 1115151 1115168 1116529 1116534) (-718 "MKUCFUNC.spad" 1114686 1114704 1115141 1115146) (-717 "MKRECORD.spad" 1114290 1114303 1114676 1114681) (-716 "MKFUNC.spad" 1113697 1113707 1114280 1114285) (-715 "MKFLCFN.spad" 1112665 1112675 1113687 1113692) (-714 "MKBCFUNC.spad" 1112160 1112178 1112655 1112660) (-713 "MINT.spad" 1111599 1111607 1112062 1112155) (-712 "MHROWRED.spad" 1110110 1110120 1111589 1111594) (-711 "MFLOAT.spad" 1108630 1108638 1110000 1110105) (-710 "MFINFACT.spad" 1108030 1108052 1108620 1108625) (-709 "MESH.spad" 1105812 1105820 1108020 1108025) (-708 "MDDFACT.spad" 1104023 1104033 1105802 1105807) (-707 "MDAGG.spad" 1103314 1103324 1104003 1104018) (-706 "MCMPLX.spad" 1099325 1099333 1099939 1100140) (-705 "MCDEN.spad" 1098535 1098547 1099315 1099320) (-704 "MCALCFN.spad" 1095657 1095683 1098525 1098530) (-703 "MAYBE.spad" 1094941 1094952 1095647 1095652) (-702 "MATSTOR.spad" 1092249 1092259 1094931 1094936) (-701 "MATRIX.spad" 1090953 1090963 1091437 1091464) (-700 "MATLIN.spad" 1088297 1088321 1090837 1090842) (-699 "MATCAT.spad" 1080026 1080048 1088265 1088292) (-698 "MATCAT.spad" 1071627 1071651 1079868 1079873) (-697 "MATCAT2.spad" 1070909 1070957 1071617 1071622) (-696 "MAPPKG3.spad" 1069824 1069838 1070899 1070904) (-695 "MAPPKG2.spad" 1069162 1069174 1069814 1069819) (-694 "MAPPKG1.spad" 1067990 1068000 1069152 1069157) (-693 "MAPPAST.spad" 1067305 1067313 1067980 1067985) (-692 "MAPHACK3.spad" 1067117 1067131 1067295 1067300) (-691 "MAPHACK2.spad" 1066886 1066898 1067107 1067112) (-690 "MAPHACK1.spad" 1066530 1066540 1066876 1066881) (-689 "MAGMA.spad" 1064320 1064337 1066520 1066525) (-688 "MACROAST.spad" 1063899 1063907 1064310 1064315) (-687 "M3D.spad" 1061619 1061629 1063277 1063282) (-686 "LZSTAGG.spad" 1058857 1058867 1061609 1061614) (-685 "LZSTAGG.spad" 1056093 1056105 1058847 1058852) (-684 "LWORD.spad" 1052798 1052815 1056083 1056088) (-683 "LSTAST.spad" 1052582 1052590 1052788 1052793) (-682 "LSQM.spad" 1050868 1050882 1051262 1051313) (-681 "LSPP.spad" 1050403 1050420 1050858 1050863) (-680 "LSMP.spad" 1049253 1049281 1050393 1050398) (-679 "LSMP1.spad" 1047071 1047085 1049243 1049248) (-678 "LSAGG.spad" 1046740 1046750 1047039 1047066) (-677 "LSAGG.spad" 1046429 1046441 1046730 1046735) (-676 "LPOLY.spad" 1045383 1045402 1046285 1046354) (-675 "LPEFRAC.spad" 1044654 1044664 1045373 1045378) (-674 "LO.spad" 1044055 1044069 1044588 1044615) (-673 "LOGIC.spad" 1043657 1043665 1044045 1044050) (-672 "LOGIC.spad" 1043257 1043267 1043647 1043652) (-671 "LODOOPS.spad" 1042187 1042199 1043247 1043252) (-670 "LODO.spad" 1041571 1041587 1041867 1041906) (-669 "LODOF.spad" 1040617 1040634 1041528 1041533) (-668 "LODOCAT.spad" 1039283 1039293 1040573 1040612) (-667 "LODOCAT.spad" 1037947 1037959 1039239 1039244) (-666 "LODO2.spad" 1037220 1037232 1037627 1037666) (-665 "LODO1.spad" 1036620 1036630 1036900 1036939) (-664 "LODEEF.spad" 1035422 1035440 1036610 1036615) (-663 "LNAGG.spad" 1031569 1031579 1035412 1035417) (-662 "LNAGG.spad" 1027680 1027692 1031525 1031530) (-661 "LMOPS.spad" 1024448 1024465 1027670 1027675) (-660 "LMODULE.spad" 1024216 1024226 1024438 1024443) (-659 "LMDICT.spad" 1023503 1023513 1023767 1023794) (-658 "LLINSET.spad" 1023061 1023071 1023493 1023498) (-657 "LITERAL.spad" 1022967 1022978 1023051 1023056) (-656 "LIST.spad" 1020702 1020712 1022114 1022141) (-655 "LIST3.spad" 1020013 1020027 1020692 1020697) (-654 "LIST2.spad" 1018715 1018727 1020003 1020008) (-653 "LIST2MAP.spad" 1015618 1015630 1018705 1018710) (-652 "LINSET.spad" 1015397 1015407 1015608 1015613) (-651 "LINEXP.spad" 1014535 1014545 1015387 1015392) (-650 "LINDEP.spad" 1013344 1013356 1014447 1014452) (-649 "LIMITRF.spad" 1011272 1011282 1013334 1013339) (-648 "LIMITPS.spad" 1010175 1010188 1011262 1011267) (-647 "LIE.spad" 1008191 1008203 1009465 1009610) (-646 "LIECAT.spad" 1007667 1007677 1008117 1008186) (-645 "LIECAT.spad" 1007171 1007183 1007623 1007628) (-644 "LIB.spad" 1005384 1005392 1005830 1005845) (-643 "LGROBP.spad" 1002737 1002756 1005374 1005379) (-642 "LF.spad" 1001692 1001708 1002727 1002732) (-641 "LFCAT.spad" 1000751 1000759 1001682 1001687) (-640 "LEXTRIPK.spad" 996254 996269 1000741 1000746) (-639 "LEXP.spad" 994257 994284 996234 996249) (-638 "LETAST.spad" 993956 993964 994247 994252) (-637 "LEADCDET.spad" 992354 992371 993946 993951) (-636 "LAZM3PK.spad" 991058 991080 992344 992349) (-635 "LAUPOL.spad" 989650 989663 990550 990619) (-634 "LAPLACE.spad" 989233 989249 989640 989645) (-633 "LA.spad" 988673 988687 989155 989194) (-632 "LALG.spad" 988449 988459 988653 988668) (-631 "LALG.spad" 988233 988245 988439 988444) (-630 "KVTFROM.spad" 987968 987978 988223 988228) (-629 "KTVLOGIC.spad" 987480 987488 987958 987963) (-628 "KRCFROM.spad" 987218 987228 987470 987475) (-627 "KOVACIC.spad" 985941 985958 987208 987213) (-626 "KONVERT.spad" 985663 985673 985931 985936) (-625 "KOERCE.spad" 985400 985410 985653 985658) (-624 "KERNEL.spad" 984055 984065 985184 985189) (-623 "KERNEL2.spad" 983758 983770 984045 984050) (-622 "KDAGG.spad" 982867 982889 983738 983753) (-621 "KDAGG.spad" 981984 982008 982857 982862) (-620 "KAFILE.spad" 980947 980963 981182 981209) (-619 "JORDAN.spad" 978776 978788 980237 980382) (-618 "JOINAST.spad" 978470 978478 978766 978771) (-617 "JAVACODE.spad" 978336 978344 978460 978465) (-616 "IXAGG.spad" 976469 976493 978326 978331) (-615 "IXAGG.spad" 974457 974483 976316 976321) (-614 "IVECTOR.spad" 973227 973242 973382 973409) (-613 "ITUPLE.spad" 972388 972398 973217 973222) (-612 "ITRIGMNP.spad" 971227 971246 972378 972383) (-611 "ITFUN3.spad" 970733 970747 971217 971222) (-610 "ITFUN2.spad" 970477 970489 970723 970728) (-609 "ITFORM.spad" 969832 969840 970467 970472) (-608 "ITAYLOR.spad" 967826 967841 969696 969793) (-607 "ISUPS.spad" 960263 960278 966800 966897) (-606 "ISUMP.spad" 959764 959780 960253 960258) (-605 "ISTRING.spad" 958852 958865 958933 958960) (-604 "ISAST.spad" 958571 958579 958842 958847) (-603 "IRURPK.spad" 957288 957307 958561 958566) (-602 "IRSN.spad" 955260 955268 957278 957283) (-601 "IRRF2F.spad" 953745 953755 955216 955221) (-600 "IRREDFFX.spad" 953346 953357 953735 953740) (-599 "IROOT.spad" 951685 951695 953336 953341) (-598 "IR.spad" 949486 949500 951540 951567) (-597 "IRFORM.spad" 948810 948818 949476 949481) (-596 "IR2.spad" 947838 947854 948800 948805) (-595 "IR2F.spad" 947044 947060 947828 947833) (-594 "IPRNTPK.spad" 946804 946812 947034 947039) (-593 "IPF.spad" 946369 946381 946609 946702) (-592 "IPADIC.spad" 946130 946156 946295 946364) (-591 "IP4ADDR.spad" 945687 945695 946120 946125) (-590 "IOMODE.spad" 945209 945217 945677 945682) (-589 "IOBFILE.spad" 944570 944578 945199 945204) (-588 "IOBCON.spad" 944435 944443 944560 944565) (-587 "INVLAPLA.spad" 944084 944100 944425 944430) (-586 "INTTR.spad" 937466 937483 944074 944079) (-585 "INTTOOLS.spad" 935221 935237 937040 937045) (-584 "INTSLPE.spad" 934541 934549 935211 935216) (-583 "INTRVL.spad" 934107 934117 934455 934536) (-582 "INTRF.spad" 932531 932545 934097 934102) (-581 "INTRET.spad" 931963 931973 932521 932526) (-580 "INTRAT.spad" 930690 930707 931953 931958) (-579 "INTPM.spad" 929075 929091 930333 930338) (-578 "INTPAF.spad" 926939 926957 929007 929012) (-577 "INTPACK.spad" 917313 917321 926929 926934) (-576 "INT.spad" 916761 916769 917167 917308) (-575 "INTHERTR.spad" 916035 916052 916751 916756) (-574 "INTHERAL.spad" 915705 915729 916025 916030) (-573 "INTHEORY.spad" 912144 912152 915695 915700) (-572 "INTG0.spad" 905877 905895 912076 912081) (-571 "INTFTBL.spad" 899906 899914 905867 905872) (-570 "INTFACT.spad" 898965 898975 899896 899901) (-569 "INTEF.spad" 897350 897366 898955 898960) (-568 "INTDOM.spad" 895973 895981 897276 897345) (-567 "INTDOM.spad" 894658 894668 895963 895968) (-566 "INTCAT.spad" 892917 892927 894572 894653) (-565 "INTBIT.spad" 892424 892432 892907 892912) (-564 "INTALG.spad" 891612 891639 892414 892419) (-563 "INTAF.spad" 891112 891128 891602 891607) (-562 "INTABL.spad" 889630 889661 889793 889820) (-561 "INT8.spad" 889510 889518 889620 889625) (-560 "INT64.spad" 889389 889397 889500 889505) (-559 "INT32.spad" 889268 889276 889379 889384) (-558 "INT16.spad" 889147 889155 889258 889263) (-557 "INS.spad" 886650 886658 889049 889142) (-556 "INS.spad" 884239 884249 886640 886645) (-555 "INPSIGN.spad" 883687 883700 884229 884234) (-554 "INPRODPF.spad" 882783 882802 883677 883682) (-553 "INPRODFF.spad" 881871 881895 882773 882778) (-552 "INNMFACT.spad" 880846 880863 881861 881866) (-551 "INMODGCD.spad" 880334 880364 880836 880841) (-550 "INFSP.spad" 878631 878653 880324 880329) (-549 "INFPROD0.spad" 877711 877730 878621 878626) (-548 "INFORM.spad" 874910 874918 877701 877706) (-547 "INFORM1.spad" 874535 874545 874900 874905) (-546 "INFINITY.spad" 874087 874095 874525 874530) (-545 "INETCLTS.spad" 874064 874072 874077 874082) (-544 "INEP.spad" 872602 872624 874054 874059) (-543 "INDE.spad" 872331 872348 872592 872597) (-542 "INCRMAPS.spad" 871752 871762 872321 872326) (-541 "INBFILE.spad" 870824 870832 871742 871747) (-540 "INBFF.spad" 866618 866629 870814 870819) (-539 "INBCON.spad" 864908 864916 866608 866613) (-538 "INBCON.spad" 863196 863206 864898 864903) (-537 "INAST.spad" 862857 862865 863186 863191) (-536 "IMPTAST.spad" 862565 862573 862847 862852) (-535 "IMATRIX.spad" 861510 861536 862022 862049) (-534 "IMATQF.spad" 860604 860648 861466 861471) (-533 "IMATLIN.spad" 859209 859233 860560 860565) (-532 "ILIST.spad" 857867 857882 858392 858419) (-531 "IIARRAY2.spad" 857255 857293 857474 857501) (-530 "IFF.spad" 856665 856681 856936 857029) (-529 "IFAST.spad" 856279 856287 856655 856660) (-528 "IFARRAY.spad" 853772 853787 855462 855489) (-527 "IFAMON.spad" 853634 853651 853728 853733) (-526 "IEVALAB.spad" 853039 853051 853624 853629) (-525 "IEVALAB.spad" 852442 852456 853029 853034) (-524 "IDPO.spad" 852240 852252 852432 852437) (-523 "IDPOAMS.spad" 851996 852008 852230 852235) (-522 "IDPOAM.spad" 851716 851728 851986 851991) (-521 "IDPC.spad" 850654 850666 851706 851711) (-520 "IDPAM.spad" 850399 850411 850644 850649) (-519 "IDPAG.spad" 850146 850158 850389 850394) (-518 "IDENT.spad" 849796 849804 850136 850141) (-517 "IDECOMP.spad" 847035 847053 849786 849791) (-516 "IDEAL.spad" 841984 842023 846970 846975) (-515 "ICDEN.spad" 841173 841189 841974 841979) (-514 "ICARD.spad" 840364 840372 841163 841168) (-513 "IBPTOOLS.spad" 838971 838988 840354 840359) (-512 "IBITS.spad" 838174 838187 838607 838634) (-511 "IBATOOL.spad" 835151 835170 838164 838169) (-510 "IBACHIN.spad" 833658 833673 835141 835146) (-509 "IARRAY2.spad" 832646 832672 833265 833292) (-508 "IARRAY1.spad" 831691 831706 831829 831856) (-507 "IAN.spad" 829914 829922 831507 831600) (-506 "IALGFACT.spad" 829517 829550 829904 829909) (-505 "HYPCAT.spad" 828941 828949 829507 829512) (-504 "HYPCAT.spad" 828363 828373 828931 828936) (-503 "HOSTNAME.spad" 828171 828179 828353 828358) (-502 "HOMOTOP.spad" 827914 827924 828161 828166) (-501 "HOAGG.spad" 825196 825206 827904 827909) (-500 "HOAGG.spad" 822253 822265 824963 824968) (-499 "HEXADEC.spad" 820355 820363 820720 820813) (-498 "HEUGCD.spad" 819390 819401 820345 820350) (-497 "HELLFDIV.spad" 818980 819004 819380 819385) (-496 "HEAP.spad" 818372 818382 818587 818614) (-495 "HEADAST.spad" 817905 817913 818362 818367) (-494 "HDP.spad" 806707 806723 807084 807183) (-493 "HDMP.spad" 803921 803936 804537 804664) (-492 "HB.spad" 802172 802180 803911 803916) (-491 "HASHTBL.spad" 800642 800673 800853 800880) (-490 "HASAST.spad" 800358 800366 800632 800637) (-489 "HACKPI.spad" 799849 799857 800260 800353) (-488 "GTSET.spad" 798788 798804 799495 799522) (-487 "GSTBL.spad" 797307 797342 797481 797496) (-486 "GSERIES.spad" 794478 794505 795439 795588) (-485 "GROUP.spad" 793751 793759 794458 794473) (-484 "GROUP.spad" 793032 793042 793741 793746) (-483 "GROEBSOL.spad" 791526 791547 793022 793027) (-482 "GRMOD.spad" 790097 790109 791516 791521) (-481 "GRMOD.spad" 788666 788680 790087 790092) (-480 "GRIMAGE.spad" 781555 781563 788656 788661) (-479 "GRDEF.spad" 779934 779942 781545 781550) (-478 "GRAY.spad" 778397 778405 779924 779929) (-477 "GRALG.spad" 777474 777486 778387 778392) (-476 "GRALG.spad" 776549 776563 777464 777469) (-475 "GPOLSET.spad" 776003 776026 776231 776258) (-474 "GOSPER.spad" 775272 775290 775993 775998) (-473 "GMODPOL.spad" 774420 774447 775240 775267) (-472 "GHENSEL.spad" 773503 773517 774410 774415) (-471 "GENUPS.spad" 769796 769809 773493 773498) (-470 "GENUFACT.spad" 769373 769383 769786 769791) (-469 "GENPGCD.spad" 768959 768976 769363 769368) (-468 "GENMFACT.spad" 768411 768430 768949 768954) (-467 "GENEEZ.spad" 766362 766375 768401 768406) (-466 "GDMP.spad" 763418 763435 764192 764319) (-465 "GCNAALG.spad" 757341 757368 763212 763279) (-464 "GCDDOM.spad" 756517 756525 757267 757336) (-463 "GCDDOM.spad" 755755 755765 756507 756512) (-462 "GB.spad" 753281 753319 755711 755716) (-461 "GBINTERN.spad" 749301 749339 753271 753276) (-460 "GBF.spad" 745068 745106 749291 749296) (-459 "GBEUCLID.spad" 742950 742988 745058 745063) (-458 "GAUSSFAC.spad" 742263 742271 742940 742945) (-457 "GALUTIL.spad" 740589 740599 742219 742224) (-456 "GALPOLYU.spad" 739043 739056 740579 740584) (-455 "GALFACTU.spad" 737216 737235 739033 739038) (-454 "GALFACT.spad" 727405 727416 737206 737211) (-453 "FVFUN.spad" 724428 724436 727395 727400) (-452 "FVC.spad" 723480 723488 724418 724423) (-451 "FUNDESC.spad" 723158 723166 723470 723475) (-450 "FUNCTION.spad" 723007 723019 723148 723153) (-449 "FT.spad" 721304 721312 722997 723002) (-448 "FTEM.spad" 720469 720477 721294 721299) (-447 "FSUPFACT.spad" 719369 719388 720405 720410) (-446 "FST.spad" 717455 717463 719359 719364) (-445 "FSRED.spad" 716935 716951 717445 717450) (-444 "FSPRMELT.spad" 715817 715833 716892 716897) (-443 "FSPECF.spad" 713908 713924 715807 715812) (-442 "FS.spad" 708176 708186 713683 713903) (-441 "FS.spad" 702222 702234 707731 707736) (-440 "FSINT.spad" 701882 701898 702212 702217) (-439 "FSERIES.spad" 701073 701085 701702 701801) (-438 "FSCINT.spad" 700390 700406 701063 701068) (-437 "FSAGG.spad" 699507 699517 700346 700385) (-436 "FSAGG.spad" 698586 698598 699427 699432) (-435 "FSAGG2.spad" 697329 697345 698576 698581) (-434 "FS2UPS.spad" 691820 691854 697319 697324) (-433 "FS2.spad" 691467 691483 691810 691815) (-432 "FS2EXPXP.spad" 690592 690615 691457 691462) (-431 "FRUTIL.spad" 689546 689556 690582 690587) (-430 "FR.spad" 683021 683031 688329 688398) (-429 "FRNAALG.spad" 678290 678300 682963 683016) (-428 "FRNAALG.spad" 673571 673583 678246 678251) (-427 "FRNAAF2.spad" 673027 673045 673561 673566) (-426 "FRMOD.spad" 672437 672467 672958 672963) (-425 "FRIDEAL.spad" 671662 671683 672417 672432) (-424 "FRIDEAL2.spad" 671266 671298 671652 671657) (-423 "FRETRCT.spad" 670777 670787 671256 671261) (-422 "FRETRCT.spad" 670154 670166 670635 670640) (-421 "FRAMALG.spad" 668502 668515 670110 670149) (-420 "FRAMALG.spad" 666882 666897 668492 668497) (-419 "FRAC.spad" 663981 663991 664384 664557) (-418 "FRAC2.spad" 663586 663598 663971 663976) (-417 "FR2.spad" 662922 662934 663576 663581) (-416 "FPS.spad" 659737 659745 662812 662917) (-415 "FPS.spad" 656580 656590 659657 659662) (-414 "FPC.spad" 655626 655634 656482 656575) (-413 "FPC.spad" 654758 654768 655616 655621) (-412 "FPATMAB.spad" 654520 654530 654748 654753) (-411 "FPARFRAC.spad" 653007 653024 654510 654515) (-410 "FORTRAN.spad" 651513 651556 652997 653002) (-409 "FORT.spad" 650462 650470 651503 651508) (-408 "FORTFN.spad" 647632 647640 650452 650457) (-407 "FORTCAT.spad" 647316 647324 647622 647627) (-406 "FORMULA.spad" 644790 644798 647306 647311) (-405 "FORMULA1.spad" 644269 644279 644780 644785) (-404 "FORDER.spad" 643960 643984 644259 644264) (-403 "FOP.spad" 643161 643169 643950 643955) (-402 "FNLA.spad" 642585 642607 643129 643156) (-401 "FNCAT.spad" 641180 641188 642575 642580) (-400 "FNAME.spad" 641072 641080 641170 641175) (-399 "FMTC.spad" 640870 640878 640998 641067) (-398 "FMONOID.spad" 640535 640545 640826 640831) (-397 "FMONCAT.spad" 637688 637698 640525 640530) (-396 "FM.spad" 637383 637395 637622 637649) (-395 "FMFUN.spad" 634413 634421 637373 637378) (-394 "FMC.spad" 633465 633473 634403 634408) (-393 "FMCAT.spad" 631133 631151 633433 633460) (-392 "FM1.spad" 630490 630502 631067 631094) (-391 "FLOATRP.spad" 628225 628239 630480 630485) (-390 "FLOAT.spad" 621539 621547 628091 628220) (-389 "FLOATCP.spad" 618970 618984 621529 621534) (-388 "FLINEXP.spad" 618692 618702 618960 618965) (-387 "FLINEXP.spad" 618358 618370 618628 618633) (-386 "FLASORT.spad" 617684 617696 618348 618353) (-385 "FLALG.spad" 615330 615349 617610 617679) (-384 "FLAGG.spad" 612372 612382 615310 615325) (-383 "FLAGG.spad" 609315 609327 612255 612260) (-382 "FLAGG2.spad" 608040 608056 609305 609310) (-381 "FINRALG.spad" 606101 606114 607996 608035) (-380 "FINRALG.spad" 604088 604103 605985 605990) (-379 "FINITE.spad" 603240 603248 604078 604083) (-378 "FINAALG.spad" 592361 592371 603182 603235) (-377 "FINAALG.spad" 581494 581506 592317 592322) (-376 "FILE.spad" 581077 581087 581484 581489) (-375 "FILECAT.spad" 579603 579620 581067 581072) (-374 "FIELD.spad" 579009 579017 579505 579598) (-373 "FIELD.spad" 578501 578511 578999 579004) (-372 "FGROUP.spad" 577148 577158 578481 578496) (-371 "FGLMICPK.spad" 575935 575950 577138 577143) (-370 "FFX.spad" 575310 575325 575651 575744) (-369 "FFSLPE.spad" 574813 574834 575300 575305) (-368 "FFPOLY.spad" 566075 566086 574803 574808) (-367 "FFPOLY2.spad" 565135 565152 566065 566070) (-366 "FFP.spad" 564532 564552 564851 564944) (-365 "FF.spad" 563980 563996 564213 564306) (-364 "FFNBX.spad" 562492 562512 563696 563789) (-363 "FFNBP.spad" 561005 561022 562208 562301) (-362 "FFNB.spad" 559470 559491 560686 560779) (-361 "FFINTBAS.spad" 556984 557003 559460 559465) (-360 "FFIELDC.spad" 554561 554569 556886 556979) (-359 "FFIELDC.spad" 552224 552234 554551 554556) (-358 "FFHOM.spad" 550972 550989 552214 552219) (-357 "FFF.spad" 548407 548418 550962 550967) (-356 "FFCGX.spad" 547254 547274 548123 548216) (-355 "FFCGP.spad" 546143 546163 546970 547063) (-354 "FFCG.spad" 544935 544956 545824 545917) (-353 "FFCAT.spad" 538108 538130 544774 544930) (-352 "FFCAT.spad" 531360 531384 538028 538033) (-351 "FFCAT2.spad" 531107 531147 531350 531355) (-350 "FEXPR.spad" 522824 522870 530863 530902) (-349 "FEVALAB.spad" 522532 522542 522814 522819) (-348 "FEVALAB.spad" 522025 522037 522309 522314) (-347 "FDIV.spad" 521467 521491 522015 522020) (-346 "FDIVCAT.spad" 519531 519555 521457 521462) (-345 "FDIVCAT.spad" 517593 517619 519521 519526) (-344 "FDIV2.spad" 517249 517289 517583 517588) (-343 "FCTRDATA.spad" 516257 516265 517239 517244) (-342 "FCPAK1.spad" 514824 514832 516247 516252) (-341 "FCOMP.spad" 514203 514213 514814 514819) (-340 "FC.spad" 504210 504218 514193 514198) (-339 "FAXF.spad" 497181 497195 504112 504205) (-338 "FAXF.spad" 490204 490220 497137 497142) (-337 "FARRAY.spad" 488354 488364 489387 489414) (-336 "FAMR.spad" 486490 486502 488252 488349) (-335 "FAMR.spad" 484610 484624 486374 486379) (-334 "FAMONOID.spad" 484278 484288 484564 484569) (-333 "FAMONC.spad" 482574 482586 484268 484273) (-332 "FAGROUP.spad" 482198 482208 482470 482497) (-331 "FACUTIL.spad" 480402 480419 482188 482193) (-330 "FACTFUNC.spad" 479596 479606 480392 480397) (-329 "EXPUPXS.spad" 476429 476452 477728 477877) (-328 "EXPRTUBE.spad" 473717 473725 476419 476424) (-327 "EXPRODE.spad" 470877 470893 473707 473712) (-326 "EXPR.spad" 466052 466062 466766 467061) (-325 "EXPR2UPS.spad" 462174 462187 466042 466047) (-324 "EXPR2.spad" 461879 461891 462164 462169) (-323 "EXPEXPAN.spad" 458819 458844 459451 459544) (-322 "EXIT.spad" 458490 458498 458809 458814) (-321 "EXITAST.spad" 458226 458234 458480 458485) (-320 "EVALCYC.spad" 457686 457700 458216 458221) (-319 "EVALAB.spad" 457258 457268 457676 457681) (-318 "EVALAB.spad" 456828 456840 457248 457253) (-317 "EUCDOM.spad" 454402 454410 456754 456823) (-316 "EUCDOM.spad" 452038 452048 454392 454397) (-315 "ESTOOLS.spad" 443884 443892 452028 452033) (-314 "ESTOOLS2.spad" 443487 443501 443874 443879) (-313 "ESTOOLS1.spad" 443172 443183 443477 443482) (-312 "ES.spad" 435987 435995 443162 443167) (-311 "ES.spad" 428708 428718 435885 435890) (-310 "ESCONT.spad" 425501 425509 428698 428703) (-309 "ESCONT1.spad" 425250 425262 425491 425496) (-308 "ES2.spad" 424755 424771 425240 425245) (-307 "ES1.spad" 424325 424341 424745 424750) (-306 "ERROR.spad" 421652 421660 424315 424320) (-305 "EQTBL.spad" 420124 420146 420333 420360) (-304 "EQ.spad" 414929 414939 417716 417828) (-303 "EQ2.spad" 414647 414659 414919 414924) (-302 "EP.spad" 410973 410983 414637 414642) (-301 "ENV.spad" 409651 409659 410963 410968) (-300 "ENTIRER.spad" 409319 409327 409595 409646) (-299 "EMR.spad" 408607 408648 409245 409314) (-298 "ELTAGG.spad" 406861 406880 408597 408602) (-297 "ELTAGG.spad" 405079 405100 406817 406822) (-296 "ELTAB.spad" 404554 404567 405069 405074) (-295 "ELFUTS.spad" 403941 403960 404544 404549) (-294 "ELEMFUN.spad" 403630 403638 403931 403936) (-293 "ELEMFUN.spad" 403317 403327 403620 403625) (-292 "ELAGG.spad" 401288 401298 403297 403312) (-291 "ELAGG.spad" 399196 399208 401207 401212) (-290 "ELABOR.spad" 398542 398550 399186 399191) (-289 "ELABEXPR.spad" 397474 397482 398532 398537) (-288 "EFUPXS.spad" 394250 394280 397430 397435) (-287 "EFULS.spad" 391086 391109 394206 394211) (-286 "EFSTRUC.spad" 389101 389117 391076 391081) (-285 "EF.spad" 383877 383893 389091 389096) (-284 "EAB.spad" 382153 382161 383867 383872) (-283 "E04UCFA.spad" 381689 381697 382143 382148) (-282 "E04NAFA.spad" 381266 381274 381679 381684) (-281 "E04MBFA.spad" 380846 380854 381256 381261) (-280 "E04JAFA.spad" 380382 380390 380836 380841) (-279 "E04GCFA.spad" 379918 379926 380372 380377) (-278 "E04FDFA.spad" 379454 379462 379908 379913) (-277 "E04DGFA.spad" 378990 378998 379444 379449) (-276 "E04AGNT.spad" 374840 374848 378980 378985) (-275 "DVARCAT.spad" 371730 371740 374830 374835) (-274 "DVARCAT.spad" 368618 368630 371720 371725) (-273 "DSMP.spad" 366085 366099 366390 366517) (-272 "DSEXT.spad" 365387 365397 366075 366080) (-271 "DSEXT.spad" 364596 364608 365286 365291) (-270 "DROPT.spad" 358555 358563 364586 364591) (-269 "DROPT1.spad" 358220 358230 358545 358550) (-268 "DROPT0.spad" 353077 353085 358210 358215) (-267 "DRAWPT.spad" 351250 351258 353067 353072) (-266 "DRAW.spad" 344126 344139 351240 351245) (-265 "DRAWHACK.spad" 343434 343444 344116 344121) (-264 "DRAWCX.spad" 340904 340912 343424 343429) (-263 "DRAWCURV.spad" 340451 340466 340894 340899) (-262 "DRAWCFUN.spad" 329983 329991 340441 340446) (-261 "DQAGG.spad" 328161 328171 329951 329978) (-260 "DPOLCAT.spad" 323510 323526 328029 328156) (-259 "DPOLCAT.spad" 318945 318963 323466 323471) (-258 "DPMO.spad" 311403 311419 311541 311754) (-257 "DPMM.spad" 303874 303892 303999 304212) (-256 "DOMTMPLT.spad" 303645 303653 303864 303869) (-255 "DOMCTOR.spad" 303400 303408 303635 303640) (-254 "DOMAIN.spad" 302487 302495 303390 303395) (-253 "DMP.spad" 299747 299762 300317 300444) (-252 "DLP.spad" 299099 299109 299737 299742) (-251 "DLIST.spad" 297678 297688 298282 298309) (-250 "DLAGG.spad" 296095 296105 297668 297673) (-249 "DIVRING.spad" 295637 295645 296039 296090) (-248 "DIVRING.spad" 295223 295233 295627 295632) (-247 "DISPLAY.spad" 293413 293421 295213 295218) (-246 "DIRPROD.spad" 281952 281968 282592 282691) (-245 "DIRPROD2.spad" 280770 280788 281942 281947) (-244 "DIRPCAT.spad" 279963 279979 280666 280765) (-243 "DIRPCAT.spad" 278783 278801 279488 279493) (-242 "DIOSP.spad" 277608 277616 278773 278778) (-241 "DIOPS.spad" 276604 276614 277588 277603) (-240 "DIOPS.spad" 275574 275586 276560 276565) (-239 "DIFRING.spad" 275412 275420 275554 275569) (-238 "DIFFSPC.spad" 274991 274999 275402 275407) (-237 "DIFFSPC.spad" 274568 274578 274981 274986) (-236 "DIFFMOD.spad" 274057 274067 274536 274563) (-235 "DIFFDOM.spad" 273222 273233 274047 274052) (-234 "DIFFDOM.spad" 272385 272398 273212 273217) (-233 "DIFEXT.spad" 271556 271566 272365 272380) (-232 "DIFEXT.spad" 270644 270656 271455 271460) (-231 "DIAGG.spad" 270274 270284 270624 270639) (-230 "DIAGG.spad" 269912 269924 270264 270269) (-229 "DHMATRIX.spad" 268224 268234 269369 269396) (-228 "DFSFUN.spad" 261864 261872 268214 268219) (-227 "DFLOAT.spad" 258595 258603 261754 261859) (-226 "DFINTTLS.spad" 256826 256842 258585 258590) (-225 "DERHAM.spad" 254740 254772 256806 256821) (-224 "DEQUEUE.spad" 254064 254074 254347 254374) (-223 "DEGRED.spad" 253681 253695 254054 254059) (-222 "DEFINTRF.spad" 251218 251228 253671 253676) (-221 "DEFINTEF.spad" 249728 249744 251208 251213) (-220 "DEFAST.spad" 249096 249104 249718 249723) (-219 "DECIMAL.spad" 247202 247210 247563 247656) (-218 "DDFACT.spad" 245015 245032 247192 247197) (-217 "DBLRESP.spad" 244615 244639 245005 245010) (-216 "DBASE.spad" 243279 243289 244605 244610) (-215 "DATAARY.spad" 242741 242754 243269 243274) (-214 "D03FAFA.spad" 242569 242577 242731 242736) (-213 "D03EEFA.spad" 242389 242397 242559 242564) (-212 "D03AGNT.spad" 241475 241483 242379 242384) (-211 "D02EJFA.spad" 240937 240945 241465 241470) (-210 "D02CJFA.spad" 240415 240423 240927 240932) (-209 "D02BHFA.spad" 239905 239913 240405 240410) (-208 "D02BBFA.spad" 239395 239403 239895 239900) (-207 "D02AGNT.spad" 234209 234217 239385 239390) (-206 "D01WGTS.spad" 232528 232536 234199 234204) (-205 "D01TRNS.spad" 232505 232513 232518 232523) (-204 "D01GBFA.spad" 232027 232035 232495 232500) (-203 "D01FCFA.spad" 231549 231557 232017 232022) (-202 "D01ASFA.spad" 231017 231025 231539 231544) (-201 "D01AQFA.spad" 230463 230471 231007 231012) (-200 "D01APFA.spad" 229887 229895 230453 230458) (-199 "D01ANFA.spad" 229381 229389 229877 229882) (-198 "D01AMFA.spad" 228891 228899 229371 229376) (-197 "D01ALFA.spad" 228431 228439 228881 228886) (-196 "D01AKFA.spad" 227957 227965 228421 228426) (-195 "D01AJFA.spad" 227480 227488 227947 227952) (-194 "D01AGNT.spad" 223547 223555 227470 227475) (-193 "CYCLOTOM.spad" 223053 223061 223537 223542) (-192 "CYCLES.spad" 219845 219853 223043 223048) (-191 "CVMP.spad" 219262 219272 219835 219840) (-190 "CTRIGMNP.spad" 217762 217778 219252 219257) (-189 "CTOR.spad" 217453 217461 217752 217757) (-188 "CTORKIND.spad" 217056 217064 217443 217448) (-187 "CTORCAT.spad" 216305 216313 217046 217051) (-186 "CTORCAT.spad" 215552 215562 216295 216300) (-185 "CTORCALL.spad" 215141 215151 215542 215547) (-184 "CSTTOOLS.spad" 214386 214399 215131 215136) (-183 "CRFP.spad" 208110 208123 214376 214381) (-182 "CRCEAST.spad" 207830 207838 208100 208105) (-181 "CRAPACK.spad" 206881 206891 207820 207825) (-180 "CPMATCH.spad" 206385 206400 206806 206811) (-179 "CPIMA.spad" 206090 206109 206375 206380) (-178 "COORDSYS.spad" 201099 201109 206080 206085) (-177 "CONTOUR.spad" 200510 200518 201089 201094) (-176 "CONTFRAC.spad" 196260 196270 200412 200505) (-175 "CONDUIT.spad" 196018 196026 196250 196255) (-174 "COMRING.spad" 195692 195700 195956 196013) (-173 "COMPPROP.spad" 195210 195218 195682 195687) (-172 "COMPLPAT.spad" 194977 194992 195200 195205) (-171 "COMPLEX.spad" 189114 189124 189358 189619) (-170 "COMPLEX2.spad" 188829 188841 189104 189109) (-169 "COMPILER.spad" 188378 188386 188819 188824) (-168 "COMPFACT.spad" 187980 187994 188368 188373) (-167 "COMPCAT.spad" 186052 186062 187714 187975) (-166 "COMPCAT.spad" 183852 183864 185516 185521) (-165 "COMMUPC.spad" 183600 183618 183842 183847) (-164 "COMMONOP.spad" 183133 183141 183590 183595) (-163 "COMM.spad" 182944 182952 183123 183128) (-162 "COMMAAST.spad" 182707 182715 182934 182939) (-161 "COMBOPC.spad" 181622 181630 182697 182702) (-160 "COMBINAT.spad" 180389 180399 181612 181617) (-159 "COMBF.spad" 177771 177787 180379 180384) (-158 "COLOR.spad" 176608 176616 177761 177766) (-157 "COLONAST.spad" 176274 176282 176598 176603) (-156 "CMPLXRT.spad" 175985 176002 176264 176269) (-155 "CLLCTAST.spad" 175647 175655 175975 175980) (-154 "CLIP.spad" 171755 171763 175637 175642) (-153 "CLIF.spad" 170410 170426 171711 171750) (-152 "CLAGG.spad" 166915 166925 170400 170405) (-151 "CLAGG.spad" 163291 163303 166778 166783) (-150 "CINTSLPE.spad" 162622 162635 163281 163286) (-149 "CHVAR.spad" 160760 160782 162612 162617) (-148 "CHARZ.spad" 160675 160683 160740 160755) (-147 "CHARPOL.spad" 160185 160195 160665 160670) (-146 "CHARNZ.spad" 159938 159946 160165 160180) (-145 "CHAR.spad" 157812 157820 159928 159933) (-144 "CFCAT.spad" 157140 157148 157802 157807) (-143 "CDEN.spad" 156336 156350 157130 157135) (-142 "CCLASS.spad" 154485 154493 155747 155786) (-141 "CATEGORY.spad" 153527 153535 154475 154480) (-140 "CATCTOR.spad" 153418 153426 153517 153522) (-139 "CATAST.spad" 153036 153044 153408 153413) (-138 "CASEAST.spad" 152750 152758 153026 153031) (-137 "CARTEN.spad" 148117 148141 152740 152745) (-136 "CARTEN2.spad" 147507 147534 148107 148112) (-135 "CARD.spad" 144802 144810 147481 147502) (-134 "CAPSLAST.spad" 144576 144584 144792 144797) (-133 "CACHSET.spad" 144200 144208 144566 144571) (-132 "CABMON.spad" 143755 143763 144190 144195) (-131 "BYTEORD.spad" 143430 143438 143745 143750) (-130 "BYTE.spad" 142857 142865 143420 143425) (-129 "BYTEBUF.spad" 140716 140724 142026 142053) (-128 "BTREE.spad" 139789 139799 140323 140350) (-127 "BTOURN.spad" 138794 138804 139396 139423) (-126 "BTCAT.spad" 138186 138196 138762 138789) (-125 "BTCAT.spad" 137598 137610 138176 138181) (-124 "BTAGG.spad" 137064 137072 137566 137593) (-123 "BTAGG.spad" 136550 136560 137054 137059) (-122 "BSTREE.spad" 135291 135301 136157 136184) (-121 "BRILL.spad" 133488 133499 135281 135286) (-120 "BRAGG.spad" 132428 132438 133478 133483) (-119 "BRAGG.spad" 131332 131344 132384 132389) (-118 "BPADICRT.spad" 129313 129325 129568 129661) (-117 "BPADIC.spad" 128977 128989 129239 129308) (-116 "BOUNDZRO.spad" 128633 128650 128967 128972) (-115 "BOP.spad" 123815 123823 128623 128628) (-114 "BOP1.spad" 121281 121291 123805 123810) (-113 "BOOLE.spad" 120931 120939 121271 121276) (-112 "BOOLEAN.spad" 120369 120377 120921 120926) (-111 "BMODULE.spad" 120081 120093 120337 120364) (-110 "BITS.spad" 119502 119510 119717 119744) (-109 "BINDING.spad" 118915 118923 119492 119497) (-108 "BINARY.spad" 117026 117034 117382 117475) (-107 "BGAGG.spad" 116231 116241 117006 117021) (-106 "BGAGG.spad" 115444 115456 116221 116226) (-105 "BFUNCT.spad" 115008 115016 115424 115439) (-104 "BEZOUT.spad" 114148 114175 114958 114963) (-103 "BBTREE.spad" 110993 111003 113755 113782) (-102 "BASTYPE.spad" 110665 110673 110983 110988) (-101 "BASTYPE.spad" 110335 110345 110655 110660) (-100 "BALFACT.spad" 109794 109807 110325 110330) (-99 "AUTOMOR.spad" 109245 109254 109774 109789) (-98 "ATTREG.spad" 105968 105975 108997 109240) (-97 "ATTRBUT.spad" 101991 101998 105948 105963) (-96 "ATTRAST.spad" 101708 101715 101981 101986) (-95 "ATRIG.spad" 101178 101185 101698 101703) (-94 "ATRIG.spad" 100646 100655 101168 101173) (-93 "ASTCAT.spad" 100550 100557 100636 100641) (-92 "ASTCAT.spad" 100452 100461 100540 100545) (-91 "ASTACK.spad" 99791 99800 100059 100086) (-90 "ASSOCEQ.spad" 98617 98628 99747 99752) (-89 "ASP9.spad" 97698 97711 98607 98612) (-88 "ASP8.spad" 96741 96754 97688 97693) (-87 "ASP80.spad" 96063 96076 96731 96736) (-86 "ASP7.spad" 95223 95236 96053 96058) (-85 "ASP78.spad" 94674 94687 95213 95218) (-84 "ASP77.spad" 94043 94056 94664 94669) (-83 "ASP74.spad" 93135 93148 94033 94038) (-82 "ASP73.spad" 92406 92419 93125 93130) (-81 "ASP6.spad" 91273 91286 92396 92401) (-80 "ASP55.spad" 89782 89795 91263 91268) (-79 "ASP50.spad" 87599 87612 89772 89777) (-78 "ASP4.spad" 86894 86907 87589 87594) (-77 "ASP49.spad" 85893 85906 86884 86889) (-76 "ASP42.spad" 84300 84339 85883 85888) (-75 "ASP41.spad" 82879 82918 84290 84295) (-74 "ASP35.spad" 81867 81880 82869 82874) (-73 "ASP34.spad" 81168 81181 81857 81862) (-72 "ASP33.spad" 80728 80741 81158 81163) (-71 "ASP31.spad" 79868 79881 80718 80723) (-70 "ASP30.spad" 78760 78773 79858 79863) (-69 "ASP29.spad" 78226 78239 78750 78755) (-68 "ASP28.spad" 69499 69512 78216 78221) (-67 "ASP27.spad" 68396 68409 69489 69494) (-66 "ASP24.spad" 67483 67496 68386 68391) (-65 "ASP20.spad" 66947 66960 67473 67478) (-64 "ASP1.spad" 66328 66341 66937 66942) (-63 "ASP19.spad" 61014 61027 66318 66323) (-62 "ASP12.spad" 60428 60441 61004 61009) (-61 "ASP10.spad" 59699 59712 60418 60423) (-60 "ARRAY2.spad" 59059 59068 59306 59333) (-59 "ARRAY1.spad" 57896 57905 58242 58269) (-58 "ARRAY12.spad" 56609 56620 57886 57891) (-57 "ARR2CAT.spad" 52383 52404 56577 56604) (-56 "ARR2CAT.spad" 48177 48200 52373 52378) (-55 "ARITY.spad" 47549 47556 48167 48172) (-54 "APPRULE.spad" 46809 46831 47539 47544) (-53 "APPLYORE.spad" 46428 46441 46799 46804) (-52 "ANY.spad" 45287 45294 46418 46423) (-51 "ANY1.spad" 44358 44367 45277 45282) (-50 "ANTISYM.spad" 42803 42819 44338 44353) (-49 "ANON.spad" 42496 42503 42793 42798) (-48 "AN.spad" 40805 40812 42312 42405) (-47 "AMR.spad" 38990 39001 40703 40800) (-46 "AMR.spad" 37012 37025 38727 38732) (-45 "ALIST.spad" 34424 34445 34774 34801) (-44 "ALGSC.spad" 33559 33585 34296 34349) (-43 "ALGPKG.spad" 29342 29353 33515 33520) (-42 "ALGMFACT.spad" 28535 28549 29332 29337) (-41 "ALGMANIP.spad" 26009 26024 28368 28373) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index cb2d55e6..cb4ded99 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1140 +1,1140 @@
-(198303 . 3485764572)
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-((((-574)) . T) (($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T))
+(198303 . 3485769910)
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+((((-576)) . T) (($) -2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-574)) . T))
-((($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))))
+((((-576)) . T))
+((($ $) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))))
((($) . T))
(((|#1|) . T))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#2|) . T))
-((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-(|has| |#1| (-923))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((($) . T) (((-417 (-574))) . T))
+((($) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(|has| |#1| (-925))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-145)) . T))
-((((-546)) . T) (((-1175)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
-(((|#1|) . T))
-((((-227)) . T) (((-872)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
-((($ $) . T) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T))
-(-2833 (|has| |#1| (-830)) (|has| |#1| (-860)))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-((((-872)) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(|has| |#1| (-858))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-324 |#1|)) . T) (((-574)) . T) (($) . T))
+((((-548)) . T) (((-1177)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+(((|#1|) . T))
+((((-227)) . T) (((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((($ $) . T) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T))
+(-2838 (|has| |#1| (-832)) (|has| |#1| (-862)))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-860))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-326 |#1|)) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-574)) . T) (((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
-((((-872)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
+((((-576)) . T) (((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-874)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
(((|#4|) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
-((((-872)) . T))
-((((-872)) |has| (-1110 |#1|) (-1116)))
-(-2833 (|has| |#1| (-239)) (|has| |#1| (-294 $ $)) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-912 (-1193))))
-((((-872)) . T) (((-1198)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-874)) . T))
+((((-874)) |has| (-1112 |#1|) (-1118)))
+(-2838 (|has| |#1| (-239)) (|has| |#1| (-296 $ $)) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-914 (-1195))))
+((((-874)) . T) (((-1200)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1198)) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(((|#2| (-492 (-2877 |#1|) (-781))) . T))
-((((-1193)) |has| (-417 |#2|) (-912 (-1193))))
-(((|#1| (-541 (-1193))) . T))
-(((#0=(-880 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-((((-1175)) . T) (((-972 (-130))) . T) (((-872)) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#4| (-377))
-(|has| |#3| (-377))
-(((|#1|) . T))
-((((-1193)) . T))
-((((-516)) . T))
-((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-1200)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+(-2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(((|#2| (-494 (-2882 |#1|) (-783))) . T))
+((((-1195)) |has| (-419 |#2|) (-914 (-1195))))
+(((|#1| (-543 (-1195))) . T))
+(((#0=(-882 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-1177)) . T) (((-974 (-130))) . T) (((-874)) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#4| (-379))
+(|has| |#3| (-379))
+(((|#1|) . T))
+((((-1195)) . T))
+((((-518)) . T))
+((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-566))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-((((-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) . T))
+(|has| |#1| (-568))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) . T))
((($) . T))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1193)) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-1193)) . T))
-((((-574)) . T) (($) . T))
-((((-591 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1195)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-1195)) . T))
+((((-576)) . T) (($) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T) (((-574)) . T) (($) . T))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
-(((|#2|) . T) (((-574)) . T) ((|#6|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+(|has| |#1| (-1118))
+(((|#1|) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+(((|#2|) . T) (((-576)) . T) ((|#6|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
((($) . T))
(((|#2|) . T))
((($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
((($ $) . T))
((($) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-377))
+(|has| |#1| (-379))
(((|#1|) . T))
-((((-872)) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-574)) . T))
-((((-872)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-576)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
((($) |has| |#1| (-239)))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#1| (-566))
-(((|#1|) . T) (((-574)) . T) (($) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(|has| |#1| (-858))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(|has| |#1| (-568))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(|has| |#1| (-1118))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(|has| |#1| (-1118))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(|has| |#1| (-860))
(((|#1| |#1|) . T))
-((($) . T) (((-417 (-574))) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1|) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-574) (-130)) . T))
-((((-872)) . T))
-((($) . T) (((-417 (-574))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-576) (-130)) . T))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) . T))
((((-130)) . T))
-(|has| |#4| (-803))
-(|has| |#4| (-803))
-(|has| |#3| (-803))
-(|has| |#3| (-803))
+(|has| |#4| (-805))
+(|has| |#4| (-805))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
(((|#1| |#2|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-1198)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1200)) . T))
(((|#1| |#2|) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) (((-1193) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1193) |#2|))))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-((((-574)) . T) (((-417 (-574))) . T))
-(((|#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) . T))
-((((-574) |#1|) . T))
-((((-574)) . T))
-((((-574)) . T))
-((((-924 |#1|)) . T))
-(((|#1| (-541 |#2|)) . T))
-((((-574)) . T))
-((((-574)) . T))
-(((|#1|) . T))
-(|has| |#2| (-1065))
-(((|#1| (-781)) . T))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
+(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|))))
+(|has| |#1| (-1118))
+(|has| |#1| (-1118))
+((((-576)) . T) (((-419 (-576))) . T))
+(((|#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) . T))
+((((-576) |#1|) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-926 |#1|)) . T))
+(((|#1| (-543 |#2|)) . T))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) . T))
+(|has| |#2| (-1067))
+(((|#1| (-783)) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1175) |#1|) . T))
-((((-1251 (-574)) $) . T) (((-574) (-130)) . T))
+((((-1177) |#1|) . T))
+((((-1253 (-576)) $) . T) (((-576) (-130)) . T))
(((|#1|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(((|#3| (-781)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(((|#3| (-783)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) (((-417 (-574))) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-((((-417 (-574))) . T) (($) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-419 (-576))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1116))
-((((-417 (-574))) . T) (((-574)) . T))
-((((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#2|) . T))
-((((-1193) |#2|) |has| |#2| (-524 (-1193) |#2|)) ((|#2| |#2|) |has| |#2| (-317 |#2|)))
-((((-417 (-574))) . T) (((-574)) . T))
-((((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))
+(|has| |#1| (-1118))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#2|) . T))
+((((-1195) |#2|) |has| |#2| (-526 (-1195) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|)))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))
(((|#1|) . T) (($) . T))
-((((-574)) . T))
-((((-574)) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-((((-574)) . T))
-((((-574)) . T))
-((((-417 (-574))) . T) (($) . T))
-(((#0=(-709) (-1189 #0#)) . T))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T))
-(|has| |#2| (-372))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-((($) |has| (-417 |#2|) (-239)))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((((-576)) . T))
+((((-576)) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-576)) . T))
+((((-576)) . T))
+((((-419 (-576))) . T) (($) . T))
+(((#0=(-711) (-1191 #0#)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+(|has| |#2| (-374))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+((($) |has| (-419 |#2|) (-239)))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-872)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1175) |#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1177) |#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
(((|#3| |#3|) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#1|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-574) |#1|) . T))
-((((-872)) . T))
-((((-171 (-227))) |has| |#1| (-1038)) (((-171 (-388))) |has| |#1| (-1038)) (((-546)) |has| |#1| (-624 (-546))) (((-1189 |#1|)) . T) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-(|has| |#1| (-372))
-((((-872)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576) |#1|) . T))
+((((-874)) . T))
+((((-171 (-227))) |has| |#1| (-1040)) (((-171 (-390))) |has| |#1| (-1040)) (((-548)) |has| |#1| (-626 (-548))) (((-1191 |#1|)) . T) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(|has| |#1| (-374))
+((((-874)) . T))
((($) . T))
((($) . T))
((((-130)) . T))
-(-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))
-(-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))
+(-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))
((($) |has| |#2| (-239)))
-(|has| |#4| (-1065))
-(|has| |#3| (-1065))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-(|has| |#1| (-566))
-((((-574)) -2833 (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (|has| |#4| (-1065))) ((|#4|) |has| |#4| (-1116)) (((-417 (-574))) -12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))
-((((-574)) -2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065))) ((|#3|) |has| |#3| (-1116)) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#1| (-566))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#1|) . T))
-(|has| |#1| (-566))
-((((-874 |#1|)) . T))
-(|has| |#1| (-566))
-(|has| |#1| (-566))
+(|has| |#4| (-1067))
+(|has| |#3| (-1067))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+(|has| |#1| (-568))
+((((-576)) -2838 (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (|has| |#4| (-1067))) ((|#4|) |has| |#4| (-1118)) (((-419 (-576))) -12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))
+((((-576)) -2838 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067))) ((|#3|) |has| |#3| (-1118)) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(|has| |#1| (-568))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#1|) . T))
+(|has| |#1| (-568))
+((((-876 |#1|)) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
(((|#2|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-((((-709)) . T))
-(((|#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1104 (-1193))) . T))
-(-12 (|has| |#1| (-1018)) (|has| |#1| (-1219)))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-(-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))
-((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
-(((|#4| |#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))))
-(((|#3| |#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+((((-711)) . T))
+(((|#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1106 (-1195))) . T))
+(-12 (|has| |#1| (-1020)) (|has| |#1| (-1221)))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
+(((|#4| |#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067))))
+(((|#3| |#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))))
(((|#2|) . T))
(((|#1|) . T))
-((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
-((((-872)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) . T) (((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
-(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))))
-((((-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
-((((-654 |#1|)) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-417 $) (-417 $)) |has| |#2| (-566)) (($ $) . T) ((|#2| |#2|) . T))
-((($ (-1193)) |has| |#2| (-912 (-1193))))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-923))
-((((-1175) (-52)) . T))
-((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T))
-((((-546)) . T) (((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
+((((-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) . T) (((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+(((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))))
+((((-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-656 |#1|)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T))
+((($ (-1195)) |has| |#2| (-914 (-1195))))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-925))
+((((-1177) (-52)) . T))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T))
+((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
(((|#1|) |has| |#1| (-174)))
-(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
-((((-872)) . T))
-((((-872)) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-(|has| |#1| (-860))
-(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-1116))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) . T) (((-1198)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-1198)) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-874)) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+(|has| |#1| (-862))
+(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1118))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) . T) (((-1200)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-1200)) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(|has| |#1| (-239))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1| (-541 (-828 (-1193)))) . T))
-(((|#1| (-987)) . T))
-((((-574)) . T) ((|#2|) . T))
-((((-1193)) . T))
-(((#0=(-880 |#1|) $) |has| #0# (-294 #0# #0#)))
-((((-574) |#4|) . T))
-((((-574) |#3|) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| (-543 (-830 (-1195)))) . T))
+(((|#1| (-989)) . T))
+((((-576)) . T) ((|#2|) . T))
+((((-1195)) . T))
+(((#0=(-882 |#1|) $) |has| #0# (-296 #0# #0#)))
+((((-576) |#4|) . T))
+((((-576) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1168))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-(|has| (-1270 |#1| |#2| |#3| |#4|) (-146))
-(|has| (-1270 |#1| |#2| |#3| |#4|) (-148))
+(|has| |#1| (-1170))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+(|has| (-1272 |#1| |#2| |#3| |#4|) (-146))
+(|has| (-1272 |#1| |#2| |#3| |#4|) (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1116))
-((((-1175) |#1|) . T))
+(|has| |#1| (-1118))
+((((-1177) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-1141 |#1| (-1193))) . T) (((-574)) . T) (((-828 (-1193))) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-1193)) . T))
-(|has| |#2| (-377))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-1143 |#1| (-1195))) . T) (((-576)) . T) (((-830 (-1195))) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-1195)) . T))
+(|has| |#2| (-379))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1065)))
-((((-872)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-(((|#1|) . T))
-((((-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))))
-((((-872)) . T))
-((((-574) |#1|) . T))
-((((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))))
+(((|#2|) |has| |#2| (-1067)))
+((((-874)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+(((|#1|) . T))
+((((-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((#0=(-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) #0#) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))))
+((((-874)) . T))
+((((-576) |#1|) . T))
+((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))))
((($) . T))
-((((-872)) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
+((((-874)) . T))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
-((((-872)) . T))
-(|has| (-1269 |#2| |#3| |#4|) (-148))
-(|has| (-1269 |#2| |#3| |#4|) (-146))
-(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+(|has| (-1271 |#2| |#3| |#4|) (-148))
+(|has| (-1271 |#2| |#3| |#4|) (-146))
+(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
(((|#1|) . T))
-(|has| |#1| (-1116))
-((((-872)) . T))
+(|has| |#1| (-1118))
+((((-874)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
(((|#1|) . T))
-((((-574) |#1|) . T))
+((((-576) |#1|) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
-((((-872)) |has| |#1| (-1116)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((((-874)) |has| |#1| (-1118)))
((($) |has| |#1| (-239)))
-(-2833 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-924 |#1|)) . T))
-((((-417 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-574) |#1|)))
-((((-417 (-574))) . T) (($) . T))
+(-2838 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-926 |#1|)) . T))
+((((-419 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-576) |#1|)))
+((((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-(|has| |#1| (-372))
-(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-372))
-(|has| |#1| (-15 * (|#1| (-781) |#1|)))
-((((-574)) . T))
-((((-574)) . T))
-((((-1158 |#2| (-417 (-966 |#1|)))) . T) (((-417 (-966 |#1|))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(|has| |#1| (-374))
+(-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+((((-576)) . T))
+((((-576)) . T))
+((((-1160 |#2| (-419 (-968 |#1|)))) . T) (((-419 (-968 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
(((|#1|) . T))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-((((-872)) . T))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+((((-874)) . T))
(((|#2|) . T))
-(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((($) |has| |#1| (-566)) (((-574)) . T))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
-((((-1276 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1280 |#2|)) . T) (((-1276 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T))
-(((|#1|) . T))
-((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566)))
-(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($ $) |has| |#1| (-566)) ((|#1| |#1|) . T))
-((($ (-1193)) |has| (-417 |#2|) (-912 (-1193))))
-(((#0=(-709) (-1189 #0#)) . T))
-((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T) (((-1284 |#4|)) . T))
-((((-872)) . T) (((-1284 |#3|)) . T))
-((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) . T))
-((((-872)) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
+(-2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)) (((-576)) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+((((-1278 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1282 |#2|)) . T) (((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T))
+(((|#1|) . T))
+((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
+(((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568)))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T))
+((($ (-1195)) |has| (-419 |#2|) (-914 (-1195))))
+(((#0=(-711) (-1191 #0#)) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T) (((-1286 |#4|)) . T))
+((((-874)) . T) (((-1286 |#3|)) . T))
+((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
((($) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1276 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-(((|#3|) |has| |#3| (-1065)))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-(|has| (-1110 |#1|) (-1116))
-(((|#2| (-829 |#1|)) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1278 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#3|) |has| |#3| (-1067)))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(|has| (-1112 |#1|) (-1118))
+(((|#2| (-831 |#1|)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
(((|#2|) . T) ((|#6|) . T))
-(|has| |#1| (-372))
-((((-574)) . T) ((|#2|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+(|has| |#1| (-374))
+((((-576)) . T) ((|#2|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((#0=(-1098) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-872)) . T))
-((((-924 |#1|)) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((#0=(-1100) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-874)) . T))
+((((-926 |#1|)) . T))
((((-145)) . T))
((((-145)) . T))
((((-246 |#1| |#2|) |#2|) . T))
-((((-872)) . T))
-(((|#3|) |has| |#3| (-1116)) (((-574)) -12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+((((-874)) . T))
+(((|#3|) |has| |#3| (-1118)) (((-576)) -12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#1|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-(|has| |#1| (-372))
-((((-1198)) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+(|has| |#1| (-374))
+((((-1200)) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
((($) . T))
-((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
-(|has| |#2| (-830))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-858))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
+((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(|has| |#2| (-832))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-860))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
(((|#1| |#2|) . T))
-((((-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))))
-((((-1175) |#1|) . T))
-(((|#1| |#2| |#3| (-541 |#3|)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-872)) . T))
-((((-417 (-574))) . T))
-(((|#1|) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-417 (-574))) . T))
-(|has| |#1| (-377))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-574)) . T))
-((((-574)) . T))
-(((|#1|) . T) (((-574)) . T))
-(-2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
-((((-1193) #0=(-880 |#1|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
-(((|#1|) . T))
-((((-574) |#4|) . T))
-((((-574) |#3|) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-(|has| |#2| (-1065))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-((((-417 (-574))) . T) (((-574)) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
+((((-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))))
+((((-1177) |#1|) . T))
+(((|#1| |#2| |#3| (-543 |#3|)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-874)) . T))
+((((-419 (-576))) . T))
+(((|#1|) . T))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-419 (-576))) . T))
+(|has| |#1| (-379))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) . T) (((-576)) . T))
+(-2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
+((((-1195) #0=(-882 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+(((|#1|) . T))
+((((-576) |#4|) . T))
+((((-576) |#3|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#2| (-1067))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(((|#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-574)) . T))
-((((-574)) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-574)) -2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) |has| |#2| (-1116)) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((($) . T) (((-417 (-574))) . T))
-(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-(((|#1|) |has| |#1| (-566)))
-((((-574) |#4|) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-574) |#3|) . T))
-((((-872)) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((((-872)) . T))
-(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) (|has| |#1| (-358)))
-((((-574) |#1|) . T))
-(((|#1|) . T))
-((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) . T))
+((((-576)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) -2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((($) . T) (((-419 (-576))) . T))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(((|#1|) |has| |#1| (-568)))
+((((-576) |#4|) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-576) |#3|) . T))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((((-874)) . T))
+(-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) (|has| |#1| (-360)))
+((((-576) |#1|) . T))
+(((|#1|) . T))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1193) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1195) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
+((($) -2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(((|#2| |#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
((((-145)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-377)) (|has| |#2| (-377)))
-((((-872)) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
+(-12 (|has| |#1| (-379)) (|has| |#2| (-379)))
+((((-874)) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
(((|#1|) . T))
-((((-872)) . T))
-(|has| |#1| (-1116))
+((((-874)) . T))
+(|has| |#1| (-1118))
(|has| $ (-148))
-((((-1198)) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-(|has| |#1| (-372))
-(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-372))
-(|has| |#1| (-15 * (|#1| (-781) |#1|)))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-872)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(((|#2| (-541 (-874 |#1|))) . T))
-((((-872)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-591 |#1|)) . T))
+((((-1200)) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+((($) -2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+(|has| |#1| (-374))
+(-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(-2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(((|#2| (-543 (-876 |#1|))) . T))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-593 |#1|)) . T))
((($) . T))
-((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
(((|#1|) . T) (($) . T))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
-((((-1191 |#1| |#2| |#3|)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1280 |#2|)) . T) (((-1191 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-1193 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1282 |#2|)) . T) (((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
(((|#4|) . T))
(((|#3|) . T))
-((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
(|has| |#2| (-239))
(((|#1|) . T))
-((((-874 |#1|)) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) ((|#3|) . T))
+((((-876 |#1|)) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) ((|#3|) . T))
((($) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T))
-((((-574) |#2|) . T))
-((((-872)) . T))
-((($) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T))
+((((-576) |#2|) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((#1=(-1191 |#1| |#2| |#3|) #1#) |has| |#1| (-372)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
-(((|#2|) |has| |#2| (-1065)))
-(|has| |#1| (-1116))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1193 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-1067)))
+(|has| |#1| (-1118))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)) (($) . T))
(((|#1|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-872)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($ (-874 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($ (-876 |#1|)) . T))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
((($ |#2|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T))
((($) . T))
-(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1104 (-1193))) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
-(((|#2|) |has| |#1| (-372)))
-((((-574) |#1|) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
-((((-872)) . T))
-((((-417 |#2|) |#3|) . T))
-(((|#1| (-417 (-574))) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-872)) . T) (((-1198)) . T))
+(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1106 (-1195))) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
+(((|#2|) |has| |#1| (-374)))
+((((-576) |#1|) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+((((-874)) . T))
+((((-419 |#2|) |#3|) . T))
+(((|#1| (-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T) (((-1200)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1198)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#2| |#3| (-874 |#1|)) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
-(((|#1|) . T))
-(((|#1| (-541 |#2|) |#2|) . T))
-(((|#1| (-781) (-1098)) . T))
-((((-417 (-574))) |has| |#2| (-372)) (($) . T))
-(((|#1| (-541 (-1104 (-1193))) (-1104 (-1193))) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
+((((-1200)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#2| |#3| (-876 |#1|)) . T))
+((((-1195)) |has| |#2| (-914 (-1195))))
+(((|#1|) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+(((|#1| (-783) (-1100)) . T))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(((|#1| (-543 (-1106 (-1195))) (-1106 (-1195))) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
(((|#2|) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
(((|#1|) . T))
(((|#2|) . T))
-((((-1015 |#1|)) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))
-(|has| |#2| (-1065))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-904 |#1|)) . T) (((-829 |#1|)) . T))
-((((-829 (-1193))) . T))
+((((-1017 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2838 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))
+(|has| |#2| (-1067))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-906 |#1|)) . T) (((-831 |#1|)) . T))
+((((-831 (-1195))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-654 (-935))) . T) (((-872)) . T))
-((((-417 (-574))) . T) (((-872)) . T))
-((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-656 (-937))) . T) (((-874)) . T))
+((((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(|has| |#1| (-239))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((($ $) . T) (((-574) |#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((($ $) . T) (((-576) |#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1276 |#1| |#2| |#3|) $) -12 (|has| (-1276 |#1| |#2| |#3|) (-294 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T))
-((($ $) . T) (((-417 (-574)) |#1|) . T))
-((((-781) |#1|) . T) (($ $) . T))
-(((|#1|) . T))
-((($ (-1193)) . T))
-((((-1156 |#1| |#2|)) |has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-(((|#1|) . T))
-((((-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193))))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1278 |#1| |#2| |#3|) $) -12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+((((-783) |#1|) . T) (($ $) . T))
+(((|#1|) . T))
+((($ (-1195)) . T))
+((((-1158 |#1| |#2|)) |has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+(((|#1|) . T))
+((((-1195)) -2838 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195))))))
(((|#1| |#2|) . T))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
(((|#2|) . T))
-((((-872)) -2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T) (($) . T))
+((((-874)) -2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-574)) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-(|has| |#1| (-1116))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-574) (-145)) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
-((((-574)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-574)) . T))
-((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
-((($) . T) (((-574)) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
-(((|#2|) |has| |#1| (-372)))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+((((-576)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+(|has| |#1| (-1118))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-576) (-145)) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
+((((-576)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-576)) . T))
+((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#2|) |has| |#1| (-374)))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1198)) . T))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1| (-541 #0=(-1193)) #0#) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1200)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1| (-543 #0=(-1195)) #0#) . T))
(((|#1|) . T) (($) . T))
-((((-574)) . T))
-(((#0=(-417 (-966 |#1|)) #0#) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
+((((-576)) . T))
+(((#0=(-419 (-968 |#1|)) #0#) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(|has| |#1| (-1118))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(|has| |#1| (-1118))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(|has| (-417 |#2|) (-239))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-417 (-966 |#1|))) . T))
+(|has| (-419 |#2|) (-239))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-419 (-968 |#1|))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1193)) |has| |#2| (-912 (-1193))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-872)) . T))
-((((-872)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1065)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))
+((((-1195)) |has| |#2| (-914 (-1195))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-874)) . T))
+((((-874)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1067)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))
(((|#1| |#2|) . T))
-(|has| |#3| (-1065))
-(|has| |#3| (-803))
-(|has| |#3| (-803))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
+(|has| |#3| (-1067))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
(((|#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1| (-1173 |#1|)) |has| |#1| (-858)))
-((((-574) |#2|) . T))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-1168)))
-((((-417 (-574))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-1116))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-1175 |#1|)) |has| |#1| (-860)))
+((((-576) |#2|) . T))
+(|has| |#1| (-1118))
+(((|#1|) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-1170)))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-1118))
(((|#2|) . T))
-((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
-(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372))))
-((((-872)) . T))
-(((|#1|) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-923)))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+(((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374))))
+((((-874)) . T))
+(((|#1|) . T))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-925)))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
(((|#2|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923)))
-((($ $) . T) ((#0=(-1193) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-828 (-1193)) |#1|) . T) ((#1# $) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
-((((-574) |#2|) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))
-((((-574) |#1|) . T))
-(|has| (-417 |#2|) (-148))
-(|has| (-417 |#2|) (-146))
-(((|#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))))
-(|has| |#1| (-38 (-417 (-574))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-(|has| |#1| (-566))
-(|has| |#1| (-566))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((((-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#2| (-1168))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-1233)) . T) (((-872)) . T) (((-1198)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925)))
+((($ $) . T) ((#0=(-1195) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-830 (-1195)) |#1|) . T) ((#1# $) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
+((((-576) |#2|) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))
+((((-576) |#1|) . T))
+(|has| (-419 |#2|) (-148))
+(|has| (-419 |#2|) (-146))
+(((|#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-400) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#2| (-1170))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-1235)) . T) (((-874)) . T) (((-1200)) . T))
((((-117 |#1|)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-(((|#1|) . T))
-((((-398) (-1175)) . T))
-(|has| |#1| (-566))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+(((|#1|) . T))
+((((-400) (-1177)) . T))
+(|has| |#1| (-568))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
-((((-781) (-1198)) . T))
-((((-872)) . T))
-((((-829 |#1|)) . T))
+((((-783) (-1200)) . T))
+((((-874)) . T))
+((((-831 |#1|)) . T))
((($) . T))
(((|#2|) |has| |#2| (-174)))
-((((-1193) (-52)) . T))
+((((-1195) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-566))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-568))
(((|#1|) |has| |#1| (-174)))
-((((-654 |#1|)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#2|) |has| |#2| (-317 |#2|)))
-(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1189 |#1|)) . T))
+((((-656 |#1|)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#2|) |has| |#2| (-319 |#2|)))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1191 |#1|)) . T))
(|has| $ (-148))
(((|#2|) . T))
((($) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-(|has| |#2| (-377))
-(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+(|has| |#2| (-379))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
(((|#1| |#2|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((((-872)) . T))
-((((-1191 |#1| |#2| |#3|) $) -12 (|has| (-1191 |#1| |#2| |#3|) (-294 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))) (($ $) . T) (((-574) |#1|) . T))
-((($ $) . T) (((-417 (-574)) |#1|) . T))
-((((-781) |#1|) . T) (($ $) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((#0=(-1276 |#1| |#2| |#3|) #0#) -12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1193) #0#) -12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))
-(-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-574)) . T) (($) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) . T) (((-574)) . T) ((|#2|) . T))
-((((-574)) . T) (($) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-((((-417 (-574))) . T) (((-574)) . T))
-((((-574) (-145)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-874)) . T))
+((((-1193 |#1| |#2| |#3|) $) -12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+((((-783) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((#0=(-1278 |#1| |#2| |#3|) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+(-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-576)) . T) (($) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576) (-145)) . T))
((((-145)) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
((((-112)) . T))
-((((-546)) |has| |#1| (-624 (-546))) (((-227)) . #0=(|has| |#1| (-1038))) (((-388)) . #0#))
-((((-872)) . T))
-(((|#1|) . T))
-((((-1198)) . T))
-(|has| |#1| (-830))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#2|) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-(|has| |#1| (-566))
-(|has| |#1| (-860))
-((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
-(|has| |#1| (-923))
-(((|#1|) . T))
-(|has| |#1| (-1116))
-((((-872)) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1| (-1284 |#1|) (-1284 |#1|)) . T))
-((((-574) (-145)) . T) (((-1251 (-574)) $) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1040))) (((-390)) . #0#))
+((((-874)) . T))
+(((|#1|) . T))
+((((-1200)) . T))
+(|has| |#1| (-832))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+(|has| |#1| (-568))
+(|has| |#1| (-862))
+((($) . T) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
+(|has| |#1| (-925))
+(((|#1|) . T))
+(|has| |#1| (-1118))
+((((-874)) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-1286 |#1|) (-1286 |#1|)) . T))
+((((-576) (-145)) . T) (((-1253 (-576)) $) . T))
((($) . T))
-(|has| |#4| (-1065))
-(|has| |#3| (-1065))
-((((-1198)) . T) (((-872)) . T))
-((((-1198)) . T))
-((((-872)) . T))
-(|has| |#1| (-1116))
-(((|#1| (-987)) . T))
+(|has| |#4| (-1067))
+(|has| |#3| (-1067))
+((((-1200)) . T) (((-874)) . T))
+((((-1200)) . T))
+((((-874)) . T))
+(|has| |#1| (-1118))
+(((|#1| (-989)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
-(-12 (|has| |#1| (-483)) (|has| |#2| (-483)))
-(|has| |#2| (-1065))
-((($) . T) (((-574)) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T))
-(((|#1|) . T))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(-12 (|has| |#1| (-485)) (|has| |#2| (-485)))
+(|has| |#2| (-1067))
+((($) . T) (((-576)) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
-(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
-(-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-574)) . T))
+(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-872)) . T))
+((((-874)) . T))
(|has| |#1| (-239))
-(|has| |#1| (-358))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
-(|has| |#1| (-838))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-(|has| |#1| (-1116))
-(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((($) |has| |#1| (-566)))
-(((|#2|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1116)))
-(((|#3|) |has| |#3| (-1116)))
-(|has| |#3| (-377))
-((($) |has| |#1| (-566)) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-((((-872)) . T))
-((((-872)) . T))
+(|has| |#1| (-360))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(|has| |#1| (-840))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+(|has| |#1| (-1118))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
+(((|#2|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1118)))
+(((|#3|) |has| |#3| (-1118)))
+(|has| |#3| (-379))
+((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1| |#1|) |has| |#1| (-174)))
-(|has| |#2| (-372))
+(|has| |#2| (-374))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((((-417 (-574))) . T) (((-574)) . T))
+((((-419 (-576))) . T) (((-576)) . T))
((($) |has| |#2| (-239)))
-((($ (-874 |#1|)) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ |#3|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-((($) . T) (((-574)) . T))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
+((($ (-876 |#1|)) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ |#3|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((($) . T) (((-576)) . T))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
((((-145)) . T))
(((|#1|) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
((((-145)) . T))
((((-145)) . T))
-((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#) ((|#2|) . T) (((-574)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T))
(((|#1| |#2| |#3|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
(((|#1|) |has| |#1| (-174)))
(|has| $ (-148))
(|has| $ (-148))
-((((-1198)) . T))
+((((-1200)) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1116))
-((((-872)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1065)) (|has| |#1| (-1128)))
-((($ $) |has| |#1| (-294 $ $)) ((|#1| $) |has| |#1| (-294 |#1| |#1|)))
-(((|#1| (-417 (-574))) . T))
-(((|#1|) . T))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-1193)) . T))
-(|has| |#1| (-566))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(|has| |#1| (-566))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-872)) . T))
+(|has| |#1| (-1118))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1067)) (|has| |#1| (-1130)))
+((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+(((|#1| (-419 (-576))) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-1195)) . T))
+(|has| |#1| (-568))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-574) (-417 (-966 |#1|))) . T))
+((((-576) (-419 (-968 |#1|))) . T))
(((|#2|) . T) (($) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(((|#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) . T))
-(((|#1| (-541 |#3|) |#3|) . T))
+(((|#2| (-246 (-2882 |#1|) (-783)) (-876 |#1|)) . T))
+(((|#1| (-543 |#3|) |#3|) . T))
(|has| |#1| (-146))
-(((#0=(-417 (-574)) #0#) |has| |#2| (-372)) (($ $) . T))
-((((-880 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T))
+((((-882 |#1|)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-872)) . T))
-((((-417 (-574))) |has| |#2| (-372)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-358)) (|has| |#1| (-377)))
-((((-1158 |#2| |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-360)) (|has| |#1| (-379)))
+((((-1160 |#2| |#1|)) . T) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#3| (-803))
-(|has| |#3| (-803))
-((((-872)) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-874)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-709)) . T))
-(|has| |#2| (-1065))
-(|has| |#1| (-566))
+((((-711)) . T))
+(|has| |#2| (-1067))
+(|has| |#1| (-568))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -1144,618 +1144,618 @@
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-1193) (-52)) . T))
-((((-1020 10)) . T) (((-417 (-574))) . T) (((-872)) . T))
-((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-1195) (-52)) . T))
+((((-1022 10)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(((|#1|) . T))
-((((-1020 16)) . T) (((-417 (-574))) . T) (((-872)) . T))
-((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
-(((|#1| (-574)) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-1022 16)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+(((|#1| (-576)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-((((-1193)) |has| |#2| (-912 (-1193))) (((-1098)) . T))
+((((-1195)) |has| |#2| (-914 (-1195))) (((-1100)) . T))
(((|#1|) . T))
-(((|#3|) . T) (((-622 $)) . T))
-(((|#1| (-417 (-574))) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(((|#3|) . T) (((-624 $)) . T))
+(((|#1| (-419 (-576))) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-574)) -2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) |has| |#2| (-1116)) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-576)) -2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-(((#0=(-1191 |#1| |#2| |#3|) #0#) -12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))) (((-1193) #0#) -12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))
-((((-872)) . T))
-((((-872)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(((#0=(-1193 |#1| |#2| |#3|) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))))
-((((-872)) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))))
+((((-874)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-1193) (-52)) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
+((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-1195) (-52)) . T))
+((((-1195)) |has| |#1| (-914 (-1195))))
(((|#3|) . T))
-((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-838))
-((($) . T) (((-574)) . T) ((|#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(|has| (-1110 |#1|) (-1116))
-(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372))))
-((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
-((((-574)) . T))
-((((-1198)) . T))
-((((-781)) . T))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-840))
+((($) . T) (((-576)) . T) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| (-1112 |#1|) (-1118))
+(((|#2| |#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374))))
+((((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
+((((-576)) . T))
+((((-1200)) . T))
+((((-783)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-566))
-((((-574)) . T))
+(|has| |#1| (-568))
+((((-576)) . T))
(((|#2|) . T))
-((((-872)) . T))
-(((|#1| (-417 (-574)) (-1098)) . T))
+((((-874)) . T))
+(((|#1| (-419 (-576)) (-1100)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#1| (-566))
-((((-574)) . T))
+(|has| |#1| (-568))
+((((-576)) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
-((((-417 (-574))) . T) (($) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-((($) . T) (((-417 (-574))) . T))
-((((-1198)) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-((((-574)) . T))
+((((-419 (-576))) . T) (($) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((($) . T) (((-419 (-576))) . T))
+((((-1200)) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-576)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((($ (-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193))))))
-((((-574)) . T))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-903 (-574))) . T) (((-903 (-388))) . T) (((-546)) . T) (((-1193)) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
+((($ (-1195)) -2838 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195))))))
+((((-576)) . T))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-905 (-576))) . T) (((-905 (-390))) . T) (((-548)) . T) (((-1195)) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
((($) . T))
(((|#1|) . T))
-((((-872)) . T))
-(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
+((((-874)) . T))
+(-2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-((((-880 |#1|)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
-(-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))
-(|has| |#2| (-1168))
-(((#0=(-52)) . T) (((-2 (|:| -3667 (-1193)) (|:| -1916 #0#))) . T))
+((($) -2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-882 |#1|)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))
+(|has| |#2| (-1170))
+(((#0=(-52)) . T) (((-2 (|:| -3672 (-1195)) (|:| -1918 #0#))) . T))
(((|#1| |#2|) . T))
-(|has| |#3| (-1065))
-(((|#1| (-574) (-1098)) . T))
-((((-874 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| (-417 (-574)) (-1098)) . T))
-((((-1193)) . T))
-((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((($) |has| (-417 |#2|) (-239)))
-((((-574) |#2|) . T))
-((($ (-1193)) |has| |#2| (-912 (-1193))))
+(|has| |#3| (-1067))
+(((|#1| (-576) (-1100)) . T))
+((((-876 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| (-419 (-576)) (-1100)) . T))
+((((-1195)) . T))
+((($) -2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((($) |has| (-419 |#2|) (-239)))
+((((-576) |#2|) . T))
+((($ (-1195)) |has| |#2| (-914 (-1195))))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-377))
+(|has| |#2| (-379))
(((|#1| |#1|) . T))
-((((-872)) . T))
-((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
-(-12 (|has| |#1| (-377)) (|has| |#2| (-377)))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-(((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-(|has| |#1| (-358))
-((((-574)) -2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065))) ((|#3|) |has| |#3| (-1116)) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))
-(((|#1|) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((((-874)) . T))
+((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(-12 (|has| |#1| (-379)) (|has| |#2| (-379)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(|has| |#1| (-360))
+((((-576)) -2838 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067))) ((|#3|) |has| |#3| (-1118)) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))
+(((|#1|) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#4|) . T))
-(((|#4|) . T) (((-872)) . T))
-(((|#3|) . T) ((|#2|) . T) (((-574)) . T) ((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1065))) (($) |has| |#4| (-1065)))
-(((|#2|) . T) (((-574)) . T) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))) (($) |has| |#3| (-1065)))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-(|has| |#1| (-566))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
+(((|#4|) . T) (((-874)) . T))
+(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1067))) (($) |has| |#4| (-1067)))
+(((|#2|) . T) (((-576)) . T) ((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+(|has| |#1| (-568))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
(((|#1| |#2|) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
-((((-417 (-574))) . T) (((-574)) . T))
-((((-574)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
((($) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-(((|#3| |#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))))
-(|has| |#1| (-1038))
-((((-872)) . T))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))))
-((((-574) (-112)) . T))
-((((-1198)) . T))
-(((|#1|) |has| |#1| (-317 |#1|)))
-((((-1198)) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-1193) $) |has| |#1| (-524 (-1193) $)) (($ $) |has| |#1| (-317 $)) ((|#1| |#1|) |has| |#1| (-317 |#1|)) (((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))
+((((-874)) . T))
+(((|#1|) . T))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(((|#3| |#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))))
+(|has| |#1| (-1040))
+((((-874)) . T))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))))
+((((-576) (-112)) . T))
+((((-1200)) . T))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-1200)) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-1195) $) |has| |#1| (-526 (-1195) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((($) . T))
-((((-398) |#1|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-(|has| |#1| (-1116))
-(((|#2|) . T) (((-872)) . T))
-((((-872)) . T))
+((((-400) |#1|) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-1118))
+(((|#2|) . T) (((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
-((((-924 |#1|)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
+((((-926 |#1|)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
(((|#1| |#2|) . T))
((($) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
(((|#1| |#1|) . T))
-(((#0=(-880 |#1|)) |has| #0# (-317 #0#)))
-((((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-1054 (-417 (-574))))) ((|#1|) . T))
+(((#0=(-882 |#1|)) |has| #0# (-319 #0#)))
+((((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1056 (-419 (-576))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-803))
-(|has| |#2| (-803))
-(((|#1|) . T))
-(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
-(-12 (|has| |#1| (-803)) (|has| |#2| (-803)))
-(|has| |#2| (-1065))
-((($) . T) (((-574)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(((|#1|) . T))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(|has| |#2| (-1067))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1219))
-(((#0=(-574) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1065)))
-(((|#3|) |has| |#3| (-1065)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(|has| |#1| (-372))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1| |#1|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-574) |#3|) . T))
-((((-872)) . T))
+(|has| |#1| (-1221))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1067)))
+(((|#3|) |has| |#3| (-1067)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(|has| |#1| (-374))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-576) |#3|) . T))
+((((-874)) . T))
(((|#2|) . T))
-((((-546)) |has| |#3| (-624 (-546))))
-((((-699 |#3|)) . T) (((-872)) . T))
+((((-548)) |has| |#3| (-626 (-548))))
+((((-701 |#3|)) . T) (((-874)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
((($) . T))
-(((#0=(-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))))
+(((#0=(-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1116)))
-((((-872)) -2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T))
+(((|#2|) |has| |#2| (-1118)))
+((((-874)) -2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T))
((($) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-1175) (-52)) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1177) (-52)) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) |has| |#2| (-174)) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-((((-872)) . T))
+((($) -2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#2|) . T))
-((($) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T))
-((($) . T) (((-574)) . T))
-((((-574) (-145)) . T))
-((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#1| |#2|) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-872)) . T))
-((((-924 |#1|)) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-858))
-((($) -2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-(|has| |#1| (-372))
+((($) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T))
+((($) . T) (((-576)) . T))
+((((-576) (-145)) . T))
+((((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((|#1| |#2|) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-874)) . T))
+((((-926 |#1|)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-860))
+((($) -2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(|has| |#1| (-374))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-858))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(|has| |#1| (-858))
-((((-516)) . T))
-(((|#1| (-1193)) . T))
-(((|#1| (-1284 |#1|) (-1284 |#1|)) . T))
-((((-872)) . T) (((-1198)) . T))
+(|has| |#1| (-860))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(|has| |#1| (-860))
+((((-518)) . T))
+(((|#1| (-1195)) . T))
+(((|#1| (-1286 |#1|) (-1286 |#1|)) . T))
+((((-874)) . T) (((-1200)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1198)) . T))
-(|has| |#1| (-1116))
-(((|#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) . T))
-((((-417 (-966 |#1|))) . T))
-((((-546)) . T))
-((((-872)) . T))
+((((-1200)) . T))
+(|has| |#1| (-1118))
+(((|#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) . T))
+((((-419 (-968 |#1|))) . T))
+((((-548)) . T))
+((((-874)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) (((-1251 (-574)) $) . T) ((|#1| |#2|) . T))
+((((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) (((-1253 (-576)) $) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#2| (-427 |#1|))
-(|has| |#2| (-427 |#1|))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-546)) |has| |#1| (-624 (-546))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
-((((-872)) . T))
-((((-880 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-516)) . T))
-((((-516)) . T))
-((((-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065))))
-((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
-(|has| |#1| (-566))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
+(|has| |#2| (-429 |#1|))
+(|has| |#2| (-429 |#1|))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-518)) . T))
+((((-518)) . T))
+((((-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067))))
+((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
+(|has| |#1| (-568))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
(|has| |#1| (-239))
-((((-880 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#2| (-1065))
-((((-1175) |#1|) . T))
-(|has| |#1| (-1168))
-((((-972 |#1|)) . T))
-(((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-574))) (((-574)) |has| |#1| (-1054 (-574))) (((-1193)) |has| |#1| (-1054 (-1193))) ((|#1|) . T))
+((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#2| (-1067))
+((((-1177) |#1|) . T))
+(|has| |#1| (-1170))
+((((-974 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-576))) (((-576)) |has| |#1| (-1056 (-576))) (((-1195)) |has| |#1| (-1056 (-1195))) ((|#1|) . T))
((($) . T))
((($) . T))
-((((-574) |#2|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-574)) . T))
-((((-654 |#4|)) . T) (((-872)) . T))
-((((-546)) |has| |#4| (-624 (-546))))
-((((-546)) |has| |#4| (-624 (-546))))
-((((-872)) . T) (((-654 |#4|)) . T))
-((($) |has| |#1| (-858)))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
-((((-574)) -2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065))) ((|#2|) |has| |#2| (-1116)) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
-(((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
-((((-654 |#4|)) . T) (((-872)) . T))
-((((-546)) |has| |#4| (-624 (-546))))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
-(((|#1|) . T))
-((((-1193)) |has| (-417 |#2|) (-912 (-1193))))
+((((-576) |#2|) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+((((-656 |#4|)) . T) (((-874)) . T))
+((((-548)) |has| |#4| (-626 (-548))))
+((((-548)) |has| |#4| (-626 (-548))))
+((((-874)) . T) (((-656 |#4|)) . T))
+((($) |has| |#1| (-860)))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+((((-576)) -2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067))) ((|#2|) |has| |#2| (-1118)) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
+(((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+((((-656 |#4|)) . T) (((-874)) . T))
+((((-548)) |has| |#4| (-626 (-548))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+(((|#1|) . T))
+((((-1195)) |has| (-419 |#2|) (-914 (-1195))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
((($) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
((($) |has| |#1| (-239)))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
((($) . T))
((($) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
((($) . T))
((($) . T))
-((((-872)) -2833 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-623 (-872))) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116))) (((-1284 |#3|)) . T))
+((((-874)) -2838 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-874))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118))) (((-1286 |#3|)) . T))
(((|#2|) . T))
-((((-574) |#2|) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#2| |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
-(((|#2|) . T) (((-574)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((|#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-1175) (-1193) (-574) (-227) (-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-872)) . T))
-((((-574) (-112)) . T))
-(((|#1|) . T))
-((((-872)) . T))
+((((-576) |#2|) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#2| |#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
+(((|#2|) . T) (((-576)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((|#2|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1177) (-1195) (-576) (-227) (-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+((((-576) (-112)) . T))
+(((|#1|) . T))
+((((-874)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
((((-112)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((($) . T) (((-417 (-574))) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((($) . T) (((-419 (-576))) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))))
(|has| $ (-148))
-((((-417 |#2|)) . T))
-((((-417 (-574))) |has| #0=(-417 |#2|) (-1054 (-417 (-574)))) (((-574)) |has| #0# (-1054 (-574))) ((#0#) . T))
+((((-419 |#2|)) . T))
+((((-419 (-576))) |has| #0=(-419 |#2|) (-1056 (-419 (-576)))) (((-576)) |has| #0# (-1056 (-576))) ((#0#) . T))
(((|#2| |#2|) . T))
-((((-872)) . T))
+((((-874)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#2| (-239))
-((((-872)) . T) (((-1198)) . T))
+((((-874)) . T) (((-1200)) . T))
(((|#2|) . T))
-((((-1198)) . T))
-((((-1193) (-52)) . T))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-904 |#1|)) . T) ((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
+((((-1200)) . T))
+((((-1195) (-52)) . T))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-906 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
(((|#1| |#1|) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
+((((-1195)) |has| |#2| (-914 (-1195))))
((((-130)) . T))
-(-2833 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-912 (-1193))))
-((((-574) (-112)) . T) (((-1251 (-574)) $) . T))
-(|has| |#1| (-566))
+(-2838 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-914 (-1195))))
+((((-576) (-112)) . T) (((-1253 (-576)) $) . T))
+(|has| |#1| (-568))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-574)) . T) (((-829 (-1193))) . T))
+(((|#1|) . T) (((-576)) . T) (((-831 (-1195))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
(((|#3|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-(((|#1|) . T))
-((((-1020 2)) . T) (((-417 (-574))) . T) (((-872)) . T))
-((((-546)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-1015 |#1|)) . T) ((|#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-828 (-1193))) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1189 |#1|)) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+(((|#1|) . T))
+((((-1022 2)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1017 |#1|)) . T) ((|#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-830 (-1195))) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1191 |#1|)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-860))
-(((|#1|) . T) (((-574)) . T) (($) . T))
+(|has| |#1| (-862))
+(((|#1|) . T) (((-576)) . T) (($) . T))
(((|#2|) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-574) |#2|) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-872)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-576) |#2|) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-874)) . T))
(((|#2|) . T))
-((((-574) |#3|) . T))
+((((-576) |#3|) . T))
(((|#2|) . T))
-((((-872)) . T))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
-(-2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))
-(|has| |#1| (-38 (-417 (-574))))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
+((((-874)) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
+(-2838 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#2| (-372))
-(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#2| (-374))
+(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
(((|#2|) . T))
-(|has| |#1| (-1116))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
+(|has| |#1| (-1118))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
(((|#1|) |has| |#1| (-174)))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-1175) (-52)) . T))
-(((|#1|) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($ (-1193)) |has| |#2| (-912 (-1193))) (($ (-1098)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1177) (-52)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($ (-1195)) |has| |#2| (-914 (-1195))) (($ (-1100)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#2|) . T))
(((|#1|) . T))
-((((-574)) -2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)))
-((((-574) |#3|) . T))
-((((-574) (-145)) . T))
+((((-576)) -2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)))
+((((-576) |#3|) . T))
+((((-576) (-145)) . T))
((((-145)) . T))
-((((-872)) . T))
-((((-1198)) . T))
+((((-874)) . T))
+((((-1200)) . T))
((((-112)) . T))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#1| (-146))
((($) . T))
-(|has| |#1| (-566))
-((((-574)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+(|has| |#1| (-568))
+((((-576)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#1|) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((($ (-1195)) |has| |#1| (-914 (-1195))))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
((((-145)) . T))
-((((-872)) . T))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
-((((-1193) (-52)) . T) (((-1175) (-52)) . T))
+((((-874)) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-1195) (-52)) . T) (((-1177) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#1| |#2|) . T))
(|has| |#2| (-239))
-((((-1251 (-574)) $) . T) (((-574) (-145)) . T))
-(((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(|has| |#1| (-860))
-(((|#2| (-781) (-1098)) . T))
+((((-1253 (-576)) $) . T) (((-576) (-145)) . T))
+(((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-862))
+(((|#2| (-783) (-1100)) . T))
(((|#1| |#2|) . T))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))
-(|has| |#1| (-801))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-((((-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))
+(|has| |#1| (-803))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-1195)) -2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
(((|#1|) |has| |#1| (-174)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2833 (|has| |#1| (-148)) (-12 (|has| |#1| (-372)) (|has| |#2| (-148))))
-(-2833 (|has| |#1| (-146)) (-12 (|has| |#1| (-372)) (|has| |#2| (-146))))
+(-2838 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148))))
+(-2838 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146))))
(((|#4|) . T))
(|has| |#1| (-146))
-((((-1175) |#1|) . T))
+((((-1177) |#1|) . T))
(|has| |#1| (-148))
(((|#1|) . T))
-((((-574)) . T))
-((((-872)) . T))
+((((-576)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-((((-872)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#3|) . T))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) (((-574)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-(((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))) (((-972 |#1|)) . T))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-972 |#1|)) . T))
-(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736))))
-(|has| |#2| (-372))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+(((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))) (((-974 |#1|)) . T))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-974 |#1|)) . T))
+(((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738))))
+(|has| |#2| (-374))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-736)) (|has| |#4| (-1065))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))))
-(((|#2|) |has| |#2| (-1065)))
-((((-1175) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
-(((|#2| (-904 |#1|)) . T))
+(((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1067))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))))
+(((|#2|) |has| |#2| (-1067)))
+((((-1177) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
+(((|#2| (-906 |#1|)) . T))
((($) . T))
-((($ (-874 |#1|)) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T))
-((((-398) (-1175)) . T))
-((($ (-1193)) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) -2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-623 (-872))) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116))) (((-1284 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 #0#))) . T))
-(((|#1|) . T))
-((((-872)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
+((($ (-876 |#1|)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((((-400) (-1177)) . T))
+((($ (-1195)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118))) (((-1286 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3672 (-1177)) (|:| -1918 #0#))) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
((((-145)) . T))
(|has| |#2| (-146))
-((((-574)) . T))
+((((-576)) . T))
(|has| |#2| (-148))
-(|has| |#1| (-483))
-(-2833 (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
-(|has| |#1| (-372))
-((((-872)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((($) |has| |#1| (-566)))
-((((-1198)) . T))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-((((-872)) . T))
+(|has| |#1| (-485))
+(-2838 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
+(|has| |#1| (-374))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
+((((-1200)) . T))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+((((-874)) . T))
(((|#2|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2|) . T) (((-574)) . T) (((-829 |#1|)) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
+((((-1195)) |has| |#1| (-914 (-1195))))
(((|#2| |#2|) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-872)) . T))
-(|has| |#1| (-1116))
-(((|#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) . T))
-((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
-(((|#1| (-541 (-1193)) (-1193)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-1118))
+(((|#2| (-494 (-2882 |#1|) (-783)) (-876 |#1|)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
+(((|#1| (-543 (-1195)) (-1195)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1769,2370 +1769,2370 @@
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-1193) (-52)) . T))
-((((-417 (-574)) |#1|) . T) (($ $) . T))
-(((|#1| (-574)) . T))
-((((-924 |#1|)) . T))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-(|has| |#1| (-860))
-(|has| |#1| (-860))
-((((-574) |#2|) . T))
-((($) . T) (((-574)) . T) ((|#1|) . T))
-((((-872)) . T))
-((((-574)) . T))
-(|has| |#1| (-860))
-((((-699 |#2|)) . T) (((-872)) . T))
-((((-1276 |#1| |#2| |#3|)) -12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-1195) (-52)) . T))
+((((-419 (-576)) |#1|) . T) (($ $) . T))
+(((|#1| (-576)) . T))
+((((-926 |#1|)) . T))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))) (($) -2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+(|has| |#1| (-862))
+(|has| |#1| (-862))
+((((-576) |#2|) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T))
+((((-874)) . T))
+((((-576)) . T))
+(|has| |#1| (-862))
+((((-701 |#2|)) . T) (((-874)) . T))
+((((-1278 |#1| |#2| |#3|)) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
(|has| |#1| (-239))
(((|#1| |#2|) . T))
-((((-417 (-966 |#1|))) . T))
-((((-987)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
+((((-419 (-968 |#1|))) . T))
+((((-989)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
(((|#1|) |has| |#1| (-174)))
-(-2833 (|has| |#1| (-239)) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-912 (-1193))))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372))))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-923)))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+(-2838 (|has| |#1| (-239)) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-914 (-1195))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374))))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(-2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-925)))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
((($ |#2|) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((((-574) |#2|) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372))))
-(|has| |#1| (-358))
-(((|#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
-(((|#2|) . T) (((-574)) . T))
-((($) . T) (((-417 (-574))) . T))
-((((-574) (-112)) . T))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-574)) . T) (($) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-(((|#1|) . T))
-(|has| |#1| (-858))
-(((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#1| (-1116))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-576) |#2|) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374))))
+(|has| |#1| (-360))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
+(((|#2|) . T) (((-576)) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-576) (-112)) . T))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+(((|#1|) . T))
+(|has| |#1| (-860))
+(((#0=(-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(|has| |#1| (-1118))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1158 |#2| (-417 (-966 |#1|)))) . T) (((-417 (-966 |#1|))) . T) (((-574)) . T))
+((((-1160 |#2| (-419 (-968 |#1|)))) . T) (((-419 (-968 |#1|))) . T) (((-576)) . T))
(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
-((($) . T) (((-574)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
+((($) . T) (((-576)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-541 |#2|) |#2|) . T))
-((((-872)) . T))
-((((-145)) . T) (((-872)) . T))
-((((-574) |#1|) . T))
-(((|#1| (-781) (-1098)) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-874)) . T))
+((((-145)) . T) (((-874)) . T))
+((((-576) |#1|) . T))
+(((|#1| (-783) (-1100)) . T))
(((|#3|) . T))
((((-145)) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) -2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))) ((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) -2838 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))) ((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
((((-145)) . T))
-((((-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
+((((-1195)) -2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(((|#4|) |has| |#4| (-372)))
-(((|#3|) |has| |#3| (-372)))
+(((|#4|) |has| |#4| (-374)))
+(((|#3|) |has| |#3| (-374)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-372)))
-((((-872)) . T))
-((((-872)) . T))
-((((-874 |#1|)) . T))
+(((|#2|) |has| |#1| (-374)))
+((((-874)) . T))
+((((-874)) . T))
+((((-876 |#1|)) . T))
(((|#2|) . T))
-(((|#1| (-1189 |#1|)) . T))
-((((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((($) . T) ((|#1|) . T) (((-417 (-574))) . T) (((-574)) |has| |#1| (-649 (-574))))
+(((|#1| (-1191 |#1|)) . T))
+((((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576))))
((($) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((($) |has| |#1| (-566)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
(((|#2|) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) . T))
-((($) |has| |#1| (-858)))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(|has| |#1| (-923))
-((((-1193)) . T))
-((((-872)) . T))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-574) |#2|) . T))
-((($ (-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065))))
-((($ (-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) . T))
+((($) |has| |#1| (-860)))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-925))
+((((-1195)) . T))
+((((-874)) . T))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-576) |#2|) . T))
+((($ (-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067))))
+((($ (-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
((($) |has| |#1| (-239)))
-((($) |has| |#1| (-377)))
-((($) |has| |#1| (-377)))
-((($) |has| |#1| (-377)))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
(((|#1| |#2|) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-923)))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((#0=(-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) #0#) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-925)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((#0=(-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) #0#) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372))))
-(|has| |#1| (-860))
-(|has| |#1| (-566))
-((((-591 |#1|)) . T))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374))))
+(|has| |#1| (-862))
+(|has| |#1| (-568))
+((((-593 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-830))) (-12 (|has| |#1| (-372)) (|has| |#2| (-860))))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-((((-924 |#1|)) . T))
-(((|#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) . T))
+(-2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-926 |#1|)) . T))
+(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-781)) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T))
-((((-682 |#1|)) . T))
+(((|#1| (-783)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T))
+((((-684 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-546)) . T))
-((((-872)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-1198)) . T))
-((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T))
-(((|#3|) . T) (((-574)) . T) (((-622 $)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-548)) . T))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-1200)) . T))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T))
+(((|#3|) . T) (((-576)) . T) (((-624 $)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116)))
-(|has| |#2| (-1065))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-(|has| |#1| (-1219))
-(|has| |#1| (-1219))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
-(|has| |#1| (-1219))
-(|has| |#1| (-1219))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-417 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118)))
+(|has| |#2| (-1067))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+(|has| |#1| (-1221))
+(|has| |#1| (-1221))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
+(|has| |#1| (-1221))
+(|has| |#1| (-1221))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-1175) (-52)) . T))
-(|has| |#1| (-1116))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-1177) (-52)) . T))
+(|has| |#1| (-1118))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(-2833 (|has| |#2| (-830)) (|has| |#2| (-860)))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574)) . T) (($) . T))
-((((-781)) . T))
-(-2833 (|has| |#1| (-239)) (|has| |#1| (-358)))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-872)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#2| (-923))
-(|has| |#1| (-372))
-(((|#2|) |has| |#2| (-1116)))
-((($) . T) (((-574)) . T))
+(-2838 (|has| |#2| (-832)) (|has| |#2| (-862)))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T))
+((((-783)) . T))
+(-2838 (|has| |#1| (-239)) (|has| |#1| (-360)))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(|has| |#2| (-925))
+(|has| |#1| (-374))
+(((|#2|) |has| |#2| (-1118)))
+((($) . T) (((-576)) . T))
((($) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-546)) . T) (((-417 (-1189 (-574)))) . T) (((-227)) . T) (((-388)) . T))
-((((-388)) . T) (((-227)) . T) (((-872)) . T))
-(|has| |#1| (-923))
-(|has| |#1| (-923))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-828 (-1193))) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-(|has| |#1| (-923))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736))))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-548)) . T) (((-419 (-1191 (-576)))) . T) (((-227)) . T) (((-390)) . T))
+((((-390)) . T) (((-227)) . T) (((-874)) . T))
+(|has| |#1| (-925))
+(|has| |#1| (-925))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-830 (-1195))) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(|has| |#1| (-925))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((((-1191 |#1| |#2| |#3|)) -12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923)))
-((((-872)) . T))
-((((-872)) . T))
+((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((((-1193 |#1| |#2| |#3|)) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925)))
+((((-874)) . T))
+((((-874)) . T))
((($ $) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((($) -2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239)))))
-((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
-((((-987)) . T))
-((((-987)) . T) (((-872)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((($) -2838 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((((-989)) . T))
+((((-989)) . T) (((-874)) . T))
((($ $) . T))
-((((-574) (-112)) . T))
+((((-576) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-112)) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566)))
-((((-574)) . T))
-(((|#1| (-574)) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-576)) . T))
+(((|#1| (-576)) . T))
((($) . T))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
(((|#1|) . T))
-((((-574)) . T))
+((((-576)) . T))
(((|#1| |#2|) . T))
-((((-1193)) |has| |#1| (-1065)))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-872)) . T))
-(((|#1|) . T))
-(((|#1| (-574)) . T))
-(((|#1| (-1276 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(((|#1| (-417 (-574))) . T))
-(((|#1| (-1248 |#1| |#2| |#3|)) . T))
-(((|#1| (-781)) . T))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-((((-1175) |#1|) . T))
+((((-1195)) |has| |#1| (-1067)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+(((|#1|) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-1278 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-1250 |#1| |#2| |#3|)) . T))
+(((|#1| (-783)) . T))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#1| (-1118))
+(((|#1|) . T))
+((((-1177) |#1|) . T))
((($) . T))
(|has| |#2| (-148))
(|has| |#2| (-146))
-(((|#1| (-541 (-828 (-1193))) (-828 (-1193))) . T))
-((((-872)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1065)))
-((((-574) (-112)) . T) (((-1251 (-574)) $) . T))
-((((-872)) |has| |#1| (-1116)))
-(((|#1|) . T) (((-574)) . T) (($) . T))
-((((-574)) . T))
-(((|#1|) . T))
-((((-574)) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-358)))
-((((-872)) . T))
+(((|#1| (-543 (-830 (-1195))) (-830 (-1195))) . T))
+((((-874)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1067)))
+((((-576) (-112)) . T) (((-1253 (-576)) $) . T))
+((((-874)) |has| |#1| (-1118)))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576)) . T))
+(((|#1|) . T))
+((((-576)) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-360)))
+((((-874)) . T))
(|has| |#1| (-148))
(((|#3|) . T))
-((((-872)) . T))
-(|has| |#3| (-1065))
+((((-874)) . T))
+(|has| |#3| (-1067))
((($) |has| |#2| (-239)))
-((((-1269 |#2| |#3| |#4|)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T))
-((((-872)) . T))
-((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (((-622 $)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) -2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-417 (-966 |#1|))) |has| |#1| (-566)) (((-966 |#1|)) |has| |#1| (-1065)) (((-1193)) . T))
+((((-1271 |#2| |#3| |#4|)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) -2838 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-419 (-968 |#1|))) |has| |#1| (-568)) (((-968 |#1|)) |has| |#1| (-1067)) (((-1195)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-781)) . T))
-(((|#1|) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-317 |#1|)))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
-(((|#1|) . T))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))
-(((|#1|) . T))
-(|has| |#1| (-566))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-(((|#1|) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)) ((|#1|) . T))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
+(((|#1| (-783)) . T))
+(((|#1|) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+(((|#1|) . T))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))
+(((|#1|) . T))
+(|has| |#1| (-568))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(((|#1|) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((((-872)) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((($ (-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
-(((|#1|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1116)))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372))))
-((((-1269 |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((($ (-1195)) -2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1118)))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374))))
+((((-1271 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
-(((|#1| (-574) (-1098)) . T))
-((($) |has| |#1| (-317 $)) ((|#1|) |has| |#1| (-317 |#1|)))
-(|has| |#1| (-858))
-(|has| |#1| (-858))
-(((|#1| (-574) (-1098)) . T))
-(-2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(((|#1| (-417 (-574)) (-1098)) . T))
-(((|#1| (-781) (-1098)) . T))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+(((|#1| (-576) (-1100)) . T))
+((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|)))
(|has| |#1| (-860))
-(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
+(|has| |#1| (-860))
+(((|#1| (-576) (-1100)) . T))
+(-2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(((|#1| (-419 (-576)) (-1100)) . T))
+(((|#1| (-783) (-1100)) . T))
+(|has| |#1| (-862))
+(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(((|#2|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-1116))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-1116))
-((((-417 (-574))) |has| |#2| (-372)) (($) . T) (((-574)) . T))
-((((-574)) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))))
-(((|#1|) . T))
-(|has| |#1| (-1116))
-((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((|#2|) |has| |#1| (-372)))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
-((((-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709)))) . T))
+(|has| |#1| (-1118))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-1118))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T))
+((((-576)) -2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))))
+(((|#1|) . T))
+(|has| |#1| (-1118))
+((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374)))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
+((((-701 (-350 (-2968) (-2968 (QUOTE X) (QUOTE HESS)) (-711)))) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T))
-(((|#1| |#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))))
-(((|#1|) . T))
-((((-574)) . T))
-((((-574)) . T))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))))
-(((|#2|) |has| |#2| (-372)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)) (((-574)) |has| |#1| (-649 (-574))))
-(|has| |#1| (-860))
-(((|#1|) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(((|#1|) . T) (((-574)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T))
+(((|#1| |#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))))
+(((|#1|) . T))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))))
+(((|#2|) |has| |#2| (-374)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#1| (-862))
+(((|#1|) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(((|#1|) . T) (((-576)) . T))
(((|#2|) . T))
-((((-574)) . T) ((|#3|) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-923)))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-872)) . T))
-((((-872)) . T))
-((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-((((-574)) -2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)))
-((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
-((((-872)) . T))
+((((-576)) . T) ((|#3|) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) |has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-925)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-874)) . T))
+((((-874)) . T))
+((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+((((-576)) -2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
((($) |has| |#1| (-239)))
-(|has| |#1| (-38 (-417 (-574))))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
((($) . T))
(|has| |#1| (-239))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-858))
-(((|#1| (-574)) . T))
+(|has| |#1| (-860))
+(((|#1| (-576)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1191 |#1| |#2| |#3|)) . T))
+(((|#1| (-1193 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-417 (-574))) . T))
+(((|#1| (-419 (-576))) . T))
(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
-(((|#1| (-1184 |#1| |#2| |#3|)) . T))
-(((|#1| (-781)) . T))
+(((|#1| (-1186 |#1| |#2| |#3|)) . T))
+(((|#1| (-783)) . T))
(((|#1|) . T))
-((((-417 (-966 |#1|))) . T))
+((((-419 (-968 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
-((((-417 (-966 |#1|))) . T))
+((((-419 (-968 |#1|))) . T))
(((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-574)) . T) ((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-1193)) |has| |#1| (-1054 (-1193))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#1| (-1056 (-1195))))
(((|#1| |#2|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) -2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))) ((|#1|) . T))
-(-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))
-(-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) -2838 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))) ((|#1|) . T))
+(-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))
((((-145)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(((|#1|) . T))
-(|has| |#2| (-1065))
-(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-574)) . T))
-((((-872)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#1|) . T))
+(|has| |#2| (-1067))
+(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-576)) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
((($ |#2|) . T))
-(|has| (-417 |#2|) (-239))
-((((-654 |#1|)) . T))
-((($ (-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
-(|has| |#1| (-923))
-(((|#2|) |has| |#2| (-1065)))
+(|has| (-419 |#2|) (-239))
+((((-656 |#1|)) . T))
+((($ (-1195)) -2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
+(|has| |#1| (-925))
+(((|#2|) |has| |#2| (-1067)))
((($) . T))
-(|has| |#1| (-372))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
+(|has| |#1| (-374))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((($ (-874 |#1|)) . T))
+((($ (-876 |#1|)) . T))
(((|#1| |#1|) . T))
-((((-880 |#1|)) . T))
-((((-872)) . T))
+((((-882 |#1|)) . T))
+((((-874)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1116)))
+(((|#2|) |has| |#2| (-1118)))
(((|#1|) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((((-654 $)) . T) (((-1175)) . T) (((-1193)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T))
-((((-574)) -2833 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))) (($) |has| |#3| (-1065)))
-((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T))
+((((-576)) -2838 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) ((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)))
+((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T))
(((|#1|) . T))
-((((-872)) . T))
+((((-874)) . T))
((($) . T))
-(((|#1| (-541 |#2|) |#2|) . T))
-((((-872)) . T))
-(((|#1| (-574) (-1098)) . T))
-((((-924 |#1|)) . T))
-((((-872)) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-874)) . T))
+(((|#1| (-576) (-1100)) . T))
+((((-926 |#1|)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-417 (-574)) (-1098)) . T))
-(((|#1| (-781) (-1098)) . T))
-(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-574)) -2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))) (((-417 (-574))) . T))
-(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T))
+(((|#1| (-419 (-576)) (-1100)) . T))
+(((|#1| (-783) (-1100)) . T))
+(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-576)) -2838 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))) (((-419 (-576))) . T))
+(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(|has| |#2| (-239))
-(((|#2| (-541 (-874 |#1|)) (-874 |#1|)) . T))
-((((-872)) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
+(((|#2| (-543 (-876 |#1|)) (-876 |#1|)) . T))
+((((-874)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#1| |#3|) . T))
-((((-872)) . T))
-(((|#1|) |has| |#1| (-174)) (((-966 |#1|)) . T) (((-574)) . T))
+((((-874)) . T))
+(((|#1|) |has| |#1| (-174)) (((-968 |#1|)) . T) (((-576)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-709)) . T))
-((((-709)) . T))
+((((-711)) . T))
+((((-711)) . T))
(((|#2|) |has| |#2| (-174)))
(|has| |#1| (-239))
-((((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-((((-112)) |has| |#1| (-1116)) (((-872)) -2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116))))
+((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+((((-112)) |has| |#1| (-1118)) (((-874)) -2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-709)) . T) (((-417 (-574))) . T) (((-574)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-574) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-((((-388)) . T))
-((((-709)) . T))
-((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
+((($) . T) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-576) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+((((-390)) . T))
+((((-711)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
(((|#1|) |has| |#1| (-174)))
-((((-417 (-966 |#1|))) . T))
+((((-419 (-968 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#3|) |has| |#3| (-1065)))
-(|has| |#2| (-923))
-(|has| |#1| (-923))
-(|has| |#1| (-372))
+(((|#3|) |has| |#3| (-1067)))
+(|has| |#2| (-925))
+(|has| |#1| (-925))
+(|has| |#1| (-374))
((($) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-483))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-372))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-483)) (|has| |#1| (-566)) (|has| |#1| (-1065)) (|has| |#1| (-1128)))
-((($) -2833 (|has| |#1| (-239)) (|has| |#1| (-358))))
+((((-1195)) |has| |#2| (-914 (-1195))))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-485))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-374))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1067)) (|has| |#1| (-1130)))
+((($) -2838 (|has| |#1| (-239)) (|has| |#1| (-360))))
((((-117 |#1|)) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-358))
+(|has| |#1| (-360))
((((-145)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((($) . T) (((-574)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(((|#2|) . T) (((-872)) . T))
-(((|#2|) . T) (((-872)) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-860))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((($) . T) (((-576)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#2|) . T) (((-874)) . T))
+(((|#2|) . T) (((-874)) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-862))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-574)) . T))
+((($) . T) (((-576)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) ((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
(((|#2|) . T))
-(|has| |#1| (-15 * (|#1| (-574) |#1|)))
+(|has| |#1| (-15 * (|#1| (-576) |#1|)))
(((|#3|) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-377))
-(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-860))
-(|has| |#1| (-15 * (|#1| (-781) |#1|)))
-(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
+(|has| |#1| (-379))
+(-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-862))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-574)) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(-2833 (|has| |#2| (-239)) (|has| |#2| (-912 (-1193))))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#1| (-1038))) (((-227)) . #0#))
-(((|#1|) |has| |#1| (-372)))
-((((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((($ $) . T) (((-622 $) $) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-((($) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T))
-((($) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-1065))) (((-417 (-574))) |has| |#1| (-566)) (((-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))
-((($) . T) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-((((-388)) . T) (((-574)) . T) (((-417 (-574))) . T))
-((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
-((((-654 (-790 |#1| (-874 |#2|)))) . T) (((-872)) . T))
-((((-546)) |has| (-790 |#1| (-874 |#2|)) (-624 (-546))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-388)) . T))
+((((-576)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(-2838 (|has| |#2| (-239)) (|has| |#2| (-914 (-1195))))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#1| (-1040))) (((-227)) . #0#))
+(((|#1|) |has| |#1| (-374)))
+((((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((($ $) . T) (((-624 $) $) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((($) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T))
+((($) -2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) ((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-1067))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))
+((($) . T) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
+((((-656 (-792 |#1| (-876 |#2|)))) . T) (((-874)) . T))
+((((-548)) |has| (-792 |#1| (-876 |#2|)) (-626 (-548))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-390)) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
(((|#1|) |has| |#1| (-174)))
-((((-872)) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-923)))
+((((-874)) . T))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-925)))
(((|#1|) . T))
((($) . T))
-((($) |has| |#1| (-566)) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((((-781)) . T))
-(|has| |#1| (-1116))
-((((-574)) -2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065))) ((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))) (($) |has| |#2| (-1065)))
-((((-872)) . T))
-((((-1193)) . T) (((-872)) . T))
-((((-574)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-((((-417 (-574))) . T) (((-574)) . T) (((-622 $)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((((-783)) . T))
+(|has| |#1| (-1118))
+((((-576)) -2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067))) ((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))) (($) |has| |#2| (-1067)))
+((((-874)) . T))
+((((-1195)) . T) (((-874)) . T))
+((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-574)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (($) . T))
-((((-574)) . T))
+((((-576)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T))
+((((-576)) . T))
((($) . T))
-(|has| |#1| (-372))
-(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148)))
-(-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146)))
-(|has| |#1| (-372))
+(|has| |#1| (-374))
+(-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148)))
+(-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146)))
+(|has| |#1| (-374))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
(|has| |#1| (-239))
-(|has| |#1| (-372))
+(|has| |#1| (-374))
(((|#3|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T))
-((((-574) |#1|) |has| |#2| (-427 |#1|)))
-((((-574) |#1|) |has| |#2| (-427 |#1|)))
-(((|#2|) . T) (($) . T) (((-574)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T))
+((((-576) |#1|) |has| |#2| (-429 |#1|)))
+((((-576) |#1|) |has| |#2| (-429 |#1|)))
+(((|#2|) . T) (($) . T) (((-576)) . T))
(((|#2|) . T))
-((((-417 (-574))) . #0=(|has| |#2| (-372))) (($) . #0#))
-((((-417 (-574))) |has| |#2| (-372)) (($) . T))
-(|has| |#1| (-1116))
-((((-1158 |#2| |#1|)) . T) ((|#1|) . T) (((-574)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(|has| |#1| (-1118))
+((((-1160 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T))
(((|#1| |#2|) . T))
-((((-574)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))
-((((-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-(((|#2|) . T) (($) . T) (((-574)) . T))
-(((|#1|) . T) (($) . T) (((-574)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
-((((-872)) . T))
-((((-574)) . T))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
-(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
-((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
-((((-966 |#1|)) . T) (((-872)) . T))
+((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))
+((((-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(((|#2|) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
+((((-874)) . T))
+((((-576)) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-968 |#1|)) . T) (((-874)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) ((#0=(-417 (-574)) #0#) |has| |#1| (-372)))
-((((-966 |#1|)) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
+(((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374)))
+((((-968 |#1|)) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
((($) . T))
-((((-574) |#1|) . T))
-((((-1193)) |has| (-417 |#2|) (-912 (-1193))))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372)))
-((((-546)) |has| |#2| (-624 (-546))))
-((((-699 |#2|)) . T) (((-872)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-((((-880 |#1|)) . T))
+((((-576) |#1|) . T))
+((((-1195)) |has| (-419 |#2|) (-914 (-1195))))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374)))
+((((-548)) |has| |#2| (-626 (-548))))
+((((-701 |#2|)) . T) (((-874)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+((((-882 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
-(-2833 (|has| |#4| (-803)) (|has| |#4| (-860)))
-(-2833 (|has| |#3| (-803)) (|has| |#3| (-860)))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((($) . T) (((-574)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372))))
-(((|#2|) |has| |#2| (-1065)))
+(-2838 (|has| |#4| (-805)) (|has| |#4| (-862)))
+(-2838 (|has| |#3| (-805)) (|has| |#3| (-862)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374))))
+(((|#2|) |has| |#2| (-1067)))
(((|#3|) . T))
((($) . T))
(((|#1|) . T))
-((((-417 |#2|)) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736))))
+((((-419 |#2|)) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
(((|#1|) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))))
-(((|#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) . T) (($) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-1238)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-1240)))
((($) . T))
-((((-417 (-574))) |has| #0=(-417 |#2|) (-1054 (-417 (-574)))) (((-574)) |has| #0# (-1054 (-574))) ((#0#) . T))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-(((|#1| (-781)) . T))
+((((-419 (-576))) |has| #0=(-419 |#2|) (-1056 (-419 (-576)))) (((-576)) |has| #0# (-1056 (-576))) ((#0#) . T))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(((|#1| (-783)) . T))
+(|has| |#1| (-862))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-576)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(|has| |#1| (-860))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-((((-574)) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#1| (-858))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-574) $) . T) (((-654 (-574)) $) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-912 (-1193))))
-(|has| |#1| (-358))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-1175)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T))
-((((-872)) . T))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-15 * (|#1| (-781) |#1|)))
-(((|#2|) . T) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-914 (-1195))))
+(|has| |#1| (-360))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T))
+((((-874)) . T))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+(-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#2|) . T) (((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))
(((|#1| |#2|) . T))
((((-145)) . T))
-((((-790 |#1| (-874 |#2|))) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(|has| |#1| (-1219))
-((((-872)) . T))
+((((-792 |#1| (-876 |#2|))) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(|has| |#1| (-1221))
+((((-874)) . T))
(((|#1|) . T))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-377)) (|has| |#3| (-736)) (|has| |#3| (-803)) (|has| |#3| (-860)) (|has| |#3| (-1065)) (|has| |#3| (-1116)))
-((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1067)) (|has| |#3| (-1118)))
+((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)))
(((|#2|) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((((-924 |#1|)) . T))
-((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1065))))
-((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1065))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-926 |#1|)) . T))
+((($) -12 (|has| |#4| (-239)) (|has| |#4| (-1067))))
+((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1067))))
((($) . T))
-((((-417 (-966 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-((((-546)) |has| |#4| (-624 (-546))))
-(|has| |#1| (-858))
-((((-872)) . T) (((-654 |#4|)) . T))
-(|has| |#1| (-1116))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) |has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))))
-(|has| |#1| (-372))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736))))
-((((-682 |#1|)) . T))
-(((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-736)) (|has| |#3| (-1065))))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
+((((-419 (-968 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+((((-548)) |has| |#4| (-626 (-548))))
+(|has| |#1| (-860))
+((((-874)) . T) (((-656 |#4|)) . T))
+(|has| |#1| (-1118))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) |has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))))
+(|has| |#1| (-374))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738))))
+((((-684 |#1|)) . T))
+(((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1067))))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-148)) (|has| |#1| (-372))) (|has| |#1| (-148)))
-(-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146)))
+(-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148)))
+(-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146)))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(|has| |#1| (-858))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-860))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-1116))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T) (((-574)) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1118))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-1116))
-((((-574)) . T) ((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-574)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1118))
+((((-576)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-576)) . T))
(((|#2|) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
+((((-1195)) |has| |#2| (-914 (-1195))))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-372)))
-((((-417 |#2|)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-324 |#1|)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#2|) |has| |#2| (-372)))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
+(((|#3|) |has| |#3| (-374)))
+((((-419 |#2|)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-326 |#1|)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-374)))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
(((|#2|) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(|has| |#1| (-239))
-(((#0=(-790 |#1| (-874 |#2|)) #0#) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))))
+(((#0=(-792 |#1| (-876 |#2|)) #0#) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))))
((($) |has| |#1| (-239)))
-((((-574)) . T) (($) . T))
-((((-874 |#1|)) . T))
+((((-576)) . T) (($) . T))
+((((-876 |#1|)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1104 (-1193))) . T))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(|has| |#1| (-38 (-417 (-574))))
-(((|#4|) |has| |#4| (-1065)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065))))
-(((|#3|) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1106 (-1195))) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#4|) |has| |#4| (-1067)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067))))
+(((|#3|) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))
(|has| |#1| (-146))
(|has| |#1| (-148))
((($ $) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116)))
-(|has| |#1| (-566))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118)))
+(|has| |#1| (-568))
(((|#2|) . T))
-((((-574)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+((((-576)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-591 |#1|)) . T))
+((((-593 |#1|)) . T))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-872)) . T))
-(((|#2|) |has| |#2| (-6 (-4461 "*"))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-6 (-4463 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#3|) . T))
((($) . T))
-(((|#2|) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#3|) . T) (((-574)) . T))
-((((-1269 |#2| |#3| |#4|)) . T) (((-574)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-48)) -12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (((-574)) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))) (|has| |#1| (-1065))) ((|#1|) . T) (((-622 $)) . T) (($) |has| |#1| (-566)) (((-417 (-574))) -2833 (|has| |#1| (-566)) (|has| |#1| (-1054 (-417 (-574))))) (((-417 (-966 |#1|))) |has| |#1| (-566)) (((-966 |#1|)) |has| |#1| (-1065)) (((-1193)) . T))
-((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
-((($) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T))
-((((-1141 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((((-1189 |#1|)) . T) (((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((((-1141 |#1| (-1193))) . T) (((-1104 (-1193))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-1193)) . T))
-(|has| |#1| (-1116))
+(((|#2|) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#3|) . T) (((-576)) . T))
+((((-1271 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (((-576)) -2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))) (|has| |#1| (-1067))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2838 (|has| |#1| (-568)) (|has| |#1| (-1056 (-419 (-576))))) (((-419 (-968 |#1|))) |has| |#1| (-568)) (((-968 |#1|)) |has| |#1| (-1067)) (((-1195)) . T))
+((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T))
+((((-1143 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((((-1191 |#1|)) . T) (((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((((-1143 |#1| (-1195))) . T) (((-1106 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-1195)) . T))
+(|has| |#1| (-1118))
((($) . T))
-(|has| |#1| (-1116))
-((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))))
+(|has| |#1| (-1118))
+((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))))
(((|#1| |#2|) . T))
-((((-1193) |#1|) . T))
+((((-1195) |#1|) . T))
(((|#4|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-1193) (-52)) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T))
-((((-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) . T))
-((((-872)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-377)) (|has| |#2| (-736)) (|has| |#2| (-803)) (|has| |#2| (-860)) (|has| |#2| (-1065)) (|has| |#2| (-1116)))
-(((#0=(-1270 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-417 (-574)) #0#) |has| |#1| (-566)) (($ $) |has| |#1| (-566)))
-((($) |has| |#1| (-15 * (|#1| (-574) |#1|))))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1| $) |has| |#1| (-294 |#1| |#1|)))
-((((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566)))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
-(|has| |#1| (-372))
-((($) |has| |#1| (-858)) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-858))))
-((($) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))
-((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
-((($) |has| |#1| (-15 * (|#1| (-781) |#1|))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1195) (-52)) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T))
+((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1067)) (|has| |#2| (-1118)))
+(((#0=(-1272 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568)))
+((($) |has| |#1| (-15 * (|#1| (-576) |#1|))))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568)))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(|has| |#1| (-374))
+((($) |has| |#1| (-860)) (((-576)) -2838 (|has| |#1| (-21)) (|has| |#1| (-860))))
+((($) -2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) |has| |#1| (-15 * (|#1| (-783) |#1|))))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-417 (-574))) . T) (($) . T))
-(((|#3|) |has| |#3| (-372)))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-((((-1193)) . T))
-((($) . T) (((-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574)))) (((-574)) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#3|) |has| |#3| (-374)))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+((((-1195)) . T))
+((($) . T) (((-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
(((|#2| |#3|) . T))
-(-2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(((|#1| (-541 |#2|)) . T))
-(((|#1| (-781)) . T))
-(((|#1| (-541 (-1104 (-1193)))) . T))
+(-2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(((|#1| (-543 |#2|)) . T))
+(((|#1| (-783)) . T))
+(((|#1| (-543 (-1106 (-1195)))) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#2| (-923))
-(-2833 (|has| |#2| (-803)) (|has| |#2| (-860)))
-((((-872)) . T))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736))))
-(((|#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-736)) (|has| |#2| (-1065))))
-((($ (-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
-((($ $) . T) ((#0=(-1269 |#2| |#3| |#4|) #0#) . T) ((#1=(-417 (-574)) #1#) |has| #0# (-38 (-417 (-574)))))
-((((-924 |#1|)) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-((((-574)) . T) (($) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-((($) . T) (((-574)) . T))
+(|has| |#2| (-925))
+(-2838 (|has| |#2| (-805)) (|has| |#2| (-862)))
+((((-874)) . T))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
+(((|#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1067))))
+((($ (-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
+((($ $) . T) ((#0=(-1271 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576)))))
+((((-926 |#1|)) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T))
((($) . T))
-(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)) (|has| |#1| (-566)))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+(-2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372)) (|has| |#1| (-358)))
-(-2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T))
+((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(-2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
(((|#2|) . T))
-(|has| |#2| (-372))
-(|has| |#1| (-860))
+(|has| |#2| (-374))
+(|has| |#1| (-862))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-574)) . T))
+((((-576)) . T))
(((|#1|) . T))
-((((-872)) . T))
+((((-874)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#1| (-1116))
+(|has| |#1| (-1118))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T) (((-574)) . T) (($) . T))
-(((|#3|) . T) (((-574)) . T) (($) . T))
-((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-830))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T))
+(((|#3|) . T) (((-576)) . T) (($) . T))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-832))
((($) . T))
(((|#4|) . T))
((($) . T))
-((($ (-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))))
-((((-872)) . T))
-(((|#1| (-541 (-1193))) . T))
+((($ (-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))))
+((((-874)) . T))
+(((|#1| (-543 (-1195))) . T))
((($ $) . T))
(((|#1|) |has| |#1| (-174)))
((($) . T))
-((((-872)) . T))
+((((-874)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
(((|#2|) . T))
-(((|#2|) -2833 (|has| |#2| (-6 (-4461 "*"))) (|has| |#2| (-174))))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(|has| |#2| (-923))
-(|has| |#1| (-923))
-((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))))
+(((|#2|) -2838 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(|has| |#2| (-925))
+(|has| |#1| (-925))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))))
(((|#2|) |has| |#2| (-174)))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-574)) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T))
+((($) . T) (((-576)) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-872)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-574)) . T))
-(((|#1| (-417 (-574))) . T))
+((($) . T) (((-576)) . T))
+(((|#1| (-419 (-576))) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-298)) (|has| |#1| (-372)))
+(-2838 (|has| |#1| (-300)) (|has| |#1| (-374)))
((((-145)) . T))
-((((-574)) |has| #0=(-417 |#2|) (-649 (-574))) ((#0#) . T) (((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-858))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-860))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-189)) . T) (((-872)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-189)) . T) (((-874)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))) (((-903 (-574))) |has| |#1| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#1| (-624 (-903 (-388)))))
-((((-1193) (-52)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))))
+((((-1195) (-52)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($ (-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-654 (-145))) . T) (((-1175)) . T))
-((((-872)) . T))
-((((-1175)) . T))
-((((-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((|#1| |#1|) |has| |#1| (-317 |#1|)))
-(|has| |#1| (-860))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((($) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))
-((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
-((((-872)) . T))
-(((|#2|) |has| |#2| (-372)))
-((((-872)) . T))
-((($) |has| |#1| (-15 * (|#1| (-781) |#1|))))
-((((-546)) |has| |#4| (-624 (-546))))
+((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-656 (-145))) . T) (((-1177)) . T))
+((((-874)) . T))
+((((-1177)) . T))
+((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(|has| |#1| (-862))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((($) -2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-374)))
+((((-874)) . T))
+((($) |has| |#1| (-15 * (|#1| (-783) |#1|))))
+((((-548)) |has| |#4| (-626 (-548))))
(((|#2|) . T))
-((((-872)) . T) (((-654 |#4|)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T))
-(|has| |#4| (-1065))
-(|has| |#3| (-1065))
-((((-1193) (-52)) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065)))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-(|has| |#1| (-923))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(|has| |#1| (-923))
-(((|#1|) . T) (((-574)) . T) (((-417 (-574))) . T) (($) . T))
+((((-874)) . T) (((-656 |#4|)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T))
+(|has| |#4| (-1067))
+(|has| |#3| (-1067))
+((((-1195) (-52)) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+(|has| |#1| (-925))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(|has| |#1| (-925))
+(((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-872)) . T))
-((((-574)) . T))
-((($ (-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-(((#0=(-417 (-574)) #0#) . T) (($ $) . T))
-((((-417 (-574))) . T) (($) . T))
-(((|#1| (-417 (-574)) (-1098)) . T))
-(|has| |#1| (-1116))
-(|has| |#1| (-566))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(|has| |#1| (-830))
-(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
-((((-417 |#2|)) . T))
-(|has| |#1| (-858))
-((((-1220 |#1|)) . T) (((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) . T) ((#1=(-574) #1#) . T) (($ $) . T))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-874)) . T))
+((((-576)) . T))
+((($ (-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+(((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| (-419 (-576)) (-1100)) . T))
+(|has| |#1| (-1118))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(|has| |#1| (-832))
+(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
+((((-419 |#2|)) . T))
+(|has| |#1| (-860))
+((((-1222 |#1|)) . T) (((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(((|#2|) . T))
-((((-872)) . T))
-((((-1193)) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T))
+((((-874)) . T))
+((((-1195)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-((((-574) |#3|) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3667 (-1193)) (|:| -1916 #0#))) . T))
-(|has| |#1| (-358))
-((((-574)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-(((#0=(-1270 |#1| |#2| |#3| |#4|) $) |has| #0# (-294 #0# #0#)))
-(|has| |#1| (-372))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065))))
-(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-(((#0=(-417 (-574)) #0#) . T) ((#1=(-709) #1#) . T) (($ $) . T))
-((((-324 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
-((((-872)) . T))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-(((|#1|) -2833 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|))))
-(((|#1|) -2833 (|has| |#2| (-376 |#1|)) (|has| |#2| (-427 |#1|))))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+((((-576) |#3|) . T))
+(((#0=(-52)) . T) (((-2 (|:| -3672 (-1195)) (|:| -1918 #0#))) . T))
+(|has| |#1| (-360))
+((((-576)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+(((#0=(-1272 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#)))
+(|has| |#1| (-374))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))) (($) -2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))) (((-576)) -2838 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067))))
+(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T))
+((((-326 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-874)) . T))
+(|has| |#1| (-1118))
+(((|#1|) . T))
+(((|#1|) -2838 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|))))
+(((|#1|) -2838 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|))))
(((|#2|) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
-((((-589)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-591)) . T))
(((|#3| |#3|) . T))
-((($ (-1193)) |has| |#2| (-912 (-1193))))
+((($ (-1195)) |has| |#2| (-914 (-1195))))
(|has| |#2| (-239))
-((((-874 |#1|)) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) ((|#3|) . T))
-((((-654 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-1038)))
-((((-417 (-574))) . T) (($) . T))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((($) . T) (((-417 (-574))) . T))
-((((-872)) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
-((((-574)) . T) (((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574)) . T))
+((((-876 |#1|)) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) ((|#3|) . T))
+((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-1040)))
+((((-419 (-576))) . T) (($) . T))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T))
(((|#3|) . T))
-(|has| |#1| (-1116))
+(|has| |#1| (-1118))
(((|#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-239)))
-((((-574)) . T))
-(((|#2|) . T) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (($) . T) (((-574)) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
+((((-576)) . T))
+(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
(((|#1| |#2|) . T))
((($) . T))
-((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((($) . T) (((-417 (-574))) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-574)) . T))
-(((|#1|) . T) (((-574)) . T))
-(((|#1| (-1284 |#1|) (-1284 |#1|)) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1| (-1286 |#1|) (-1286 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
(((|#3|) . T))
-(((#0=(-117 |#1|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
-((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
-((((-1141 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#2|) . T))
+(((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1143 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
((($ $) . T))
-((((-682 |#1|)) . T))
-((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((((-117 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) (((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))))
+((((-684 |#1|)) . T))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))))
(((|#2|) . T) ((|#6|) . T))
-((((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) (($) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
((((-145)) . T))
((($) . T))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-388)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T))
-(|has| |#2| (-923))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-923))
-(|has| |#1| (-923))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(|has| |#2| (-925))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-925))
+(|has| |#1| (-925))
(((|#4|) . T))
-(|has| |#2| (-1038))
+(|has| |#2| (-1040))
((($) . T))
-(|has| |#1| (-923))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(|has| |#1| (-925))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-372))
-((((-924 |#1|)) . T))
-((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) |has| |#1| (-858)) (((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-858))))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(-2833 (|has| |#1| (-377)) (|has| |#1| (-860)))
-(((|#1|) . T))
-((((-781)) . T))
-((((-872)) . T))
-(-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-417 |#2|) |#3|) . T))
-((($) . T) (((-417 (-574))) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T) (((-622 $)) . T))
-((((-574)) . T) (($) . T))
-((((-574)) . T) (($) . T))
-((((-781) |#1|) . T))
-(((|#2| (-246 (-2877 |#1|) (-781))) . T))
-(((|#1| (-541 |#3|)) . T))
-((((-417 (-574))) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-1175)) . T) (((-872)) . T))
-(((#0=(-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) #0#) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))))
-((((-1175)) . T))
-(|has| |#1| (-923))
-(|has| |#2| (-372))
-(((|#1|) . T) (($) . T) (((-574)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-388)) . T) (((-574)) . T))
-(((#0=(-417 (-574)) #0#) . T) (($ $) . T))
+(|has| |#1| (-374))
+((((-926 |#1|)) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) |has| |#1| (-860)) (((-576)) -2838 (|has| |#1| (-21)) (|has| |#1| (-860))))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(-2838 (|has| |#1| (-379)) (|has| |#1| (-862)))
+(((|#1|) . T))
+((((-783)) . T))
+((((-874)) . T))
+(-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-419 |#2|) |#3|) . T))
+((($) . T) (((-419 (-576))) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T))
+((((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T))
+((((-783) |#1|) . T))
+(((|#2| (-246 (-2882 |#1|) (-783))) . T))
+(((|#1| (-543 |#3|)) . T))
+((((-419 (-576))) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-1177)) . T) (((-874)) . T))
+(((#0=(-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) #0#) |has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))))
+((((-1177)) . T))
+(|has| |#1| (-925))
+(|has| |#2| (-374))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-390)) . T) (((-576)) . T))
+(((#0=(-419 (-576)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-872)) . T))
-(|has| |#1| (-566))
-((((-417 (-574))) . T) (($) . T))
+((((-874)) . T))
+(|has| |#1| (-568))
+((((-419 (-576))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
-(|has| |#1| (-38 (-417 (-574))))
-(-12 (|has| |#1| (-555)) (|has| |#1| (-838)))
-((((-872)) . T))
-((((-1193)) -2833 (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193))))))
-(|has| |#1| (-372))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-(|has| |#1| (-372))
-((((-417 (-574))) . T) (($) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((((-574) |#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(((|#1|) . T))
-(-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))
-(((|#2|) |has| |#1| (-372)))
-(((|#2|) |has| |#1| (-372)))
-((((-574)) . T) (($) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-38 (-419 (-576))))
+(-12 (|has| |#1| (-557)) (|has| |#1| (-840)))
+((((-874)) . T))
+((((-1195)) -2838 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195))))))
+(|has| |#1| (-374))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+(|has| |#1| (-374))
+((((-419 (-576))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-576) |#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(((|#1|) . T))
+(-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))
+(((|#2|) |has| |#1| (-374)))
+(((|#2|) |has| |#1| (-374)))
+((((-576)) . T) (($) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) (((-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))))
+(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))))
(((|#2|) . T))
((($) . T))
-((((-1193) #0=(-1270 |#1| |#2| |#3| |#4|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
-((((-417 (-574))) . T) (($) . T) (((-417 |#1|)) . T) ((|#1|) . T))
-((((-622 $) $) . T) (($ $) . T))
-((((-171 (-227))) . T) (((-171 (-388))) . T) (((-1189 (-709))) . T) (((-903 (-388))) . T))
+((((-1195) #0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-624 $) $) . T) (($ $) . T))
+((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1191 (-711))) . T) (((-905 (-390))) . T))
(((|#3|) . T))
-(|has| |#1| (-566))
-(|has| (-417 |#2|) (-239))
-(((|#1| (-417 (-574))) . T))
-((($) . T) (((-417 (-574))) . T) (((-417 |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-568))
+(|has| (-419 |#2|) (-239))
+(((|#1| (-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T))
(((|#3|) . T))
-(|has| |#1| (-566))
-((((-872)) . T))
+(|has| |#1| (-568))
+((((-874)) . T))
((($ $) . T))
((($) . T))
-((((-872)) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
-((((-417 (-574))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-574)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#2|) |has| |#1| (-372)))
-((((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(|has| |#1| (-372))
-(((|#1|) . T))
-((($) . T) (((-574)) . T) ((|#2|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
+((((-874)) . T))
+((((-1195)) |has| |#2| (-914 (-1195))))
+((((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#2|) |has| |#1| (-374)))
+((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(((|#1|) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
(((|#3|) . T))
-((((-1175)) . T) (((-516)) . T) (((-227)) . T) (((-574)) . T))
+((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T))
(((|#1|) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-566))
-(((|#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
+(|has| |#1| (-374))
+(|has| |#1| (-568))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
(((|#2|) . T))
(((|#2|) . T))
-(|has| |#2| (-1065))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#1| (-38 (-417 (-574))))
+(|has| |#2| (-1067))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(|has| |#1| (-38 (-419 (-576))))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
((($) . T))
-((((-1175) |#1|) . T))
+((((-1177) |#1|) . T))
(|has| |#1| (-148))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))
((($) . T))
(|has| |#1| (-148))
-((((-591 |#1|)) . T))
+((((-593 |#1|)) . T))
((($) . T))
-(|has| |#1| (-566))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
((($) . T))
((($) . T))
-((((-417 |#2|)) . T))
-((((-417 (-574))) |has| |#2| (-1054 (-574))) (((-574)) |has| |#2| (-1054 (-574))) (((-1193)) |has| |#2| (-1054 (-1193))) ((|#2|) . T))
-(((#0=(-417 |#2|) #0#) . T) ((#1=(-417 (-574)) #1#) . T) (($ $) . T))
+((((-419 |#2|)) . T))
+((((-419 (-576))) |has| |#2| (-1056 (-576))) (((-576)) |has| |#2| (-1056 (-576))) (((-1195)) |has| |#2| (-1056 (-1195))) ((|#2|) . T))
+(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-358)))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-360)))
(|has| |#1| (-148))
-((((-872)) . T))
+((((-874)) . T))
((($) . T))
-((((-1156 |#1| |#2|)) . T))
-(((|#1| (-574)) . T))
-(((|#1| (-417 (-574))) . T))
-((((-574)) |has| |#2| (-897 (-574))) (((-388)) |has| |#2| (-897 (-388))))
+((((-1158 |#1| |#2|)) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+((((-576)) |has| |#2| (-899 (-576))) (((-390)) |has| |#2| (-899 (-390))))
(((|#2|) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
((((-112)) . T))
(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-872)) . T))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1193) (-52)) . T))
-((((-417 |#2|)) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(|has| |#1| (-1116))
-(|has| |#1| (-801))
-(|has| |#1| (-801))
-((((-872)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((((-872)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
+((((-874)) . T))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1195) (-52)) . T))
+((((-419 |#2|)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(|has| |#1| (-1118))
+(|has| |#1| (-803))
+(|has| |#1| (-803))
+((((-874)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
((((-115)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-227)) . T) (((-388)) . T) (((-903 (-388))) . T))
-((((-872)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
-((((-872)) . T))
-(-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))
-((((-872)) . T))
+((((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+((((-874)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+((((-874)) . T))
+(-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))
+((((-874)) . T))
(((|#2|) . T))
-((((-872)) . T))
-(((#0=(-924 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
+((((-874)) . T))
+(((#0=(-926 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-372))
-((((-872)) . T))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-374))
+((((-874)) . T))
(((|#2|) . T))
-((((-574)) . T))
-((((-1193)) |has| (-417 |#2|) (-912 (-1193))))
-((((-872)) . T))
-((((-574)) . T))
-(-2833 (|has| |#2| (-803)) (|has| |#2| (-860)))
-((((-171 (-388))) . T) (((-227)) . T) (((-388)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-1175)) . T) (((-546)) . T) (((-574)) . T) (((-903 (-574))) . T) (((-388)) . T) (((-227)) . T))
-((((-872)) . T))
+((((-576)) . T))
+((((-1195)) |has| (-419 |#2|) (-914 (-1195))))
+((((-874)) . T))
+((((-576)) . T))
+(-2838 (|has| |#2| (-805)) (|has| |#2| (-862)))
+((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1177)) . T) (((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-574) $) . T) (((-654 (-574)) $) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-483)) (|has| |#1| (-736)) (|has| |#1| (-912 (-1193))) (|has| |#1| (-1065)) (|has| |#1| (-1128)) (|has| |#1| (-1116)))
-(|has| |#1| (-1168))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-914 (-1195))) (|has| |#1| (-1067)) (|has| |#1| (-1130)) (|has| |#1| (-1118)))
+(|has| |#1| (-1170))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
((($) . T))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-574) |#1|) . T))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576) |#1|) . T))
(((|#1|) . T))
-(((#0=(-117 |#1|) $) |has| #0# (-294 #0# #0#)))
+(((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#)))
(((|#1|) |has| |#1| (-174)))
-((((-324 |#1|)) . T) (((-574)) . T))
+((((-326 |#1|)) . T) (((-576)) . T))
(|has| |#2| (-239))
(((|#1|) . T))
-((((-872)) . T))
+((((-874)) . T))
((((-115)) . T) ((|#1|) . T))
-((((-872)) . T))
-((((-1193)) |has| |#2| (-912 (-1193))))
-(((|#1|) |has| |#1| (-317 |#1|)))
-((((-574) |#1|) . T) (((-1251 (-574)) $) . T))
+((((-874)) . T))
+((((-1195)) |has| |#2| (-914 (-1195))))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-576) |#1|) . T) (((-1253 (-576)) $) . T))
(((|#1| |#2|) . T))
-((((-1193) |#1|) . T))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372))))
+((((-1195) |#1|) . T))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374))))
(((|#1|) . T))
-((($ (-1193)) . T))
-(((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-1065))))
-((((-574)) . T) (((-417 (-574))) . T))
+((($ (-1195)) . T))
+(((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1067))))
+((((-576)) . T) (((-419 (-576))) . T))
(((|#1|) . T))
-(|has| |#1| (-566))
+(|has| |#1| (-568))
(|has| |#1| (-239))
-((($) . T) (((-574)) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
-((((-388)) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-390)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(|has| |#1| (-372))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(|has| |#1| (-372))
-(|has| |#1| (-566))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(|has| |#1| (-568))
((($) . T))
-(|has| |#1| (-1116))
-((((-790 |#1| (-874 |#2|))) |has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
+(|has| |#1| (-1118))
+((((-792 |#1| (-876 |#2|))) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-923))
-(((|#1| (-541 |#2|)) . T))
-(((|#1| (-781)) . T))
+(|has| |#2| (-925))
+(((|#1| (-543 |#2|)) . T))
+(((|#1| (-783)) . T))
(|has| |#1| (-239))
-(((|#1| (-541 (-1104 (-1193)))) . T))
-(|has| |#2| (-372))
-((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))))
-((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-574)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
-((((-872)) . T))
-(-2833 (|has| |#3| (-803)) (|has| |#3| (-860)))
-((((-872)) . T))
-((((-1136)) . T) (((-872)) . T))
-((((-546)) . T) (((-872)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-622 $) $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-574)) . T))
+(((|#1| (-543 (-1106 (-1195)))) . T))
+(|has| |#2| (-374))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
+((((-874)) . T))
+(-2838 (|has| |#3| (-805)) (|has| |#3| (-862)))
+((((-874)) . T))
+((((-1138)) . T) (((-874)) . T))
+((((-548)) . T) (((-874)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-624 $) $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-576)) . T))
(((|#3|) . T))
-((((-872)) . T))
-(-2833 (|has| |#1| (-315)) (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T))
-((((-1141 |#1| |#2|)) . T) ((|#2|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-574)) . T))
-((((-1189 |#1|)) . T) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) (((-1098)) . T) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))
-(-2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065)))
-((((-1141 |#1| (-1193))) . T) (((-574)) . T) (((-1104 (-1193))) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) (((-1193)) . T))
-(((#0=(-591 |#1|) #0#) . T) (($ $) . T) ((#1=(-417 (-574)) #1#) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
+((((-874)) . T))
+(-2838 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T))
+((((-1143 |#1| |#2|)) . T) ((|#2|) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-576)) . T))
+((((-1191 |#1|)) . T) (((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) (((-1100)) . T) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))
+(-2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067)))
+((((-1143 |#1| (-1195))) . T) (((-576)) . T) (((-1106 (-1195))) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) (((-1195)) . T))
+(((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#1| (-1284 |#1|) (-1284 |#1|)) . T))
-((((-591 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((($) . T) (((-417 (-574))) . T))
+(((|#1| (-1286 |#1|) (-1286 |#1|)) . T))
+((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-417 (-574))) . T))
-(((|#2|) |has| |#2| (-6 (-4461 "*"))))
+((($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-6 (-4463 "*"))))
(((|#1|) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((|#1|) . T) (((-574)) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
(((|#1|) . T))
-((((-872)) . T))
-((((-302 |#3|)) . T))
-(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+((((-874)) . T))
+((((-304 |#3|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
(((|#2|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(|has| |#2| (-923))
-(|has| |#1| (-923))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#2| (-925))
+(|has| |#1| (-925))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#1|) . T))
-((((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) . T))
+((((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1116))
+(|has| |#1| (-1118))
(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-((((-1193)) . T) ((|#1|) . T))
-((((-872)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-574)) . T) (($) . T) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))
-(((#0=(-417 (-574)) #0#) . T))
-((((-417 (-574))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+((((-1195)) . T) ((|#1|) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))
+(((#0=(-419 (-576)) #0#) . T))
+((((-419 (-576))) . T))
(((|#1|) |has| |#1| (-174)))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-(((|#1|) . T))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-546)) . T))
-((((-872)) . T))
-((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1065))))
-((((-574)) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((((-872)) . T))
-((((-1193)) |has| |#2| (-912 (-1193))) (((-1098)) . T))
-((((-924 |#1|)) . T))
-((((-1269 |#2| |#3| |#4|)) . T))
-((($) . T) (((-417 (-574))) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-((((-872)) . T))
-(|has| |#1| (-1238))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+(((|#1|) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-548)) . T))
+((((-874)) . T))
+((($) -12 (|has| |#3| (-239)) (|has| |#3| (-1067))))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-874)) . T))
+((((-1195)) |has| |#2| (-914 (-1195))) (((-1100)) . T))
+((((-926 |#1|)) . T))
+((((-1271 |#2| |#3| |#4|)) . T))
+((($) . T) (((-419 (-576))) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-874)) . T))
+(|has| |#1| (-1240))
(((|#2|) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((((-1193)) |has| |#1| (-912 (-1193))))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))) ((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-((($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-566))))
-(|has| |#1| (-566))
-(((|#1|) |has| |#1| (-372)))
-((((-574)) . T))
-((((-1193) #0=(-117 |#1|)) |has| #0# (-524 (-1193) #0#)) ((#0# #0#) |has| #0# (-317 #0#)))
-(|has| |#1| (-801))
-(|has| |#1| (-801))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-((((-1098)) . T) ((|#2|) . T) (((-574)) |has| |#2| (-1054 (-574))) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-574)) . T) (($) . T))
-((((-574) (-781)) . T) ((|#3| (-781)) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-1195)) |has| |#1| (-914 (-1195))))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-568))))
+(|has| |#1| (-568))
+(((|#1|) |has| |#1| (-374)))
+((((-576)) . T))
+((((-1195) #0=(-117 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+(|has| |#1| (-803))
+(|has| |#1| (-803))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+((((-1100)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1056 (-576))) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576) (-783)) . T) ((|#3| (-783)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-872)) . T))
-((($) |has| |#1| (-377)))
-((($) |has| |#1| (-377)))
-((($) |has| |#1| (-377)))
-(|has| |#2| (-830))
-(|has| |#2| (-830))
-((((-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) (($) . T) ((|#1|) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((($) -2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358))))
-(((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-574)) |has| |#1| (-897 (-574))) (((-388)) |has| |#1| (-897 (-388))))
-(((|#1|) . T))
-((((-880 |#1|)) . T))
-((((-880 |#1|)) . T))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-923)))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-874)) . T))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+(|has| |#2| (-832))
+(|has| |#2| (-832))
+((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((($) -2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360))))
+(((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+(((|#1|) . T))
+((((-882 |#1|)) . T))
+((((-882 |#1|)) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-925)))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#2|) -2833 (|has| |#2| (-6 (-4461 "*"))) (|has| |#2| (-174))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#2|) -2838 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174))))
(((|#2|) . T))
-(|has| |#1| (-372))
+(|has| |#1| (-374))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-874 |#1|)) . T))
+((((-876 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-781)) . T))
-((((-1193)) . T))
-((((-880 |#1|)) . T))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065)))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065)))
-((((-872)) . T))
+(((|#2| (-783)) . T))
+((((-1195)) . T))
+((((-882 |#1|)) . T))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067)))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067)))
+((((-874)) . T))
(((|#1|) . T))
-(-2833 (|has| |#2| (-803)) (|has| |#2| (-860)))
-(-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860))))
-((((-880 |#1|)) . T))
+(-2838 (|has| |#2| (-805)) (|has| |#2| (-862)))
+(-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862))))
+((((-882 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-((($ $) . T) (((-622 $) $) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((($ $) . T) (((-624 $) $) . T))
((($) . T))
-((((-872)) . T))
-((((-574)) . T))
+((((-874)) . T))
+((((-576)) . T))
(((|#2|) . T))
-((((-872)) . T))
-((($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
-((((-872)) . T))
-(((|#1|) . T))
-((((-872)) . T))
-((($) . T) ((|#2|) . T) (((-417 (-574))) . T) (((-574)) |has| |#2| (-649 (-574))))
-(|has| |#1| (-1116))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-872)) . T))
-(|has| |#2| (-923))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
-((((-872)) . T))
-((((-872)) . T))
-(((|#3|) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))
-((((-1141 |#1| |#2|)) . T) (((-966 |#1|)) |has| |#2| (-624 (-1193))) (((-872)) . T))
-((((-966 |#1|)) |has| |#2| (-624 (-1193))) (((-1175)) -12 (|has| |#1| (-1054 (-574))) (|has| |#2| (-624 (-1193)))) (((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))
-((((-1189 |#1|)) . T) (((-872)) . T))
-((((-872)) . T))
-((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T) (((-1193)) . T))
-((((-872)) . T))
-((((-574)) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576))))
+(|has| |#1| (-1118))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(|has| |#2| (-925))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+(((|#3|) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))
+((((-1143 |#1| |#2|)) . T) (((-968 |#1|)) |has| |#2| (-626 (-1195))) (((-874)) . T))
+((((-968 |#1|)) |has| |#2| (-626 (-1195))) (((-1177)) -12 (|has| |#1| (-1056 (-576))) (|has| |#2| (-626 (-1195)))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))
+((((-1191 |#1|)) . T) (((-874)) . T))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T) (((-1195)) . T))
+((((-874)) . T))
+((((-576)) . T))
(((|#1|) . T))
((($) . T))
-((((-388)) |has| |#1| (-897 (-388))) (((-574)) |has| |#1| (-897 (-574))))
-((((-574)) . T))
-(((|#1|) . T))
-((((-872)) . T))
-(((|#1|) . T))
-((((-872)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-654 |#1|)) . T))
-((($) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))
-((($) . T) (((-574)) . T) (((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T))
-((((-574)) -2833 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) (($) -2833 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-566)) (|has| |#1| (-1065))) ((|#1|) -2833 (|has| |#1| (-174)) (|has| |#1| (-1065))) (((-417 (-574))) |has| |#1| (-566)))
-((((-1198)) . T))
-((((-574)) . T) (((-417 (-574))) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))))
-((((-1198)) . T))
-((((-1198)) . T))
+((((-390)) |has| |#1| (-899 (-390))) (((-576)) |has| |#1| (-899 (-576))))
+((((-576)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-656 |#1|)) . T))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T))
+((((-576)) -2838 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) (($) -2838 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1067))) ((|#1|) -2838 (|has| |#1| (-174)) (|has| |#1| (-1067))) (((-419 (-576))) |has| |#1| (-568)))
+((((-1200)) . T))
+((((-576)) . T) (((-419 (-576))) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))))
+((((-1200)) . T))
+((((-1200)) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-((((-1198)) . T))
-(((|#1|) |has| |#1| (-317 |#1|)))
-((((-388)) . T))
+((((-1200)) . T))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-390)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-872)) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-417 |#2|) |#3|) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 |#2|) |#3|) . T))
+((((-874)) . T))
(((|#1|) . T))
-(|has| |#1| (-1116))
-(((|#2| (-492 (-2877 |#1|) (-781))) . T))
-((((-574) |#1|) . T))
-((((-1175)) . T) (((-872)) . T))
+(|has| |#1| (-1118))
+(((|#2| (-494 (-2882 |#1|) (-783))) . T))
+((((-576) |#1|) . T))
+((((-1177)) . T) (((-874)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-541 (-1193))) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-((((-574)) . T))
+(((|#1| (-543 (-1195))) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+((((-576)) . T))
(((|#2|) . T))
-((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))))
+((($) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))))
(((|#2|) . T))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-1098)) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-(|has| |#1| (-566))
-(((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))) (((-574)) . T) (($) . T))
-((($) . T) (((-417 (-574))) . T))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-1100)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#1| (-568))
+(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
(((|#1|) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
((((-145)) . T))
-(((|#1|) . T) (((-417 (-574))) . T))
+(((|#1|) . T) (((-419 (-576))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-872)) . T))
+((((-874)) . T))
(((|#1|) . T))
-(|has| |#1| (-1168))
-((($ (-1193)) |has| (-417 |#2|) (-912 (-1193))))
+(|has| |#1| (-1170))
+((($ (-1195)) |has| (-419 |#2|) (-914 (-1195))))
(((|#1|) . T))
-(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
-((((-417 $) (-417 $)) |has| |#1| (-566)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((((-872)) . T))
-((((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-574)) |has| |#1| (-1054 (-574))) ((|#1|) . T) ((|#2|) . T))
-((((-1098)) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))))
-((((-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388)))) (((-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-((((-574) |#1|) . T))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-576)) |has| |#1| (-1056 (-576))) ((|#1|) . T) ((|#2|) . T))
+((((-1100)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))))
+((((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+((((-576) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
((($) . T))
-((((-709)) . T))
-((((-790 |#1| (-874 |#2|))) . T))
-((((-574)) . T) (($) . T))
+((((-711)) . T))
+((((-792 |#1| (-876 |#2|))) . T))
+((((-576)) . T) (($) . T))
((($) . T))
-(((|#1|) . T) (((-417 (-574))) |has| |#1| (-372)))
-((((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#2| (-372))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-298)) (|has| |#1| (-372))) (((-417 (-574))) |has| |#1| (-372)))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-38 (-417 (-574))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1118))
+(|has| |#1| (-1118))
+(|has| |#2| (-374))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374)))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-38 (-419 (-576))))
((($) |has| |#2| (-239)))
-((((-574)) . T))
-((($ (-1193)) |has| |#2| (-912 (-1193))))
-((((-1193)) -12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065))))
-((((-1193)) -12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065))))
+((((-576)) . T))
+((($ (-1195)) |has| |#2| (-914 (-1195))))
+((((-1195)) -12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067))))
+((((-1195)) -12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067))))
(((|#1|) . T))
(|has| |#1| (-239))
-(((|#2| (-246 (-2877 |#1|) (-781))) . T))
-(((|#1| (-541 |#3|)) . T))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
-(|has| |#1| (-377))
+(((|#2| (-246 (-2882 |#1|) (-783))) . T))
+(((|#1| (-543 |#3|)) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
(((|#1|) . T) (($) . T))
-(((|#1| (-541 |#2|)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-(((|#1| (-781)) . T))
-(|has| |#1| (-566))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-1065)))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
+(((|#1| (-543 |#2|)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+(((|#1| (-783)) . T))
+(|has| |#1| (-568))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1067)))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-872)) . T))
-((((-574)) . T) (((-417 (-574))) . T) (($) . T))
-(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065)))
-(|has| |#2| (-1065))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067)))
+(|has| |#2| (-1067))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) |has| |#4| (-1065)))
-(((|#3|) |has| |#3| (-1065)))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-(-12 (|has| |#1| (-372)) (|has| |#2| (-830)))
-((((-574)) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))) ((|#2|) . T) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-874 |#1|)) . T))
-((((-1141 |#1| |#2|)) . T) (((-574)) . T) ((|#3|) . T) (($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))) ((|#2|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((((-1198)) . T))
-((((-682 |#1|)) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (($) . T))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((((-872)) . T))
-((((-654 $)) . T) (((-1175)) . T) (((-1193)) . T) (((-574)) . T) (((-227)) . T) (((-872)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((($) . T) (((-417 (-574))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1116)) (((-574)) -12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (((-417 (-574))) -12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))
-(((|#3|) |has| |#3| (-1116)) (((-574)) -12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (((-417 (-574))) -12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))
-(|has| |#2| (-372))
-(((|#2|) |has| |#2| (-1065)) (((-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))))
-(((|#1|) . T))
-(((#0=(-417 (-574)) #0#) |has| |#2| (-38 (-417 (-574)))) ((|#2| |#2|) . T) (($ $) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1| |#1|) . T) ((#0=(-417 (-574)) #0#) |has| |#1| (-38 (-417 (-574)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((((-1193)) |has| |#1| (-1065)))
-(|has| |#2| (-372))
+(((|#4|) |has| |#4| (-1067)))
+(((|#3|) |has| |#3| (-1067)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-576)) . T) (((-419 (-576))) -2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))) ((|#2|) . T) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-876 |#1|)) . T))
+((((-1143 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))) ((|#2|) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-1200)) . T))
+((((-684 |#1|)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-874)) . T))
+((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1118)) (((-576)) -12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (((-419 (-576))) -12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))
+(((|#3|) |has| |#3| (-1118)) (((-576)) -12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (((-419 (-576))) -12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))
+(|has| |#2| (-374))
+(((|#2|) |has| |#2| (-1067)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))))
+(((|#1|) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-1195)) |has| |#1| (-1067)))
+(|has| |#2| (-374))
(((|#2| |#2|) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (($) -2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) . T) (($) . T) (((-417 (-574))) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
-((((-872)) |has| |#1| (-1116)))
+((((-874)) |has| |#1| (-1118)))
((($) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-830))
-(|has| |#2| (-830))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-372))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#1|) |has| |#2| (-427 |#1|)))
-(((|#1|) |has| |#2| (-427 |#1|)))
-((((-1175)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-654 |#1|)) . T) (((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-654 |#1|)) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1233)) . T) (((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) |has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-574) |#1|) . T))
-((((-574) |#1|) . T))
-((((-574) |#1|) . T))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-574) |#1|) . T))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#1|) |has| |#1| (-174)))
-((((-1193)) |has| |#1| (-912 (-1193))) (((-828 (-1193))) . T))
-(-2833 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-803)) (|has| |#3| (-1065)))
-((((-829 |#1|)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-832))
+(|has| |#2| (-832))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) |has| |#2| (-429 |#1|)))
+(((|#1|) |has| |#2| (-429 |#1|)))
+((((-1177)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-656 |#1|)) . T) (((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-656 |#1|)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1235)) . T) (((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) |has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-576) |#1|) . T))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-1195)) |has| |#1| (-914 (-1195))) (((-830 (-1195))) . T))
+(-2838 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1067)))
+((((-831 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-872)) . T))
-(|has| |#3| (-1065))
+((((-874)) . T))
+(|has| |#3| (-1067))
(((|#1| |#2|) . T))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-(|has| |#1| (-38 (-417 (-574))))
-((((-872)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
-(((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-(|has| |#1| (-372))
-(-2833 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (-12 (|has| |#1| (-372)) (|has| |#2| (-239))))
-(|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))
-(|has| |#1| (-372))
-(((|#1|) . T))
-(((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1| |#1|) . T))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-((((-324 |#1|)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((#0=(-709) (-1189 #0#)) . T))
-((((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-574)) . T) (((-417 (-574))) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(|has| |#1| (-374))
+(-2838 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-239))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(((|#1|) . T))
+(((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+((((-326 |#1|)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((#0=(-711) (-1191 #0#)) . T))
+((((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-858))
-(((|#2|) . T) (((-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))) (((-574)) . T) ((|#1|) |has| |#1| (-174)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) (((-574)) . T) (($) -2833 (|has| |#1| (-372)) (|has| |#1| (-566))))
-((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1141 |#1| (-1193))) . T) (((-828 (-1193))) . T) ((|#1|) . T) (((-574)) |has| |#1| (-1054 (-574))) (((-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) (((-1193)) . T))
+(|has| |#1| (-860))
+(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2838 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1143 |#1| (-1195))) . T) (((-830 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1056 (-576))) (((-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) (((-1195)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1098) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1193) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1104 (-1193)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1100) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1195) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1106 (-1195)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) (((-574)) |has| |#2| (-649 (-574))) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))))
-(|has| |#2| (-923))
-((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(|has| |#2| (-925))
+((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)))
-((((-574) |#1|) . T))
+((((-576) |#1|) . T))
(((|#1|) . T))
-((((-1198)) . T))
-(((#0=(-1270 |#1| |#2| |#3| |#4|)) |has| #0# (-317 #0#)))
+((((-1200)) . T))
+(((#0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2| |#2|) |has| |#1| (-372)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) ((#0=(-417 (-574)) #0#) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
+((($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
(|has| |#2| (-239))
(|has| $ (-148))
-((((-872)) . T))
-((($) . T) (((-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-358))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((((-872)) . T))
-(|has| |#1| (-858))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-874)) . T))
+(|has| |#1| (-860))
((((-130)) . T))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T) (((-574)) . T))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T))
(((|#1|) . T))
((((-130)) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))))
-((((-872)) . T))
-(-12 (|has| |#1| (-315)) (|has| |#1| (-923)))
-(((|#2| (-682 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-417 |#2|) |#3|) . T))
-((((-872)) |has| |#1| (-1116)))
+((($ (-1195)) |has| |#1| (-914 (-1195))))
+((((-874)) . T))
+(-12 (|has| |#1| (-317)) (|has| |#1| (-925)))
+(((|#2| (-684 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-419 |#2|) |#3|) . T))
+((((-874)) |has| |#1| (-1118)))
(((|#4|) . T))
-(|has| |#1| (-566))
-((($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))) ((|#2|) |has| |#1| (-372)) ((|#1|) . T))
-((((-1193)) -2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-(((|#1|) . T) (($) -2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-566))) (((-417 (-574))) -2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-372))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-(-2833 (|has| |#2| (-174)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
-(((|#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))
-(((|#1|) . T))
-(((|#1| (-541 (-828 (-1193)))) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-((((-574)) . T) ((|#2|) . T) (($) . T) (((-417 (-574))) . T) (((-1193)) |has| |#2| (-1054 (-1193))))
-(((|#1|) . T))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
-(((|#1|) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((($) . T) (((-880 |#1|)) . T) (((-417 (-574))) . T))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(|has| |#1| (-566))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-417 |#2|)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-417 (-574)) #0#) . T) (($ $) . T))
-(((|#2|) . T) (((-417 (-574))) . T) (($) . T))
-((((-574)) . T))
-((((-872)) . T))
-((((-591 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-((((-872)) . T))
-((((-417 (-574))) . T) (($) . T))
-((((-574) |#1|) . T))
+(|has| |#1| (-568))
+((($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T))
+((((-1195)) -2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+(((|#1|) . T) (($) -2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+(-2838 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))
+(((|#1|) . T))
+(((|#1| (-543 (-830 (-1195)))) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#2| (-1056 (-1195))))
+(((|#1|) . T))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
+(((|#1|) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+(-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-568))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 |#2|)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+(((|#2|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T))
+((((-874)) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-576) |#1|) . T))
((($) . T))
((($) . T))
-((((-872)) . T))
-((((-546)) |has| |#2| (-624 (-546))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))))
-((((-872)) . T))
-((((-872)) . T))
-((((-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) (((-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) (((-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
+((((-874)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+((((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(|has| |#1| (-239))
-(((|#1|) . T) (((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T))
-((((-115)) . T) ((|#1|) . T) (((-574)) . T))
+(((|#1|) . T) (((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T))
+((((-115)) . T) ((|#1|) . T) (((-576)) . T))
((((-130)) . T))
-((($) . T) (((-574)) . T) (((-117 |#1|)) . T) (((-417 (-574))) . T))
-(((|#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) . T))
+((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
-((((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) |has| |#2| (-174)) (($) -2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-417 (-574))) |has| |#2| (-38 (-417 (-574)))) ((|#2|) . T) (((-574)) |has| |#2| (-649 (-574))))
-((($) . T) (((-574)) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-1120)) . T))
-((((-872)) . T))
-((((-1198)) . T) (((-872)) . T))
-((((-1198)) . T) (((-872)) . T))
-((($) -2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-1198)) . T))
-((((-1198)) . T))
-((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((($) . T) (((-574)) . T))
-((($) -2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923))) ((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-((((-872)) . T))
-(|has| |#2| (-923))
-((($ $) . T) (((-1193) $) . T))
-((((-1276 |#1| |#2| |#3|)) . T))
-((((-1276 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(((|#1|) . T))
-((((-1276 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-923))
-((((-1193)) . T) (((-872)) . T))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((($) . T) (((-576)) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1122)) . T))
+((((-874)) . T))
+((((-1200)) . T) (((-874)) . T))
+((((-1200)) . T) (((-874)) . T))
+((($) -2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1200)) . T))
+((((-1200)) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) . T) (((-576)) . T))
+((($) -2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+(|has| |#2| (-925))
+((($ $) . T) (((-1195) $) . T))
+((((-1278 |#1| |#2| |#3|)) . T))
+((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(((|#1|) . T))
+((((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-925))
+((((-1195)) . T) (((-874)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((((-709)) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-1198)) . T))
+((((-711)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-1200)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1198)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-417 (-574))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)) (((-417 (-574))) |has| |#1| (-566)))
-((((-1198)) . T))
-((((-1270 |#1| |#2| |#3| |#4|)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-417 (-574))) |has| |#1| (-566)) (($) |has| |#1| (-566)))
-((((-417 (-574))) . T) (($) . T))
-(((|#1| (-574)) . T))
-((($ (-1193)) |has| |#1| (-912 (-1193))) (($ (-1098)) . T))
-((((-417 (-574))) . T) (((-574)) . T) (($) . T))
+((((-1200)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+((((-1200)) . T))
+((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568)))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| (-576)) . T))
+((($ (-1195)) |has| |#1| (-914 (-1195))) (($ (-1100)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-1198)) . T))
-((((-1198)) . T))
-(|has| |#1| (-372))
-(|has| |#1| (-372))
-(-2833 (|has| |#1| (-174)) (|has| |#1| (-566)))
-(((|#1| (-574)) . T))
-(((|#1| (-417 (-574))) . T))
-(((|#1| (-781)) . T))
-((((-417 (-574))) . T))
-(((|#1| (-541 |#2|) |#2|) . T))
-((((-574) |#1|) . T))
-((((-574) |#1|) . T))
-(|has| |#1| (-1116))
-(|has| (-417 |#2|) (-239))
-((((-574) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-903 (-388))) . T) (((-903 (-574))) . T) (((-1193)) . T) (((-546)) . T))
-(-2833 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-372)) (|has| |#2| (-803)) (|has| |#2| (-1065)))
-(-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))
-((((-872)) . T))
-((((-574)) . T))
-((((-574)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1200)) . T))
+((((-1200)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(-2838 (|has| |#1| (-174)) (|has| |#1| (-568)))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-783)) . T))
+((((-419 (-576))) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+(|has| |#1| (-1118))
+(|has| (-419 |#2|) (-239))
+((((-576) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-905 (-390))) . T) (((-905 (-576))) . T) (((-1195)) . T) (((-548)) . T))
+(-2838 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1067)))
+(-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+((((-874)) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#2| (-1065))
-((((-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))))
-(-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))
+(|has| |#2| (-1067))
+((((-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))))
+(-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-372))
+(|has| |#1| (-374))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) |has| #0# (-174)) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
+((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
(|has| |#1| (-239))
-((($) . T) (((-574)) . T) (((-417 (-574))) . T))
-((($) . T) (((-574)) . T))
-((($) . T) (((-574)) . T))
-((($) . T) ((#0=(-1269 |#2| |#3| |#4|)) . T) (((-417 (-574))) |has| #0# (-38 (-417 (-574)))))
-((((-872)) . T))
-(((|#1| (-781) (-1098)) . T))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
-((((-1251 (-574)) $) . T) (((-574) |#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-576)) . T))
+((($) . T) (((-576)) . T))
+((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+((((-874)) . T))
+(((|#1| (-783) (-1100)) . T))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
+((((-1253 (-576)) $) . T) (((-576) |#1|) . T))
((((-117 |#1|)) . T))
-((((-417 (-574))) . T) (((-574)) . T))
-(((|#2|) |has| |#2| (-1065)))
-((((-417 (-574))) . T) (($) . T))
+((((-419 (-576))) . T) (((-576)) . T))
+(((|#2|) |has| |#2| (-1067)))
+((((-419 (-576))) . T) (($) . T))
(((|#2|) . T))
-((((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-566)))
-((((-574)) . T))
-((((-574)) . T))
-((((-1175) (-1193) (-574) (-227) (-872)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-576)) . T))
+((((-576)) . T))
+((((-1177) (-1195) (-576) (-227) (-874)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-574)) . T) ((|#2|) |has| |#2| (-174)))
-((((-115)) . T) ((|#1|) . T) (((-574)) . T))
-(-2833 (|has| |#1| (-358)) (|has| |#1| (-377)))
+((((-576)) . T) ((|#2|) |has| |#2| (-174)))
+((((-115)) . T) ((|#1|) . T) (((-576)) . T))
+(-2838 (|has| |#1| (-360)) (|has| |#1| (-379)))
(((|#1| |#2|) . T))
((((-227)) . T))
-((((-417 (-574))) . T) (($) . T) (((-574)) . T))
-((((-872)) . T))
+((((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-874)) . T))
((($) . T) ((|#1|) . T))
-((($) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((|#1|) . T) (((-574)) |has| |#1| (-649 (-574))))
-((($) . T) (((-574)) |has| |#1| (-649 (-574))) ((|#1|) . T) (((-417 (-574))) |has| |#1| (-38 (-417 (-574)))))
-(((|#2|) |has| |#2| (-1116)) (((-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (((-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) |has| |#2| (-1118)) (((-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (((-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))))
(|has| |#2| (-239))
(((|#1|) . T))
(((|#1|) . T))
-((((-546)) |has| |#1| (-624 (-546))))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-860)) (|has| |#1| (-1116))))
-((((-574) $) . T) (((-654 (-574)) $) . T))
-((($) . T) (((-417 (-574))) . T))
-(|has| |#1| (-923))
-(|has| |#1| (-923))
-((((-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) (((-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) (((-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) (((-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) (((-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))))
-((((-872)) . T))
-((((-872)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1118))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-925))
+(|has| |#1| (-925))
+((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) (((-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))))
+((((-874)) . T))
+((((-874)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(((|#1|) . T) (((-574)) . T))
-((((-1198)) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-566)))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
+(((|#1|) . T) (((-576)) . T))
+((((-1200)) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
(((|#2|) . T))
-(-2833 (|has| |#1| (-21)) (|has| |#1| (-858)))
+(-2838 (|has| |#1| (-21)) (|has| |#1| (-860)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-872)) -2833 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))))
-((((-417 |#2|) |#3|) . T))
-((((-417 (-574))) . T) (($) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-372))
-((($ $) . T) ((#0=(-417 (-574)) #0#) . T))
-((($) . T) (((-574)) . T))
-(|has| (-417 |#2|) (-148))
-(|has| (-417 |#2|) (-146))
+((((-874)) -2838 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))))
+((((-419 |#2|) |#3|) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-374))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((($) . T) (((-576)) . T))
+(|has| (-419 |#2|) (-148))
+(|has| (-419 |#2|) (-146))
((($) . T))
-((((-709)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-(((#0=(-574) #0#) . T))
-((($) . T) (((-417 (-574))) . T))
-(|has| |#4| (-1065))
-(|has| |#3| (-1065))
-((((-872)) . T) (((-1198)) . T))
-(|has| |#4| (-803))
-(|has| |#4| (-803))
-(|has| |#3| (-803))
-(|has| |#3| (-803))
-((((-1198)) . T))
-((((-574)) . T))
+((((-711)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((#0=(-576) #0#) . T))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#4| (-1067))
+(|has| |#3| (-1067))
+((((-874)) . T) (((-1200)) . T))
+(|has| |#4| (-805))
+(|has| |#4| (-805))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-1200)) . T))
+((((-576)) . T))
(((|#2|) . T))
-((((-1193)) -2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))))
-((((-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))))
+((((-1195)) -2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))))
+((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-874 |#1|)) . T))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-((((-1156 |#1| |#2|)) . T))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
+((((-876 |#1|)) . T))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-1158 |#1| |#2|)) . T))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
((($) . T))
-(|has| |#1| (-1038))
-(((|#2|) . T) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
+(|has| |#1| (-1040))
+(((|#2|) . T) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
((($) . T))
-((((-872)) . T))
-((((-546)) |has| |#2| (-624 (-546))) (((-903 (-574))) |has| |#2| (-624 (-903 (-574)))) (((-903 (-388))) |has| |#2| (-624 (-903 (-388)))) (((-388)) . #0=(|has| |#2| (-1038))) (((-227)) . #0#))
-((((-302 |#3|)) . T))
-((((-1193) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-417 (-574))))
-(|has| |#1| (-38 (-417 (-574))))
-((((-1193)) |has| |#2| (-912 (-1193))))
-((((-872)) . T))
+((((-874)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#2| (-1040))) (((-227)) . #0#))
+((((-304 |#3|)) . T))
+((((-1195) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1195)) |has| |#2| (-914 (-1195))))
+((((-874)) . T))
(((|#2|) . T))
-((((-872)) . T))
-((((-417 (-574)) |#1|) . T) (($ $) . T))
-((((-417 |#2|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-417 (-574))) . T) (((-709)) . T) (($) . T))
-((((-1191 |#1| |#2| |#3|)) . T))
-((((-1191 |#1| |#2| |#3|)) . T) (((-1184 |#1| |#2| |#3|)) . T))
-((((-872)) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-574) |#1|) . T))
-((((-1191 |#1| |#2| |#3|)) |has| |#1| (-372)))
+((((-874)) . T))
+((((-419 (-576)) |#1|) . T) (($ $) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-1193 |#1| |#2| |#3|)) . T))
+((((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T))
+((((-874)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-576) |#1|) . T))
+((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-372))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) -2833 (|has| |#4| (-174)) (|has| |#4| (-372)) (|has| |#4| (-1065))) (($) |has| |#4| (-1065)) (((-574)) -12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065))))
-(((|#2|) . T) ((|#3|) -2833 (|has| |#3| (-174)) (|has| |#3| (-372)) (|has| |#3| (-1065))) (($) |has| |#3| (-1065)) (((-574)) -12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))
+(|has| |#2| (-374))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) -2838 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1067))) (($) |has| |#4| (-1067)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067))))
+(((|#2|) . T) ((|#3|) -2838 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1067))) (($) |has| |#3| (-1067)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))
(((|#1|) . T))
(((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) (((-574)) |has| |#2| (-1054 (-574))) ((|#2|) . T) (((-874 |#1|)) . T))
-((((-1193)) . T) ((|#1|) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-((((-189)) . T) (((-872)) . T))
-((((-872)) . T))
+((((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) (((-576)) |has| |#2| (-1056 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1195)) . T) ((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-189)) . T) (((-874)) . T))
+((((-874)) . T))
(((|#1|) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-((((-130)) . T) (((-872)) . T))
-((((-574) |#1|) . T) (((-1251 (-574)) $) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+((((-130)) . T) (((-874)) . T))
+((((-576) |#1|) . T) (((-1253 (-576)) $) . T))
((((-130)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) (($ $) . T) (((-574) |#1|) . T))
-((($ $) . T) (((-417 (-574)) |#1|) . T))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-462)) (|has| |#1| (-923)))
-((($ (-1193)) |has| |#1| (-1065)))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((((-872)) . T))
-((((-872)) . T))
-((((-872)) . T))
-(((|#1| (-541 |#2|)) . T))
-((((-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) . T))
-((((-574) (-130)) . T))
-(((|#1| (-574)) . T))
-(((|#1| (-417 (-574))) . T))
-(((|#1| (-781)) . T))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-(-2833 (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923)))
-(-2833 (|has| |#1| (-462)) (|has| |#1| (-566)) (|has| |#1| (-923)))
+(((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-925)))
+((($ (-1195)) |has| |#1| (-1067)))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-543 |#2|)) . T))
+((((-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) . T))
+((((-576) (-130)) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-783)) . T))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+(-2838 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925)))
+(-2838 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-925)))
((($) . T))
-(((|#2| (-541 (-874 |#1|))) . T))
-((((-1198)) . T))
-((((-1198)) . T))
-((((-574) |#1|) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
+(((|#2| (-543 (-876 |#1|))) . T))
+((((-1200)) . T))
+((((-1200)) . T))
+((((-576) |#1|) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
(((|#2|) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) . T) (((-1198)) . T))
-((((-1198)) . T))
-((((-872)) -2833 (|has| |#1| (-623 (-872))) (|has| |#1| (-1116))))
-(((|#1|) . T))
-(((|#2| (-781)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) . T) (((-1200)) . T))
+((((-1200)) . T))
+((((-874)) -2838 (|has| |#1| (-625 (-874))) (|has| |#1| (-1118))))
+(((|#1|) . T))
+(((|#2| (-783)) . T))
(((|#1| |#2|) . T))
-((((-1175) |#1|) . T))
-((((-417 |#2|)) . T))
-((((-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T))
-(|has| |#1| (-566))
-(|has| |#1| (-566))
+((((-1177) |#1|) . T))
+((((-419 |#2|)) . T))
+((((-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
((($) . T) ((|#2|) . T))
-((($) . T) (((-417 (-574))) . T))
-((((-417 (-574))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-574)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-294 |#2| |#2|)))
-(((|#1| (-654 |#1|)) |has| |#1| (-858)))
-(-2833 (|has| |#1| (-239)) (|has| |#1| (-358)))
-(-2833 (|has| |#1| (-372)) (|has| |#1| (-358)))
-((((-1280 |#1|)) . T) (((-574)) . T) ((|#2|) . T) (((-417 (-574))) |has| |#2| (-1054 (-417 (-574)))))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-((((-1280 |#1|)) . T) (((-574)) . T) (($) -2833 (|has| |#2| (-372)) (|has| |#2| (-462)) (|has| |#2| (-566)) (|has| |#2| (-923))) (((-1098)) . T) ((|#2|) . T) (((-417 (-574))) -2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))))
-((((-417 (-574))) . T) (($) . T))
-((((-1015 |#1|)) . T) ((|#1|) . T) (((-574)) -2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574)))) (((-417 (-574))) -2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))
-((((-924 |#1|)) . T) (((-417 (-574))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-1193)) |has| |#1| (-912 (-1193))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-((((-924 |#1|)) . T) (($) . T) (((-417 (-574))) . T))
+((((-576)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-296 |#2| |#2|)))
+(((|#1| (-656 |#1|)) |has| |#1| (-860)))
+(-2838 (|has| |#1| (-239)) (|has| |#1| (-360)))
+(-2838 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1282 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1056 (-419 (-576)))))
+(|has| |#1| (-1118))
+(((|#1|) . T))
+((((-1282 |#1|)) . T) (((-576)) . T) (($) -2838 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-925))) (((-1100)) . T) ((|#2|) . T) (((-419 (-576))) -2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))))
+((((-419 (-576))) . T) (($) . T))
+((((-1017 |#1|)) . T) ((|#1|) . T) (((-576)) -2838 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576)))) (((-419 (-576))) -2838 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))
+((((-926 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-1195)) |has| |#1| (-914 (-1195))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+((((-926 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
((($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))
-(((|#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))
+(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-417 (-574))) . T) (((-574)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1156 |#1| |#2|) #0#) |has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))))
+(((#0=(-1158 |#1| |#2|) #0#) |has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((#0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) #0#) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))))
-(|has| |#1| (-294 |#1| |#1|))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((#0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) #0#) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))))
+(|has| |#1| (-296 |#1| |#1|))
(|has| |#1| (-239))
-(((#0=(-117 |#1|)) |has| #0# (-317 #0#)))
+(((#0=(-117 |#1|)) |has| #0# (-319 #0#)))
((($ $) . T))
-(-2833 (|has| |#1| (-860)) (|has| |#1| (-1116)))
-((($ $) . T) ((#0=(-874 |#1|) $) . T) ((#0# |#2|) . T))
+(-2838 (|has| |#1| (-862)) (|has| |#1| (-1118)))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-488 . -1116) T) ((-271 . -524) 198194) ((-253 . -524) 198137) ((-251 . -1116) 198087) ((-581 . -111) 198072) ((-541 . -23) T) ((-139 . -1116) T) ((-138 . -1116) T) ((-118 . -317) 198029) ((-134 . -1116) T) ((-1015 . -238) 198008) ((-809 . -1234) 197977) ((-489 . -524) 197769) ((-687 . -626) 197753) ((-704 . -102) T) ((-1157 . -524) 197672) ((-400 . -132) T) ((-1297 . -992) 197641) ((-1040 . -1067) 197578) ((-31 . -93) T) ((-612 . -499) 197562) ((-1040 . -650) 197499) ((-631 . -132) T) ((-829 . -856) T) ((-533 . -57) 197449) ((-529 . -524) 197382) ((-360 . -235) 197369) ((-363 . -1067) 197314) ((-59 . -524) 197247) ((-526 . -524) 197180) ((-428 . -912) 197139) ((-171 . -1065) T) ((-507 . -524) 197072) ((-506 . -524) 197005) ((-363 . -650) 196950) ((-809 . -1054) 196730) ((-709 . -38) 196695) ((-1257 . -626) 196443) ((-352 . -358) T) ((-1110 . -1109) 196427) ((-1110 . -1116) 196405) ((-865 . -626) 196302) ((-171 . -249) 196253) ((-171 . -239) 196204) ((-1110 . -1111) 196162) ((-882 . -294) 196120) ((-227 . -805) T) ((-227 . -802) T) ((-704 . -292) NIL) ((-581 . -626) 196092) ((-1166 . -1210) 196071) ((-417 . -1008) 196055) ((-48 . -1067) 196020) ((-711 . -21) T) ((-711 . -25) T) ((-48 . -650) 195985) ((-1299 . -658) 195959) ((-324 . -161) 195938) ((-324 . -144) 195917) ((-1166 . -107) 195867) ((-117 . -21) T) ((-40 . -233) 195844) ((-135 . -25) T) ((-117 . -25) T) ((-618 . -296) 195820) ((-485 . -296) 195799) ((-1257 . -334) 195776) ((-1257 . -1065) T) ((-865 . -1065) T) ((-809 . -347) 195760) ((-140 . -187) T) ((-118 . -1168) NIL) ((-91 . -623) 195692) ((-487 . -132) T) ((-1257 . -239) T) ((-1112 . -500) 195673) ((-1112 . -623) 195639) ((-1106 . -500) 195620) ((-1106 . -623) 195586) ((-603 . -1234) T) ((-1089 . -500) 195567) ((-581 . -1065) T) ((-1089 . -623) 195533) ((-672 . -727) 195517) ((-1082 . -500) 195498) ((-1082 . -623) 195464) ((-972 . -296) 195441) ((-60 . -34) T) ((-1078 . -805) T) ((-1078 . -802) T) ((-1052 . -500) 195422) ((-1035 . -500) 195403) ((-826 . -736) T) ((-741 . -47) 195368) ((-633 . -38) 195355) ((-364 . -298) T) ((-361 . -298) T) ((-353 . -298) T) ((-271 . -298) 195286) ((-253 . -298) 195217) ((-1052 . -623) 195183) ((-1040 . -102) T) ((-1035 . -623) 195149) ((-636 . -500) 195130) ((-423 . -736) T) ((-118 . -38) 195075) ((-493 . -500) 195056) ((-636 . -623) 195022) ((-423 . -483) T) ((-220 . -500) 195003) ((-493 . -623) 194969) ((-363 . -102) T) ((-220 . -623) 194935) ((-1228 . -1074) T) ((-352 . -656) 194865) ((-721 . -1074) T) ((-1191 . -47) 194842) ((-1190 . -47) 194812) ((-1184 . -47) 194789) ((-129 . -296) 194764) ((-1051 . -152) 194710) ((-924 . -298) T) ((-1142 . -47) 194682) ((-704 . -317) NIL) ((-525 . -623) 194664) ((-520 . -623) 194646) ((-518 . -623) 194628) ((-335 . -1116) 194578) ((-324 . -907) 194542) ((-321 . -907) NIL) ((-722 . -462) 194473) ((-48 . -102) T) ((-1268 . -294) 194431) ((-1247 . -294) 194331) ((-654 . -676) 194315) ((-654 . -661) 194299) ((-348 . -21) T) ((-348 . -25) T) ((-40 . -358) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-654 . -382) 194283) ((-615 . -500) 194265) ((-612 . -294) 194217) ((-615 . -623) 194184) ((-398 . -102) T) ((-1136 . -144) T) ((-127 . -623) 194116) ((-884 . -1116) T) ((-668 . -421) 194100) ((-741 . -1234) T) ((-724 . -623) 194082) ((-255 . -623) 194049) ((-189 . -623) 194031) ((-163 . -623) 194013) ((-158 . -623) 193995) ((-1299 . -736) T) ((-1118 . -34) T) ((-881 . -805) NIL) ((-881 . -802) NIL) ((-868 . -860) T) ((-741 . -897) NIL) ((-1308 . -132) T) ((-390 . -132) T) ((-903 . -626) 193963) ((-918 . -102) T) ((-741 . -1054) 193839) ((-1191 . -1234) T) ((-1190 . -1234) T) ((-541 . -132) T) ((-1184 . -1234) T) ((-1103 . -421) 193823) ((-1016 . -499) 193807) ((-118 . -410) 193784) ((-1142 . -1234) T) ((-792 . -421) 193768) ((-790 . -421) 193752) ((-957 . -34) T) ((-704 . -1168) NIL) ((-258 . -658) 193572) ((-257 . -658) 193379) ((-827 . -934) 193358) ((-464 . -421) 193342) ((-612 . -19) 193326) ((-1162 . -1227) 193295) ((-1184 . -897) NIL) ((-1184 . -895) 193247) ((-612 . -614) 193224) ((-1220 . -623) 193156) ((-1192 . -623) 193138) ((-62 . -405) T) ((-1190 . -1054) 193073) ((-1184 . -1054) 193039) ((-704 . -38) 192989) ((-40 . -656) 192919) ((-484 . -294) 192877) ((-1240 . -623) 192859) ((-741 . -386) 192843) ((-848 . -623) 192825) ((-668 . -1074) T) ((-633 . -914) 192784) ((-1268 . -1018) 192750) ((-1247 . -1018) 192716) ((-256 . -1234) T) ((-1104 . -626) 192700) ((-1079 . -1210) 192675) ((-1092 . -626) 192652) ((-882 . -624) 192459) ((-882 . -623) 192441) ((-118 . -914) NIL) ((-711 . -235) 192428) ((-1206 . -499) 192365) ((-428 . -1038) 192343) ((-48 . -317) 192330) ((-1079 . -107) 192276) ((-489 . -499) 192213) ((-530 . -1234) T) ((-1184 . -347) 192165) ((-1157 . -499) 192136) ((-1184 . -386) 192088) ((-1103 . -1074) T) ((-447 . -102) T) ((-185 . -1116) T) ((-258 . -34) T) ((-257 . -34) T) ((-792 . -1074) T) ((-790 . -1074) T) ((-741 . -912) 192065) ((-464 . -1074) T) ((-59 . -499) 192049) ((-1050 . -1072) 192023) ((-529 . -499) 192007) ((-526 . -499) 191991) ((-507 . -499) 191975) ((-506 . -499) 191959) ((-251 . -524) 191892) ((-1050 . -111) 191859) ((-1191 . -912) 191772) ((-1190 . -912) 191678) ((-680 . -1128) T) ((-1184 . -912) 191511) ((-655 . -93) T) ((-1142 . -912) 191495) ((-363 . -1168) T) ((-330 . -1072) 191477) ((-31 . -500) 191458) ((-258 . -804) 191437) ((-258 . -803) 191416) ((-257 . -804) 191395) ((-257 . -803) 191374) ((-31 . -623) 191340) ((-50 . -1074) T) ((-258 . -736) 191318) ((-257 . -736) 191296) ((-1228 . -1116) T) ((-680 . -23) T) ((-591 . -1074) T) ((-528 . -1074) T) ((-388 . -1072) 191261) ((-330 . -111) 191236) ((-73 . -392) T) ((-73 . -405) T) ((-1040 . -38) 191173) ((-704 . -410) 191155) ((-99 . -102) T) ((-721 . -1116) T) ((-1313 . -1067) 191142) ((-1019 . -146) 191114) ((-1019 . -148) 191086) ((-880 . -656) 191058) ((-388 . -111) 191014) ((-327 . -1238) 190993) ((-484 . -1018) 190959) ((-363 . -38) 190924) ((-40 . -379) 190896) ((-883 . -623) 190768) ((-128 . -126) 190752) ((-122 . -126) 190736) ((-846 . -1072) 190706) ((-843 . -21) 190658) ((-837 . -1072) 190642) ((-843 . -25) 190594) ((-327 . -566) 190545) ((-527 . -626) 190526) ((-574 . -838) T) ((-246 . -1234) T) ((-1050 . -626) 190495) ((-846 . -111) 190460) ((-837 . -111) 190439) ((-1268 . -623) 190421) ((-1247 . -623) 190403) ((-1247 . -624) 190074) ((-1189 . -923) 190053) ((-1141 . -923) 190032) ((-48 . -38) 189997) ((-1306 . -1128) T) ((-546 . -294) 189953) ((-612 . -623) 189865) ((-612 . -624) 189826) ((-1304 . -1128) T) ((-370 . -626) 189810) ((-330 . -626) 189794) ((-1158 . -238) 189773) ((-246 . -1054) 189600) ((-1189 . -658) 189489) ((-1141 . -658) 189378) ((-864 . -658) 189352) ((-728 . -623) 189334) ((-556 . -377) T) ((-1306 . -23) T) ((-704 . -914) NIL) ((-1304 . -23) T) ((-501 . -1116) T) ((-388 . -626) 189284) ((-388 . -628) 189266) ((-1050 . -1065) T) ((-875 . -102) T) ((-1206 . -294) 189245) ((-171 . -377) 189196) ((-1020 . -1234) T) ((-846 . -626) 189150) ((-837 . -626) 189105) ((-44 . -23) T) ((-489 . -294) 189084) ((-596 . -1116) T) ((-1162 . -1125) 189053) ((-1120 . -1119) 189005) ((-400 . -21) T) ((-400 . -25) T) ((-153 . -1128) T) ((-1313 . -102) T) ((-1020 . -895) 188987) ((-1020 . -897) 188969) ((-1228 . -727) 188866) ((-633 . -233) 188850) ((-631 . -21) T) ((-297 . -566) T) ((-631 . -25) T) ((-1214 . -1116) T) ((-721 . -727) 188815) ((-246 . -386) 188784) ((-1020 . -1054) 188744) ((-388 . -1065) T) ((-225 . -1074) T) ((-118 . -233) 188721) ((-59 . -294) 188673) ((-153 . -23) T) ((-526 . -294) 188625) ((-335 . -524) 188558) ((-506 . -294) 188510) ((-388 . -249) T) ((-388 . -239) T) ((-846 . -1065) T) ((-837 . -1065) T) ((-722 . -963) 188479) ((-711 . -860) T) ((-484 . -623) 188461) ((-1270 . -1067) 188366) ((-590 . -656) 188338) ((-574 . -656) 188310) ((-505 . -656) 188260) ((-837 . -239) 188239) ((-135 . -860) T) ((-1270 . -650) 188131) ((-668 . -1116) T) ((-1206 . -614) 188110) ((-560 . -1210) 188089) ((-345 . -1116) T) ((-327 . -372) 188068) ((-417 . -148) 188047) ((-417 . -146) 188026) ((-978 . -1128) 187925) ((-246 . -912) 187857) ((-825 . -1128) 187835) ((-664 . -862) 187819) ((-489 . -614) 187798) ((-560 . -107) 187748) ((-1020 . -386) 187730) ((-1020 . -347) 187712) ((-1193 . -623) 187694) ((-97 . -1116) T) ((-978 . -23) 187505) ((-487 . -21) T) ((-487 . -25) T) ((-825 . -23) 187357) ((-1193 . -624) 187279) ((-59 . -19) 187263) ((-1189 . -736) T) ((-1141 . -736) T) ((-1103 . -1116) T) ((-526 . -19) 187247) ((-506 . -19) 187231) ((-59 . -614) 187208) ((-1019 . -238) 187180) ((-915 . -102) 187158) ((-864 . -736) T) ((-792 . -1116) T) ((-526 . -614) 187135) ((-506 . -614) 187112) ((-790 . -1116) T) ((-790 . -1081) 187079) ((-471 . -1116) T) ((-464 . -1116) T) ((-596 . -727) 187054) ((-659 . -1116) T) ((-1276 . -47) 187031) ((-1270 . -102) T) ((-1269 . -47) 187001) ((-1248 . -47) 186978) ((-1228 . -174) 186929) ((-1190 . -315) 186908) ((-1184 . -315) 186887) ((-1112 . -626) 186868) ((-1106 . -626) 186849) ((-1096 . -566) 186800) ((-1096 . -1238) 186751) ((-1020 . -912) NIL) ((-1089 . -626) 186732) ((-680 . -132) T) ((-637 . -1128) T) ((-1082 . -626) 186713) ((-1052 . -626) 186694) ((-1035 . -626) 186675) ((-724 . -1072) 186645) ((-709 . -656) 186595) ((-282 . -1116) T) ((-85 . -451) T) ((-85 . -405) T) ((-722 . -907) 186534) ((-721 . -174) T) ((-50 . -1116) T) ((-605 . -47) 186511) ((-227 . -658) 186476) ((-591 . -1116) T) ((-528 . -1116) T) ((-497 . -830) T) ((-497 . -934) T) ((-368 . -1238) T) ((-362 . -1238) T) ((-354 . -1238) T) ((-327 . -1128) T) ((-324 . -1067) 186386) ((-321 . -1067) 186315) ((-108 . -1238) T) ((-636 . -626) 186296) ((-368 . -566) T) ((-219 . -934) T) ((-219 . -830) T) ((-324 . -650) 186206) ((-321 . -650) 186135) ((-362 . -566) T) ((-354 . -566) T) ((-493 . -626) 186116) ((-108 . -566) T) ((-668 . -727) 186086) ((-1184 . -1038) NIL) ((-220 . -626) 186067) ((-327 . -23) T) ((-67 . -1234) T) ((-1016 . -623) 185999) ((-704 . -233) 185981) ((-724 . -111) 185946) ((-654 . -34) T) ((-251 . -499) 185930) ((-1313 . -1168) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-1306 . -132) T) ((-1118 . -1114) 185914) ((-173 . -1116) T) ((-1304 . -132) T) ((-1297 . -102) T) ((-1280 . -623) 185880) ((-1276 . -1234) T) ((-1269 . -1234) T) ((-966 . -923) 185859) ((-1269 . -1054) 185794) ((-1248 . -1234) T) ((-1248 . -897) NIL) ((-525 . -626) 185778) ((-1248 . -895) 185730) ((-1248 . -1054) 185696) ((-1228 . -524) 185663) ((-491 . -923) 185642) ((-1206 . -624) NIL) ((-1206 . -623) 185624) ((-1103 . -727) 185473) ((-1078 . -658) 185445) ((-966 . -658) 185334) ((-607 . -500) 185315) ((-595 . -500) 185296) ((-792 . -727) 185125) ((-607 . -623) 185091) ((-595 . -623) 185057) ((-546 . -623) 185039) ((-546 . -624) 185020) ((-790 . -727) 184869) ((-1093 . -102) T) ((-390 . -25) T) ((-633 . -656) 184841) ((-390 . -21) T) ((-491 . -658) 184730) ((-471 . -727) 184701) ((-464 . -727) 184550) ((-1003 . -102) T) ((-1158 . -1139) 184495) ((-1062 . -1227) 184424) ((-915 . -317) 184362) ((-747 . -102) T) ((-118 . -656) 184292) ((-615 . -626) 184274) ((-886 . -93) T) ((-724 . -626) 184228) ((-541 . -25) T) ((-691 . -93) T) ((-686 . -93) T) ((-674 . -623) 184210) ((-655 . -500) 184191) ((-142 . -102) T) ((-44 . -132) T) ((-655 . -623) 184144) ((-605 . -1234) T) ((-352 . -1074) T) ((-297 . -1128) T) ((-488 . -93) T) ((-417 . -238) 184123) ((-364 . -623) 184105) ((-361 . -623) 184087) ((-353 . -623) 184069) ((-271 . -624) 183817) ((-271 . -623) 183799) ((-253 . -623) 183781) ((-253 . -624) 183642) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1157 . -623) 183624) ((-1136 . -650) 183611) ((-1136 . -1067) 183598) ((-829 . -736) T) ((-829 . -867) T) ((-612 . -296) 183575) ((-591 . -727) 183540) ((-489 . -624) NIL) ((-489 . -623) 183522) ((-528 . -727) 183467) ((-324 . -102) T) ((-321 . -102) T) ((-297 . -23) T) ((-153 . -132) T) ((-924 . -623) 183449) ((-924 . -624) 183431) ((-396 . -736) T) ((-882 . -1072) 183383) ((-882 . -111) 183321) ((-724 . -1065) T) ((-722 . -1260) 183305) ((-704 . -358) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-529 . -623) 183237) ((-388 . -805) T) ((-225 . -1116) T) ((-169 . -1234) T) ((-388 . -802) T) ((-227 . -804) T) ((-227 . -801) T) ((-59 . -624) 183198) ((-59 . -623) 183110) ((-227 . -736) T) ((-526 . -624) 183071) ((-526 . -623) 182983) ((-507 . -623) 182915) ((-506 . -624) 182876) ((-506 . -623) 182788) ((-1096 . -372) 182739) ((-40 . -421) 182716) ((-77 . -1234) T) ((-881 . -923) NIL) ((-368 . -337) 182700) ((-368 . -372) T) ((-362 . -337) 182684) ((-362 . -372) T) ((-354 . -337) 182668) ((-354 . -372) T) ((-324 . -292) 182647) ((-108 . -372) T) ((-70 . -1234) T) ((-1248 . -347) 182599) ((-881 . -658) 182544) ((-1248 . -386) 182496) ((-978 . -132) 182351) ((-825 . -132) 182222) ((-972 . -661) 182206) ((-1103 . -174) 182117) ((-972 . -382) 182101) ((-1078 . -804) T) ((-1078 . -801) T) ((-882 . -626) 181999) ((-792 . -174) 181890) ((-790 . -174) 181801) ((-826 . -47) 181763) ((-1078 . -736) T) ((-335 . -499) 181747) ((-966 . -736) T) ((-1297 . -317) 181685) ((-1276 . -912) 181598) ((-464 . -174) 181509) ((-251 . -294) 181461) ((-1269 . -912) 181367) ((-1268 . -1072) 181202) ((-1248 . -912) 181035) ((-491 . -736) T) ((-1247 . -1072) 180843) ((-1228 . -298) 180822) ((-1203 . -1234) T) ((-1200 . -377) T) ((-1199 . -377) T) ((-1162 . -152) 180806) ((-1136 . -102) T) ((-1134 . -1116) T) ((-1096 . -23) T) ((-1096 . -1128) T) ((-1091 . -102) T) ((-1073 . -623) 180773) ((-1019 . -419) 180745) ((-941 . -969) T) ((-747 . -317) 180683) ((-75 . -1234) T) ((-674 . -391) 180655) ((-171 . -923) 180608) ((-30 . -969) T) ((-112 . -854) T) ((-1 . -623) 180590) ((-1015 . -907) 180547) ((-129 . -661) 180529) ((-50 . -630) 180513) ((-704 . -656) 180448) ((-605 . -912) 180361) ((-448 . -102) T) ((-129 . -382) 180343) ((-142 . -317) NIL) ((-882 . -1065) T) ((-843 . -860) 180322) ((-81 . -1234) T) ((-721 . -298) T) ((-40 . -1074) T) ((-591 . -174) T) ((-528 . -174) T) ((-521 . -623) 180304) ((-171 . -658) 180178) ((-517 . -623) 180160) ((-360 . -148) 180142) ((-360 . -146) T) ((-368 . -1128) T) ((-362 . -1128) T) ((-354 . -1128) T) ((-1020 . -315) T) ((-928 . -315) T) ((-882 . -249) T) ((-108 . -1128) T) ((-882 . -239) 180121) ((-1268 . -111) 179942) ((-1247 . -111) 179731) ((-251 . -1272) 179715) ((-574 . -858) T) ((-368 . -23) T) ((-363 . -358) T) ((-324 . -317) 179702) ((-321 . -317) 179643) ((-362 . -23) T) ((-327 . -132) T) ((-354 . -23) T) ((-1020 . -1038) T) ((-31 . -626) 179624) ((-108 . -23) T) ((-664 . -1067) 179608) ((-251 . -614) 179585) ((-341 . -1116) T) ((-664 . -650) 179555) ((-1270 . -38) 179447) ((-1257 . -923) 179426) ((-112 . -1116) T) ((-826 . -1234) T) ((-1051 . -102) T) ((-1257 . -658) 179315) ((-881 . -804) NIL) ((-865 . -658) 179289) ((-881 . -801) NIL) ((-826 . -897) NIL) ((-881 . -736) T) ((-1103 . -524) 179162) ((-792 . -524) 179109) ((-790 . -524) 179061) ((-581 . -658) 179048) ((-826 . -1054) 178876) ((-464 . -524) 178819) ((-398 . -399) T) ((-1268 . -626) 178632) ((-1247 . -626) 178380) ((-60 . -1234) T) ((-631 . -860) 178359) ((-510 . -671) T) ((-1162 . -992) 178328) ((-1040 . -656) 178265) ((-1019 . -462) T) ((-709 . -858) T) ((-520 . -802) T) ((-484 . -1072) 178100) ((-510 . -113) T) ((-352 . -1116) T) ((-321 . -1168) NIL) ((-297 . -132) T) ((-404 . -1116) T) ((-880 . -1074) T) ((-704 . -379) 178067) ((-363 . -656) 177997) ((-225 . -630) 177974) ((-335 . -294) 177926) ((-484 . -111) 177747) ((-1268 . -1065) T) ((-1247 . -1065) T) ((-826 . -386) 177731) ((-171 . -736) T) ((-664 . -102) T) ((-1268 . -249) 177710) ((-1268 . -239) 177662) ((-1247 . -239) 177567) ((-1247 . -249) 177546) ((-1019 . -412) NIL) ((-680 . -649) 177494) ((-324 . -38) 177404) ((-321 . -38) 177333) ((-69 . -623) 177315) ((-327 . -503) 177281) ((-48 . -656) 177231) ((-1206 . -296) 177210) ((-1242 . -860) T) ((-1129 . -1128) 177188) ((-83 . -1234) T) ((-61 . -623) 177170) ((-489 . -296) 177149) ((-1299 . -1054) 177126) ((-1181 . -1116) T) ((-1129 . -23) 176978) ((-826 . -912) 176914) ((-1257 . -736) T) ((-1118 . -1234) T) ((-484 . -626) 176740) ((-360 . -238) T) ((-1103 . -298) 176671) ((-980 . -1116) T) ((-904 . -102) T) ((-792 . -298) 176582) ((-335 . -19) 176566) ((-59 . -296) 176543) ((-790 . -298) 176474) ((-865 . -736) T) ((-118 . -858) NIL) ((-526 . -296) 176451) ((-335 . -614) 176428) ((-506 . -296) 176405) ((-464 . -298) 176336) ((-1051 . -317) 176187) ((-886 . -500) 176168) ((-886 . -623) 176134) ((-691 . -500) 176115) ((-581 . -736) T) ((-686 . -500) 176096) ((-691 . -623) 176046) ((-686 . -623) 176012) ((-672 . -623) 175994) ((-488 . -500) 175975) ((-488 . -623) 175941) ((-251 . -624) 175902) ((-251 . -500) 175879) ((-139 . -500) 175860) ((-138 . -500) 175841) ((-134 . -500) 175822) ((-251 . -623) 175714) ((-215 . -102) T) ((-139 . -623) 175680) ((-138 . -623) 175646) ((-134 . -623) 175612) ((-1163 . -34) T) ((-957 . -1234) T) ((-352 . -727) 175557) ((-680 . -25) T) ((-680 . -21) T) ((-1193 . -626) 175538) ((-484 . -1065) T) ((-645 . -427) 175503) ((-617 . -427) 175468) ((-1136 . -1168) T) ((-722 . -1067) 175291) ((-591 . -298) T) ((-528 . -298) T) ((-1269 . -315) 175270) ((-484 . -239) 175222) ((-484 . -249) 175201) ((-1248 . -315) 175180) ((-722 . -650) 175009) ((-1248 . -1038) NIL) ((-1096 . -132) T) ((-882 . -805) 174988) ((-145 . -102) T) ((-40 . -1116) T) ((-882 . -802) 174967) ((-654 . -1026) 174951) ((-590 . -1074) T) ((-574 . -1074) T) ((-505 . -1074) T) ((-417 . -462) T) ((-368 . -132) T) ((-324 . -410) 174935) ((-321 . -410) 174896) ((-362 . -132) T) ((-354 . -132) T) ((-1198 . -1116) T) ((-1136 . -38) 174883) ((-1110 . -623) 174850) ((-108 . -132) T) ((-968 . -1116) T) ((-935 . -1116) T) ((-781 . -1116) T) ((-682 . -1116) T) ((-711 . -148) T) ((-117 . -148) T) ((-1306 . -21) T) ((-1306 . -25) T) ((-1304 . -21) T) ((-1304 . -25) T) ((-674 . -1072) 174834) ((-541 . -860) T) ((-510 . -860) T) ((-364 . -1072) 174786) ((-361 . -1072) 174738) ((-353 . -1072) 174690) ((-258 . -1234) T) ((-257 . -1234) T) ((-271 . -1072) 174533) ((-253 . -1072) 174376) ((-674 . -111) 174355) ((-827 . -1238) 174334) ((-557 . -854) T) ((-324 . -914) 174300) ((-364 . -111) 174238) ((-361 . -111) 174176) ((-353 . -111) 174114) ((-271 . -111) 173943) ((-253 . -111) 173772) ((-321 . -914) NIL) ((-633 . -421) 173756) ((-44 . -21) T) ((-44 . -25) T) ((-825 . -649) 173662) ((-827 . -566) 173641) ((-258 . -1054) 173468) ((-257 . -1054) 173295) ((-127 . -120) 173279) ((-924 . -1072) 173244) ((-722 . -102) T) ((-709 . -1074) T) ((-607 . -626) 173225) ((-595 . -626) 173206) ((-546 . -628) 173109) ((-352 . -174) T) ((-88 . -623) 173091) ((-153 . -21) T) ((-153 . -25) T) ((-924 . -111) 173047) ((-40 . -727) 172992) ((-880 . -1116) T) ((-674 . -626) 172969) ((-655 . -626) 172950) ((-364 . -626) 172887) ((-361 . -626) 172824) ((-557 . -1116) T) ((-353 . -626) 172761) ((-335 . -624) 172722) ((-335 . -623) 172634) ((-271 . -626) 172387) ((-253 . -626) 172172) ((-1247 . -802) 172125) ((-1247 . -805) 172078) ((-258 . -386) 172047) ((-257 . -386) 172016) ((-664 . -38) 171986) ((-618 . -34) T) ((-492 . -1128) 171964) ((-485 . -34) T) ((-1129 . -132) 171835) ((-978 . -25) 171646) ((-924 . -626) 171596) ((-884 . -623) 171578) ((-978 . -21) 171533) ((-825 . -25) 171366) ((-825 . -21) 171277) ((-1240 . -377) T) ((-633 . -1074) T) ((-1195 . -566) 171256) ((-1189 . -47) 171233) ((-364 . -1065) T) ((-361 . -1065) T) ((-492 . -23) 171085) ((-353 . -1065) T) ((-271 . -1065) T) ((-253 . -1065) T) ((-1141 . -47) 171057) ((-118 . -1074) T) ((-1050 . -658) 171031) ((-972 . -34) T) ((-364 . -239) 171010) ((-364 . -249) T) ((-361 . -239) 170989) ((-361 . -249) T) ((-353 . -239) 170968) ((-353 . -249) T) ((-271 . -334) 170940) ((-253 . -334) 170897) ((-271 . -239) 170876) ((-1173 . -152) 170860) ((-258 . -912) 170792) ((-257 . -912) 170724) ((-1158 . -907) 170681) ((-1098 . -860) T) ((-424 . -1128) T) ((-1070 . -23) T) ((-1040 . -858) T) ((-924 . -1065) T) ((-330 . -658) 170663) ((-711 . -238) T) ((-680 . -235) 170636) ((-1228 . -1018) 170602) ((-1190 . -934) 170581) ((-1184 . -934) 170560) ((-1184 . -830) NIL) ((-1015 . -1067) 170456) ((-981 . -1234) T) ((-924 . -249) T) ((-827 . -372) 170435) ((-394 . -23) T) ((-128 . -1116) 170413) ((-122 . -1116) 170391) ((-924 . -239) T) ((-129 . -34) T) ((-388 . -658) 170356) ((-1015 . -650) 170304) ((-880 . -727) 170291) ((-1313 . -656) 170263) ((-1062 . -152) 170228) ((-1009 . -1234) T) ((-40 . -174) T) ((-704 . -421) 170210) ((-722 . -317) 170197) ((-846 . -658) 170157) ((-837 . -658) 170131) ((-327 . -25) T) ((-327 . -21) T) ((-668 . -294) 170110) ((-590 . -1116) T) ((-574 . -1116) T) ((-505 . -1116) T) ((-251 . -296) 170087) ((-1189 . -1234) T) ((-1141 . -1234) T) ((-321 . -233) 170048) ((-1189 . -897) NIL) ((-55 . -1116) T) ((-1141 . -897) 169907) ((-130 . -860) T) ((-1189 . -1054) 169787) ((-1141 . -1054) 169670) ((-185 . -623) 169652) ((-864 . -1054) 169548) ((-792 . -294) 169475) ((-827 . -1128) T) ((-1050 . -736) T) ((-1062 . -992) 169404) ((-612 . -661) 169388) ((-1019 . -907) 169338) ((-1015 . -102) T) ((-827 . -23) T) ((-722 . -1168) 169316) ((-704 . -1074) T) ((-612 . -382) 169300) ((-360 . -462) T) ((-352 . -298) T) ((-1285 . -1116) T) ((-254 . -1116) T) ((-409 . -102) T) ((-297 . -21) T) ((-297 . -25) T) ((-370 . -736) T) ((-720 . -1116) T) ((-709 . -1116) T) ((-370 . -483) T) ((-1228 . -623) 169282) ((-1189 . -386) 169266) ((-1141 . -386) 169250) ((-1040 . -421) 169212) ((-142 . -231) 169194) ((-388 . -804) T) ((-388 . -801) T) ((-880 . -174) T) ((-388 . -736) T) ((-721 . -623) 169176) ((-722 . -38) 169005) ((-1284 . -1282) 168989) ((-360 . -412) T) ((-1284 . -1116) 168939) ((-1207 . -1116) T) ((-590 . -727) 168926) ((-574 . -727) 168913) ((-505 . -727) 168878) ((-1270 . -656) 168768) ((-324 . -639) 168747) ((-846 . -736) T) ((-837 . -736) T) ((-654 . -1234) T) ((-1096 . -649) 168695) ((-1189 . -912) 168638) ((-1141 . -912) 168622) ((-825 . -235) 168568) ((-672 . -1072) 168552) ((-108 . -649) 168534) ((-492 . -132) 168405) ((-1195 . -1128) T) ((-966 . -47) 168374) ((-633 . -1116) T) ((-672 . -111) 168353) ((-501 . -623) 168319) ((-335 . -296) 168296) ((-491 . -47) 168253) ((-1195 . -23) T) ((-118 . -1116) T) ((-103 . -102) 168231) ((-1296 . -1128) T) ((-558 . -860) T) ((-227 . -1234) T) ((-1070 . -132) T) ((-1040 . -1074) T) ((-1296 . -23) T) ((-829 . -1054) 168215) ((-1214 . -623) 168197) ((-1019 . -734) 168169) ((-1136 . -838) T) ((-709 . -727) 168134) ((-596 . -623) 168116) ((-396 . -1054) 168100) ((-363 . -1074) T) ((-394 . -132) T) ((-332 . -1054) 168084) ((-1121 . -1116) T) ((-1096 . -21) T) ((-1096 . -25) T) ((-227 . -897) 168066) ((-1020 . -934) T) ((-91 . -34) T) ((-1020 . -830) T) ((-928 . -934) T) ((-1015 . -317) 168031) ((-886 . -626) 168012) ((-497 . -1238) T) ((-724 . -658) 167972) ((-691 . -626) 167953) ((-686 . -626) 167934) ((-219 . -1238) T) ((-417 . -907) 167891) ((-227 . -1054) 167851) ((-40 . -298) T) ((-497 . -566) T) ((-488 . -626) 167832) ((-368 . -25) T) ((-324 . -656) 167487) ((-321 . -656) 167401) ((-368 . -21) T) ((-362 . -25) T) ((-362 . -21) T) ((-219 . -566) T) ((-354 . -25) T) ((-354 . -21) T) ((-327 . -235) 167347) ((-251 . -626) 167324) ((-139 . -626) 167305) ((-138 . -626) 167286) ((-134 . -626) 167267) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1074) T) ((-590 . -174) T) ((-574 . -174) T) ((-505 . -174) T) ((-1078 . -1234) T) ((-966 . -1234) T) ((-668 . -623) 167249) ((-491 . -1234) T) ((-747 . -746) 167233) ((-345 . -623) 167215) ((-68 . -392) T) ((-68 . -405) T) ((-1118 . -107) 167199) ((-1078 . -897) 167181) ((-966 . -897) 167106) ((-663 . -1128) T) ((-633 . -727) 167093) ((-491 . -897) NIL) ((-1162 . -102) T) ((-1110 . -628) 167077) ((-1078 . -1054) 167059) ((-97 . -623) 167041) ((-487 . -148) T) ((-966 . -1054) 166921) ((-118 . -727) 166866) ((-722 . -914) 166809) ((-663 . -23) T) ((-491 . -1054) 166685) ((-1103 . -624) NIL) ((-1103 . -623) 166667) ((-792 . -624) NIL) ((-792 . -623) 166628) ((-790 . -624) 166262) ((-790 . -623) 166176) ((-1129 . -649) 166082) ((-471 . -623) 166064) ((-464 . -623) 166046) ((-464 . -624) 165907) ((-1051 . -231) 165853) ((-882 . -923) 165832) ((-127 . -34) T) ((-827 . -132) T) ((-659 . -623) 165814) ((-588 . -102) T) ((-364 . -1303) 165798) ((-361 . -1303) 165782) ((-353 . -1303) 165766) ((-128 . -524) 165699) ((-122 . -524) 165632) ((-521 . -802) T) ((-521 . -805) T) ((-520 . -804) T) ((-103 . -317) 165570) ((-224 . -102) 165548) ((-709 . -174) T) ((-704 . -1116) T) ((-882 . -658) 165464) ((-65 . -393) T) ((-282 . -623) 165446) ((-65 . -405) T) ((-966 . -386) 165430) ((-880 . -298) T) ((-50 . -623) 165412) ((-1015 . -38) 165360) ((-1136 . -656) 165332) ((-591 . -623) 165314) ((-491 . -386) 165298) ((-591 . -624) 165280) ((-528 . -623) 165262) ((-924 . -1303) 165249) ((-881 . -1234) T) ((-711 . -462) T) ((-505 . -524) 165215) ((-497 . -372) T) ((-364 . -377) 165194) ((-361 . -377) 165173) ((-353 . -377) 165152) ((-724 . -736) T) ((-219 . -372) T) ((-117 . -462) T) ((-1307 . -1298) 165136) ((-881 . -895) 165113) ((-881 . -897) NIL) ((-978 . -860) 165012) ((-825 . -860) 164963) ((-1241 . -102) T) ((-664 . -666) 164947) ((-1220 . -34) T) ((-173 . -623) 164929) ((-1129 . -25) 164762) ((-1129 . -21) 164673) ((-881 . -1054) 164650) ((-966 . -912) 164631) ((-1257 . -47) 164608) ((-924 . -377) T) ((-59 . -661) 164592) ((-526 . -661) 164576) ((-491 . -912) 164553) ((-71 . -451) T) ((-71 . -405) T) ((-506 . -661) 164537) ((-59 . -382) 164521) ((-633 . -174) T) ((-526 . -382) 164505) ((-506 . -382) 164489) ((-837 . -718) 164473) ((-1189 . -315) 164452) ((-1195 . -132) T) ((-1158 . -1067) 164436) ((-118 . -174) T) ((-1158 . -650) 164368) ((-1162 . -317) 164306) ((-171 . -1234) T) ((-1296 . -132) T) ((-876 . -1067) 164276) ((-645 . -754) 164260) ((-617 . -754) 164244) ((-1269 . -934) 164223) ((-1248 . -934) 164202) ((-1248 . -830) NIL) ((-876 . -650) 164172) ((-704 . -727) 164122) ((-1247 . -923) 164075) ((-1040 . -1116) T) ((-881 . -386) 164052) ((-881 . -347) 164029) ((-919 . -1128) T) ((-171 . -895) 164013) ((-171 . -897) 163938) ((-1284 . -524) 163871) ((-1268 . -658) 163768) ((-1096 . -235) 163687) ((-497 . -1128) T) ((-363 . -1116) T) ((-219 . -1128) T) ((-76 . -451) T) ((-76 . -405) T) ((-171 . -1054) 163583) ((-302 . -907) 163540) ((-327 . -860) T) ((-1247 . -658) 163348) ((-882 . -804) 163327) ((-882 . -801) 163306) ((-882 . -736) T) ((-497 . -23) T) ((-368 . -235) 163279) ((-362 . -235) 163252) ((-354 . -235) 163225) ((-225 . -623) 163207) ((-176 . -462) T) ((-224 . -317) 163145) ((-86 . -451) T) ((-86 . -405) T) ((-108 . -235) 163132) ((-219 . -23) T) ((-1308 . -1301) 163111) ((-687 . -1054) 163095) ((-590 . -298) T) ((-574 . -298) T) ((-505 . -298) T) ((-137 . -480) 163050) ((-1257 . -1234) T) ((-664 . -656) 163009) ((-48 . -1116) T) ((-722 . -233) 162993) ((-881 . -912) NIL) ((-1257 . -897) NIL) ((-900 . -102) T) ((-896 . -102) T) ((-398 . -1116) T) ((-171 . -386) 162977) ((-171 . -347) 162961) ((-1257 . -1054) 162841) ((-865 . -1054) 162737) ((-1158 . -102) T) ((-1015 . -914) 162696) ((-672 . -802) 162675) ((-663 . -132) T) ((-672 . -805) 162654) ((-118 . -524) 162562) ((-581 . -1054) 162544) ((-302 . -1291) 162514) ((-876 . -102) T) ((-977 . -566) 162493) ((-1228 . -1072) 162376) ((-1019 . -1067) 162321) ((-492 . -649) 162227) ((-918 . -1116) T) ((-1040 . -727) 162164) ((-721 . -1072) 162129) ((-1019 . -650) 162074) ((-627 . -102) T) ((-612 . -34) T) ((-1163 . -1234) T) ((-1228 . -111) 161943) ((-484 . -658) 161840) ((-363 . -727) 161785) ((-171 . -912) 161744) ((-709 . -298) T) ((-704 . -174) T) ((-721 . -111) 161700) ((-1313 . -1074) T) ((-1257 . -386) 161684) ((-428 . -1238) 161662) ((-1134 . -623) 161644) ((-321 . -858) NIL) ((-428 . -566) T) ((-227 . -315) T) ((-1247 . -801) 161597) ((-1247 . -804) 161550) ((-1268 . -736) T) ((-1247 . -736) T) ((-48 . -727) 161515) ((-227 . -1038) T) ((-1270 . -421) 161481) ((-360 . -1291) 161458) ((-1257 . -912) 161401) ((-728 . -736) T) ((-341 . -623) 161383) ((-1228 . -626) 161265) ((-1129 . -235) 161211) ((-112 . -623) 161193) ((-112 . -624) 161175) ((-728 . -483) T) ((-721 . -626) 161125) ((-1307 . -1067) 161109) ((-492 . -25) 160942) ((-128 . -499) 160926) ((-122 . -499) 160910) ((-492 . -21) 160821) ((-1307 . -650) 160791) ((-633 . -298) T) ((-596 . -1072) 160766) ((-447 . -1116) T) ((-1078 . -315) T) ((-118 . -298) T) ((-1120 . -102) T) ((-1019 . -102) T) ((-596 . -111) 160734) ((-1158 . -317) 160672) ((-1228 . -1065) T) ((-1078 . -1038) T) ((-66 . -1234) T) ((-1070 . -25) T) ((-1070 . -21) T) ((-721 . -1065) T) ((-394 . -21) T) ((-394 . -25) T) ((-704 . -524) NIL) ((-1040 . -174) T) ((-721 . -249) T) ((-1078 . -555) T) ((-722 . -656) 160582) ((-516 . -102) T) ((-512 . -102) T) ((-363 . -174) T) ((-352 . -623) 160564) ((-417 . -1067) 160516) ((-404 . -623) 160498) ((-1136 . -858) T) ((-484 . -736) T) ((-903 . -1054) 160466) ((-417 . -650) 160418) ((-108 . -860) T) ((-668 . -1072) 160402) ((-497 . -132) T) ((-1270 . -1074) T) ((-219 . -132) T) ((-1173 . -102) 160380) ((-99 . -1116) T) ((-251 . -676) 160364) ((-251 . -661) 160348) ((-668 . -111) 160327) ((-596 . -626) 160311) ((-324 . -421) 160295) ((-251 . -382) 160279) ((-1176 . -241) 160226) ((-1015 . -233) 160210) ((-74 . -1234) T) ((-48 . -174) T) ((-711 . -397) T) ((-711 . -144) T) ((-1307 . -102) T) ((-1214 . -626) 160192) ((-1104 . -1234) T) ((-1103 . -1072) 160035) ((-1092 . -1234) T) ((-271 . -923) 160014) ((-253 . -923) 159993) ((-792 . -1072) 159816) ((-790 . -1072) 159659) ((-618 . -1234) T) ((-1181 . -623) 159641) ((-1103 . -111) 159470) ((-1062 . -102) T) ((-485 . -1234) T) ((-471 . -1072) 159441) ((-464 . -1072) 159284) ((-674 . -658) 159268) ((-881 . -315) T) ((-792 . -111) 159077) ((-790 . -111) 158906) ((-364 . -658) 158858) ((-361 . -658) 158810) ((-353 . -658) 158762) ((-271 . -658) 158651) ((-253 . -658) 158540) ((-1175 . -860) T) ((-1104 . -1054) 158524) ((-471 . -111) 158485) ((-464 . -111) 158314) ((-1092 . -1054) 158291) ((-1016 . -34) T) ((-980 . -623) 158273) ((-972 . -1234) T) ((-127 . -1026) 158257) ((-977 . -1128) T) ((-881 . -1038) NIL) ((-745 . -1128) T) ((-725 . -1128) T) ((-668 . -626) 158175) ((-1284 . -499) 158159) ((-1158 . -38) 158119) ((-977 . -23) T) ((-924 . -658) 158084) ((-875 . -1116) T) ((-853 . -102) T) ((-827 . -21) T) ((-645 . -1067) 158068) ((-617 . -1067) 158052) ((-827 . -25) T) ((-745 . -23) T) ((-725 . -23) T) ((-645 . -650) 158036) ((-110 . -671) T) ((-617 . -650) 158020) ((-591 . -1072) 157985) ((-528 . -1072) 157930) ((-229 . -57) 157888) ((-463 . -23) T) ((-417 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-704 . -298) T) ((-876 . -38) 157858) ((-591 . -111) 157814) ((-528 . -111) 157743) ((-1103 . -626) 157479) ((-428 . -1128) T) ((-324 . -1074) 157369) ((-321 . -1074) T) ((-129 . -1234) T) ((-792 . -626) 157117) ((-790 . -626) 156883) ((-668 . -1065) T) ((-1313 . -1116) T) ((-464 . -626) 156668) ((-171 . -315) 156599) ((-428 . -23) T) ((-40 . -623) 156581) ((-40 . -624) 156565) ((-108 . -1008) 156547) ((-117 . -879) 156531) ((-659 . -626) 156515) ((-48 . -524) 156481) ((-1220 . -1026) 156465) ((-1198 . -623) 156432) ((-1206 . -34) T) ((-968 . -623) 156398) ((-935 . -623) 156380) ((-1129 . -860) 156331) ((-781 . -623) 156313) ((-682 . -623) 156295) ((-1173 . -317) 156233) ((-489 . -34) T) ((-1108 . -1234) T) ((-487 . -462) T) ((-1157 . -34) T) ((-1103 . -1065) T) ((-50 . -626) 156202) ((-792 . -1065) T) ((-790 . -1065) T) ((-657 . -241) 156186) ((-642 . -241) 156132) ((-591 . -626) 156082) ((-528 . -626) 156012) ((-492 . -235) 155958) ((-1257 . -315) 155937) ((-1103 . -334) 155898) ((-464 . -1065) T) ((-1195 . -21) T) ((-1103 . -239) 155877) ((-792 . -334) 155854) ((-792 . -239) T) ((-790 . -334) 155826) ((-741 . -1238) 155805) ((-335 . -661) 155789) ((-1195 . -25) T) ((-59 . -34) T) ((-529 . -34) T) ((-526 . -34) T) ((-464 . -334) 155768) ((-335 . -382) 155752) ((-507 . -34) T) ((-506 . -34) T) ((-1019 . -1168) NIL) ((-741 . -566) 155683) ((-645 . -102) T) ((-617 . -102) T) ((-364 . -736) T) ((-361 . -736) T) ((-353 . -736) T) ((-271 . -736) T) ((-253 . -736) T) ((-388 . -1234) T) ((-1062 . -317) 155591) ((-1296 . -21) T) ((-915 . -1116) 155569) ((-828 . -235) 155556) ((-50 . -1065) T) ((-1296 . -25) T) ((-1191 . -566) 155535) ((-1190 . -1238) 155514) ((-1190 . -566) 155465) ((-1184 . -1238) 155444) ((-1184 . -566) 155395) ((-591 . -1065) T) ((-528 . -1065) T) ((-1040 . -298) T) ((-370 . -1054) 155379) ((-330 . -1054) 155363) ((-1019 . -38) 155308) ((-388 . -897) 155290) ((-1015 . -656) 155213) ((-846 . -1234) T) ((-837 . -1234) 155192) ((-809 . -1128) T) ((-924 . -736) T) ((-591 . -249) T) ((-591 . -239) T) ((-528 . -239) T) ((-528 . -249) T) ((-1142 . -566) 155171) ((-363 . -298) T) ((-657 . -705) 155155) ((-388 . -1054) 155115) ((-302 . -1067) 155036) ((-348 . -907) 155015) ((-1136 . -1074) T) ((-103 . -126) 154999) ((-302 . -650) 154941) ((-809 . -23) T) ((-1306 . -1301) 154917) ((-1304 . -1301) 154896) ((-1284 . -294) 154848) ((-417 . -317) 154813) ((-1270 . -1116) T) ((-1158 . -914) 154772) ((-880 . -623) 154754) ((-846 . -1054) 154723) ((-205 . -797) T) ((-204 . -797) T) ((-203 . -797) T) ((-202 . -797) T) ((-201 . -797) T) ((-200 . -797) T) ((-199 . -797) T) ((-198 . -797) T) ((-197 . -797) T) ((-196 . -797) T) ((-557 . -623) 154705) ((-505 . -1018) T) ((-281 . -849) T) ((-280 . -849) T) ((-279 . -849) T) ((-278 . -849) T) ((-48 . -298) T) ((-277 . -849) T) ((-276 . -849) T) ((-275 . -849) T) ((-195 . -797) T) ((-622 . -860) T) ((-664 . -421) 154689) ((-680 . -238) 154668) ((-225 . -626) 154630) ((-110 . -860) T) ((-663 . -21) T) ((-663 . -25) T) ((-1307 . -38) 154600) ((-118 . -294) 154551) ((-1284 . -19) 154535) ((-1284 . -614) 154512) ((-1297 . -1116) T) ((-360 . -1067) 154457) ((-1093 . -1116) T) ((-1003 . -1116) T) ((-977 . -132) T) ((-827 . -235) 154444) ((-747 . -1116) T) ((-360 . -650) 154389) ((-745 . -132) T) ((-725 . -132) T) ((-521 . -803) T) ((-521 . -804) T) ((-463 . -132) T) ((-417 . -1168) 154367) ((-225 . -1065) T) ((-302 . -102) 154149) ((-142 . -1116) T) ((-709 . -1018) T) ((-1121 . -294) 154105) ((-91 . -1234) T) ((-128 . -623) 154037) ((-122 . -623) 153969) ((-1313 . -174) T) ((-1190 . -372) 153948) ((-1184 . -372) 153927) ((-324 . -1116) T) ((-428 . -132) T) ((-321 . -1116) T) ((-417 . -38) 153879) ((-1149 . -102) T) ((-1270 . -727) 153771) ((-664 . -1074) T) ((-1151 . -1279) T) ((-327 . -146) 153750) ((-327 . -148) 153729) ((-140 . -1116) T) ((-137 . -1116) T) ((-115 . -1116) T) ((-868 . -102) T) ((-590 . -623) 153711) ((-574 . -624) 153610) ((-574 . -623) 153592) ((-505 . -623) 153574) ((-505 . -624) 153519) ((-495 . -23) T) ((-492 . -860) 153470) ((-497 . -649) 153452) ((-979 . -623) 153434) ((-1019 . -914) 153386) ((-219 . -649) 153368) ((-227 . -414) T) ((-672 . -658) 153352) ((-55 . -623) 153334) ((-1189 . -934) 153313) ((-741 . -1128) T) ((-360 . -102) T) ((-1233 . -1099) T) ((-1136 . -854) T) ((-828 . -860) T) ((-741 . -23) T) ((-352 . -1072) 153258) ((-1175 . -1174) T) ((-1163 . -107) 153242) ((-1191 . -1128) T) ((-1190 . -1128) T) ((-525 . -1054) 153226) ((-1184 . -1128) T) ((-1142 . -1128) T) ((-352 . -111) 153155) ((-1020 . -1238) T) ((-127 . -1234) T) ((-928 . -1238) T) ((-704 . -294) NIL) ((-724 . -1234) T) ((-1285 . -623) 153137) ((-1191 . -23) T) ((-1190 . -23) T) ((-1184 . -23) T) ((-1158 . -233) 153121) ((-1020 . -566) T) ((-1142 . -23) T) ((-928 . -566) T) ((-1091 . -1116) T) ((-254 . -623) 153103) ((-825 . -238) 153055) ((-809 . -132) T) ((-720 . -623) 153037) ((-324 . -727) 152947) ((-321 . -727) 152876) ((-709 . -623) 152858) ((-709 . -624) 152803) ((-417 . -410) 152787) ((-448 . -1116) T) ((-497 . -25) T) ((-497 . -21) T) ((-1136 . -1116) T) ((-219 . -25) T) ((-219 . -21) T) ((-722 . -421) 152771) ((-724 . -1054) 152740) ((-1284 . -623) 152652) ((-1284 . -624) 152613) ((-1270 . -174) T) ((-1207 . -623) 152595) ((-251 . -34) T) ((-352 . -626) 152525) ((-404 . -626) 152507) ((-940 . -990) T) ((-1220 . -1234) T) ((-672 . -801) 152486) ((-672 . -804) 152465) ((-408 . -405) T) ((-533 . -102) 152443) ((-1051 . -1116) T) ((-417 . -914) 152402) ((-224 . -1011) 152386) ((-514 . -102) T) ((-633 . -623) 152368) ((-45 . -860) NIL) ((-633 . -624) 152345) ((-1051 . -620) 152320) ((-915 . -524) 152253) ((-327 . -238) 152205) ((-352 . -1065) T) ((-118 . -624) NIL) ((-118 . -623) 152187) ((-882 . -1234) T) ((-680 . -427) 152171) ((-680 . -1139) 152116) ((-510 . -152) 152098) ((-352 . -239) T) ((-352 . -249) T) ((-40 . -1072) 152043) ((-882 . -895) 152027) ((-882 . -897) 151952) ((-722 . -1074) T) ((-704 . -1018) NIL) ((-1268 . -47) 151922) ((-1247 . -47) 151899) ((-1157 . -1026) 151870) ((-3 . |UnionCategory|) T) ((-1136 . -727) 151857) ((-1121 . -623) 151839) ((-1096 . -148) 151818) ((-1096 . -146) 151769) ((-980 . -626) 151753) ((-227 . -934) T) ((-40 . -111) 151682) ((-882 . -1054) 151546) ((-1020 . -372) T) ((-1019 . -233) 151523) ((-711 . -1067) 151510) ((-928 . -372) T) ((-711 . -650) 151497) ((-327 . -1222) 151463) ((-388 . -315) T) ((-327 . -1219) 151429) ((-324 . -174) 151408) ((-321 . -174) T) ((-591 . -1303) 151395) ((-528 . -1303) 151372) ((-368 . -148) 151351) ((-117 . -1067) 151338) ((-368 . -146) 151289) ((-362 . -148) 151268) ((-362 . -146) 151219) ((-354 . -148) 151198) ((-618 . -1210) 151174) ((-117 . -650) 151161) ((-354 . -146) 151112) ((-327 . -35) 151078) ((-485 . -1210) 151057) ((0 . |EnumerationCategory|) T) ((-327 . -95) 151023) ((-388 . -1038) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 150973) ((-664 . -1116) T) ((-618 . -107) 150920) ((-495 . -132) T) ((-485 . -107) 150870) ((-246 . -1128) 150848) ((-882 . -386) 150832) ((-882 . -347) 150816) ((-246 . -23) 150668) ((-40 . -626) 150598) ((-1078 . -934) T) ((-1078 . -830) T) ((-591 . -377) T) ((-528 . -377) T) ((-1297 . -524) 150531) ((-1276 . -566) 150510) ((-1269 . -1238) 150489) ((-360 . -1168) T) ((-335 . -34) T) ((-44 . -427) 150473) ((-1198 . -626) 150409) ((-883 . -1234) T) ((-400 . -754) 150393) ((-1269 . -566) 150344) ((-1268 . -1234) T) ((-1158 . -656) 150303) ((-741 . -132) T) ((-682 . -626) 150287) ((-1248 . -1238) 150266) ((-1248 . -566) 150217) ((-1247 . -1234) T) ((-1247 . -897) 150090) ((-1247 . -895) 150060) ((-1191 . -132) T) ((-319 . -1099) T) ((-1190 . -132) T) ((-747 . -524) 149993) ((-1184 . -132) T) ((-1142 . -132) T) ((-904 . -1116) T) ((-145 . -854) T) ((-1040 . -1018) T) ((-701 . -623) 149975) ((-1020 . -23) T) ((-533 . -317) 149913) ((-1020 . -1128) T) ((-142 . -524) NIL) ((-876 . -656) 149858) ((-1019 . -358) NIL) ((-987 . -23) T) ((-928 . -1128) T) ((-360 . -38) 149823) ((-928 . -23) T) ((-882 . -912) 149782) ((-82 . -623) 149764) ((-40 . -1065) T) ((-880 . -1072) 149751) ((-880 . -111) 149736) ((-711 . -102) T) ((-704 . -623) 149718) ((-612 . -1234) T) ((-606 . -566) 149697) ((-437 . -1128) T) ((-348 . -1067) 149681) ((-215 . -1116) T) ((-176 . -1067) 149613) ((-484 . -47) 149583) ((-40 . -239) 149555) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-605 . -566) 149534) ((-348 . -650) 149518) ((-704 . -624) 149426) ((-324 . -524) 149392) ((-176 . -650) 149324) ((-321 . -524) 149216) ((-497 . -235) 149203) ((-1268 . -1054) 149187) ((-1247 . -1054) 148973) ((-1015 . -421) 148957) ((-219 . -235) 148944) ((-437 . -23) T) ((-1136 . -174) T) ((-1270 . -298) T) ((-664 . -727) 148914) ((-145 . -1116) T) ((-48 . -1018) T) ((-417 . -233) 148898) ((-303 . -241) 148848) ((-881 . -934) T) ((-881 . -830) NIL) ((-880 . -626) 148820) ((-874 . -860) T) ((-1247 . -347) 148790) ((-1247 . -386) 148760) ((-1096 . -238) 148685) ((-224 . -1137) 148669) ((-302 . -914) 148628) ((-1284 . -296) 148605) ((-368 . -238) 148584) ((-362 . -238) 148563) ((-484 . -1234) T) ((-354 . -238) 148542) ((-108 . -238) T) ((-1228 . -658) 148467) ((-1019 . -656) 148397) ((-977 . -21) T) ((-977 . -25) T) ((-745 . -21) T) ((-745 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-721 . -658) 148362) ((-463 . -21) T) ((-463 . -25) T) ((-348 . -102) T) ((-176 . -102) T) ((-1015 . -1074) T) ((-880 . -1065) T) ((-784 . -102) T) ((-1269 . -372) 148341) ((-1268 . -912) 148247) ((-1248 . -372) 148226) ((-1247 . -912) 148077) ((-1040 . -623) 148059) ((-417 . -838) 148012) ((-1191 . -503) 147978) ((-171 . -934) 147909) ((-1190 . -503) 147875) ((-1184 . -503) 147841) ((-722 . -1116) T) ((-1142 . -503) 147807) ((-590 . -1072) 147794) ((-574 . -1072) 147781) ((-505 . -1072) 147746) ((-324 . -298) 147725) ((-321 . -298) T) ((-363 . -623) 147707) ((-428 . -25) T) ((-428 . -21) T) ((-99 . -294) 147686) ((-590 . -111) 147671) ((-574 . -111) 147656) ((-505 . -111) 147612) ((-1193 . -897) 147579) ((-915 . -499) 147563) ((-48 . -623) 147545) ((-48 . -624) 147490) ((-246 . -132) 147361) ((-1307 . -656) 147320) ((-1257 . -934) 147299) ((-826 . -1238) 147278) ((-398 . -500) 147259) ((-1051 . -524) 147103) ((-398 . -623) 147069) ((-826 . -566) 147000) ((-596 . -658) 146975) ((-271 . -47) 146947) ((-253 . -47) 146904) ((-541 . -519) 146881) ((-590 . -626) 146853) ((-574 . -626) 146825) ((-505 . -626) 146758) ((-1090 . -1234) T) ((-1016 . -1234) T) ((-1276 . -23) T) ((-1276 . -1128) T) ((-1269 . -1128) T) ((-709 . -1072) 146723) ((-1269 . -23) T) ((-1248 . -1128) T) ((-1248 . -23) T) ((-1228 . -736) T) ((-1136 . -298) T) ((-1019 . -379) 146695) ((-112 . -377) T) ((-484 . -912) 146601) ((-1129 . -238) 146553) ((-918 . -623) 146535) ((-55 . -626) 146517) ((-91 . -107) 146501) ((-1020 . -132) T) ((-919 . -860) 146452) ((-711 . -1168) T) ((-709 . -111) 146408) ((-853 . -656) 146325) ((-606 . -1128) T) ((-605 . -1128) T) ((-722 . -727) 146154) ((-721 . -736) T) ((-987 . -132) T) ((-928 . -132) T) ((-497 . -860) T) ((-809 . -25) T) ((-809 . -21) T) ((-590 . -1065) T) ((-219 . -860) T) ((-417 . -656) 146091) ((-574 . -1065) T) ((-546 . -1234) T) ((-505 . -1065) T) ((-606 . -23) T) ((-352 . -1303) 146068) ((-327 . -462) 146047) ((-348 . -317) 146034) ((-605 . -23) T) ((-437 . -132) T) ((-668 . -658) 146008) ((-251 . -1026) 145992) ((-882 . -315) T) ((-1308 . -1298) 145976) ((-781 . -802) T) ((-781 . -805) T) ((-711 . -38) 145963) ((-574 . -239) T) ((-505 . -249) T) ((-505 . -239) T) ((-1166 . -241) 145913) ((-1103 . -923) 145892) ((-117 . -38) 145879) ((-211 . -810) T) ((-210 . -810) T) ((-209 . -810) T) ((-208 . -810) T) ((-882 . -1038) 145857) ((-1297 . -499) 145841) ((-792 . -923) 145820) ((-790 . -923) 145799) ((-1206 . -1234) T) ((-364 . -1234) 145778) ((-361 . -1234) 145757) ((-353 . -1234) 145736) ((-271 . -1234) T) ((-253 . -1234) T) ((-464 . -923) 145715) ((-747 . -499) 145699) ((-1103 . -658) 145588) ((-709 . -626) 145523) ((-792 . -658) 145412) ((-633 . -1072) 145399) ((-489 . -1234) T) ((-352 . -377) T) ((-142 . -499) 145381) ((-790 . -658) 145270) ((-1157 . -1234) T) ((-559 . -860) T) ((-471 . -658) 145241) ((-271 . -897) 145100) ((-253 . -897) NIL) ((-118 . -1072) 145045) ((-464 . -658) 144934) ((-674 . -1054) 144911) ((-633 . -111) 144896) ((-400 . -1067) 144880) ((-364 . -1054) 144864) ((-361 . -1054) 144848) ((-353 . -1054) 144832) ((-271 . -1054) 144676) ((-253 . -1054) 144552) ((-924 . -1234) T) ((-118 . -111) 144481) ((-59 . -1234) T) ((-400 . -650) 144465) ((-631 . -1067) 144449) ((-529 . -1234) T) ((-526 . -1234) T) ((-507 . -1234) T) ((-506 . -1234) T) ((-447 . -623) 144431) ((-444 . -623) 144413) ((-631 . -650) 144397) ((-3 . -102) T) ((-1043 . -1227) 144366) ((-843 . -102) T) ((-699 . -57) 144324) ((-709 . -1065) T) ((-645 . -656) 144293) ((-617 . -656) 144262) ((-50 . -658) 144236) ((-297 . -462) T) ((-486 . -1227) 144205) ((0 . -102) T) ((-591 . -658) 144170) ((-528 . -658) 144115) ((-49 . -102) T) ((-924 . -1054) 144102) ((-709 . -249) T) ((-1096 . -419) 144081) ((-741 . -649) 144029) ((-1015 . -1116) T) ((-722 . -174) 143920) ((-633 . -626) 143815) ((-497 . -1008) 143797) ((-428 . -235) 143770) ((-271 . -386) 143754) ((-253 . -386) 143738) ((-409 . -1116) T) ((-1042 . -102) 143716) ((-348 . -38) 143700) ((-219 . -1008) 143682) ((-118 . -626) 143612) ((-176 . -38) 143544) ((-1268 . -315) 143523) ((-1247 . -315) 143502) ((-668 . -736) T) ((-99 . -623) 143484) ((-487 . -1067) 143449) ((-1184 . -649) 143401) ((-487 . -650) 143366) ((-495 . -25) T) ((-495 . -21) T) ((-1247 . -1038) 143318) ((-1073 . -1234) T) ((-633 . -1065) T) ((-388 . -414) T) ((-400 . -102) T) ((-1121 . -628) 143233) ((-271 . -912) 143179) ((-253 . -912) 143156) ((-118 . -1065) T) ((-826 . -1128) T) ((-1103 . -736) T) ((-633 . -239) 143135) ((-631 . -102) T) ((-792 . -736) T) ((-790 . -736) T) ((-423 . -1128) T) ((-118 . -249) T) ((-40 . -377) NIL) ((-118 . -239) NIL) ((-1239 . -860) T) ((-464 . -736) T) ((-826 . -23) T) ((-741 . -25) T) ((-741 . -21) T) ((-680 . -907) 143092) ((-1093 . -294) 143071) ((-78 . -406) T) ((-78 . -405) T) ((-543 . -777) 143053) ((-704 . -1072) 143003) ((-1309 . -102) T) ((-1276 . -132) T) ((-1269 . -132) T) ((-1248 . -132) T) ((-1191 . -25) T) ((-1158 . -421) 142987) ((-645 . -376) 142919) ((-617 . -376) 142851) ((-1173 . -1165) 142835) ((-103 . -1116) 142813) ((-1191 . -21) T) ((-1190 . -21) T) ((-875 . -623) 142795) ((-1015 . -727) 142743) ((-225 . -658) 142710) ((-704 . -111) 142644) ((-50 . -736) T) ((-1190 . -25) T) ((-360 . -358) T) ((-1184 . -21) T) ((-1096 . -462) 142595) ((-1184 . -25) T) ((-722 . -524) 142542) ((-591 . -736) T) ((-528 . -736) T) ((-1142 . -21) T) ((-1142 . -25) T) ((-606 . -132) T) ((-605 . -132) T) ((-302 . -656) 142277) ((-492 . -238) 142229) ((-368 . -462) T) ((-362 . -462) T) ((-354 . -462) T) ((-484 . -315) 142208) ((-1242 . -102) T) ((-321 . -294) 142143) ((-108 . -462) T) ((-79 . -451) T) ((-79 . -405) T) ((-487 . -102) T) ((-701 . -626) 142127) ((-1313 . -623) 142109) ((-1313 . -624) 142091) ((-1096 . -412) 142070) ((-1051 . -499) 142001) ((-137 . -294) 141978) ((-574 . -805) T) ((-574 . -802) T) ((-1079 . -241) 141924) ((-368 . -412) 141875) ((-362 . -412) 141826) ((-354 . -412) 141777) ((-1299 . -1128) T) ((-1308 . -1067) 141761) ((-390 . -1067) 141745) ((-1308 . -650) 141715) ((-828 . -238) T) ((-390 . -650) 141685) ((-704 . -626) 141620) ((-1299 . -23) T) ((-1286 . -102) T) ((-348 . -914) 141601) ((-177 . -623) 141583) ((-1158 . -1074) T) ((-557 . -377) T) ((-680 . -754) 141567) ((-1195 . -146) 141546) ((-1195 . -148) 141525) ((-1162 . -1116) T) ((-1162 . -1087) 141494) ((-69 . -1234) T) ((-1040 . -1072) 141431) ((-360 . -656) 141361) ((-876 . -1074) T) ((-246 . -649) 141267) ((-704 . -1065) T) ((-363 . -1072) 141212) ((-61 . -1234) T) ((-1040 . -111) 141128) ((-915 . -623) 141039) ((-704 . -249) T) ((-704 . -239) NIL) ((-853 . -858) 141018) ((-709 . -805) T) ((-709 . -802) T) ((-1019 . -421) 140995) ((-363 . -111) 140924) ((-388 . -934) T) ((-417 . -858) 140903) ((-722 . -298) 140814) ((-225 . -736) T) ((-1276 . -503) 140780) ((-1269 . -503) 140746) ((-1248 . -503) 140712) ((-588 . -1116) T) ((-324 . -1018) 140691) ((-224 . -1116) 140669) ((-1241 . -854) T) ((-327 . -989) 140631) ((-105 . -102) T) ((-48 . -1072) 140596) ((-1308 . -102) T) ((-390 . -102) T) ((-48 . -111) 140552) ((-825 . -907) 140482) ((-1020 . -649) 140464) ((-1270 . -623) 140446) ((-541 . -102) T) ((-510 . -102) T) ((-1149 . -1150) 140430) ((-153 . -1291) 140414) ((-251 . -1234) T) ((-1233 . -102) T) ((-1040 . -626) 140351) ((-827 . -238) T) ((-1189 . -1238) 140330) ((-363 . -626) 140260) ((-1141 . -1238) 140239) ((-246 . -25) 140072) ((-246 . -21) 139983) ((-128 . -120) 139967) ((-122 . -120) 139951) ((-44 . -754) 139935) ((-1189 . -566) 139846) ((-1141 . -566) 139777) ((-1241 . -1116) T) ((-1051 . -294) 139752) ((-1183 . -1099) T) ((-1010 . -1099) T) ((-826 . -132) T) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-364 . -315) T) ((-361 . -315) T) ((-353 . -315) T) ((-258 . -1128) 139730) ((-257 . -1128) 139708) ((-1040 . -1065) T) ((-1019 . -1074) T) ((-48 . -626) 139641) ((-352 . -658) 139586) ((-1297 . -623) 139548) ((-631 . -38) 139532) ((-1297 . -624) 139493) ((-1191 . -235) 139446) ((-1093 . -623) 139428) ((-1040 . -249) T) ((-363 . -1065) T) ((-825 . -1291) 139398) ((-258 . -23) T) ((-257 . -23) T) ((-1003 . -623) 139380) ((-1190 . -235) 139326) ((-1184 . -235) 139207) ((-747 . -624) 139168) ((-747 . -623) 139150) ((-1176 . -152) 139097) ((-809 . -860) 139076) ((-1020 . -25) T) ((-1015 . -524) 138988) ((-363 . -239) T) ((-363 . -249) T) ((-398 . -626) 138969) ((-924 . -315) T) ((-142 . -623) 138951) ((-142 . -624) 138910) ((-327 . -907) 138814) ((-1020 . -21) T) ((-987 . -25) T) ((-928 . -21) T) ((-928 . -25) T) ((-437 . -21) T) ((-437 . -25) T) ((-853 . -421) 138798) ((-48 . -1065) T) ((-1306 . -1298) 138782) ((-1304 . -1298) 138766) ((-1051 . -614) 138741) ((-324 . -624) 138602) ((-324 . -623) 138584) ((-321 . -624) NIL) ((-321 . -623) 138566) ((-48 . -249) T) ((-48 . -239) T) ((-664 . -294) 138527) ((-560 . -241) 138477) ((-140 . -623) 138444) ((-137 . -623) 138426) ((-115 . -623) 138408) ((-487 . -38) 138373) ((-1308 . -1305) 138352) ((-1299 . -132) T) ((-1307 . -1074) T) ((-1098 . -102) T) ((-88 . -1234) T) ((-510 . -317) NIL) ((-1016 . -107) 138336) ((-900 . -1116) T) ((-896 . -1116) T) ((-1284 . -661) 138320) ((-1284 . -382) 138304) ((-335 . -1234) T) ((-603 . -860) T) ((-1158 . -1116) T) ((-1158 . -1069) 138244) ((-103 . -524) 138177) ((-941 . -623) 138159) ((-352 . -736) T) ((-30 . -623) 138141) ((-876 . -1116) T) ((-853 . -1074) 138120) ((-40 . -658) 138027) ((-227 . -1238) T) ((-417 . -1074) T) ((-1175 . -152) 138009) ((-1015 . -298) 137960) ((-627 . -1116) T) ((-227 . -566) T) ((-327 . -1265) 137944) ((-327 . -1262) 137914) ((-711 . -656) 137886) ((-1206 . -1210) 137865) ((-1091 . -623) 137847) ((-1206 . -107) 137797) ((-657 . -152) 137781) ((-642 . -152) 137727) ((-117 . -656) 137699) ((-489 . -1210) 137678) ((-497 . -148) T) ((-497 . -146) NIL) ((-1136 . -624) 137593) ((-448 . -623) 137575) ((-219 . -148) T) ((-219 . -146) NIL) ((-1136 . -623) 137557) ((-130 . -102) T) ((-52 . -102) T) ((-1248 . -649) 137509) ((-489 . -107) 137459) ((-1009 . -23) T) ((-1308 . -38) 137429) ((-1189 . -1128) T) ((-1141 . -1128) T) ((-1078 . -1238) T) ((-246 . -235) 137375) ((-319 . -102) T) ((-864 . -1128) T) ((-966 . -1238) 137354) ((-491 . -1238) 137333) ((-1078 . -566) T) ((-966 . -566) 137264) ((-1189 . -23) T) ((-1167 . -1099) T) ((-1141 . -23) T) ((-864 . -23) T) ((-491 . -566) 137195) ((-1158 . -727) 137127) ((-680 . -1067) 137111) ((-1162 . -524) 137044) ((-680 . -650) 137028) ((-1051 . -624) NIL) ((-1051 . -623) 137010) ((-96 . -1099) T) ((-1313 . -1072) 136997) ((-876 . -727) 136967) ((-1313 . -111) 136952) ((-1228 . -47) 136921) ((-1184 . -860) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1120 . -1116) T) ((-1019 . -1116) T) ((-62 . -623) 136903) ((-1096 . -907) 136834) ((-1040 . -802) T) ((-1040 . -805) T) ((-1276 . -25) T) ((-1276 . -21) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-880 . -658) 136821) ((-1248 . -21) T) ((-1248 . -25) T) ((-1043 . -152) 136805) ((-1020 . -235) 136792) ((-882 . -830) 136771) ((-882 . -934) T) ((-722 . -294) 136698) ((-606 . -21) T) ((-348 . -656) 136657) ((-108 . -907) NIL) ((-606 . -25) T) ((-605 . -21) T) ((-176 . -656) 136574) ((-40 . -736) T) ((-224 . -524) 136507) ((-605 . -25) T) ((-486 . -152) 136491) ((-473 . -152) 136475) ((-935 . -804) T) ((-935 . -736) T) ((-781 . -803) T) ((-781 . -804) T) ((-516 . -1116) T) ((-512 . -1116) T) ((-781 . -736) T) ((-227 . -372) T) ((-1306 . -1067) 136459) ((-1304 . -1067) 136443) ((-1306 . -650) 136413) ((-1173 . -1116) 136391) ((-881 . -1238) T) ((-1304 . -650) 136361) ((-664 . -623) 136343) ((-881 . -566) T) ((-704 . -377) NIL) ((-44 . -1067) 136327) ((-1313 . -626) 136309) ((-1307 . -1116) T) ((-680 . -102) T) ((-368 . -1291) 136293) ((-362 . -1291) 136277) ((-44 . -650) 136261) ((-354 . -1291) 136245) ((-558 . -102) T) ((-1228 . -1234) T) ((-530 . -860) 136224) ((-497 . -238) T) ((-219 . -238) T) ((-1062 . -1116) T) ((-827 . -462) 136203) ((-153 . -1067) 136187) ((-1062 . -1087) 136116) ((-1043 . -992) 136085) ((-829 . -1128) T) ((-1019 . -727) 136030) ((-153 . -650) 136014) ((-396 . -1128) T) ((-486 . -992) 135983) ((-473 . -992) 135952) ((-110 . -152) 135934) ((-73 . -623) 135916) ((-904 . -623) 135898) ((-1096 . -734) 135877) ((-1313 . -1065) T) ((-826 . -649) 135825) ((-302 . -1074) 135767) ((-171 . -1238) 135672) ((-227 . -1128) T) ((-332 . -23) T) ((-1184 . -1008) 135624) ((-853 . -1116) T) ((-1270 . -1072) 135529) ((-1142 . -750) 135508) ((-1268 . -934) 135487) ((-1247 . -934) 135466) ((-880 . -736) T) ((-171 . -566) 135377) ((-590 . -658) 135364) ((-574 . -658) 135336) ((-417 . -1116) T) ((-270 . -1116) T) ((-215 . -623) 135318) ((-505 . -658) 135268) ((-227 . -23) T) ((-1247 . -830) 135221) ((-1306 . -102) T) ((-363 . -1303) 135198) ((-1304 . -102) T) ((-1270 . -111) 135090) ((-1129 . -907) 135020) ((-825 . -1067) 134921) ((-825 . -650) 134843) ((-145 . -623) 134825) ((-1009 . -132) T) ((-44 . -102) T) ((-246 . -860) 134776) ((-1257 . -1238) 134755) ((-103 . -499) 134739) ((-1307 . -727) 134709) ((-1103 . -47) 134670) ((-1078 . -1128) T) ((-966 . -1128) T) ((-128 . -34) T) ((-122 . -34) T) ((-792 . -47) 134647) ((-790 . -47) 134619) ((-1257 . -566) 134530) ((-363 . -377) T) ((-491 . -1128) T) ((-1189 . -132) T) ((-1141 . -132) T) ((-464 . -47) 134509) ((-881 . -372) T) ((-864 . -132) T) ((-153 . -102) T) ((-1078 . -23) T) ((-966 . -23) T) ((-581 . -566) T) ((-826 . -25) T) ((-826 . -21) T) ((-1158 . -524) 134442) ((-602 . -1099) T) ((-596 . -1054) 134426) ((-1270 . -626) 134300) ((-491 . -23) T) ((-360 . -1074) T) ((-1228 . -912) 134281) ((-680 . -317) 134219) ((-1129 . -1291) 134189) ((-709 . -658) 134154) ((-1020 . -860) T) ((-1019 . -174) T) ((-977 . -146) 134133) ((-645 . -1116) T) ((-617 . -1116) T) ((-977 . -148) 134112) ((-745 . -148) 134091) ((-745 . -146) 134070) ((-668 . -1234) T) ((-987 . -860) T) ((-1276 . -235) 134023) ((-1269 . -235) 133969) ((-1248 . -235) 133850) ((-843 . -656) 133767) ((-484 . -934) 133746) ((-327 . -1067) 133581) ((-324 . -1072) 133491) ((-321 . -1072) 133420) ((-1015 . -294) 133378) ((-417 . -727) 133330) ((-327 . -650) 133171) ((-605 . -235) 133124) ((-711 . -858) T) ((-1270 . -1065) T) ((-324 . -111) 133020) ((-321 . -111) 132933) ((-978 . -102) T) ((-825 . -102) 132685) ((-722 . -624) NIL) ((-722 . -623) 132667) ((-1270 . -334) 132611) ((-668 . -1054) 132507) ((-1103 . -1234) T) ((-1051 . -296) 132482) ((-590 . -736) T) ((-574 . -804) T) ((-171 . -372) 132433) ((-574 . -801) T) ((-574 . -736) T) ((-505 . -736) T) ((-792 . -1234) T) ((-790 . -1234) T) ((-1162 . -499) 132417) ((-464 . -1234) T) ((-1103 . -897) NIL) ((-881 . -1128) T) ((-118 . -923) NIL) ((-1306 . -1305) 132393) ((-1304 . -1305) 132372) ((-792 . -897) NIL) ((-790 . -897) 132231) ((-1299 . -25) T) ((-1299 . -21) T) ((-1231 . -102) 132209) ((-1122 . -405) T) ((-633 . -658) 132196) ((-464 . -897) NIL) ((-685 . -102) 132174) ((-1103 . -1054) 132001) ((-881 . -23) T) ((-792 . -1054) 131860) ((-790 . -1054) 131717) ((-118 . -658) 131662) ((-464 . -1054) 131538) ((-324 . -626) 131102) ((-321 . -626) 130985) ((-400 . -656) 130954) ((-659 . -1054) 130938) ((-591 . -1234) T) ((-637 . -102) T) ((-528 . -1234) T) ((-224 . -499) 130922) ((-1284 . -34) T) ((-631 . -656) 130881) ((-297 . -1067) 130868) ((-137 . -626) 130852) ((-297 . -650) 130839) ((-645 . -727) 130823) ((-617 . -727) 130807) ((-680 . -38) 130767) ((-327 . -102) T) ((-85 . -623) 130749) ((-50 . -1054) 130733) ((-1136 . -1072) 130720) ((-1103 . -386) 130704) ((-792 . -386) 130688) ((-709 . -736) T) ((-709 . -804) T) ((-709 . -801) T) ((-591 . -1054) 130675) ((-528 . -1054) 130652) ((-60 . -57) 130614) ((-332 . -132) T) ((-324 . -1065) 130504) ((-321 . -1065) T) ((-171 . -1128) T) ((-790 . -386) 130488) ((-45 . -152) 130438) ((-1020 . -1008) 130420) ((-464 . -386) 130404) ((-417 . -174) T) ((-324 . -249) 130383) ((-321 . -249) T) ((-321 . -239) NIL) ((-302 . -1116) 130165) ((-227 . -132) T) ((-1136 . -111) 130150) ((-171 . -23) T) ((-809 . -148) 130129) ((-809 . -146) 130108) ((-258 . -649) 130014) ((-257 . -649) 129920) ((-327 . -292) 129886) ((-1173 . -524) 129819) ((-487 . -656) 129769) ((-492 . -907) 129699) ((-1149 . -1116) T) ((-227 . -1076) T) ((-825 . -317) 129637) ((-1103 . -912) 129572) ((-792 . -912) 129515) ((-790 . -912) 129499) ((-1306 . -38) 129469) ((-1304 . -38) 129439) ((-1257 . -1128) T) ((-865 . -1128) T) ((-464 . -912) 129416) ((-868 . -1116) T) ((-1257 . -23) T) ((-1136 . -626) 129388) ((-1078 . -132) T) ((-581 . -1128) T) ((-865 . -23) T) ((-633 . -736) T) ((-364 . -934) T) ((-361 . -934) T) ((-297 . -102) T) ((-353 . -934) T) ((-986 . -1099) T) ((-966 . -132) T) ((-826 . -235) 129361) ((-118 . -804) NIL) ((-118 . -801) NIL) ((-118 . -736) T) ((-1062 . -524) 129262) ((-704 . -923) NIL) ((-581 . -23) T) ((-491 . -132) T) ((-428 . -238) 129241) ((-685 . -317) 129179) ((-645 . -771) T) ((-617 . -771) T) ((-1248 . -860) NIL) ((-1096 . -1067) 129089) ((-1019 . -298) T) ((-704 . -658) 129039) ((-258 . -25) T) ((-360 . -1116) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 129023) ((-2 . -102) T) ((-924 . -934) T) ((-1096 . -650) 128891) ((-492 . -1291) 128861) ((-1136 . -1065) T) ((-721 . -315) T) ((-368 . -1067) 128813) ((-362 . -1067) 128765) ((-354 . -1067) 128717) ((-368 . -650) 128669) ((-225 . -1054) 128646) ((-362 . -650) 128598) ((-108 . -1067) 128548) ((-354 . -650) 128500) ((-302 . -727) 128442) ((-711 . -1074) T) ((-497 . -462) T) ((-417 . -524) 128354) ((-108 . -650) 128304) ((-219 . -462) T) ((-1136 . -239) T) ((-303 . -152) 128254) ((-1015 . -624) 128215) ((-1015 . -623) 128197) ((-1005 . -623) 128179) ((-117 . -1074) T) ((-664 . -1072) 128163) ((-227 . -503) T) ((-409 . -623) 128145) ((-409 . -624) 128122) ((-1070 . -1291) 128092) ((-664 . -111) 128071) ((-680 . -914) 128030) ((-1158 . -499) 128014) ((-1308 . -656) 127973) ((-390 . -656) 127942) ((-63 . -451) T) ((-63 . -405) T) ((-1176 . -102) T) ((-881 . -132) T) ((-494 . -102) 127920) ((-1313 . -377) T) ((-1096 . -102) T) ((-1077 . -102) T) ((-360 . -727) 127865) ((-741 . -148) 127844) ((-741 . -146) 127823) ((-664 . -626) 127741) ((-1040 . -658) 127678) ((-533 . -1116) 127656) ((-368 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-108 . -102) T) ((-514 . -1116) T) ((-363 . -658) 127601) ((-1189 . -649) 127549) ((-1141 . -649) 127497) ((-394 . -519) 127476) ((-843 . -858) 127455) ((-388 . -1238) T) ((-704 . -736) T) ((-1248 . -1008) 127407) ((-348 . -1074) T) ((-112 . -1234) T) ((-176 . -1074) T) ((-103 . -623) 127339) ((-1191 . -146) 127318) ((-1191 . -148) 127297) ((-388 . -566) T) ((-1190 . -148) 127276) ((-1190 . -146) 127255) ((-1184 . -146) 127162) ((-417 . -298) T) ((-1184 . -148) 127069) ((-1142 . -148) 127048) ((-1142 . -146) 127027) ((-327 . -38) 126868) ((-171 . -132) T) ((-321 . -805) NIL) ((-321 . -802) NIL) ((-664 . -1065) T) ((-48 . -658) 126818) ((-1129 . -1067) 126719) ((-904 . -626) 126696) ((-1129 . -650) 126618) ((-1183 . -102) T) ((-1010 . -102) T) ((-1009 . -21) T) ((-128 . -1026) 126602) ((-122 . -1026) 126586) ((-1009 . -25) T) ((-915 . -120) 126570) ((-1175 . -102) T) ((-1257 . -132) T) ((-1189 . -25) T) ((-352 . -1234) T) ((-1189 . -21) T) ((-865 . -132) T) ((-1141 . -25) T) ((-1141 . -21) T) ((-864 . -25) T) ((-864 . -21) T) ((-792 . -315) 126549) ((-1176 . -317) 126344) ((-1173 . -499) 126328) ((-1166 . -152) 126278) ((-657 . -102) 126256) ((-642 . -102) T) ((-1162 . -623) 126218) ((-581 . -132) T) ((-631 . -858) 126197) ((-1162 . -624) 126158) ((-1040 . -801) T) ((-1040 . -804) T) ((-1040 . -736) T) ((-825 . -914) 126090) ((-722 . -1072) 125913) ((-494 . -317) 125851) ((-463 . -427) 125821) ((-360 . -174) T) ((-297 . -38) 125808) ((-258 . -235) 125754) ((-257 . -235) 125700) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-352 . -1054) 125677) ((-275 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-363 . -736) T) ((-722 . -111) 125486) ((-680 . -233) 125470) ((-591 . -315) T) ((-528 . -315) T) ((-302 . -524) 125419) ((-108 . -317) NIL) ((-72 . -405) T) ((-1129 . -102) 125171) ((-843 . -421) 125155) ((-1136 . -805) T) ((-1136 . -802) T) ((-711 . -1116) T) ((-588 . -623) 125137) ((-388 . -372) T) ((-171 . -503) 125115) ((-224 . -623) 125047) ((-135 . -1116) T) ((-117 . -1116) T) ((-980 . -1234) T) ((-48 . -736) T) ((-1062 . -499) 125012) ((-142 . -435) 124994) ((-142 . -377) T) ((-1043 . -102) T) ((-522 . -519) 124973) ((-722 . -626) 124729) ((-1191 . -238) 124688) ((-486 . -102) T) ((-473 . -102) T) ((-1190 . -238) 124640) ((-1184 . -238) 124527) ((-1050 . -1128) T) ((-327 . -914) 124433) ((-1241 . -623) 124415) ((-1198 . -1054) 124351) ((-1191 . -35) 124317) ((-1191 . -95) 124283) ((-1191 . -1222) 124249) ((-1191 . -1219) 124215) ((-1190 . -1219) 124181) ((-1190 . -1222) 124147) ((-1175 . -317) NIL) ((-89 . -406) T) ((-89 . -405) T) ((-1096 . -1168) 124126) ((-40 . -1234) 124055) ((-1190 . -95) 124021) ((-1050 . -23) T) ((-1190 . -35) 123987) ((-581 . -503) T) ((-1184 . -1219) 123953) ((-1184 . -1222) 123919) ((-1184 . -95) 123885) ((-1184 . -35) 123851) ((-370 . -1128) T) ((-368 . -1168) 123830) ((-362 . -1168) 123809) ((-354 . -1168) 123788) ((-1120 . -294) 123744) ((-1142 . -35) 123710) ((-1142 . -95) 123676) ((-108 . -1168) T) ((-1142 . -1222) 123642) ((-843 . -1074) 123621) ((-657 . -317) 123559) ((-642 . -317) 123410) ((-1142 . -1219) 123376) ((-722 . -1065) T) ((-1078 . -649) 123358) ((-1096 . -38) 123226) ((-966 . -649) 123174) ((-1020 . -148) T) ((-1020 . -146) NIL) ((-388 . -1128) T) ((-332 . -25) T) ((-330 . -23) T) ((-957 . -860) 123153) ((-722 . -334) 123130) ((-491 . -649) 123078) ((-40 . -1054) 122966) ((-722 . -239) T) ((-711 . -727) 122953) ((-348 . -1116) T) ((-176 . -1116) T) ((-339 . -860) T) ((-428 . -462) 122903) ((-388 . -23) T) ((-368 . -38) 122868) ((-362 . -38) 122833) ((-354 . -38) 122798) ((-80 . -451) T) ((-80 . -405) T) ((-227 . -25) T) ((-227 . -21) T) ((-846 . -1128) T) ((-108 . -38) 122748) ((-837 . -1128) T) ((-784 . -1116) T) ((-117 . -727) 122735) ((-682 . -1054) 122719) ((-622 . -102) T) ((-846 . -23) T) ((-837 . -23) T) ((-1173 . -294) 122671) ((-1129 . -317) 122609) ((-492 . -1067) 122510) ((-1118 . -241) 122494) ((-64 . -406) T) ((-64 . -405) T) ((-1167 . -102) T) ((-110 . -102) T) ((-492 . -650) 122416) ((-40 . -386) 122393) ((-96 . -102) T) ((-663 . -862) 122377) ((-1189 . -235) 122364) ((-1151 . -1099) T) ((-1078 . -21) T) ((-1078 . -25) T) ((-1070 . -1067) 122348) ((-825 . -233) 122317) ((-966 . -25) T) ((-966 . -21) T) ((-1070 . -650) 122259) ((-631 . -1074) T) ((-1136 . -377) T) ((-1043 . -317) 122197) ((-680 . -656) 122156) ((-491 . -25) T) ((-491 . -21) T) ((-394 . -1067) 122140) ((-900 . -623) 122122) ((-896 . -623) 122104) ((-533 . -524) 122037) ((-258 . -860) 121988) ((-257 . -860) 121939) ((-394 . -650) 121909) ((-881 . -649) 121886) ((-486 . -317) 121824) ((-473 . -317) 121762) ((-360 . -298) T) ((-1173 . -1272) 121746) ((-1158 . -623) 121708) ((-1158 . -624) 121669) ((-1156 . -102) T) ((-1015 . -1072) 121565) ((-40 . -912) 121517) ((-1173 . -614) 121494) ((-1313 . -658) 121481) ((-1079 . -152) 121427) ((-497 . -907) NIL) ((-876 . -500) 121404) ((-1015 . -111) 121286) ((-882 . -1238) T) ((-219 . -907) NIL) ((-348 . -727) 121270) ((-876 . -623) 121232) ((-176 . -727) 121164) ((-882 . -566) T) ((-417 . -294) 121122) ((-246 . -238) 121074) ((-108 . -410) 121056) ((-84 . -393) T) ((-84 . -405) T) ((-711 . -174) T) ((-627 . -623) 121038) ((-99 . -736) T) ((-492 . -102) 120790) ((-99 . -483) T) ((-117 . -174) T) ((-1306 . -656) 120749) ((-1304 . -656) 120708) ((-171 . -649) 120656) ((-1096 . -914) 120589) ((-1070 . -102) T) ((-1015 . -626) 120479) ((-881 . -25) T) ((-825 . -244) 120458) ((-881 . -21) T) ((-828 . -102) T) ((-44 . -656) 120401) ((-1020 . -238) T) ((-424 . -102) T) ((-394 . -102) T) ((-110 . -317) NIL) ((-229 . -102) 120379) ((-128 . -1234) T) ((-122 . -1234) T) ((-108 . -914) NIL) ((-827 . -1067) 120330) ((-827 . -650) 120272) ((-1050 . -132) T) ((-680 . -376) 120256) ((-153 . -656) 120215) ((-645 . -294) 120173) ((-617 . -294) 120131) ((-1313 . -736) T) ((-1015 . -1065) T) ((-1257 . -649) 120079) ((-1120 . -623) 120061) ((-1019 . -623) 120043) ((-574 . -1234) T) ((-505 . -1234) T) ((-525 . -23) T) ((-520 . -23) T) ((-352 . -315) T) ((-518 . -23) T) ((-330 . -132) T) ((-3 . -1116) T) ((-1019 . -624) 120027) ((-1015 . -249) 120006) ((-1015 . -239) 119985) ((-1276 . -146) 119964) ((-1276 . -148) 119943) ((-843 . -1116) T) ((-1269 . -148) 119922) ((-1269 . -146) 119901) ((-1268 . -1238) 119880) ((-1248 . -146) 119787) ((-1248 . -148) 119694) ((-1247 . -1238) 119673) ((-388 . -132) T) ((-227 . -235) 119660) ((-574 . -897) 119642) ((0 . -1116) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1116) T) ((-1270 . -658) 119547) ((-1268 . -566) 119498) ((-724 . -1128) T) ((-1247 . -566) 119449) ((-574 . -1054) 119431) ((-605 . -148) 119410) ((-605 . -146) 119389) ((-505 . -1054) 119332) ((-1151 . -1153) T) ((-87 . -393) T) ((-87 . -405) T) ((-882 . -372) T) ((-846 . -132) T) ((-837 . -132) T) ((-978 . -656) 119276) ((-724 . -23) T) ((-516 . -623) 119242) ((-512 . -623) 119224) ((-825 . -656) 119003) ((-1308 . -1074) T) ((-388 . -1076) T) ((-1042 . -1116) 118981) ((-55 . -1054) 118963) ((-915 . -34) T) ((-492 . -317) 118901) ((-602 . -102) T) ((-1173 . -624) 118862) ((-1173 . -623) 118794) ((-1195 . -1067) 118677) ((-45 . -102) T) ((-827 . -102) T) ((-1195 . -650) 118574) ((-1257 . -25) T) ((-1257 . -21) T) ((-1078 . -235) 118561) ((-865 . -25) T) ((-44 . -376) 118545) ((-865 . -21) T) ((-741 . -462) 118496) ((-1307 . -623) 118478) ((-1296 . -1067) 118448) ((-1070 . -317) 118386) ((-681 . -1099) T) ((-616 . -1099) T) ((-400 . -1116) T) ((-581 . -25) T) ((-581 . -21) T) ((-182 . -1099) T) ((-162 . -1099) T) ((-157 . -1099) T) ((-155 . -1099) T) ((-1296 . -650) 118356) ((-631 . -1116) T) ((-709 . -897) 118338) ((-1284 . -1234) T) ((-229 . -317) 118276) ((-145 . -377) T) ((-1062 . -624) 118218) ((-1062 . -623) 118161) ((-321 . -923) NIL) ((-1242 . -854) T) ((-1129 . -914) 118093) ((-709 . -1054) 118038) ((-721 . -934) T) ((-484 . -1238) 118017) ((-1190 . -462) 117996) ((-1184 . -462) 117975) ((-338 . -102) T) ((-882 . -1128) T) ((-327 . -656) 117857) ((-324 . -658) 117586) ((-321 . -658) 117515) ((-484 . -566) 117466) ((-348 . -524) 117432) ((-560 . -152) 117382) ((-40 . -315) T) ((-853 . -623) 117364) ((-711 . -298) T) ((-882 . -23) T) ((-388 . -503) T) ((-1096 . -233) 117334) ((-522 . -102) T) ((-417 . -624) 117141) ((-417 . -623) 117123) ((-270 . -623) 117105) ((-117 . -298) T) ((-1270 . -736) T) ((-633 . -1234) 117048) ((-1309 . -1116) T) ((-1268 . -372) 117027) ((-1247 . -372) 117006) ((-1297 . -34) T) ((-1242 . -1116) T) ((-118 . -1234) T) ((-108 . -233) 116988) ((-1195 . -102) T) ((-487 . -1116) T) ((-533 . -499) 116972) ((-747 . -34) T) ((-663 . -1067) 116956) ((-663 . -650) 116926) ((-881 . -235) NIL) ((-142 . -34) T) ((-118 . -895) 116903) ((-118 . -897) NIL) ((-633 . -1054) 116786) ((-1296 . -102) T) ((-1276 . -238) 116745) ((-654 . -860) 116724) ((-1269 . -238) 116676) ((-1248 . -238) 116563) ((-303 . -102) T) ((-722 . -377) 116542) ((-118 . -1054) 116519) ((-400 . -727) 116503) ((-605 . -238) 116462) ((-631 . -727) 116446) ((-1121 . -1234) T) ((-45 . -317) 116250) ((-826 . -146) 116229) ((-826 . -148) 116208) ((-297 . -656) 116180) ((-1307 . -391) 116159) ((-829 . -860) T) ((-1286 . -1116) T) ((-1176 . -231) 116106) ((-396 . -860) 116085) ((-1276 . -35) 116051) ((-1276 . -1222) 116017) ((-1276 . -1219) 115983) ((-1269 . -1219) 115949) ((-525 . -132) T) ((-1269 . -1222) 115915) ((-1248 . -1219) 115881) ((-1248 . -1222) 115847) ((-1276 . -95) 115813) ((-1269 . -95) 115779) ((-428 . -907) 115736) ((-645 . -623) 115705) ((-617 . -623) 115674) ((-227 . -860) T) ((-1269 . -35) 115640) ((-1268 . -1128) T) ((-1248 . -95) 115606) ((-1136 . -658) 115578) ((-1248 . -35) 115544) ((-1247 . -1128) T) ((-603 . -152) 115526) ((-1096 . -358) 115505) ((-176 . -298) T) ((-118 . -386) 115482) ((-118 . -347) 115459) ((-171 . -235) 115404) ((-880 . -315) T) ((-321 . -804) NIL) ((-321 . -801) NIL) ((-324 . -736) 115253) ((-321 . -736) T) ((-484 . -372) 115232) ((-368 . -358) 115211) ((-362 . -358) 115190) ((-354 . -358) 115169) ((-324 . -483) 115148) ((-1268 . -23) T) ((-1247 . -23) T) ((-728 . -1128) T) ((-724 . -132) T) ((-663 . -102) T) ((-487 . -727) 115113) ((-45 . -290) 115063) ((-105 . -1116) T) ((-68 . -623) 115045) ((-986 . -102) T) ((-874 . -102) T) ((-633 . -912) 115004) ((-1308 . -1116) T) ((-390 . -1116) T) ((-1257 . -235) 114991) ((-82 . -1234) T) ((-1233 . -1116) T) ((-1078 . -860) T) ((-118 . -912) NIL) ((-792 . -934) 114970) ((-723 . -860) T) ((-541 . -1116) T) ((-510 . -1116) T) ((-364 . -1238) T) ((-361 . -1238) T) ((-353 . -1238) T) ((-271 . -1238) 114949) ((-253 . -1238) 114928) ((-543 . -870) T) ((-1129 . -233) 114897) ((-1175 . -838) T) ((-1158 . -1072) 114881) ((-400 . -771) T) ((-704 . -1234) T) ((-701 . -1054) 114865) ((-364 . -566) T) ((-361 . -566) T) ((-353 . -566) T) ((-271 . -566) 114796) ((-253 . -566) 114727) ((-535 . -1099) T) ((-1158 . -111) 114706) ((-463 . -754) 114676) ((-876 . -1072) 114646) ((-827 . -38) 114588) ((-704 . -895) 114570) ((-704 . -897) 114552) ((-303 . -317) 114356) ((-1173 . -296) 114333) ((-924 . -1238) T) ((-1096 . -656) 114228) ((-1020 . -462) T) ((-680 . -421) 114212) ((-876 . -111) 114177) ((-928 . -462) T) ((-704 . -1054) 114122) ((-924 . -566) T) ((-543 . -623) 114104) ((-591 . -934) T) ((-497 . -1067) 114054) ((-484 . -1128) T) ((-528 . -934) T) ((-492 . -914) 113986) ((-65 . -623) 113968) ((-219 . -1067) 113918) ((-497 . -650) 113868) ((-368 . -656) 113805) ((-362 . -656) 113742) ((-354 . -656) 113679) ((-642 . -231) 113625) ((-219 . -650) 113575) ((-108 . -656) 113525) ((-484 . -23) T) ((-1136 . -804) T) ((-882 . -132) T) ((-1136 . -801) T) ((-1299 . -1301) 113504) ((-1136 . -736) T) ((-664 . -658) 113478) ((-302 . -623) 113219) ((-1158 . -626) 113137) ((-1051 . -34) T) ((-826 . -238) 113116) ((-590 . -315) T) ((-574 . -315) T) ((-505 . -315) T) ((-1308 . -727) 113086) ((-704 . -386) 113068) ((-704 . -347) 113050) ((-487 . -174) T) ((-390 . -727) 113020) ((-876 . -626) 112955) ((-881 . -860) NIL) ((-574 . -1038) T) ((-505 . -1038) T) ((-1149 . -623) 112937) ((-1129 . -244) 112916) ((-216 . -102) T) ((-1166 . -102) T) ((-71 . -623) 112898) ((-1158 . -1065) T) ((-1195 . -38) 112795) ((-868 . -623) 112777) ((-574 . -555) T) ((-680 . -1074) T) ((-741 . -963) 112730) ((-363 . -1234) T) ((-1158 . -239) 112709) ((-1098 . -1116) T) ((-1050 . -25) T) ((-1050 . -21) T) ((-1019 . -1072) 112654) ((-919 . -102) T) ((-876 . -1065) T) ((-704 . -912) NIL) ((-364 . -337) 112638) ((-364 . -372) T) ((-361 . -337) 112622) ((-361 . -372) T) ((-353 . -337) 112606) ((-353 . -372) T) ((-497 . -102) T) ((-1296 . -38) 112576) ((-556 . -860) T) ((-533 . -697) 112526) ((-219 . -102) T) ((-1040 . -1054) 112406) ((-1019 . -111) 112335) ((-1191 . -989) 112304) ((-1190 . -989) 112266) ((-530 . -152) 112250) ((-1096 . -379) 112229) ((-360 . -623) 112211) ((-330 . -21) T) ((-363 . -1054) 112188) ((-330 . -25) T) ((-1184 . -989) 112157) ((-48 . -1234) T) ((-76 . -623) 112139) ((-1142 . -989) 112106) ((-709 . -315) T) ((-130 . -854) T) ((-924 . -372) T) ((-388 . -25) T) ((-388 . -21) T) ((-924 . -337) 112093) ((-86 . -623) 112075) ((-709 . -1038) T) ((-687 . -860) T) ((-1268 . -132) T) ((-1247 . -132) T) ((-915 . -1026) 112059) ((-846 . -21) T) ((-48 . -1054) 112002) ((-846 . -25) T) ((-837 . -25) T) ((-837 . -21) T) ((-1129 . -656) 111781) ((-1306 . -1074) T) ((-559 . -102) T) ((-1304 . -1074) T) ((-664 . -736) T) ((-1120 . -628) 111684) ((-1019 . -626) 111614) ((-1307 . -1072) 111598) ((-825 . -421) 111567) ((-103 . -120) 111551) ((-130 . -1116) T) ((-52 . -1116) T) ((-940 . -623) 111533) ((-881 . -1008) 111510) ((-833 . -102) T) ((-1307 . -111) 111489) ((-741 . -907) 111464) ((-663 . -38) 111434) ((-581 . -860) T) ((-364 . -1128) T) ((-361 . -1128) T) ((-353 . -1128) T) ((-271 . -1128) T) ((-253 . -1128) T) ((-1166 . -317) 111238) ((-633 . -315) 111217) ((-1104 . -235) 111204) ((-674 . -23) T) ((-534 . -1099) T) ((-319 . -1116) T) ((-492 . -233) 111173) ((-153 . -1074) T) ((-364 . -23) T) ((-361 . -23) T) ((-353 . -23) T) ((-118 . -315) T) ((-271 . -23) T) ((-253 . -23) T) ((-1019 . -1065) T) ((-722 . -923) 111152) ((-1191 . -907) 111063) ((-1190 . -907) 110967) ((-1184 . -907) 110798) ((-1173 . -626) 110775) ((-1019 . -239) 110747) ((-1019 . -249) T) ((-1142 . -907) 110729) ((-118 . -1038) NIL) ((-924 . -1128) T) ((-1269 . -462) 110708) ((-1248 . -462) 110687) ((-533 . -623) 110619) ((-722 . -658) 110508) ((-417 . -1072) 110460) ((-514 . -623) 110442) ((-924 . -23) T) ((-497 . -317) NIL) ((-1307 . -626) 110398) ((-484 . -132) T) ((-219 . -317) NIL) ((-417 . -111) 110336) ((-825 . -1074) 110314) ((-747 . -1114) 110298) ((-1268 . -503) 110264) ((-1247 . -503) 110230) ((-558 . -854) T) ((-142 . -1114) 110212) ((-487 . -298) T) ((-1307 . -1065) T) ((-258 . -238) 110164) ((-257 . -238) 110116) ((-1239 . -102) T) ((-1079 . -102) T) ((-853 . -626) 109984) ((-510 . -524) NIL) ((-492 . -244) 109963) ((-417 . -626) 109861) ((-977 . -1067) 109744) ((-745 . -1067) 109714) ((-977 . -650) 109611) ((-1189 . -146) 109590) ((-745 . -650) 109560) ((-463 . -1067) 109530) ((-1189 . -148) 109509) ((-1141 . -148) 109488) ((-1141 . -146) 109467) ((-645 . -1072) 109451) ((-617 . -1072) 109435) ((-463 . -650) 109405) ((-1191 . -1275) 109389) ((-1191 . -1262) 109366) ((-1190 . -1267) 109327) ((-680 . -1116) T) ((-680 . -1069) 109267) ((-1190 . -1262) 109237) ((-558 . -1116) T) ((-497 . -1168) T) ((-1190 . -1265) 109221) ((-1184 . -1246) 109182) ((-828 . -273) 109166) ((-219 . -1168) T) ((-352 . -934) T) ((-99 . -1234) T) ((-645 . -111) 109145) ((-617 . -111) 109124) ((-1184 . -1262) 109101) ((-853 . -1065) 109080) ((-1184 . -1244) 109064) ((-525 . -25) T) ((-505 . -310) T) ((-521 . -23) T) ((-520 . -25) T) ((-518 . -25) T) ((-517 . -23) T) ((-428 . -1067) 109038) ((-417 . -1065) T) ((-327 . -1074) T) ((-704 . -315) T) ((-428 . -650) 109012) ((-108 . -858) T) ((-722 . -736) T) ((-417 . -249) T) ((-417 . -239) 108991) ((-388 . -235) 108978) ((-497 . -38) 108928) ((-219 . -38) 108878) ((-484 . -503) 108844) ((-1241 . -377) T) ((-1175 . -1160) T) ((-1117 . -102) T) ((-837 . -235) 108817) ((-711 . -623) 108799) ((-711 . -624) 108714) ((-724 . -21) T) ((-724 . -25) T) ((-1151 . -102) T) ((-492 . -656) 108493) ((-246 . -907) 108423) ((-135 . -623) 108405) ((-117 . -623) 108387) ((-158 . -25) T) ((-1306 . -1116) T) ((-882 . -649) 108335) ((-1304 . -1116) T) ((-977 . -102) T) ((-745 . -102) T) ((-725 . -102) T) ((-463 . -102) T) ((-826 . -462) 108286) ((-44 . -1116) T) ((-1104 . -860) T) ((-1079 . -317) 108137) ((-674 . -132) T) ((-1070 . -656) 108106) ((-680 . -727) 108090) ((-297 . -1074) T) ((-364 . -132) T) ((-361 . -132) T) ((-353 . -132) T) ((-271 . -132) T) ((-253 . -132) T) ((-394 . -656) 108059) ((-428 . -102) T) ((-153 . -1116) T) ((-45 . -231) 108009) ((-1020 . -907) NIL) ((-809 . -1067) 107993) ((-972 . -860) 107972) ((-1015 . -658) 107874) ((-809 . -650) 107858) ((-246 . -1291) 107828) ((-1040 . -315) T) ((-302 . -1072) 107749) ((-924 . -132) T) ((-40 . -934) T) ((-497 . -410) 107731) ((-363 . -315) T) ((-219 . -410) 107713) ((-1096 . -421) 107697) ((-302 . -111) 107613) ((-1200 . -860) T) ((-1199 . -860) T) ((-882 . -25) T) ((-882 . -21) T) ((-1270 . -47) 107557) ((-348 . -623) 107539) ((-1189 . -238) T) ((-227 . -148) T) ((-176 . -623) 107521) ((-784 . -623) 107503) ((-129 . -860) T) ((-618 . -241) 107450) ((-485 . -241) 107400) ((-1306 . -727) 107370) ((-48 . -315) T) ((-1304 . -727) 107340) ((-65 . -626) 107269) ((-978 . -1116) T) ((-825 . -1116) 107021) ((-320 . -102) T) ((-915 . -1234) T) ((-48 . -1038) T) ((-1247 . -649) 106929) ((-699 . -102) 106907) ((-44 . -727) 106891) ((-560 . -102) T) ((-302 . -626) 106822) ((-67 . -392) T) ((-497 . -914) NIL) ((-67 . -405) T) ((-219 . -914) NIL) ((-672 . -23) T) ((-827 . -656) 106758) ((-680 . -771) T) ((-1231 . -1116) 106736) ((-360 . -1072) 106681) ((-685 . -1116) 106659) ((-1078 . -148) T) ((-966 . -148) 106638) ((-966 . -146) 106617) ((-809 . -102) T) ((-153 . -727) 106601) ((-491 . -148) 106580) ((-491 . -146) 106559) ((-360 . -111) 106488) ((-1096 . -1074) T) ((-330 . -860) 106467) ((-1276 . -989) 106436) ((-637 . -1116) T) ((-1269 . -989) 106398) ((-521 . -132) T) ((-517 . -132) T) ((-303 . -231) 106348) ((-368 . -1074) T) ((-362 . -1074) T) ((-354 . -1074) T) ((-302 . -1065) 106290) ((-1248 . -989) 106259) ((-388 . -860) T) ((-108 . -1074) T) ((-1015 . -736) T) ((-880 . -934) T) ((-853 . -805) 106238) ((-853 . -802) 106217) ((-428 . -317) 106156) ((-478 . -102) T) ((-605 . -989) 106125) ((-327 . -1116) T) ((-417 . -805) 106104) ((-417 . -802) 106083) ((-510 . -499) 106065) ((-1270 . -1054) 106031) ((-1268 . -21) T) ((-1268 . -25) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-825 . -727) 105973) ((-360 . -626) 105903) ((-709 . -414) T) ((-1297 . -1234) T) ((-1129 . -421) 105872) ((-616 . -102) T) ((-1093 . -1234) T) ((-1019 . -377) NIL) ((-681 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1195 . -656) 105782) ((-747 . -1234) T) ((-741 . -1067) 105625) ((-44 . -771) T) ((-741 . -650) 105474) ((-603 . -102) T) ((-663 . -666) 105458) ((-77 . -406) T) ((-77 . -405) T) ((-142 . -1234) T) ((-881 . -148) T) ((-881 . -146) NIL) ((-1296 . -656) 105403) ((-1276 . -907) 105314) ((-1233 . -93) T) ((-360 . -1065) T) ((-227 . -238) T) ((-70 . -392) T) ((-70 . -405) T) ((-1182 . -102) T) ((-680 . -524) 105247) ((-1269 . -907) 105151) ((-1248 . -907) 104982) ((-699 . -317) 104920) ((-977 . -38) 104817) ((-1197 . -623) 104799) ((-745 . -38) 104769) ((-560 . -317) 104573) ((-1191 . -1067) 104456) ((-324 . -1234) T) ((-360 . -239) T) ((-360 . -249) T) ((-321 . -1234) T) ((-297 . -1116) T) ((-1190 . -1067) 104291) ((-1184 . -1067) 104081) ((-1142 . -1067) 103964) ((-1191 . -650) 103861) ((-1190 . -650) 103702) ((-721 . -1238) T) ((-1184 . -650) 103498) ((-1173 . -661) 103482) ((-1142 . -650) 103379) ((-1228 . -566) 103358) ((-829 . -395) 103342) ((-721 . -566) T) ((-605 . -907) 103253) ((-324 . -895) 103237) ((-324 . -897) 103162) ((-137 . -1234) T) ((-321 . -895) 103123) ((-321 . -897) NIL) ((-809 . -317) 103088) ((-327 . -727) 102929) ((-396 . -395) 102913) ((-332 . -331) 102890) ((-495 . -102) T) ((-484 . -25) T) ((-484 . -21) T) ((-428 . -38) 102864) ((-324 . -1054) 102527) ((-227 . -1219) T) ((-227 . -1222) T) ((-3 . -623) 102509) ((-321 . -1054) 102439) ((-882 . -235) 102412) ((-2 . -1116) T) ((-2 . |RecordCategory|) T) ((-1129 . -1074) 102390) ((-843 . -623) 102372) ((-1078 . -238) T) ((-590 . -934) T) ((-574 . -830) T) ((-574 . -934) T) ((-505 . -934) T) ((-137 . -1054) 102356) ((-227 . -95) T) ((-171 . -148) 102335) ((-75 . -451) T) ((0 . -623) 102317) ((-75 . -405) T) ((-171 . -146) 102268) ((-227 . -35) T) ((-49 . -623) 102250) ((-487 . -1074) T) ((-497 . -233) 102232) ((-494 . -984) 102216) ((-219 . -233) 102198) ((-81 . -451) T) ((-81 . -405) T) ((-1162 . -34) T) ((-741 . -102) T) ((-663 . -656) 102157) ((-1042 . -623) 102124) ((-510 . -294) 102074) ((-324 . -386) 102043) ((-321 . -386) 102004) ((-321 . -347) 101965) ((-1101 . -623) 101947) ((-826 . -963) 101894) ((-672 . -132) T) ((-1257 . -146) 101873) ((-1257 . -148) 101852) ((-1191 . -102) T) ((-1190 . -102) T) ((-1184 . -102) T) ((-1176 . -1116) T) ((-1142 . -102) T) ((-224 . -34) T) ((-297 . -727) 101839) ((-1176 . -620) 101815) ((-603 . -317) NIL) ((-1276 . -1275) 101799) ((-494 . -1116) 101777) ((-1166 . -231) 101727) ((-400 . -623) 101709) ((-520 . -860) T) ((-1136 . -1234) T) ((-1276 . -1262) 101686) ((-1269 . -1267) 101647) ((-1269 . -1262) 101617) ((-1269 . -1265) 101601) ((-1248 . -1246) 101562) ((-1248 . -1262) 101539) ((-1248 . -1244) 101523) ((-631 . -623) 101505) ((-1191 . -292) 101471) ((-709 . -934) T) ((-1190 . -292) 101437) ((-1184 . -292) 101403) ((-1142 . -292) 101369) ((-1096 . -1116) T) ((-1077 . -1116) T) ((-48 . -310) T) ((-324 . -912) 101335) ((-321 . -912) NIL) ((-1077 . -1084) 101314) ((-1136 . -897) 101296) ((-809 . -38) 101280) ((-271 . -649) 101228) ((-253 . -649) 101176) ((-711 . -1072) 101163) ((-605 . -1262) 101140) ((-1136 . -1054) 101122) ((-327 . -174) 101053) ((-368 . -1116) T) ((-362 . -1116) T) ((-354 . -1116) T) ((-510 . -19) 101035) ((-1118 . -152) 101019) ((-881 . -238) NIL) ((-108 . -1116) T) ((-117 . -1072) 101006) ((-721 . -372) T) ((-510 . -614) 100981) ((-711 . -111) 100966) ((-1309 . -623) 100933) ((-1309 . -500) 100915) ((-1268 . -235) 100861) ((-1247 . -235) 100760) ((-446 . -102) T) ((-886 . -1279) T) ((-256 . -102) T) ((-45 . -1165) 100710) ((-117 . -111) 100695) ((-1286 . -623) 100677) ((-1257 . -238) T) ((-1242 . -623) 100659) ((-1240 . -860) T) ((-645 . -730) T) ((-617 . -730) T) ((-1228 . -1128) T) ((-1228 . -23) T) ((-1189 . -462) 100590) ((-1184 . -317) 100475) ((-1183 . -1116) T) ((-825 . -524) 100408) ((-1051 . -1234) T) ((-246 . -1067) 100309) ((-1175 . -1116) T) ((-1158 . -658) 100247) ((-957 . -152) 100231) ((-1142 . -317) 100218) ((-1141 . -462) 100169) ((-246 . -650) 100091) ((-1103 . -566) 100022) ((-1103 . -1238) 100001) ((-1096 . -727) 99869) ((-535 . -102) T) ((-530 . -102) 99819) ((-1020 . -1067) 99769) ((-1010 . -1116) T) ((-826 . -907) 99701) ((-792 . -1238) 99680) ((-790 . -1238) 99659) ((-62 . -1234) T) ((-487 . -623) 99611) ((-487 . -624) 99533) ((-792 . -566) 99444) ((-790 . -566) 99375) ((-741 . -317) 99362) ((-711 . -626) 99334) ((-492 . -421) 99303) ((-633 . -934) 99282) ((-464 . -1238) 99261) ((-685 . -524) 99194) ((-674 . -25) T) ((-408 . -623) 99176) ((-674 . -21) T) ((-464 . -566) 99107) ((-428 . -914) 99066) ((-364 . -25) T) ((-364 . -21) T) ((-361 . -25) T) ((-118 . -934) T) ((-118 . -830) NIL) ((-361 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-271 . -25) T) ((-271 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 99017) ((-83 . -393) T) ((-83 . -405) T) ((-135 . -626) 98999) ((-117 . -626) 98971) ((-1020 . -650) 98921) ((-957 . -996) 98905) ((-928 . -650) 98857) ((-928 . -1067) 98809) ((-924 . -21) T) ((-924 . -25) T) ((-882 . -860) 98760) ((-876 . -658) 98720) ((-721 . -1128) T) ((-721 . -23) T) ((-711 . -1065) T) ((-711 . -239) T) ((-297 . -174) T) ((-664 . -1234) T) ((-319 . -93) T) ((-657 . -1116) 98698) ((-642 . -620) 98673) ((-642 . -1116) T) ((-591 . -1238) T) ((-591 . -566) T) ((-528 . -1238) T) ((-528 . -566) T) ((-497 . -656) 98623) ((-484 . -235) 98569) ((-437 . -1067) 98553) ((-437 . -650) 98537) ((-368 . -727) 98489) ((-362 . -727) 98441) ((-348 . -1072) 98425) ((-354 . -727) 98377) ((-348 . -111) 98356) ((-176 . -1072) 98288) ((-219 . -656) 98238) ((-176 . -111) 98149) ((-108 . -727) 98099) ((-281 . -1116) T) ((-280 . -1116) T) ((-279 . -1116) T) ((-278 . -1116) T) ((-277 . -1116) T) ((-276 . -1116) T) ((-275 . -1116) T) ((-214 . -1116) T) ((-213 . -1116) T) ((-171 . -1222) 98077) ((-171 . -1219) 98055) ((-211 . -1116) T) ((-210 . -1116) T) ((-117 . -1065) T) ((-209 . -1116) T) ((-208 . -1116) T) ((-205 . -1116) T) ((-204 . -1116) T) ((-203 . -1116) T) ((-202 . -1116) T) ((-201 . -1116) T) ((-200 . -1116) T) ((-199 . -1116) T) ((-198 . -1116) T) ((-197 . -1116) T) ((-196 . -1116) T) ((-195 . -1116) T) ((-246 . -102) 97807) ((-171 . -35) 97785) ((-171 . -95) 97763) ((-664 . -1054) 97659) ((-492 . -1074) 97637) ((-1129 . -1116) 97389) ((-1158 . -34) T) ((-680 . -499) 97373) ((-73 . -1234) T) ((-105 . -623) 97355) ((-1308 . -623) 97337) ((-390 . -623) 97319) ((-348 . -626) 97271) ((-176 . -626) 97188) ((-1233 . -500) 97169) ((-741 . -38) 97018) ((-581 . -1222) T) ((-581 . -1219) T) ((-541 . -623) 97000) ((-530 . -317) 96938) ((-510 . -623) 96920) ((-510 . -624) 96902) ((-1233 . -623) 96868) ((-1184 . -1168) NIL) ((-1043 . -1087) 96837) ((-1043 . -1116) T) ((-1020 . -102) T) ((-987 . -102) T) ((-928 . -102) T) ((-904 . -1054) 96814) ((-1158 . -736) T) ((-1019 . -658) 96721) ((-486 . -1116) T) ((-473 . -1116) T) ((-596 . -23) T) ((-581 . -35) T) ((-581 . -95) T) ((-437 . -102) T) ((-1079 . -231) 96667) ((-1191 . -38) 96564) ((-876 . -736) T) ((-704 . -934) T) ((-521 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-1190 . -38) 96405) ((-348 . -1065) T) ((-1184 . -38) 96201) ((-1096 . -174) T) ((-176 . -1065) T) ((-1142 . -38) 96098) ((-722 . -47) 96075) ((-368 . -174) T) ((-362 . -174) T) ((-529 . -57) 96049) ((-507 . -57) 95999) ((-360 . -1303) 95976) ((-227 . -462) T) ((-327 . -298) 95927) ((-354 . -174) T) ((-176 . -249) T) ((-1247 . -860) 95826) ((-108 . -174) T) ((-882 . -1008) 95810) ((-668 . -1128) T) ((-591 . -372) T) ((-591 . -337) 95797) ((-528 . -337) 95774) ((-528 . -372) T) ((-324 . -315) 95753) ((-321 . -315) T) ((-612 . -860) 95732) ((-1129 . -727) 95674) ((-530 . -290) 95658) ((-668 . -23) T) ((-428 . -233) 95642) ((-321 . -1038) NIL) ((-345 . -23) T) ((-103 . -1026) 95626) ((-45 . -36) 95605) ((-622 . -1116) T) ((-360 . -377) T) ((-534 . -102) T) ((-505 . -27) T) ((-246 . -317) 95543) ((-1103 . -1128) T) ((-1307 . -658) 95517) ((-792 . -1128) T) ((-790 . -1128) T) ((-1195 . -421) 95501) ((-464 . -1128) T) ((-1078 . -462) T) ((-1167 . -1116) T) ((-966 . -462) 95452) ((-1131 . -1099) T) ((-110 . -1116) T) ((-1103 . -23) T) ((-1176 . -524) 95235) ((-827 . -1074) T) ((-792 . -23) T) ((-790 . -23) T) ((-491 . -462) 95186) ((-471 . -23) T) ((-390 . -391) 95165) ((-364 . -235) 95138) ((-361 . -235) 95111) ((-353 . -235) 95084) ((-464 . -23) T) ((-271 . -235) 95057) ((-258 . -907) 94987) ((-257 . -907) 94917) ((-96 . -1116) T) ((-722 . -1234) T) ((-680 . -294) 94894) ((-494 . -524) 94827) ((-1276 . -1067) 94710) ((-1276 . -650) 94607) ((-1269 . -650) 94448) ((-1269 . -1067) 94283) ((-1248 . -650) 94079) ((-297 . -298) T) ((-1248 . -1067) 93869) ((-1098 . -623) 93851) ((-1098 . -624) 93832) ((-417 . -923) 93811) ((-1228 . -132) T) ((-50 . -1128) T) ((-1184 . -410) 93763) ((-1040 . -934) T) ((-1019 . -736) T) ((-853 . -658) 93736) ((-722 . -897) NIL) ((-606 . -1067) 93696) ((-591 . -1128) T) ((-528 . -1128) T) ((-605 . -1067) 93579) ((-1173 . -34) T) ((-1020 . -317) NIL) ((-825 . -499) 93563) ((-606 . -650) 93536) ((-363 . -934) T) ((-605 . -650) 93433) ((-924 . -235) 93420) ((-417 . -658) 93336) ((-50 . -23) T) ((-721 . -132) T) ((-722 . -1054) 93216) ((-591 . -23) T) ((-108 . -524) NIL) ((-528 . -23) T) ((-171 . -419) 93187) ((-1156 . -1116) T) ((-1299 . -1298) 93171) ((-741 . -914) 93148) ((-711 . -805) T) ((-711 . -802) T) ((-1136 . -315) T) ((-388 . -148) T) ((-288 . -623) 93130) ((-287 . -623) 93112) ((-1247 . -1008) 93082) ((-48 . -934) T) ((-685 . -499) 93066) ((-258 . -1291) 93036) ((-257 . -1291) 93006) ((-1104 . -238) T) ((-1193 . -860) T) ((-1136 . -1038) T) ((-1062 . -34) T) ((-846 . -148) 92985) ((-846 . -146) 92964) ((-747 . -107) 92948) ((-622 . -133) T) ((-1195 . -1074) T) ((-492 . -1116) 92700) ((-1191 . -914) 92613) ((-1190 . -914) 92519) ((-1184 . -914) 92352) ((-881 . -462) T) ((-85 . -1234) T) ((-142 . -107) 92334) ((-1142 . -914) 92318) ((-722 . -386) 92302) ((-843 . -626) 92170) ((-1307 . -736) T) ((-1296 . -1074) T) ((-1276 . -102) T) ((-1136 . -555) T) ((-589 . -102) T) ((-130 . -500) 92152) ((-1269 . -102) T) ((-400 . -1072) 92136) ((-1189 . -963) 92105) ((-44 . -294) 92082) ((-130 . -623) 92049) ((-52 . -623) 92031) ((-1141 . -963) 91998) ((-663 . -421) 91982) ((-1248 . -102) T) ((-1175 . -524) NIL) ((-672 . -25) T) ((-631 . -1072) 91966) ((-672 . -21) T) ((-977 . -656) 91876) ((-745 . -656) 91821) ((-725 . -656) 91793) ((-400 . -111) 91772) ((-224 . -261) 91756) ((-1070 . -1069) 91696) ((-1070 . -1116) T) ((-1020 . -1168) T) ((-828 . -1116) T) ((-463 . -656) 91611) ((-645 . -658) 91595) ((-352 . -1238) T) ((-631 . -111) 91574) ((-617 . -658) 91558) ((-606 . -102) T) ((-319 . -500) 91539) ((-596 . -132) T) ((-605 . -102) T) ((-424 . -1116) T) ((-394 . -1116) T) ((-319 . -623) 91505) ((-229 . -1116) 91483) ((-657 . -524) 91416) ((-642 . -524) 91260) ((-843 . -1065) 91239) ((-654 . -152) 91223) ((-352 . -566) T) ((-722 . -912) 91166) ((-560 . -231) 91116) ((-1276 . -292) 91082) ((-1269 . -292) 91048) ((-1096 . -298) 90999) ((-497 . -858) T) ((-225 . -1128) T) ((-1248 . -292) 90965) ((-1228 . -503) 90931) ((-1020 . -38) 90881) ((-219 . -858) T) ((-428 . -656) 90840) ((-928 . -38) 90792) ((-853 . -804) 90771) ((-853 . -801) 90750) ((-853 . -736) 90729) ((-368 . -298) T) ((-362 . -298) T) ((-354 . -298) T) ((-171 . -462) 90660) ((-437 . -38) 90644) ((-225 . -23) T) ((-108 . -298) T) ((-417 . -804) 90623) ((-417 . -801) 90602) ((-417 . -736) T) ((-510 . -296) 90577) ((-487 . -1072) 90542) ((-668 . -132) T) ((-631 . -626) 90511) ((-1129 . -524) 90444) ((-345 . -132) T) ((-171 . -412) 90423) ((-492 . -727) 90365) ((-825 . -294) 90342) ((-487 . -111) 90298) ((-663 . -1074) T) ((-1189 . -907) 90237) ((-1141 . -907) 90219) ((-826 . -1067) 90062) ((-1295 . -1099) T) ((-1257 . -462) 89993) ((-826 . -650) 89842) ((-1294 . -1099) T) ((-1103 . -132) T) ((-1070 . -727) 89784) ((-1043 . -524) 89717) ((-792 . -132) T) ((-790 . -132) T) ((-581 . -462) T) ((-631 . -1065) T) ((-602 . -1116) T) ((-543 . -175) T) ((-471 . -132) T) ((-464 . -132) T) ((-388 . -238) T) ((-1015 . -1234) 89630) ((-45 . -1116) T) ((-394 . -727) 89600) ((-827 . -1116) T) ((-486 . -524) 89533) ((-473 . -524) 89466) ((-1309 . -626) 89448) ((-463 . -376) 89418) ((-45 . -620) 89397) ((-324 . -310) T) ((-837 . -238) 89376) ((-487 . -626) 89326) ((-1248 . -317) 89211) ((-680 . -623) 89173) ((-59 . -860) 89152) ((-1020 . -410) 89134) ((-558 . -623) 89116) ((-809 . -656) 89075) ((-825 . -614) 89052) ((-526 . -860) 89031) ((-506 . -860) 89010) ((-1015 . -1054) 88906) ((-40 . -1238) T) ((-246 . -914) 88838) ((-50 . -132) T) ((-591 . -132) T) ((-528 . -132) T) ((-302 . -658) 88698) ((-352 . -337) 88675) ((-352 . -372) T) ((-330 . -331) 88652) ((-327 . -294) 88610) ((-40 . -566) T) ((-388 . -1219) T) ((-388 . -1222) T) ((-1051 . -1210) 88585) ((-1206 . -241) 88535) ((-1184 . -233) 88487) ((-338 . -1116) T) ((-388 . -95) T) ((-388 . -35) T) ((-1051 . -107) 88433) ((-487 . -1065) T) ((-1308 . -1072) 88417) ((-489 . -241) 88367) ((-1176 . -499) 88301) ((-1299 . -1067) 88285) ((-390 . -1072) 88269) ((-1299 . -650) 88239) ((-487 . -249) T) ((-826 . -102) T) ((-724 . -148) 88218) ((-724 . -146) 88197) ((-494 . -499) 88181) ((-495 . -344) 88150) ((-522 . -1116) T) ((-1308 . -111) 88129) ((-1015 . -386) 88113) ((-423 . -102) T) ((-390 . -111) 88092) ((-1015 . -347) 88076) ((-286 . -999) 88060) ((-285 . -999) 88044) ((-1020 . -914) NIL) ((-1306 . -623) 88026) ((-1304 . -623) 88008) ((-110 . -524) NIL) ((-1189 . -1260) 87992) ((-864 . -862) 87976) ((-1195 . -1116) T) ((-103 . -1234) T) ((-966 . -963) 87937) ((-827 . -727) 87879) ((-1248 . -1168) NIL) ((-491 . -963) 87824) ((-1078 . -144) T) ((-60 . -102) 87802) ((-44 . -623) 87784) ((-78 . -623) 87766) ((-360 . -658) 87711) ((-1296 . -1116) T) ((-521 . -860) T) ((-297 . -294) 87690) ((-352 . -1128) T) ((-303 . -1116) T) ((-1015 . -912) 87649) ((-303 . -620) 87628) ((-1308 . -626) 87577) ((-1276 . -38) 87474) ((-1269 . -38) 87315) ((-1248 . -38) 87111) ((-497 . -1074) T) ((-390 . -626) 87095) ((-219 . -1074) T) ((-352 . -23) T) ((-153 . -623) 87077) ((-843 . -805) 87056) ((-843 . -802) 87035) ((-1233 . -626) 87016) ((-606 . -38) 86989) ((-605 . -38) 86886) ((-880 . -566) T) ((-225 . -132) T) ((-327 . -1018) 86852) ((-79 . -623) 86834) ((-722 . -315) 86813) ((-302 . -736) 86715) ((-834 . -102) T) ((-874 . -854) T) ((-302 . -483) 86694) ((-1299 . -102) T) ((-40 . -372) T) ((-882 . -148) 86673) ((-495 . -656) 86655) ((-882 . -146) 86634) ((-1175 . -499) 86616) ((-1308 . -1065) T) ((-492 . -524) 86549) ((-1162 . -1234) T) ((-978 . -623) 86531) ((-657 . -499) 86515) ((-642 . -499) 86446) ((-825 . -623) 86139) ((-48 . -27) T) ((-1195 . -727) 86036) ((-966 . -907) 86015) ((-663 . -1116) T) ((-871 . -870) T) ((-446 . -373) 85989) ((-741 . -656) 85899) ((-491 . -907) 85874) ((-1118 . -102) T) ((-986 . -1116) T) ((-874 . -1116) T) ((-826 . -317) 85861) ((-543 . -537) T) ((-543 . -586) T) ((-1304 . -391) 85833) ((-1070 . -524) 85766) ((-1176 . -294) 85742) ((-246 . -233) 85711) ((-258 . -1067) 85612) ((-257 . -1067) 85513) ((-1296 . -727) 85483) ((-1183 . -93) T) ((-1010 . -93) T) ((-827 . -174) 85462) ((-258 . -650) 85384) ((-257 . -650) 85306) ((-1231 . -500) 85283) ((-229 . -524) 85216) ((-631 . -805) 85195) ((-631 . -802) 85174) ((-1231 . -623) 85086) ((-224 . -1234) T) ((-685 . -623) 85018) ((-1191 . -656) 84928) ((-1173 . -1026) 84912) ((-957 . -102) 84862) ((-360 . -736) T) ((-871 . -623) 84844) ((-1190 . -656) 84726) ((-1184 . -656) 84563) ((-1142 . -656) 84473) ((-1248 . -410) 84425) ((-1129 . -499) 84409) ((-60 . -317) 84347) ((-339 . -102) T) ((-1228 . -21) T) ((-1228 . -25) T) ((-40 . -1128) T) ((-721 . -21) T) ((-637 . -623) 84329) ((-525 . -331) 84308) ((-721 . -25) T) ((-449 . -102) T) ((-108 . -294) NIL) ((-935 . -1128) T) ((-40 . -23) T) ((-781 . -1128) T) ((-574 . -1238) T) ((-505 . -1238) T) ((-327 . -623) 84290) ((-1020 . -233) 84272) ((-171 . -167) 84256) ((-590 . -566) T) ((-574 . -566) T) ((-505 . -566) T) ((-781 . -23) T) ((-1268 . -148) 84235) ((-1176 . -614) 84211) ((-1268 . -146) 84190) ((-1043 . -499) 84174) ((-1247 . -146) 84099) ((-1247 . -148) 84024) ((-1299 . -1305) 84003) ((-881 . -907) NIL) ((-486 . -499) 83987) ((-473 . -499) 83971) ((-533 . -34) T) ((-663 . -727) 83941) ((-1276 . -914) 83854) ((-1269 . -914) 83760) ((-1248 . -914) 83593) ((-112 . -983) T) ((-1195 . -174) 83544) ((-672 . -860) 83523) ((-374 . -102) T) ((-605 . -914) 83436) ((-246 . -244) 83415) ((-258 . -102) T) ((-257 . -102) T) ((-1257 . -963) 83384) ((-251 . -860) 83363) ((-826 . -38) 83212) ((-45 . -524) 83004) ((-1175 . -294) 82954) ((-216 . -1116) T) ((-1166 . -1116) T) ((-882 . -238) 82933) ((-1166 . -620) 82912) ((-596 . -25) T) ((-596 . -21) T) ((-1118 . -317) 82850) ((-977 . -421) 82834) ((-709 . -1238) T) ((-642 . -294) 82787) ((-1103 . -649) 82735) ((-919 . -1116) T) ((-792 . -649) 82683) ((-790 . -649) 82631) ((-352 . -132) T) ((-297 . -623) 82613) ((-880 . -1128) T) ((-709 . -566) T) ((-130 . -626) 82595) ((-464 . -649) 82543) ((-171 . -907) 82500) ((-919 . -917) 82484) ((-388 . -462) T) ((-497 . -1116) T) ((-957 . -317) 82422) ((-711 . -658) 82394) ((-559 . -854) T) ((-219 . -1116) T) ((-324 . -934) 82373) ((-321 . -934) T) ((-321 . -830) NIL) ((-400 . -730) T) ((-880 . -23) T) ((-117 . -658) 82360) ((-484 . -146) 82339) ((-428 . -421) 82323) ((-484 . -148) 82302) ((-110 . -499) 82284) ((-319 . -626) 82265) ((-2 . -623) 82247) ((-188 . -102) T) ((-1175 . -19) 82229) ((-1175 . -614) 82204) ((-668 . -21) T) ((-668 . -25) T) ((-603 . -1160) T) ((-1129 . -294) 82181) ((-345 . -25) T) ((-345 . -21) T) ((-246 . -656) 81960) ((-505 . -372) T) ((-1306 . -1072) 81944) ((-1304 . -1072) 81928) ((-1299 . -38) 81898) ((-1257 . -907) 81837) ((-1189 . -1067) 81660) ((-1158 . -1234) T) ((-1141 . -1067) 81503) ((-864 . -1067) 81487) ((-642 . -614) 81462) ((-1268 . -1219) 81428) ((-1268 . -1222) 81394) ((-1268 . -95) 81360) ((-1189 . -650) 81189) ((-1141 . -650) 81038) ((-864 . -650) 81008) ((-1268 . -238) 80960) ((-1251 . -102) 80938) ((-559 . -1116) T) ((-1103 . -25) T) ((-1103 . -21) T) ((-541 . -802) T) ((-541 . -805) T) ((-118 . -1238) T) ((-977 . -1074) T) ((-633 . -566) T) ((-792 . -25) T) ((-792 . -21) T) ((-790 . -21) T) ((-790 . -25) T) ((-745 . -1074) T) ((-725 . -1074) T) ((-680 . -1072) 80922) ((-527 . -1099) T) ((-471 . -25) T) ((-118 . -566) T) ((-471 . -21) T) ((-464 . -25) T) ((-464 . -21) T) ((-1248 . -233) 80874) ((-1167 . -93) T) ((-1158 . -1054) 80770) ((-827 . -298) 80749) ((-1247 . -1219) 80715) ((-833 . -1116) T) ((-980 . -983) T) ((-680 . -111) 80694) ((-627 . -1234) T) ((-303 . -524) 80486) ((-1247 . -1222) 80452) ((-1247 . -238) 80357) ((-1242 . -377) T) ((-258 . -317) 80295) ((-257 . -317) 80233) ((-1239 . -854) T) ((-1176 . -624) NIL) ((-1176 . -623) 80215) ((-1158 . -386) 80199) ((-1136 . -830) T) ((-1136 . -934) T) ((-96 . -93) T) ((-1129 . -614) 80176) ((-1096 . -624) 80160) ((-1096 . -623) 80142) ((-1020 . -656) 80092) ((-928 . -656) 80029) ((-825 . -296) 80006) ((-494 . -623) 79938) ((-618 . -152) 79885) ((-497 . -727) 79835) ((-428 . -1074) T) ((-492 . -499) 79819) ((-437 . -656) 79778) ((-335 . -860) 79757) ((-348 . -658) 79731) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -727) 79681) ((-171 . -734) 79652) ((-176 . -658) 79584) ((-591 . -21) T) ((-591 . -25) T) ((-528 . -25) T) ((-528 . -21) T) ((-485 . -152) 79534) ((-1077 . -623) 79516) ((-1009 . -102) T) ((-872 . -102) T) ((-826 . -914) 79452) ((-809 . -421) 79415) ((-40 . -132) T) ((-709 . -372) T) ((-711 . -736) T) ((-711 . -804) T) ((-711 . -801) T) ((-214 . -908) T) ((-590 . -1128) T) ((-574 . -1128) T) ((-505 . -1128) T) ((-368 . -623) 79397) ((-362 . -623) 79379) ((-354 . -623) 79361) ((-66 . -406) T) ((-66 . -405) T) ((-108 . -624) 79291) ((-108 . -623) 79233) ((-213 . -908) T) ((-972 . -152) 79217) ((-781 . -132) T) ((-680 . -626) 79135) ((-135 . -736) T) ((-117 . -736) T) ((-1268 . -35) 79101) ((-1070 . -499) 79085) ((-590 . -23) T) ((-574 . -23) T) ((-505 . -23) T) ((-1247 . -95) 79051) ((-1247 . -35) 79017) ((-1189 . -102) T) ((-1141 . -102) T) ((-864 . -102) T) ((-229 . -499) 79001) ((-1306 . -111) 78980) ((-1304 . -111) 78959) ((-44 . -1072) 78943) ((-1306 . -626) 78889) ((-1306 . -1065) T) ((-1257 . -1260) 78873) ((-865 . -862) 78857) ((-1195 . -298) 78836) ((-1120 . -1234) T) ((-110 . -294) 78786) ((-1019 . -1234) 78715) ((-129 . -152) 78697) ((-1158 . -912) 78656) ((-44 . -111) 78635) ((-1304 . -626) 78564) ((-1239 . -1116) T) ((-1198 . -1279) T) ((-1183 . -500) 78545) ((-680 . -1065) T) ((-1183 . -623) 78511) ((-1175 . -624) NIL) ((-484 . -238) 78463) ((-1079 . -620) 78438) ((-1010 . -500) 78419) ((-74 . -451) T) ((-74 . -405) T) ((-1079 . -1116) T) ((-153 . -1072) 78403) ((-1010 . -623) 78369) ((-680 . -239) 78348) ((-581 . -564) 78332) ((-364 . -148) 78311) ((-364 . -146) 78262) ((-361 . -148) 78241) ((-361 . -146) 78192) ((-353 . -148) 78171) ((-353 . -146) 78122) ((-271 . -146) 78101) ((-271 . -148) 78080) ((-253 . -148) 78059) ((-118 . -372) T) ((-253 . -146) 78038) ((-1175 . -623) 78020) ((-153 . -111) 77999) ((-1019 . -1054) 77887) ((-1184 . -858) NIL) ((-704 . -1238) T) ((-809 . -1074) T) ((-709 . -1128) T) ((-1304 . -1065) T) ((-1173 . -1234) T) ((-1019 . -386) 77864) ((-924 . -146) T) ((-924 . -148) 77846) ((-880 . -132) T) ((-825 . -1072) 77767) ((-709 . -23) T) ((-704 . -566) T) ((-227 . -1067) 77732) ((-657 . -623) 77664) ((-657 . -624) 77625) ((-642 . -624) NIL) ((-642 . -623) 77607) ((-497 . -174) T) ((-227 . -650) 77572) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-484 . -1222) 77538) ((-484 . -1219) 77504) ((-281 . -623) 77486) ((-280 . -623) 77468) ((-279 . -623) 77450) ((-278 . -623) 77432) ((-277 . -623) 77414) ((-510 . -661) 77396) ((-276 . -623) 77378) ((-348 . -736) T) ((-275 . -623) 77360) ((-110 . -19) 77342) ((-176 . -736) T) ((-510 . -382) 77324) ((-214 . -623) 77306) ((-530 . -1165) 77290) ((-510 . -124) T) ((-110 . -614) 77265) ((-213 . -623) 77247) ((-484 . -35) 77213) ((-484 . -95) 77179) ((-211 . -623) 77161) ((-210 . -623) 77143) ((-209 . -623) 77125) ((-208 . -623) 77107) ((-205 . -623) 77089) ((-204 . -623) 77071) ((-203 . -623) 77053) ((-202 . -623) 77035) ((-201 . -623) 77017) ((-200 . -623) 76999) ((-199 . -623) 76981) ((-546 . -1119) 76933) ((-198 . -623) 76915) ((-197 . -623) 76897) ((-45 . -499) 76834) ((-196 . -623) 76816) ((-195 . -623) 76798) ((-153 . -626) 76767) ((-1131 . -102) T) ((-825 . -111) 76683) ((-654 . -102) 76633) ((-492 . -294) 76610) ((-1307 . -1054) 76594) ((-1129 . -623) 76287) ((-1117 . -1116) T) ((-1062 . -1234) T) ((-1189 . -317) 76274) ((-1078 . -1067) 76261) ((-1151 . -1116) T) ((-966 . -1067) 76104) ((-1141 . -317) 76091) ((-1112 . -1099) T) ((-633 . -1128) T) ((-1078 . -650) 76078) ((-1106 . -1099) T) ((-966 . -650) 75927) ((-1103 . -235) 75900) ((-491 . -1067) 75743) ((-1089 . -1099) T) ((-1082 . -1099) T) ((-1052 . -1099) T) ((-1035 . -1099) T) ((-118 . -1128) T) ((-491 . -650) 75592) ((-792 . -235) 75579) ((-829 . -102) T) ((-636 . -1099) T) ((-633 . -23) T) ((-1166 . -524) 75371) ((-493 . -1099) T) ((-396 . -102) T) ((-332 . -102) T) ((-220 . -1099) T) ((-977 . -1116) T) ((-153 . -1065) T) ((-741 . -421) 75355) ((-118 . -23) T) ((-1019 . -912) 75307) ((-745 . -1116) T) ((-725 . -1116) T) ((-463 . -1116) T) ((-417 . -1234) T) ((-324 . -440) 75291) ((-602 . -93) T) ((-1276 . -656) 75201) ((-1043 . -624) 75162) ((-1040 . -1238) T) ((-227 . -102) T) ((-1043 . -623) 75124) ((-1269 . -656) 75006) ((-826 . -233) 74990) ((-825 . -626) 74788) ((-1248 . -656) 74625) ((-1040 . -566) T) ((-843 . -658) 74598) ((-363 . -1238) T) ((-486 . -623) 74560) ((-486 . -624) 74521) ((-473 . -624) 74482) ((-473 . -623) 74444) ((-606 . -656) 74403) ((-417 . -895) 74387) ((-327 . -1072) 74222) ((-417 . -897) 74147) ((-605 . -656) 74057) ((-853 . -1054) 73953) ((-497 . -524) NIL) ((-492 . -614) 73930) ((-591 . -235) 73917) ((-363 . -566) T) ((-528 . -235) 73904) ((-219 . -524) NIL) ((-882 . -462) T) ((-428 . -1116) T) ((-417 . -1054) 73768) ((-327 . -111) 73589) ((-704 . -372) T) ((-227 . -292) T) ((-1231 . -626) 73566) ((-48 . -1238) T) ((-1189 . -1168) 73544) ((-1176 . -296) 73520) ((-1078 . -102) T) ((-966 . -102) T) ((-825 . -1065) 73498) ((-590 . -132) T) ((-574 . -132) T) ((-505 . -132) T) ((-364 . -238) 73477) ((-361 . -238) 73456) ((-353 . -238) 73435) ((-48 . -566) T) ((-881 . -1067) 73380) ((-271 . -238) 73359) ((-825 . -239) 73311) ((-324 . -27) 73290) ((-258 . -914) 73222) ((-257 . -914) 73154) ((-255 . -845) 73136) ((-189 . -845) 73118) ((-723 . -102) T) ((-303 . -499) 73055) ((-881 . -650) 73000) ((-491 . -102) T) ((-741 . -1074) T) ((-622 . -623) 72982) ((-622 . -624) 72843) ((-417 . -386) 72827) ((-417 . -347) 72811) ((-1189 . -38) 72640) ((-1141 . -38) 72489) ((-327 . -626) 72315) ((-924 . -238) T) ((-645 . -1234) 72289) ((-617 . -1234) 72263) ((-864 . -38) 72233) ((-400 . -658) 72217) ((-654 . -317) 72155) ((-1167 . -500) 72136) ((-1167 . -623) 72102) ((-977 . -727) 71999) ((-745 . -727) 71969) ((-224 . -107) 71953) ((-45 . -294) 71853) ((-631 . -658) 71827) ((-320 . -1116) T) ((-297 . -1072) 71814) ((-110 . -623) 71796) ((-110 . -624) 71778) ((-463 . -727) 71748) ((-826 . -260) 71687) ((-699 . -1116) 71665) ((-560 . -1116) T) ((-1191 . -1074) T) ((-1190 . -1074) T) ((-96 . -500) 71646) ((-1184 . -1074) T) ((-297 . -111) 71631) ((-1142 . -1074) T) ((-560 . -620) 71610) ((-96 . -623) 71576) ((-1020 . -858) T) ((-229 . -697) 71534) ((-704 . -1128) T) ((-1228 . -750) 71510) ((-1040 . -372) T) ((-848 . -845) 71492) ((-843 . -804) 71471) ((-417 . -912) 71430) ((-327 . -1065) T) ((-352 . -25) T) ((-352 . -21) T) ((-171 . -1067) 71340) ((-68 . -1234) T) ((-843 . -801) 71319) ((-428 . -727) 71293) ((-809 . -1116) T) ((-722 . -934) 71272) ((-709 . -132) T) ((-171 . -650) 71100) ((-704 . -23) T) ((-497 . -298) T) ((-843 . -736) 71079) ((-327 . -239) 71031) ((-327 . -249) 71010) ((-219 . -298) T) ((-130 . -377) T) ((-1268 . -462) 70989) ((-1247 . -462) 70968) ((-363 . -337) 70945) ((-363 . -372) T) ((-1156 . -623) 70927) ((-45 . -1272) 70877) ((-881 . -102) T) ((-654 . -290) 70861) ((-709 . -1076) T) ((-1295 . -102) T) ((-1294 . -102) T) ((-487 . -658) 70826) ((-478 . -1116) T) ((-45 . -614) 70751) ((-1175 . -296) 70726) ((-297 . -626) 70698) ((-40 . -649) 70637) ((-1257 . -1067) 70460) ((-865 . -1067) 70444) ((-48 . -372) T) ((-1122 . -623) 70426) ((-1257 . -650) 70255) ((-865 . -650) 70225) ((-642 . -296) 70200) ((-826 . -656) 70110) ((-581 . -1067) 70097) ((-492 . -623) 69790) ((-246 . -421) 69759) ((-966 . -317) 69746) ((-581 . -650) 69733) ((-65 . -1234) T) ((-1079 . -524) 69577) ((-681 . -1116) T) ((-633 . -132) T) ((-491 . -317) 69564) ((-616 . -1116) T) ((-556 . -102) T) ((-118 . -132) T) ((-297 . -1065) T) ((-182 . -1116) T) ((-162 . -1116) T) ((-157 . -1116) T) ((-155 . -1116) T) ((-463 . -771) T) ((-31 . -1099) T) ((-977 . -174) 69515) ((-1189 . -914) 69458) ((-986 . -93) T) ((-1182 . -1116) T) ((-1096 . -1072) 69368) ((-631 . -804) 69347) ((-603 . -1116) T) ((-631 . -801) 69326) ((-631 . -736) T) ((-303 . -294) 69305) ((-302 . -1234) T) ((-1070 . -623) 69267) ((-1070 . -624) 69228) ((-1040 . -1128) T) ((-171 . -102) T) ((-282 . -860) T) ((-1141 . -914) 69212) ((-828 . -623) 69194) ((-1129 . -296) 69171) ((-1118 . -231) 69155) ((-1019 . -315) T) ((-809 . -727) 69139) ((-368 . -1072) 69091) ((-363 . -1128) T) ((-362 . -1072) 69043) ((-424 . -623) 69025) ((-394 . -623) 69007) ((-354 . -1072) 68959) ((-229 . -623) 68891) ((-1096 . -111) 68787) ((-1040 . -23) T) ((-108 . -1072) 68737) ((-911 . -102) T) ((-851 . -102) T) ((-818 . -102) T) ((-779 . -102) T) ((-687 . -102) T) ((-484 . -462) 68716) ((-428 . -174) T) ((-368 . -111) 68654) ((-362 . -111) 68592) ((-354 . -111) 68530) ((-258 . -233) 68499) ((-257 . -233) 68468) ((-363 . -23) T) ((-71 . -1234) T) ((-227 . -38) 68433) ((-108 . -111) 68367) ((-40 . -25) T) ((-40 . -21) T) ((-680 . -730) T) ((-171 . -292) 68345) ((-48 . -1128) T) ((-935 . -25) T) ((-781 . -25) T) ((-1308 . -658) 68319) ((-1166 . -499) 68256) ((-495 . -1116) T) ((-1299 . -656) 68215) ((-1257 . -102) T) ((-1078 . -1168) T) ((-865 . -102) T) ((-246 . -1074) 68193) ((-978 . -802) 68146) ((-978 . -805) 68099) ((-390 . -658) 68083) ((-48 . -23) T) ((-825 . -805) 68062) ((-825 . -802) 68041) ((-558 . -377) T) ((-303 . -614) 68020) ((-487 . -736) T) ((-581 . -102) T) ((-1096 . -626) 67838) ((-255 . -187) T) ((-189 . -187) T) ((-881 . -317) 67795) ((-663 . -294) 67774) ((-112 . -671) T) ((-360 . -1234) T) ((-368 . -626) 67711) ((-362 . -626) 67648) ((-354 . -626) 67585) ((-76 . -1234) T) ((-108 . -626) 67535) ((-112 . -113) T) ((-1078 . -38) 67522) ((-674 . -383) 67501) ((-966 . -38) 67350) ((-741 . -1116) T) ((-491 . -38) 67199) ((-86 . -1234) T) ((-602 . -500) 67180) ((-1248 . -858) NIL) ((-581 . -292) T) ((-1191 . -1116) T) ((-602 . -623) 67146) ((-1190 . -1116) T) ((-1184 . -1116) T) ((-1096 . -1065) T) ((-360 . -1054) 67123) ((-827 . -500) 67107) ((-1020 . -1074) T) ((-45 . -623) 67089) ((-45 . -624) NIL) ((-928 . -1074) T) ((-827 . -623) 67058) ((-1163 . -102) 67036) ((-1096 . -249) 66987) ((-437 . -1074) T) ((-368 . -1065) T) ((-362 . -1065) T) ((-374 . -373) 66964) ((-354 . -1065) T) ((-352 . -235) 66951) ((-258 . -244) 66930) ((-257 . -244) 66909) ((-1096 . -239) 66834) ((-1142 . -1116) T) ((-302 . -912) 66793) ((-108 . -1065) T) ((-704 . -132) T) ((-428 . -524) 66635) ((-368 . -239) 66614) ((-368 . -249) T) ((-44 . -730) T) ((-362 . -239) 66593) ((-362 . -249) T) ((-354 . -239) 66572) ((-354 . -249) T) ((-1183 . -626) 66553) ((-171 . -317) 66518) ((-108 . -249) T) ((-108 . -239) T) ((-1010 . -626) 66499) ((-327 . -802) T) ((-880 . -21) T) ((-880 . -25) T) ((-417 . -315) T) ((-510 . -34) T) ((-110 . -296) 66474) ((-1129 . -1072) 66395) ((-881 . -1168) NIL) ((-338 . -623) 66377) ((-417 . -1038) 66355) ((-1129 . -111) 66271) ((-701 . -1279) T) ((-446 . -1116) T) ((-256 . -1116) T) ((-1308 . -736) T) ((-63 . -623) 66253) ((-881 . -38) 66198) ((-533 . -1234) T) ((-612 . -152) 66182) ((-522 . -623) 66164) ((-1257 . -317) 66151) ((-741 . -727) 66000) ((-541 . -803) T) ((-541 . -804) T) ((-574 . -649) 65982) ((-505 . -649) 65942) ((-364 . -462) T) ((-361 . -462) T) ((-353 . -462) T) ((-271 . -462) 65893) ((-535 . -1116) T) ((-530 . -1116) 65843) ((-253 . -462) 65794) ((-1166 . -294) 65773) ((-1195 . -623) 65755) ((-699 . -524) 65688) ((-977 . -298) 65667) ((-560 . -524) 65459) ((-258 . -656) 65307) ((-257 . -656) 65142) ((-1296 . -623) 65111) ((-1296 . -500) 65095) ((-1191 . -727) 64992) ((-1189 . -233) 64976) ((-1129 . -626) 64774) ((-171 . -1168) 64753) ((-1190 . -727) 64594) ((-1184 . -727) 64390) ((-980 . -113) T) ((-903 . -102) T) ((-1173 . -684) 64374) ((-1142 . -727) 64271) ((-1040 . -132) T) ((-364 . -412) 64222) ((-361 . -412) 64173) ((-353 . -412) 64124) ((-978 . -377) 64077) ((-809 . -524) 63989) ((-303 . -624) NIL) ((-303 . -623) 63971) ((-924 . -462) T) ((-919 . -294) 63950) ((-825 . -377) 63929) ((-520 . -519) 63908) ((-518 . -519) 63887) ((-882 . -907) 63844) ((-497 . -294) NIL) ((-492 . -296) 63821) ((-428 . -298) T) ((-363 . -132) T) ((-219 . -294) NIL) ((-704 . -503) NIL) ((-99 . -1128) T) ((-40 . -235) 63787) ((-171 . -38) 63615) ((-966 . -914) 63596) ((-1268 . -989) 63558) ((-1163 . -317) 63496) ((-491 . -914) 63473) ((-1247 . -989) 63442) ((-924 . -412) T) ((-1129 . -1065) 63420) ((-1270 . -566) T) ((-1166 . -614) 63399) ((-112 . -860) T) ((-1079 . -499) 63330) ((-590 . -21) T) ((-590 . -25) T) ((-574 . -21) T) ((-574 . -25) T) ((-505 . -25) T) ((-505 . -21) T) ((-1257 . -1168) 63308) ((-1129 . -239) 63260) ((-48 . -132) T) ((-1215 . -102) T) ((-246 . -1116) 63012) ((-881 . -410) 62989) ((-1104 . -102) T) ((-1092 . -102) T) ((-618 . -102) T) ((-485 . -102) T) ((-1257 . -38) 62818) ((-865 . -38) 62788) ((-1050 . -1067) 62762) ((-741 . -174) 62673) ((-663 . -623) 62655) ((-655 . -1099) T) ((-1050 . -650) 62639) ((-581 . -38) 62626) ((-986 . -500) 62607) ((-986 . -623) 62573) ((-972 . -102) 62523) ((-874 . -623) 62505) ((-874 . -624) 62427) ((-603 . -524) NIL) ((-1313 . -1128) T) ((-1276 . -1074) T) ((-1269 . -1074) T) ((-1268 . -907) 62331) ((-330 . -1067) 62313) ((-1248 . -1074) T) ((-1247 . -907) 62162) ((-1228 . -148) 62141) ((-1228 . -146) 62120) ((-1201 . -102) T) ((-330 . -650) 62102) ((-711 . -1234) T) ((-1200 . -102) T) ((-1199 . -102) T) ((-1191 . -174) 62053) ((-1190 . -174) 61984) ((-606 . -1074) T) ((-605 . -1074) T) ((-1184 . -174) 61915) ((-1167 . -626) 61896) ((-388 . -1067) 61861) ((-1142 . -174) 61812) ((-1020 . -1116) T) ((-987 . -1116) T) ((-928 . -1116) T) ((-881 . -914) NIL) ((-388 . -650) 61777) ((-809 . -807) 61761) ((-709 . -25) T) ((-709 . -21) T) ((-118 . -649) 61738) ((-711 . -897) 61720) ((-437 . -1116) T) ((-324 . -1238) 61699) ((-321 . -1238) T) ((-171 . -410) 61683) ((-846 . -1067) 61653) ((-484 . -989) 61615) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -623) 61597) ((-837 . -1067) 61581) ((-108 . -805) T) ((-108 . -802) T) ((-711 . -1054) 61563) ((-324 . -566) 61542) ((-321 . -566) T) ((-846 . -650) 61512) ((-837 . -650) 61482) ((-1313 . -23) T) ((-135 . -1054) 61464) ((-96 . -626) 61445) ((-1009 . -656) 61427) ((-492 . -1072) 61348) ((-45 . -296) 61273) ((-246 . -727) 61215) ((-527 . -102) T) ((-492 . -111) 61131) ((-1108 . -102) 61101) ((-1050 . -102) T) ((-1189 . -656) 61011) ((-1141 . -656) 60921) ((-864 . -656) 60880) ((-654 . -838) 60859) ((-741 . -524) 60802) ((-1070 . -1072) 60786) ((-171 . -914) 60745) ((-1151 . -93) T) ((-1079 . -294) 60720) ((-633 . -21) T) ((-633 . -25) T) ((-534 . -1116) T) ((-680 . -658) 60658) ((-370 . -102) T) ((-330 . -102) T) ((-394 . -1072) 60642) ((-1070 . -111) 60621) ((-826 . -421) 60605) ((-118 . -25) T) ((-89 . -623) 60587) ((-118 . -21) T) ((-618 . -317) 60382) ((-485 . -317) 60186) ((-1166 . -624) NIL) ((-348 . -1234) T) ((-394 . -111) 60165) ((-388 . -102) T) ((-216 . -623) 60147) ((-1166 . -623) 60129) ((-1184 . -524) 59898) ((-1020 . -727) 59848) ((-1142 . -524) 59818) ((-928 . -727) 59770) ((-492 . -626) 59568) ((-360 . -315) T) ((-1206 . -152) 59518) ((-484 . -907) 59422) ((-972 . -317) 59360) ((-846 . -102) T) ((-437 . -727) 59344) ((-227 . -838) T) ((-837 . -102) T) ((-835 . -102) T) ((-1306 . -658) 59318) ((-1268 . -1267) 59297) ((-489 . -152) 59247) ((-1268 . -1262) 59217) ((-1136 . -1238) T) ((-348 . -1054) 59184) ((-1268 . -1265) 59168) ((-1257 . -914) 59111) ((-1247 . -1246) 59090) ((-80 . -623) 59072) ((-919 . -623) 59054) ((-1247 . -1262) 59031) ((-1136 . -566) T) ((-935 . -860) T) ((-781 . -860) T) ((-682 . -860) T) ((-497 . -624) 58961) ((-497 . -623) 58902) ((-388 . -292) T) ((-1247 . -1244) 58886) ((-1270 . -1128) T) ((-219 . -624) 58816) ((-219 . -623) 58757) ((-1079 . -614) 58732) ((-828 . -626) 58716) ((-574 . -235) 58703) ((-526 . -152) 58687) ((-59 . -152) 58671) ((-506 . -152) 58655) ((-505 . -235) 58642) ((-368 . -1303) 58626) ((-362 . -1303) 58610) ((-354 . -1303) 58594) ((-324 . -372) 58573) ((-321 . -372) T) ((-492 . -1065) 58551) ((-704 . -649) 58533) ((-1304 . -658) 58507) ((-129 . -317) NIL) ((-1270 . -23) T) ((-699 . -499) 58491) ((-64 . -623) 58473) ((-1129 . -805) 58452) ((-1129 . -802) 58431) ((-560 . -499) 58368) ((-680 . -34) T) ((-492 . -239) 58320) ((-303 . -296) 58299) ((-826 . -1074) T) ((-44 . -658) 58257) ((-1096 . -377) 58208) ((-741 . -298) 58139) ((-530 . -524) 58072) ((-827 . -1072) 58023) ((-559 . -623) 58005) ((-368 . -377) 57984) ((-362 . -377) 57963) ((-354 . -377) 57942) ((-1103 . -146) 57921) ((-1103 . -148) 57900) ((-982 . -1234) T) ((-881 . -233) 57877) ((-827 . -111) 57819) ((-792 . -146) 57798) ((-271 . -963) 57765) ((-253 . -963) 57710) ((-792 . -148) 57689) ((-790 . -146) 57668) ((-790 . -148) 57647) ((-153 . -658) 57621) ((-589 . -1116) T) ((-463 . -294) 57584) ((-464 . -148) 57563) ((-464 . -146) 57542) ((-680 . -736) T) ((-833 . -623) 57524) ((-1276 . -1116) T) ((-1269 . -1116) T) ((-1248 . -1116) T) ((-1228 . -1222) 57490) ((-1228 . -1219) 57456) ((-1191 . -298) 57435) ((-1190 . -298) 57386) ((-1184 . -298) 57337) ((-1142 . -298) 57316) ((-348 . -912) 57297) ((-1020 . -174) T) ((-928 . -174) T) ((-704 . -21) T) ((-704 . -25) T) ((-227 . -656) 57247) ((-606 . -1116) T) ((-605 . -1116) T) ((-484 . -1265) 57231) ((-484 . -1262) 57201) ((-428 . -294) 57129) ((-557 . -860) T) ((-324 . -1128) 56978) ((-321 . -1128) T) ((-1228 . -35) 56944) ((-1228 . -95) 56910) ((-84 . -623) 56892) ((-91 . -102) 56870) ((-1313 . -132) T) ((-724 . -1067) 56840) ((-602 . -626) 56821) ((-591 . -146) T) ((-591 . -148) 56803) ((-528 . -148) 56785) ((-528 . -146) T) ((-724 . -650) 56755) ((-324 . -23) 56607) ((-40 . -351) 56581) ((-321 . -23) T) ((-827 . -626) 56495) ((-1175 . -661) 56477) ((-1299 . -1074) T) ((-1175 . -382) 56459) ((-825 . -658) 56292) ((-1112 . -102) T) ((-1106 . -102) T) ((-1089 . -102) T) ((-171 . -233) 56276) ((-1082 . -102) T) ((-1052 . -102) T) ((-1035 . -102) T) ((-603 . -499) 56258) ((-636 . -102) T) ((-246 . -524) 56191) ((-493 . -102) T) ((-1306 . -736) T) ((-1304 . -736) T) ((-220 . -102) T) ((-1195 . -1072) 56074) ((-1078 . -656) 56046) ((-966 . -656) 55956) ((-1195 . -111) 55825) ((-886 . -1099) T) ((-871 . -175) T) ((-491 . -656) 55735) ((-271 . -907) 55677) ((-253 . -907) 55652) ((-827 . -1065) T) ((-691 . -1099) T) ((-686 . -1099) T) ((-633 . -235) 55625) ((-525 . -102) T) ((-520 . -102) T) ((-48 . -649) 55585) ((-518 . -102) T) ((-488 . -1099) T) ((-1296 . -1072) 55555) ((-118 . -235) NIL) ((-139 . -1099) T) ((-138 . -1099) T) ((-134 . -1099) T) ((-1050 . -38) 55539) ((-827 . -239) T) ((-827 . -249) 55518) ((-1296 . -111) 55483) ((-1276 . -727) 55380) ((-1269 . -727) 55221) ((-560 . -294) 55200) ((-1257 . -233) 55184) ((-1239 . -623) 55166) ((-616 . -93) T) ((-1079 . -624) NIL) ((-1079 . -623) 55148) ((-681 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1248 . -727) 54944) ((-1019 . -934) T) ((-153 . -736) T) ((-1195 . -626) 54797) ((-1129 . -377) 54776) ((-1040 . -25) T) ((-1020 . -524) NIL) ((-258 . -421) 54745) ((-257 . -421) 54714) ((-1040 . -21) T) ((-882 . -1067) 54666) ((-606 . -727) 54639) ((-605 . -727) 54536) ((-809 . -294) 54494) ((-127 . -102) 54472) ((-843 . -1054) 54368) ((-171 . -838) 54347) ((-327 . -658) 54244) ((-825 . -34) T) ((-724 . -102) T) ((-1136 . -1128) T) ((-1042 . -1234) T) ((-882 . -650) 54196) ((-388 . -38) 54161) ((-363 . -25) T) ((-363 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-364 . -1291) 54145) ((-361 . -1291) 54129) ((-353 . -1291) 54113) ((-171 . -358) 54092) ((-574 . -860) T) ((-1103 . -238) 54071) ((-1136 . -23) T) ((-87 . -623) 54053) ((-792 . -238) T) ((-711 . -315) T) ((-846 . -38) 54023) ((-837 . -38) 53993) ((-1296 . -626) 53935) ((-1270 . -132) T) ((-1166 . -296) 53914) ((-978 . -736) 53813) ((-978 . -803) 53766) ((-978 . -804) 53719) ((-117 . -315) T) ((-91 . -317) 53657) ((-685 . -34) T) ((-560 . -614) 53636) ((-48 . -25) T) ((-48 . -21) T) ((-825 . -804) 53615) ((-825 . -803) 53594) ((-711 . -1038) T) ((-663 . -1072) 53578) ((-881 . -656) 53508) ((-825 . -736) 53486) ((-978 . -483) 53439) ((-492 . -805) 53418) ((-492 . -802) 53397) ((-924 . -1291) 53384) ((-1195 . -1065) T) ((-663 . -111) 53363) ((-1195 . -334) 53340) ((-1220 . -102) 53318) ((-1117 . -623) 53300) ((-711 . -555) T) ((-826 . -1116) T) ((-591 . -238) T) ((-528 . -238) T) ((-1296 . -1065) T) ((-1151 . -500) 53281) ((-1240 . -102) T) ((-423 . -1116) T) ((-1151 . -623) 53247) ((-258 . -1074) 53225) ((-257 . -1074) 53203) ((-848 . -102) T) ((-297 . -658) 53190) ((-603 . -294) 53140) ((-699 . -697) 53098) ((-977 . -623) 53080) ((-882 . -102) T) ((-745 . -623) 53062) ((-725 . -623) 53044) ((-1276 . -174) 52995) ((-1269 . -174) 52926) ((-1248 . -174) 52857) ((-709 . -860) T) ((-1020 . -298) T) ((-463 . -623) 52839) ((-637 . -736) T) ((-60 . -1116) 52817) ((-251 . -152) 52801) ((-928 . -298) T) ((-1040 . -1028) T) ((-637 . -483) T) ((-722 . -1238) 52780) ((-704 . -235) NIL) ((-663 . -626) 52698) ((-171 . -656) 52593) ((-1284 . -860) 52572) ((-606 . -174) 52551) ((-605 . -174) 52502) ((-1268 . -650) 52343) ((-1268 . -1067) 52178) ((-1247 . -650) 51992) ((-1247 . -1067) 51800) ((-722 . -566) 51711) ((-417 . -934) T) ((-417 . -830) 51690) ((-327 . -804) T) ((-986 . -626) 51671) ((-327 . -736) T) ((-654 . -1165) 51655) ((-428 . -623) 51637) ((-428 . -624) 51544) ((-110 . -661) 51526) ((-176 . -315) T) ((-127 . -317) 51464) ((-110 . -382) 51446) ((-408 . -1234) T) ((-324 . -132) 51317) ((-321 . -132) T) ((-69 . -405) T) ((-110 . -124) T) ((-530 . -499) 51301) ((-664 . -1128) T) ((-603 . -19) 51283) ((-61 . -451) T) ((-61 . -405) T) ((-834 . -1116) T) ((-603 . -614) 51258) ((-487 . -1054) 51218) ((-663 . -1065) T) ((-664 . -23) T) ((-1299 . -1116) T) ((-31 . -102) T) ((-1257 . -656) 51128) ((-865 . -656) 51087) ((-826 . -727) 50936) ((-587 . -870) T) ((-581 . -656) 50908) ((-118 . -860) NIL) ((-1189 . -421) 50892) ((-1141 . -421) 50876) ((-864 . -421) 50860) ((-883 . -102) 50811) ((-1268 . -102) T) ((-1248 . -524) 50580) ((-1247 . -102) T) ((-1220 . -317) 50518) ((-1191 . -294) 50483) ((-1190 . -294) 50441) ((-535 . -93) T) ((-1184 . -294) 50269) ((-320 . -623) 50251) ((-1118 . -1116) T) ((-1096 . -658) 50125) ((-721 . -462) T) ((-699 . -623) 50057) ((-297 . -736) T) ((-108 . -923) NIL) ((-699 . -624) 50018) ((-611 . -623) 50000) ((-587 . -623) 49982) ((-560 . -624) NIL) ((-560 . -623) 49964) ((-539 . -623) 49946) ((-521 . -519) 49925) ((-497 . -1072) 49875) ((-484 . -1067) 49710) ((-517 . -519) 49689) ((-484 . -650) 49530) ((-219 . -1072) 49480) ((-368 . -658) 49432) ((-362 . -658) 49384) ((-227 . -858) T) ((-354 . -658) 49336) ((-612 . -102) 49286) ((-497 . -111) 49220) ((-492 . -377) 49199) ((-108 . -658) 49149) ((-363 . -235) 49136) ((-246 . -499) 49120) ((-352 . -148) 49102) ((-352 . -146) T) ((-171 . -379) 49073) ((-957 . -1282) 49057) ((-219 . -111) 48991) ((-882 . -317) 48956) ((-957 . -1116) 48906) ((-809 . -624) 48867) ((-809 . -623) 48849) ((-728 . -102) T) ((-339 . -1116) T) ((-216 . -626) 48826) ((-1136 . -132) T) ((-724 . -38) 48796) ((-324 . -503) 48775) ((-510 . -1234) T) ((-1268 . -292) 48741) ((-1247 . -292) 48707) ((-335 . -152) 48691) ((-449 . -1116) T) ((-1079 . -296) 48666) ((-1299 . -727) 48636) ((-48 . -235) 48623) ((-1176 . -34) T) ((-1308 . -1054) 48600) ((-494 . -34) T) ((-478 . -623) 48582) ((-256 . -294) 48556) ((-390 . -1054) 48540) ((-1189 . -1074) T) ((-1141 . -1074) T) ((-864 . -1074) T) ((-1078 . -858) T) ((-497 . -626) 48490) ((-219 . -626) 48440) ((-826 . -174) 48351) ((-530 . -294) 48303) ((-1276 . -298) 48282) ((-1215 . -373) 48256) ((-1104 . -273) 48240) ((-681 . -500) 48221) ((-681 . -623) 48187) ((-616 . -500) 48168) ((-118 . -1008) 48145) ((-616 . -623) 48095) ((-484 . -102) T) ((-182 . -500) 48076) ((-182 . -623) 48042) ((-162 . -500) 48023) ((-162 . -623) 47989) ((-157 . -500) 47970) ((-155 . -500) 47951) ((-157 . -623) 47917) ((-374 . -1116) T) ((-258 . -1116) T) ((-257 . -1116) T) ((-155 . -623) 47883) ((-1269 . -298) 47834) ((-1248 . -298) 47785) ((-882 . -1168) 47763) ((-1191 . -1018) 47729) ((-618 . -373) 47669) ((-1190 . -1018) 47635) ((-618 . -231) 47582) ((-704 . -860) T) ((-603 . -623) 47564) ((-603 . -624) NIL) ((-485 . -231) 47514) ((-497 . -1065) T) ((-1184 . -1018) 47480) ((-88 . -450) T) ((-88 . -405) T) ((-219 . -1065) T) ((-1142 . -1018) 47446) ((-1096 . -736) T) ((-722 . -1128) T) ((-606 . -298) 47425) ((-605 . -298) 47404) ((-497 . -249) T) ((-497 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1182 . -623) 47386) ((-882 . -38) 47338) ((-368 . -736) T) ((-362 . -736) T) ((-354 . -736) T) ((-108 . -804) T) ((-108 . -801) T) ((-722 . -23) T) ((-108 . -736) T) ((-530 . -1272) 47322) ((-1313 . -25) T) ((-484 . -292) 47288) ((-1313 . -21) T) ((-1247 . -317) 47227) ((-1193 . -102) T) ((-40 . -146) 47199) ((-40 . -148) 47171) ((-530 . -614) 47148) ((-1129 . -658) 46981) ((-612 . -317) 46919) ((-45 . -661) 46869) ((-45 . -676) 46819) ((-45 . -382) 46769) ((-1175 . -34) T) ((-881 . -858) NIL) ((-664 . -132) T) ((-495 . -623) 46751) ((-246 . -294) 46728) ((-188 . -1116) T) ((-1103 . -462) 46679) ((-826 . -524) 46553) ((-792 . -462) 46484) ((-674 . -1067) 46468) ((-657 . -34) T) ((-642 . -34) T) ((-674 . -650) 46452) ((-364 . -1067) 46404) ((-352 . -238) T) ((-361 . -1067) 46356) ((-353 . -1067) 46308) ((-271 . -1067) 46151) ((-253 . -1067) 45994) ((-790 . -462) 45945) ((-364 . -650) 45897) ((-361 . -650) 45849) ((-353 . -650) 45801) ((-271 . -650) 45650) ((-253 . -650) 45499) ((-464 . -462) 45450) ((-966 . -421) 45434) ((-741 . -623) 45416) ((-258 . -727) 45358) ((-257 . -727) 45300) ((-741 . -624) 45161) ((-491 . -421) 45145) ((-348 . -310) T) ((-534 . -93) T) ((-360 . -934) T) ((-1016 . -102) 45123) ((-924 . -1067) 45088) ((-1040 . -860) T) ((-60 . -524) 45021) ((-924 . -650) 44986) ((-1247 . -1168) 44938) ((-1020 . -294) NIL) ((-227 . -1074) T) ((-388 . -838) T) ((-1129 . -34) T) ((-591 . -462) T) ((-528 . -462) T) ((-1251 . -1109) 44922) ((-1251 . -1116) 44900) ((-246 . -614) 44877) ((-1251 . -1111) 44834) ((-1191 . -623) 44816) ((-1190 . -623) 44798) ((-1184 . -623) 44780) ((-1184 . -624) NIL) ((-1142 . -623) 44762) ((-882 . -410) 44746) ((-607 . -102) T) ((-595 . -102) T) ((-546 . -102) T) ((-1268 . -38) 44587) ((-1247 . -38) 44401) ((-880 . -148) T) ((-591 . -412) T) ((-528 . -412) T) ((-1280 . -102) T) ((-1270 . -21) T) ((-1270 . -25) T) ((-1129 . -804) 44380) ((-1129 . -803) 44359) ((-1009 . -1116) T) ((-1043 . -34) T) ((-872 . -1116) T) ((-1129 . -736) 44337) ((-674 . -102) T) ((-655 . -102) T) ((-560 . -296) 44316) ((-1206 . -102) T) ((-486 . -34) T) ((-473 . -34) T) ((-364 . -102) T) ((-361 . -102) T) ((-353 . -102) T) ((-271 . -102) T) ((-253 . -102) T) ((-487 . -315) T) ((-1078 . -1074) T) ((-966 . -1074) T) ((-324 . -649) 44222) ((-321 . -649) 44183) ((-1189 . -1116) T) ((-491 . -1074) T) ((-489 . -102) T) ((-446 . -623) 44165) ((-1141 . -1116) T) ((-256 . -623) 44147) ((-864 . -1116) T) ((-1157 . -102) T) ((-826 . -298) 44078) ((-977 . -1072) 43961) ((-487 . -1038) T) ((-882 . -914) 43920) ((-745 . -1072) 43890) ((-1050 . -656) 43849) ((-1163 . -1137) 43833) ((-463 . -1072) 43803) ((-1118 . -524) 43736) ((-977 . -111) 43605) ((-924 . -102) T) ((-40 . -238) 43577) ((-745 . -111) 43542) ((-535 . -500) 43523) ((-535 . -623) 43489) ((-59 . -102) 43439) ((-530 . -624) 43400) ((-530 . -623) 43312) ((-529 . -102) 43290) ((-526 . -102) 43240) ((-507 . -102) 43218) ((-506 . -102) 43168) ((-463 . -111) 43131) ((-330 . -656) 43113) ((-428 . -1072) 43087) ((-1228 . -989) 43049) ((-1015 . -1128) T) ((-388 . -656) 42999) ((-1151 . -626) 42980) ((-957 . -524) 42913) ((-497 . -805) T) ((-484 . -38) 42754) ((-428 . -111) 42721) ((-497 . -802) T) ((-1016 . -317) 42659) ((-219 . -805) T) ((-219 . -802) T) ((-1015 . -23) T) ((-722 . -132) T) ((-1247 . -410) 42629) ((-846 . -656) 42574) ((-837 . -656) 42533) ((-324 . -25) 42385) ((-171 . -421) 42369) ((-324 . -21) 42240) ((-321 . -25) T) ((-321 . -21) T) ((-874 . -377) T) ((-977 . -626) 42093) ((-110 . -34) T) ((-745 . -626) 42049) ((-725 . -626) 42031) ((-492 . -658) 41864) ((-881 . -1074) T) ((-603 . -296) 41839) ((-590 . -148) T) ((-574 . -148) T) ((-505 . -148) T) ((-1189 . -727) 41668) ((-1073 . -102) 41646) ((-1141 . -727) 41495) ((-1136 . -649) 41477) ((-864 . -727) 41447) ((-680 . -1234) T) ((-1 . -102) T) ((-428 . -626) 41355) ((-246 . -623) 41048) ((-1131 . -1116) T) ((-1257 . -421) 41032) ((-1206 . -317) 40836) ((-977 . -1065) T) ((-745 . -1065) T) ((-725 . -1065) T) ((-654 . -1116) 40786) ((-1070 . -658) 40770) ((-865 . -421) 40754) ((-521 . -102) T) ((-517 . -102) T) ((-271 . -317) 40741) ((-253 . -317) 40728) ((-1268 . -914) 40634) ((-977 . -334) 40613) ((-1247 . -914) 40464) ((-394 . -658) 40448) ((-680 . -1054) 40344) ((-489 . -317) 40148) ((-258 . -524) 40081) ((-257 . -524) 40014) ((-1157 . -317) 39940) ((-1228 . -907) 39919) ((-829 . -1116) T) ((-809 . -1072) 39903) ((-1276 . -294) 39868) ((-1269 . -294) 39826) ((-1248 . -294) 39654) ((-396 . -1116) T) ((-332 . -1116) T) ((-428 . -1065) T) ((-171 . -1074) T) ((-59 . -317) 39592) ((-809 . -111) 39571) ((-605 . -294) 39536) ((-529 . -317) 39474) ((-526 . -317) 39412) ((-507 . -317) 39350) ((-506 . -317) 39288) ((-428 . -239) 39267) ((-492 . -34) T) ((-227 . -1116) T) ((-1020 . -624) 39197) ((-1020 . -623) 39157) ((-987 . -623) 39117) ((-928 . -623) 39099) ((-709 . -148) T) ((-711 . -934) T) ((-711 . -830) T) ((-437 . -623) 39081) ((-1136 . -21) T) ((-1136 . -25) T) ((-680 . -386) 39065) ((-117 . -934) T) ((-882 . -233) 39049) ((-44 . -1234) T) ((-78 . -1234) T) ((-127 . -126) 39033) ((-1070 . -34) T) ((-1306 . -1054) 39007) ((-1304 . -1054) 38964) ((-1257 . -1074) T) ((-865 . -1074) T) ((-364 . -1168) 38943) ((-361 . -1168) 38922) ((-353 . -1168) 38901) ((-492 . -804) 38880) ((-492 . -803) 38859) ((-229 . -34) T) ((-492 . -736) 38837) ((-809 . -626) 38683) ((-672 . -1067) 38667) ((-60 . -499) 38651) ((-581 . -1074) T) ((-1189 . -174) 38542) ((-672 . -650) 38526) ((-484 . -914) 38432) ((-1141 . -174) 38343) ((-1078 . -1116) T) ((-1103 . -963) 38288) ((-966 . -1116) T) ((-827 . -658) 38239) ((-792 . -963) 38208) ((-723 . -1116) T) ((-790 . -963) 38175) ((-526 . -290) 38159) ((-680 . -912) 38118) ((-491 . -1116) T) ((-464 . -963) 38085) ((-79 . -1234) T) ((-364 . -38) 38050) ((-361 . -38) 38015) ((-353 . -38) 37980) ((-271 . -38) 37829) ((-253 . -38) 37678) ((-924 . -1168) T) ((-534 . -500) 37659) ((-633 . -148) 37638) ((-633 . -146) 37617) ((-534 . -623) 37583) ((-118 . -148) T) ((-118 . -146) NIL) ((-424 . -736) T) ((-809 . -1065) T) ((-574 . -238) T) ((-505 . -238) T) ((-352 . -462) T) ((-1276 . -1018) 37549) ((-1269 . -1018) 37515) ((-1248 . -1018) 37481) ((-924 . -38) 37446) ((-227 . -727) 37411) ((-327 . -47) 37381) ((-40 . -419) 37353) ((-141 . -623) 37335) ((-1015 . -132) T) ((-825 . -1234) T) ((-176 . -934) T) ((-559 . -377) T) ((-724 . -656) 37280) ((-616 . -626) 37261) ((-352 . -412) T) ((-681 . -626) 37242) ((-321 . -235) NIL) ((-182 . -626) 37223) ((-162 . -626) 37204) ((-157 . -626) 37185) ((-155 . -626) 37166) ((-530 . -296) 37143) ((-1247 . -233) 37113) ((-1195 . -658) 37038) ((-886 . -102) T) ((-825 . -1054) 36865) ((-45 . -34) T) ((-691 . -102) T) ((-686 . -102) T) ((-672 . -102) T) ((-664 . -21) T) ((-664 . -25) T) ((-1118 . -499) 36849) ((-685 . -1234) T) ((-488 . -102) T) ((-251 . -102) 36799) ((-556 . -854) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-1103 . -907) 36730) ((-881 . -1116) T) ((-1189 . -524) 36677) ((-1078 . -727) 36664) ((-792 . -907) 36603) ((-741 . -1072) 36446) ((-790 . -907) 36428) ((-966 . -727) 36277) ((-1141 . -524) 36229) ((-1295 . -1116) T) ((-1294 . -1116) T) ((-464 . -907) 36204) ((-491 . -727) 36053) ((-67 . -623) 36035) ((-741 . -111) 35864) ((-957 . -499) 35848) ((-1296 . -658) 35808) ((-1191 . -1072) 35691) ((-827 . -736) T) ((-1190 . -1072) 35526) ((-1184 . -1072) 35316) ((-327 . -1234) T) ((-1142 . -1072) 35199) ((-1019 . -1238) T) ((-1110 . -102) 35177) ((-825 . -386) 35146) ((-589 . -623) 35128) ((-556 . -1116) T) ((-1019 . -566) T) ((-1191 . -111) 34997) ((-1190 . -111) 34818) ((-1184 . -111) 34587) ((-1142 . -111) 34456) ((-1121 . -1119) 34420) ((-388 . -858) T) ((-1276 . -623) 34402) ((-1269 . -623) 34384) ((-882 . -656) 34321) ((-1248 . -623) 34303) ((-1248 . -624) NIL) ((-246 . -296) 34280) ((-40 . -462) T) ((-227 . -174) T) ((-171 . -1116) T) ((-741 . -626) 34065) ((-704 . -148) T) ((-704 . -146) NIL) ((-606 . -623) 34047) ((-605 . -623) 34029) ((-1136 . -235) 34016) ((-911 . -1116) T) ((-851 . -1116) T) ((-818 . -1116) T) ((-271 . -914) 33962) ((-253 . -914) 33939) ((-779 . -1116) T) ((-687 . -1116) T) ((-668 . -862) 33923) ((-633 . -238) 33902) ((-825 . -912) 33834) ((-1239 . -377) T) ((-40 . -412) NIL) ((-118 . -238) NIL) ((-1191 . -626) 33716) ((-1136 . -671) T) ((-881 . -727) 33661) ((-258 . -499) 33645) ((-257 . -499) 33629) ((-1190 . -626) 33372) ((-1184 . -626) 33167) ((-722 . -649) 33115) ((-663 . -658) 33089) ((-1142 . -626) 32971) ((-303 . -34) T) ((-1136 . -113) T) ((-741 . -1065) T) ((-591 . -1291) 32958) ((-528 . -1291) 32935) ((-1257 . -1116) T) ((-1189 . -298) 32846) ((-1141 . -298) 32777) ((-1078 . -174) T) ((-297 . -1234) T) ((-865 . -1116) T) ((-966 . -174) 32688) ((-792 . -1260) 32672) ((-654 . -524) 32605) ((-77 . -623) 32587) ((-741 . -334) 32552) ((-1195 . -736) T) ((-581 . -1116) T) ((-491 . -174) 32463) ((-251 . -317) 32401) ((-1158 . -1128) T) ((-70 . -623) 32383) ((-1296 . -736) T) ((-1191 . -1065) T) ((-1190 . -1065) T) ((-335 . -102) 32333) ((-1184 . -1065) T) ((-1158 . -23) T) ((-1142 . -1065) T) ((-91 . -1137) 32317) ((-876 . -1128) T) ((-1191 . -239) 32276) ((-1190 . -249) 32255) ((-1190 . -239) 32207) ((-1184 . -239) 32094) ((-1184 . -249) 32073) ((-327 . -912) 31979) ((-876 . -23) T) ((-171 . -727) 31807) ((-417 . -1238) T) ((-1117 . -377) T) ((-1019 . -372) T) ((-880 . -462) T) ((-1040 . -148) T) ((-957 . -294) 31759) ((-321 . -860) NIL) ((-1268 . -656) 31641) ((-884 . -102) T) ((-1247 . -656) 31496) ((-722 . -25) T) ((-417 . -566) T) ((-722 . -21) T) ((-535 . -626) 31477) ((-363 . -148) 31459) ((-363 . -146) T) ((-1163 . -1116) 31437) ((-463 . -730) T) ((-75 . -623) 31419) ((-115 . -860) T) ((-251 . -290) 31403) ((-246 . -1072) 31324) ((-81 . -623) 31306) ((-745 . -377) 31259) ((-1193 . -838) T) ((-747 . -241) 31243) ((-1176 . -1234) T) ((-142 . -241) 31225) ((-246 . -111) 31141) ((-1257 . -727) 30970) ((-48 . -148) T) ((-881 . -174) T) ((-865 . -727) 30940) ((-494 . -1234) T) ((-966 . -524) 30887) ((-663 . -736) T) ((-581 . -727) 30874) ((-1050 . -1074) T) ((-704 . -238) NIL) ((-491 . -524) 30817) ((-957 . -19) 30801) ((-957 . -614) 30778) ((-1096 . -1234) 30649) ((-826 . -624) NIL) ((-826 . -623) 30631) ((-1228 . -1067) 30514) ((-1020 . -1072) 30464) ((-423 . -623) 30446) ((-258 . -294) 30423) ((-368 . -1234) 30402) ((-362 . -1234) 30381) ((-354 . -1234) 30360) ((-257 . -294) 30337) ((-497 . -923) NIL) ((-324 . -29) 30307) ((-108 . -1234) T) ((-1019 . -1128) T) ((-219 . -923) NIL) ((-1228 . -650) 30204) ((-928 . -1072) 30156) ((-1096 . -1054) 30052) ((-1020 . -111) 29986) ((-721 . -1067) 29951) ((-1019 . -23) T) ((-928 . -111) 29889) ((-747 . -705) 29873) ((-721 . -650) 29838) ((-271 . -233) 29822) ((-437 . -1072) 29806) ((-388 . -1074) T) ((-246 . -626) 29604) ((-704 . -1222) NIL) ((-497 . -658) 29554) ((-484 . -656) 29436) ((-108 . -895) 29418) ((-108 . -897) 29400) ((-704 . -1219) NIL) ((-219 . -658) 29350) ((-368 . -1054) 29334) ((-362 . -1054) 29318) ((-335 . -317) 29256) ((-354 . -1054) 29240) ((-227 . -298) T) ((-437 . -111) 29219) ((-60 . -623) 29151) ((-171 . -174) T) ((-1136 . -860) T) ((-108 . -1054) 29111) ((-903 . -1116) T) ((-846 . -1074) T) ((-837 . -1074) T) ((-704 . -35) NIL) ((-704 . -95) NIL) ((-321 . -1008) 29072) ((-185 . -102) T) ((-590 . -462) T) ((-574 . -462) T) ((-505 . -462) T) ((-417 . -372) T) ((-246 . -1065) 29050) ((-1166 . -34) T) ((-487 . -934) T) ((-1015 . -649) 28998) ((-258 . -614) 28975) ((-257 . -614) 28952) ((-1096 . -386) 28936) ((-881 . -524) 28844) ((-246 . -239) 28796) ((-1175 . -1234) T) ((-1020 . -626) 28746) ((-928 . -626) 28683) ((-834 . -623) 28665) ((-1307 . -1128) T) ((-1299 . -623) 28647) ((-1257 . -174) 28538) ((-437 . -626) 28507) ((-108 . -386) 28489) ((-108 . -347) 28471) ((-1078 . -298) T) ((-966 . -298) 28402) ((-809 . -377) 28381) ((-657 . -1234) T) ((-642 . -1234) T) ((-1307 . -23) T) ((-596 . -1067) 28356) ((-491 . -298) 28287) ((-581 . -174) T) ((-335 . -290) 28271) ((-363 . -238) T) ((-1228 . -102) T) ((-1215 . -1116) T) ((-1104 . -1116) T) ((-1092 . -1116) T) ((-596 . -650) 28246) ((-83 . -623) 28228) ((-1200 . -854) T) ((-1199 . -854) T) ((-721 . -102) T) ((-364 . -358) 28207) ((-618 . -1116) T) ((-361 . -358) 28186) ((-353 . -358) 28165) ((-485 . -1116) T) ((-1206 . -231) 28115) ((-271 . -260) 28077) ((-1158 . -132) T) ((-618 . -620) 28053) ((-1096 . -912) 27986) ((-1020 . -1065) T) ((-928 . -1065) T) ((-485 . -620) 27965) ((-1184 . -802) NIL) ((-1184 . -805) NIL) ((-1118 . -624) 27926) ((-1118 . -623) 27908) ((-489 . -231) 27858) ((-1020 . -249) T) ((-1020 . -239) T) ((-972 . -1116) 27808) ((-437 . -1065) T) ((-928 . -249) T) ((-876 . -132) T) ((-48 . -238) T) ((-709 . -462) T) ((-853 . -1128) 27787) ((-108 . -912) NIL) ((-1228 . -292) 27753) ((-1129 . -1234) T) ((-882 . -858) 27732) ((-1015 . -25) T) ((-919 . -736) T) ((-171 . -524) 27644) ((-1015 . -21) T) ((-919 . -483) T) ((-417 . -1128) T) ((-497 . -804) T) ((-497 . -801) T) ((-924 . -358) T) ((-497 . -736) T) ((-219 . -804) T) ((-219 . -801) T) ((-722 . -235) 27631) ((-219 . -736) T) ((-853 . -23) 27583) ((-1201 . -1116) T) ((-668 . -1067) 27567) ((-1200 . -1116) T) ((-534 . -626) 27548) ((-1199 . -1116) T) ((-327 . -315) 27527) ((-1051 . -241) 27473) ((-668 . -650) 27443) ((-417 . -23) T) ((-957 . -624) 27404) ((-957 . -623) 27316) ((-654 . -499) 27300) ((-45 . -1026) 27250) ((-1129 . -1054) 27077) ((-627 . -983) T) ((-501 . -102) T) ((-339 . -623) 27059) ((-1009 . -294) 27026) ((-603 . -661) 27008) ((-131 . -1116) T) ((-129 . -1116) T) ((-603 . -382) 26990) ((-352 . -1291) 26967) ((-449 . -623) 26949) ((-1257 . -524) 26896) ((-1103 . -1067) 26739) ((-1043 . -1234) T) ((-881 . -298) T) ((-1189 . -294) 26666) ((-1103 . -650) 26515) ((-1016 . -1011) 26499) ((-792 . -1067) 26322) ((-790 . -1067) 26165) ((-792 . -650) 25994) ((-790 . -650) 25843) ((-486 . -1234) T) ((-473 . -1234) T) ((-596 . -102) T) ((-471 . -1067) 25814) ((-464 . -1067) 25657) ((-674 . -656) 25626) ((-633 . -462) 25605) ((-471 . -650) 25576) ((-464 . -650) 25425) ((-364 . -656) 25362) ((-361 . -656) 25299) ((-353 . -656) 25236) ((-271 . -656) 25146) ((-253 . -656) 25056) ((-1299 . -391) 25028) ((-527 . -1116) T) ((-118 . -462) T) ((-1214 . -102) T) ((-1108 . -1116) 24998) ((-1050 . -1116) T) ((-1131 . -93) T) ((-904 . -860) T) ((-1276 . -111) 24867) ((-360 . -1238) T) ((-1276 . -1072) 24750) ((-1129 . -386) 24719) ((-1269 . -1072) 24554) ((-1248 . -1072) 24344) ((-1269 . -111) 24165) ((-1248 . -111) 23934) ((-1228 . -317) 23921) ((-1019 . -132) T) ((-924 . -656) 23871) ((-374 . -623) 23853) ((-360 . -566) T) ((-297 . -315) T) ((-606 . -1072) 23813) ((-605 . -1072) 23696) ((-591 . -1067) 23661) ((-528 . -1067) 23606) ((-370 . -1116) T) ((-330 . -1116) T) ((-258 . -623) 23567) ((-257 . -623) 23528) ((-591 . -650) 23493) ((-528 . -650) 23438) ((-704 . -419) 23405) ((-645 . -23) T) ((-617 . -23) T) ((-40 . -907) 23355) ((-668 . -102) T) ((-606 . -111) 23308) ((-605 . -111) 23177) ((-388 . -1116) T) ((-345 . -102) T) ((-171 . -298) 23088) ((-1247 . -858) 23041) ((-724 . -1074) T) ((-1163 . -524) 22974) ((-1207 . -845) 22958) ((-1129 . -912) 22890) ((-846 . -1116) T) ((-837 . -1116) T) ((-835 . -1116) T) ((-97 . -102) T) ((-145 . -860) T) ((-622 . -895) 22874) ((-110 . -1234) T) ((-1103 . -102) T) ((-1079 . -34) T) ((-792 . -102) T) ((-790 . -102) T) ((-1276 . -626) 22756) ((-1269 . -626) 22499) ((-471 . -102) T) ((-464 . -102) T) ((-1248 . -626) 22294) ((-246 . -805) 22273) ((-246 . -802) 22252) ((-659 . -102) T) ((-606 . -626) 22210) ((-605 . -626) 22092) ((-1257 . -298) 22003) ((-674 . -644) 21987) ((-188 . -623) 21969) ((-654 . -294) 21921) ((-1050 . -727) 21905) ((-581 . -298) T) ((-977 . -658) 21830) ((-1307 . -132) T) ((-745 . -658) 21790) ((-725 . -658) 21777) ((-282 . -102) T) ((-463 . -658) 21707) ((-50 . -102) T) ((-591 . -102) T) ((-528 . -102) T) ((-1276 . -1065) T) ((-1269 . -1065) T) ((-1248 . -1065) T) ((-517 . -656) 21689) ((-330 . -727) 21671) ((-1276 . -239) 21630) ((-1269 . -249) 21609) ((-1269 . -239) 21561) ((-1248 . -239) 21448) ((-1248 . -249) 21427) ((-1228 . -38) 21324) ((-606 . -1065) T) ((-605 . -1065) T) ((-1020 . -805) T) ((-1020 . -802) T) ((-987 . -805) T) ((-987 . -802) T) ((-882 . -1074) T) ((-109 . -623) 21306) ((-704 . -462) T) ((-388 . -727) 21271) ((-428 . -658) 21245) ((-880 . -879) 21229) ((-721 . -38) 21194) ((-605 . -239) 21153) ((-40 . -734) 21125) ((-360 . -337) 21102) ((-360 . -372) T) ((-1096 . -315) 21053) ((-302 . -1128) 20934) ((-1122 . -1234) T) ((-1015 . -235) 20907) ((-173 . -102) T) ((-1251 . -623) 20874) ((-853 . -132) 20826) ((-654 . -1272) 20810) ((-846 . -727) 20780) ((-837 . -727) 20750) ((-492 . -1234) T) ((-368 . -315) T) ((-362 . -315) T) ((-354 . -315) T) ((-654 . -614) 20727) ((-417 . -132) T) ((-530 . -676) 20711) ((-108 . -315) T) ((-302 . -23) 20594) ((-530 . -661) 20578) ((-704 . -412) NIL) ((-530 . -382) 20562) ((-299 . -623) 20544) ((-91 . -1116) 20522) ((-108 . -1038) T) ((-574 . -144) T) ((-1284 . -152) 20506) ((-492 . -1054) 20333) ((-1270 . -146) 20294) ((-1270 . -148) 20255) ((-1070 . -1234) T) ((-1009 . -623) 20237) ((-828 . -1234) T) ((-872 . -623) 20219) ((-826 . -1072) 20062) ((-1295 . -93) T) ((-1294 . -93) T) ((-1189 . -624) NIL) ((-1112 . -1116) T) ((-1106 . -1116) T) ((-1103 . -317) 20049) ((-1089 . -1116) T) ((-229 . -1234) T) ((-1082 . -1116) T) ((-1052 . -1116) T) ((-1035 . -1116) T) ((-792 . -317) 20036) ((-790 . -317) 20023) ((-1189 . -623) 20005) ((-826 . -111) 19834) ((-1141 . -623) 19816) ((-636 . -1116) T) ((-587 . -175) T) ((-539 . -175) T) ((-464 . -317) 19803) ((-493 . -1116) T) ((-1141 . -624) 19551) ((-1050 . -174) T) ((-957 . -296) 19528) ((-220 . -1116) T) ((-864 . -623) 19510) ((-618 . -524) 19293) ((-81 . -626) 19234) ((-828 . -1054) 19218) ((-485 . -524) 19010) ((-977 . -736) T) ((-745 . -736) T) ((-725 . -736) T) ((-360 . -1128) T) ((-1196 . -623) 18992) ((-225 . -102) T) ((-492 . -386) 18961) ((-525 . -1116) T) ((-520 . -1116) T) ((-518 . -1116) T) ((-809 . -658) 18935) ((-1040 . -462) T) ((-972 . -524) 18868) ((-360 . -23) T) ((-645 . -132) T) ((-617 . -132) T) ((-363 . -462) T) ((-246 . -377) 18847) ((-388 . -174) T) ((-1268 . -1074) T) ((-1247 . -1074) T) ((-227 . -1018) T) ((-826 . -626) 18584) ((-709 . -397) T) ((-428 . -736) T) ((-711 . -1238) T) ((-1158 . -649) 18532) ((-590 . -879) 18516) ((-1299 . -1072) 18500) ((-1176 . -1210) 18476) ((-711 . -566) T) ((-127 . -1116) 18454) ((-724 . -1116) T) ((-668 . -38) 18424) ((-492 . -912) 18356) ((-255 . -1116) T) ((-189 . -1116) T) ((-363 . -412) T) ((-324 . -148) 18335) ((-324 . -146) 18314) ((-129 . -524) NIL) ((-117 . -566) T) ((-321 . -148) 18270) ((-321 . -146) 18226) ((-48 . -462) T) ((-163 . -1116) T) ((-158 . -1116) T) ((-1176 . -107) 18173) ((-792 . -1168) 18151) ((-699 . -34) T) ((-1299 . -111) 18130) ((-560 . -34) T) ((-494 . -107) 18114) ((-258 . -296) 18091) ((-257 . -296) 18068) ((-1240 . -854) T) ((-881 . -294) 18019) ((-45 . -1234) T) ((-1228 . -914) 18000) ((-827 . -1234) T) ((-826 . -1065) T) ((-672 . -656) 17969) ((-1195 . -47) 17946) ((-826 . -334) 17908) ((-1103 . -38) 17757) ((-826 . -239) 17736) ((-792 . -38) 17565) ((-790 . -38) 17414) ((-1131 . -500) 17395) ((-464 . -38) 17244) ((-1131 . -623) 17210) ((-1134 . -102) T) ((-654 . -624) 17171) ((-654 . -623) 17083) ((-591 . -1168) T) ((-528 . -1168) T) ((-1163 . -499) 17067) ((-352 . -1067) 17012) ((-1220 . -1116) 16990) ((-1158 . -25) T) ((-1158 . -21) T) ((-352 . -650) 16935) ((-1299 . -626) 16884) ((-484 . -1074) T) ((-1240 . -1116) T) ((-1248 . -802) NIL) ((-1248 . -805) NIL) ((-1015 . -860) 16863) ((-848 . -1116) T) ((-829 . -623) 16845) ((-876 . -21) T) ((-876 . -25) T) ((-809 . -736) T) ((-176 . -1238) T) ((-591 . -38) 16810) ((-528 . -38) 16775) ((-396 . -623) 16757) ((-341 . -102) T) ((-332 . -623) 16739) ((-171 . -294) 16697) ((-63 . -1234) T) ((-112 . -102) T) ((-882 . -1116) T) ((-176 . -566) T) ((-724 . -727) 16667) ((-302 . -132) 16550) ((-227 . -623) 16532) ((-227 . -624) 16462) ((-1019 . -649) 16401) ((-1299 . -1065) T) ((-1136 . -148) T) ((-642 . -1210) 16376) ((-741 . -923) 16355) ((-603 . -34) T) ((-657 . -107) 16339) ((-642 . -107) 16285) ((-633 . -907) 16242) ((-1257 . -294) 16169) ((-741 . -658) 16058) ((-303 . -1234) T) ((-1195 . -1054) 15954) ((-957 . -628) 15931) ((-587 . -586) T) ((-587 . -537) T) ((-539 . -537) T) ((-118 . -907) NIL) ((-1184 . -923) NIL) ((-1078 . -624) 15846) ((-1078 . -623) 15828) ((-966 . -623) 15810) ((-723 . -500) 15760) ((-352 . -102) T) ((-258 . -1072) 15681) ((-257 . -1072) 15602) ((-404 . -102) T) ((-31 . -1116) T) ((-966 . -624) 15463) ((-723 . -623) 15398) ((-1297 . -1227) 15367) ((-491 . -623) 15349) ((-491 . -624) 15210) ((-271 . -421) 15194) ((-253 . -421) 15178) ((-321 . -238) NIL) ((-258 . -111) 15094) ((-257 . -111) 15010) ((-1191 . -658) 14935) ((-1190 . -658) 14832) ((-1184 . -658) 14684) ((-1142 . -658) 14609) ((-360 . -132) T) ((-82 . -451) T) ((-82 . -405) T) ((-1019 . -25) T) ((-1019 . -21) T) ((-883 . -1116) 14560) ((-40 . -1067) 14505) ((-882 . -727) 14457) ((-40 . -650) 14402) ((-388 . -298) T) ((-171 . -1018) 14353) ((-1103 . -914) 14288) ((-704 . -397) T) ((-1015 . -1013) 14272) ((-711 . -1128) T) ((-704 . -167) 14254) ((-792 . -914) 14197) ((-790 . -914) 14181) ((-1268 . -1116) T) ((-1247 . -1116) T) ((-1181 . -102) T) ((-324 . -1219) 14160) ((-324 . -1222) 14139) ((-464 . -914) 14116) ((-324 . -973) 14095) ((-135 . -1128) T) ((-117 . -1128) T) ((-663 . -1234) T) ((-612 . -1282) 14079) ((-711 . -23) T) ((-612 . -1116) 14029) ((-324 . -95) 14008) ((-91 . -524) 13941) ((-176 . -372) T) ((-258 . -626) 13739) ((-257 . -626) 13537) ((-324 . -35) 13516) ((-618 . -499) 13450) ((-135 . -23) T) ((-117 . -23) T) ((-980 . -102) T) ((-728 . -1116) T) ((-485 . -499) 13387) ((-417 . -649) 13335) ((-663 . -1054) 13231) ((-972 . -499) 13215) ((-364 . -1074) T) ((-361 . -1074) T) ((-353 . -1074) T) ((-271 . -1074) T) ((-253 . -1074) T) ((-881 . -624) NIL) ((-881 . -623) 13197) ((-1295 . -500) 13178) ((-1294 . -500) 13159) ((-1307 . -21) T) ((-1295 . -623) 13125) ((-1294 . -623) 13091) ((-581 . -1018) T) ((-741 . -736) T) ((-1307 . -25) T) ((-258 . -1065) 13069) ((-257 . -1065) 13047) ((-72 . -1234) T) ((-1158 . -235) 13020) ((-258 . -239) 12972) ((-257 . -239) 12924) ((-1136 . -238) T) ((-40 . -102) T) ((-924 . -1074) T) ((-704 . -907) NIL) ((-1198 . -102) T) ((-129 . -499) 12906) ((-1191 . -736) T) ((-1190 . -736) T) ((-1184 . -736) T) ((-1184 . -801) NIL) ((-1184 . -804) NIL) ((-968 . -102) T) ((-935 . -102) T) ((-880 . -1067) 12893) ((-1142 . -736) T) ((-781 . -102) T) ((-682 . -102) T) ((-880 . -650) 12880) ((-556 . -623) 12862) ((-484 . -1116) T) ((-348 . -1128) T) ((-176 . -1128) T) ((-327 . -934) 12841) ((-1268 . -727) 12682) ((-882 . -174) T) ((-1247 . -727) 12496) ((-853 . -21) 12448) ((-853 . -25) 12400) ((-251 . -1165) 12384) ((-127 . -524) 12317) ((-417 . -25) T) ((-417 . -21) T) ((-348 . -23) T) ((-171 . -624) 12083) ((-171 . -623) 12065) ((-176 . -23) T) ((-654 . -296) 12042) ((-530 . -34) T) ((-911 . -623) 12024) ((-89 . -1234) T) ((-851 . -623) 12006) ((-818 . -623) 11988) ((-779 . -623) 11970) ((-687 . -623) 11952) ((-246 . -658) 11785) ((-627 . -113) T) ((-1193 . -1116) T) ((-1189 . -1072) 11608) ((-1166 . -1234) T) ((-1141 . -1072) 11451) ((-864 . -1072) 11435) ((-1251 . -628) 11419) ((-1189 . -111) 11228) ((-1141 . -111) 11057) ((-864 . -111) 11036) ((-1241 . -860) T) ((-1257 . -624) NIL) ((-1257 . -623) 11018) ((-352 . -1168) T) ((-865 . -623) 11000) ((-1092 . -294) 10979) ((-80 . -1234) T) ((-919 . -1234) T) ((-1020 . -923) NIL) ((-1228 . -656) 10889) ((-618 . -294) 10865) ((-1220 . -524) 10798) ((-497 . -1234) T) ((-581 . -623) 10780) ((-485 . -294) 10759) ((-1103 . -233) 10743) ((-527 . -93) T) ((-1020 . -658) 10693) ((-219 . -1234) T) ((-1019 . -235) 10659) ((-972 . -294) 10611) ((-297 . -934) T) ((-827 . -315) 10590) ((-880 . -102) T) ((-792 . -233) 10574) ((-928 . -658) 10526) ((-721 . -656) 10476) ((-704 . -734) 10443) ((-645 . -21) T) ((-645 . -25) T) ((-617 . -21) T) ((-557 . -102) T) ((-352 . -38) 10408) ((-497 . -895) 10390) ((-497 . -897) 10372) ((-484 . -727) 10213) ((-219 . -895) 10195) ((-64 . -1234) T) ((-219 . -897) 10177) ((-617 . -25) T) ((-437 . -658) 10151) ((-1189 . -626) 9920) ((-497 . -1054) 9880) ((-882 . -524) 9792) ((-1141 . -626) 9584) ((-864 . -626) 9502) ((-219 . -1054) 9462) ((-246 . -34) T) ((-1016 . -1116) 9440) ((-590 . -1067) 9427) ((-574 . -1067) 9414) ((-505 . -1067) 9379) ((-1268 . -174) 9310) ((-1247 . -174) 9241) ((-590 . -650) 9228) ((-574 . -650) 9215) ((-505 . -650) 9180) ((-722 . -146) 9159) ((-722 . -148) 9138) ((-711 . -132) T) ((-137 . -475) 9115) ((-1163 . -623) 9047) ((-668 . -666) 9031) ((-129 . -294) 8981) ((-117 . -132) T) ((-487 . -1238) T) ((-618 . -614) 8957) ((-485 . -614) 8936) ((-345 . -344) 8905) ((-607 . -1116) T) ((-595 . -1116) T) ((-546 . -1116) T) ((-487 . -566) T) ((-1189 . -1065) T) ((-1141 . -1065) T) ((-864 . -1065) T) ((-246 . -804) 8884) ((-246 . -803) 8863) ((-1189 . -334) 8840) ((-246 . -736) 8818) ((-972 . -19) 8802) ((-497 . -386) 8784) ((-497 . -347) 8766) ((-1141 . -334) 8738) ((-363 . -1291) 8715) ((-219 . -386) 8697) ((-219 . -347) 8679) ((-972 . -614) 8656) ((-1189 . -239) T) ((-1280 . -1116) T) ((-674 . -1116) T) ((-655 . -1116) T) ((-1206 . -1116) T) ((-1103 . -260) 8593) ((-596 . -656) 8553) ((-364 . -1116) T) ((-361 . -1116) T) ((-353 . -1116) T) ((-271 . -1116) T) ((-253 . -1116) T) ((-84 . -1234) T) ((-128 . -102) 8531) ((-122 . -102) 8509) ((-1247 . -524) 8369) ((-1206 . -620) 8348) ((-1157 . -1116) T) ((-1131 . -626) 8329) ((-1096 . -934) 8280) ((-489 . -1116) T) ((-1020 . -804) T) ((-1020 . -801) T) ((-489 . -620) 8259) ((-258 . -805) 8238) ((-258 . -802) 8217) ((-257 . -805) 8196) ((-40 . -1168) NIL) ((-257 . -802) 8175) ((-1020 . -736) T) ((-129 . -19) 8157) ((-987 . -804) T) ((-709 . -1067) 8122) ((-928 . -736) T) ((-924 . -1116) T) ((-903 . -623) 8104) ((-129 . -614) 8079) ((-709 . -650) 8044) ((-91 . -499) 8028) ((-497 . -912) NIL) ((-882 . -298) T) ((-227 . -1072) 7993) ((-846 . -294) 7972) ((-219 . -912) NIL) ((-843 . -1128) 7951) ((-59 . -1116) 7901) ((-529 . -1116) 7879) ((-526 . -1116) 7829) ((-507 . -1116) 7807) ((-506 . -1116) 7757) ((-590 . -102) T) ((-574 . -102) T) ((-505 . -102) T) ((-484 . -174) 7688) ((-368 . -934) T) ((-362 . -934) T) ((-354 . -934) T) ((-227 . -111) 7644) ((-843 . -23) 7596) ((-437 . -736) T) ((-108 . -934) T) ((-40 . -38) 7541) ((-108 . -830) T) ((-591 . -358) T) ((-528 . -358) T) ((-668 . -656) 7500) ((-324 . -462) 7479) ((-321 . -462) T) ((-612 . -524) 7412) ((-417 . -235) 7385) ((-348 . -132) T) ((-176 . -132) T) ((-302 . -25) 7249) ((-302 . -21) 7132) ((-45 . -1210) 7111) ((-66 . -623) 7093) ((-55 . -102) T) ((-345 . -656) 7075) ((-1285 . -102) T) ((-1284 . -102) 7025) ((-45 . -107) 6975) ((-829 . -626) 6959) ((-1276 . -658) 6884) ((-1269 . -658) 6781) ((-1248 . -658) 6633) ((-1248 . -923) NIL) ((-1215 . -623) 6615) ((-1118 . -435) 6599) ((-1118 . -377) 6578) ((-396 . -626) 6562) ((-332 . -626) 6546) ((-1207 . -102) T) ((-1112 . -93) T) ((-1079 . -1234) T) ((-1103 . -656) 6456) ((-1078 . -1072) 6443) ((-1078 . -111) 6428) ((-966 . -1072) 6271) ((-966 . -111) 6100) ((-792 . -656) 6010) ((-790 . -656) 5920) ((-633 . -1067) 5907) ((-674 . -727) 5891) ((-633 . -650) 5878) ((-491 . -1072) 5721) ((-487 . -372) T) ((-471 . -656) 5677) ((-464 . -656) 5587) ((-227 . -626) 5537) ((-364 . -727) 5489) ((-361 . -727) 5441) ((-118 . -1067) 5386) ((-353 . -727) 5338) ((-271 . -727) 5187) ((-253 . -727) 5036) ((-1106 . -93) T) ((-1089 . -93) T) ((-118 . -650) 4981) ((-1082 . -93) T) ((-957 . -661) 4965) ((-1073 . -1116) 4943) ((-491 . -111) 4772) ((-1052 . -93) T) ((-1035 . -93) T) ((-957 . -382) 4756) ((-254 . -102) T) ((-977 . -47) 4735) ((-74 . -623) 4717) ((-722 . -238) T) ((-720 . -102) T) ((-709 . -102) T) ((-1 . -1116) T) ((-631 . -1128) T) ((-1104 . -623) 4699) ((-636 . -93) T) ((-1092 . -623) 4681) ((-924 . -727) 4646) ((-127 . -499) 4630) ((-493 . -93) T) ((-631 . -23) T) ((-400 . -23) T) ((-87 . -1234) T) ((-220 . -93) T) ((-618 . -623) 4612) ((-618 . -624) NIL) ((-485 . -624) NIL) ((-485 . -623) 4594) ((-360 . -25) T) ((-360 . -21) T) ((-50 . -656) 4553) ((-521 . -1116) T) ((-517 . -1116) T) ((-128 . -317) 4491) ((-122 . -317) 4429) ((-606 . -658) 4403) ((-605 . -658) 4328) ((-591 . -656) 4278) ((-227 . -1065) T) ((-528 . -656) 4208) ((-388 . -1018) T) ((-227 . -249) T) ((-227 . -239) T) ((-1078 . -626) 4180) ((-1078 . -628) 4161) ((-972 . -624) 4122) ((-972 . -623) 4034) ((-966 . -626) 3823) ((-880 . -38) 3810) ((-723 . -626) 3760) ((-1268 . -298) 3711) ((-1247 . -298) 3662) ((-491 . -626) 3447) ((-1136 . -462) T) ((-512 . -860) T) ((-324 . -1155) 3426) ((-1015 . -148) 3405) ((-1015 . -146) 3384) ((-505 . -317) 3371) ((-303 . -1210) 3350) ((-1201 . -623) 3332) ((-1200 . -623) 3314) ((-1199 . -623) 3296) ((-881 . -1072) 3241) ((-487 . -1128) T) ((-140 . -845) 3223) ((-115 . -845) 3204) ((-633 . -102) T) ((-1220 . -499) 3188) ((-258 . -377) 3167) ((-257 . -377) 3146) ((-1078 . -1065) T) ((-303 . -107) 3096) ((-131 . -623) 3078) ((-129 . -624) NIL) ((-129 . -623) 3022) ((-118 . -102) T) ((-966 . -1065) T) ((-881 . -111) 2951) ((-487 . -23) T) ((-463 . -1234) T) ((-491 . -1065) T) ((-1078 . -239) T) ((-966 . -334) 2920) ((-40 . -914) 2872) ((-491 . -334) 2829) ((-364 . -174) T) ((-361 . -174) T) ((-353 . -174) T) ((-271 . -174) 2740) ((-253 . -174) 2651) ((-977 . -1054) 2547) ((-527 . -500) 2528) ((-745 . -1054) 2499) ((-527 . -623) 2465) ((-428 . -1234) 2354) ((-1121 . -102) T) ((-1108 . -623) 2313) ((-1050 . -623) 2295) ((-704 . -1067) 2245) ((-1297 . -152) 2229) ((-1295 . -626) 2210) ((-1294 . -626) 2191) ((-1289 . -623) 2173) ((-1276 . -736) T) ((-704 . -650) 2123) ((-1269 . -736) T) ((-1248 . -801) NIL) ((-1248 . -804) NIL) ((-171 . -1072) 2033) ((-924 . -174) T) ((-881 . -626) 1963) ((-1248 . -736) T) ((-1019 . -351) 1937) ((-225 . -656) 1889) ((-1016 . -524) 1822) ((-853 . -860) 1801) ((-574 . -1168) T) ((-484 . -298) 1752) ((-606 . -736) T) ((-370 . -623) 1734) ((-330 . -623) 1716) ((-428 . -1054) 1612) ((-605 . -736) T) ((-417 . -860) 1563) ((-171 . -111) 1459) ((-843 . -132) 1411) ((-747 . -152) 1395) ((-1284 . -317) 1333) ((-497 . -315) T) ((-388 . -623) 1300) ((-530 . -1026) 1284) ((-388 . -624) 1198) ((-219 . -315) T) ((-142 . -152) 1180) ((-724 . -294) 1159) ((-497 . -1038) T) ((-590 . -38) 1146) ((-574 . -38) 1133) ((-505 . -38) 1098) ((-219 . -1038) T) ((-881 . -1065) T) ((-846 . -623) 1080) ((-837 . -623) 1062) ((-835 . -623) 1044) ((-826 . -923) 1023) ((-1308 . -1128) T) ((-1257 . -1072) 846) ((-865 . -1072) 830) ((-881 . -249) T) ((-881 . -239) NIL) ((-699 . -1234) T) ((-1308 . -23) T) ((-826 . -658) 719) ((-560 . -1234) T) ((-428 . -347) 703) ((-581 . -1072) 690) ((-1257 . -111) 499) ((-711 . -649) 481) ((-865 . -111) 460) ((-390 . -23) T) ((-171 . -626) 238) ((-1206 . -524) 30) ((-886 . -1116) T) ((-691 . -1116) T) ((-686 . -1116) T) ((-672 . -1116) T)) \ No newline at end of file
+(((-490 . -1118) T) ((-273 . -526) 198194) ((-253 . -526) 198137) ((-251 . -1118) 198087) ((-583 . -111) 198072) ((-543 . -23) T) ((-139 . -1118) T) ((-138 . -1118) T) ((-118 . -319) 198029) ((-134 . -1118) T) ((-1017 . -238) 198008) ((-811 . -1236) 197977) ((-491 . -526) 197769) ((-689 . -628) 197753) ((-706 . -102) T) ((-1159 . -526) 197672) ((-402 . -132) T) ((-1299 . -994) 197641) ((-1042 . -1069) 197578) ((-31 . -93) T) ((-614 . -501) 197562) ((-1042 . -652) 197499) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 197449) ((-531 . -526) 197382) ((-362 . -235) 197369) ((-365 . -1069) 197314) ((-59 . -526) 197247) ((-528 . -526) 197180) ((-430 . -914) 197139) ((-171 . -1067) T) ((-509 . -526) 197072) ((-508 . -526) 197005) ((-365 . -652) 196950) ((-811 . -1056) 196730) ((-711 . -38) 196695) ((-1259 . -628) 196443) ((-354 . -360) T) ((-1112 . -1111) 196427) ((-1112 . -1118) 196405) ((-867 . -628) 196302) ((-171 . -249) 196253) ((-171 . -239) 196204) ((-1112 . -1113) 196162) ((-884 . -296) 196120) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 196092) ((-1168 . -1212) 196071) ((-419 . -1010) 196055) ((-48 . -1069) 196020) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 195985) ((-1301 . -660) 195959) ((-326 . -161) 195938) ((-326 . -144) 195917) ((-1168 . -107) 195867) ((-117 . -21) T) ((-40 . -233) 195844) ((-135 . -25) T) ((-117 . -25) T) ((-620 . -298) 195820) ((-487 . -298) 195799) ((-1259 . -336) 195776) ((-1259 . -1067) T) ((-867 . -1067) T) ((-811 . -349) 195760) ((-140 . -187) T) ((-118 . -1170) NIL) ((-91 . -625) 195692) ((-489 . -132) T) ((-1259 . -239) T) ((-1114 . -502) 195673) ((-1114 . -625) 195639) ((-1108 . -502) 195620) ((-1108 . -625) 195586) ((-605 . -1236) T) ((-1091 . -502) 195567) ((-583 . -1067) T) ((-1091 . -625) 195533) ((-674 . -729) 195517) ((-1084 . -502) 195498) ((-1084 . -625) 195464) ((-974 . -298) 195441) ((-60 . -34) T) ((-1080 . -807) T) ((-1080 . -804) T) ((-1054 . -502) 195422) ((-1037 . -502) 195403) ((-828 . -738) T) ((-743 . -47) 195368) ((-635 . -38) 195355) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 195286) ((-253 . -300) 195217) ((-1054 . -625) 195183) ((-1042 . -102) T) ((-1037 . -625) 195149) ((-638 . -502) 195130) ((-425 . -738) T) ((-118 . -38) 195075) ((-495 . -502) 195056) ((-638 . -625) 195022) ((-425 . -485) T) ((-220 . -502) 195003) ((-495 . -625) 194969) ((-365 . -102) T) ((-220 . -625) 194935) ((-1230 . -1076) T) ((-354 . -658) 194865) ((-723 . -1076) T) ((-1193 . -47) 194842) ((-1192 . -47) 194812) ((-1186 . -47) 194789) ((-129 . -298) 194764) ((-1053 . -152) 194710) ((-926 . -300) T) ((-1144 . -47) 194682) ((-706 . -319) NIL) ((-527 . -625) 194664) ((-522 . -625) 194646) ((-520 . -625) 194628) ((-337 . -1118) 194578) ((-326 . -909) 194542) ((-323 . -909) NIL) ((-724 . -464) 194473) ((-48 . -102) T) ((-1270 . -296) 194431) ((-1249 . -296) 194331) ((-656 . -678) 194315) ((-656 . -663) 194299) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 194283) ((-617 . -502) 194265) ((-614 . -296) 194217) ((-617 . -625) 194184) ((-400 . -102) T) ((-1138 . -144) T) ((-127 . -625) 194116) ((-886 . -1118) T) ((-670 . -423) 194100) ((-743 . -1236) T) ((-726 . -625) 194082) ((-255 . -625) 194049) ((-189 . -625) 194031) ((-163 . -625) 194013) ((-158 . -625) 193995) ((-1301 . -738) T) ((-1120 . -34) T) ((-883 . -807) NIL) ((-883 . -804) NIL) ((-870 . -862) T) ((-743 . -899) NIL) ((-1310 . -132) T) ((-392 . -132) T) ((-905 . -628) 193963) ((-920 . -102) T) ((-743 . -1056) 193839) ((-1193 . -1236) T) ((-1192 . -1236) T) ((-543 . -132) T) ((-1186 . -1236) T) ((-1105 . -423) 193823) ((-1018 . -501) 193807) ((-118 . -412) 193784) ((-1144 . -1236) T) ((-794 . -423) 193768) ((-792 . -423) 193752) ((-959 . -34) T) ((-706 . -1170) NIL) ((-258 . -660) 193572) ((-257 . -660) 193379) ((-829 . -936) 193358) ((-466 . -423) 193342) ((-614 . -19) 193326) ((-1164 . -1229) 193295) ((-1186 . -899) NIL) ((-1186 . -897) 193247) ((-614 . -616) 193224) ((-1222 . -625) 193156) ((-1194 . -625) 193138) ((-62 . -407) T) ((-1192 . -1056) 193073) ((-1186 . -1056) 193039) ((-706 . -38) 192989) ((-40 . -658) 192919) ((-486 . -296) 192877) ((-1242 . -625) 192859) ((-743 . -388) 192843) ((-850 . -625) 192825) ((-670 . -1076) T) ((-635 . -916) 192784) ((-1270 . -1020) 192750) ((-1249 . -1020) 192716) ((-256 . -1236) T) ((-1106 . -628) 192700) ((-1081 . -1212) 192675) ((-1094 . -628) 192652) ((-884 . -626) 192459) ((-884 . -625) 192441) ((-118 . -916) NIL) ((-713 . -235) 192428) ((-1208 . -501) 192365) ((-430 . -1040) 192343) ((-48 . -319) 192330) ((-1081 . -107) 192276) ((-491 . -501) 192213) ((-532 . -1236) T) ((-1186 . -349) 192165) ((-1159 . -501) 192136) ((-1186 . -388) 192088) ((-1105 . -1076) T) ((-449 . -102) T) ((-185 . -1118) T) ((-258 . -34) T) ((-257 . -34) T) ((-794 . -1076) T) ((-792 . -1076) T) ((-743 . -914) 192065) ((-466 . -1076) T) ((-59 . -501) 192049) ((-1052 . -1074) 192023) ((-531 . -501) 192007) ((-528 . -501) 191991) ((-509 . -501) 191975) ((-508 . -501) 191959) ((-251 . -526) 191892) ((-1052 . -111) 191859) ((-1193 . -914) 191772) ((-1192 . -914) 191678) ((-682 . -1130) T) ((-1186 . -914) 191511) ((-657 . -93) T) ((-1144 . -914) 191495) ((-365 . -1170) T) ((-332 . -1074) 191477) ((-31 . -502) 191458) ((-258 . -806) 191437) ((-258 . -805) 191416) ((-257 . -806) 191395) ((-257 . -805) 191374) ((-31 . -625) 191340) ((-50 . -1076) T) ((-258 . -738) 191318) ((-257 . -738) 191296) ((-1230 . -1118) T) ((-682 . -23) T) ((-593 . -1076) T) ((-530 . -1076) T) ((-390 . -1074) 191261) ((-332 . -111) 191236) ((-73 . -394) T) ((-73 . -407) T) ((-1042 . -38) 191173) ((-706 . -412) 191155) ((-99 . -102) T) ((-723 . -1118) T) ((-1315 . -1069) 191142) ((-1021 . -146) 191114) ((-1021 . -148) 191086) ((-882 . -658) 191058) ((-390 . -111) 191014) ((-329 . -1240) 190993) ((-486 . -1020) 190959) ((-365 . -38) 190924) ((-40 . -381) 190896) ((-885 . -625) 190768) ((-128 . -126) 190752) ((-122 . -126) 190736) ((-848 . -1074) 190706) ((-845 . -21) 190658) ((-839 . -1074) 190642) ((-845 . -25) 190594) ((-329 . -568) 190545) ((-529 . -628) 190526) ((-576 . -840) T) ((-246 . -1236) T) ((-1052 . -628) 190495) ((-848 . -111) 190460) ((-839 . -111) 190439) ((-1270 . -625) 190421) ((-1249 . -625) 190403) ((-1249 . -626) 190074) ((-1191 . -925) 190053) ((-1143 . -925) 190032) ((-48 . -38) 189997) ((-1308 . -1130) T) ((-548 . -296) 189953) ((-614 . -625) 189865) ((-614 . -626) 189826) ((-1306 . -1130) T) ((-372 . -628) 189810) ((-332 . -628) 189794) ((-1160 . -238) 189773) ((-246 . -1056) 189600) ((-1191 . -660) 189489) ((-1143 . -660) 189378) ((-866 . -660) 189352) ((-730 . -625) 189334) ((-558 . -379) T) ((-1308 . -23) T) ((-706 . -916) NIL) ((-1306 . -23) T) ((-503 . -1118) T) ((-390 . -628) 189284) ((-390 . -630) 189266) ((-1052 . -1067) T) ((-877 . -102) T) ((-1208 . -296) 189245) ((-171 . -379) 189196) ((-1022 . -1236) T) ((-848 . -628) 189150) ((-839 . -628) 189105) ((-44 . -23) T) ((-491 . -296) 189084) ((-598 . -1118) T) ((-1164 . -1127) 189053) ((-1122 . -1121) 189005) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1130) T) ((-1315 . -102) T) ((-1022 . -897) 188987) ((-1022 . -899) 188969) ((-1230 . -729) 188866) ((-635 . -233) 188850) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1216 . -1118) T) ((-723 . -729) 188815) ((-246 . -388) 188784) ((-1022 . -1056) 188744) ((-390 . -1067) T) ((-225 . -1076) T) ((-118 . -233) 188721) ((-59 . -296) 188673) ((-153 . -23) T) ((-528 . -296) 188625) ((-337 . -526) 188558) ((-508 . -296) 188510) ((-390 . -249) T) ((-390 . -239) T) ((-848 . -1067) T) ((-839 . -1067) T) ((-724 . -965) 188479) ((-713 . -862) T) ((-486 . -625) 188461) ((-1272 . -1069) 188366) ((-592 . -658) 188338) ((-576 . -658) 188310) ((-507 . -658) 188260) ((-839 . -239) 188239) ((-135 . -862) T) ((-1272 . -652) 188131) ((-670 . -1118) T) ((-1208 . -616) 188110) ((-562 . -1212) 188089) ((-347 . -1118) T) ((-329 . -374) 188068) ((-419 . -148) 188047) ((-419 . -146) 188026) ((-980 . -1130) 187925) ((-246 . -914) 187857) ((-827 . -1130) 187835) ((-666 . -864) 187819) ((-491 . -616) 187798) ((-562 . -107) 187748) ((-1022 . -388) 187730) ((-1022 . -349) 187712) ((-1195 . -625) 187694) ((-97 . -1118) T) ((-980 . -23) 187505) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 187357) ((-1195 . -626) 187279) ((-59 . -19) 187263) ((-1191 . -738) T) ((-1143 . -738) T) ((-1105 . -1118) T) ((-528 . -19) 187247) ((-508 . -19) 187231) ((-59 . -616) 187208) ((-1021 . -238) 187180) ((-917 . -102) 187158) ((-866 . -738) T) ((-794 . -1118) T) ((-528 . -616) 187135) ((-508 . -616) 187112) ((-792 . -1118) T) ((-792 . -1083) 187079) ((-473 . -1118) T) ((-466 . -1118) T) ((-598 . -729) 187054) ((-661 . -1118) T) ((-1278 . -47) 187031) ((-1272 . -102) T) ((-1271 . -47) 187001) ((-1250 . -47) 186978) ((-1230 . -174) 186929) ((-1192 . -317) 186908) ((-1186 . -317) 186887) ((-1114 . -628) 186868) ((-1108 . -628) 186849) ((-1098 . -568) 186800) ((-1098 . -1240) 186751) ((-1022 . -914) NIL) ((-1091 . -628) 186732) ((-682 . -132) T) ((-639 . -1130) T) ((-1084 . -628) 186713) ((-1054 . -628) 186694) ((-1037 . -628) 186675) ((-726 . -1074) 186645) ((-711 . -658) 186595) ((-284 . -1118) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -909) 186534) ((-723 . -174) T) ((-50 . -1118) T) ((-607 . -47) 186511) ((-227 . -660) 186476) ((-593 . -1118) T) ((-530 . -1118) T) ((-499 . -832) T) ((-499 . -936) T) ((-370 . -1240) T) ((-364 . -1240) T) ((-356 . -1240) T) ((-329 . -1130) T) ((-326 . -1069) 186386) ((-323 . -1069) 186315) ((-108 . -1240) T) ((-638 . -628) 186296) ((-370 . -568) T) ((-219 . -936) T) ((-219 . -832) T) ((-326 . -652) 186206) ((-323 . -652) 186135) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 186116) ((-108 . -568) T) ((-670 . -729) 186086) ((-1186 . -1040) NIL) ((-220 . -628) 186067) ((-329 . -23) T) ((-67 . -1236) T) ((-1018 . -625) 185999) ((-706 . -233) 185981) ((-726 . -111) 185946) ((-656 . -34) T) ((-251 . -501) 185930) ((-1315 . -1170) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -132) T) ((-1120 . -1116) 185914) ((-173 . -1118) T) ((-1306 . -132) T) ((-1299 . -102) T) ((-1282 . -625) 185880) ((-1278 . -1236) T) ((-1271 . -1236) T) ((-968 . -925) 185859) ((-1271 . -1056) 185794) ((-1250 . -1236) T) ((-1250 . -899) NIL) ((-527 . -628) 185778) ((-1250 . -897) 185730) ((-1250 . -1056) 185696) ((-1230 . -526) 185663) ((-493 . -925) 185642) ((-1208 . -626) NIL) ((-1208 . -625) 185624) ((-1105 . -729) 185473) ((-1080 . -660) 185445) ((-968 . -660) 185334) ((-609 . -502) 185315) ((-597 . -502) 185296) ((-794 . -729) 185125) ((-609 . -625) 185091) ((-597 . -625) 185057) ((-548 . -625) 185039) ((-548 . -626) 185020) ((-792 . -729) 184869) ((-1095 . -102) T) ((-392 . -25) T) ((-635 . -658) 184841) ((-392 . -21) T) ((-493 . -660) 184730) ((-473 . -729) 184701) ((-466 . -729) 184550) ((-1005 . -102) T) ((-1160 . -1141) 184495) ((-1064 . -1229) 184424) ((-917 . -319) 184362) ((-749 . -102) T) ((-118 . -658) 184292) ((-617 . -628) 184274) ((-888 . -93) T) ((-726 . -628) 184228) ((-543 . -25) T) ((-693 . -93) T) ((-688 . -93) T) ((-676 . -625) 184210) ((-657 . -502) 184191) ((-142 . -102) T) ((-44 . -132) T) ((-657 . -625) 184144) ((-607 . -1236) T) ((-354 . -1076) T) ((-299 . -1130) T) ((-490 . -93) T) ((-419 . -238) 184123) ((-366 . -625) 184105) ((-363 . -625) 184087) ((-355 . -625) 184069) ((-273 . -626) 183817) ((-273 . -625) 183799) ((-253 . -625) 183781) ((-253 . -626) 183642) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1159 . -625) 183624) ((-1138 . -652) 183611) ((-1138 . -1069) 183598) ((-831 . -738) T) ((-831 . -869) T) ((-614 . -298) 183575) ((-593 . -729) 183540) ((-491 . -626) NIL) ((-491 . -625) 183522) ((-530 . -729) 183467) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-926 . -625) 183449) ((-926 . -626) 183431) ((-398 . -738) T) ((-884 . -1074) 183383) ((-884 . -111) 183321) ((-726 . -1067) T) ((-724 . -1262) 183305) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 183237) ((-390 . -807) T) ((-225 . -1118) T) ((-169 . -1236) T) ((-390 . -804) T) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -626) 183198) ((-59 . -625) 183110) ((-227 . -738) T) ((-528 . -626) 183071) ((-528 . -625) 182983) ((-509 . -625) 182915) ((-508 . -626) 182876) ((-508 . -625) 182788) ((-1098 . -374) 182739) ((-40 . -423) 182716) ((-77 . -1236) T) ((-883 . -925) NIL) ((-370 . -339) 182700) ((-370 . -374) T) ((-364 . -339) 182684) ((-364 . -374) T) ((-356 . -339) 182668) ((-356 . -374) T) ((-326 . -294) 182647) ((-108 . -374) T) ((-70 . -1236) T) ((-1250 . -349) 182599) ((-883 . -660) 182544) ((-1250 . -388) 182496) ((-980 . -132) 182351) ((-827 . -132) 182222) ((-974 . -663) 182206) ((-1105 . -174) 182117) ((-974 . -384) 182101) ((-1080 . -806) T) ((-1080 . -803) T) ((-884 . -628) 181999) ((-794 . -174) 181890) ((-792 . -174) 181801) ((-828 . -47) 181763) ((-1080 . -738) T) ((-337 . -501) 181747) ((-968 . -738) T) ((-1299 . -319) 181685) ((-1278 . -914) 181598) ((-466 . -174) 181509) ((-251 . -296) 181461) ((-1271 . -914) 181367) ((-1270 . -1074) 181202) ((-1250 . -914) 181035) ((-493 . -738) T) ((-1249 . -1074) 180843) ((-1230 . -300) 180822) ((-1205 . -1236) T) ((-1202 . -379) T) ((-1201 . -379) T) ((-1164 . -152) 180806) ((-1138 . -102) T) ((-1136 . -1118) T) ((-1098 . -23) T) ((-1098 . -1130) T) ((-1093 . -102) T) ((-1075 . -625) 180773) ((-1021 . -421) 180745) ((-943 . -971) T) ((-749 . -319) 180683) ((-75 . -1236) T) ((-676 . -393) 180655) ((-171 . -925) 180608) ((-30 . -971) T) ((-112 . -856) T) ((-1 . -625) 180590) ((-1017 . -909) 180547) ((-129 . -663) 180529) ((-50 . -632) 180513) ((-706 . -658) 180448) ((-607 . -914) 180361) ((-450 . -102) T) ((-129 . -384) 180343) ((-142 . -319) NIL) ((-884 . -1067) T) ((-845 . -862) 180322) ((-81 . -1236) T) ((-723 . -300) T) ((-40 . -1076) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 180304) ((-171 . -660) 180178) ((-519 . -625) 180160) ((-362 . -148) 180142) ((-362 . -146) T) ((-370 . -1130) T) ((-364 . -1130) T) ((-356 . -1130) T) ((-1022 . -317) T) ((-930 . -317) T) ((-884 . -249) T) ((-108 . -1130) T) ((-884 . -239) 180121) ((-1270 . -111) 179942) ((-1249 . -111) 179731) ((-251 . -1274) 179715) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 179702) ((-323 . -319) 179643) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1022 . -1040) T) ((-31 . -628) 179624) ((-108 . -23) T) ((-666 . -1069) 179608) ((-251 . -616) 179585) ((-343 . -1118) T) ((-666 . -652) 179555) ((-1272 . -38) 179447) ((-1259 . -925) 179426) ((-112 . -1118) T) ((-828 . -1236) T) ((-1053 . -102) T) ((-1259 . -660) 179315) ((-883 . -806) NIL) ((-867 . -660) 179289) ((-883 . -803) NIL) ((-828 . -899) NIL) ((-883 . -738) T) ((-1105 . -526) 179162) ((-794 . -526) 179109) ((-792 . -526) 179061) ((-583 . -660) 179048) ((-828 . -1056) 178876) ((-466 . -526) 178819) ((-400 . -401) T) ((-1270 . -628) 178632) ((-1249 . -628) 178380) ((-60 . -1236) T) ((-633 . -862) 178359) ((-512 . -673) T) ((-1164 . -994) 178328) ((-1042 . -658) 178265) ((-1021 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1074) 178100) ((-512 . -113) T) ((-354 . -1118) T) ((-323 . -1170) NIL) ((-299 . -132) T) ((-406 . -1118) T) ((-882 . -1076) T) ((-706 . -381) 178067) ((-365 . -658) 177997) ((-225 . -632) 177974) ((-337 . -296) 177926) ((-486 . -111) 177747) ((-1270 . -1067) T) ((-1249 . -1067) T) ((-828 . -388) 177731) ((-171 . -738) T) ((-666 . -102) T) ((-1270 . -249) 177710) ((-1270 . -239) 177662) ((-1249 . -239) 177567) ((-1249 . -249) 177546) ((-1021 . -414) NIL) ((-682 . -651) 177494) ((-326 . -38) 177404) ((-323 . -38) 177333) ((-69 . -625) 177315) ((-329 . -505) 177281) ((-48 . -658) 177231) ((-1208 . -298) 177210) ((-1244 . -862) T) ((-1131 . -1130) 177188) ((-83 . -1236) T) ((-61 . -625) 177170) ((-491 . -298) 177149) ((-1301 . -1056) 177126) ((-1183 . -1118) T) ((-1131 . -23) 176978) ((-828 . -914) 176914) ((-1259 . -738) T) ((-1120 . -1236) T) ((-486 . -628) 176740) ((-362 . -238) T) ((-1105 . -300) 176671) ((-982 . -1118) T) ((-906 . -102) T) ((-794 . -300) 176582) ((-337 . -19) 176566) ((-59 . -298) 176543) ((-792 . -300) 176474) ((-867 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 176451) ((-337 . -616) 176428) ((-508 . -298) 176405) ((-466 . -300) 176336) ((-1053 . -319) 176187) ((-888 . -502) 176168) ((-888 . -625) 176134) ((-693 . -502) 176115) ((-583 . -738) T) ((-688 . -502) 176096) ((-693 . -625) 176046) ((-688 . -625) 176012) ((-674 . -625) 175994) ((-490 . -502) 175975) ((-490 . -625) 175941) ((-251 . -626) 175902) ((-251 . -502) 175879) ((-139 . -502) 175860) ((-138 . -502) 175841) ((-134 . -502) 175822) ((-251 . -625) 175714) ((-215 . -102) T) ((-139 . -625) 175680) ((-138 . -625) 175646) ((-134 . -625) 175612) ((-1165 . -34) T) ((-959 . -1236) T) ((-354 . -729) 175557) ((-682 . -25) T) ((-682 . -21) T) ((-1195 . -628) 175538) ((-486 . -1067) T) ((-647 . -429) 175503) ((-619 . -429) 175468) ((-1138 . -1170) T) ((-724 . -1069) 175291) ((-593 . -300) T) ((-530 . -300) T) ((-1271 . -317) 175270) ((-486 . -239) 175222) ((-486 . -249) 175201) ((-1250 . -317) 175180) ((-724 . -652) 175009) ((-1250 . -1040) NIL) ((-1098 . -132) T) ((-884 . -807) 174988) ((-145 . -102) T) ((-40 . -1118) T) ((-884 . -804) 174967) ((-656 . -1028) 174951) ((-592 . -1076) T) ((-576 . -1076) T) ((-507 . -1076) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 174935) ((-323 . -412) 174896) ((-364 . -132) T) ((-356 . -132) T) ((-1200 . -1118) T) ((-1138 . -38) 174883) ((-1112 . -625) 174850) ((-108 . -132) T) ((-970 . -1118) T) ((-937 . -1118) T) ((-783 . -1118) T) ((-684 . -1118) T) ((-713 . -148) T) ((-117 . -148) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-1306 . -21) T) ((-1306 . -25) T) ((-676 . -1074) 174834) ((-543 . -862) T) ((-512 . -862) T) ((-366 . -1074) 174786) ((-363 . -1074) 174738) ((-355 . -1074) 174690) ((-258 . -1236) T) ((-257 . -1236) T) ((-273 . -1074) 174533) ((-253 . -1074) 174376) ((-676 . -111) 174355) ((-829 . -1240) 174334) ((-559 . -856) T) ((-326 . -916) 174300) ((-366 . -111) 174238) ((-363 . -111) 174176) ((-355 . -111) 174114) ((-273 . -111) 173943) ((-253 . -111) 173772) ((-323 . -916) NIL) ((-635 . -423) 173756) ((-44 . -21) T) ((-44 . -25) T) ((-827 . -651) 173662) ((-829 . -568) 173641) ((-258 . -1056) 173468) ((-257 . -1056) 173295) ((-127 . -120) 173279) ((-926 . -1074) 173244) ((-724 . -102) T) ((-711 . -1076) T) ((-609 . -628) 173225) ((-597 . -628) 173206) ((-548 . -630) 173109) ((-354 . -174) T) ((-88 . -625) 173091) ((-153 . -21) T) ((-153 . -25) T) ((-926 . -111) 173047) ((-40 . -729) 172992) ((-882 . -1118) T) ((-676 . -628) 172969) ((-657 . -628) 172950) ((-366 . -628) 172887) ((-363 . -628) 172824) ((-559 . -1118) T) ((-355 . -628) 172761) ((-337 . -626) 172722) ((-337 . -625) 172634) ((-273 . -628) 172387) ((-253 . -628) 172172) ((-1249 . -804) 172125) ((-1249 . -807) 172078) ((-258 . -388) 172047) ((-257 . -388) 172016) ((-666 . -38) 171986) ((-620 . -34) T) ((-494 . -1130) 171964) ((-487 . -34) T) ((-1131 . -132) 171835) ((-980 . -25) 171646) ((-926 . -628) 171596) ((-886 . -625) 171578) ((-980 . -21) 171533) ((-827 . -25) 171366) ((-827 . -21) 171277) ((-1242 . -379) T) ((-635 . -1076) T) ((-1197 . -568) 171256) ((-1191 . -47) 171233) ((-366 . -1067) T) ((-363 . -1067) T) ((-494 . -23) 171085) ((-355 . -1067) T) ((-273 . -1067) T) ((-253 . -1067) T) ((-1143 . -47) 171057) ((-118 . -1076) T) ((-1052 . -660) 171031) ((-974 . -34) T) ((-366 . -239) 171010) ((-366 . -249) T) ((-363 . -239) 170989) ((-363 . -249) T) ((-355 . -239) 170968) ((-355 . -249) T) ((-273 . -336) 170940) ((-253 . -336) 170897) ((-273 . -239) 170876) ((-1175 . -152) 170860) ((-258 . -914) 170792) ((-257 . -914) 170724) ((-1160 . -909) 170681) ((-1100 . -862) T) ((-426 . -1130) T) ((-1072 . -23) T) ((-1042 . -860) T) ((-926 . -1067) T) ((-332 . -660) 170663) ((-713 . -238) T) ((-682 . -235) 170636) ((-1230 . -1020) 170602) ((-1192 . -936) 170581) ((-1186 . -936) 170560) ((-1186 . -832) NIL) ((-1017 . -1069) 170456) ((-983 . -1236) T) ((-926 . -249) T) ((-829 . -374) 170435) ((-396 . -23) T) ((-128 . -1118) 170413) ((-122 . -1118) 170391) ((-926 . -239) T) ((-129 . -34) T) ((-390 . -660) 170356) ((-1017 . -652) 170304) ((-882 . -729) 170291) ((-1315 . -658) 170263) ((-1064 . -152) 170228) ((-1011 . -1236) T) ((-40 . -174) T) ((-706 . -423) 170210) ((-724 . -319) 170197) ((-848 . -660) 170157) ((-839 . -660) 170131) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 170110) ((-592 . -1118) T) ((-576 . -1118) T) ((-507 . -1118) T) ((-251 . -298) 170087) ((-1191 . -1236) T) ((-1143 . -1236) T) ((-323 . -233) 170048) ((-1191 . -899) NIL) ((-55 . -1118) T) ((-1143 . -899) 169907) ((-130 . -862) T) ((-1191 . -1056) 169787) ((-1143 . -1056) 169670) ((-185 . -625) 169652) ((-866 . -1056) 169548) ((-794 . -296) 169475) ((-829 . -1130) T) ((-1052 . -738) T) ((-1064 . -994) 169404) ((-614 . -663) 169388) ((-1021 . -909) 169338) ((-1017 . -102) T) ((-829 . -23) T) ((-724 . -1170) 169316) ((-706 . -1076) T) ((-614 . -384) 169300) ((-362 . -464) T) ((-354 . -300) T) ((-1287 . -1118) T) ((-254 . -1118) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1118) T) ((-711 . -1118) T) ((-372 . -485) T) ((-1230 . -625) 169282) ((-1191 . -388) 169266) ((-1143 . -388) 169250) ((-1042 . -423) 169212) ((-142 . -231) 169194) ((-390 . -806) T) ((-390 . -803) T) ((-882 . -174) T) ((-390 . -738) T) ((-723 . -625) 169176) ((-724 . -38) 169005) ((-1286 . -1284) 168989) ((-362 . -414) T) ((-1286 . -1118) 168939) ((-1209 . -1118) T) ((-592 . -729) 168926) ((-576 . -729) 168913) ((-507 . -729) 168878) ((-1272 . -658) 168768) ((-326 . -641) 168747) ((-848 . -738) T) ((-839 . -738) T) ((-656 . -1236) T) ((-1098 . -651) 168695) ((-1191 . -914) 168638) ((-1143 . -914) 168622) ((-827 . -235) 168568) ((-674 . -1074) 168552) ((-108 . -651) 168534) ((-494 . -132) 168405) ((-1197 . -1130) T) ((-968 . -47) 168374) ((-635 . -1118) T) ((-674 . -111) 168353) ((-503 . -625) 168319) ((-337 . -298) 168296) ((-493 . -47) 168253) ((-1197 . -23) T) ((-118 . -1118) T) ((-103 . -102) 168231) ((-1298 . -1130) T) ((-560 . -862) T) ((-227 . -1236) T) ((-1072 . -132) T) ((-1042 . -1076) T) ((-1298 . -23) T) ((-831 . -1056) 168215) ((-1216 . -625) 168197) ((-1021 . -736) 168169) ((-1138 . -840) T) ((-711 . -729) 168134) ((-598 . -625) 168116) ((-398 . -1056) 168100) ((-365 . -1076) T) ((-396 . -132) T) ((-334 . -1056) 168084) ((-1123 . -1118) T) ((-1098 . -21) T) ((-1098 . -25) T) ((-227 . -899) 168066) ((-1022 . -936) T) ((-91 . -34) T) ((-1022 . -832) T) ((-930 . -936) T) ((-1017 . -319) 168031) ((-888 . -628) 168012) ((-499 . -1240) T) ((-726 . -660) 167972) ((-693 . -628) 167953) ((-688 . -628) 167934) ((-219 . -1240) T) ((-419 . -909) 167891) ((-227 . -1056) 167851) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 167832) ((-370 . -25) T) ((-326 . -658) 167487) ((-323 . -658) 167401) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -235) 167347) ((-251 . -628) 167324) ((-139 . -628) 167305) ((-138 . -628) 167286) ((-134 . -628) 167267) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1076) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1080 . -1236) T) ((-968 . -1236) T) ((-670 . -625) 167249) ((-493 . -1236) T) ((-749 . -748) 167233) ((-347 . -625) 167215) ((-68 . -394) T) ((-68 . -407) T) ((-1120 . -107) 167199) ((-1080 . -899) 167181) ((-968 . -899) 167106) ((-665 . -1130) T) ((-635 . -729) 167093) ((-493 . -899) NIL) ((-1164 . -102) T) ((-1112 . -630) 167077) ((-1080 . -1056) 167059) ((-97 . -625) 167041) ((-489 . -148) T) ((-968 . -1056) 166921) ((-118 . -729) 166866) ((-724 . -916) 166809) ((-665 . -23) T) ((-493 . -1056) 166685) ((-1105 . -626) NIL) ((-1105 . -625) 166667) ((-794 . -626) NIL) ((-794 . -625) 166628) ((-792 . -626) 166262) ((-792 . -625) 166176) ((-1131 . -651) 166082) ((-473 . -625) 166064) ((-466 . -625) 166046) ((-466 . -626) 165907) ((-1053 . -231) 165853) ((-884 . -925) 165832) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 165814) ((-590 . -102) T) ((-366 . -1305) 165798) ((-363 . -1305) 165782) ((-355 . -1305) 165766) ((-128 . -526) 165699) ((-122 . -526) 165632) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 165570) ((-224 . -102) 165548) ((-711 . -174) T) ((-706 . -1118) T) ((-884 . -660) 165464) ((-65 . -395) T) ((-284 . -625) 165446) ((-65 . -407) T) ((-968 . -388) 165430) ((-882 . -300) T) ((-50 . -625) 165412) ((-1017 . -38) 165360) ((-1138 . -658) 165332) ((-593 . -625) 165314) ((-493 . -388) 165298) ((-593 . -626) 165280) ((-530 . -625) 165262) ((-926 . -1305) 165249) ((-883 . -1236) T) ((-713 . -464) T) ((-507 . -526) 165215) ((-499 . -374) T) ((-366 . -379) 165194) ((-363 . -379) 165173) ((-355 . -379) 165152) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1309 . -1300) 165136) ((-883 . -897) 165113) ((-883 . -899) NIL) ((-980 . -862) 165012) ((-827 . -862) 164963) ((-1243 . -102) T) ((-666 . -668) 164947) ((-1222 . -34) T) ((-173 . -625) 164929) ((-1131 . -25) 164762) ((-1131 . -21) 164673) ((-883 . -1056) 164650) ((-968 . -914) 164631) ((-1259 . -47) 164608) ((-926 . -379) T) ((-59 . -663) 164592) ((-528 . -663) 164576) ((-493 . -914) 164553) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 164537) ((-59 . -384) 164521) ((-635 . -174) T) ((-528 . -384) 164505) ((-508 . -384) 164489) ((-839 . -720) 164473) ((-1191 . -317) 164452) ((-1197 . -132) T) ((-1160 . -1069) 164436) ((-118 . -174) T) ((-1160 . -652) 164368) ((-1164 . -319) 164306) ((-171 . -1236) T) ((-1298 . -132) T) ((-878 . -1069) 164276) ((-647 . -756) 164260) ((-619 . -756) 164244) ((-1271 . -936) 164223) ((-1250 . -936) 164202) ((-1250 . -832) NIL) ((-878 . -652) 164172) ((-706 . -729) 164122) ((-1249 . -925) 164075) ((-1042 . -1118) T) ((-883 . -388) 164052) ((-883 . -349) 164029) ((-921 . -1130) T) ((-171 . -897) 164013) ((-171 . -899) 163938) ((-1286 . -526) 163871) ((-1270 . -660) 163768) ((-1098 . -235) 163687) ((-499 . -1130) T) ((-365 . -1118) T) ((-219 . -1130) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1056) 163583) ((-304 . -909) 163540) ((-329 . -862) T) ((-1249 . -660) 163348) ((-884 . -806) 163327) ((-884 . -803) 163306) ((-884 . -738) T) ((-499 . -23) T) ((-370 . -235) 163279) ((-364 . -235) 163252) ((-356 . -235) 163225) ((-225 . -625) 163207) ((-176 . -464) T) ((-224 . -319) 163145) ((-86 . -453) T) ((-86 . -407) T) ((-108 . -235) 163132) ((-219 . -23) T) ((-1310 . -1303) 163111) ((-689 . -1056) 163095) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-137 . -482) 163050) ((-1259 . -1236) T) ((-666 . -658) 163009) ((-48 . -1118) T) ((-724 . -233) 162993) ((-883 . -914) NIL) ((-1259 . -899) NIL) ((-902 . -102) T) ((-898 . -102) T) ((-400 . -1118) T) ((-171 . -388) 162977) ((-171 . -349) 162961) ((-1259 . -1056) 162841) ((-867 . -1056) 162737) ((-1160 . -102) T) ((-1017 . -916) 162696) ((-674 . -804) 162675) ((-665 . -132) T) ((-674 . -807) 162654) ((-118 . -526) 162562) ((-583 . -1056) 162544) ((-304 . -1293) 162514) ((-878 . -102) T) ((-979 . -568) 162493) ((-1230 . -1074) 162376) ((-1021 . -1069) 162321) ((-494 . -651) 162227) ((-920 . -1118) T) ((-1042 . -729) 162164) ((-723 . -1074) 162129) ((-1021 . -652) 162074) ((-629 . -102) T) ((-614 . -34) T) ((-1165 . -1236) T) ((-1230 . -111) 161943) ((-486 . -660) 161840) ((-365 . -729) 161785) ((-171 . -914) 161744) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 161700) ((-1315 . -1076) T) ((-1259 . -388) 161684) ((-430 . -1240) 161662) ((-1136 . -625) 161644) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1249 . -803) 161597) ((-1249 . -806) 161550) ((-1270 . -738) T) ((-1249 . -738) T) ((-48 . -729) 161515) ((-227 . -1040) T) ((-1272 . -423) 161481) ((-362 . -1293) 161458) ((-1259 . -914) 161401) ((-730 . -738) T) ((-343 . -625) 161383) ((-1230 . -628) 161265) ((-1131 . -235) 161211) ((-112 . -625) 161193) ((-112 . -626) 161175) ((-730 . -485) T) ((-723 . -628) 161125) ((-1309 . -1069) 161109) ((-494 . -25) 160942) ((-128 . -501) 160926) ((-122 . -501) 160910) ((-494 . -21) 160821) ((-1309 . -652) 160791) ((-635 . -300) T) ((-598 . -1074) 160766) ((-449 . -1118) T) ((-1080 . -317) T) ((-118 . -300) T) ((-1122 . -102) T) ((-1021 . -102) T) ((-598 . -111) 160734) ((-1160 . -319) 160672) ((-1230 . -1067) T) ((-1080 . -1040) T) ((-66 . -1236) T) ((-1072 . -25) T) ((-1072 . -21) T) ((-723 . -1067) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1042 . -174) T) ((-723 . -249) T) ((-1080 . -557) T) ((-724 . -658) 160582) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 160564) ((-419 . -1069) 160516) ((-406 . -625) 160498) ((-1138 . -860) T) ((-486 . -738) T) ((-905 . -1056) 160466) ((-419 . -652) 160418) ((-108 . -862) T) ((-670 . -1074) 160402) ((-499 . -132) T) ((-1272 . -1076) T) ((-219 . -132) T) ((-1175 . -102) 160380) ((-99 . -1118) T) ((-251 . -678) 160364) ((-251 . -663) 160348) ((-670 . -111) 160327) ((-598 . -628) 160311) ((-326 . -423) 160295) ((-251 . -384) 160279) ((-1178 . -241) 160226) ((-1017 . -233) 160210) ((-74 . -1236) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1309 . -102) T) ((-1216 . -628) 160192) ((-1106 . -1236) T) ((-1105 . -1074) 160035) ((-1094 . -1236) T) ((-273 . -925) 160014) ((-253 . -925) 159993) ((-794 . -1074) 159816) ((-792 . -1074) 159659) ((-620 . -1236) T) ((-1183 . -625) 159641) ((-1105 . -111) 159470) ((-1064 . -102) T) ((-487 . -1236) T) ((-473 . -1074) 159441) ((-466 . -1074) 159284) ((-676 . -660) 159268) ((-883 . -317) T) ((-794 . -111) 159077) ((-792 . -111) 158906) ((-366 . -660) 158858) ((-363 . -660) 158810) ((-355 . -660) 158762) ((-273 . -660) 158651) ((-253 . -660) 158540) ((-1177 . -862) T) ((-1106 . -1056) 158524) ((-473 . -111) 158485) ((-466 . -111) 158314) ((-1094 . -1056) 158291) ((-1018 . -34) T) ((-982 . -625) 158273) ((-974 . -1236) T) ((-127 . -1028) 158257) ((-979 . -1130) T) ((-883 . -1040) NIL) ((-747 . -1130) T) ((-727 . -1130) T) ((-670 . -628) 158175) ((-1286 . -501) 158159) ((-1160 . -38) 158119) ((-979 . -23) T) ((-926 . -660) 158084) ((-877 . -1118) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1069) 158068) ((-619 . -1069) 158052) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 158036) ((-110 . -673) T) ((-619 . -652) 158020) ((-593 . -1074) 157985) ((-530 . -1074) 157930) ((-229 . -57) 157888) ((-465 . -23) T) ((-419 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-878 . -38) 157858) ((-593 . -111) 157814) ((-530 . -111) 157743) ((-1105 . -628) 157479) ((-430 . -1130) T) ((-326 . -1076) 157369) ((-323 . -1076) T) ((-129 . -1236) T) ((-794 . -628) 157117) ((-792 . -628) 156883) ((-670 . -1067) T) ((-1315 . -1118) T) ((-466 . -628) 156668) ((-171 . -317) 156599) ((-430 . -23) T) ((-40 . -625) 156581) ((-40 . -626) 156565) ((-108 . -1010) 156547) ((-117 . -881) 156531) ((-661 . -628) 156515) ((-48 . -526) 156481) ((-1222 . -1028) 156465) ((-1200 . -625) 156432) ((-1208 . -34) T) ((-970 . -625) 156398) ((-937 . -625) 156380) ((-1131 . -862) 156331) ((-783 . -625) 156313) ((-684 . -625) 156295) ((-1175 . -319) 156233) ((-491 . -34) T) ((-1110 . -1236) T) ((-489 . -464) T) ((-1159 . -34) T) ((-1105 . -1067) T) ((-50 . -628) 156202) ((-794 . -1067) T) ((-792 . -1067) T) ((-659 . -241) 156186) ((-644 . -241) 156132) ((-593 . -628) 156082) ((-530 . -628) 156012) ((-494 . -235) 155958) ((-1259 . -317) 155937) ((-1105 . -336) 155898) ((-466 . -1067) T) ((-1197 . -21) T) ((-1105 . -239) 155877) ((-794 . -336) 155854) ((-794 . -239) T) ((-792 . -336) 155826) ((-743 . -1240) 155805) ((-337 . -663) 155789) ((-1197 . -25) T) ((-59 . -34) T) ((-531 . -34) T) ((-528 . -34) T) ((-466 . -336) 155768) ((-337 . -384) 155752) ((-509 . -34) T) ((-508 . -34) T) ((-1021 . -1170) NIL) ((-743 . -568) 155683) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1236) T) ((-1064 . -319) 155591) ((-1298 . -21) T) ((-917 . -1118) 155569) ((-830 . -235) 155556) ((-50 . -1067) T) ((-1298 . -25) T) ((-1193 . -568) 155535) ((-1192 . -1240) 155514) ((-1192 . -568) 155465) ((-1186 . -1240) 155444) ((-1186 . -568) 155395) ((-593 . -1067) T) ((-530 . -1067) T) ((-1042 . -300) T) ((-372 . -1056) 155379) ((-332 . -1056) 155363) ((-1021 . -38) 155308) ((-390 . -899) 155290) ((-1017 . -658) 155213) ((-848 . -1236) T) ((-839 . -1236) 155192) ((-811 . -1130) T) ((-926 . -738) T) ((-593 . -249) T) ((-593 . -239) T) ((-530 . -239) T) ((-530 . -249) T) ((-1144 . -568) 155171) ((-365 . -300) T) ((-659 . -707) 155155) ((-390 . -1056) 155115) ((-304 . -1069) 155036) ((-350 . -909) 155015) ((-1138 . -1076) T) ((-103 . -126) 154999) ((-304 . -652) 154941) ((-811 . -23) T) ((-1308 . -1303) 154917) ((-1306 . -1303) 154896) ((-1286 . -296) 154848) ((-419 . -319) 154813) ((-1272 . -1118) T) ((-1160 . -916) 154772) ((-882 . -625) 154754) ((-848 . -1056) 154723) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 154705) ((-507 . -1020) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -862) T) ((-666 . -423) 154689) ((-682 . -238) 154668) ((-225 . -628) 154630) ((-110 . -862) T) ((-665 . -21) T) ((-665 . -25) T) ((-1309 . -38) 154600) ((-118 . -296) 154551) ((-1286 . -19) 154535) ((-1286 . -616) 154512) ((-1299 . -1118) T) ((-362 . -1069) 154457) ((-1095 . -1118) T) ((-1005 . -1118) T) ((-979 . -132) T) ((-829 . -235) 154444) ((-749 . -1118) T) ((-362 . -652) 154389) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1170) 154367) ((-225 . -1067) T) ((-304 . -102) 154149) ((-142 . -1118) T) ((-711 . -1020) T) ((-1123 . -296) 154105) ((-91 . -1236) T) ((-128 . -625) 154037) ((-122 . -625) 153969) ((-1315 . -174) T) ((-1192 . -374) 153948) ((-1186 . -374) 153927) ((-326 . -1118) T) ((-430 . -132) T) ((-323 . -1118) T) ((-419 . -38) 153879) ((-1151 . -102) T) ((-1272 . -729) 153771) ((-666 . -1076) T) ((-1153 . -1281) T) ((-329 . -146) 153750) ((-329 . -148) 153729) ((-140 . -1118) T) ((-137 . -1118) T) ((-115 . -1118) T) ((-870 . -102) T) ((-592 . -625) 153711) ((-576 . -626) 153610) ((-576 . -625) 153592) ((-507 . -625) 153574) ((-507 . -626) 153519) ((-497 . -23) T) ((-494 . -862) 153470) ((-499 . -651) 153452) ((-981 . -625) 153434) ((-1021 . -916) 153386) ((-219 . -651) 153368) ((-227 . -416) T) ((-674 . -660) 153352) ((-55 . -625) 153334) ((-1191 . -936) 153313) ((-743 . -1130) T) ((-362 . -102) T) ((-1235 . -1101) T) ((-1138 . -856) T) ((-830 . -862) T) ((-743 . -23) T) ((-354 . -1074) 153258) ((-1177 . -1176) T) ((-1165 . -107) 153242) ((-1193 . -1130) T) ((-1192 . -1130) T) ((-527 . -1056) 153226) ((-1186 . -1130) T) ((-1144 . -1130) T) ((-354 . -111) 153155) ((-1022 . -1240) T) ((-127 . -1236) T) ((-930 . -1240) T) ((-706 . -296) NIL) ((-726 . -1236) T) ((-1287 . -625) 153137) ((-1193 . -23) T) ((-1192 . -23) T) ((-1186 . -23) T) ((-1160 . -233) 153121) ((-1022 . -568) T) ((-1144 . -23) T) ((-930 . -568) T) ((-1093 . -1118) T) ((-254 . -625) 153103) ((-827 . -238) 153055) ((-811 . -132) T) ((-722 . -625) 153037) ((-326 . -729) 152947) ((-323 . -729) 152876) ((-711 . -625) 152858) ((-711 . -626) 152803) ((-419 . -412) 152787) ((-450 . -1118) T) ((-499 . -25) T) ((-499 . -21) T) ((-1138 . -1118) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 152771) ((-726 . -1056) 152740) ((-1286 . -625) 152652) ((-1286 . -626) 152613) ((-1272 . -174) T) ((-1209 . -625) 152595) ((-251 . -34) T) ((-354 . -628) 152525) ((-406 . -628) 152507) ((-942 . -992) T) ((-1222 . -1236) T) ((-674 . -803) 152486) ((-674 . -806) 152465) ((-410 . -407) T) ((-535 . -102) 152443) ((-1053 . -1118) T) ((-419 . -916) 152402) ((-224 . -1013) 152386) ((-516 . -102) T) ((-635 . -625) 152368) ((-45 . -862) NIL) ((-635 . -626) 152345) ((-1053 . -622) 152320) ((-917 . -526) 152253) ((-329 . -238) 152205) ((-354 . -1067) T) ((-118 . -626) NIL) ((-118 . -625) 152187) ((-884 . -1236) T) ((-682 . -429) 152171) ((-682 . -1141) 152116) ((-512 . -152) 152098) ((-354 . -239) T) ((-354 . -249) T) ((-40 . -1074) 152043) ((-884 . -897) 152027) ((-884 . -899) 151952) ((-724 . -1076) T) ((-706 . -1020) NIL) ((-1270 . -47) 151922) ((-1249 . -47) 151899) ((-1159 . -1028) 151870) ((-3 . |UnionCategory|) T) ((-1138 . -729) 151857) ((-1123 . -625) 151839) ((-1098 . -148) 151818) ((-1098 . -146) 151769) ((-982 . -628) 151753) ((-227 . -936) T) ((-40 . -111) 151682) ((-884 . -1056) 151546) ((-1022 . -374) T) ((-1021 . -233) 151523) ((-713 . -1069) 151510) ((-930 . -374) T) ((-713 . -652) 151497) ((-329 . -1224) 151463) ((-390 . -317) T) ((-329 . -1221) 151429) ((-326 . -174) 151408) ((-323 . -174) T) ((-593 . -1305) 151395) ((-530 . -1305) 151372) ((-370 . -148) 151351) ((-117 . -1069) 151338) ((-370 . -146) 151289) ((-364 . -148) 151268) ((-364 . -146) 151219) ((-356 . -148) 151198) ((-620 . -1212) 151174) ((-117 . -652) 151161) ((-356 . -146) 151112) ((-329 . -35) 151078) ((-487 . -1212) 151057) ((0 . |EnumerationCategory|) T) ((-329 . -95) 151023) ((-390 . -1040) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 150973) ((-666 . -1118) T) ((-620 . -107) 150920) ((-497 . -132) T) ((-487 . -107) 150870) ((-246 . -1130) 150848) ((-884 . -388) 150832) ((-884 . -349) 150816) ((-246 . -23) 150668) ((-40 . -628) 150598) ((-1080 . -936) T) ((-1080 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1299 . -526) 150531) ((-1278 . -568) 150510) ((-1271 . -1240) 150489) ((-362 . -1170) T) ((-337 . -34) T) ((-44 . -429) 150473) ((-1200 . -628) 150409) ((-885 . -1236) T) ((-402 . -756) 150393) ((-1271 . -568) 150344) ((-1270 . -1236) T) ((-1160 . -658) 150303) ((-743 . -132) T) ((-684 . -628) 150287) ((-1250 . -1240) 150266) ((-1250 . -568) 150217) ((-1249 . -1236) T) ((-1249 . -899) 150090) ((-1249 . -897) 150060) ((-1193 . -132) T) ((-321 . -1101) T) ((-1192 . -132) T) ((-749 . -526) 149993) ((-1186 . -132) T) ((-1144 . -132) T) ((-906 . -1118) T) ((-145 . -856) T) ((-1042 . -1020) T) ((-703 . -625) 149975) ((-1022 . -23) T) ((-535 . -319) 149913) ((-1022 . -1130) T) ((-142 . -526) NIL) ((-878 . -658) 149858) ((-1021 . -360) NIL) ((-989 . -23) T) ((-930 . -1130) T) ((-362 . -38) 149823) ((-930 . -23) T) ((-884 . -914) 149782) ((-82 . -625) 149764) ((-40 . -1067) T) ((-882 . -1074) 149751) ((-882 . -111) 149736) ((-713 . -102) T) ((-706 . -625) 149718) ((-614 . -1236) T) ((-608 . -568) 149697) ((-439 . -1130) T) ((-350 . -1069) 149681) ((-215 . -1118) T) ((-176 . -1069) 149613) ((-486 . -47) 149583) ((-40 . -239) 149555) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 149534) ((-350 . -652) 149518) ((-706 . -626) 149426) ((-326 . -526) 149392) ((-176 . -652) 149324) ((-323 . -526) 149216) ((-499 . -235) 149203) ((-1270 . -1056) 149187) ((-1249 . -1056) 148973) ((-1017 . -423) 148957) ((-219 . -235) 148944) ((-439 . -23) T) ((-1138 . -174) T) ((-1272 . -300) T) ((-666 . -729) 148914) ((-145 . -1118) T) ((-48 . -1020) T) ((-419 . -233) 148898) ((-305 . -241) 148848) ((-883 . -936) T) ((-883 . -832) NIL) ((-882 . -628) 148820) ((-876 . -862) T) ((-1249 . -349) 148790) ((-1249 . -388) 148760) ((-1098 . -238) 148685) ((-224 . -1139) 148669) ((-304 . -916) 148628) ((-1286 . -298) 148605) ((-370 . -238) 148584) ((-364 . -238) 148563) ((-486 . -1236) T) ((-356 . -238) 148542) ((-108 . -238) T) ((-1230 . -660) 148467) ((-1021 . -658) 148397) ((-979 . -21) T) ((-979 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 148362) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1017 . -1076) T) ((-882 . -1067) T) ((-786 . -102) T) ((-1271 . -374) 148341) ((-1270 . -914) 148247) ((-1250 . -374) 148226) ((-1249 . -914) 148077) ((-1042 . -625) 148059) ((-419 . -840) 148012) ((-1193 . -505) 147978) ((-171 . -936) 147909) ((-1192 . -505) 147875) ((-1186 . -505) 147841) ((-724 . -1118) T) ((-1144 . -505) 147807) ((-592 . -1074) 147794) ((-576 . -1074) 147781) ((-507 . -1074) 147746) ((-326 . -300) 147725) ((-323 . -300) T) ((-365 . -625) 147707) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 147686) ((-592 . -111) 147671) ((-576 . -111) 147656) ((-507 . -111) 147612) ((-1195 . -899) 147579) ((-917 . -501) 147563) ((-48 . -625) 147545) ((-48 . -626) 147490) ((-246 . -132) 147361) ((-1309 . -658) 147320) ((-1259 . -936) 147299) ((-828 . -1240) 147278) ((-400 . -502) 147259) ((-1053 . -526) 147103) ((-400 . -625) 147069) ((-828 . -568) 147000) ((-598 . -660) 146975) ((-273 . -47) 146947) ((-253 . -47) 146904) ((-543 . -521) 146881) ((-592 . -628) 146853) ((-576 . -628) 146825) ((-507 . -628) 146758) ((-1092 . -1236) T) ((-1018 . -1236) T) ((-1278 . -23) T) ((-1278 . -1130) T) ((-1271 . -1130) T) ((-711 . -1074) 146723) ((-1271 . -23) T) ((-1250 . -1130) T) ((-1250 . -23) T) ((-1230 . -738) T) ((-1138 . -300) T) ((-1021 . -381) 146695) ((-112 . -379) T) ((-486 . -914) 146601) ((-1131 . -238) 146553) ((-920 . -625) 146535) ((-55 . -628) 146517) ((-91 . -107) 146501) ((-1022 . -132) T) ((-921 . -862) 146452) ((-713 . -1170) T) ((-711 . -111) 146408) ((-855 . -658) 146325) ((-608 . -1130) T) ((-607 . -1130) T) ((-724 . -729) 146154) ((-723 . -738) T) ((-989 . -132) T) ((-930 . -132) T) ((-499 . -862) T) ((-811 . -25) T) ((-811 . -21) T) ((-592 . -1067) T) ((-219 . -862) T) ((-419 . -658) 146091) ((-576 . -1067) T) ((-548 . -1236) T) ((-507 . -1067) T) ((-608 . -23) T) ((-354 . -1305) 146068) ((-329 . -464) 146047) ((-350 . -319) 146034) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 146008) ((-251 . -1028) 145992) ((-884 . -317) T) ((-1310 . -1300) 145976) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 145963) ((-576 . -239) T) ((-507 . -249) T) ((-507 . -239) T) ((-1168 . -241) 145913) ((-1105 . -925) 145892) ((-117 . -38) 145879) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-884 . -1040) 145857) ((-1299 . -501) 145841) ((-794 . -925) 145820) ((-792 . -925) 145799) ((-1208 . -1236) T) ((-366 . -1236) 145778) ((-363 . -1236) 145757) ((-355 . -1236) 145736) ((-273 . -1236) T) ((-253 . -1236) T) ((-466 . -925) 145715) ((-749 . -501) 145699) ((-1105 . -660) 145588) ((-711 . -628) 145523) ((-794 . -660) 145412) ((-635 . -1074) 145399) ((-491 . -1236) T) ((-354 . -379) T) ((-142 . -501) 145381) ((-792 . -660) 145270) ((-1159 . -1236) T) ((-561 . -862) T) ((-473 . -660) 145241) ((-273 . -899) 145100) ((-253 . -899) NIL) ((-118 . -1074) 145045) ((-466 . -660) 144934) ((-676 . -1056) 144911) ((-635 . -111) 144896) ((-402 . -1069) 144880) ((-366 . -1056) 144864) ((-363 . -1056) 144848) ((-355 . -1056) 144832) ((-273 . -1056) 144676) ((-253 . -1056) 144552) ((-926 . -1236) T) ((-118 . -111) 144481) ((-59 . -1236) T) ((-402 . -652) 144465) ((-633 . -1069) 144449) ((-531 . -1236) T) ((-528 . -1236) T) ((-509 . -1236) T) ((-508 . -1236) T) ((-449 . -625) 144431) ((-446 . -625) 144413) ((-633 . -652) 144397) ((-3 . -102) T) ((-1045 . -1229) 144366) ((-845 . -102) T) ((-701 . -57) 144324) ((-711 . -1067) T) ((-647 . -658) 144293) ((-619 . -658) 144262) ((-50 . -660) 144236) ((-299 . -464) T) ((-488 . -1229) 144205) ((0 . -102) T) ((-593 . -660) 144170) ((-530 . -660) 144115) ((-49 . -102) T) ((-926 . -1056) 144102) ((-711 . -249) T) ((-1098 . -421) 144081) ((-743 . -651) 144029) ((-1017 . -1118) T) ((-724 . -174) 143920) ((-635 . -628) 143815) ((-499 . -1010) 143797) ((-430 . -235) 143770) ((-273 . -388) 143754) ((-253 . -388) 143738) ((-411 . -1118) T) ((-1044 . -102) 143716) ((-350 . -38) 143700) ((-219 . -1010) 143682) ((-118 . -628) 143612) ((-176 . -38) 143544) ((-1270 . -317) 143523) ((-1249 . -317) 143502) ((-670 . -738) T) ((-99 . -625) 143484) ((-489 . -1069) 143449) ((-1186 . -651) 143401) ((-489 . -652) 143366) ((-497 . -25) T) ((-497 . -21) T) ((-1249 . -1040) 143318) ((-1075 . -1236) T) ((-635 . -1067) T) ((-390 . -416) T) ((-402 . -102) T) ((-1123 . -630) 143233) ((-273 . -914) 143179) ((-253 . -914) 143156) ((-118 . -1067) T) ((-828 . -1130) T) ((-1105 . -738) T) ((-635 . -239) 143135) ((-633 . -102) T) ((-794 . -738) T) ((-792 . -738) T) ((-425 . -1130) T) ((-118 . -249) T) ((-40 . -379) NIL) ((-118 . -239) NIL) ((-1241 . -862) T) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -909) 143092) ((-1095 . -296) 143071) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 143053) ((-706 . -1074) 143003) ((-1311 . -102) T) ((-1278 . -132) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-1193 . -25) T) ((-1160 . -423) 142987) ((-647 . -378) 142919) ((-619 . -378) 142851) ((-1175 . -1167) 142835) ((-103 . -1118) 142813) ((-1193 . -21) T) ((-1192 . -21) T) ((-877 . -625) 142795) ((-1017 . -729) 142743) ((-225 . -660) 142710) ((-706 . -111) 142644) ((-50 . -738) T) ((-1192 . -25) T) ((-362 . -360) T) ((-1186 . -21) T) ((-1098 . -464) 142595) ((-1186 . -25) T) ((-724 . -526) 142542) ((-593 . -738) T) ((-530 . -738) T) ((-1144 . -21) T) ((-1144 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 142277) ((-494 . -238) 142229) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 142208) ((-1244 . -102) T) ((-323 . -296) 142143) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 142127) ((-1315 . -625) 142109) ((-1315 . -626) 142091) ((-1098 . -414) 142070) ((-1053 . -501) 142001) ((-137 . -296) 141978) ((-576 . -807) T) ((-576 . -804) T) ((-1081 . -241) 141924) ((-370 . -414) 141875) ((-364 . -414) 141826) ((-356 . -414) 141777) ((-1301 . -1130) T) ((-1310 . -1069) 141761) ((-392 . -1069) 141745) ((-1310 . -652) 141715) ((-830 . -238) T) ((-392 . -652) 141685) ((-706 . -628) 141620) ((-1301 . -23) T) ((-1288 . -102) T) ((-350 . -916) 141601) ((-177 . -625) 141583) ((-1160 . -1076) T) ((-559 . -379) T) ((-682 . -756) 141567) ((-1197 . -146) 141546) ((-1197 . -148) 141525) ((-1164 . -1118) T) ((-1164 . -1089) 141494) ((-69 . -1236) T) ((-1042 . -1074) 141431) ((-362 . -658) 141361) ((-878 . -1076) T) ((-246 . -651) 141267) ((-706 . -1067) T) ((-365 . -1074) 141212) ((-61 . -1236) T) ((-1042 . -111) 141128) ((-917 . -625) 141039) ((-706 . -249) T) ((-706 . -239) NIL) ((-855 . -860) 141018) ((-711 . -807) T) ((-711 . -804) T) ((-1021 . -423) 140995) ((-365 . -111) 140924) ((-390 . -936) T) ((-419 . -860) 140903) ((-724 . -300) 140814) ((-225 . -738) T) ((-1278 . -505) 140780) ((-1271 . -505) 140746) ((-1250 . -505) 140712) ((-590 . -1118) T) ((-326 . -1020) 140691) ((-224 . -1118) 140669) ((-1243 . -856) T) ((-329 . -991) 140631) ((-105 . -102) T) ((-48 . -1074) 140596) ((-1310 . -102) T) ((-392 . -102) T) ((-48 . -111) 140552) ((-827 . -909) 140482) ((-1022 . -651) 140464) ((-1272 . -625) 140446) ((-543 . -102) T) ((-512 . -102) T) ((-1151 . -1152) 140430) ((-153 . -1293) 140414) ((-251 . -1236) T) ((-1235 . -102) T) ((-1042 . -628) 140351) ((-829 . -238) T) ((-1191 . -1240) 140330) ((-365 . -628) 140260) ((-1143 . -1240) 140239) ((-246 . -25) 140072) ((-246 . -21) 139983) ((-128 . -120) 139967) ((-122 . -120) 139951) ((-44 . -756) 139935) ((-1191 . -568) 139846) ((-1143 . -568) 139777) ((-1243 . -1118) T) ((-1053 . -296) 139752) ((-1185 . -1101) T) ((-1012 . -1101) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-258 . -1130) 139730) ((-257 . -1130) 139708) ((-1042 . -1067) T) ((-1021 . -1076) T) ((-48 . -628) 139641) ((-354 . -660) 139586) ((-1299 . -625) 139548) ((-633 . -38) 139532) ((-1299 . -626) 139493) ((-1193 . -235) 139446) ((-1095 . -625) 139428) ((-1042 . -249) T) ((-365 . -1067) T) ((-827 . -1293) 139398) ((-258 . -23) T) ((-257 . -23) T) ((-1005 . -625) 139380) ((-1192 . -235) 139326) ((-1186 . -235) 139207) ((-749 . -626) 139168) ((-749 . -625) 139150) ((-1178 . -152) 139097) ((-811 . -862) 139076) ((-1022 . -25) T) ((-1017 . -526) 138988) ((-365 . -239) T) ((-365 . -249) T) ((-400 . -628) 138969) ((-926 . -317) T) ((-142 . -625) 138951) ((-142 . -626) 138910) ((-329 . -909) 138814) ((-1022 . -21) T) ((-989 . -25) T) ((-930 . -21) T) ((-930 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 138798) ((-48 . -1067) T) ((-1308 . -1300) 138782) ((-1306 . -1300) 138766) ((-1053 . -616) 138741) ((-326 . -626) 138602) ((-326 . -625) 138584) ((-323 . -626) NIL) ((-323 . -625) 138566) ((-48 . -249) T) ((-48 . -239) T) ((-666 . -296) 138527) ((-562 . -241) 138477) ((-140 . -625) 138444) ((-137 . -625) 138426) ((-115 . -625) 138408) ((-489 . -38) 138373) ((-1310 . -1307) 138352) ((-1301 . -132) T) ((-1309 . -1076) T) ((-1100 . -102) T) ((-88 . -1236) T) ((-512 . -319) NIL) ((-1018 . -107) 138336) ((-902 . -1118) T) ((-898 . -1118) T) ((-1286 . -663) 138320) ((-1286 . -384) 138304) ((-337 . -1236) T) ((-605 . -862) T) ((-1160 . -1118) T) ((-1160 . -1071) 138244) ((-103 . -526) 138177) ((-943 . -625) 138159) ((-354 . -738) T) ((-30 . -625) 138141) ((-878 . -1118) T) ((-855 . -1076) 138120) ((-40 . -660) 138027) ((-227 . -1240) T) ((-419 . -1076) T) ((-1177 . -152) 138009) ((-1017 . -300) 137960) ((-629 . -1118) T) ((-227 . -568) T) ((-329 . -1267) 137944) ((-329 . -1264) 137914) ((-713 . -658) 137886) ((-1208 . -1212) 137865) ((-1093 . -625) 137847) ((-1208 . -107) 137797) ((-659 . -152) 137781) ((-644 . -152) 137727) ((-117 . -658) 137699) ((-491 . -1212) 137678) ((-499 . -148) T) ((-499 . -146) NIL) ((-1138 . -626) 137593) ((-450 . -625) 137575) ((-219 . -148) T) ((-219 . -146) NIL) ((-1138 . -625) 137557) ((-130 . -102) T) ((-52 . -102) T) ((-1250 . -651) 137509) ((-491 . -107) 137459) ((-1011 . -23) T) ((-1310 . -38) 137429) ((-1191 . -1130) T) ((-1143 . -1130) T) ((-1080 . -1240) T) ((-246 . -235) 137375) ((-321 . -102) T) ((-866 . -1130) T) ((-968 . -1240) 137354) ((-493 . -1240) 137333) ((-1080 . -568) T) ((-968 . -568) 137264) ((-1191 . -23) T) ((-1169 . -1101) T) ((-1143 . -23) T) ((-866 . -23) T) ((-493 . -568) 137195) ((-1160 . -729) 137127) ((-682 . -1069) 137111) ((-1164 . -526) 137044) ((-682 . -652) 137028) ((-1053 . -626) NIL) ((-1053 . -625) 137010) ((-96 . -1101) T) ((-1315 . -1074) 136997) ((-878 . -729) 136967) ((-1315 . -111) 136952) ((-1230 . -47) 136921) ((-1186 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1122 . -1118) T) ((-1021 . -1118) T) ((-62 . -625) 136903) ((-1098 . -909) 136834) ((-1042 . -804) T) ((-1042 . -807) T) ((-1278 . -25) T) ((-1278 . -21) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-882 . -660) 136821) ((-1250 . -21) T) ((-1250 . -25) T) ((-1045 . -152) 136805) ((-1022 . -235) 136792) ((-884 . -832) 136771) ((-884 . -936) T) ((-724 . -296) 136698) ((-608 . -21) T) ((-350 . -658) 136657) ((-108 . -909) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 136574) ((-40 . -738) T) ((-224 . -526) 136507) ((-607 . -25) T) ((-488 . -152) 136491) ((-475 . -152) 136475) ((-937 . -806) T) ((-937 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1118) T) ((-514 . -1118) T) ((-783 . -738) T) ((-227 . -374) T) ((-1308 . -1069) 136459) ((-1306 . -1069) 136443) ((-1308 . -652) 136413) ((-1175 . -1118) 136391) ((-883 . -1240) T) ((-1306 . -652) 136361) ((-666 . -625) 136343) ((-883 . -568) T) ((-706 . -379) NIL) ((-44 . -1069) 136327) ((-1315 . -628) 136309) ((-1309 . -1118) T) ((-682 . -102) T) ((-370 . -1293) 136293) ((-364 . -1293) 136277) ((-44 . -652) 136261) ((-356 . -1293) 136245) ((-560 . -102) T) ((-1230 . -1236) T) ((-532 . -862) 136224) ((-499 . -238) T) ((-219 . -238) T) ((-1064 . -1118) T) ((-829 . -464) 136203) ((-153 . -1069) 136187) ((-1064 . -1089) 136116) ((-1045 . -994) 136085) ((-831 . -1130) T) ((-1021 . -729) 136030) ((-153 . -652) 136014) ((-398 . -1130) T) ((-488 . -994) 135983) ((-475 . -994) 135952) ((-110 . -152) 135934) ((-73 . -625) 135916) ((-906 . -625) 135898) ((-1098 . -736) 135877) ((-1315 . -1067) T) ((-828 . -651) 135825) ((-304 . -1076) 135767) ((-171 . -1240) 135672) ((-227 . -1130) T) ((-334 . -23) T) ((-1186 . -1010) 135624) ((-855 . -1118) T) ((-1272 . -1074) 135529) ((-1144 . -752) 135508) ((-1270 . -936) 135487) ((-1249 . -936) 135466) ((-882 . -738) T) ((-171 . -568) 135377) ((-592 . -660) 135364) ((-576 . -660) 135336) ((-419 . -1118) T) ((-270 . -1118) T) ((-215 . -625) 135318) ((-507 . -660) 135268) ((-227 . -23) T) ((-1249 . -832) 135221) ((-1308 . -102) T) ((-365 . -1305) 135198) ((-1306 . -102) T) ((-1272 . -111) 135090) ((-1131 . -909) 135020) ((-827 . -1069) 134921) ((-827 . -652) 134843) ((-145 . -625) 134825) ((-1011 . -132) T) ((-44 . -102) T) ((-246 . -862) 134776) ((-1259 . -1240) 134755) ((-103 . -501) 134739) ((-1309 . -729) 134709) ((-1105 . -47) 134670) ((-1080 . -1130) T) ((-968 . -1130) T) ((-128 . -34) T) ((-122 . -34) T) ((-794 . -47) 134647) ((-792 . -47) 134619) ((-1259 . -568) 134530) ((-365 . -379) T) ((-493 . -1130) T) ((-1191 . -132) T) ((-1143 . -132) T) ((-466 . -47) 134509) ((-883 . -374) T) ((-866 . -132) T) ((-153 . -102) T) ((-1080 . -23) T) ((-968 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1160 . -526) 134442) ((-604 . -1101) T) ((-598 . -1056) 134426) ((-1272 . -628) 134300) ((-493 . -23) T) ((-362 . -1076) T) ((-1230 . -914) 134281) ((-682 . -319) 134219) ((-1131 . -1293) 134189) ((-711 . -660) 134154) ((-1022 . -862) T) ((-1021 . -174) T) ((-979 . -146) 134133) ((-647 . -1118) T) ((-619 . -1118) T) ((-979 . -148) 134112) ((-747 . -148) 134091) ((-747 . -146) 134070) ((-670 . -1236) T) ((-989 . -862) T) ((-1278 . -235) 134023) ((-1271 . -235) 133969) ((-1250 . -235) 133850) ((-845 . -658) 133767) ((-486 . -936) 133746) ((-329 . -1069) 133581) ((-326 . -1074) 133491) ((-323 . -1074) 133420) ((-1017 . -296) 133378) ((-419 . -729) 133330) ((-329 . -652) 133171) ((-607 . -235) 133124) ((-713 . -860) T) ((-1272 . -1067) T) ((-326 . -111) 133020) ((-323 . -111) 132933) ((-980 . -102) T) ((-827 . -102) 132685) ((-724 . -626) NIL) ((-724 . -625) 132667) ((-1272 . -336) 132611) ((-670 . -1056) 132507) ((-1105 . -1236) T) ((-1053 . -298) 132482) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 132433) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1236) T) ((-792 . -1236) T) ((-1164 . -501) 132417) ((-466 . -1236) T) ((-1105 . -899) NIL) ((-883 . -1130) T) ((-118 . -925) NIL) ((-1308 . -1307) 132393) ((-1306 . -1307) 132372) ((-794 . -899) NIL) ((-792 . -899) 132231) ((-1301 . -25) T) ((-1301 . -21) T) ((-1233 . -102) 132209) ((-1124 . -407) T) ((-635 . -660) 132196) ((-466 . -899) NIL) ((-687 . -102) 132174) ((-1105 . -1056) 132001) ((-883 . -23) T) ((-794 . -1056) 131860) ((-792 . -1056) 131717) ((-118 . -660) 131662) ((-466 . -1056) 131538) ((-326 . -628) 131102) ((-323 . -628) 130985) ((-402 . -658) 130954) ((-661 . -1056) 130938) ((-593 . -1236) T) ((-639 . -102) T) ((-530 . -1236) T) ((-224 . -501) 130922) ((-1286 . -34) T) ((-633 . -658) 130881) ((-299 . -1069) 130868) ((-137 . -628) 130852) ((-299 . -652) 130839) ((-647 . -729) 130823) ((-619 . -729) 130807) ((-682 . -38) 130767) ((-329 . -102) T) ((-85 . -625) 130749) ((-50 . -1056) 130733) ((-1138 . -1074) 130720) ((-1105 . -388) 130704) ((-794 . -388) 130688) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-593 . -1056) 130675) ((-530 . -1056) 130652) ((-60 . -57) 130614) ((-334 . -132) T) ((-326 . -1067) 130504) ((-323 . -1067) T) ((-171 . -1130) T) ((-792 . -388) 130488) ((-45 . -152) 130438) ((-1022 . -1010) 130420) ((-466 . -388) 130404) ((-419 . -174) T) ((-326 . -249) 130383) ((-323 . -249) T) ((-323 . -239) NIL) ((-304 . -1118) 130165) ((-227 . -132) T) ((-1138 . -111) 130150) ((-171 . -23) T) ((-811 . -148) 130129) ((-811 . -146) 130108) ((-258 . -651) 130014) ((-257 . -651) 129920) ((-329 . -294) 129886) ((-1175 . -526) 129819) ((-489 . -658) 129769) ((-494 . -909) 129699) ((-1151 . -1118) T) ((-227 . -1078) T) ((-827 . -319) 129637) ((-1105 . -914) 129572) ((-794 . -914) 129515) ((-792 . -914) 129499) ((-1308 . -38) 129469) ((-1306 . -38) 129439) ((-1259 . -1130) T) ((-867 . -1130) T) ((-466 . -914) 129416) ((-870 . -1118) T) ((-1259 . -23) T) ((-1138 . -628) 129388) ((-1080 . -132) T) ((-583 . -1130) T) ((-867 . -23) T) ((-635 . -738) T) ((-366 . -936) T) ((-363 . -936) T) ((-299 . -102) T) ((-355 . -936) T) ((-988 . -1101) T) ((-968 . -132) T) ((-828 . -235) 129361) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1064 . -526) 129262) ((-706 . -925) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -238) 129241) ((-687 . -319) 129179) ((-647 . -773) T) ((-619 . -773) T) ((-1250 . -862) NIL) ((-1098 . -1069) 129089) ((-1021 . -300) T) ((-706 . -660) 129039) ((-258 . -25) T) ((-362 . -1118) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 129023) ((-2 . -102) T) ((-926 . -936) T) ((-1098 . -652) 128891) ((-494 . -1293) 128861) ((-1138 . -1067) T) ((-723 . -317) T) ((-370 . -1069) 128813) ((-364 . -1069) 128765) ((-356 . -1069) 128717) ((-370 . -652) 128669) ((-225 . -1056) 128646) ((-364 . -652) 128598) ((-108 . -1069) 128548) ((-356 . -652) 128500) ((-304 . -729) 128442) ((-713 . -1076) T) ((-499 . -464) T) ((-419 . -526) 128354) ((-108 . -652) 128304) ((-219 . -464) T) ((-1138 . -239) T) ((-305 . -152) 128254) ((-1017 . -626) 128215) ((-1017 . -625) 128197) ((-1007 . -625) 128179) ((-117 . -1076) T) ((-666 . -1074) 128163) ((-227 . -505) T) ((-411 . -625) 128145) ((-411 . -626) 128122) ((-1072 . -1293) 128092) ((-666 . -111) 128071) ((-682 . -916) 128030) ((-1160 . -501) 128014) ((-1310 . -658) 127973) ((-392 . -658) 127942) ((-63 . -453) T) ((-63 . -407) T) ((-1178 . -102) T) ((-883 . -132) T) ((-496 . -102) 127920) ((-1315 . -379) T) ((-1098 . -102) T) ((-1079 . -102) T) ((-362 . -729) 127865) ((-743 . -148) 127844) ((-743 . -146) 127823) ((-666 . -628) 127741) ((-1042 . -660) 127678) ((-535 . -1118) 127656) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1118) T) ((-365 . -660) 127601) ((-1191 . -651) 127549) ((-1143 . -651) 127497) ((-396 . -521) 127476) ((-845 . -860) 127455) ((-390 . -1240) T) ((-706 . -738) T) ((-1250 . -1010) 127407) ((-350 . -1076) T) ((-112 . -1236) T) ((-176 . -1076) T) ((-103 . -625) 127339) ((-1193 . -146) 127318) ((-1193 . -148) 127297) ((-390 . -568) T) ((-1192 . -148) 127276) ((-1192 . -146) 127255) ((-1186 . -146) 127162) ((-419 . -300) T) ((-1186 . -148) 127069) ((-1144 . -148) 127048) ((-1144 . -146) 127027) ((-329 . -38) 126868) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1067) T) ((-48 . -660) 126818) ((-1131 . -1069) 126719) ((-906 . -628) 126696) ((-1131 . -652) 126618) ((-1185 . -102) T) ((-1012 . -102) T) ((-1011 . -21) T) ((-128 . -1028) 126602) ((-122 . -1028) 126586) ((-1011 . -25) T) ((-917 . -120) 126570) ((-1177 . -102) T) ((-1259 . -132) T) ((-1191 . -25) T) ((-354 . -1236) T) ((-1191 . -21) T) ((-867 . -132) T) ((-1143 . -25) T) ((-1143 . -21) T) ((-866 . -25) T) ((-866 . -21) T) ((-794 . -317) 126549) ((-1178 . -319) 126344) ((-1175 . -501) 126328) ((-1168 . -152) 126278) ((-659 . -102) 126256) ((-644 . -102) T) ((-1164 . -625) 126218) ((-583 . -132) T) ((-633 . -860) 126197) ((-1164 . -626) 126158) ((-1042 . -803) T) ((-1042 . -806) T) ((-1042 . -738) T) ((-827 . -916) 126090) ((-724 . -1074) 125913) ((-496 . -319) 125851) ((-465 . -429) 125821) ((-362 . -174) T) ((-299 . -38) 125808) ((-258 . -235) 125754) ((-257 . -235) 125700) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1056) 125677) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-365 . -738) T) ((-724 . -111) 125486) ((-682 . -233) 125470) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 125419) ((-108 . -319) NIL) ((-72 . -407) T) ((-1131 . -102) 125171) ((-845 . -423) 125155) ((-1138 . -807) T) ((-1138 . -804) T) ((-713 . -1118) T) ((-590 . -625) 125137) ((-390 . -374) T) ((-171 . -505) 125115) ((-224 . -625) 125047) ((-135 . -1118) T) ((-117 . -1118) T) ((-982 . -1236) T) ((-48 . -738) T) ((-1064 . -501) 125012) ((-142 . -437) 124994) ((-142 . -379) T) ((-1045 . -102) T) ((-524 . -521) 124973) ((-724 . -628) 124729) ((-1193 . -238) 124688) ((-488 . -102) T) ((-475 . -102) T) ((-1192 . -238) 124640) ((-1186 . -238) 124527) ((-1052 . -1130) T) ((-329 . -916) 124433) ((-1243 . -625) 124415) ((-1200 . -1056) 124351) ((-1193 . -35) 124317) ((-1193 . -95) 124283) ((-1193 . -1224) 124249) ((-1193 . -1221) 124215) ((-1192 . -1221) 124181) ((-1192 . -1224) 124147) ((-1177 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1098 . -1170) 124126) ((-40 . -1236) 124055) ((-1192 . -95) 124021) ((-1052 . -23) T) ((-1192 . -35) 123987) ((-583 . -505) T) ((-1186 . -1221) 123953) ((-1186 . -1224) 123919) ((-1186 . -95) 123885) ((-1186 . -35) 123851) ((-372 . -1130) T) ((-370 . -1170) 123830) ((-364 . -1170) 123809) ((-356 . -1170) 123788) ((-1122 . -296) 123744) ((-1144 . -35) 123710) ((-1144 . -95) 123676) ((-108 . -1170) T) ((-1144 . -1224) 123642) ((-845 . -1076) 123621) ((-659 . -319) 123559) ((-644 . -319) 123410) ((-1144 . -1221) 123376) ((-724 . -1067) T) ((-1080 . -651) 123358) ((-1098 . -38) 123226) ((-968 . -651) 123174) ((-1022 . -148) T) ((-1022 . -146) NIL) ((-390 . -1130) T) ((-334 . -25) T) ((-332 . -23) T) ((-959 . -862) 123153) ((-724 . -336) 123130) ((-493 . -651) 123078) ((-40 . -1056) 122966) ((-724 . -239) T) ((-713 . -729) 122953) ((-350 . -1118) T) ((-176 . -1118) T) ((-341 . -862) T) ((-430 . -464) 122903) ((-390 . -23) T) ((-370 . -38) 122868) ((-364 . -38) 122833) ((-356 . -38) 122798) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1130) T) ((-108 . -38) 122748) ((-839 . -1130) T) ((-786 . -1118) T) ((-117 . -729) 122735) ((-684 . -1056) 122719) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1175 . -296) 122671) ((-1131 . -319) 122609) ((-494 . -1069) 122510) ((-1120 . -241) 122494) ((-64 . -408) T) ((-64 . -407) T) ((-1169 . -102) T) ((-110 . -102) T) ((-494 . -652) 122416) ((-40 . -388) 122393) ((-96 . -102) T) ((-665 . -864) 122377) ((-1191 . -235) 122364) ((-1153 . -1101) T) ((-1080 . -21) T) ((-1080 . -25) T) ((-1072 . -1069) 122348) ((-827 . -233) 122317) ((-968 . -25) T) ((-968 . -21) T) ((-1072 . -652) 122259) ((-633 . -1076) T) ((-1138 . -379) T) ((-1045 . -319) 122197) ((-682 . -658) 122156) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1069) 122140) ((-902 . -625) 122122) ((-898 . -625) 122104) ((-535 . -526) 122037) ((-258 . -862) 121988) ((-257 . -862) 121939) ((-396 . -652) 121909) ((-883 . -651) 121886) ((-488 . -319) 121824) ((-475 . -319) 121762) ((-362 . -300) T) ((-1175 . -1274) 121746) ((-1160 . -625) 121708) ((-1160 . -626) 121669) ((-1158 . -102) T) ((-1017 . -1074) 121565) ((-40 . -914) 121517) ((-1175 . -616) 121494) ((-1315 . -660) 121481) ((-1081 . -152) 121427) ((-499 . -909) NIL) ((-878 . -502) 121404) ((-1017 . -111) 121286) ((-884 . -1240) T) ((-219 . -909) NIL) ((-350 . -729) 121270) ((-878 . -625) 121232) ((-176 . -729) 121164) ((-884 . -568) T) ((-419 . -296) 121122) ((-246 . -238) 121074) ((-108 . -412) 121056) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 121038) ((-99 . -738) T) ((-494 . -102) 120790) ((-99 . -485) T) ((-117 . -174) T) ((-1308 . -658) 120749) ((-1306 . -658) 120708) ((-171 . -651) 120656) ((-1098 . -916) 120589) ((-1072 . -102) T) ((-1017 . -628) 120479) ((-883 . -25) T) ((-827 . -244) 120458) ((-883 . -21) T) ((-830 . -102) T) ((-44 . -658) 120401) ((-1022 . -238) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 120379) ((-128 . -1236) T) ((-122 . -1236) T) ((-108 . -916) NIL) ((-829 . -1069) 120330) ((-829 . -652) 120272) ((-1052 . -132) T) ((-682 . -378) 120256) ((-153 . -658) 120215) ((-647 . -296) 120173) ((-619 . -296) 120131) ((-1315 . -738) T) ((-1017 . -1067) T) ((-1259 . -651) 120079) ((-1122 . -625) 120061) ((-1021 . -625) 120043) ((-576 . -1236) T) ((-507 . -1236) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1118) T) ((-1021 . -626) 120027) ((-1017 . -249) 120006) ((-1017 . -239) 119985) ((-1278 . -146) 119964) ((-1278 . -148) 119943) ((-845 . -1118) T) ((-1271 . -148) 119922) ((-1271 . -146) 119901) ((-1270 . -1240) 119880) ((-1250 . -146) 119787) ((-1250 . -148) 119694) ((-1249 . -1240) 119673) ((-390 . -132) T) ((-227 . -235) 119660) ((-576 . -899) 119642) ((0 . -1118) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1118) T) ((-1272 . -660) 119547) ((-1270 . -568) 119498) ((-726 . -1130) T) ((-1249 . -568) 119449) ((-576 . -1056) 119431) ((-607 . -148) 119410) ((-607 . -146) 119389) ((-507 . -1056) 119332) ((-1153 . -1155) T) ((-87 . -395) T) ((-87 . -407) T) ((-884 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-980 . -658) 119276) ((-726 . -23) T) ((-518 . -625) 119242) ((-514 . -625) 119224) ((-827 . -658) 119003) ((-1310 . -1076) T) ((-390 . -1078) T) ((-1044 . -1118) 118981) ((-55 . -1056) 118963) ((-917 . -34) T) ((-494 . -319) 118901) ((-604 . -102) T) ((-1175 . -626) 118862) ((-1175 . -625) 118794) ((-1197 . -1069) 118677) ((-45 . -102) T) ((-829 . -102) T) ((-1197 . -652) 118574) ((-1259 . -25) T) ((-1259 . -21) T) ((-1080 . -235) 118561) ((-867 . -25) T) ((-44 . -378) 118545) ((-867 . -21) T) ((-743 . -464) 118496) ((-1309 . -625) 118478) ((-1298 . -1069) 118448) ((-1072 . -319) 118386) ((-683 . -1101) T) ((-618 . -1101) T) ((-402 . -1118) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1101) T) ((-162 . -1101) T) ((-157 . -1101) T) ((-155 . -1101) T) ((-1298 . -652) 118356) ((-633 . -1118) T) ((-711 . -899) 118338) ((-1286 . -1236) T) ((-229 . -319) 118276) ((-145 . -379) T) ((-1064 . -626) 118218) ((-1064 . -625) 118161) ((-323 . -925) NIL) ((-1244 . -856) T) ((-1131 . -916) 118093) ((-711 . -1056) 118038) ((-723 . -936) T) ((-486 . -1240) 118017) ((-1192 . -464) 117996) ((-1186 . -464) 117975) ((-340 . -102) T) ((-884 . -1130) T) ((-329 . -658) 117857) ((-326 . -660) 117586) ((-323 . -660) 117515) ((-486 . -568) 117466) ((-350 . -526) 117432) ((-562 . -152) 117382) ((-40 . -317) T) ((-855 . -625) 117364) ((-713 . -300) T) ((-884 . -23) T) ((-390 . -505) T) ((-1098 . -233) 117334) ((-524 . -102) T) ((-419 . -626) 117141) ((-419 . -625) 117123) ((-270 . -625) 117105) ((-117 . -300) T) ((-1272 . -738) T) ((-635 . -1236) 117048) ((-1311 . -1118) T) ((-1270 . -374) 117027) ((-1249 . -374) 117006) ((-1299 . -34) T) ((-1244 . -1118) T) ((-118 . -1236) T) ((-108 . -233) 116988) ((-1197 . -102) T) ((-489 . -1118) T) ((-535 . -501) 116972) ((-749 . -34) T) ((-665 . -1069) 116956) ((-665 . -652) 116926) ((-883 . -235) NIL) ((-142 . -34) T) ((-118 . -897) 116903) ((-118 . -899) NIL) ((-635 . -1056) 116786) ((-1298 . -102) T) ((-1278 . -238) 116745) ((-656 . -862) 116724) ((-1271 . -238) 116676) ((-1250 . -238) 116563) ((-305 . -102) T) ((-724 . -379) 116542) ((-118 . -1056) 116519) ((-402 . -729) 116503) ((-607 . -238) 116462) ((-633 . -729) 116446) ((-1123 . -1236) T) ((-45 . -319) 116250) ((-828 . -146) 116229) ((-828 . -148) 116208) ((-299 . -658) 116180) ((-1309 . -393) 116159) ((-831 . -862) T) ((-1288 . -1118) T) ((-1178 . -231) 116106) ((-398 . -862) 116085) ((-1278 . -35) 116051) ((-1278 . -1224) 116017) ((-1278 . -1221) 115983) ((-1271 . -1221) 115949) ((-527 . -132) T) ((-1271 . -1224) 115915) ((-1250 . -1221) 115881) ((-1250 . -1224) 115847) ((-1278 . -95) 115813) ((-1271 . -95) 115779) ((-430 . -909) 115736) ((-647 . -625) 115705) ((-619 . -625) 115674) ((-227 . -862) T) ((-1271 . -35) 115640) ((-1270 . -1130) T) ((-1250 . -95) 115606) ((-1138 . -660) 115578) ((-1250 . -35) 115544) ((-1249 . -1130) T) ((-605 . -152) 115526) ((-1098 . -360) 115505) ((-176 . -300) T) ((-118 . -388) 115482) ((-118 . -349) 115459) ((-171 . -235) 115404) ((-882 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 115253) ((-323 . -738) T) ((-486 . -374) 115232) ((-370 . -360) 115211) ((-364 . -360) 115190) ((-356 . -360) 115169) ((-326 . -485) 115148) ((-1270 . -23) T) ((-1249 . -23) T) ((-730 . -1130) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 115113) ((-45 . -292) 115063) ((-105 . -1118) T) ((-68 . -625) 115045) ((-988 . -102) T) ((-876 . -102) T) ((-635 . -914) 115004) ((-1310 . -1118) T) ((-392 . -1118) T) ((-1259 . -235) 114991) ((-82 . -1236) T) ((-1235 . -1118) T) ((-1080 . -862) T) ((-118 . -914) NIL) ((-794 . -936) 114970) ((-725 . -862) T) ((-543 . -1118) T) ((-512 . -1118) T) ((-366 . -1240) T) ((-363 . -1240) T) ((-355 . -1240) T) ((-273 . -1240) 114949) ((-253 . -1240) 114928) ((-545 . -872) T) ((-1131 . -233) 114897) ((-1177 . -840) T) ((-1160 . -1074) 114881) ((-402 . -773) T) ((-706 . -1236) T) ((-703 . -1056) 114865) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 114796) ((-253 . -568) 114727) ((-537 . -1101) T) ((-1160 . -111) 114706) ((-465 . -756) 114676) ((-878 . -1074) 114646) ((-829 . -38) 114588) ((-706 . -897) 114570) ((-706 . -899) 114552) ((-305 . -319) 114356) ((-1175 . -298) 114333) ((-926 . -1240) T) ((-1098 . -658) 114228) ((-1022 . -464) T) ((-682 . -423) 114212) ((-878 . -111) 114177) ((-930 . -464) T) ((-706 . -1056) 114122) ((-926 . -568) T) ((-545 . -625) 114104) ((-593 . -936) T) ((-499 . -1069) 114054) ((-486 . -1130) T) ((-530 . -936) T) ((-494 . -916) 113986) ((-65 . -625) 113968) ((-219 . -1069) 113918) ((-499 . -652) 113868) ((-370 . -658) 113805) ((-364 . -658) 113742) ((-356 . -658) 113679) ((-644 . -231) 113625) ((-219 . -652) 113575) ((-108 . -658) 113525) ((-486 . -23) T) ((-1138 . -806) T) ((-884 . -132) T) ((-1138 . -803) T) ((-1301 . -1303) 113504) ((-1138 . -738) T) ((-666 . -660) 113478) ((-304 . -625) 113219) ((-1160 . -628) 113137) ((-1053 . -34) T) ((-828 . -238) 113116) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1310 . -729) 113086) ((-706 . -388) 113068) ((-706 . -349) 113050) ((-489 . -174) T) ((-392 . -729) 113020) ((-878 . -628) 112955) ((-883 . -862) NIL) ((-576 . -1040) T) ((-507 . -1040) T) ((-1151 . -625) 112937) ((-1131 . -244) 112916) ((-216 . -102) T) ((-1168 . -102) T) ((-71 . -625) 112898) ((-1160 . -1067) T) ((-1197 . -38) 112795) ((-870 . -625) 112777) ((-576 . -557) T) ((-682 . -1076) T) ((-743 . -965) 112730) ((-365 . -1236) T) ((-1160 . -239) 112709) ((-1100 . -1118) T) ((-1052 . -25) T) ((-1052 . -21) T) ((-1021 . -1074) 112654) ((-921 . -102) T) ((-878 . -1067) T) ((-706 . -914) NIL) ((-366 . -339) 112638) ((-366 . -374) T) ((-363 . -339) 112622) ((-363 . -374) T) ((-355 . -339) 112606) ((-355 . -374) T) ((-499 . -102) T) ((-1298 . -38) 112576) ((-558 . -862) T) ((-535 . -699) 112526) ((-219 . -102) T) ((-1042 . -1056) 112406) ((-1021 . -111) 112335) ((-1193 . -991) 112304) ((-1192 . -991) 112266) ((-532 . -152) 112250) ((-1098 . -381) 112229) ((-362 . -625) 112211) ((-332 . -21) T) ((-365 . -1056) 112188) ((-332 . -25) T) ((-1186 . -991) 112157) ((-48 . -1236) T) ((-76 . -625) 112139) ((-1144 . -991) 112106) ((-711 . -317) T) ((-130 . -856) T) ((-926 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-926 . -339) 112093) ((-86 . -625) 112075) ((-711 . -1040) T) ((-689 . -862) T) ((-1270 . -132) T) ((-1249 . -132) T) ((-917 . -1028) 112059) ((-848 . -21) T) ((-48 . -1056) 112002) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1131 . -658) 111781) ((-1308 . -1076) T) ((-561 . -102) T) ((-1306 . -1076) T) ((-666 . -738) T) ((-1122 . -630) 111684) ((-1021 . -628) 111614) ((-1309 . -1074) 111598) ((-827 . -423) 111567) ((-103 . -120) 111551) ((-130 . -1118) T) ((-52 . -1118) T) ((-942 . -625) 111533) ((-883 . -1010) 111510) ((-835 . -102) T) ((-1309 . -111) 111489) ((-743 . -909) 111464) ((-665 . -38) 111434) ((-583 . -862) T) ((-366 . -1130) T) ((-363 . -1130) T) ((-355 . -1130) T) ((-273 . -1130) T) ((-253 . -1130) T) ((-1168 . -319) 111238) ((-635 . -317) 111217) ((-1106 . -235) 111204) ((-676 . -23) T) ((-536 . -1101) T) ((-321 . -1118) T) ((-494 . -233) 111173) ((-153 . -1076) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1021 . -1067) T) ((-724 . -925) 111152) ((-1193 . -909) 111063) ((-1192 . -909) 110967) ((-1186 . -909) 110798) ((-1175 . -628) 110775) ((-1021 . -239) 110747) ((-1021 . -249) T) ((-1144 . -909) 110729) ((-118 . -1040) NIL) ((-926 . -1130) T) ((-1271 . -464) 110708) ((-1250 . -464) 110687) ((-535 . -625) 110619) ((-724 . -660) 110508) ((-419 . -1074) 110460) ((-516 . -625) 110442) ((-926 . -23) T) ((-499 . -319) NIL) ((-1309 . -628) 110398) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 110336) ((-827 . -1076) 110314) ((-749 . -1116) 110298) ((-1270 . -505) 110264) ((-1249 . -505) 110230) ((-560 . -856) T) ((-142 . -1116) 110212) ((-489 . -300) T) ((-1309 . -1067) T) ((-258 . -238) 110164) ((-257 . -238) 110116) ((-1241 . -102) T) ((-1081 . -102) T) ((-855 . -628) 109984) ((-512 . -526) NIL) ((-494 . -244) 109963) ((-419 . -628) 109861) ((-979 . -1069) 109744) ((-747 . -1069) 109714) ((-979 . -652) 109611) ((-1191 . -146) 109590) ((-747 . -652) 109560) ((-465 . -1069) 109530) ((-1191 . -148) 109509) ((-1143 . -148) 109488) ((-1143 . -146) 109467) ((-647 . -1074) 109451) ((-619 . -1074) 109435) ((-465 . -652) 109405) ((-1193 . -1277) 109389) ((-1193 . -1264) 109366) ((-1192 . -1269) 109327) ((-682 . -1118) T) ((-682 . -1071) 109267) ((-1192 . -1264) 109237) ((-560 . -1118) T) ((-499 . -1170) T) ((-1192 . -1267) 109221) ((-1186 . -1248) 109182) ((-830 . -275) 109166) ((-219 . -1170) T) ((-354 . -936) T) ((-99 . -1236) T) ((-647 . -111) 109145) ((-619 . -111) 109124) ((-1186 . -1264) 109101) ((-855 . -1067) 109080) ((-1186 . -1246) 109064) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1069) 109038) ((-419 . -1067) T) ((-329 . -1076) T) ((-706 . -317) T) ((-430 . -652) 109012) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -249) T) ((-419 . -239) 108991) ((-390 . -235) 108978) ((-499 . -38) 108928) ((-219 . -38) 108878) ((-486 . -505) 108844) ((-1243 . -379) T) ((-1177 . -1162) T) ((-1119 . -102) T) ((-839 . -235) 108817) ((-713 . -625) 108799) ((-713 . -626) 108714) ((-726 . -21) T) ((-726 . -25) T) ((-1153 . -102) T) ((-494 . -658) 108493) ((-246 . -909) 108423) ((-135 . -625) 108405) ((-117 . -625) 108387) ((-158 . -25) T) ((-1308 . -1118) T) ((-884 . -651) 108335) ((-1306 . -1118) T) ((-979 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 108286) ((-44 . -1118) T) ((-1106 . -862) T) ((-1081 . -319) 108137) ((-676 . -132) T) ((-1072 . -658) 108106) ((-682 . -729) 108090) ((-299 . -1076) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 108059) ((-430 . -102) T) ((-153 . -1118) T) ((-45 . -231) 108009) ((-1022 . -909) NIL) ((-811 . -1069) 107993) ((-974 . -862) 107972) ((-1017 . -660) 107874) ((-811 . -652) 107858) ((-246 . -1293) 107828) ((-1042 . -317) T) ((-304 . -1074) 107749) ((-926 . -132) T) ((-40 . -936) T) ((-499 . -412) 107731) ((-365 . -317) T) ((-219 . -412) 107713) ((-1098 . -423) 107697) ((-304 . -111) 107613) ((-1202 . -862) T) ((-1201 . -862) T) ((-884 . -25) T) ((-884 . -21) T) ((-1272 . -47) 107557) ((-350 . -625) 107539) ((-1191 . -238) T) ((-227 . -148) T) ((-176 . -625) 107521) ((-786 . -625) 107503) ((-129 . -862) T) ((-620 . -241) 107450) ((-487 . -241) 107400) ((-1308 . -729) 107370) ((-48 . -317) T) ((-1306 . -729) 107340) ((-65 . -628) 107269) ((-980 . -1118) T) ((-827 . -1118) 107021) ((-322 . -102) T) ((-917 . -1236) T) ((-48 . -1040) T) ((-1249 . -651) 106929) ((-701 . -102) 106907) ((-44 . -729) 106891) ((-562 . -102) T) ((-304 . -628) 106822) ((-67 . -394) T) ((-499 . -916) NIL) ((-67 . -407) T) ((-219 . -916) NIL) ((-674 . -23) T) ((-829 . -658) 106758) ((-682 . -773) T) ((-1233 . -1118) 106736) ((-362 . -1074) 106681) ((-687 . -1118) 106659) ((-1080 . -148) T) ((-968 . -148) 106638) ((-968 . -146) 106617) ((-811 . -102) T) ((-153 . -729) 106601) ((-493 . -148) 106580) ((-493 . -146) 106559) ((-362 . -111) 106488) ((-1098 . -1076) T) ((-332 . -862) 106467) ((-1278 . -991) 106436) ((-639 . -1118) T) ((-1271 . -991) 106398) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 106348) ((-370 . -1076) T) ((-364 . -1076) T) ((-356 . -1076) T) ((-304 . -1067) 106290) ((-1250 . -991) 106259) ((-390 . -862) T) ((-108 . -1076) T) ((-1017 . -738) T) ((-882 . -936) T) ((-855 . -807) 106238) ((-855 . -804) 106217) ((-430 . -319) 106156) ((-480 . -102) T) ((-607 . -991) 106125) ((-329 . -1118) T) ((-419 . -807) 106104) ((-419 . -804) 106083) ((-512 . -501) 106065) ((-1272 . -1056) 106031) ((-1270 . -21) T) ((-1270 . -25) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-827 . -729) 105973) ((-362 . -628) 105903) ((-711 . -416) T) ((-1299 . -1236) T) ((-1131 . -423) 105872) ((-618 . -102) T) ((-1095 . -1236) T) ((-1021 . -379) NIL) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1197 . -658) 105782) ((-749 . -1236) T) ((-743 . -1069) 105625) ((-44 . -773) T) ((-743 . -652) 105474) ((-605 . -102) T) ((-665 . -668) 105458) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1236) T) ((-883 . -148) T) ((-883 . -146) NIL) ((-1298 . -658) 105403) ((-1278 . -909) 105314) ((-1235 . -93) T) ((-362 . -1067) T) ((-227 . -238) T) ((-70 . -394) T) ((-70 . -407) T) ((-1184 . -102) T) ((-682 . -526) 105247) ((-1271 . -909) 105151) ((-1250 . -909) 104982) ((-701 . -319) 104920) ((-979 . -38) 104817) ((-1199 . -625) 104799) ((-747 . -38) 104769) ((-562 . -319) 104573) ((-1193 . -1069) 104456) ((-326 . -1236) T) ((-362 . -239) T) ((-362 . -249) T) ((-323 . -1236) T) ((-299 . -1118) T) ((-1192 . -1069) 104291) ((-1186 . -1069) 104081) ((-1144 . -1069) 103964) ((-1193 . -652) 103861) ((-1192 . -652) 103702) ((-723 . -1240) T) ((-1186 . -652) 103498) ((-1175 . -663) 103482) ((-1144 . -652) 103379) ((-1230 . -568) 103358) ((-831 . -397) 103342) ((-723 . -568) T) ((-607 . -909) 103253) ((-326 . -897) 103237) ((-326 . -899) 103162) ((-137 . -1236) T) ((-323 . -897) 103123) ((-323 . -899) NIL) ((-811 . -319) 103088) ((-329 . -729) 102929) ((-398 . -397) 102913) ((-334 . -333) 102890) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 102864) ((-326 . -1056) 102527) ((-227 . -1221) T) ((-227 . -1224) T) ((-3 . -625) 102509) ((-323 . -1056) 102439) ((-884 . -235) 102412) ((-2 . -1118) T) ((-2 . |RecordCategory|) T) ((-1131 . -1076) 102390) ((-845 . -625) 102372) ((-1080 . -238) T) ((-592 . -936) T) ((-576 . -832) T) ((-576 . -936) T) ((-507 . -936) T) ((-137 . -1056) 102356) ((-227 . -95) T) ((-171 . -148) 102335) ((-75 . -453) T) ((0 . -625) 102317) ((-75 . -407) T) ((-171 . -146) 102268) ((-227 . -35) T) ((-49 . -625) 102250) ((-489 . -1076) T) ((-499 . -233) 102232) ((-496 . -986) 102216) ((-219 . -233) 102198) ((-81 . -453) T) ((-81 . -407) T) ((-1164 . -34) T) ((-743 . -102) T) ((-665 . -658) 102157) ((-1044 . -625) 102124) ((-512 . -296) 102074) ((-326 . -388) 102043) ((-323 . -388) 102004) ((-323 . -349) 101965) ((-1103 . -625) 101947) ((-828 . -965) 101894) ((-674 . -132) T) ((-1259 . -146) 101873) ((-1259 . -148) 101852) ((-1193 . -102) T) ((-1192 . -102) T) ((-1186 . -102) T) ((-1178 . -1118) T) ((-1144 . -102) T) ((-224 . -34) T) ((-299 . -729) 101839) ((-1178 . -622) 101815) ((-605 . -319) NIL) ((-1278 . -1277) 101799) ((-496 . -1118) 101777) ((-1168 . -231) 101727) ((-402 . -625) 101709) ((-522 . -862) T) ((-1138 . -1236) T) ((-1278 . -1264) 101686) ((-1271 . -1269) 101647) ((-1271 . -1264) 101617) ((-1271 . -1267) 101601) ((-1250 . -1248) 101562) ((-1250 . -1264) 101539) ((-1250 . -1246) 101523) ((-633 . -625) 101505) ((-1193 . -294) 101471) ((-711 . -936) T) ((-1192 . -294) 101437) ((-1186 . -294) 101403) ((-1144 . -294) 101369) ((-1098 . -1118) T) ((-1079 . -1118) T) ((-48 . -312) T) ((-326 . -914) 101335) ((-323 . -914) NIL) ((-1079 . -1086) 101314) ((-1138 . -899) 101296) ((-811 . -38) 101280) ((-273 . -651) 101228) ((-253 . -651) 101176) ((-713 . -1074) 101163) ((-607 . -1264) 101140) ((-1138 . -1056) 101122) ((-329 . -174) 101053) ((-370 . -1118) T) ((-364 . -1118) T) ((-356 . -1118) T) ((-512 . -19) 101035) ((-1120 . -152) 101019) ((-883 . -238) NIL) ((-108 . -1118) T) ((-117 . -1074) 101006) ((-723 . -374) T) ((-512 . -616) 100981) ((-713 . -111) 100966) ((-1311 . -625) 100933) ((-1311 . -502) 100915) ((-1270 . -235) 100861) ((-1249 . -235) 100760) ((-448 . -102) T) ((-888 . -1281) T) ((-256 . -102) T) ((-45 . -1167) 100710) ((-117 . -111) 100695) ((-1288 . -625) 100677) ((-1259 . -238) T) ((-1244 . -625) 100659) ((-1242 . -862) T) ((-647 . -732) T) ((-619 . -732) T) ((-1230 . -1130) T) ((-1230 . -23) T) ((-1191 . -464) 100590) ((-1186 . -319) 100475) ((-1185 . -1118) T) ((-827 . -526) 100408) ((-1053 . -1236) T) ((-246 . -1069) 100309) ((-1177 . -1118) T) ((-1160 . -660) 100247) ((-959 . -152) 100231) ((-1144 . -319) 100218) ((-1143 . -464) 100169) ((-246 . -652) 100091) ((-1105 . -568) 100022) ((-1105 . -1240) 100001) ((-1098 . -729) 99869) ((-537 . -102) T) ((-532 . -102) 99819) ((-1022 . -1069) 99769) ((-1012 . -1118) T) ((-828 . -909) 99701) ((-794 . -1240) 99680) ((-792 . -1240) 99659) ((-62 . -1236) T) ((-489 . -625) 99611) ((-489 . -626) 99533) ((-794 . -568) 99444) ((-792 . -568) 99375) ((-743 . -319) 99362) ((-713 . -628) 99334) ((-494 . -423) 99303) ((-635 . -936) 99282) ((-466 . -1240) 99261) ((-687 . -526) 99194) ((-676 . -25) T) ((-410 . -625) 99176) ((-676 . -21) T) ((-466 . -568) 99107) ((-430 . -916) 99066) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -936) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -238) 99017) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 98999) ((-117 . -628) 98971) ((-1022 . -652) 98921) ((-959 . -998) 98905) ((-930 . -652) 98857) ((-930 . -1069) 98809) ((-926 . -21) T) ((-926 . -25) T) ((-884 . -862) 98760) ((-878 . -660) 98720) ((-723 . -1130) T) ((-723 . -23) T) ((-713 . -1067) T) ((-713 . -239) T) ((-299 . -174) T) ((-666 . -1236) T) ((-321 . -93) T) ((-659 . -1118) 98698) ((-644 . -622) 98673) ((-644 . -1118) T) ((-593 . -1240) T) ((-593 . -568) T) ((-530 . -1240) T) ((-530 . -568) T) ((-499 . -658) 98623) ((-486 . -235) 98569) ((-439 . -1069) 98553) ((-439 . -652) 98537) ((-370 . -729) 98489) ((-364 . -729) 98441) ((-350 . -1074) 98425) ((-356 . -729) 98377) ((-350 . -111) 98356) ((-176 . -1074) 98288) ((-219 . -658) 98238) ((-176 . -111) 98149) ((-108 . -729) 98099) ((-283 . -1118) T) ((-282 . -1118) T) ((-281 . -1118) T) ((-280 . -1118) T) ((-279 . -1118) T) ((-278 . -1118) T) ((-277 . -1118) T) ((-214 . -1118) T) ((-213 . -1118) T) ((-171 . -1224) 98077) ((-171 . -1221) 98055) ((-211 . -1118) T) ((-210 . -1118) T) ((-117 . -1067) T) ((-209 . -1118) T) ((-208 . -1118) T) ((-205 . -1118) T) ((-204 . -1118) T) ((-203 . -1118) T) ((-202 . -1118) T) ((-201 . -1118) T) ((-200 . -1118) T) ((-199 . -1118) T) ((-198 . -1118) T) ((-197 . -1118) T) ((-196 . -1118) T) ((-195 . -1118) T) ((-246 . -102) 97807) ((-171 . -35) 97785) ((-171 . -95) 97763) ((-666 . -1056) 97659) ((-494 . -1076) 97637) ((-1131 . -1118) 97389) ((-1160 . -34) T) ((-682 . -501) 97373) ((-73 . -1236) T) ((-105 . -625) 97355) ((-1310 . -625) 97337) ((-392 . -625) 97319) ((-350 . -628) 97271) ((-176 . -628) 97188) ((-1235 . -502) 97169) ((-743 . -38) 97018) ((-583 . -1224) T) ((-583 . -1221) T) ((-543 . -625) 97000) ((-532 . -319) 96938) ((-512 . -625) 96920) ((-512 . -626) 96902) ((-1235 . -625) 96868) ((-1186 . -1170) NIL) ((-1045 . -1089) 96837) ((-1045 . -1118) T) ((-1022 . -102) T) ((-989 . -102) T) ((-930 . -102) T) ((-906 . -1056) 96814) ((-1160 . -738) T) ((-1021 . -660) 96721) ((-488 . -1118) T) ((-475 . -1118) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1081 . -231) 96667) ((-1193 . -38) 96564) ((-878 . -738) T) ((-706 . -936) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1192 . -38) 96405) ((-350 . -1067) T) ((-1186 . -38) 96201) ((-1098 . -174) T) ((-176 . -1067) T) ((-1144 . -38) 96098) ((-724 . -47) 96075) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 96049) ((-509 . -57) 95999) ((-362 . -1305) 95976) ((-227 . -464) T) ((-329 . -300) 95927) ((-356 . -174) T) ((-176 . -249) T) ((-1249 . -862) 95826) ((-108 . -174) T) ((-884 . -1010) 95810) ((-670 . -1130) T) ((-593 . -374) T) ((-593 . -339) 95797) ((-530 . -339) 95774) ((-530 . -374) T) ((-326 . -317) 95753) ((-323 . -317) T) ((-614 . -862) 95732) ((-1131 . -729) 95674) ((-532 . -292) 95658) ((-670 . -23) T) ((-430 . -233) 95642) ((-323 . -1040) NIL) ((-347 . -23) T) ((-103 . -1028) 95626) ((-45 . -36) 95605) ((-624 . -1118) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-246 . -319) 95543) ((-1105 . -1130) T) ((-1309 . -660) 95517) ((-794 . -1130) T) ((-792 . -1130) T) ((-1197 . -423) 95501) ((-466 . -1130) T) ((-1080 . -464) T) ((-1169 . -1118) T) ((-968 . -464) 95452) ((-1133 . -1101) T) ((-110 . -1118) T) ((-1105 . -23) T) ((-1178 . -526) 95235) ((-829 . -1076) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 95186) ((-473 . -23) T) ((-392 . -393) 95165) ((-366 . -235) 95138) ((-363 . -235) 95111) ((-355 . -235) 95084) ((-466 . -23) T) ((-273 . -235) 95057) ((-258 . -909) 94987) ((-257 . -909) 94917) ((-96 . -1118) T) ((-724 . -1236) T) ((-682 . -296) 94894) ((-496 . -526) 94827) ((-1278 . -1069) 94710) ((-1278 . -652) 94607) ((-1271 . -652) 94448) ((-1271 . -1069) 94283) ((-1250 . -652) 94079) ((-299 . -300) T) ((-1250 . -1069) 93869) ((-1100 . -625) 93851) ((-1100 . -626) 93832) ((-419 . -925) 93811) ((-1230 . -132) T) ((-50 . -1130) T) ((-1186 . -412) 93763) ((-1042 . -936) T) ((-1021 . -738) T) ((-855 . -660) 93736) ((-724 . -899) NIL) ((-608 . -1069) 93696) ((-593 . -1130) T) ((-530 . -1130) T) ((-607 . -1069) 93579) ((-1175 . -34) T) ((-1022 . -319) NIL) ((-827 . -501) 93563) ((-608 . -652) 93536) ((-365 . -936) T) ((-607 . -652) 93433) ((-926 . -235) 93420) ((-419 . -660) 93336) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1056) 93216) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 93187) ((-1158 . -1118) T) ((-1301 . -1300) 93171) ((-743 . -916) 93148) ((-713 . -807) T) ((-713 . -804) T) ((-1138 . -317) T) ((-390 . -148) T) ((-290 . -625) 93130) ((-289 . -625) 93112) ((-1249 . -1010) 93082) ((-48 . -936) T) ((-687 . -501) 93066) ((-258 . -1293) 93036) ((-257 . -1293) 93006) ((-1106 . -238) T) ((-1195 . -862) T) ((-1138 . -1040) T) ((-1064 . -34) T) ((-848 . -148) 92985) ((-848 . -146) 92964) ((-749 . -107) 92948) ((-624 . -133) T) ((-1197 . -1076) T) ((-494 . -1118) 92700) ((-1193 . -916) 92613) ((-1192 . -916) 92519) ((-1186 . -916) 92352) ((-883 . -464) T) ((-85 . -1236) T) ((-142 . -107) 92334) ((-1144 . -916) 92318) ((-724 . -388) 92302) ((-845 . -628) 92170) ((-1309 . -738) T) ((-1298 . -1076) T) ((-1278 . -102) T) ((-1138 . -557) T) ((-591 . -102) T) ((-130 . -502) 92152) ((-1271 . -102) T) ((-402 . -1074) 92136) ((-1191 . -965) 92105) ((-44 . -296) 92082) ((-130 . -625) 92049) ((-52 . -625) 92031) ((-1143 . -965) 91998) ((-665 . -423) 91982) ((-1250 . -102) T) ((-1177 . -526) NIL) ((-674 . -25) T) ((-633 . -1074) 91966) ((-674 . -21) T) ((-979 . -658) 91876) ((-747 . -658) 91821) ((-727 . -658) 91793) ((-402 . -111) 91772) ((-224 . -261) 91756) ((-1072 . -1071) 91696) ((-1072 . -1118) T) ((-1022 . -1170) T) ((-830 . -1118) T) ((-465 . -658) 91611) ((-647 . -660) 91595) ((-354 . -1240) T) ((-633 . -111) 91574) ((-619 . -660) 91558) ((-608 . -102) T) ((-321 . -502) 91539) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1118) T) ((-396 . -1118) T) ((-321 . -625) 91505) ((-229 . -1118) 91483) ((-659 . -526) 91416) ((-644 . -526) 91260) ((-845 . -1067) 91239) ((-656 . -152) 91223) ((-354 . -568) T) ((-724 . -914) 91166) ((-562 . -231) 91116) ((-1278 . -294) 91082) ((-1271 . -294) 91048) ((-1098 . -300) 90999) ((-499 . -860) T) ((-225 . -1130) T) ((-1250 . -294) 90965) ((-1230 . -505) 90931) ((-1022 . -38) 90881) ((-219 . -860) T) ((-430 . -658) 90840) ((-930 . -38) 90792) ((-855 . -806) 90771) ((-855 . -803) 90750) ((-855 . -738) 90729) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 90660) ((-439 . -38) 90644) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 90623) ((-419 . -803) 90602) ((-419 . -738) T) ((-512 . -298) 90577) ((-489 . -1074) 90542) ((-670 . -132) T) ((-633 . -628) 90511) ((-1131 . -526) 90444) ((-347 . -132) T) ((-171 . -414) 90423) ((-494 . -729) 90365) ((-827 . -296) 90342) ((-489 . -111) 90298) ((-665 . -1076) T) ((-1191 . -909) 90237) ((-1143 . -909) 90219) ((-828 . -1069) 90062) ((-1297 . -1101) T) ((-1259 . -464) 89993) ((-828 . -652) 89842) ((-1296 . -1101) T) ((-1105 . -132) T) ((-1072 . -729) 89784) ((-1045 . -526) 89717) ((-794 . -132) T) ((-792 . -132) T) ((-583 . -464) T) ((-633 . -1067) T) ((-604 . -1118) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -238) T) ((-1017 . -1236) 89630) ((-45 . -1118) T) ((-396 . -729) 89600) ((-829 . -1118) T) ((-488 . -526) 89533) ((-475 . -526) 89466) ((-1311 . -628) 89448) ((-465 . -378) 89418) ((-45 . -622) 89397) ((-326 . -312) T) ((-839 . -238) 89376) ((-489 . -628) 89326) ((-1250 . -319) 89211) ((-682 . -625) 89173) ((-59 . -862) 89152) ((-1022 . -412) 89134) ((-560 . -625) 89116) ((-811 . -658) 89075) ((-827 . -616) 89052) ((-528 . -862) 89031) ((-508 . -862) 89010) ((-1017 . -1056) 88906) ((-40 . -1240) T) ((-246 . -916) 88838) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 88698) ((-354 . -339) 88675) ((-354 . -374) T) ((-332 . -333) 88652) ((-329 . -296) 88610) ((-40 . -568) T) ((-390 . -1221) T) ((-390 . -1224) T) ((-1053 . -1212) 88585) ((-1208 . -241) 88535) ((-1186 . -233) 88487) ((-340 . -1118) T) ((-390 . -95) T) ((-390 . -35) T) ((-1053 . -107) 88433) ((-489 . -1067) T) ((-1310 . -1074) 88417) ((-491 . -241) 88367) ((-1178 . -501) 88301) ((-1301 . -1069) 88285) ((-392 . -1074) 88269) ((-1301 . -652) 88239) ((-489 . -249) T) ((-828 . -102) T) ((-726 . -148) 88218) ((-726 . -146) 88197) ((-496 . -501) 88181) ((-497 . -346) 88150) ((-524 . -1118) T) ((-1310 . -111) 88129) ((-1017 . -388) 88113) ((-425 . -102) T) ((-392 . -111) 88092) ((-1017 . -349) 88076) ((-288 . -1001) 88060) ((-287 . -1001) 88044) ((-1022 . -916) NIL) ((-1308 . -625) 88026) ((-1306 . -625) 88008) ((-110 . -526) NIL) ((-1191 . -1262) 87992) ((-866 . -864) 87976) ((-1197 . -1118) T) ((-103 . -1236) T) ((-968 . -965) 87937) ((-829 . -729) 87879) ((-1250 . -1170) NIL) ((-493 . -965) 87824) ((-1080 . -144) T) ((-60 . -102) 87802) ((-44 . -625) 87784) ((-78 . -625) 87766) ((-362 . -660) 87711) ((-1298 . -1118) T) ((-523 . -862) T) ((-299 . -296) 87690) ((-354 . -1130) T) ((-305 . -1118) T) ((-1017 . -914) 87649) ((-305 . -622) 87628) ((-1310 . -628) 87577) ((-1278 . -38) 87474) ((-1271 . -38) 87315) ((-1250 . -38) 87111) ((-499 . -1076) T) ((-392 . -628) 87095) ((-219 . -1076) T) ((-354 . -23) T) ((-153 . -625) 87077) ((-845 . -807) 87056) ((-845 . -804) 87035) ((-1235 . -628) 87016) ((-608 . -38) 86989) ((-607 . -38) 86886) ((-882 . -568) T) ((-225 . -132) T) ((-329 . -1020) 86852) ((-79 . -625) 86834) ((-724 . -317) 86813) ((-304 . -738) 86715) ((-836 . -102) T) ((-876 . -856) T) ((-304 . -485) 86694) ((-1301 . -102) T) ((-40 . -374) T) ((-884 . -148) 86673) ((-497 . -658) 86655) ((-884 . -146) 86634) ((-1177 . -501) 86616) ((-1310 . -1067) T) ((-494 . -526) 86549) ((-1164 . -1236) T) ((-980 . -625) 86531) ((-659 . -501) 86515) ((-644 . -501) 86446) ((-827 . -625) 86139) ((-48 . -27) T) ((-1197 . -729) 86036) ((-968 . -909) 86015) ((-665 . -1118) T) ((-873 . -872) T) ((-448 . -375) 85989) ((-743 . -658) 85899) ((-493 . -909) 85874) ((-1120 . -102) T) ((-988 . -1118) T) ((-876 . -1118) T) ((-828 . -319) 85861) ((-545 . -539) T) ((-545 . -588) T) ((-1306 . -393) 85833) ((-1072 . -526) 85766) ((-1178 . -296) 85742) ((-246 . -233) 85711) ((-258 . -1069) 85612) ((-257 . -1069) 85513) ((-1298 . -729) 85483) ((-1185 . -93) T) ((-1012 . -93) T) ((-829 . -174) 85462) ((-258 . -652) 85384) ((-257 . -652) 85306) ((-1233 . -502) 85283) ((-229 . -526) 85216) ((-633 . -807) 85195) ((-633 . -804) 85174) ((-1233 . -625) 85086) ((-224 . -1236) T) ((-687 . -625) 85018) ((-1193 . -658) 84928) ((-1175 . -1028) 84912) ((-959 . -102) 84862) ((-362 . -738) T) ((-873 . -625) 84844) ((-1192 . -658) 84726) ((-1186 . -658) 84563) ((-1144 . -658) 84473) ((-1250 . -412) 84425) ((-1131 . -501) 84409) ((-60 . -319) 84347) ((-341 . -102) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-40 . -1130) T) ((-723 . -21) T) ((-639 . -625) 84329) ((-527 . -333) 84308) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-937 . -1130) T) ((-40 . -23) T) ((-783 . -1130) T) ((-576 . -1240) T) ((-507 . -1240) T) ((-329 . -625) 84290) ((-1022 . -233) 84272) ((-171 . -167) 84256) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1270 . -148) 84235) ((-1178 . -616) 84211) ((-1270 . -146) 84190) ((-1045 . -501) 84174) ((-1249 . -146) 84099) ((-1249 . -148) 84024) ((-1301 . -1307) 84003) ((-883 . -909) NIL) ((-488 . -501) 83987) ((-475 . -501) 83971) ((-535 . -34) T) ((-665 . -729) 83941) ((-1278 . -916) 83854) ((-1271 . -916) 83760) ((-1250 . -916) 83593) ((-112 . -985) T) ((-1197 . -174) 83544) ((-674 . -862) 83523) ((-376 . -102) T) ((-607 . -916) 83436) ((-246 . -244) 83415) ((-258 . -102) T) ((-257 . -102) T) ((-1259 . -965) 83384) ((-251 . -862) 83363) ((-828 . -38) 83212) ((-45 . -526) 83004) ((-1177 . -296) 82954) ((-216 . -1118) T) ((-1168 . -1118) T) ((-884 . -238) 82933) ((-1168 . -622) 82912) ((-598 . -25) T) ((-598 . -21) T) ((-1120 . -319) 82850) ((-979 . -423) 82834) ((-711 . -1240) T) ((-644 . -296) 82787) ((-1105 . -651) 82735) ((-921 . -1118) T) ((-794 . -651) 82683) ((-792 . -651) 82631) ((-354 . -132) T) ((-299 . -625) 82613) ((-882 . -1130) T) ((-711 . -568) T) ((-130 . -628) 82595) ((-466 . -651) 82543) ((-171 . -909) 82500) ((-921 . -919) 82484) ((-390 . -464) T) ((-499 . -1118) T) ((-959 . -319) 82422) ((-713 . -660) 82394) ((-561 . -856) T) ((-219 . -1118) T) ((-326 . -936) 82373) ((-323 . -936) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-882 . -23) T) ((-117 . -660) 82360) ((-486 . -146) 82339) ((-430 . -423) 82323) ((-486 . -148) 82302) ((-110 . -501) 82284) ((-321 . -628) 82265) ((-2 . -625) 82247) ((-188 . -102) T) ((-1177 . -19) 82229) ((-1177 . -616) 82204) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1162) T) ((-1131 . -296) 82181) ((-347 . -25) T) ((-347 . -21) T) ((-246 . -658) 81960) ((-507 . -374) T) ((-1308 . -1074) 81944) ((-1306 . -1074) 81928) ((-1301 . -38) 81898) ((-1259 . -909) 81837) ((-1191 . -1069) 81660) ((-1160 . -1236) T) ((-1143 . -1069) 81503) ((-866 . -1069) 81487) ((-644 . -616) 81462) ((-1270 . -1221) 81428) ((-1270 . -1224) 81394) ((-1270 . -95) 81360) ((-1191 . -652) 81189) ((-1143 . -652) 81038) ((-866 . -652) 81008) ((-1270 . -238) 80960) ((-1253 . -102) 80938) ((-561 . -1118) T) ((-1105 . -25) T) ((-1105 . -21) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1240) T) ((-979 . -1076) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1076) T) ((-727 . -1076) T) ((-682 . -1074) 80922) ((-529 . -1101) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1250 . -233) 80874) ((-1169 . -93) T) ((-1160 . -1056) 80770) ((-829 . -300) 80749) ((-1249 . -1221) 80715) ((-835 . -1118) T) ((-982 . -985) T) ((-682 . -111) 80694) ((-629 . -1236) T) ((-305 . -526) 80486) ((-1249 . -1224) 80452) ((-1249 . -238) 80357) ((-1244 . -379) T) ((-258 . -319) 80295) ((-257 . -319) 80233) ((-1241 . -856) T) ((-1178 . -626) NIL) ((-1178 . -625) 80215) ((-1160 . -388) 80199) ((-1138 . -832) T) ((-1138 . -936) T) ((-96 . -93) T) ((-1131 . -616) 80176) ((-1098 . -626) 80160) ((-1098 . -625) 80142) ((-1022 . -658) 80092) ((-930 . -658) 80029) ((-827 . -298) 80006) ((-496 . -625) 79938) ((-620 . -152) 79885) ((-499 . -729) 79835) ((-430 . -1076) T) ((-494 . -501) 79819) ((-439 . -658) 79778) ((-337 . -862) 79757) ((-350 . -660) 79731) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 79681) ((-171 . -736) 79652) ((-176 . -660) 79584) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 79534) ((-1079 . -625) 79516) ((-1011 . -102) T) ((-874 . -102) T) ((-828 . -916) 79452) ((-811 . -423) 79415) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -910) T) ((-592 . -1130) T) ((-576 . -1130) T) ((-507 . -1130) T) ((-370 . -625) 79397) ((-364 . -625) 79379) ((-356 . -625) 79361) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 79291) ((-108 . -625) 79233) ((-213 . -910) T) ((-974 . -152) 79217) ((-783 . -132) T) ((-682 . -628) 79135) ((-135 . -738) T) ((-117 . -738) T) ((-1270 . -35) 79101) ((-1072 . -501) 79085) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1249 . -95) 79051) ((-1249 . -35) 79017) ((-1191 . -102) T) ((-1143 . -102) T) ((-866 . -102) T) ((-229 . -501) 79001) ((-1308 . -111) 78980) ((-1306 . -111) 78959) ((-44 . -1074) 78943) ((-1308 . -628) 78889) ((-1308 . -1067) T) ((-1259 . -1262) 78873) ((-867 . -864) 78857) ((-1197 . -300) 78836) ((-1122 . -1236) T) ((-110 . -296) 78786) ((-1021 . -1236) 78715) ((-129 . -152) 78697) ((-1160 . -914) 78656) ((-44 . -111) 78635) ((-1306 . -628) 78564) ((-1241 . -1118) T) ((-1200 . -1281) T) ((-1185 . -502) 78545) ((-682 . -1067) T) ((-1185 . -625) 78511) ((-1177 . -626) NIL) ((-486 . -238) 78463) ((-1081 . -622) 78438) ((-1012 . -502) 78419) ((-74 . -453) T) ((-74 . -407) T) ((-1081 . -1118) T) ((-153 . -1074) 78403) ((-1012 . -625) 78369) ((-682 . -239) 78348) ((-583 . -566) 78332) ((-366 . -148) 78311) ((-366 . -146) 78262) ((-363 . -148) 78241) ((-363 . -146) 78192) ((-355 . -148) 78171) ((-355 . -146) 78122) ((-273 . -146) 78101) ((-273 . -148) 78080) ((-253 . -148) 78059) ((-118 . -374) T) ((-253 . -146) 78038) ((-1177 . -625) 78020) ((-153 . -111) 77999) ((-1021 . -1056) 77887) ((-1186 . -860) NIL) ((-706 . -1240) T) ((-811 . -1076) T) ((-711 . -1130) T) ((-1306 . -1067) T) ((-1175 . -1236) T) ((-1021 . -388) 77864) ((-926 . -146) T) ((-926 . -148) 77846) ((-882 . -132) T) ((-827 . -1074) 77767) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1069) 77732) ((-659 . -625) 77664) ((-659 . -626) 77625) ((-644 . -626) NIL) ((-644 . -625) 77607) ((-499 . -174) T) ((-227 . -652) 77572) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-486 . -1224) 77538) ((-486 . -1221) 77504) ((-283 . -625) 77486) ((-282 . -625) 77468) ((-281 . -625) 77450) ((-280 . -625) 77432) ((-279 . -625) 77414) ((-512 . -663) 77396) ((-278 . -625) 77378) ((-350 . -738) T) ((-277 . -625) 77360) ((-110 . -19) 77342) ((-176 . -738) T) ((-512 . -384) 77324) ((-214 . -625) 77306) ((-532 . -1167) 77290) ((-512 . -124) T) ((-110 . -616) 77265) ((-213 . -625) 77247) ((-486 . -35) 77213) ((-486 . -95) 77179) ((-211 . -625) 77161) ((-210 . -625) 77143) ((-209 . -625) 77125) ((-208 . -625) 77107) ((-205 . -625) 77089) ((-204 . -625) 77071) ((-203 . -625) 77053) ((-202 . -625) 77035) ((-201 . -625) 77017) ((-200 . -625) 76999) ((-199 . -625) 76981) ((-548 . -1121) 76933) ((-198 . -625) 76915) ((-197 . -625) 76897) ((-45 . -501) 76834) ((-196 . -625) 76816) ((-195 . -625) 76798) ((-153 . -628) 76767) ((-1133 . -102) T) ((-827 . -111) 76683) ((-656 . -102) 76633) ((-494 . -296) 76610) ((-1309 . -1056) 76594) ((-1131 . -625) 76287) ((-1119 . -1118) T) ((-1064 . -1236) T) ((-1191 . -319) 76274) ((-1080 . -1069) 76261) ((-1153 . -1118) T) ((-968 . -1069) 76104) ((-1143 . -319) 76091) ((-1114 . -1101) T) ((-635 . -1130) T) ((-1080 . -652) 76078) ((-1108 . -1101) T) ((-968 . -652) 75927) ((-1105 . -235) 75900) ((-493 . -1069) 75743) ((-1091 . -1101) T) ((-1084 . -1101) T) ((-1054 . -1101) T) ((-1037 . -1101) T) ((-118 . -1130) T) ((-493 . -652) 75592) ((-794 . -235) 75579) ((-831 . -102) T) ((-638 . -1101) T) ((-635 . -23) T) ((-1168 . -526) 75371) ((-495 . -1101) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1101) T) ((-979 . -1118) T) ((-153 . -1067) T) ((-743 . -423) 75355) ((-118 . -23) T) ((-1021 . -914) 75307) ((-747 . -1118) T) ((-727 . -1118) T) ((-465 . -1118) T) ((-419 . -1236) T) ((-326 . -442) 75291) ((-604 . -93) T) ((-1278 . -658) 75201) ((-1045 . -626) 75162) ((-1042 . -1240) T) ((-227 . -102) T) ((-1045 . -625) 75124) ((-1271 . -658) 75006) ((-828 . -233) 74990) ((-827 . -628) 74788) ((-1250 . -658) 74625) ((-1042 . -568) T) ((-845 . -660) 74598) ((-365 . -1240) T) ((-488 . -625) 74560) ((-488 . -626) 74521) ((-475 . -626) 74482) ((-475 . -625) 74444) ((-608 . -658) 74403) ((-419 . -897) 74387) ((-329 . -1074) 74222) ((-419 . -899) 74147) ((-607 . -658) 74057) ((-855 . -1056) 73953) ((-499 . -526) NIL) ((-494 . -616) 73930) ((-593 . -235) 73917) ((-365 . -568) T) ((-530 . -235) 73904) ((-219 . -526) NIL) ((-884 . -464) T) ((-430 . -1118) T) ((-419 . -1056) 73768) ((-329 . -111) 73589) ((-706 . -374) T) ((-227 . -294) T) ((-1233 . -628) 73566) ((-48 . -1240) T) ((-1191 . -1170) 73544) ((-1178 . -298) 73520) ((-1080 . -102) T) ((-968 . -102) T) ((-827 . -1067) 73498) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -238) 73477) ((-363 . -238) 73456) ((-355 . -238) 73435) ((-48 . -568) T) ((-883 . -1069) 73380) ((-273 . -238) 73359) ((-827 . -239) 73311) ((-326 . -27) 73290) ((-258 . -916) 73222) ((-257 . -916) 73154) ((-255 . -847) 73136) ((-189 . -847) 73118) ((-725 . -102) T) ((-305 . -501) 73055) ((-883 . -652) 73000) ((-493 . -102) T) ((-743 . -1076) T) ((-624 . -625) 72982) ((-624 . -626) 72843) ((-419 . -388) 72827) ((-419 . -349) 72811) ((-1191 . -38) 72640) ((-1143 . -38) 72489) ((-329 . -628) 72315) ((-926 . -238) T) ((-647 . -1236) 72289) ((-619 . -1236) 72263) ((-866 . -38) 72233) ((-402 . -660) 72217) ((-656 . -319) 72155) ((-1169 . -502) 72136) ((-1169 . -625) 72102) ((-979 . -729) 71999) ((-747 . -729) 71969) ((-224 . -107) 71953) ((-45 . -296) 71853) ((-633 . -660) 71827) ((-322 . -1118) T) ((-299 . -1074) 71814) ((-110 . -625) 71796) ((-110 . -626) 71778) ((-465 . -729) 71748) ((-828 . -260) 71687) ((-701 . -1118) 71665) ((-562 . -1118) T) ((-1193 . -1076) T) ((-1192 . -1076) T) ((-96 . -502) 71646) ((-1186 . -1076) T) ((-299 . -111) 71631) ((-1144 . -1076) T) ((-562 . -622) 71610) ((-96 . -625) 71576) ((-1022 . -860) T) ((-229 . -699) 71534) ((-706 . -1130) T) ((-1230 . -752) 71510) ((-1042 . -374) T) ((-850 . -847) 71492) ((-845 . -806) 71471) ((-419 . -914) 71430) ((-329 . -1067) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1069) 71340) ((-68 . -1236) T) ((-845 . -803) 71319) ((-430 . -729) 71293) ((-811 . -1118) T) ((-724 . -936) 71272) ((-711 . -132) T) ((-171 . -652) 71100) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 71079) ((-329 . -239) 71031) ((-329 . -249) 71010) ((-219 . -300) T) ((-130 . -379) T) ((-1270 . -464) 70989) ((-1249 . -464) 70968) ((-365 . -339) 70945) ((-365 . -374) T) ((-1158 . -625) 70927) ((-45 . -1274) 70877) ((-883 . -102) T) ((-656 . -292) 70861) ((-711 . -1078) T) ((-1297 . -102) T) ((-1296 . -102) T) ((-489 . -660) 70826) ((-480 . -1118) T) ((-45 . -616) 70751) ((-1177 . -298) 70726) ((-299 . -628) 70698) ((-40 . -651) 70637) ((-1259 . -1069) 70460) ((-867 . -1069) 70444) ((-48 . -374) T) ((-1124 . -625) 70426) ((-1259 . -652) 70255) ((-867 . -652) 70225) ((-644 . -298) 70200) ((-828 . -658) 70110) ((-583 . -1069) 70097) ((-494 . -625) 69790) ((-246 . -423) 69759) ((-968 . -319) 69746) ((-583 . -652) 69733) ((-65 . -1236) T) ((-1081 . -526) 69577) ((-683 . -1118) T) ((-635 . -132) T) ((-493 . -319) 69564) ((-618 . -1118) T) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1067) T) ((-182 . -1118) T) ((-162 . -1118) T) ((-157 . -1118) T) ((-155 . -1118) T) ((-465 . -773) T) ((-31 . -1101) T) ((-979 . -174) 69515) ((-1191 . -916) 69458) ((-988 . -93) T) ((-1184 . -1118) T) ((-1098 . -1074) 69368) ((-633 . -806) 69347) ((-605 . -1118) T) ((-633 . -803) 69326) ((-633 . -738) T) ((-305 . -296) 69305) ((-304 . -1236) T) ((-1072 . -625) 69267) ((-1072 . -626) 69228) ((-1042 . -1130) T) ((-171 . -102) T) ((-284 . -862) T) ((-1143 . -916) 69212) ((-830 . -625) 69194) ((-1131 . -298) 69171) ((-1120 . -231) 69155) ((-1021 . -317) T) ((-811 . -729) 69139) ((-370 . -1074) 69091) ((-365 . -1130) T) ((-364 . -1074) 69043) ((-426 . -625) 69025) ((-396 . -625) 69007) ((-356 . -1074) 68959) ((-229 . -625) 68891) ((-1098 . -111) 68787) ((-1042 . -23) T) ((-108 . -1074) 68737) ((-913 . -102) T) ((-853 . -102) T) ((-820 . -102) T) ((-781 . -102) T) ((-689 . -102) T) ((-486 . -464) 68716) ((-430 . -174) T) ((-370 . -111) 68654) ((-364 . -111) 68592) ((-356 . -111) 68530) ((-258 . -233) 68499) ((-257 . -233) 68468) ((-365 . -23) T) ((-71 . -1236) T) ((-227 . -38) 68433) ((-108 . -111) 68367) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 68345) ((-48 . -1130) T) ((-937 . -25) T) ((-783 . -25) T) ((-1310 . -660) 68319) ((-1168 . -501) 68256) ((-497 . -1118) T) ((-1301 . -658) 68215) ((-1259 . -102) T) ((-1080 . -1170) T) ((-867 . -102) T) ((-246 . -1076) 68193) ((-980 . -804) 68146) ((-980 . -807) 68099) ((-392 . -660) 68083) ((-48 . -23) T) ((-827 . -807) 68062) ((-827 . -804) 68041) ((-560 . -379) T) ((-305 . -616) 68020) ((-489 . -738) T) ((-583 . -102) T) ((-1098 . -628) 67838) ((-255 . -187) T) ((-189 . -187) T) ((-883 . -319) 67795) ((-665 . -296) 67774) ((-112 . -673) T) ((-362 . -1236) T) ((-370 . -628) 67711) ((-364 . -628) 67648) ((-356 . -628) 67585) ((-76 . -1236) T) ((-108 . -628) 67535) ((-112 . -113) T) ((-1080 . -38) 67522) ((-676 . -385) 67501) ((-968 . -38) 67350) ((-743 . -1118) T) ((-493 . -38) 67199) ((-86 . -1236) T) ((-604 . -502) 67180) ((-1250 . -860) NIL) ((-583 . -294) T) ((-1193 . -1118) T) ((-604 . -625) 67146) ((-1192 . -1118) T) ((-1186 . -1118) T) ((-1098 . -1067) T) ((-362 . -1056) 67123) ((-829 . -502) 67107) ((-1022 . -1076) T) ((-45 . -625) 67089) ((-45 . -626) NIL) ((-930 . -1076) T) ((-829 . -625) 67058) ((-1165 . -102) 67036) ((-1098 . -249) 66987) ((-439 . -1076) T) ((-370 . -1067) T) ((-364 . -1067) T) ((-376 . -375) 66964) ((-356 . -1067) T) ((-354 . -235) 66951) ((-258 . -244) 66930) ((-257 . -244) 66909) ((-1098 . -239) 66834) ((-1144 . -1118) T) ((-304 . -914) 66793) ((-108 . -1067) T) ((-706 . -132) T) ((-430 . -526) 66635) ((-370 . -239) 66614) ((-370 . -249) T) ((-44 . -732) T) ((-364 . -239) 66593) ((-364 . -249) T) ((-356 . -239) 66572) ((-356 . -249) T) ((-1185 . -628) 66553) ((-171 . -319) 66518) ((-108 . -249) T) ((-108 . -239) T) ((-1012 . -628) 66499) ((-329 . -804) T) ((-882 . -21) T) ((-882 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 66474) ((-1131 . -1074) 66395) ((-883 . -1170) NIL) ((-340 . -625) 66377) ((-419 . -1040) 66355) ((-1131 . -111) 66271) ((-703 . -1281) T) ((-448 . -1118) T) ((-256 . -1118) T) ((-1310 . -738) T) ((-63 . -625) 66253) ((-883 . -38) 66198) ((-535 . -1236) T) ((-614 . -152) 66182) ((-524 . -625) 66164) ((-1259 . -319) 66151) ((-743 . -729) 66000) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 65982) ((-507 . -651) 65942) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 65893) ((-537 . -1118) T) ((-532 . -1118) 65843) ((-253 . -464) 65794) ((-1168 . -296) 65773) ((-1197 . -625) 65755) ((-701 . -526) 65688) ((-979 . -300) 65667) ((-562 . -526) 65459) ((-258 . -658) 65307) ((-257 . -658) 65142) ((-1298 . -625) 65111) ((-1298 . -502) 65095) ((-1193 . -729) 64992) ((-1191 . -233) 64976) ((-1131 . -628) 64774) ((-171 . -1170) 64753) ((-1192 . -729) 64594) ((-1186 . -729) 64390) ((-982 . -113) T) ((-905 . -102) T) ((-1175 . -686) 64374) ((-1144 . -729) 64271) ((-1042 . -132) T) ((-366 . -414) 64222) ((-363 . -414) 64173) ((-355 . -414) 64124) ((-980 . -379) 64077) ((-811 . -526) 63989) ((-305 . -626) NIL) ((-305 . -625) 63971) ((-926 . -464) T) ((-921 . -296) 63950) ((-827 . -379) 63929) ((-522 . -521) 63908) ((-520 . -521) 63887) ((-884 . -909) 63844) ((-499 . -296) NIL) ((-494 . -298) 63821) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1130) T) ((-40 . -235) 63787) ((-171 . -38) 63615) ((-968 . -916) 63596) ((-1270 . -991) 63558) ((-1165 . -319) 63496) ((-493 . -916) 63473) ((-1249 . -991) 63442) ((-926 . -414) T) ((-1131 . -1067) 63420) ((-1272 . -568) T) ((-1168 . -616) 63399) ((-112 . -862) T) ((-1081 . -501) 63330) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1259 . -1170) 63308) ((-1131 . -239) 63260) ((-48 . -132) T) ((-1217 . -102) T) ((-246 . -1118) 63012) ((-883 . -412) 62989) ((-1106 . -102) T) ((-1094 . -102) T) ((-620 . -102) T) ((-487 . -102) T) ((-1259 . -38) 62818) ((-867 . -38) 62788) ((-1052 . -1069) 62762) ((-743 . -174) 62673) ((-665 . -625) 62655) ((-657 . -1101) T) ((-1052 . -652) 62639) ((-583 . -38) 62626) ((-988 . -502) 62607) ((-988 . -625) 62573) ((-974 . -102) 62523) ((-876 . -625) 62505) ((-876 . -626) 62427) ((-605 . -526) NIL) ((-1315 . -1130) T) ((-1278 . -1076) T) ((-1271 . -1076) T) ((-1270 . -909) 62331) ((-332 . -1069) 62313) ((-1250 . -1076) T) ((-1249 . -909) 62162) ((-1230 . -148) 62141) ((-1230 . -146) 62120) ((-1203 . -102) T) ((-332 . -652) 62102) ((-713 . -1236) T) ((-1202 . -102) T) ((-1201 . -102) T) ((-1193 . -174) 62053) ((-1192 . -174) 61984) ((-608 . -1076) T) ((-607 . -1076) T) ((-1186 . -174) 61915) ((-1169 . -628) 61896) ((-390 . -1069) 61861) ((-1144 . -174) 61812) ((-1022 . -1118) T) ((-989 . -1118) T) ((-930 . -1118) T) ((-883 . -916) NIL) ((-390 . -652) 61777) ((-811 . -809) 61761) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 61738) ((-713 . -899) 61720) ((-439 . -1118) T) ((-326 . -1240) 61699) ((-323 . -1240) T) ((-171 . -412) 61683) ((-848 . -1069) 61653) ((-486 . -991) 61615) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -625) 61597) ((-839 . -1069) 61581) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1056) 61563) ((-326 . -568) 61542) ((-323 . -568) T) ((-848 . -652) 61512) ((-839 . -652) 61482) ((-1315 . -23) T) ((-135 . -1056) 61464) ((-96 . -628) 61445) ((-1011 . -658) 61427) ((-494 . -1074) 61348) ((-45 . -298) 61273) ((-246 . -729) 61215) ((-529 . -102) T) ((-494 . -111) 61131) ((-1110 . -102) 61101) ((-1052 . -102) T) ((-1191 . -658) 61011) ((-1143 . -658) 60921) ((-866 . -658) 60880) ((-656 . -840) 60859) ((-743 . -526) 60802) ((-1072 . -1074) 60786) ((-171 . -916) 60745) ((-1153 . -93) T) ((-1081 . -296) 60720) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1118) T) ((-682 . -660) 60658) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1074) 60642) ((-1072 . -111) 60621) ((-828 . -423) 60605) ((-118 . -25) T) ((-89 . -625) 60587) ((-118 . -21) T) ((-620 . -319) 60382) ((-487 . -319) 60186) ((-1168 . -626) NIL) ((-350 . -1236) T) ((-396 . -111) 60165) ((-390 . -102) T) ((-216 . -625) 60147) ((-1168 . -625) 60129) ((-1186 . -526) 59898) ((-1022 . -729) 59848) ((-1144 . -526) 59818) ((-930 . -729) 59770) ((-494 . -628) 59568) ((-362 . -317) T) ((-1208 . -152) 59518) ((-486 . -909) 59422) ((-974 . -319) 59360) ((-848 . -102) T) ((-439 . -729) 59344) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1308 . -660) 59318) ((-1270 . -1269) 59297) ((-491 . -152) 59247) ((-1270 . -1264) 59217) ((-1138 . -1240) T) ((-350 . -1056) 59184) ((-1270 . -1267) 59168) ((-1259 . -916) 59111) ((-1249 . -1248) 59090) ((-80 . -625) 59072) ((-921 . -625) 59054) ((-1249 . -1264) 59031) ((-1138 . -568) T) ((-937 . -862) T) ((-783 . -862) T) ((-684 . -862) T) ((-499 . -626) 58961) ((-499 . -625) 58902) ((-390 . -294) T) ((-1249 . -1246) 58886) ((-1272 . -1130) T) ((-219 . -626) 58816) ((-219 . -625) 58757) ((-1081 . -616) 58732) ((-830 . -628) 58716) ((-576 . -235) 58703) ((-528 . -152) 58687) ((-59 . -152) 58671) ((-508 . -152) 58655) ((-507 . -235) 58642) ((-370 . -1305) 58626) ((-364 . -1305) 58610) ((-356 . -1305) 58594) ((-326 . -374) 58573) ((-323 . -374) T) ((-494 . -1067) 58551) ((-706 . -651) 58533) ((-1306 . -660) 58507) ((-129 . -319) NIL) ((-1272 . -23) T) ((-701 . -501) 58491) ((-64 . -625) 58473) ((-1131 . -807) 58452) ((-1131 . -804) 58431) ((-562 . -501) 58368) ((-682 . -34) T) ((-494 . -239) 58320) ((-305 . -298) 58299) ((-828 . -1076) T) ((-44 . -660) 58257) ((-1098 . -379) 58208) ((-743 . -300) 58139) ((-532 . -526) 58072) ((-829 . -1074) 58023) ((-561 . -625) 58005) ((-370 . -379) 57984) ((-364 . -379) 57963) ((-356 . -379) 57942) ((-1105 . -146) 57921) ((-1105 . -148) 57900) ((-984 . -1236) T) ((-883 . -233) 57877) ((-829 . -111) 57819) ((-794 . -146) 57798) ((-273 . -965) 57765) ((-253 . -965) 57710) ((-794 . -148) 57689) ((-792 . -146) 57668) ((-792 . -148) 57647) ((-153 . -660) 57621) ((-591 . -1118) T) ((-465 . -296) 57584) ((-466 . -148) 57563) ((-466 . -146) 57542) ((-682 . -738) T) ((-835 . -625) 57524) ((-1278 . -1118) T) ((-1271 . -1118) T) ((-1250 . -1118) T) ((-1230 . -1224) 57490) ((-1230 . -1221) 57456) ((-1193 . -300) 57435) ((-1192 . -300) 57386) ((-1186 . -300) 57337) ((-1144 . -300) 57316) ((-350 . -914) 57297) ((-1022 . -174) T) ((-930 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 57247) ((-608 . -1118) T) ((-607 . -1118) T) ((-486 . -1267) 57231) ((-486 . -1264) 57201) ((-430 . -296) 57129) ((-559 . -862) T) ((-326 . -1130) 56978) ((-323 . -1130) T) ((-1230 . -35) 56944) ((-1230 . -95) 56910) ((-84 . -625) 56892) ((-91 . -102) 56870) ((-1315 . -132) T) ((-726 . -1069) 56840) ((-604 . -628) 56821) ((-593 . -146) T) ((-593 . -148) 56803) ((-530 . -148) 56785) ((-530 . -146) T) ((-726 . -652) 56755) ((-326 . -23) 56607) ((-40 . -353) 56581) ((-323 . -23) T) ((-829 . -628) 56495) ((-1177 . -663) 56477) ((-1301 . -1076) T) ((-1177 . -384) 56459) ((-827 . -660) 56292) ((-1114 . -102) T) ((-1108 . -102) T) ((-1091 . -102) T) ((-171 . -233) 56276) ((-1084 . -102) T) ((-1054 . -102) T) ((-1037 . -102) T) ((-605 . -501) 56258) ((-638 . -102) T) ((-246 . -526) 56191) ((-495 . -102) T) ((-1308 . -738) T) ((-1306 . -738) T) ((-220 . -102) T) ((-1197 . -1074) 56074) ((-1080 . -658) 56046) ((-968 . -658) 55956) ((-1197 . -111) 55825) ((-888 . -1101) T) ((-873 . -175) T) ((-493 . -658) 55735) ((-273 . -909) 55677) ((-253 . -909) 55652) ((-829 . -1067) T) ((-693 . -1101) T) ((-688 . -1101) T) ((-635 . -235) 55625) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 55585) ((-520 . -102) T) ((-490 . -1101) T) ((-1298 . -1074) 55555) ((-118 . -235) NIL) ((-139 . -1101) T) ((-138 . -1101) T) ((-134 . -1101) T) ((-1052 . -38) 55539) ((-829 . -239) T) ((-829 . -249) 55518) ((-1298 . -111) 55483) ((-1278 . -729) 55380) ((-1271 . -729) 55221) ((-562 . -296) 55200) ((-1259 . -233) 55184) ((-1241 . -625) 55166) ((-618 . -93) T) ((-1081 . -626) NIL) ((-1081 . -625) 55148) ((-683 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1250 . -729) 54944) ((-1021 . -936) T) ((-153 . -738) T) ((-1197 . -628) 54797) ((-1131 . -379) 54776) ((-1042 . -25) T) ((-1022 . -526) NIL) ((-258 . -423) 54745) ((-257 . -423) 54714) ((-1042 . -21) T) ((-884 . -1069) 54666) ((-608 . -729) 54639) ((-607 . -729) 54536) ((-811 . -296) 54494) ((-127 . -102) 54472) ((-845 . -1056) 54368) ((-171 . -840) 54347) ((-329 . -660) 54244) ((-827 . -34) T) ((-726 . -102) T) ((-1138 . -1130) T) ((-1044 . -1236) T) ((-884 . -652) 54196) ((-390 . -38) 54161) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1293) 54145) ((-363 . -1293) 54129) ((-355 . -1293) 54113) ((-171 . -360) 54092) ((-576 . -862) T) ((-1105 . -238) 54071) ((-1138 . -23) T) ((-87 . -625) 54053) ((-794 . -238) T) ((-713 . -317) T) ((-848 . -38) 54023) ((-839 . -38) 53993) ((-1298 . -628) 53935) ((-1272 . -132) T) ((-1168 . -298) 53914) ((-980 . -738) 53813) ((-980 . -805) 53766) ((-980 . -806) 53719) ((-117 . -317) T) ((-91 . -319) 53657) ((-687 . -34) T) ((-562 . -616) 53636) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 53615) ((-827 . -805) 53594) ((-713 . -1040) T) ((-665 . -1074) 53578) ((-883 . -658) 53508) ((-827 . -738) 53486) ((-980 . -485) 53439) ((-494 . -807) 53418) ((-494 . -804) 53397) ((-926 . -1293) 53384) ((-1197 . -1067) T) ((-665 . -111) 53363) ((-1197 . -336) 53340) ((-1222 . -102) 53318) ((-1119 . -625) 53300) ((-713 . -557) T) ((-828 . -1118) T) ((-593 . -238) T) ((-530 . -238) T) ((-1298 . -1067) T) ((-1153 . -502) 53281) ((-1242 . -102) T) ((-425 . -1118) T) ((-1153 . -625) 53247) ((-258 . -1076) 53225) ((-257 . -1076) 53203) ((-850 . -102) T) ((-299 . -660) 53190) ((-605 . -296) 53140) ((-701 . -699) 53098) ((-979 . -625) 53080) ((-884 . -102) T) ((-747 . -625) 53062) ((-727 . -625) 53044) ((-1278 . -174) 52995) ((-1271 . -174) 52926) ((-1250 . -174) 52857) ((-711 . -862) T) ((-1022 . -300) T) ((-465 . -625) 52839) ((-639 . -738) T) ((-60 . -1118) 52817) ((-251 . -152) 52801) ((-930 . -300) T) ((-1042 . -1030) T) ((-639 . -485) T) ((-724 . -1240) 52780) ((-706 . -235) NIL) ((-665 . -628) 52698) ((-171 . -658) 52593) ((-1286 . -862) 52572) ((-608 . -174) 52551) ((-607 . -174) 52502) ((-1270 . -652) 52343) ((-1270 . -1069) 52178) ((-1249 . -652) 51992) ((-1249 . -1069) 51800) ((-724 . -568) 51711) ((-419 . -936) T) ((-419 . -832) 51690) ((-329 . -806) T) ((-988 . -628) 51671) ((-329 . -738) T) ((-656 . -1167) 51655) ((-430 . -625) 51637) ((-430 . -626) 51544) ((-110 . -663) 51526) ((-176 . -317) T) ((-127 . -319) 51464) ((-110 . -384) 51446) ((-410 . -1236) T) ((-326 . -132) 51317) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 51301) ((-666 . -1130) T) ((-605 . -19) 51283) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1118) T) ((-605 . -616) 51258) ((-489 . -1056) 51218) ((-665 . -1067) T) ((-666 . -23) T) ((-1301 . -1118) T) ((-31 . -102) T) ((-1259 . -658) 51128) ((-867 . -658) 51087) ((-828 . -729) 50936) ((-589 . -872) T) ((-583 . -658) 50908) ((-118 . -862) NIL) ((-1191 . -423) 50892) ((-1143 . -423) 50876) ((-866 . -423) 50860) ((-885 . -102) 50811) ((-1270 . -102) T) ((-1250 . -526) 50580) ((-1249 . -102) T) ((-1222 . -319) 50518) ((-1193 . -296) 50483) ((-1192 . -296) 50441) ((-537 . -93) T) ((-1186 . -296) 50269) ((-322 . -625) 50251) ((-1120 . -1118) T) ((-1098 . -660) 50125) ((-723 . -464) T) ((-701 . -625) 50057) ((-299 . -738) T) ((-108 . -925) NIL) ((-701 . -626) 50018) ((-613 . -625) 50000) ((-589 . -625) 49982) ((-562 . -626) NIL) ((-562 . -625) 49964) ((-541 . -625) 49946) ((-523 . -521) 49925) ((-499 . -1074) 49875) ((-486 . -1069) 49710) ((-519 . -521) 49689) ((-486 . -652) 49530) ((-219 . -1074) 49480) ((-370 . -660) 49432) ((-364 . -660) 49384) ((-227 . -860) T) ((-356 . -660) 49336) ((-614 . -102) 49286) ((-499 . -111) 49220) ((-494 . -379) 49199) ((-108 . -660) 49149) ((-365 . -235) 49136) ((-246 . -501) 49120) ((-354 . -148) 49102) ((-354 . -146) T) ((-171 . -381) 49073) ((-959 . -1284) 49057) ((-219 . -111) 48991) ((-884 . -319) 48956) ((-959 . -1118) 48906) ((-811 . -626) 48867) ((-811 . -625) 48849) ((-730 . -102) T) ((-341 . -1118) T) ((-216 . -628) 48826) ((-1138 . -132) T) ((-726 . -38) 48796) ((-326 . -505) 48775) ((-512 . -1236) T) ((-1270 . -294) 48741) ((-1249 . -294) 48707) ((-337 . -152) 48691) ((-451 . -1118) T) ((-1081 . -298) 48666) ((-1301 . -729) 48636) ((-48 . -235) 48623) ((-1178 . -34) T) ((-1310 . -1056) 48600) ((-496 . -34) T) ((-480 . -625) 48582) ((-256 . -296) 48556) ((-392 . -1056) 48540) ((-1191 . -1076) T) ((-1143 . -1076) T) ((-866 . -1076) T) ((-1080 . -860) T) ((-499 . -628) 48490) ((-219 . -628) 48440) ((-828 . -174) 48351) ((-532 . -296) 48303) ((-1278 . -300) 48282) ((-1217 . -375) 48256) ((-1106 . -275) 48240) ((-683 . -502) 48221) ((-683 . -625) 48187) ((-618 . -502) 48168) ((-118 . -1010) 48145) ((-618 . -625) 48095) ((-486 . -102) T) ((-182 . -502) 48076) ((-182 . -625) 48042) ((-162 . -502) 48023) ((-162 . -625) 47989) ((-157 . -502) 47970) ((-155 . -502) 47951) ((-157 . -625) 47917) ((-376 . -1118) T) ((-258 . -1118) T) ((-257 . -1118) T) ((-155 . -625) 47883) ((-1271 . -300) 47834) ((-1250 . -300) 47785) ((-884 . -1170) 47763) ((-1193 . -1020) 47729) ((-620 . -375) 47669) ((-1192 . -1020) 47635) ((-620 . -231) 47582) ((-706 . -862) T) ((-605 . -625) 47564) ((-605 . -626) NIL) ((-487 . -231) 47514) ((-499 . -1067) T) ((-1186 . -1020) 47480) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1067) T) ((-1144 . -1020) 47446) ((-1098 . -738) T) ((-724 . -1130) T) ((-608 . -300) 47425) ((-607 . -300) 47404) ((-499 . -249) T) ((-499 . -239) T) ((-219 . -249) T) ((-219 . -239) T) ((-1184 . -625) 47386) ((-884 . -38) 47338) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1274) 47322) ((-1315 . -25) T) ((-486 . -294) 47288) ((-1315 . -21) T) ((-1249 . -319) 47227) ((-1195 . -102) T) ((-40 . -146) 47199) ((-40 . -148) 47171) ((-532 . -616) 47148) ((-1131 . -660) 46981) ((-614 . -319) 46919) ((-45 . -663) 46869) ((-45 . -678) 46819) ((-45 . -384) 46769) ((-1177 . -34) T) ((-883 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 46751) ((-246 . -296) 46728) ((-188 . -1118) T) ((-1105 . -464) 46679) ((-828 . -526) 46553) ((-794 . -464) 46484) ((-676 . -1069) 46468) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 46452) ((-366 . -1069) 46404) ((-354 . -238) T) ((-363 . -1069) 46356) ((-355 . -1069) 46308) ((-273 . -1069) 46151) ((-253 . -1069) 45994) ((-792 . -464) 45945) ((-366 . -652) 45897) ((-363 . -652) 45849) ((-355 . -652) 45801) ((-273 . -652) 45650) ((-253 . -652) 45499) ((-466 . -464) 45450) ((-968 . -423) 45434) ((-743 . -625) 45416) ((-258 . -729) 45358) ((-257 . -729) 45300) ((-743 . -626) 45161) ((-493 . -423) 45145) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -936) T) ((-1018 . -102) 45123) ((-926 . -1069) 45088) ((-1042 . -862) T) ((-60 . -526) 45021) ((-926 . -652) 44986) ((-1249 . -1170) 44938) ((-1022 . -296) NIL) ((-227 . -1076) T) ((-390 . -840) T) ((-1131 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1253 . -1111) 44922) ((-1253 . -1118) 44900) ((-246 . -616) 44877) ((-1253 . -1113) 44834) ((-1193 . -625) 44816) ((-1192 . -625) 44798) ((-1186 . -625) 44780) ((-1186 . -626) NIL) ((-1144 . -625) 44762) ((-884 . -412) 44746) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1270 . -38) 44587) ((-1249 . -38) 44401) ((-882 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1282 . -102) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-1131 . -806) 44380) ((-1131 . -805) 44359) ((-1011 . -1118) T) ((-1045 . -34) T) ((-874 . -1118) T) ((-1131 . -738) 44337) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 44316) ((-1208 . -102) T) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1080 . -1076) T) ((-968 . -1076) T) ((-326 . -651) 44222) ((-323 . -651) 44183) ((-1191 . -1118) T) ((-493 . -1076) T) ((-491 . -102) T) ((-448 . -625) 44165) ((-1143 . -1118) T) ((-256 . -625) 44147) ((-866 . -1118) T) ((-1159 . -102) T) ((-828 . -300) 44078) ((-979 . -1074) 43961) ((-489 . -1040) T) ((-884 . -916) 43920) ((-747 . -1074) 43890) ((-1052 . -658) 43849) ((-1165 . -1139) 43833) ((-465 . -1074) 43803) ((-1120 . -526) 43736) ((-979 . -111) 43605) ((-926 . -102) T) ((-40 . -238) 43577) ((-747 . -111) 43542) ((-537 . -502) 43523) ((-537 . -625) 43489) ((-59 . -102) 43439) ((-532 . -626) 43400) ((-532 . -625) 43312) ((-531 . -102) 43290) ((-528 . -102) 43240) ((-509 . -102) 43218) ((-508 . -102) 43168) ((-465 . -111) 43131) ((-332 . -658) 43113) ((-430 . -1074) 43087) ((-1230 . -991) 43049) ((-1017 . -1130) T) ((-390 . -658) 42999) ((-1153 . -628) 42980) ((-959 . -526) 42913) ((-499 . -807) T) ((-486 . -38) 42754) ((-430 . -111) 42721) ((-499 . -804) T) ((-1018 . -319) 42659) ((-219 . -807) T) ((-219 . -804) T) ((-1017 . -23) T) ((-724 . -132) T) ((-1249 . -412) 42629) ((-848 . -658) 42574) ((-839 . -658) 42533) ((-326 . -25) 42385) ((-171 . -423) 42369) ((-326 . -21) 42240) ((-323 . -25) T) ((-323 . -21) T) ((-876 . -379) T) ((-979 . -628) 42093) ((-110 . -34) T) ((-747 . -628) 42049) ((-727 . -628) 42031) ((-494 . -660) 41864) ((-883 . -1076) T) ((-605 . -298) 41839) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1191 . -729) 41668) ((-1075 . -102) 41646) ((-1143 . -729) 41495) ((-1138 . -651) 41477) ((-866 . -729) 41447) ((-682 . -1236) T) ((-1 . -102) T) ((-430 . -628) 41355) ((-246 . -625) 41048) ((-1133 . -1118) T) ((-1259 . -423) 41032) ((-1208 . -319) 40836) ((-979 . -1067) T) ((-747 . -1067) T) ((-727 . -1067) T) ((-656 . -1118) 40786) ((-1072 . -660) 40770) ((-867 . -423) 40754) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 40741) ((-253 . -319) 40728) ((-1270 . -916) 40634) ((-979 . -336) 40613) ((-1249 . -916) 40464) ((-396 . -660) 40448) ((-682 . -1056) 40344) ((-491 . -319) 40148) ((-258 . -526) 40081) ((-257 . -526) 40014) ((-1159 . -319) 39940) ((-1230 . -909) 39919) ((-831 . -1118) T) ((-811 . -1074) 39903) ((-1278 . -296) 39868) ((-1271 . -296) 39826) ((-1250 . -296) 39654) ((-398 . -1118) T) ((-334 . -1118) T) ((-430 . -1067) T) ((-171 . -1076) T) ((-59 . -319) 39592) ((-811 . -111) 39571) ((-607 . -296) 39536) ((-531 . -319) 39474) ((-528 . -319) 39412) ((-509 . -319) 39350) ((-508 . -319) 39288) ((-430 . -239) 39267) ((-494 . -34) T) ((-227 . -1118) T) ((-1022 . -626) 39197) ((-1022 . -625) 39157) ((-989 . -625) 39117) ((-930 . -625) 39099) ((-711 . -148) T) ((-713 . -936) T) ((-713 . -832) T) ((-439 . -625) 39081) ((-1138 . -21) T) ((-1138 . -25) T) ((-682 . -388) 39065) ((-117 . -936) T) ((-884 . -233) 39049) ((-44 . -1236) T) ((-78 . -1236) T) ((-127 . -126) 39033) ((-1072 . -34) T) ((-1308 . -1056) 39007) ((-1306 . -1056) 38964) ((-1259 . -1076) T) ((-867 . -1076) T) ((-366 . -1170) 38943) ((-363 . -1170) 38922) ((-355 . -1170) 38901) ((-494 . -806) 38880) ((-494 . -805) 38859) ((-229 . -34) T) ((-494 . -738) 38837) ((-811 . -628) 38683) ((-674 . -1069) 38667) ((-60 . -501) 38651) ((-583 . -1076) T) ((-1191 . -174) 38542) ((-674 . -652) 38526) ((-486 . -916) 38432) ((-1143 . -174) 38343) ((-1080 . -1118) T) ((-1105 . -965) 38288) ((-968 . -1118) T) ((-829 . -660) 38239) ((-794 . -965) 38208) ((-725 . -1118) T) ((-792 . -965) 38175) ((-528 . -292) 38159) ((-682 . -914) 38118) ((-493 . -1118) T) ((-466 . -965) 38085) ((-79 . -1236) T) ((-366 . -38) 38050) ((-363 . -38) 38015) ((-355 . -38) 37980) ((-273 . -38) 37829) ((-253 . -38) 37678) ((-926 . -1170) T) ((-536 . -502) 37659) ((-635 . -148) 37638) ((-635 . -146) 37617) ((-536 . -625) 37583) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1067) T) ((-576 . -238) T) ((-507 . -238) T) ((-354 . -464) T) ((-1278 . -1020) 37549) ((-1271 . -1020) 37515) ((-1250 . -1020) 37481) ((-926 . -38) 37446) ((-227 . -729) 37411) ((-329 . -47) 37381) ((-40 . -421) 37353) ((-141 . -625) 37335) ((-1017 . -132) T) ((-827 . -1236) T) ((-176 . -936) T) ((-561 . -379) T) ((-726 . -658) 37280) ((-618 . -628) 37261) ((-354 . -414) T) ((-683 . -628) 37242) ((-323 . -235) NIL) ((-182 . -628) 37223) ((-162 . -628) 37204) ((-157 . -628) 37185) ((-155 . -628) 37166) ((-532 . -298) 37143) ((-1249 . -233) 37113) ((-1197 . -660) 37038) ((-888 . -102) T) ((-827 . -1056) 36865) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1120 . -501) 36849) ((-687 . -1236) T) ((-490 . -102) T) ((-251 . -102) 36799) ((-558 . -856) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-1105 . -909) 36730) ((-883 . -1118) T) ((-1191 . -526) 36677) ((-1080 . -729) 36664) ((-794 . -909) 36603) ((-743 . -1074) 36446) ((-792 . -909) 36428) ((-968 . -729) 36277) ((-1143 . -526) 36229) ((-1297 . -1118) T) ((-1296 . -1118) T) ((-466 . -909) 36204) ((-493 . -729) 36053) ((-67 . -625) 36035) ((-743 . -111) 35864) ((-959 . -501) 35848) ((-1298 . -660) 35808) ((-1193 . -1074) 35691) ((-829 . -738) T) ((-1192 . -1074) 35526) ((-1186 . -1074) 35316) ((-329 . -1236) T) ((-1144 . -1074) 35199) ((-1021 . -1240) T) ((-1112 . -102) 35177) ((-827 . -388) 35146) ((-591 . -625) 35128) ((-558 . -1118) T) ((-1021 . -568) T) ((-1193 . -111) 34997) ((-1192 . -111) 34818) ((-1186 . -111) 34587) ((-1144 . -111) 34456) ((-1123 . -1121) 34420) ((-390 . -860) T) ((-1278 . -625) 34402) ((-1271 . -625) 34384) ((-884 . -658) 34321) ((-1250 . -625) 34303) ((-1250 . -626) NIL) ((-246 . -298) 34280) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1118) T) ((-743 . -628) 34065) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34047) ((-607 . -625) 34029) ((-1138 . -235) 34016) ((-913 . -1118) T) ((-853 . -1118) T) ((-820 . -1118) T) ((-273 . -916) 33962) ((-253 . -916) 33939) ((-781 . -1118) T) ((-689 . -1118) T) ((-670 . -864) 33923) ((-635 . -238) 33902) ((-827 . -914) 33834) ((-1241 . -379) T) ((-40 . -414) NIL) ((-118 . -238) NIL) ((-1193 . -628) 33716) ((-1138 . -673) T) ((-883 . -729) 33661) ((-258 . -501) 33645) ((-257 . -501) 33629) ((-1192 . -628) 33372) ((-1186 . -628) 33167) ((-724 . -651) 33115) ((-665 . -660) 33089) ((-1144 . -628) 32971) ((-305 . -34) T) ((-1138 . -113) T) ((-743 . -1067) T) ((-593 . -1293) 32958) ((-530 . -1293) 32935) ((-1259 . -1118) T) ((-1191 . -300) 32846) ((-1143 . -300) 32777) ((-1080 . -174) T) ((-299 . -1236) T) ((-867 . -1118) T) ((-968 . -174) 32688) ((-794 . -1262) 32672) ((-656 . -526) 32605) ((-77 . -625) 32587) ((-743 . -336) 32552) ((-1197 . -738) T) ((-583 . -1118) T) ((-493 . -174) 32463) ((-251 . -319) 32401) ((-1160 . -1130) T) ((-70 . -625) 32383) ((-1298 . -738) T) ((-1193 . -1067) T) ((-1192 . -1067) T) ((-337 . -102) 32333) ((-1186 . -1067) T) ((-1160 . -23) T) ((-1144 . -1067) T) ((-91 . -1139) 32317) ((-878 . -1130) T) ((-1193 . -239) 32276) ((-1192 . -249) 32255) ((-1192 . -239) 32207) ((-1186 . -239) 32094) ((-1186 . -249) 32073) ((-329 . -914) 31979) ((-878 . -23) T) ((-171 . -729) 31807) ((-419 . -1240) T) ((-1119 . -379) T) ((-1021 . -374) T) ((-882 . -464) T) ((-1042 . -148) T) ((-959 . -296) 31759) ((-323 . -862) NIL) ((-1270 . -658) 31641) ((-886 . -102) T) ((-1249 . -658) 31496) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31477) ((-365 . -148) 31459) ((-365 . -146) T) ((-1165 . -1118) 31437) ((-465 . -732) T) ((-75 . -625) 31419) ((-115 . -862) T) ((-251 . -292) 31403) ((-246 . -1074) 31324) ((-81 . -625) 31306) ((-747 . -379) 31259) ((-1195 . -840) T) ((-749 . -241) 31243) ((-1178 . -1236) T) ((-142 . -241) 31225) ((-246 . -111) 31141) ((-1259 . -729) 30970) ((-48 . -148) T) ((-883 . -174) T) ((-867 . -729) 30940) ((-496 . -1236) T) ((-968 . -526) 30887) ((-665 . -738) T) ((-583 . -729) 30874) ((-1052 . -1076) T) ((-706 . -238) NIL) ((-493 . -526) 30817) ((-959 . -19) 30801) ((-959 . -616) 30778) ((-1098 . -1236) 30649) ((-828 . -626) NIL) ((-828 . -625) 30631) ((-1230 . -1069) 30514) ((-1022 . -1074) 30464) ((-425 . -625) 30446) ((-258 . -296) 30423) ((-370 . -1236) 30402) ((-364 . -1236) 30381) ((-356 . -1236) 30360) ((-257 . -296) 30337) ((-499 . -925) NIL) ((-326 . -29) 30307) ((-108 . -1236) T) ((-1021 . -1130) T) ((-219 . -925) NIL) ((-1230 . -652) 30204) ((-930 . -1074) 30156) ((-1098 . -1056) 30052) ((-1022 . -111) 29986) ((-723 . -1069) 29951) ((-1021 . -23) T) ((-930 . -111) 29889) ((-749 . -707) 29873) ((-723 . -652) 29838) ((-273 . -233) 29822) ((-439 . -1074) 29806) ((-390 . -1076) T) ((-246 . -628) 29604) ((-706 . -1224) NIL) ((-499 . -660) 29554) ((-486 . -658) 29436) ((-108 . -897) 29418) ((-108 . -899) 29400) ((-706 . -1221) NIL) ((-219 . -660) 29350) ((-370 . -1056) 29334) ((-364 . -1056) 29318) ((-337 . -319) 29256) ((-356 . -1056) 29240) ((-227 . -300) T) ((-439 . -111) 29219) ((-60 . -625) 29151) ((-171 . -174) T) ((-1138 . -862) T) ((-108 . -1056) 29111) ((-905 . -1118) T) ((-848 . -1076) T) ((-839 . -1076) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1010) 29072) ((-185 . -102) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-419 . -374) T) ((-246 . -1067) 29050) ((-1168 . -34) T) ((-489 . -936) T) ((-1017 . -651) 28998) ((-258 . -616) 28975) ((-257 . -616) 28952) ((-1098 . -388) 28936) ((-883 . -526) 28844) ((-246 . -239) 28796) ((-1177 . -1236) T) ((-1022 . -628) 28746) ((-930 . -628) 28683) ((-836 . -625) 28665) ((-1309 . -1130) T) ((-1301 . -625) 28647) ((-1259 . -174) 28538) ((-439 . -628) 28507) ((-108 . -388) 28489) ((-108 . -349) 28471) ((-1080 . -300) T) ((-968 . -300) 28402) ((-811 . -379) 28381) ((-659 . -1236) T) ((-644 . -1236) T) ((-1309 . -23) T) ((-598 . -1069) 28356) ((-493 . -300) 28287) ((-583 . -174) T) ((-337 . -292) 28271) ((-365 . -238) T) ((-1230 . -102) T) ((-1217 . -1118) T) ((-1106 . -1118) T) ((-1094 . -1118) T) ((-598 . -652) 28246) ((-83 . -625) 28228) ((-1202 . -856) T) ((-1201 . -856) T) ((-723 . -102) T) ((-366 . -360) 28207) ((-620 . -1118) T) ((-363 . -360) 28186) ((-355 . -360) 28165) ((-487 . -1118) T) ((-1208 . -231) 28115) ((-273 . -260) 28077) ((-1160 . -132) T) ((-620 . -622) 28053) ((-1098 . -914) 27986) ((-1022 . -1067) T) ((-930 . -1067) T) ((-487 . -622) 27965) ((-1186 . -804) NIL) ((-1186 . -807) NIL) ((-1120 . -626) 27926) ((-1120 . -625) 27908) ((-491 . -231) 27858) ((-1022 . -249) T) ((-1022 . -239) T) ((-974 . -1118) 27808) ((-439 . -1067) T) ((-930 . -249) T) ((-878 . -132) T) ((-48 . -238) T) ((-711 . -464) T) ((-855 . -1130) 27787) ((-108 . -914) NIL) ((-1230 . -294) 27753) ((-1131 . -1236) T) ((-884 . -860) 27732) ((-1017 . -25) T) ((-921 . -738) T) ((-171 . -526) 27644) ((-1017 . -21) T) ((-921 . -485) T) ((-419 . -1130) T) ((-499 . -806) T) ((-499 . -803) T) ((-926 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -235) 27631) ((-219 . -738) T) ((-855 . -23) 27583) ((-1203 . -1118) T) ((-670 . -1069) 27567) ((-1202 . -1118) T) ((-536 . -628) 27548) ((-1201 . -1118) T) ((-329 . -317) 27527) ((-1053 . -241) 27473) ((-670 . -652) 27443) ((-419 . -23) T) ((-959 . -626) 27404) ((-959 . -625) 27316) ((-656 . -501) 27300) ((-45 . -1028) 27250) ((-1131 . -1056) 27077) ((-629 . -985) T) ((-503 . -102) T) ((-341 . -625) 27059) ((-1011 . -296) 27026) ((-605 . -663) 27008) ((-131 . -1118) T) ((-129 . -1118) T) ((-605 . -384) 26990) ((-354 . -1293) 26967) ((-451 . -625) 26949) ((-1259 . -526) 26896) ((-1105 . -1069) 26739) ((-1045 . -1236) T) ((-883 . -300) T) ((-1191 . -296) 26666) ((-1105 . -652) 26515) ((-1018 . -1013) 26499) ((-794 . -1069) 26322) ((-792 . -1069) 26165) ((-794 . -652) 25994) ((-792 . -652) 25843) ((-488 . -1236) T) ((-475 . -1236) T) ((-598 . -102) T) ((-473 . -1069) 25814) ((-466 . -1069) 25657) ((-676 . -658) 25626) ((-635 . -464) 25605) ((-473 . -652) 25576) ((-466 . -652) 25425) ((-366 . -658) 25362) ((-363 . -658) 25299) ((-355 . -658) 25236) ((-273 . -658) 25146) ((-253 . -658) 25056) ((-1301 . -393) 25028) ((-529 . -1118) T) ((-118 . -464) T) ((-1216 . -102) T) ((-1110 . -1118) 24998) ((-1052 . -1118) T) ((-1133 . -93) T) ((-906 . -862) T) ((-1278 . -111) 24867) ((-362 . -1240) T) ((-1278 . -1074) 24750) ((-1131 . -388) 24719) ((-1271 . -1074) 24554) ((-1250 . -1074) 24344) ((-1271 . -111) 24165) ((-1250 . -111) 23934) ((-1230 . -319) 23921) ((-1021 . -132) T) ((-926 . -658) 23871) ((-376 . -625) 23853) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1074) 23813) ((-607 . -1074) 23696) ((-593 . -1069) 23661) ((-530 . -1069) 23606) ((-372 . -1118) T) ((-332 . -1118) T) ((-258 . -625) 23567) ((-257 . -625) 23528) ((-593 . -652) 23493) ((-530 . -652) 23438) ((-706 . -421) 23405) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -909) 23355) ((-670 . -102) T) ((-608 . -111) 23308) ((-607 . -111) 23177) ((-390 . -1118) T) ((-347 . -102) T) ((-171 . -300) 23088) ((-1249 . -860) 23041) ((-726 . -1076) T) ((-1165 . -526) 22974) ((-1209 . -847) 22958) ((-1131 . -914) 22890) ((-848 . -1118) T) ((-839 . -1118) T) ((-837 . -1118) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -897) 22874) ((-110 . -1236) T) ((-1105 . -102) T) ((-1081 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1278 . -628) 22756) ((-1271 . -628) 22499) ((-473 . -102) T) ((-466 . -102) T) ((-1250 . -628) 22294) ((-246 . -807) 22273) ((-246 . -804) 22252) ((-661 . -102) T) ((-608 . -628) 22210) ((-607 . -628) 22092) ((-1259 . -300) 22003) ((-676 . -646) 21987) ((-188 . -625) 21969) ((-656 . -296) 21921) ((-1052 . -729) 21905) ((-583 . -300) T) ((-979 . -660) 21830) ((-1309 . -132) T) ((-747 . -660) 21790) ((-727 . -660) 21777) ((-284 . -102) T) ((-465 . -660) 21707) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1278 . -1067) T) ((-1271 . -1067) T) ((-1250 . -1067) T) ((-519 . -658) 21689) ((-332 . -729) 21671) ((-1278 . -239) 21630) ((-1271 . -249) 21609) ((-1271 . -239) 21561) ((-1250 . -239) 21448) ((-1250 . -249) 21427) ((-1230 . -38) 21324) ((-608 . -1067) T) ((-607 . -1067) T) ((-1022 . -807) T) ((-1022 . -804) T) ((-989 . -807) T) ((-989 . -804) T) ((-884 . -1076) T) ((-109 . -625) 21306) ((-706 . -464) T) ((-390 . -729) 21271) ((-430 . -660) 21245) ((-882 . -881) 21229) ((-723 . -38) 21194) ((-607 . -239) 21153) ((-40 . -736) 21125) ((-362 . -339) 21102) ((-362 . -374) T) ((-1098 . -317) 21053) ((-304 . -1130) 20934) ((-1124 . -1236) T) ((-1017 . -235) 20907) ((-173 . -102) T) ((-1253 . -625) 20874) ((-855 . -132) 20826) ((-656 . -1274) 20810) ((-848 . -729) 20780) ((-839 . -729) 20750) ((-494 . -1236) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-656 . -616) 20727) ((-419 . -132) T) ((-532 . -678) 20711) ((-108 . -317) T) ((-304 . -23) 20594) ((-532 . -663) 20578) ((-706 . -414) NIL) ((-532 . -384) 20562) ((-301 . -625) 20544) ((-91 . -1118) 20522) ((-108 . -1040) T) ((-576 . -144) T) ((-1286 . -152) 20506) ((-494 . -1056) 20333) ((-1272 . -146) 20294) ((-1272 . -148) 20255) ((-1072 . -1236) T) ((-1011 . -625) 20237) ((-830 . -1236) T) ((-874 . -625) 20219) ((-828 . -1074) 20062) ((-1297 . -93) T) ((-1296 . -93) T) ((-1191 . -626) NIL) ((-1114 . -1118) T) ((-1108 . -1118) T) ((-1105 . -319) 20049) ((-1091 . -1118) T) ((-229 . -1236) T) ((-1084 . -1118) T) ((-1054 . -1118) T) ((-1037 . -1118) T) ((-794 . -319) 20036) ((-792 . -319) 20023) ((-1191 . -625) 20005) ((-828 . -111) 19834) ((-1143 . -625) 19816) ((-638 . -1118) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 19803) ((-495 . -1118) T) ((-1143 . -626) 19551) ((-1052 . -174) T) ((-959 . -298) 19528) ((-220 . -1118) T) ((-866 . -625) 19510) ((-620 . -526) 19293) ((-81 . -628) 19234) ((-830 . -1056) 19218) ((-487 . -526) 19010) ((-979 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1130) T) ((-1198 . -625) 18992) ((-225 . -102) T) ((-494 . -388) 18961) ((-527 . -1118) T) ((-522 . -1118) T) ((-520 . -1118) T) ((-811 . -660) 18935) ((-1042 . -464) T) ((-974 . -526) 18868) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-246 . -379) 18847) ((-390 . -174) T) ((-1270 . -1076) T) ((-1249 . -1076) T) ((-227 . -1020) T) ((-828 . -628) 18584) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1240) T) ((-1160 . -651) 18532) ((-592 . -881) 18516) ((-1301 . -1074) 18500) ((-1178 . -1212) 18476) ((-713 . -568) T) ((-127 . -1118) 18454) ((-726 . -1118) T) ((-670 . -38) 18424) ((-494 . -914) 18356) ((-255 . -1118) T) ((-189 . -1118) T) ((-365 . -414) T) ((-326 . -148) 18335) ((-326 . -146) 18314) ((-129 . -526) NIL) ((-117 . -568) T) ((-323 . -148) 18270) ((-323 . -146) 18226) ((-48 . -464) T) ((-163 . -1118) T) ((-158 . -1118) T) ((-1178 . -107) 18173) ((-794 . -1170) 18151) ((-701 . -34) T) ((-1301 . -111) 18130) ((-562 . -34) T) ((-496 . -107) 18114) ((-258 . -298) 18091) ((-257 . -298) 18068) ((-1242 . -856) T) ((-883 . -296) 18019) ((-45 . -1236) T) ((-1230 . -916) 18000) ((-829 . -1236) T) ((-828 . -1067) T) ((-674 . -658) 17969) ((-1197 . -47) 17946) ((-828 . -336) 17908) ((-1105 . -38) 17757) ((-828 . -239) 17736) ((-794 . -38) 17565) ((-792 . -38) 17414) ((-1133 . -502) 17395) ((-466 . -38) 17244) ((-1133 . -625) 17210) ((-1136 . -102) T) ((-656 . -626) 17171) ((-656 . -625) 17083) ((-593 . -1170) T) ((-530 . -1170) T) ((-1165 . -501) 17067) ((-354 . -1069) 17012) ((-1222 . -1118) 16990) ((-1160 . -25) T) ((-1160 . -21) T) ((-354 . -652) 16935) ((-1301 . -628) 16884) ((-486 . -1076) T) ((-1242 . -1118) T) ((-1250 . -804) NIL) ((-1250 . -807) NIL) ((-1017 . -862) 16863) ((-850 . -1118) T) ((-831 . -625) 16845) ((-878 . -21) T) ((-878 . -25) T) ((-811 . -738) T) ((-176 . -1240) T) ((-593 . -38) 16810) ((-530 . -38) 16775) ((-398 . -625) 16757) ((-343 . -102) T) ((-334 . -625) 16739) ((-171 . -296) 16697) ((-63 . -1236) T) ((-112 . -102) T) ((-884 . -1118) T) ((-176 . -568) T) ((-726 . -729) 16667) ((-304 . -132) 16550) ((-227 . -625) 16532) ((-227 . -626) 16462) ((-1021 . -651) 16401) ((-1301 . -1067) T) ((-1138 . -148) T) ((-644 . -1212) 16376) ((-743 . -925) 16355) ((-605 . -34) T) ((-659 . -107) 16339) ((-644 . -107) 16285) ((-635 . -909) 16242) ((-1259 . -296) 16169) ((-743 . -660) 16058) ((-305 . -1236) T) ((-1197 . -1056) 15954) ((-959 . -630) 15931) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -909) NIL) ((-1186 . -925) NIL) ((-1080 . -626) 15846) ((-1080 . -625) 15828) ((-968 . -625) 15810) ((-725 . -502) 15760) ((-354 . -102) T) ((-258 . -1074) 15681) ((-257 . -1074) 15602) ((-406 . -102) T) ((-31 . -1118) T) ((-968 . -626) 15463) ((-725 . -625) 15398) ((-1299 . -1229) 15367) ((-493 . -625) 15349) ((-493 . -626) 15210) ((-273 . -423) 15194) ((-253 . -423) 15178) ((-323 . -238) NIL) ((-258 . -111) 15094) ((-257 . -111) 15010) ((-1193 . -660) 14935) ((-1192 . -660) 14832) ((-1186 . -660) 14684) ((-1144 . -660) 14609) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1021 . -25) T) ((-1021 . -21) T) ((-885 . -1118) 14560) ((-40 . -1069) 14505) ((-884 . -729) 14457) ((-40 . -652) 14402) ((-390 . -300) T) ((-171 . -1020) 14353) ((-1105 . -916) 14288) ((-706 . -399) T) ((-1017 . -1015) 14272) ((-713 . -1130) T) ((-706 . -167) 14254) ((-794 . -916) 14197) ((-792 . -916) 14181) ((-1270 . -1118) T) ((-1249 . -1118) T) ((-1183 . -102) T) ((-326 . -1221) 14160) ((-326 . -1224) 14139) ((-466 . -916) 14116) ((-326 . -975) 14095) ((-135 . -1130) T) ((-117 . -1130) T) ((-665 . -1236) T) ((-614 . -1284) 14079) ((-713 . -23) T) ((-614 . -1118) 14029) ((-326 . -95) 14008) ((-91 . -526) 13941) ((-176 . -374) T) ((-258 . -628) 13739) ((-257 . -628) 13537) ((-326 . -35) 13516) ((-620 . -501) 13450) ((-135 . -23) T) ((-117 . -23) T) ((-982 . -102) T) ((-730 . -1118) T) ((-487 . -501) 13387) ((-419 . -651) 13335) ((-665 . -1056) 13231) ((-974 . -501) 13215) ((-366 . -1076) T) ((-363 . -1076) T) ((-355 . -1076) T) ((-273 . -1076) T) ((-253 . -1076) T) ((-883 . -626) NIL) ((-883 . -625) 13197) ((-1297 . -502) 13178) ((-1296 . -502) 13159) ((-1309 . -21) T) ((-1297 . -625) 13125) ((-1296 . -625) 13091) ((-583 . -1020) T) ((-743 . -738) T) ((-1309 . -25) T) ((-258 . -1067) 13069) ((-257 . -1067) 13047) ((-72 . -1236) T) ((-1160 . -235) 13020) ((-258 . -239) 12972) ((-257 . -239) 12924) ((-1138 . -238) T) ((-40 . -102) T) ((-926 . -1076) T) ((-706 . -909) NIL) ((-1200 . -102) T) ((-129 . -501) 12906) ((-1193 . -738) T) ((-1192 . -738) T) ((-1186 . -738) T) ((-1186 . -803) NIL) ((-1186 . -806) NIL) ((-970 . -102) T) ((-937 . -102) T) ((-882 . -1069) 12893) ((-1144 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-882 . -652) 12880) ((-558 . -625) 12862) ((-486 . -1118) T) ((-350 . -1130) T) ((-176 . -1130) T) ((-329 . -936) 12841) ((-1270 . -729) 12682) ((-884 . -174) T) ((-1249 . -729) 12496) ((-855 . -21) 12448) ((-855 . -25) 12400) ((-251 . -1167) 12384) ((-127 . -526) 12317) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12083) ((-171 . -625) 12065) ((-176 . -23) T) ((-656 . -298) 12042) ((-532 . -34) T) ((-913 . -625) 12024) ((-89 . -1236) T) ((-853 . -625) 12006) ((-820 . -625) 11988) ((-781 . -625) 11970) ((-689 . -625) 11952) ((-246 . -660) 11785) ((-629 . -113) T) ((-1195 . -1118) T) ((-1191 . -1074) 11608) ((-1168 . -1236) T) ((-1143 . -1074) 11451) ((-866 . -1074) 11435) ((-1253 . -630) 11419) ((-1191 . -111) 11228) ((-1143 . -111) 11057) ((-866 . -111) 11036) ((-1243 . -862) T) ((-1259 . -626) NIL) ((-1259 . -625) 11018) ((-354 . -1170) T) ((-867 . -625) 11000) ((-1094 . -296) 10979) ((-80 . -1236) T) ((-921 . -1236) T) ((-1022 . -925) NIL) ((-1230 . -658) 10889) ((-620 . -296) 10865) ((-1222 . -526) 10798) ((-499 . -1236) T) ((-583 . -625) 10780) ((-487 . -296) 10759) ((-1105 . -233) 10743) ((-529 . -93) T) ((-1022 . -660) 10693) ((-219 . -1236) T) ((-1021 . -235) 10659) ((-974 . -296) 10611) ((-299 . -936) T) ((-829 . -317) 10590) ((-882 . -102) T) ((-794 . -233) 10574) ((-930 . -660) 10526) ((-723 . -658) 10476) ((-706 . -736) 10443) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10408) ((-499 . -897) 10390) ((-499 . -899) 10372) ((-486 . -729) 10213) ((-219 . -897) 10195) ((-64 . -1236) T) ((-219 . -899) 10177) ((-619 . -25) T) ((-439 . -660) 10151) ((-1191 . -628) 9920) ((-499 . -1056) 9880) ((-884 . -526) 9792) ((-1143 . -628) 9584) ((-866 . -628) 9502) ((-219 . -1056) 9462) ((-246 . -34) T) ((-1018 . -1118) 9440) ((-592 . -1069) 9427) ((-576 . -1069) 9414) ((-507 . -1069) 9379) ((-1270 . -174) 9310) ((-1249 . -174) 9241) ((-592 . -652) 9228) ((-576 . -652) 9215) ((-507 . -652) 9180) ((-724 . -146) 9159) ((-724 . -148) 9138) ((-713 . -132) T) ((-137 . -477) 9115) ((-1165 . -625) 9047) ((-670 . -668) 9031) ((-129 . -296) 8981) ((-117 . -132) T) ((-489 . -1240) T) ((-620 . -616) 8957) ((-487 . -616) 8936) ((-347 . -346) 8905) ((-609 . -1118) T) ((-597 . -1118) T) ((-548 . -1118) T) ((-489 . -568) T) ((-1191 . -1067) T) ((-1143 . -1067) T) ((-866 . -1067) T) ((-246 . -806) 8884) ((-246 . -805) 8863) ((-1191 . -336) 8840) ((-246 . -738) 8818) ((-974 . -19) 8802) ((-499 . -388) 8784) ((-499 . -349) 8766) ((-1143 . -336) 8738) ((-365 . -1293) 8715) ((-219 . -388) 8697) ((-219 . -349) 8679) ((-974 . -616) 8656) ((-1191 . -239) T) ((-1282 . -1118) T) ((-676 . -1118) T) ((-657 . -1118) T) ((-1208 . -1118) T) ((-1105 . -260) 8593) ((-598 . -658) 8553) ((-366 . -1118) T) ((-363 . -1118) T) ((-355 . -1118) T) ((-273 . -1118) T) ((-253 . -1118) T) ((-84 . -1236) T) ((-128 . -102) 8531) ((-122 . -102) 8509) ((-1249 . -526) 8369) ((-1208 . -622) 8348) ((-1159 . -1118) T) ((-1133 . -628) 8329) ((-1098 . -936) 8280) ((-491 . -1118) T) ((-1022 . -806) T) ((-1022 . -803) T) ((-491 . -622) 8259) ((-258 . -807) 8238) ((-258 . -804) 8217) ((-257 . -807) 8196) ((-40 . -1170) NIL) ((-257 . -804) 8175) ((-1022 . -738) T) ((-129 . -19) 8157) ((-989 . -806) T) ((-711 . -1069) 8122) ((-930 . -738) T) ((-926 . -1118) T) ((-905 . -625) 8104) ((-129 . -616) 8079) ((-711 . -652) 8044) ((-91 . -501) 8028) ((-499 . -914) NIL) ((-884 . -300) T) ((-227 . -1074) 7993) ((-848 . -296) 7972) ((-219 . -914) NIL) ((-845 . -1130) 7951) ((-59 . -1118) 7901) ((-531 . -1118) 7879) ((-528 . -1118) 7829) ((-509 . -1118) 7807) ((-508 . -1118) 7757) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7688) ((-370 . -936) T) ((-364 . -936) T) ((-356 . -936) T) ((-227 . -111) 7644) ((-845 . -23) 7596) ((-439 . -738) T) ((-108 . -936) T) ((-40 . -38) 7541) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7500) ((-326 . -464) 7479) ((-323 . -464) T) ((-614 . -526) 7412) ((-419 . -235) 7385) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7249) ((-304 . -21) 7132) ((-45 . -1212) 7111) ((-66 . -625) 7093) ((-55 . -102) T) ((-347 . -658) 7075) ((-1287 . -102) T) ((-1286 . -102) 7025) ((-45 . -107) 6975) ((-831 . -628) 6959) ((-1278 . -660) 6884) ((-1271 . -660) 6781) ((-1250 . -660) 6633) ((-1250 . -925) NIL) ((-1217 . -625) 6615) ((-1120 . -437) 6599) ((-1120 . -379) 6578) ((-398 . -628) 6562) ((-334 . -628) 6546) ((-1209 . -102) T) ((-1114 . -93) T) ((-1081 . -1236) T) ((-1105 . -658) 6456) ((-1080 . -1074) 6443) ((-1080 . -111) 6428) ((-968 . -1074) 6271) ((-968 . -111) 6100) ((-794 . -658) 6010) ((-792 . -658) 5920) ((-635 . -1069) 5907) ((-676 . -729) 5891) ((-635 . -652) 5878) ((-493 . -1074) 5721) ((-489 . -374) T) ((-473 . -658) 5677) ((-466 . -658) 5587) ((-227 . -628) 5537) ((-366 . -729) 5489) ((-363 . -729) 5441) ((-118 . -1069) 5386) ((-355 . -729) 5338) ((-273 . -729) 5187) ((-253 . -729) 5036) ((-1108 . -93) T) ((-1091 . -93) T) ((-118 . -652) 4981) ((-1084 . -93) T) ((-959 . -663) 4965) ((-1075 . -1118) 4943) ((-493 . -111) 4772) ((-1054 . -93) T) ((-1037 . -93) T) ((-959 . -384) 4756) ((-254 . -102) T) ((-979 . -47) 4735) ((-74 . -625) 4717) ((-724 . -238) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1118) T) ((-633 . -1130) T) ((-1106 . -625) 4699) ((-638 . -93) T) ((-1094 . -625) 4681) ((-926 . -729) 4646) ((-127 . -501) 4630) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1236) T) ((-220 . -93) T) ((-620 . -625) 4612) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4594) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4553) ((-523 . -1118) T) ((-519 . -1118) T) ((-128 . -319) 4491) ((-122 . -319) 4429) ((-608 . -660) 4403) ((-607 . -660) 4328) ((-593 . -658) 4278) ((-227 . -1067) T) ((-530 . -658) 4208) ((-390 . -1020) T) ((-227 . -249) T) ((-227 . -239) T) ((-1080 . -628) 4180) ((-1080 . -630) 4161) ((-974 . -626) 4122) ((-974 . -625) 4034) ((-968 . -628) 3823) ((-882 . -38) 3810) ((-725 . -628) 3760) ((-1270 . -300) 3711) ((-1249 . -300) 3662) ((-493 . -628) 3447) ((-1138 . -464) T) ((-514 . -862) T) ((-326 . -1157) 3426) ((-1017 . -148) 3405) ((-1017 . -146) 3384) ((-507 . -319) 3371) ((-305 . -1212) 3350) ((-1203 . -625) 3332) ((-1202 . -625) 3314) ((-1201 . -625) 3296) ((-883 . -1074) 3241) ((-489 . -1130) T) ((-140 . -847) 3223) ((-115 . -847) 3204) ((-635 . -102) T) ((-1222 . -501) 3188) ((-258 . -379) 3167) ((-257 . -379) 3146) ((-1080 . -1067) T) ((-305 . -107) 3096) ((-131 . -625) 3078) ((-129 . -626) NIL) ((-129 . -625) 3022) ((-118 . -102) T) ((-968 . -1067) T) ((-883 . -111) 2951) ((-489 . -23) T) ((-465 . -1236) T) ((-493 . -1067) T) ((-1080 . -239) T) ((-968 . -336) 2920) ((-40 . -916) 2872) ((-493 . -336) 2829) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2740) ((-253 . -174) 2651) ((-979 . -1056) 2547) ((-529 . -502) 2528) ((-747 . -1056) 2499) ((-529 . -625) 2465) ((-430 . -1236) 2354) ((-1123 . -102) T) ((-1110 . -625) 2313) ((-1052 . -625) 2295) ((-706 . -1069) 2245) ((-1299 . -152) 2229) ((-1297 . -628) 2210) ((-1296 . -628) 2191) ((-1291 . -625) 2173) ((-1278 . -738) T) ((-706 . -652) 2123) ((-1271 . -738) T) ((-1250 . -803) NIL) ((-1250 . -806) NIL) ((-171 . -1074) 2033) ((-926 . -174) T) ((-883 . -628) 1963) ((-1250 . -738) T) ((-1021 . -353) 1937) ((-225 . -658) 1889) ((-1018 . -526) 1822) ((-855 . -862) 1801) ((-576 . -1170) T) ((-486 . -300) 1752) ((-608 . -738) T) ((-372 . -625) 1734) ((-332 . -625) 1716) ((-430 . -1056) 1612) ((-607 . -738) T) ((-419 . -862) 1563) ((-171 . -111) 1459) ((-845 . -132) 1411) ((-749 . -152) 1395) ((-1286 . -319) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1028) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1040) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1040) T) ((-883 . -1067) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -925) 1023) ((-1310 . -1130) T) ((-1259 . -1074) 846) ((-867 . -1074) 830) ((-883 . -249) T) ((-883 . -239) NIL) ((-701 . -1236) T) ((-1310 . -23) T) ((-828 . -660) 719) ((-562 . -1236) T) ((-430 . -349) 703) ((-583 . -1074) 690) ((-1259 . -111) 499) ((-713 . -651) 481) ((-867 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1208 . -526) 30) ((-888 . -1118) T) ((-693 . -1118) T) ((-688 . -1118) T) ((-674 . -1118) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 5f122365..b9c5a50d 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3485764563)
-(4462 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3485769901)
+(4464 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -82,7 +82,8 @@
|TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
|DrawNumericHack| |TopLevelDrawFunctions|
|TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0|
- |DrawOptionFunctions1| |DrawOption|
+ |DrawOptionFunctions1| |DrawOption| |DifferentialSpaceExtension&|
+ |DifferentialSpaceExtension|
|DifferentialSparseMultivariatePolynomial|
|DifferentialVariableCategory&| |DifferentialVariableCategory|
|e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType|
@@ -487,666 +488,667 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |fortranLiteral| |divideIfCan!| |parents|
- |OMputObject| |prod| |leftMinimalPolynomial| |euler|
- |genericLeftTrace| |mainPrimitivePart| |systemCommand| |inv| |ravel|
- |match?| |characteristicSerie| |principalAncestors|
- |factorSquareFreeByRecursion| |representationType| |epilogue|
- |flexibleArray| |autoCoerce| |exactQuotient!|
- |genericRightMinimalPolynomial| |pToHdmp| |in?| |rur| |ground?|
- |reshape| |iidsum| |insertTop!| |toseInvertibleSet| |readIfCan!|
- |polygamma| |normalForm| |minColIndex| |UpTriBddDenomInv|
- |expintfldpoly| |replace| |ground| |doublyTransitive?| |baseRDEsys|
- |printInfo!| |mkAnswer| |stoseInvertibleSet| |morphism|
- |stoseInvertibleSetreg| |var2StepsDefault| |ODESolve| |writeByte!|
- |leadingMonomial| |normal| |doubleResultant| |ldf2lst| |sign|
- |permutation| |midpoint| |sqfree| |sizeLess?| |atoms| |monomRDEsys|
- |changeWeightLevel| |leadingCoefficient| |ptFunc| |cAsech|
- |acothIfCan| |groebner?| |asinIfCan| |listLoops| |orthonormalBasis|
- |LiePolyIfCan| |doubleRank| |dimensionOfIrreducibleRepresentation|
- |primitiveMonomials| |close| |quote| |byteBuffer| |lazyIntegrate|
- |lazyPseudoRemainder| |lllp| F |sPol| |isOp| |leastMonomial|
- |setleft!| |ratpart| |reductum| |update| |cyclicEntries|
- |identitySquareMatrix| |cCot| |iiatan| |car| |accuracyIF| |has?|
- |conical| |iterationVar| |perspective| |display| |csubst|
- |uncouplingMatrices| |exponential| |children| |insertionSort!|
- |monicModulo| |lineColorDefault| |polCase| |medialSet| |d01asf|
- |exponents| |reopen!| |nextPrimitiveNormalPoly| |scripted?| |c06gqf|
- |sample| |factorset| |refine| |split| |specialTrigs| |lflimitedint|
- |linSolve| |definingInequation| |pointData| |elaborateFile| |laguerre|
- |matrixDimensions| |mirror| |call| |upperCase?| |stFuncN|
- |karatsubaOnce| |triangSolve| |neglist| |printTypes| |normalDeriv|
- |denomRicDE| |position| |clearFortranOutputStack| |preprocess|
- |abelianGroup| |expr| |cRationalPower| |chvar| |irForm|
- |complexNormalize| |modularFactor| |baseRDE| |input| ** |fill!|
- |patternVariable| |tab1| |mix| |operation| |index?| |outputMeasure|
- |postfix| |realElementary| |taylorRep| |library| |odd?| |mesh|
- |resize| |leftCharacteristicPolynomial| |f02aff| |complexEigenvalues|
- |selectsecond| |resultantEuclideannaif| |extractIfCan| |hasPredicate?|
- |omError| |nthr| |viewPhiDefault| |besselJ| |fillPascalTriangle|
- |viewZoomDefault| |sorted?| |s13acf| |partialDenominators| |polygon|
- |size| |largest| |variable| |prindINFO| |modulus| |groebgen|
- |pointPlot| |compdegd| |sin2csc| |primextendedint| |chiSquare1|
- |ip4Address| |iterators| |perfectNthPower?|
- |initializeGroupForWordProblem| |mappingAst| |interpretString| |Nul|
- |rspace| |set| |chebyshevU| |squareFreePolynomial| |order|
- |bombieriNorm| |genericLeftDiscriminant| |modifyPointData| |zeroDim?|
- |intChoose| |doubleFloatFormat| |acschIfCan| |s17adf| |countable?|
- |generalSqFr| |nextIrreduciblePoly| |tracePowMod| |previous|
- |discreteLog| |module| |iprint| |nullary| |OMputString| |prinpolINFO|
- |variationOfParameters| |createGenericMatrix| |gramschmidt|
- |factorsOfCyclicGroupSize| |leftTraceMatrix| |irCtor| |hostByteOrder|
- |pow| |generic?| |numericalIntegration| |getConstant| |shrinkable|
- |diagonals| |littleEndian| |dihedral| |withPredicates|
- |showArrayValues| |OMgetBVar| |numericalOptimization| |reducedSystem|
- |closed| |regime| |currentCategoryFrame| |cardinality|
- |generalizedInverse| |signatureAst| |laplace| |binaryFunction| |say|
- |solid| |iiacot| |true| |setValue!| |intensity| |arguments|
- |removeDuplicates| |build| |is?| |signAround| |resultantnaif| |plus!|
- |normalizeIfCan| |quasiMonic?| |rootNormalize| |category| |indices|
- |solveLinear| |e01bgf| |complexNumericIfCan|
- |removeSuperfluousQuasiComponents| |reset| |subTriSet?| |node|
- |splitConstant| |exprHasAlgebraicWeight| |differentialVariables|
- |ratDsolve| |domain| |iipow| |var2Steps| |drawToScale| |d01gaf|
- |setEmpty!| |tanh2coth| |insert| |leftTrace| |f04asf| |pade| |package|
- FG2F |internalAugment| |irreducibleFactors| |write| |denominator|
- |superscript| |inc| |pushdown| |primitiveElement| |updateStatus!|
- |exp| |lfunc| |cartesian| |parabolic| |save| |stoseLastSubResultant|
- |expPot| |infRittWu?| |minordet| |show| |Is| |create| |c06ekf|
- |s13adf| |complexEigenvectors| |weierstrass| |coerceImages|
- |semiResultantEuclidean1| |cCoth| |bfEntry| |selectAndPolynomials|
- |qqq| |kmax| |testDim| |d02gaf| |stoseSquareFreePart|
- |zeroDimensional?| |trace| |e02ddf| |hue| |sec2cos|
- |possiblyInfinite?| |flagFactor| |float?| |inRadical?| |s19acf|
- |integers| |variable?| |getStream| |acosIfCan|
- |generalizedContinuumHypothesisAssumed| |dn| |rationalFunction| |f2st|
- |multiEuclidean| |safeCeiling| |varList| |triangularSystems|
- |realRoots| |rischDEsys| |finiteBound| |rightCharacteristicPolynomial|
- |bandedJacobian| |iisec| |diff| |coth2trigh| |moduloP| |pole?|
- |c06frf| |extensionDegree| |zeroSquareMatrix|
- |removeRoughlyRedundantFactorsInContents| |resetNew| |inputBinaryFile|
- |diagonalProduct| |bubbleSort!| |open| |tValues| |leadingIdeal|
- |f02aaf| |monomialIntegrate| |tab| |getPickedPoints| |supersub|
- |frobenius| |d02ejf| |argscript| |pleskenSplit| |lprop| |spherical|
- |dequeue| |minPoints| |setRealSteps| |uniform|
- |SturmHabichtCoefficients| |recur| |obj| |retractIfCan|
- |rootDirectory| |rotate| |f02bbf| |double| |complexRoots|
- |domainTemplate| |printingInfo?| |writeInt8!| |cache| |constant|
- |deepExpand| |fortranInteger| |totalDifferential| |generic| |c02agf|
- |nthFactor| |decimal| |legendre| |operations| |isList| |hasoln|
- |mainVariable?| |leadingSupport| |startTableInvSet!|
- |fractionFreeGauss!| |isTimes| |every?| |content| |closedCurve|
- |dictionary| |lazyIrreducibleFactors| |putProperty| |OMreadStr|
- |transcendent?| |clipBoolean| |log10| |extendedResultant|
- |addMatchRestricted| |adaptive3D?| |subCase?| |dihedralGroup| |maxrow|
- |normalize| |notelem| |commutativeEquality| |bitand|
- |solveLinearlyOverQ| |infinity| |characteristicSet| |droot|
- |setright!| |getSyntaxFormsFromFile| |front| |OMputEndApp| |inspect|
- |RittWuCompare| |mainKernel| |bitior| |pop!| |members| |getMatch|
- |halfExtendedSubResultantGcd2| |removeCoshSq| |transform| |flexible?|
- |safetyMargin| |c06fqf| |keys| |digits| |lfintegrate| |changeMeasure|
- |cscIfCan| |setchildren!| |leadingExponent| |OMgetSymbol| |heap|
- |OMmakeConn| |kernel| |quasiMonicPolynomials| |prem| |map| |csc2sin|
- |isQuotient| |coefficient| |viewWriteDefault|
- |constantCoefficientRicDE| |cubic| |inverseLaplace| |setLabelValue|
- |semicolonSeparate| |list| |positiveSolve| |setProperty|
- |multiEuclideanTree| |cCsc| |exprex| |po| |mathieu22| |print| |lhs|
- |ScanRoman| |jordanAlgebra?| |removeSuperfluousCases| |draw|
- |quotientByP| |generalizedContinuumHypothesisAssumed?| |updatF|
- |f04qaf| |numFunEvals3D| |resolve| |cycleRagits| |rhs|
- |subResultantGcdEuclidean| |crushedSet| |socf2socdf| |bitTruth|
- |patternMatch| |tanintegrate| |cycleSplit!| |drawComplex| |d01bbf|
- |digit?| |subMatrix| |c02aff| |dfRange| |padicallyExpand|
- |internalIntegrate0| |currentEnv| |getMeasure| |nativeModuleExtension|
- |polyred| |square?| |powerAssociative?| LODO2FUN |close!|
- |rowEchLocal| |badNum| |extendedIntegrate| |primintfldpoly| |convert|
- |closeComponent| |height| |argumentListOf| |headReduced?|
- |complexExpand| |f04mcf| |ParCond| |cycleEntry| |pointColorDefault|
- |makeObject| |plenaryPower| |summation| |headReduce| |Ci| |f02axf|
- |getOrder| |besselK| |makingStats?| |PDESolve| |setStatus|
- |topPredicate| |coef| |style| |getProperties| |e04dgf| |part?| |parts|
- |viewWriteAvailable| |generalizedEigenvectors| |trailingCoefficient|
- |nonQsign| |lowerPolynomial| |dom| |f01bsf| |measure|
- |solveLinearPolynomialEquationByFractions| |myDegree|
- |pmComplexintegrate| |chineseRemainder| |createMultiplicationTable|
- |inconsistent?| |identity| |cAcoth| |setVariableOrder| Y
- |partialNumerators| |pseudoQuotient| |OMUnknownCD?| |localAbs|
- |fprindINFO| |basis| |f04arf| |enterInCache| |tanh2trigh|
- |associatorDependence| |roman| |magnitude|
- |semiLastSubResultantEuclidean| |newTypeLists| |scan| |recolor|
- |label| |conjug| |getBadValues| |edf2efi| |nthExpon| |mkPrim|
- |quartic| |divisor| |palgextint0| |compiledFunction| |entry|
- |mapSolve| |clearTable!| |sortConstraints| |virtualDegree| |seed|
- |semiResultantEuclidean2| |f02fjf| |discriminant| |subQuasiComponent?|
- |reducedQPowers| |degreePartition| |appendPoint| |zeroMatrix|
- |subHeight| |primPartElseUnitCanonical!| |basisOfNucleus| |bringDown|
- |block| |negative?| |viewPosDefault| |fi2df|
- |semiResultantEuclideannaif| |diagonal| |iFTable| |algebraicDecompose|
- |fixedPoint| |s18aef| |setAdaptive3D| |schwerpunkt| |slex| |OMgetType|
- |numberOfComponents| |factorAndSplit| |ran| |exp1| |OMUnknownSymbol?|
- |high| |particularSolution| |structuralConstants|
- |constantToUnaryFunction| |d02gbf| |radicalEigenvectors|
- |upDateBranches| |genericLeftTraceForm| |incr|
- |solveLinearPolynomialEquationByRecursion| |showTheRoutinesTable|
- |status| |sumOfKthPowerDivisors| |isobaric?| |makeCos| |pointLists|
- |sequence| |makeYoungTableau| |cAcsc| |constructor| |invertIfCan| |hi|
- |viewDeltaXDefault| |sh| |d01akf| |tail| |expIfCan| |setCondition!|
- |exprHasWeightCosWXorSinWX| |jacobian| |completeSmith| |cycleLength|
- |digit| |resultantEuclidean| |expressIdealMember| |option|
- |oblateSpheroidal| |sparsityIF| |stiffnessAndStabilityOfODEIF|
- |s18adf| |showSummary| |OMgetApp| |edf2fi| |bracket| |addBadValue|
- |permutations| |getButtonValue| |s15aef| |startTable!| |cfirst|
- |lazyPrem| |rules| |units| |pushdterm| |iicot| |btwFact| |aQuartic|
- |top| |kovacic| |subSet| |integralRepresents| |symFunc|
- |showAttributes| |c05adf| |lowerCase!| |HermiteIntegrate| |mdeg|
- |unit| |continue| |stopMusserTrials| |zeroDimPrime?|
- |nextsousResultant2| |xCoord| |OMgetEndBind| |shiftRight|
- |separateFactors| |radicalEigenvector| |antiCommutator| |ricDsolve|
- |cot2tan| |imagI| |interpolate| |factorial| |eof?|
- |internalLastSubResultant| |reduceLODE| |name| |unknown| |rotate!|
- |kroneckerDelta| |minimumDegree| |finiteBasis| |extractIndex|
- |principalIdeal| |att2Result| |comment| |internalIntegrate| |power!|
- |body| |outputBinaryFile| |e04jaf| |makeViewport2D| |OMputBind|
- |numberOfCycles| |code| |s14baf| |fullPartialFraction| |reverse!|
- |branchIfCan| |radPoly| |gbasis| |gcdPolynomial| |range| |contract|
- |lazyVariations| |showIntensityFunctions| |showAllElements| |sinhcosh|
- |sizePascalTriangle| |null| |OMreadFile| |sinIfCan| |diag|
- |OMputEndError| |isAnd| |box| |subspace| |e02dcf| |nextItem| |f04faf|
- |delta| |not| EQ |alphabetic?| |localReal?| |linGenPos|
- |mainVariables| |repeatUntilLoop| |lazyResidueClass| |insertRoot!|
- |unvectorise| |region| |and| |tubePlot| |newSubProgram| |extract!|
- |dominantTerm| |string?| |generate| |monic?| |decrease| |rightNorm|
- |setErrorBound| |or| |commaSeparate| |userOrdered?| |measure2Result|
- |matrixConcat3D| |s20adf| UP2UTS |resultantReduitEuclidean|
- |nthRootIfCan| |divisorCascade| |systemSizeIF| |xor| |getIdentifier|
- |critT| |OMReadError?| |assert| |ScanFloatIgnoreSpaces| |factorList|
- |incrementBy| |diagonalMatrix| |port| |monicRightFactorIfCan|
- |palgLODE0| |pattern| |case| |OMcloseConn| |gcdPrimitive|
- |problemPoints| |trigs| |OMread| |expand| |tanAn| |belong?|
- |removeSinSq| |mindeg| |Zero| |trapezoidal| |makeSUP| |OMlistCDs|
- |shiftLeft| |back| |exprHasLogarithmicWeights| |mapCoef| |filterWhile|
- |t| |typeLists| |endSubProgram| |One| |completeEchelonBasis|
- |radicalSolve| |reorder| |e04fdf| |geometric| |filterUntil|
- |changeThreshhold| |integralLastSubResultant| |showRegion|
- |pushuconst| |lambda| |derivative| |outputFixed| |padicFraction|
- |partialQuotients| |writeUInt8!| |search| |tubePointsDefault|
- |returns| |select| |genericLeftMinimalPolynomial| |remove!|
- |resultantReduit| |message| |stripCommentsAndBlanks| |setOfMinN|
- |readLine!| |increment| |bivariate?| |noncommutativeJordanAlgebra?|
- |getMultiplicationMatrix| |e02baf| |setEpilogue!| |simplifyLog|
- |iomode| |increasePrecision| |lazyPquo| |clearDenominator|
- |OMgetVariable| |fortranDouble| |constantOperator| |setPrologue!|
- |outlineRender| |nrows| |colorFunction| |twist| |groebnerFactorize|
- |exactQuotient| |reflect| |unitNormalize| |s17dcf| |fortranCharacter|
- |ncols| |elt| |setButtonValue| |complexLimit| |OMsupportsSymbol?|
- |support| |splitDenominator| |rangePascalTriangle| |hypergeometric0F1|
- |f07fef| |retract| |LazardQuotient2| |removeDuplicates!|
- |semiSubResultantGcdEuclidean1| |readByte!| |internalDecompose|
- |integralMatrix| |dilog| |zero| |setTopPredicate|
- |standardBasisOfCyclicSubmodule| |algebraicSort| |leftRemainder|
- |dualSignature| |lowerCase| |rootOf| |repeating?| |cons| |setvalue!|
- |purelyTranscendental?| |sin| |makeRecord| |critM| |f02aef|
- |prefixRagits| |createIrreduciblePoly| |nextSubsetGray| |nothing|
- |And| |rewriteSetWithReduction| |pr2dmp| |cos| |e01sbf| |extend|
- |quasiRegular| |encodingDirectory| |initials| |cAsin| |defineProperty|
- |iiacos| |operators| |Or| |tan| |complexZeros| |inputOutputBinaryFile|
- |purelyAlgebraicLeadingMonomial?| |imaginary| |conditionP|
- |clipWithRanges| |empty?| |rightRankPolynomial| |Not| |OMParseError?|
- |cot| |s21bdf| |schema| |irreducible?| |row| |contractSolve|
- |leftFactor| |transcendenceDegree| |condition| |explogs2trigs|
- |expextendedint| |sec| |aLinear| |coordinates| |vertConcat|
- |disjunction| |dflist| |figureUnits| |rightRegularRepresentation|
- |csc| |split!| |factorOfDegree| |constantLeft| |knownInfBasis|
- |determinant| |basisOfRightNucloid| |addPoint2| |interpret|
- |radicalRoots| |karatsubaDivide| |source| |mainMonomial| |asin|
- |less?| |positiveRemainder| |zeroSetSplitIntoTriangularSystems| |frst|
- |monomials| |selectODEIVPRoutines| |eigenvectors| |hostPlatform| |dec|
- |changeBase| |acos| |getGoodPrime| |RemainderList| |irreducibleFactor|
- |lSpaceBasis| |shape| |createLowComplexityTable| |plusInfinity| |atan|
- |assign| |startStats!| |coshIfCan| |coefChoose|
- |halfExtendedResultant1| |decreasePrecision| |mapUnivariate|
- |pascalTriangle| |meshFun2Var| |acot| |setsubMatrix!| |minusInfinity|
- |member?| |setRow!| |char| |bipolar| |e02bdf| |monicLeftDivide|
- |rightRecip| |asec| |createMultiplicationMatrix| |findBinding|
- |subNodeOf?| |primeFactor| |moduleSum| |f2df| |getOperator|
- |sqfrFactor| |acsc| |target| |complement| |imagK| |cAsec| |sup|
- |genericLeftNorm| |areEquivalent?| |f01rcf| |sinh| |sdf2lst|
- |prinshINFO| |cyclotomicFactorization| |associator| |edf2df| |bumprow|
- |iisin| |complexElementary| |option?| |cosh| |romberg| |atom?|
- |useSingleFactorBound?| |coleman| |legendreP| |selectPDERoutines|
- |regularRepresentation| |tube| |type| |trigs2explogs| |tanh|
- |vedf2vef| |element?| |LiePoly| |readInt8!| |outputList|
- |whatInfinity| |viewThetaDefault| |nthCoef| |delay| |setMaxPoints3D|
- |coth| |mulmod| |reducedDiscriminant| |mapExpon|
- |removeRoughlyRedundantFactorsInPol| |push| |iiasech| |invmod|
- |lfextlimint| |float| |qelt| |phiCoord| |randomLC|
- |mainCharacterization| |sech| |thenBranch| |symmetric?| |bernoulliB|
- |second| |qsetelt| |overset?| |deriv| |explicitlyEmpty?|
- |possiblyNewVariety?| |iisinh| |iiacsc| |unitNormal| |csch|
- |OMputEndAtp| |create3Space| |queue| |third| |e04ucf| |invertibleSet|
- |terms| |bat1| |xRange| |iicoth| |d01aqf| |asinh| |cotIfCan|
- |numberOfComposites| |zeroOf| |unrankImproperPartitions1|
- |reducedForm| |edf2ef| |lifting| |showTheIFTable| |f01rdf| |yRange|
- |compile| |void| |e01sff| |acosh| |moebiusMu| |entries| |octon|
- |numerator| |s17aff| |primPartElseUnitCanonical| |setTex!|
- |characteristicPolynomial| |zRange| |space| |rootProduct| |infinite?|
- |atanh| |rootRadius| |double?| |sn| |pile| |arrayStack| |map!| |real?|
- |rk4a| |antisymmetric?| |df2fi| |digamma| |acoth| |scalarMatrix|
- |merge| |makeprod| |divide| |qsetelt!| |component| |unit?|
- |createNormalPrimitivePoly| |check| |mainForm| |iisech| |asech|
- |balancedBinaryTree| |eisensteinIrreducible?| |genericRightNorm|
- |lyndon| |lfextendedint| |e02bef| |selectOrPolynomials| |BumInSepFFE|
- |s21bcf| |collectUnder| |computeInt| |rewriteIdealWithHeadRemainder|
- |xn| |stronglyReduced?| |normDeriv2| |rroot| |gderiv| GE
- |viewDefaults| |partitions| |multiple| |selectFiniteRoutines| |expt|
- |subresultantSequence| |logpart| |ref| |complexSolve|
- |bivariatePolynomials| |twoFactor| |subNode?| GT
- |fortranDoubleComplex| |applyQuote| |lazyEvaluate| |f04mbf|
- |positive?| |subPolSet?| |pointSizeDefault| |eigenvector| |trueEqual|
- |setMinPoints3D| LE |cross| |unparse| |selectSumOfSquaresRoutines|
- |singleFactorBound| |cycles| |alternative?| |setScreenResolution3D|
- |predicate| |separateDegrees| |iiGamma| LT |viewport2D| |Frobenius|
- |acsch| |directSum| |functionIsFracPolynomial?| |bit?| |overlabel|
- |limitPlus| |indiceSubResultant| |numberOfFractionalTerms| |changeVar|
- |surface| |mkIntegral| |cyclotomicDecomposition| |root?|
- |fortranCompilerName| |ruleset| |capacity| |Hausdorff| |iiexp|
- |rischDE| |goto| |jordanAdmissible?| |simpleBounds?| |hermiteH|
- |subst| |drawStyle| |binaryTournament| |traverse| |s21baf|
- |OMopenString| |addiag| |monicCompleteDecompose| |isMult|
- |idealSimplify| |shellSort| |invertibleElseSplit?| |d03eef|
- |complementaryBasis| |outputForm| |external?| |perfectNthRoot|
- |rCoord| |incrementKthElement| |brillhartIrreducible?| |s19abf|
- |d01alf| |removeZero| |directory| |middle| |readBytes!| |maxPoints|
- |suchThat| |FormatArabic| |leftQuotient| |concat!| |tree| |index|
- |semiDegreeSubResultantEuclidean| |elements| |doubleDisc| |cosSinInfo|
- |fortranTypeOf| |rightScalarTimes!| |divisors| |red| |branchPoint?|
- |irreducibleRepresentation| |indicialEquations| |predicates|
- |roughUnitIdeal?| |dequeue!| |initial| |cTan| |norm| |isAtom| |mapdiv|
- |ideal| |cyclicParents| |primeFrobenius| |redmat| |iiacsch| |e04mbf|
- |pseudoRemainder| |varselect| |lighting| |swap!| |rst| |transpose|
- |move| |pair| |setPosition| |gensym| |elementary| |adaptive?|
- |objects| |screenResolution| |basisOfLeftAnnihilator| |rightTrim|
- |s17dgf| |isOpen?| |bright| |Beta| |randomR| |cyclotomic| |parameters|
- |antiCommutative?| |e01baf| |const| |lexico| |base| |merge!|
- |leftTrim| |algint| |OMopenFile| |leftDivide| |leftAlternative?|
- |Gamma| |arg1| |upperBound| |rationalPower| |elseBranch|
- |OMputEndBVar| |iiatanh| |chainSubResultants| |setref| |squareMatrix|
- |eval| |iitanh| |copyInto!| |arg2| |polynomialZeros| RF2UTS |mapDown!|
- |iicos| |primitivePart!| |extendedint| |ScanFloatIgnoreSpacesIfCan|
- |viewport3D| |laplacian| |shade| |e02def| |subResultantChain|
- |integralCoordinates| |cLog| |monicDecomposeIfCan| |cyclicCopy|
- |wreath| |taylorIfCan| |outputAsTex| |squareFreePart| |conditions|
- |numericIfCan| |makeViewport3D| |checkRur| |copy!| |rightZero| |error|
- |nextPartition| |rightExtendedGcd| |orbit| |readUInt32!| |fractRadix|
- |brillhartTrials| |match| |numberOfDivisors| |nodeOf?| |nonLinearPart|
- |midpoints| |relerror| |pdct| |charthRoot|
- |degreeSubResultantEuclidean| |equation| |log2| |algintegrate|
- |reduceBasisAtInfinity| |semiSubResultantGcdEuclidean2|
- |argumentList!| |cPower| |unrankImproperPartitions0| |zCoord|
- |OMputApp| |alphanumeric?| |singular?| |distFact| |routines|
- |localUnquote| |function| |mainCoefficients| |light| |firstNumer|
- |nullary?| |optimize| |equiv| |ksec| |s01eaf| |oddlambert| |dimension|
- |inrootof| |univariateSolve| |copies| |doubleComplex?| |mapGen|
- |rightLcm| |linearAssociatedOrder| |dual| |palgRDE|
- |clearTheSymbolTable| |redPo| |cot2trig| |d03edf|
- |LagrangeInterpolation| |tanhIfCan| BY |normal01|
- |selectMultiDimensionalRoutines| |colorDef| |radicalEigenvalues|
- |fmecg| |exponent| |getVariableOrder| |modularGcdPrimitive|
- |BasicMethod| |youngDiagram| |maxColIndex| |primaryDecomp| |minIndex|
- |iisqrt3| |oddintegers| |ocf2ocdf| |moebius| |anticoord|
- |partialFraction| |iisqrt2| |rootKerSimp| |minimize| |totalLex|
- |write!| |elRow1!| |debug3D| |randnum| |bothWays| |mathieu12|
- |isConnected?| |shiftRoots| |biRank| |OMputError| |exists?|
- |diagonal?| |functionIsContinuousAtEndPoints|
- |rewriteIdealWithQuasiMonicGenerators| |sort| |atrapezoidal|
- |wholeRadix| |imagk| |maxIndex| |universe| |perfectSqrt|
- |useNagFunctions| |viewSizeDefault| |getDatabase| |listOfLists|
- |reindex| |exprToUPS| |leftScalarTimes!| |mappingMode| |rem|
- |stirling2| |d02raf| |iibinom| |univcase| |properties| |setImagSteps|
- |leftRecip| |cCsch| |f04jgf| |mapmult| |quo| |powers| |e01daf|
- |sylvesterSequence| |leftDiscriminant| |c06gbf| |id| |denominators|
- NOT |normalized?| |separate| |translate| |inR?| |integralBasis|
- |monomRDE| |leastPower| |OMputBVar| |convergents| |triangulate| |lo|
- |size?| OR |f07adf| |random| |df2ef| |generators|
- |tryFunctionalDecomposition?| |basisOfCentroid| |div|
- |PollardSmallFactor| |sub| |bandedHessian| |normalizedDivide| |lcm|
- AND |OMgetAtp| |externalList| |curve| |symbolTableOf| |setStatus!|
- |ratDenom| |exquo| |basisOfCommutingElements| |delete| |nsqfree|
- |e02bbf| |getlo| |any?| |minPoly| |henselFact| |ldf2vmf| |rarrow| ~=
- |setIntersection| |invmultisect| |youngGroup| |redpps| |lift|
- |trace2PowMod| |pdf2ef| |f01brf| |linearAssociatedLog| |append|
- |gcdprim| |radix| |#| |rationalApproximation| |shallowExpand|
- |leadingTerm| |fTable| |reduce| |ignore?| |divergence|
- |indicialEquation| |OMreceive| |gcd| |overlap| |skewSFunction| ~
- |OMgetFloat| |pquo| |algDsolve| |quoByVar| |e04naf| |false|
- |initiallyReduced?| |generalPosition| |leaf?| |splitLinear|
- |currentSubProgram| |elaborate| |firstSubsetGray| |iicsch| |tablePow|
- |basisOfRightAnnihilator| |pmintegrate| |composite| |genericPosition|
- |zerosOf| |totalGroebner| |apply| |integerBound| |wrregime|
- |coordinate| |lastSubResultantElseSplit| |trapezoidalo| |algebraicOf|
- |hyperelliptic| |nextNormalPrimitivePoly| |lfinfieldint| F2FG |/\\|
- |matrix| |first| |rangeIsFinite| |central?| |setLength!|
- |blankSeparate| |contains?| |hasHi| |identityMatrix|
- |explicitEntries?| |\\/| |rest| |c06fpf| |c06fuf|
- |genericRightTraceForm| |extendedSubResultantGcd| |lp| |alternating|
- |createLowComplexityNormalBasis| |palgRDE0| |linears| |quatern|
- |clikeUniv| |bindings| |secIfCan| |mainSquareFreePart| |invertible?|
- |coerce| * |meshPar1Var| |stoseInvertible?| |inf| |optpair| |reseed|
- |inGroundField?| |minGbasis| |categoryMode| |integral|
- |inverseColeman| |construct| |binary| |s17akf| |definingPolynomial|
- |splitNodeOf!| |key?| |stopTableGcd!| |numer| |wholeRagits| |lquo|
- |ef2edf| UTS2UP |generator| |max| |components| |gethi| |sech2cosh|
- |denom| |before?| |subResultantGcd| |integral?| |rightTrace|
- |boundOfCauchy| = |resetVariableOrder| |startTableGcd!|
- |physicalLength!| |push!| |truncate| |primintegrate|
- |numberOfMonomials| |inverseIntegralMatrixAtInfinity| |pair?|
- |innerEigenvectors| |c06ecf| |submod| |sumOfDivisors|
- |factorPolynomial| |localIntegralBasis| |toScale|
- |stoseInvertible?sqfreg| |pi| |rightRank| |byte| |connectTo| |nil?| <
- |expandPower| |sncndn| |normalise| |primlimintfrac| |empty| |ratPoly|
- |width| |permanent| |asinhIfCan| |infieldIntegrate| > |deepestTail|
- |curry| |mergeFactors| |graphs| |interReduce| |nullity| |solid?|
- |e02daf| |mindegTerm| |removeConstantTerm| <= |delete!| |mapUp!|
- |escape| |jacobiIdentity?| |failed?| |factorSquareFree|
- |radicalOfLeftTraceForm| |iiasin| |whileLoop| |rdHack1| >=
- |parametric?| |cschIfCan| |expenseOfEvaluation| |changeNameToObjf|
- |sumSquares| |computePowers| |OMserve| |basisOfLeftNucleus|
- |linearMatrix| |nthExponent| |s14abf| |npcoef| |safeFloor| |isOr|
- |toseSquareFreePart| |d02bbf| |buildSyntax| |cup| |nextNormalPoly|
- |shufflein| |fortranLogical| |s18aff| |intermediateResultsIF| |ranges|
- |computeCycleLength| |polyPart| |noLinearFactor?| |characteristic|
- |jacobi| |OMgetObject| |tRange| + |pastel| |nthFractionalTerm| |top!|
- |Vectorise| |value| |s17ajf| |clearCache| |commutator| |integrate|
- |numeric| |integer?| |createNormalPoly| |int| |plot| |subset?| -
- |OMgetEndAtp| |critMTonD1| |setnext!| |extractProperty| |radical|
- |rightQuotient| |makeFloatFunction| |polyRicDE| / |optional| |mesh?|
- |constant?| |firstUncouplingMatrix| |deleteRoutine!| |e04ycf|
- |genericRightTrace| |firstDenom| |rectangularMatrix| |e02dff|
- |complexForm| |scalarTypeOf| |lintgcd| |log| |represents| |aCubic|
- |idealiser| |gradient| |f02xef| |besselY| |SFunction| |iicosh|
- |LyndonWordsList| |rightExactQuotient| GF2FG |leftExactQuotient|
- |rootOfIrreduciblePoly| |expandLog| |lazyPseudoQuotient|
- |reduceByQuasiMonic| |dmpToP| |stosePrepareSubResAlgo| |signature|
- |hdmpToP| |property| |setelt| |squareFreeLexTriangular| |repeating|
- |numFunEvals| |makeCrit| |setLegalFortranSourceExtensions|
- |useEisensteinCriterion?| |rationalPoint?| |rk4f| |swapColumns!|
- |SturmHabichtMultiple| |rootSplit| |setelt!| |linearPolynomials|
- |declare!| |listConjugateBases| |idealiserMatrix| |monomialIntPoly|
- |binarySearchTree| |limit| |select!| |presuper| |copy|
- |removeRedundantFactorsInPols| |cyclicSubmodule| |mapBivariate|
- |f02bjf| |thetaCoord| |setOrder| |pointColor| |number?| |pdf2df|
- |stFunc2| |extractTop!| |categoryFrame| |s19adf| |squareFree|
- |functionIsOscillatory| |stoseIntegralLastSubResultant|
- |integralBasisAtInfinity| |irDef| |datalist| |iiacoth|
- |fortranComplex| |infiniteProduct| |sinh2csch| |nary?| |mainValue|
- |maxRowIndex| |initiallyReduce| |coerceS| |LowTriBddDenomInv|
- |bezoutDiscriminant| |rootPower| |bytes| |makeUnit| |OMbindTCP|
- |satisfy?| |taylorQuoByVar| |coerceP| |addPoint| |integralAtInfinity?|
- |KrullNumber| |quadraticNorm| |options| |linearAssociatedExp|
- |leadingIndex| |constantKernel| |diophantineSystem|
- |curveColorPalette| |rightGcd| |setleaves!| |minimumExponent|
- |factorGroebnerBasis| |multiplyExponents| |tableForDiscreteLogarithm|
- |cAcsch| |linearlyDependent?| |shallowCopy| |cothIfCan| |cyclicGroup|
- |nor| |stiffnessAndStabilityFactor| |leftGcd| |axesColorDefault|
- |fullDisplay| |wordInStrongGenerators| |LyndonCoordinates|
- |roughBasicSet| |e02ajf| |segment| |lieAdmissible?|
- |seriesToOutputForm| |exptMod| |floor| |isImplies| |output| |string|
- |solveInField| |initTable!| |factorSquareFreePolynomial| |maxPoints3D|
- |compactFraction| |extendedEuclidean| |rowEchelonLocal| |OMgetEndApp|
- |wronskianMatrix| |wordInGenerators| |just| |llprop| |binomThmExpt|
- |writeLine!| |antiAssociative?| |rombergo| |aspFilename| |compound?|
- |elem?| |minus!| |paren| |iroot| |contours| |primes| |ReduceOrder|
- |f02adf| |cond| |makeResult| |imports| |imagJ| |complete|
- |hitherPlane| |nilFactor| |realEigenvalues| |deleteProperty!|
- |generalLambert| |setColumn!| |adaptive| |closed?| |finite?|
- |constantOpIfCan| |round| |leastAffineMultiple| |lyndonIfCan|
- |combineFeatureCompatibility| |cap| |forLoop| |increase| |cosh2sech|
- |child| |overbar| |fortranCarriageReturn| |coth2tanh|
- |bezoutResultant| |internal?| |rightDiscriminant| |HenselLift|
- |subtractIfCan| |zeroSetSplit| |newLine| |permutationRepresentation|
- |setprevious!| |hessian| |groebSolve| |resetBadValues|
- |outputAsScript| |oddInfiniteProduct| |OMgetEndObject| |multiple?|
- |pointColorPalette| |c05nbf| |anfactor| |OMclose| |bipolarCylindrical|
- |eigenvalues| |constantRight| |OMgetError| |vconcat| |remove| |An|
- |replaceKthElement| |raisePolynomial| |realZeros| |lookupFunction|
- |hasSolution?| |normalizeAtInfinity| |cTanh| |decompose| |calcRanges|
- |quadraticForm| |leftRegularRepresentation| |nlde| |s21bbf| |s17dlf|
- |e01sef| |maxdeg| |getRef| |optional?| |symbol?| |center| |cycleTail|
- |last| |implies| |acoshIfCan| |processTemplate| |iiabs| |zeroVector|
- |sturmSequence| |sylvesterMatrix| |prime?| |assoc| |rightPower|
- |OMputVariable| |prinb| |ode| |innerSolve1| |normalDenom| |pushup|
- |lazyPseudoDivide| |df2st| |insertMatch| |formula| |iitan| |crest|
- |simpson| |removeZeroes| |atanIfCan| |over| |selectNonFiniteRoutines|
- |rquo| |oneDimensionalArray| |genus| |computeCycleEntry| |choosemon|
- |lazy?| |listBranches| |radicalSimplify| |whitePoint| |d01fcf|
- |fortranLinkerArgs| |setrest!| |sayLength| |karatsuba|
- |clipPointsDefault| |c06eaf| |stoseInvertible?reg| |s17def| |isEquiv|
- |hMonic| |coefficients| |dimensionsOf| |univariatePolynomial|
- |conditionsForIdempotents| |f01qdf| |linear?| |explicitlyFinite?|
- |constantIfCan| |atanhIfCan| |unmakeSUP| |leftFactorIfCan| |multiset|
- |f01mcf| |integralMatrixAtInfinity| |getOperands| |maxrank|
- |supDimElseRittWu?| |computeBasis| |selectIntegrationRoutines|
- |critMonD1| |useSingleFactorBound| |cSinh| |tubeRadiusDefault|
- |perfectSquare?| |transcendentalDecompose| |smith| |tan2trig|
- |getCode| |fintegrate| |corrPoly| |sechIfCan| |physicalLength| |pol|
- |intPatternMatch| |extractSplittingLeaf| |expint| |OMgetString| |sin?|
- |listOfMonoms| |symmetricDifference| |relativeApprox| |principal?|
- |rightDivide| |vark| |solve| |symmetricTensors| |currentScope|
- |SturmHabicht| |polygon?| |mapExponents| |ellipticCylindrical|
- |setProperties| |alphabetic| |setFieldInfo| |axes| |gcdcofact|
- |hermite| |applyRules| |qualifier| |s14aaf| |clip|
- |shanksDiscLogAlgorithm| |mainVariable| |generalizedEigenvector|
- |minimalPolynomial| |pToDmp| |exponential1| |numberOfNormalPoly|
- |packageCall| |readUInt16!| |heapSort| |generateIrredPoly|
- |internalSubQuasiComponent?| |read!| |low| |distribute| |credPol|
- |evenInfiniteProduct| |superHeight| |strongGenerators|
- |getExplanations| |algebraicVariables| |imagi| |setScreenResolution|
- |cylindrical| |fortranLiteralLine| |lepol| |f02akf| |setMinPoints|
- |orbits| |unitVector| |quasiAlgebraicSet| |bsolve| |permutationGroup|
- |collect| |zeroDimPrimary?| |elRow2!| |mat| |presub| |imagj| |leaves|
- |internalZeroSetSplit| |leftPower| |palginfieldint| |jokerMode|
- |lexTriangular| |OMconnInDevice| |symmetricProduct| |var1StepsDefault|
- |mapUnivariateIfCan| |graphState| |generalTwoFactor| |e02zaf| |nil|
- |logical?| |lowerBound| |indicialEquationAtInfinity| |Lazard2|
- |setAttributeButtonStep| |macroExpand| |primitive?| |prime|
- |subscript| |f01qef| |stopTable!| |lookup| |sincos| |iifact|
- |algebraicCoefficients?| |getProperty| |cAcot|
- |reducedContinuedFraction| |node?| |patternMatchTimes|
- |rightTraceMatrix| |basisOfMiddleNucleus| |minset| |rowEch|
- |returnType!| |lastSubResultant| |numberOfImproperPartitions| |s20acf|
- |leftRank| |approximate| |critBonD| |palglimint| |interval|
- |OMsupportsCD?| |opeval| |nextPrimitivePoly| |leftRankPolynomial|
- |nthFlag| |sequences| |sum| |complex| |integralDerivationMatrix|
- |totalfract| |approxSqrt| |tanIfCan| |exprToXXP| |entry?|
- |symmetricPower| |stFunc1| |cAtanh| |palgextint| |rightMult|
- |critpOrder| |palgint| |stopTableInvSet!| |numerators| |parent|
- |beauzamyBound| |d01anf| |weights| |componentUpperBound| |symbolIfCan|
- |rank| |removeIrreducibleRedundantFactors| |dimensions|
- |mainMonomials| |s17ahf| |revert| |OMencodingSGML| |point|
- |drawComplexVectorField| |lambert| |cn| |fracPart| |primextintfrac|
- |solveLinearPolynomialEquation| |debug| |semiResultantReduitEuclidean|
- |failed| |completeHermite| |normal?| |fractionPart| |rightUnits|
- |asechIfCan| |nullSpace| |makeGraphImage| |leftZero|
- |scanOneDimSubspaces| |e01bef| D |removeSinhSq| |newReduc| |host|
- |stirling1| |putColorInfo| |supRittWu?| |OMputEndAttr| |extractPoint|
- |nand| |yellow| |Si| |series| |d02cjf| |OMputSymbol| |rk4qc| |binding|
- |messagePrint| |basisOfRightNucleus| |normalizedAssociate|
- |printStatement| |Ei| |musserTrials| |cdr| |selectfirst| |cAcosh|
- |roughBase?| |recip| |acscIfCan| |e02aef| |collectQuasiMonic|
- |findConstructor| |elColumn2!| |conjunction| |intcompBasis|
- |retractable?| |OMencodingBinary| |arbitrary| |topFortranOutputStack|
- |palgintegrate| |super| |asecIfCan| |lists| |mathieu24|
- |enterPointData| |lieAlgebra?| |unravel| |separant| |e02bcf| |min|
- |unary?| |cSin| |pomopo!| |OMputInteger| |simplifyExp| |isNot|
- |checkForZero| |commutative?| |euclideanGroebner| |printInfo|
- |connect| |showClipRegion| |numberOfVariables| |innerSolve|
- |nextPrime| |unknownEndian| |csch2sinh| |d01amf| |continuedFraction|
- |totalDegree| |intersect| |points| |nonSingularModel|
- |linearDependence| |var1Steps| |checkPrecision| |aQuadratic|
- |normInvertible?| |quasiRegular?| |substring?| |trunc| |testModulus|
- |key| |parseString| |moreAlgebraic?| |rotatey| |graphCurves|
- |evaluate| |cos2sec| |OMsetEncoding| |dmp2rfi| |graphImage| |palgint0|
- |coerceL| |c06ebf| |leader| |extension| |readInt16!| |triangular?|
- |tan2cot| |factorsOfDegree| |suffix?| |filename|
- |rewriteIdealWithRemainder| |innerint| |s17aef| |hex| |composites|
- |meshPar2Var| |setPoly| |squareFreePrim| |univariatePolynomialsGcds|
- |symbolTable| |loadNativeModule| |pureLex| |Lazard| |rationalIfCan|
- |setPredicates| |bag| |simplify| |insert!| |laurentIfCan| |prefix?|
- |augment| |reduced?| |parse| |associatedEquations| |mainContent|
- |iiperm| |basisOfLeftNucloid| |fortran| |weight| |rootBound| |plus|
- |ode1| |curryRight| |quasiComponent| |pushFortranOutputStack|
- |fortranReal| |pack!| |imagE| |returnTypeOf| |bezoutMatrix| |adjoint|
- |dmpToHdmp| |groebnerIdeal| |sturmVariationsOf|
- |popFortranOutputStack| |iCompose| |f04maf| |degree| |weakBiRank|
- |changeName| |exQuo| |ode2| |df2mf| |s18dcf| |outputAsFortran| |Aleph|
- |hasTopPredicate?| |headRemainder| |setUnion| |realEigenvectors|
- |find| |slash| |associates?| |binomial| |table| |hdmpToDmp|
- |leadingBasisTerm| |setlast!| |birth| |homogeneous?| |quotient|
- |addMatch| |precision| |deepestInitial| |times| |trim| |new|
- |indiceSubResultantEuclidean| |e02gaf| |s18acf| |eulerPhi|
- |infinityNorm| |conjugates| |selectOptimizationRoutines| |mpsode|
- |fractRagits| |infix?| |ptree| |optAttributes| |zag| |parametersOf|
- |child?| |flatten| |mask| |toseLastSubResultant| |e02ahf| |setfirst!|
- |e01bff| |usingTable?| |s15adf| |eq?| |SturmHabichtSequence|
- |OMunhandledSymbol| |makeEq| |init| |nextsubResultant2| |multisect|
- |quoted?| |psolve| |ipow| |makeSketch| |createPrimitivePoly|
- |wordsForStrongGenerators| |basisOfCenter| |mergeDifference|
- |balancedFactorisation| |showTheFTable| |rational| |monom| |matrixGcd|
- |numberOfHues| |leftExtendedGcd| |ridHack1| |simplifyPower|
- |addPointLast| |seriesSolve| |more?| |coercePreimagesImages| |rule|
- |f04axf| |resetAttributeButtons| |expandTrigProducts| |quadratic?|
- |OMgetAttr| |factorials| |OMlistSymbols| |compose|
- |linearDependenceOverZ| |froot| |equality| |scaleRoots| |s17dhf|
- |subscriptedVariables| |numberOfFactors| |univariatePolynomials|
- |removeCosSq| |common| |d01gbf| |viewDeltaYDefault|
- |degreeSubResultant| |discriminantEuclidean| |ParCondList| |script|
- |getCurve| |completeEval| |root| |clearTheIFTable| |factorSFBRlcUnit|
- |untab| |quickSort| |difference| |lexGroebner| |c06gsf| |title|
- |showScalarValues| |modifyPoint| |infLex?| |controlPanel| |cosIfCan|
- |powern| |inverse| |factorByRecursion| |showAll?| |c05pbf|
- |selectPolynomials| |bivariateSLPEBR| |cyclic?| |left| |vector| |lex|
- |startPolynomial| |outputArgs| |rotatex| |tex| |outerProduct|
- |monomial?| |goodnessOfFit| |recoverAfterFail| |autoReduced?|
- |putGraph| |right| |differentiate| |mainExpression| |tubePoints|
- |freeOf?| |createNormalElement| |e| |cSec| |green| |roughEqualIdeals?|
- |factorFraction| |dAndcExp| |roughSubIdeal?| |irVar| |f02wef|
- |acotIfCan| |multMonom| |lastSubResultantEuclidean| |OMgetInteger|
- |setFormula!| |derivationCoordinates| |iExquo| |logIfCan|
- |torsionIfCan| |cAcos| |tensorProduct| |leviCivitaSymbol|
- |associatedSystem| |numberOfIrreduciblePoly| |evenlambert| |rootSimp|
- |cycleElt| |definingEquations| |rightRemainder| |graphStates|
- |qfactor| |chiSquare| |readable?| |f01qcf| |coerceListOfPairs|
- |enumerate| |remainder| |palgLODE| |isPower| |rightFactorIfCan|
- |reify| |iiasinh| |minrank| |OMencodingUnknown| |basicSet|
- |laurentRep| |curveColor| |findCycle| |rootPoly| |callForm?| |shift|
- |integerIfCan| |explimitedint| |dot| |sts2stst| |any| |dioSolve|
- |hash| |ceiling| |bounds| |one?| |genericRightDiscriminant|
- |multinomial| |probablyZeroDim?| |iicsc| |complexIntegrate| |count|
- |iteratedInitials| |createPrimitiveElement| |curve?| |next|
- |symmetricRemainder| |normFactors| |e02adf| |eyeDistance| |f02awf|
- |pseudoDivide| |polar| |rootsOf| |readUInt8!| |completeHensel|
- |toseInvertible?| |squareTop| |FormatRoman| |powerSum| |lllip|
- |rotatez| |extractBottom!| |LazardQuotient| |interactiveEnv| |graeffe|
- |subresultantVector| |OMencodingXML| |writeBytes!| |ScanArabic|
- |closedCurve?| |symbol| |complex?| |mapMatrixIfCan| |modularGcd|
- |OMgetEndBVar| |attributeData| |removeSquaresIfCan| |weighted|
- |numberOfChildren| |leftUnit| |c06gcf| |expression| |saturate|
- |reduction| |mathieu23| |commonDenominator| |ramified?| |factors|
- |deref| |ord| |janko2| |integer| |splitSquarefree| |backOldPos|
- |padecf| |printCode| |cyclePartition| |enqueue!| |linear|
- |cyclicEqual?| |rationalPoints| |redPol| |rk4| |minPol| |f07fdf|
- |extendIfCan| |readLineIfCan!| |solveid| |OMputEndBind| |mkcomm|
- |noKaratsuba| |clipSurface| |numberOfPrimitivePoly| |someBasis|
- |semiDiscriminantEuclidean| |writable?| |fibonacci| |symmetricSquare|
- |polynomial| |sumOfSquares| |OMwrite| |setClipValue| |chebyshevT|
- |unitsColorDefault| |bernoulli| |expintegrate| |bitCoef| |fixedPoints|
- |createZechTable| |aromberg| |readInt32!| |getMultiplicationTable|
- |hclf| |squareFreeFactors| |erf| |e01saf| |result| |head| |resultant|
- |ramifiedAtInfinity?| |s17agf| |powmod| |d02bhf| |vectorise| |li|
- |alternatingGroup| |f04atf| |setClosed| |monicDivide|
- |euclideanNormalForm| |tableau| |duplicates?| |bottom!| |setMaxPoints|
- |mvar| |stack| |parabolicCylindrical| |minPoints3D|
- |isAbsolutelyIrreducible?| |tower| |arity| |cSech| |makeVariable|
- |distance| |singularAtInfinity?| |internalInfRittWu?| |minRowIndex|
- |stoseInvertibleSetsqfreg| |rischNormalize| |prepareSubResAlgo|
- |times!| |ddFact| |badValues| |iilog| |character?| |outputFloating|
- |critB| |tubeRadius| |f02agf| |fixPredicate| |algSplitSimple|
- |conjugate| |countRealRootsMultiple| |d01ajf| |scopes| |exprToGenUPS|
- |bumptab| |f07aef| |eq| |bits| |htrigs| |halfExtendedResultant2|
- |lagrange| |limitedint| |iter| |f01ref| |s13aaf| |dim| |abs|
- |outputGeneral| |length| |iiacosh| |qinterval| |drawCurves|
- |loopPoints| |e04gcf| |complexNumeric| |screenResolution3D|
- |printHeader| |product| |useEisensteinCriterion| |repSq| |step|
- |scripts| |realSolve| |OMputFloat| |f02abf|
- |createPrimitiveNormalPoly| |setDifference| |power| |polarCoordinates|
- |highCommonTerms| |typeList| |concat| |LyndonWordsList1|
- |removeRedundantFactorsInContents| |primitivePart| |lifting1|
- |sinhIfCan| |test| |exportedOperators| |kernels| |unitCanonical|
- |OMputAtp| |charClass| |infieldint| |shuffle| |yCoord| |airyAi|
- |elliptic| |univariate?| |operator| |leadingCoefficientRicDE|
- |errorKind| |hexDigit| |iflist2Result| |relationsIdeal|
- |halfExtendedSubResultantGcd1| |scale| |polyRDE| |gcdcofactprim|
- |bumptab1| |d03faf| |laguerreL| |uniform01| |mightHaveRoots| |cycle|
- |fixedDivisor| |maxint| |extractClosed| |clipParametric| |tanSum|
- |environment| |univariate| |plotPolar| |fglmIfCan| |toroidal|
- |errorInfo| |lowerCase?| |sizeMultiplication| |solveRetract|
- |logGamma| |substitute| |factor1| |noValueMode| |OMgetEndAttr|
- |linearPart| |countRealRoots| |showFortranOutputStack| |UP2ifCan|
- |open?| |leftUnits| |infix| |ffactor| |nextLatticePermutation|
- |algebraic?| |makeop| |consnewpol| |prefix| |OMgetEndError| |iiasec|
- |cCosh| |factor| |singRicDE| |createThreeSpace|
- |generalInfiniteProduct| |comparison| |lyndon?| |e01bhf|
- |OMconnectTCP| |unexpand| |harmonic| |curryLeft| |sqrt| |binaryTree|
- |OMputAttr| |vspace| |collectUpper| |list?|
- |stoseInternalLastSubResultant| |swap| |euclideanSize| |asimpson|
- |qroot| |real| |tanNa| |LyndonBasis| |constDsolve|
- |subResultantsChain| |evaluateInverse| |yCoordinates| |makeFR|
- |removeRoughlyRedundantFactorsInPols| |cExp| |f02ajf| |imag| |declare|
- |nextColeman| |setAdaptive| |decomposeFunc| |column| |stop|
- |mainDefiningPolynomial| |inHallBasis?| |distdfact| |f04adf| |isPlus|
- |blue| |directProduct| |iidprod| |duplicates| |eulerE|
- |fixedPointExquo| |makeSin| |mr| |functorData| |B1solve| |horizConcat|
- |simpsono| |zoom| |allRootsOf| |showTheSymbolTable|
- |numberOfOperations| |hconcat| |approximants| |pushNewContour|
- |expenseOfEvaluationIF| SEGMENT |reciprocalPolynomial|
- |listRepresentation| |brace| |kind| |symmetricGroup| |rightUnit|
- |leftNorm| |groebner| |divideIfCan| |tanQ| |viewpoint| |dark|
- |stronglyReduce| |position!| |categories| |destruct| |d02kef|
- |semiIndiceSubResultantEuclidean| |op| |upperCase!| |sort!|
- |certainlySubVariety?| |charpol| |mantissa| |depth| |coHeight|
- |divideExponents| |clearTheFTable| |rubiksGroup| |approxNthRoot|
- |putProperties| |getGraph| |numberOfComputedEntries| |rowEchelon|
- |typeForm| |prevPrime| |validExponential| |makeSeries| |rightOne|
- |rightAlternative?| |makeMulti| |cAtan| |removeRedundantFactors|
- |argument| |zero?| |identification| |level| |hcrf| |besselI|
- |rightMinimalPolynomial| |leftLcm| |makeTerm| |leftMult| |partition|
- |solve1| |prepareDecompose| |OMgetBind| |exponentialOrder|
- |UnVectorise| |elliptic?| |purelyAlgebraic?| |monomial| |listexp|
- |hexDigit?| |singularitiesOf| |palglimint0| |e02akf| |GospersMethod|
- |s17acf| |prologue| |elaboration| |linearlyDependentOverZ?|
- |multivariate| |mathieu11| |modTree| |unaryFunction|
- |exteriorDifferential| |endOfFile?| |nodes| |goodPoint| |reverseLex|
- |traceMatrix| |compBound| |variables| |outputSpacing| |printStats!|
- |union| |null?| |d01apf| |wholePart|
- |unprotectedRemoveRedundantFactors| |associative?| |bitLength|
- |companionBlocks| |quotedOperators| |prolateSpheroidal| |e02agf|
- |OMsend| |OMconnOutDevice|
- |rewriteSetByReducingWithParticularGenerators| |deepCopy|
- |getZechTable| |rename!| |cAsinh| |eigenMatrix| |cyclic| |nextSublist|
- |point?| |ListOfTerms| |trivialIdeal?| |inverseIntegralMatrix|
- |swapRows!| |internalSubPolSet?| |voidMode| |listYoungTableaus|
- |updatD| |insertBottom!| |limitedIntegrate| |upperCase|
- |monicRightDivide| |cCos| |bfKeys| |bat| |s18def| |rational?|
- |primlimitedint| |color| |rename| |tryFunctionalDecomposition|
- |denomLODE| |OMputEndObject| |totolex| |s19aaf| |normalElement|
- |quadratic| |taylor| |linkToFortran| |hspace| |comp| |f01maf| |qPot|
- |multiplyCoefficients| |meatAxe| |bigEndian| |se2rfi| |addmod|
- |antisymmetricTensors| |laurent| |airyBi| |alphanumeric|
- |restorePrecision| |branchPointAtInfinity?| |rdregime| |latex|
- |maximumExponent| |poisson| |createRandomElement| |lazyGintegrate|
- |reverse| |puiseux| |torsion?| |absolutelyIrreducible?| |direction|
- |leftOne| |lazyPremWithDefault| |headAst| |rightFactorCandidate|
- |even?| |coord| |isExpt| |paraboloidal| |pushucoef| |nthRoot| |nil|
+ |Record| |Union| |errorKind| |laguerre| |parents| |sizeLess?|
+ |viewPhiDefault| |getIdentifier| |extendedEuclidean| |completeEval|
+ |bothWays| |systemCommand| |inv| |ravel| |match?| |mathieu22|
+ |leftRank| |antisymmetric?| |hexDigit| |matrixDimensions| |autoCoerce|
+ |atoms| |besselJ| |critT| |rowEchelonLocal| |root| |mathieu12|
+ |ground?| |reshape| |ScanRoman| |df2fi| |critBonD| |iflist2Result|
+ |mirror| |fillPascalTriangle| |OMgetEndApp| |OMReadError?|
+ |isConnected?| |clearTheIFTable| |ground| |jordanAlgebra?|
+ |palglimint| |digamma| |call| |relationsIdeal| |viewZoomDefault|
+ |ScanFloatIgnoreSpaces| |wronskianMatrix| |shiftRoots|
+ |factorSFBRlcUnit| |leadingMonomial| |normal| |removeSuperfluousCases|
+ |interval| |scalarMatrix| |upperCase?| |halfExtendedSubResultantGcd1|
+ |sorted?| |factorList| |wordInGenerators| |biRank| |untab|
+ |leadingCoefficient| |quotientByP| |OMsupportsCD?| |merge| |scale|
+ |stFuncN| |s13acf| |just| |diagonalMatrix| |quickSort| |OMputError|
+ |primitiveMonomials| |close| |generalizedContinuumHypothesisAssumed?|
+ |opeval| |makeprod| |polyRDE| |karatsubaOnce| F |partialDenominators|
+ |llprop| |monicRightFactorIfCan| |exists?| |difference| |reductum|
+ |update| |updatF| |nextPrimitivePoly| |divide| |gcdcofactprim|
+ |triangSolve| |polygon| |binomThmExpt| |palgLODE0| |lexGroebner|
+ |diagonal?| |display| |f04qaf| |leftRankPolynomial| |component|
+ |bumptab1| |largest| |OMcloseConn| |writeLine!|
+ |functionIsContinuousAtEndPoints| |c06gsf| |numFunEvals3D| |nthFlag|
+ |unit?| |d03faf| |prindINFO| |antiAssociative?| |gcdPrimitive|
+ |rewriteIdealWithQuasiMonicGenerators| |showScalarValues| |car|
+ |cycleRagits| |createNormalPrimitivePoly| |sequences| |laguerreL|
+ |modulus| |problemPoints| |rombergo| |atrapezoidal| |modifyPoint|
+ |subResultantGcdEuclidean| |integralDerivationMatrix| |check|
+ |uniform01| |groebgen| |aspFilename| |trigs| |wholeRadix| |infLex?|
+ |position| |totalfract| |crushedSet| |mainForm| |expr|
+ |mightHaveRoots| |pointPlot| |OMread| |compound?| |imagk|
+ |controlPanel| |input| ** |socf2socdf| |iisech| |approxSqrt| |cycle|
+ |operation| |compdegd| |elem?| |tanAn| |maxIndex| |cosIfCan| |library|
+ |bitTruth| |balancedBinaryTree| |tanIfCan| |fixedDivisor| |sin2csc|
+ |belong?| |minus!| |universe| |powern| |patternMatch| |exprToXXP|
+ |eisensteinIrreducible?| |maxint| |primextendedint| |paren|
+ |removeSinSq| |perfectSqrt| |inverse| |genericRightNorm|
+ |tanintegrate| |entry?| |size| |variable| |extractClosed| |chiSquare1|
+ |iroot| |mindeg| |useNagFunctions| |factorByRecursion|
+ |symmetricPower| |cycleSplit!| |lyndon| |iterators| |clipParametric|
+ |ip4Address| |trapezoidal| |contours| |showAll?| |viewSizeDefault|
+ |set| |drawComplex| |lfextendedint| |stFunc1| |tanSum|
+ |fortranLiteral| |perfectNthPower?| |primes| |makeSUP| |c05pbf|
+ |getDatabase| |d01bbf| |cAtanh| |e02bef| |environment| |previous|
+ |divideIfCan!| |initializeGroupForWordProblem| |OMlistCDs|
+ |ReduceOrder| |selectPolynomials| |listOfLists| |digit?| |palgextint|
+ |selectOrPolynomials| |plotPolar| |reindex| |mappingAst| |f02adf|
+ |shiftLeft| |OMputObject| |bivariateSLPEBR| |subMatrix| |rightMult|
+ |BumInSepFFE| |fglmIfCan| |exprToUPS| |interpretString| |makeResult|
+ |back| |prod| |cyclic?| |c02aff| |critpOrder| |s21bcf| |toroidal|
+ |exprHasLogarithmicWeights| |leftMinimalPolynomial| |imports|
+ |leftScalarTimes!| |lex| |say| |dfRange| |palgint| |true|
+ |collectUnder| |errorInfo| |arguments| |startPolynomial| |mapCoef|
+ |imagJ| |mappingMode| |euler| |padicallyExpand| |computeInt|
+ |stopTableInvSet!| |lowerCase?| |stirling2| |category|
+ |genericLeftTrace| |outputArgs| |complete| |typeLists| |lazyIntegrate|
+ |reset| |node| |internalIntegrate0| |numerators|
+ |rewriteIdealWithHeadRemainder| |sizeMultiplication| |domain|
+ |rotatex| |d02raf| |endSubProgram| |hitherPlane| |lazyPseudoRemainder|
+ |mainPrimitivePart| |insert| |xn| |parent| |solveRetract| |package|
+ |iibinom| |nilFactor| |completeEchelonBasis| |write|
+ |characteristicSerie| |monomial?| |inc| |uniform| |beauzamyBound|
+ |stronglyReduced?| |exp| |logGamma| |principalAncestors| |save|
+ |realEigenvalues| |radicalSolve| |univcase| |goodnessOfFit|
+ |SturmHabichtCoefficients| |show| |normDeriv2| |d01anf| |substitute|
+ |deleteProperty!| |setImagSteps| |reorder|
+ |factorSquareFreeByRecursion| |recoverAfterFail| |recur| |weights|
+ |rroot| |midpoint| |factor1| |representationType| |leftRecip|
+ |autoReduced?| |rootDirectory| |trace| |sqfree| |componentUpperBound|
+ |gderiv| |noValueMode| |unit| |linearPolynomials| |cCsch| |putGraph|
+ |epilogue| |rotate| |symbolIfCan| |viewDefaults| |OMgetEndAttr|
+ |stopMusserTrials| |listConjugateBases| |flexibleArray| |f04jgf|
+ |mainExpression| |varList| |f02bbf| |partitions|
+ |removeIrreducibleRedundantFactors| |linearPart| |idealiserMatrix|
+ |zeroDimPrime?| |tubePoints| |mapmult| |exactQuotient!| |complexRoots|
+ |countRealRoots| |monomialIntPoly| |nextsousResultant2| |freeOf?|
+ |genericRightMinimalPolynomial| |powers| |domainTemplate| |edf2df|
+ |s14aaf| |open| |showFortranOutputStack| |binarySearchTree| |xCoord|
+ |createNormalElement| |e01daf| |pToHdmp| |printingInfo?| |clip|
+ |bumprow| |UP2ifCan| |limit| |OMgetEndBind| |in?| |cSec|
+ |sylvesterSequence| |writeInt8!| |shanksDiscLogAlgorithm| |iisin|
+ |open?| |obj| |retractIfCan| |select!| |shiftRight| |rur| |double|
+ |deepExpand| |mainVariable| |complexElementary| |leftUnits| |cache|
+ |constant| |separateFactors| |presuper| |leadingBasisTerm|
+ |readUInt32!| |iidsum| |fortranInteger| |option?|
+ |generalizedEigenvector| |operations| |infix|
+ |removeRedundantFactorsInPols| |radicalEigenvector| |fractRadix|
+ |setlast!| |insertTop!| |totalDifferential| |minimalPolynomial|
+ |romberg| |ffactor| |antiCommutator| |cyclicSubmodule|
+ |brillhartTrials| |birth| |toseInvertibleSet| |log10| |generic|
+ |pToDmp| |atom?| |mapBivariate| |ricDsolve| |homogeneous?|
+ |numberOfDivisors| |readIfCan!| |useSingleFactorBound?| |c02agf|
+ |exponential1| |bitand| |infinity| |arity| |f02bjf| |cot2tan|
+ |quotient| |nodeOf?| |polygamma| |numberOfNormalPoly| |nthFactor|
+ |coleman| |bitior| |cSech| |thetaCoord| |imagI| |nonLinearPart|
+ |addMatch| |normalForm| |decimal| |packageCall| |keys| |legendreP|
+ |makeVariable| |interpolate| |setOrder| |midpoints| |deepestInitial|
+ |minColIndex| |legendre| |readUInt16!| |selectPDERoutines| |kernel|
+ |distance| |factorial| |map| |pointColor| |relerror| |isQuotient|
+ |trim| |limitedIntegrate| |UpTriBddDenomInv| |isList| |heapSort|
+ |regularRepresentation| |singularAtInfinity?| |list| |number?| |eof?|
+ |expintfldpoly| |print| |indiceSubResultantEuclidean| |pdct|
+ |upperCase| |lhs| |hasoln| |generateIrredPoly| |tube| |draw|
+ |internalInfRittWu?| |pdf2df| |resolve| |e02gaf|
+ |internalLastSubResultant| |monicRightDivide| |charthRoot| |rhs|
+ |replace| |mainVariable?| |trigs2explogs| |internalSubQuasiComponent?|
+ |minRowIndex| |reduceLODE| |stFunc2| |s18acf|
+ |degreeSubResultantEuclidean| |doublyTransitive?| |cCos|
+ |leadingSupport| |vedf2vef| |read!| |stoseInvertibleSetsqfreg|
+ |bfKeys| |extractTop!| |rotate!| |log2| |eulerPhi| |currentEnv|
+ |baseRDEsys| |startTableInvSet!| |element?| |low| |rischNormalize|
+ |kroneckerDelta| |convert| |categoryFrame| |infinityNorm|
+ |algintegrate| |height| |bat| |printInfo!| |fractionFreeGauss!|
+ |distribute| |LiePoly| |makeObject| |prepareSubResAlgo| |s19adf|
+ |minimumDegree| |reduceBasisAtInfinity| |conjugates| |mkAnswer|
+ |s18def| |isTimes| |credPol| |readInt8!| |times!| |coef| |finiteBasis|
+ |squareFree| |semiSubResultantGcdEuclidean2|
+ |selectOptimizationRoutines| |parts| |rational?| |every?|
+ |whatInfinity| |evenInfiniteProduct| |ddFact| |dom|
+ |functionIsOscillatory| |extractIndex| |argumentList!| |mpsode|
+ |primlimitedint| |content| |superHeight| |viewThetaDefault|
+ |badValues| |principalIdeal| |stoseIntegralLastSubResultant| Y
+ |cPower| |fractRagits| |color| |closedCurve| |nthCoef|
+ |strongGenerators| |iilog| |att2Result| |integralBasisAtInfinity|
+ |optAttributes| |unrankImproperPartitions0| |rename| |dictionary|
+ |getExplanations| |delay| |character?| |label| |internalIntegrate|
+ |irDef| |zag| |zCoord| |tryFunctionalDecomposition|
+ |lazyIrreducibleFactors| |setMaxPoints3D| |algebraicVariables|
+ |outputFloating| |entry| |iiacoth| |power!| |OMputApp| |parametersOf|
+ |denomLODE| |putProperty| |mulmod| |imagi| |critB| |fortranComplex|
+ |outputBinaryFile| |alphanumeric?| |child?| |OMputEndObject|
+ |OMreadStr| |setScreenResolution| |reducedDiscriminant| |tubeRadius|
+ |e04jaf| |infiniteProduct| |singular?| |toseLastSubResultant|
+ |totolex| |stoseInvertibleSet| |transcendent?| |cylindrical|
+ |mapExpon| |f02agf| |sinh2csch| |makeViewport2D| |distFact| |e02ahf|
+ |morphism| |s19aaf| |clipBoolean| |fortranLiteralLine|
+ |removeRoughlyRedundantFactorsInPol| |fixPredicate| |ptFunc| |nary?|
+ |OMputBind| |routines| |setfirst!| |normalElement| |extendedResultant|
+ |incr| |push| |lepol| |algSplitSimple| |cAsech| |numberOfCycles|
+ |mainValue| |localUnquote| |e01bff| |quadratic| |constructor| |hi|
+ |addMatchRestricted| |iiasech| |f02akf| |conjugate| |tail| |s14baf|
+ |maxRowIndex| |mainCoefficients| |usingTable?| |linkToFortran|
+ |adaptive3D?| |invmod| |setMinPoints| |countRealRootsMultiple|
+ |option| |fullPartialFraction| |initiallyReduce| |s15adf| |light|
+ |showSummary| |hspace| |subCase?| |lfextlimint| |orbits| |d01ajf|
+ |eq?| |reverse!| |coerceS| |f01maf| |firstNumer| |rules| |units|
+ |dihedralGroup| |phiCoord| |unitVector| |scopes| |top| |branchIfCan|
+ |LowTriBddDenomInv| |nullary?| |SturmHabichtSequence| |qPot|
+ |showAttributes| |maxrow| |randomLC| |quasiAlgebraicSet|
+ |exprToGenUPS| |continue| |bezoutDiscriminant| |radPoly|
+ |OMunhandledSymbol| |equiv| |multiplyCoefficients| |normalize|
+ |bsolve| |mainCharacterization| |bumptab| |rootPower| |gbasis|
+ |makeEq| |ksec| |meatAxe| |thenBranch| |notelem| |permutationGroup|
+ |name| |unknown| |f07aef| |bytes| |gcdPolynomial| |s01eaf|
+ |nextsubResultant2| |bigEndian| |comment| |commutativeEquality|
+ |collect| |symmetric?| |body| |bits| |range| |makeUnit| |multisect|
+ |oddlambert| |code| |se2rfi| |solveLinearlyOverQ| |zeroDimPrimary?|
+ |bernoulliB| |htrigs| |contract| |OMbindTCP| |quoted?| |dimension|
+ |addmod| |characteristicSet| |elRow2!| |overset?|
+ |halfExtendedResultant2| |null| |satisfy?| |lazyVariations| |inrootof|
+ |psolve| |antisymmetricTensors| |droot| |mat| |deriv| |lagrange|
+ |delta| |not| EQ |taylorQuoByVar| |showIntensityFunctions| |ipow|
+ |univariateSolve| |airyBi| |setright!| |explicitlyEmpty?| |presub|
+ |limitedint| |and| |coerceP| |showAllElements| |makeSketch| |copies|
+ |alphanumeric| |generate| |getSyntaxFormsFromFile| |imagj|
+ |possiblyNewVariety?| |f01ref| |or| |sinhcosh| |addPoint|
+ |createPrimitivePoly| |doubleComplex?| |restorePrecision| |box|
+ |front| |iisinh| |internalZeroSetSplit| |s13aaf| |integralAtInfinity?|
+ |xor| |sizePascalTriangle| |mapGen| |wordsForStrongGenerators|
+ |assert| |branchPointAtInfinity?| |iiacsc| |incrementBy| |OMputEndApp|
+ |leftPower| |port| |abs| |pattern| |case| |OMreadFile| |KrullNumber|
+ |basisOfCenter| |rightLcm| |rdregime| |inspect| |expand|
+ |palginfieldint| |unitNormal| |outputGeneral| |Zero| |quadraticNorm|
+ |sinIfCan| |linearAssociatedOrder| |mergeDifference| |latex|
+ |jokerMode| |filterWhile| |RittWuCompare| |OMputEndAtp| |t| |iiacosh|
+ |One| |linearAssociatedExp| |diag| |balancedFactorisation| |dual|
+ |maximumExponent| |mainKernel| |filterUntil| |lexTriangular|
+ |create3Space| |qinterval| |lambda| |leadingIndex|
+ |stoseInvertibleSetreg| |OMputEndError| |showTheFTable| |palgRDE|
+ |search| |poisson| |select| |pop!| |OMconnInDevice| |queue|
+ |drawCurves| |message| |constantKernel| |var2StepsDefault| |isAnd|
+ |rational| |clearTheSymbolTable| |createRandomElement| |members|
+ |symmetricProduct| |e04ucf| |loopPoints| |diophantineSystem|
+ |subspace| |redPo| |matrixGcd| |lazyGintegrate| |getMatch|
+ |invertibleSet| |var1StepsDefault| |e04gcf| |nrows|
+ |curveColorPalette| |e02dcf| |numberOfHues| |cot2trig| |torsion?|
+ |mapUnivariateIfCan| |terms| |screenResolution3D| |ncols| |elt|
+ |rightGcd| |nextItem| |d03edf| |leftExtendedGcd|
+ |absolutelyIrreducible?| |d02gaf| |retract| |bat1| |graphState|
+ |printHeader| |setleaves!| |f04faf| |LagrangeInterpolation| |ridHack1|
+ |dilog| |direction| |zero| |stoseSquareFreePart| |iicoth|
+ |generalTwoFactor| |product| |alphabetic?| |minimumExponent|
+ |simplifyPower| |tanhIfCan| |leftOne| |zeroDimensional?| |cons| |sin|
+ |makeRecord| |d01aqf| |e02zaf| |useEisensteinCriterion| |nothing|
+ |normal01| |addPointLast| |e02ddf| |lazyPremWithDefault| |And| |cos|
+ |logical?| |cotIfCan| |repSq| |particularSolution| |integrate|
+ |seriesSolve| |selectMultiDimensionalRoutines| |headAst| |Or| |hue|
+ |tan| |numberOfComposites| |lowerBound| |realSolve|
+ |structuralConstants| |integer?| |more?| |colorDef| |Not|
+ |rightFactorCandidate| |cot| |sec2cos| |zeroOf|
+ |indicialEquationAtInfinity| |OMputFloat| |constantToUnaryFunction|
+ |createNormalPoly| |coercePreimagesImages| |radicalEigenvalues|
+ |condition| |even?| |possiblyInfinite?| |sec| |f02abf|
+ |orthonormalBasis| |d02gbf| |plot| |f04axf| |fmecg| |coord|
+ |flagFactor| |csc| |conditionsForIdempotents| |determinant|
+ |createPrimitiveNormalPoly| |LiePolyIfCan| |radicalEigenvectors|
+ |subset?| |resetAttributeButtons| |interpret| |exponent| |source|
+ |isExpt| |float?| |asin| |basisOfRightNucloid| |f01qdf|
+ |setDifference| |OMgetEndAtp| |upDateBranches| |expandTrigProducts|
+ |getVariableOrder| |paraboloidal| |inRadical?| |dec| |acos| |linear?|
+ |addPoint2| |power| |critMTonD1| |genericLeftTraceForm| |pushucoef|
+ |s19acf| |plusInfinity| |atan| |radicalRoots| |explicitlyFinite?|
+ |polarCoordinates| |setnext!|
+ |solveLinearPolynomialEquationByRecursion| |adaptive?|
+ |rewriteIdealWithRemainder| |constantIfCan| |nthRoot| |integers|
+ |acot| |minusInfinity| |karatsubaDivide| |highCommonTerms| |char|
+ |showTheRoutinesTable| |extractProperty| |innerint| |screenResolution|
+ |variable?| |asec| |atanhIfCan| |mainMonomial| |typeList|
+ |rightQuotient| |status| |basisOfLeftAnnihilator| |s17aef| |getStream|
+ |acsc| |target| |less?| |unmakeSUP| |sumOfKthPowerDivisors|
+ |makeFloatFunction| |hex| |s17dgf| |acosIfCan| |sinh|
+ |positiveRemainder| |leftFactorIfCan| |optpair| |enqueue!| |isobaric?|
+ |polyRicDE| |isOpen?| |composites|
+ |generalizedContinuumHypothesisAssumed| |cosh| |multiset|
+ |zeroSetSplitIntoTriangularSystems| |reseed| |cyclicEqual?| |makeCos|
+ |mesh?| |meshPar2Var| |Beta| |type| |dn| |tanh| |frst| |f01mcf|
+ |rationalPoints| |inGroundField?| |outputList| |pointLists|
+ |constant?| |setPoly| |randomR| |coth| |rationalFunction|
+ |integralMatrixAtInfinity| |monomials| |redPol| |minGbasis| |sequence|
+ |squareFreePrim| |cyclotomic| |firstUncouplingMatrix| |float| |qelt|
+ |exponentialOrder| |f2st| |categoryMode| |sech| |selectODEIVPRoutines|
+ |getOperands| |rk4| |second| |qsetelt| |deleteRoutine!|
+ |makeYoungTableau| |antiCommutative?| |univariatePolynomialsGcds|
+ |UnVectorise| |eigenvectors| |multiEuclidean| |csch| |minPol|
+ |maxrank| |integral| |third| |cAcsc| |e01baf| |e04ycf| |pureLex|
+ |xRange| |elliptic?| |safeCeiling| |asinh| |supDimElseRittWu?|
+ |hostPlatform| |f07fdf| |inverseColeman| |genericRightTrace| |compile|
+ |const| |invertIfCan| |Lazard| |yRange| |purelyAlgebraic?| |void|
+ |acosh| |triangularSystems| |computeBasis| |changeBase| |binary|
+ |extendIfCan| |lexico| |firstDenom| |viewDeltaXDefault|
+ |rationalIfCan| |zRange| |listexp| |sn| |realRoots| |atanh|
+ |getGoodPrime| |selectIntegrationRoutines| |s17akf| |readLineIfCan!|
+ |map!| |rectangularMatrix| |sh| |setPredicates| |merge!| |hexDigit?|
+ |rischDEsys| |acoth| |critMonD1| |RemainderList| |solveid|
+ |definingPolynomial| |bag| |d01akf| |e02dff| |qsetelt!| |algint|
+ |singularitiesOf| |finiteBound| |asech| |irreducibleFactor|
+ |useSingleFactorBound| |OMputEndBind| |splitNodeOf!| |expIfCan|
+ |complexForm| |OMopenFile| |simplify| |palglimint0|
+ |rightCharacteristicPolynomial| |lSpaceBasis| |cSinh| |mkcomm| |key?|
+ |scalarTypeOf| |leftDivide| |setCondition!| GE |insert!| |e02akf|
+ |bandedJacobian| |multiple| |tubeRadiusDefault| |shape|
+ |stopTableGcd!| |noKaratsuba| |exprHasWeightCosWXorSinWX|
+ |leftAlternative?| |lintgcd| GT |laurentIfCan| |GospersMethod| |iisec|
+ |applyQuote| |createLowComplexityTable| |perfectSquare?| |wholeRagits|
+ |clipSurface| |represents| |jacobian| |augment| |Gamma| LE |s17acf|
+ |diff| |assign| |transcendentalDecompose| |numberOfPrimitivePoly|
+ |lquo| |predicate| |upperBound| LT |completeSmith| |aCubic| |reduced?|
+ |acsch| |prologue| |setleft!| |coth2trigh| |smith| |startStats!|
+ |ef2edf| |someBasis| |idealiser| |cycleLength| |associatedEquations|
+ |rationalPower| |elaboration| |moduloP| |ruleset| |coshIfCan|
+ |tan2trig| |semiDiscriminantEuclidean| UTS2UP |digit| |gradient|
+ |elseBranch| |mainContent| |subst| |linearlyDependentOverZ?| |getCode|
+ |pole?| |writable?| |coefChoose| |ratpart| |max| |f02xef|
+ |resultantEuclidean| |iiperm| |OMputEndBVar| |mathieu11| |fibonacci|
+ |c06frf| |halfExtendedResultant1| |fintegrate| |components|
+ |cyclicEntries| |expressIdealMember| |besselY| |basisOfLeftNucloid|
+ |iiatanh| |modTree| |directory| |gethi| |suchThat| |extensionDegree|
+ |decreasePrecision| |corrPoly| |symmetricSquare| |tree| |index|
+ |oblateSpheroidal| |SFunction| |weight| |chainSubResultants|
+ |unaryFunction| |zeroSquareMatrix| |mapUnivariate| |sechIfCan|
+ |sumOfSquares| |sech2cosh| |sparsityIF| |iicosh| |rootBound| |setref|
+ |exteriorDifferential| |initial|
+ |removeRoughlyRedundantFactorsInContents| |pascalTriangle|
+ |physicalLength| |OMwrite| |before?| |stiffnessAndStabilityOfODEIF|
+ |LyndonWordsList| |squareMatrix| |ode1| |endOfFile?| |setClipValue|
+ |resetNew| |pol| |meshFun2Var| |sign| |subResultantGcd| |pair|
+ |s18adf| |rightExactQuotient| |iitanh| |curryRight| |objects| |nodes|
+ |permutation| |rightTrim| |inputBinaryFile| |intPatternMatch|
+ |setsubMatrix!| |bright| |integral?| |chebyshevT| |parameters| GF2FG
+ |OMgetApp| |copyInto!| |quasiComponent| |goodPoint| |base| |leftTrim|
+ |diagonalProduct| |member?| |extractSplittingLeaf| |rightTrace|
+ |unitsColorDefault| |arg1| |edf2fi| |leftExactQuotient|
+ |polynomialZeros| |fortranReal| |reverseLex| |setRow!| |bubbleSort!|
+ |expint| |eval| |bernoulli| |boundOfCauchy| |arg2|
+ |rootOfIrreduciblePoly| |bracket| |pack!| RF2UTS |traceMatrix|
+ |tValues| |bipolar| |OMgetString| |expintegrate| |resetVariableOrder|
+ |addBadValue| |expandLog| |mapDown!| |imagE| |compBound|
+ |leadingIdeal| |sin?| |e02bdf| |bitCoef| |startTableGcd!| |conditions|
+ |lazyPseudoQuotient| |permutations| |iicos| |returnTypeOf|
+ |outputSpacing| |error| |f02aaf| |listOfMonoms| |monicLeftDivide|
+ |physicalLength!| |fixedPoints| |identitySquareMatrix| |match|
+ |getButtonValue| |reduceByQuasiMonic| |bezoutMatrix| |primitivePart!|
+ |printStats!| |monomialIntegrate| |rightRecip| |symmetricDifference|
+ |equation| |createZechTable| |push!| |cCot| |s15aef| |dmpToP|
+ |extendedint| |adjoint| |null?| |tab| |createMultiplicationMatrix|
+ |relativeApprox| |aromberg| |truncate| |function| |startTable!|
+ |stosePrepareSubResAlgo| |ScanFloatIgnoreSpacesIfCan| |dmpToHdmp|
+ |d01apf| |optimize| |getPickedPoints| |principal?| |findBinding|
+ |readInt32!| |primintegrate| |hdmpToP| |cfirst| |groebnerIdeal|
+ |viewport3D| |wholePart| |supersub| |rightDivide| |subNodeOf?|
+ |getMultiplicationTable| |numberOfMonomials| |property| |lazyPrem|
+ |laplacian| |sturmVariationsOf| |unprotectedRemoveRedundantFactors| BY
+ |frobenius| |primeFactor| |vark| |inverseIntegralMatrixAtInfinity|
+ |hclf| |squareFreeLexTriangular| |pushdterm| |iCompose| |shade|
+ |associative?| |d02ejf| |moduleSum| |solve| |squareFreeFactors|
+ |pair?| |iicot| |repeating| |e02def| |f04maf| |bitLength| |argscript|
+ |f2df| |symmetricTensors| |innerEigenvectors| |e01saf| |btwFact|
+ |numFunEvals| |subResultantChain| |degree| |companionBlocks|
+ |pleskenSplit| |currentScope| |getOperator| |c06ecf| |head| |makeCrit|
+ |aQuartic| |sort| |weakBiRank| |integralCoordinates| |quotedOperators|
+ |lprop| |sqfrFactor| |SturmHabicht| |submod| |resultant|
+ |setLegalFortranSourceExtensions| |kovacic| |changeName| |cLog|
+ |prolateSpheroidal| |spherical| |rem| |complement| |polygon?|
+ |ramifiedAtInfinity?| |sumOfDivisors| |properties|
+ |useEisensteinCriterion?| |subSet| |exQuo| |monicDecomposeIfCan|
+ |e02agf| |dequeue| |quo| |mapExponents| |imagK| |s17agf|
+ |factorPolynomial| |id| |integralRepresents| NOT |rationalPoint?|
+ |translate| |cyclicCopy| |ode2| |OMsend| |minPoints|
+ |ellipticCylindrical| |cAsec| |powmod| |localIntegralBasis| |lo|
+ |rk4f| OR |symFunc| |random| |wreath| |df2mf| |OMconnOutDevice|
+ |setRealSteps| |div| |setProperties| |sup| |toScale| |d02bhf| |lcm|
+ AND |swapColumns!| |c05adf| |s18dcf| |taylorIfCan|
+ |rewriteSetByReducingWithParticularGenerators| |alphabetic| |exquo|
+ |genericLeftNorm| |delete| |stoseInvertible?sqfreg| |vectorise|
+ |SturmHabichtMultiple| |lowerCase!| |Aleph| |outputAsTex| |deepCopy|
+ |build| ~= |setFieldInfo| |areEquivalent?| |rightRank|
+ |alternatingGroup| |lift| |rootSplit| |HermiteIntegrate| |append|
+ |hasTopPredicate?| |squareFreePart| |getZechTable| |is?| |#| |f01rcf|
+ |axes| |f04atf| |connectTo| |reduce| |setelt!| |numericIfCan| |mdeg|
+ |headRemainder| |gcd| |rename!| |signAround| ~ |sdf2lst| |gcdcofact|
+ |nil?| |setClosed| |setUnion| |false| |makeViewport3D| |cAsinh|
+ |resultantnaif| |prinshINFO| |hermite| |expandPower| |monicDivide|
+ |curry| |f04arf| |checkRur| |realEigenvectors| |eigenMatrix| |plus!|
+ |applyRules| |cyclotomicFactorization| |apply| |sncndn|
+ |euclideanNormalForm| |mergeFactors| |enterInCache| |find| |copy!|
+ |cyclic| |normalizeIfCan| |/\\| |associator| |qualifier| |matrix|
+ |first| |normalise| |tableau| |tanh2trigh| |graphs| |rightZero|
+ |slash| |nextSublist| |quasiMonic?| |\\/| |rest| |primlimintfrac|
+ |duplicates?| |associatorDependence| |interReduce| |lp| |associates?|
+ |nextPartition| |point?| |rootNormalize| |integralMatrix| |s21bbf|
+ |bottom!| |empty| |nullity| |roman| |coerce| * |rightExtendedGcd|
+ |binomial| |ListOfTerms| |indices| |s17dlf| |setTopPredicate|
+ |ratPoly| |setMaxPoints| |solid?| |magnitude| |construct| |orbit|
+ |hdmpToDmp| |trivialIdeal?| |solveLinear| |e01sef|
+ |standardBasisOfCyclicSubmodule| |permanent| |numer| |mvar| |e02daf|
+ |semiLastSubResultantEuclidean| |inverseIntegralMatrix| |generator|
+ |e01bgf| |algebraicSort| |maxdeg| |parabolicCylindrical| |asinhIfCan|
+ |denom| |arbitrary| |newTypeLists| |mindegTerm| =
+ |monicCompleteDecompose| |swapRows!| |complexNumericIfCan| |getRef|
+ |leftRemainder| |infieldIntegrate| |minPoints3D| |removeConstantTerm|
+ |scan| |topFortranOutputStack| |isMult| |internalSubPolSet?|
+ |removeSuperfluousQuasiComponents| |dualSignature| |optional?|
+ |isAbsolutelyIrreducible?| |deepestTail| |pi| |byte| |recolor|
+ |delete!| |palgintegrate| < |idealSimplify| |voidMode| |subTriSet?|
+ |symbol?| |lowerCase| |mapUp!| |width| |shellSort| |conjug| >
+ |asecIfCan| |listYoungTableaus| |splitConstant| |rootOf| |cycleTail|
+ |multinomial| |skewSFunction| |escape| |getBadValues| <= |mathieu24|
+ |invertibleElseSplit?| |updatD| |exprHasAlgebraicWeight| |implies|
+ |repeating?| |OMgetFloat| |probablyZeroDim?| |accuracyIF| |edf2efi|
+ |jacobiIdentity?| |d03eef| >= |enterPointData| |insertBottom!|
+ |differentialVariables| |acoshIfCan| |setvalue!| |iicsc| |pquo| |has?|
+ |nthExpon| |failed?| |complementaryBasis| |lieAlgebra?| |ratDsolve|
+ |processTemplate| |purelyTranscendental?| |complexIntegrate|
+ |algDsolve| |unravel| |mkPrim| |factorSquareFree| |conical|
+ |outputForm| |zoom| |iipow| |iiabs| |critM| |iteratedInitials|
+ |quoByVar| |radicalOfLeftTraceForm| |separant| |external?| |quartic|
+ |iterationVar| + |allRootsOf| |var2Steps| |value| |zeroVector|
+ |clearCache| |createPrimitiveElement| |f02aef| |e04naf| |numeric|
+ |iiasin| |int| |divisor| |perfectNthRoot| |e02bcf| -
+ |showTheSymbolTable| |drawToScale| |radical| |sturmSequence|
+ |prefixRagits| |curve?| |initiallyReduced?| |unary?| |optional|
+ |whileLoop| |palgextint0| / |rCoord| |numberOfOperations| |d01gaf|
+ |sylvesterMatrix| |createIrreduciblePoly| |generalPosition|
+ |symmetricRemainder| |compiledFunction| |rdHack1| |log| |cSin|
+ |incrementKthElement| |hconcat| |setEmpty!| |nextSubsetGray| |prime?|
+ |normFactors| |leaf?| |parametric?| |mapSolve| |brillhartIrreducible?|
+ |pomopo!| |approximants| |tanh2coth| |rightPower|
+ |rewriteSetWithReduction| |splitLinear| |e02adf| |signature|
+ |cschIfCan| |clearTable!| |setelt| |s19abf| |OMputInteger|
+ |pushNewContour| |leftTrace| |OMputVariable| |pr2dmp|
+ |currentSubProgram| |eyeDistance| |sortConstraints|
+ |expenseOfEvaluation| |d01alf| |simplifyExp| |expenseOfEvaluationIF|
+ |declare!| |f04asf| |prinb| |e01sbf| |elaborate| |f02awf|
+ |changeNameToObjf| |virtualDegree| |copy| |isNot| |removeZero|
+ |reciprocalPolynomial| |pade| |extend| |ode| |firstSubsetGray|
+ |pseudoDivide| |sumSquares| |seed| |checkForZero| |middle|
+ |listRepresentation| FG2F |innerSolve1| |quasiRegular| |polar|
+ |iicsch| |datalist| |computePowers| |semiResultantEuclidean2|
+ |commutative?| |readBytes!| |symmetricGroup| |internalAugment|
+ |encodingDirectory| |normalDenom| |rootsOf| |tablePow| |doubleRank|
+ |f02fjf| |OMserve| |euclideanGroebner| |maxPoints| |rightUnit|
+ |irreducibleFactors| |pushup| |initials| |basisOfRightAnnihilator|
+ |readUInt8!| |dimensionOfIrreducibleRepresentation| |options|
+ |basisOfLeftNucleus| |discriminant| |FormatArabic| |connect|
+ |leftNorm| |denominator| |cAsin| |lazyPseudoDivide| |completeHensel|
+ |pmintegrate| |linearMatrix| |subQuasiComponent?| |leftQuotient|
+ |showClipRegion| |groebner| |superscript| |df2st| |defineProperty|
+ |toseInvertible?| |composite| |reducedQPowers| |nthExponent|
+ |numberOfVariables| |concat!| |divideIfCan| |segment| |iiacos|
+ |pushdown| |genericPosition| |insertMatch| |squareTop| |output|
+ |string| |degreePartition| |s14abf| |innerSolve|
+ |semiDegreeSubResultantEuclidean| |tanQ| |primitiveElement| |iitan|
+ |operators| |zerosOf| |FormatRoman| |appendPoint| |npcoef| |nextPrime|
+ |elements| |viewpoint| |updateStatus!| |complexZeros| |crest|
+ |powerSum| |totalGroebner| |quote| |safeFloor| |zeroMatrix|
+ |unknownEndian| |doubleDisc| |dark| |integerBound| |lfunc|
+ |inputOutputBinaryFile| |simpson| |byteBuffer| |lllip|
+ |doubleResultant| |cond| |subHeight| |isOr| |csch2sinh| |cosSinInfo|
+ |stronglyReduce| |cartesian| |purelyAlgebraicLeadingMonomial?|
+ |removeZeroes| |rotatez| |wrregime| |ldf2lst|
+ |primPartElseUnitCanonical!| |toseSquareFreePart| |d01amf|
+ |fortranTypeOf| |position!| |parabolic| |imaginary| |atanIfCan|
+ |extractBottom!| |coordinate| |basisOfNucleus| |d02bbf|
+ |rightScalarTimes!| |continuedFraction| |d02kef|
+ |stoseLastSubResultant| |over| |conditionP| |LazardQuotient|
+ |lastSubResultantElseSplit| |bringDown| |buildSyntax| |divisors|
+ |totalDegree| |semiIndiceSubResultantEuclidean| |expPot|
+ |clipWithRanges| |selectNonFiniteRoutines| |interactiveEnv|
+ |trapezoidalo| |cup| |monomRDEsys| |block| |remove| |red| |intersect|
+ |upperCase!| |infRittWu?| |empty?| |rquo| |graeffe| |algebraicOf|
+ |changeWeightLevel| |nextNormalPoly| |negative?| |branchPoint?|
+ |points| |sort!| |minordet| |oneDimensionalArray|
+ |rightRankPolynomial| |hyperelliptic| |subresultantVector| |shufflein|
+ |center| |last| |viewPosDefault| |nonSingularModel|
+ |irreducibleRepresentation| |certainlySubVariety?| |Is| |genus|
+ |OMParseError?| |nextNormalPrimitivePoly| |OMencodingXML| |assoc|
+ |fi2df| |fortranLogical| |linearDependence| |indicialEquations|
+ |charpol| |create| |computeCycleEntry| |s21bdf| |lfinfieldint|
+ |writeBytes!| |formula| |s18aff| |semiResultantEuclideannaif|
+ |var1Steps| |predicates| |coHeight| |c06ekf| |choosemon| |schema| F2FG
+ |ScanArabic| |intermediateResultsIF| |diagonal| |lllp|
+ |roughUnitIdeal?| |aQuadratic| |divideExponents| |s13adf|
+ |irreducible?| |lazy?| |rangeIsFinite| |closedCurve?| |sPol| |ranges|
+ |iFTable| |normInvertible?| |dequeue!| |clearTheFTable|
+ |complexEigenvectors| |listBranches| |row| |central?| |complex?|
+ |computeCycleLength| |algebraicDecompose| |cTan| |quasiRegular?|
+ |rubiksGroup| |weierstrass| |radicalSimplify| |contractSolve|
+ |setLength!| |mapMatrixIfCan| |polyPart| |fixedPoint| |norm| |trunc|
+ |approxNthRoot| |coerceImages| |leftFactor| |whitePoint| |modularGcd|
+ |blankSeparate| |noLinearFactor?| |s18aef| |testModulus| |isAtom|
+ |putProperties| |semiResultantEuclidean1| |d01fcf|
+ |transcendenceDegree| |contains?| |OMgetEndBVar| |setAdaptive3D|
+ |characteristic| |parseString| |mapdiv| |getGraph| |cCoth|
+ |explogs2trigs| |fortranLinkerArgs| |attributeData| |hasHi|
+ |schwerpunkt| |jacobi| |ideal| |moreAlgebraic?|
+ |numberOfComputedEntries| |bfEntry| |expextendedint| |setrest!|
+ |identityMatrix| |removeSquaresIfCan| |slex| |OMgetObject| |rotatey|
+ |cyclicParents| |rowEchelon| |selectAndPolynomials| |sayLength|
+ |aLinear| |explicitEntries?| |weighted| |OMgetType| |tRange|
+ |primeFrobenius| |graphCurves| |prevPrime| |qqq| |coordinates|
+ |karatsuba| |c06fpf| |numberOfChildren| |evaluate| |pastel|
+ |numberOfComponents| |redmat| |isOp| |validExponential| |kmax|
+ |clipPointsDefault| |vertConcat| |leftUnit| |c06fuf| |iiacsch|
+ |factorAndSplit| |nthFractionalTerm| |cos2sec| |leastMonomial|
+ |makeSeries| |testDim| |c06eaf| |disjunction| |genericRightTraceForm|
+ |c06gcf| |top!| |ran| |e04mbf| |OMsetEncoding| |leaves| |rightOne|
+ |dflist| |stoseInvertible?reg| |saturate| |extendedSubResultantGcd|
+ |exp1| |Vectorise| |dmp2rfi| |pseudoRemainder| |rightAlternative?|
+ |Nul| |nil| |figureUnits| |s17def| |alternating| |reduction|
+ |macroExpand| |s17ajf| |OMUnknownSymbol?| |graphImage| |varselect|
+ |makeMulti| |rspace| |rightRegularRepresentation| |isEquiv|
+ |createLowComplexityNormalBasis| |mathieu23| |commutator| |high|
+ |palgint0| |lighting| |cAtan| |chebyshevU| |hMonic| |split!|
+ |palgRDE0| |commonDenominator| |swap!| |coerceL|
+ |removeRedundantFactors| |squareFreePolynomial| |approximate|
+ |factorOfDegree| |coefficients| |ramified?| |linears| |getMeasure|
+ |rst| |c06ebf| |argument| |sum| |order| |complex| |constantLeft|
+ |dimensionsOf| |factors| |quatern| |nativeModuleExtension| |extension|
+ |transpose| |zero?| |bombieriNorm| |knownInfBasis|
+ |univariatePolynomial| |deref| |clikeUniv| |polyred| |readInt16!|
+ |move| |identification| |genericLeftDiscriminant| |ord| |bindings|
+ |square?| |rank| |setPosition| |triangular?| |hcrf| |e04fdf|
+ |modifyPointData| |point| |generalLambert| |janko2| |secIfCan| |cn|
+ |powerAssociative?| |gensym| |tan2cot| |debug| |besselI| |zeroDim?|
+ |failed| |setColumn!| |geometric| |splitSquarefree| |acothIfCan|
+ |mainSquareFreePart| LODO2FUN |elementary| |factorsOfDegree|
+ |rightMinimalPolynomial| D |intChoose| |adaptive| |changeThreshhold|
+ |groebner?| |backOldPos| |invertible?| |close!| |leftLcm|
+ |integralLastSubResultant| |doubleFloatFormat| |closed?| |series|
+ |meshPar1Var| |padecf| |rowEchLocal| |selectFiniteRoutines|
+ |dimensions| |makeTerm| |acschIfCan| |finite?| |showRegion|
+ |printCode| |stoseInvertible?| |badNum| |expt| |mainMonomials|
+ |leftMult| |s17adf| |constantOpIfCan| |pushuconst| |inf|
+ |cyclePartition| |extendedIntegrate| |s17ahf| |subresultantSequence|
+ |partition| |countable?| |derivative| |round| |super| |primintfldpoly|
+ |lists| |logpart| |revert| |solve1| |leastAffineMultiple|
+ |generalSqFr| |outputFixed| |min| |leftDiscriminant| |green|
+ |closeComponent| |OMencodingSGML| |ref| |prepareDecompose|
+ |nextIrreduciblePoly| |lyndonIfCan| |padicFraction| |printInfo|
+ |c06gbf| |roughEqualIdeals?| |argumentListOf| |drawComplexVectorField|
+ |complexSolve| |OMgetBind| |tracePowMod| |partialQuotients|
+ |combineFeatureCompatibility| |denominators| |factorFraction|
+ |headReduced?| |bivariatePolynomials| |lambert| |cap| |discreteLog|
+ |checkPrecision| |dAndcExp| |writeUInt8!| |substring?| |normalized?|
+ |complexExpand| |key| |fracPart| |twoFactor| |nextLatticePermutation|
+ |module| |forLoop| |tubePointsDefault| |roughSubIdeal?| |separate|
+ |f04mcf| |primextintfrac| |subNode?| |algebraic?| |leader| |increase|
+ |iprint| |returns| |irVar| |suffix?| |inR?| |filename| |ParCond|
+ |fortranDoubleComplex| |solveLinearPolynomialEquation| |makeop|
+ |nullary| |genericLeftMinimalPolynomial| |cosh2sech| |f02wef|
+ |integralBasis| |symbolTable| |loadNativeModule| |cycleEntry|
+ |lazyEvaluate| |semiResultantReduitEuclidean| |consnewpol| |prefix?|
+ |OMputString| |remove!| |child| |acotIfCan| |monomRDE|
+ |pointColorDefault| |parse| |f04mbf| |completeHermite| |OMgetEndError|
+ |iiatan| |fortran| |prinpolINFO| |multMonom| |overbar|
+ |resultantReduit| |leastPower| |plus| |pushFortranOutputStack|
+ |plenaryPower| |normal?| |positive?| |iiasec| |variationOfParameters|
+ |fortranCarriageReturn| |stripCommentsAndBlanks| |OMputBVar|
+ |lastSubResultantEuclidean| |popFortranOutputStack| |summation|
+ |fractionPart| |subPolSet?| |cCosh| |createGenericMatrix| |setOfMinN|
+ |coth2tanh| |convergents| |OMgetInteger| |outputAsFortran|
+ |headReduce| |rightUnits| |pointSizeDefault| |singRicDE| |gramschmidt|
+ |bezoutResultant| |readLine!| |setFormula!| |triangulate| |table| |Ci|
+ |eigenvector| |asechIfCan| |createThreeSpace| |size?|
+ |factorsOfCyclicGroupSize| |increment| |precision| |internal?|
+ |derivationCoordinates| |times| |new| |f02axf| |trueEqual| |nullSpace|
+ |generalInfiniteProduct| |leftTraceMatrix| |rightDiscriminant|
+ |iExquo| |bivariate?| |f07adf| |infix?| |ptree| |getOrder|
+ |makeGraphImage| |setMinPoints3D| |comparison| |df2ef| |flatten|
+ |irCtor| |noncommutativeJordanAlgebra?| |HenselLift| |mask| |logIfCan|
+ |besselK| |leftZero| |cross| |lyndon?| |init| |hostByteOrder|
+ |subtractIfCan| |getMultiplicationMatrix| |generators| |torsionIfCan|
+ |makingStats?| |unparse| |scanOneDimSubspaces| |e01bhf|
+ |tryFunctionalDecomposition?| |pow| |e02baf| |zeroSetSplit| |cAcos|
+ |monom| |PDESolve| |e01bef| |selectSumOfSquaresRoutines|
+ |OMconnectTCP| |basisOfCentroid| |generic?| |newLine| |setEpilogue!|
+ |tensorProduct| |rule| |setStatus| |singleFactorBound| |removeSinhSq|
+ |unexpand| |numericalIntegration| |permutationRepresentation|
+ |simplifyLog| |leviCivitaSymbol| |PollardSmallFactor| |topPredicate|
+ |newReduc| |cycles| |harmonic| |associatedSystem| |getConstant|
+ |setprevious!| |iomode| |common| |sub| |style| |alternative?| |host|
+ |curryLeft| |script| |shrinkable| |increasePrecision| |hessian|
+ |numberOfIrreduciblePoly| |bandedHessian| |getProperties| |stirling1|
+ |setScreenResolution3D| |binaryTree| |diagonals| |title| |groebSolve|
+ |lazyPquo| |normalizedDivide| |evenlambert| |e04dgf| |separateDegrees|
+ |putColorInfo| |OMputAttr| |littleEndian| |resetBadValues|
+ |clearDenominator| |rootSimp| |OMgetAtp| |left| |vector| |part?|
+ |iiGamma| |supRittWu?| |vspace| |tex| |dihedral| |outerProduct|
+ |OMgetVariable| |outputAsScript| |cycleElt| |externalList| |right|
+ |differentiate| |viewWriteAvailable| |OMputEndAttr| |viewport2D|
+ |collectUpper| |e| |withPredicates| |ODESolve| |fortranDouble|
+ |oddInfiniteProduct| |definingEquations| |curve|
+ |generalizedEigenvectors| |extractPoint| |Frobenius| |list?|
+ |showArrayValues| |writeByte!| |constantOperator| |OMgetEndObject|
+ |rightRemainder| |symbolTableOf| |trailingCoefficient| |nand|
+ |directSum| |stoseInternalLastSubResultant| |OMgetBVar| |multiple?|
+ |setPrologue!| |setStatus!| |graphStates| |nonQsign| |yellow|
+ |functionIsFracPolynomial?| |swap| |numericalOptimization|
+ |pointColorPalette| |outlineRender| |ratDenom| |qfactor|
+ |lowerPolynomial| |bit?| |Si| |euclideanSize| |reducedSystem|
+ |colorFunction| |c05nbf| |basisOfCommutingElements| |chiSquare|
+ |f01bsf| |d02cjf| |overlabel| |asimpson| |closed| |shift| |anfactor|
+ |twist| |readable?| |nsqfree| |any| |measure| |hash| |OMputSymbol|
+ |limitPlus| |qroot| |regime| |groebnerFactorize| |OMclose| |e02bbf|
+ |f01qcf| |count| |solveLinearPolynomialEquationByFractions| |rk4qc|
+ |indiceSubResultant| |next| |tanNa| |currentCategoryFrame|
+ |bipolarCylindrical| |exactQuotient| |getlo| |coerceListOfPairs|
+ |myDegree| |binding| |numberOfFractionalTerms| |LyndonBasis|
+ |cardinality| |reflect| |eigenvalues| |any?| |enumerate|
+ |pmComplexintegrate| |changeVar| |messagePrint| |constDsolve|
+ |unitNormalize| |generalizedInverse| |constantRight| |asinIfCan|
+ |minPoly| |remainder| |symbol| |chineseRemainder|
+ |basisOfRightNucleus| |surface| |subResultantsChain| |s17dcf|
+ |signatureAst| |OMgetError| |listLoops| |palgLODE| |henselFact|
+ |expression| |createMultiplicationTable| |mkIntegral|
+ |normalizedAssociate| |evaluateInverse| |laplace| |fortranCharacter|
+ |vconcat| |ldf2vmf| |isPower| |integer| |inconsistent?|
+ |cyclotomicDecomposition| |printStatement| |yCoordinates|
+ |setButtonValue| |binaryFunction| |An| |linear| |rarrow|
+ |rightFactorIfCan| |identity| |Ei| |root?| |makeFR| |solid|
+ |complexLimit| |replaceKthElement| |reify| |setIntersection| |cAcoth|
+ |musserTrials| |fortranCompilerName|
+ |removeRoughlyRedundantFactorsInPols| |iiacot| |raisePolynomial|
+ |OMsupportsSymbol?| |polynomial| |iiasinh| |invmultisect|
+ |setVariableOrder| |capacity| |cdr| |cExp| |setValue!| |support|
+ |realZeros| |youngGroup| |minrank| |partialNumerators| |selectfirst|
+ |Hausdorff| |f02ajf| |lookupFunction| |erf| |intensity| |result|
+ |splitDenominator| |OMencodingUnknown| |redpps| |pseudoQuotient|
+ |iiexp| |cAcosh| |li| |nextColeman| |removeDuplicates|
+ |rangePascalTriangle| |hasSolution?| |trace2PowMod| |basicSet|
+ |OMUnknownCD?| |roughBase?| |rischDE| |setAdaptive| |stack|
+ |hypergeometric0F1| |tower| |normalizeAtInfinity| |pdf2ef|
+ |laurentRep| |localAbs| |goto| |recip| |decomposeFunc| |neglist|
+ |cTanh| |f07fef| |curveColor| |f01brf| |fprindINFO|
+ |jordanAdmissible?| |acscIfCan| |column| |printTypes|
+ |LazardQuotient2| |decompose| |linearAssociatedLog| |findCycle|
+ |basis| |simpleBounds?| |e02aef| |mainDefiningPolynomial|
+ |normalDeriv| |rootPoly| |removeDuplicates!| |calcRanges| |gcdprim|
+ |eq| |hermiteH| |collectQuasiMonic| |inHallBasis?| |denomRicDE|
+ |callForm?| |iter| |semiSubResultantGcdEuclidean1| |quadraticForm|
+ |dim| |radix| |halfExtendedSubResultantGcd2| |length|
+ |findConstructor| |drawStyle| |distdfact| |clearFortranOutputStack|
+ |rationalApproximation| |leftRegularRepresentation| |readByte!|
+ |integerIfCan| |complexNumeric| |removeCoshSq| |step| |scripts|
+ |binaryTournament| |elColumn2!| |f04adf| |preprocess|
+ |internalDecompose| |nlde| |shallowExpand| |explimitedint| |transform|
+ |concat| |conjunction| |traverse| |isPlus| |abelianGroup| |test|
+ |kernels| |leadingTerm| |dot| |flexible?| |intcompBasis| |s21baf|
+ |blue| |cRationalPower| |localReal?| |factorGroebnerBasis| |fTable|
+ |operator| |sts2stst| |safetyMargin| |perspective| |OMopenString|
+ |retractable?| |iidprod| |chvar| |linGenPos| |multiplyExponents|
+ |ignore?| |dioSolve| |c06fqf| |csubst| |OMencodingBinary| |addiag|
+ |duplicates| |irForm| |tableForDiscreteLogarithm| |mainVariables|
+ |divergence| |univariate| |ceiling| |digits| |uncouplingMatrices|
+ |eulerE| |complexNormalize| |repeatUntilLoop| |cAcsch|
+ |indicialEquation| |bounds| |lfintegrate| |Lazard2|
+ |unrankImproperPartitions1| |exponential| |fixedPointExquo|
+ |modularFactor| |linearlyDependent?| |lazyResidueClass| |one?|
+ |OMreceive| |changeMeasure| |setAttributeButtonStep| |reducedForm|
+ |children| |makeSin| |prefix| |baseRDE| |insertRoot!| |shallowCopy|
+ |overlap| |genericRightDiscriminant| |factor| |cscIfCan| |edf2ef|
+ |primitive?| |insertionSort!| |functorData| |fill!| |cothIfCan|
+ |unvectorise| |sqrt| |setchildren!| |lifting| |prime| |monicModulo|
+ |B1solve| |patternVariable| |cyclicGroup| |region| |quadratic?|
+ |modularGcdPrimitive| |real| |leadingExponent| |showTheIFTable|
+ |subscript| |lineColorDefault| |horizConcat| |tab1| |nor| |tubePlot|
+ |BasicMethod| |OMgetAttr| |imag| |declare| |OMgetSymbol| |f01qef|
+ |f01rdf| |polCase| |stop| |simpsono| |mix|
+ |stiffnessAndStabilityFactor| |newSubProgram| |factorials|
+ |youngDiagram| |directProduct| |heap| |e01sff| |stopTable!|
+ |medialSet| |index?| |mr| |extract!| |leftGcd| |OMlistSymbols|
+ |maxColIndex| |OMmakeConn| |lookup| |moebiusMu| |LyndonWordsList1|
+ |d01asf| |outputMeasure| SEGMENT |dominantTerm| |axesColorDefault|
+ |primaryDecomp| |compose| |brace| |kind| |quasiMonicPolynomials|
+ |entries| |sincos| |exponents| |removeRedundantFactorsInContents|
+ |fullDisplay| |postfix| |minIndex| |string?| |categories|
+ |linearDependenceOverZ| |destruct| |iifact| |prem| |octon| |op|
+ |reopen!| |primitivePart| |realElementary| |mantissa|
+ |wordInStrongGenerators| |monic?| |depth| |iisqrt3| |froot| |csc2sin|
+ |numerator| |algebraicCoefficients?| |nextPrimitiveNormalPoly|
+ |lifting1| |typeForm| |taylorRep| |decrease| |LyndonCoordinates|
+ |equality| |oddintegers| |coefficient| |getProperty| |s17aff|
+ |sinhIfCan| |scripted?| |odd?| |level| |rightNorm| |roughBasicSet|
+ |ocf2ocdf| |scaleRoots| |viewWriteDefault| |cAcot|
+ |primPartElseUnitCanonical| |exportedOperators| |c06gqf| |mesh|
+ |setErrorBound| |e02ajf| |moebius| |s17dhf| |monomial|
+ |constantCoefficientRicDE| |reducedContinuedFraction| |setTex!|
+ |unitCanonical| |sample| |resize| |lieAdmissible?| |commaSeparate|
+ |subscriptedVariables| |anticoord| |multivariate| |cubic|
+ |characteristicPolynomial| |node?| |OMputAtp| |factorset|
+ |leftCharacteristicPolynomial| |seriesToOutputForm| |userOrdered?|
+ |numberOfFactors| |partialFraction| |variables| |space|
+ |inverseLaplace| |patternMatchTimes| |union| |charClass| |refine|
+ |f02aff| |measure2Result| |exptMod| |iisqrt2| |univariatePolynomials|
+ |setLabelValue| |rootProduct| |rightTraceMatrix| |infieldint| |split|
+ |complexEigenvalues| |matrixConcat3D| |floor| |rootKerSimp|
+ |removeCosSq| |semicolonSeparate| |basisOfMiddleNucleus| |infinite?|
+ |specialTrigs| |shuffle| |selectsecond| |s20adf| |isImplies|
+ |minimize| |d01gbf| |positiveSolve| |rootRadius| |minset|
+ |lflimitedint| |yCoord| |resultantEuclideannaif| |solveInField| UP2UTS
+ |totalLex| |viewDeltaYDefault| |setProperty| |double?| |rowEch|
+ |linSolve| |airyAi| |extractIfCan| |resultantReduitEuclidean|
+ |initTable!| |write!| |degreeSubResultant| |taylor|
+ |multiEuclideanTree| |comp| |pile| |returnType!| |elliptic|
+ |definingInequation| |hasPredicate?| |factorSquareFreePolynomial|
+ |nthRootIfCan| |elRow1!| |discriminantEuclidean| |laurent| |cCsc|
+ |arrayStack| |lastSubResultant| |univariate?| |pointData| |omError|
+ |divisorCascade| |maxPoints3D| |ParCondList| |debug3D| |reverse|
+ |puiseux| |exprex| |numberOfImproperPartitions| |real?|
+ |elaborateFile| |leadingCoefficientRicDE| |nthr| |systemSizeIF|
+ |compactFraction| |randnum| |getCurve| |po| |s20acf| |rk4a| |nil|
|infinite| |arbitraryExponent| |approximate| |complex|
|shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index db543cb5..f9cd783d 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5424 +1,5433 @@
-(3238771 . 3485764587)
-((-1492 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-4287 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3135 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-1251 (-574)) |#2|) 44)) (-2060 (($ $) 80)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1452 (((-574) (-1 (-112) |#2|) $) 27) (((-574) |#2| $) NIL) (((-574) |#2| $ (-574)) 96)) (-1871 (((-654 |#2|) $) 13)) (-2470 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2462 (($ (-1 |#2| |#2|) $) 37)) (-1785 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1602 (($ |#2| $ (-574)) NIL) (($ $ $ (-574)) 67)) (-3748 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1731 (((-112) (-1 (-112) |#2|) $) 23)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL) (($ $ (-1251 (-574))) 66)) (-2855 (($ $ (-574)) 76) (($ $ (-1251 (-574))) 75)) (-3949 (((-781) (-1 (-112) |#2|) $) 34) (((-781) |#2| $) NIL)) (-2663 (($ $ $ (-574)) 69)) (-3157 (($ $) 68)) (-2963 (($ (-654 |#2|)) 73)) (-4132 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-654 $)) 85)) (-2951 (((-872) $) 92)) (-2859 (((-112) (-1 (-112) |#2|) $) 22)) (-2986 (((-112) $ $) 95)) (-3009 (((-112) $ $) 99)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2663 (|#1| |#1| |#1| (-574))) (-15 -1492 ((-112) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) (-19 |#2|) (-1234)) (T -18))
+(3242103 . 3485769925)
+((-1375 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3330 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3140 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 44)) (-2002 (($ $) 80)) (-2887 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1454 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-1873 (((-656 |#2|) $) 13)) (-1383 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2466 (($ (-1 |#2| |#2|) $) 37)) (-1787 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1604 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-2922 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1875 (((-112) (-1 (-112) |#2|) $) 23)) (-2209 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1253 (-576))) 66)) (-2860 (($ $ (-576)) 76) (($ $ (-1253 (-576))) 75)) (-3954 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-2647 (($ $ $ (-576)) 69)) (-3162 (($ $) 68)) (-2968 (($ (-656 |#2|)) 73)) (-4136 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-2956 (((-874) $) 92)) (-3972 (((-112) (-1 (-112) |#2|) $) 22)) (-2991 (((-112) $ $) 95)) (-3014 (((-112) $ $) 99)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2647 (|#1| |#1| |#1| (-576))) (-15 -1375 ((-112) |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3140 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2968 (|#1| (-656 |#2|))) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -3140 (|#2| |#1| (-576) |#2|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -1873 ((-656 |#2|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3162 (|#1| |#1|))) (-19 |#2|) (-1236)) (T -18))
NIL
-(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2663 (|#1| |#1| |#1| (-574))) (-15 -1492 ((-112) |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-19 |#1|) (-141) (-1234)) (T -19))
+(-10 -8 (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2647 (|#1| |#1| |#1| (-576))) (-15 -1375 ((-112) |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3140 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2968 (|#1| (-656 |#2|))) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -3140 (|#2| |#1| (-576) |#2|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -1873 ((-656 |#2|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3162 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1454 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 72)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-19 |#1|) (-141) (-1236)) (T -19))
NIL
-(-13 (-382 |t#1|) (-10 -7 (-6 -4460)))
-(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T))
-((-3290 (((-3 $ "failed") $ $) 12)) (-3090 (($ $) NIL) (($ $ $) 9)) (* (($ (-935) $) NIL) (($ (-781) $) 16) (($ (-574) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3290 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-21)) (T -20))
+(-13 (-384 |t#1|) (-10 -7 (-6 -4462)))
+(((-34) . T) ((-102) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T))
+((-3798 (((-3 $ "failed") $ $) 12)) (-3096 (($ $) NIL) (($ $ $) 9)) (* (($ (-937) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3290 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24)))
+(-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24)))
(((-21) (-141)) (T -21))
-((-3090 (*1 *1 *1) (-4 *1 (-21))) (-3090 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-132) (-656 (-574)) (-10 -8 (-15 -3090 ($ $)) (-15 -3090 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1116) . T))
-((-4311 (((-112) $) 10)) (-1430 (($) 15)) (* (($ (-935) $) 14) (($ (-781) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 -1430 (|#1|)) (-15 * (|#1| (-935) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 -1430 (|#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16)))
+((-3096 (*1 *1 *1) (-4 *1 (-21))) (-3096 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-132) (-658 (-576)) (-10 -8 (-15 -3096 ($ $)) (-15 -3096 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1118) . T))
+((-3549 (((-112) $) 10)) (-4335 (($) 15)) (* (($ (-937) $) 14) (($ (-783) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -4335 (|#1|)) (-15 * (|#1| (-937) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -4335 (|#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16)))
(((-23) (-141)) (T -23))
-((-2141 (*1 *1) (-4 *1 (-23))) (-1430 (*1 *1) (-4 *1 (-23))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781)))))
-(-13 (-25) (-10 -8 (-15 (-2141) ($) -1714) (-15 -1430 ($) -1714) (-15 -4311 ((-112) $)) (-15 * ($ (-781) $))))
-(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((* (($ (-935) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-935) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14)))
+((-2143 (*1 *1) (-4 *1 (-23))) (-4335 (*1 *1) (-4 *1 (-23))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))))
+(-13 (-25) (-10 -8 (-15 (-2143) ($) -1716) (-15 -4335 ($) -1716) (-15 -3549 ((-112) $)) (-15 * ($ (-783) $))))
+(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((* (($ (-937) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-937) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14)))
(((-25) (-141)) (T -25))
-((-3074 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-935)))))
-(-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ (-935) $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2910 (((-654 $) (-966 $)) 32) (((-654 $) (-1189 $)) 16) (((-654 $) (-1189 $) (-1193)) 20)) (-2432 (($ (-966 $)) 30) (($ (-1189 $)) 11) (($ (-1189 $) (-1193)) 60)) (-3961 (((-654 $) (-966 $)) 33) (((-654 $) (-1189 $)) 18) (((-654 $) (-1189 $) (-1193)) 19)) (-2231 (($ (-966 $)) 31) (($ (-1189 $)) 13) (($ (-1189 $) (-1193)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2910 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2910 ((-654 |#1|) (-1189 |#1|))) (-15 -2910 ((-654 |#1|) (-966 |#1|))) (-15 -2432 (|#1| (-1189 |#1|) (-1193))) (-15 -2432 (|#1| (-1189 |#1|))) (-15 -2432 (|#1| (-966 |#1|))) (-15 -3961 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3961 ((-654 |#1|) (-1189 |#1|))) (-15 -3961 ((-654 |#1|) (-966 |#1|))) (-15 -2231 (|#1| (-1189 |#1|) (-1193))) (-15 -2231 (|#1| (-1189 |#1|))) (-15 -2231 (|#1| (-966 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2910 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2910 ((-654 |#1|) (-1189 |#1|))) (-15 -2910 ((-654 |#1|) (-966 |#1|))) (-15 -2432 (|#1| (-1189 |#1|) (-1193))) (-15 -2432 (|#1| (-1189 |#1|))) (-15 -2432 (|#1| (-966 |#1|))) (-15 -3961 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3961 ((-654 |#1|) (-1189 |#1|))) (-15 -3961 ((-654 |#1|) (-966 |#1|))) (-15 -2231 (|#1| (-1189 |#1|) (-1193))) (-15 -2231 (|#1| (-1189 |#1|))) (-15 -2231 (|#1| (-966 |#1|))))
-((-2864 (((-112) $ $) 7)) (-2910 (((-654 $) (-966 $)) 88) (((-654 $) (-1189 $)) 87) (((-654 $) (-1189 $) (-1193)) 86)) (-2432 (($ (-966 $)) 91) (($ (-1189 $)) 90) (($ (-1189 $) (-1193)) 89)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-4212 (($ $) 100)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-3961 (((-654 $) (-966 $)) 94) (((-654 $) (-1189 $)) 93) (((-654 $) (-1189 $) (-1193)) 92)) (-2231 (($ (-966 $)) 97) (($ (-1189 $)) 96) (($ (-1189 $) (-1193)) 95)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 99)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+((-3081 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937)))))
+(-13 (-1118) (-10 -8 (-15 -3081 ($ $ $)) (-15 * ($ (-937) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3246 (((-656 $) (-968 $)) 32) (((-656 $) (-1191 $)) 16) (((-656 $) (-1191 $) (-1195)) 20)) (-2272 (($ (-968 $)) 30) (($ (-1191 $)) 11) (($ (-1191 $) (-1195)) 60)) (-3190 (((-656 $) (-968 $)) 33) (((-656 $) (-1191 $)) 18) (((-656 $) (-1191 $) (-1195)) 19)) (-3028 (($ (-968 $)) 31) (($ (-1191 $)) 13) (($ (-1191 $) (-1195)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3246 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3246 ((-656 |#1|) (-1191 |#1|))) (-15 -3246 ((-656 |#1|) (-968 |#1|))) (-15 -2272 (|#1| (-1191 |#1|) (-1195))) (-15 -2272 (|#1| (-1191 |#1|))) (-15 -2272 (|#1| (-968 |#1|))) (-15 -3190 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3190 ((-656 |#1|) (-1191 |#1|))) (-15 -3190 ((-656 |#1|) (-968 |#1|))) (-15 -3028 (|#1| (-1191 |#1|) (-1195))) (-15 -3028 (|#1| (-1191 |#1|))) (-15 -3028 (|#1| (-968 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3246 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3246 ((-656 |#1|) (-1191 |#1|))) (-15 -3246 ((-656 |#1|) (-968 |#1|))) (-15 -2272 (|#1| (-1191 |#1|) (-1195))) (-15 -2272 (|#1| (-1191 |#1|))) (-15 -2272 (|#1| (-968 |#1|))) (-15 -3190 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3190 ((-656 |#1|) (-1191 |#1|))) (-15 -3190 ((-656 |#1|) (-968 |#1|))) (-15 -3028 (|#1| (-1191 |#1|) (-1195))) (-15 -3028 (|#1| (-1191 |#1|))) (-15 -3028 (|#1| (-968 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3246 (((-656 $) (-968 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86)) (-2272 (($ (-968 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-4214 (($ $) 100)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-3190 (((-656 $) (-968 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92)) (-3028 (($ (-968 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 99)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
(((-27) (-141)) (T -27))
-((-2231 (*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) (-2231 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27)))) (-2432 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1)))) (-2910 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27)) (-5 *2 (-654 *1)))))
-(-13 (-372) (-1018) (-10 -8 (-15 -2231 ($ (-966 $))) (-15 -2231 ($ (-1189 $))) (-15 -2231 ($ (-1189 $) (-1193))) (-15 -3961 ((-654 $) (-966 $))) (-15 -3961 ((-654 $) (-1189 $))) (-15 -3961 ((-654 $) (-1189 $) (-1193))) (-15 -2432 ($ (-966 $))) (-15 -2432 ($ (-1189 $))) (-15 -2432 ($ (-1189 $) (-1193))) (-15 -2910 ((-654 $) (-966 $))) (-15 -2910 ((-654 $) (-1189 $))) (-15 -2910 ((-654 $) (-1189 $) (-1193)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1018) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2910 (((-654 $) (-966 $)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 $) (-1193)) 55) (((-654 $) $) 22) (((-654 $) $ (-1193)) 46)) (-2432 (($ (-966 $)) NIL) (($ (-1189 $)) NIL) (($ (-1189 $) (-1193)) 57) (($ $) 20) (($ $ (-1193)) 40)) (-3961 (((-654 $) (-966 $)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 $) (-1193)) 53) (((-654 $) $) 18) (((-654 $) $ (-1193)) 48)) (-2231 (($ (-966 $)) NIL) (($ (-1189 $)) NIL) (($ (-1189 $) (-1193)) NIL) (($ $) 15) (($ $ (-1193)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2910 ((-654 |#1|) |#1| (-1193))) (-15 -2432 (|#1| |#1| (-1193))) (-15 -2910 ((-654 |#1|) |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -3961 ((-654 |#1|) |#1| (-1193))) (-15 -2231 (|#1| |#1| (-1193))) (-15 -3961 ((-654 |#1|) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2910 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2910 ((-654 |#1|) (-1189 |#1|))) (-15 -2910 ((-654 |#1|) (-966 |#1|))) (-15 -2432 (|#1| (-1189 |#1|) (-1193))) (-15 -2432 (|#1| (-1189 |#1|))) (-15 -2432 (|#1| (-966 |#1|))) (-15 -3961 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3961 ((-654 |#1|) (-1189 |#1|))) (-15 -3961 ((-654 |#1|) (-966 |#1|))) (-15 -2231 (|#1| (-1189 |#1|) (-1193))) (-15 -2231 (|#1| (-1189 |#1|))) (-15 -2231 (|#1| (-966 |#1|)))) (-29 |#2|) (-566)) (T -28))
-NIL
-(-10 -8 (-15 -2910 ((-654 |#1|) |#1| (-1193))) (-15 -2432 (|#1| |#1| (-1193))) (-15 -2910 ((-654 |#1|) |#1|)) (-15 -2432 (|#1| |#1|)) (-15 -3961 ((-654 |#1|) |#1| (-1193))) (-15 -2231 (|#1| |#1| (-1193))) (-15 -3961 ((-654 |#1|) |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2910 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -2910 ((-654 |#1|) (-1189 |#1|))) (-15 -2910 ((-654 |#1|) (-966 |#1|))) (-15 -2432 (|#1| (-1189 |#1|) (-1193))) (-15 -2432 (|#1| (-1189 |#1|))) (-15 -2432 (|#1| (-966 |#1|))) (-15 -3961 ((-654 |#1|) (-1189 |#1|) (-1193))) (-15 -3961 ((-654 |#1|) (-1189 |#1|))) (-15 -3961 ((-654 |#1|) (-966 |#1|))) (-15 -2231 (|#1| (-1189 |#1|) (-1193))) (-15 -2231 (|#1| (-1189 |#1|))) (-15 -2231 (|#1| (-966 |#1|))))
-((-2864 (((-112) $ $) 7)) (-2910 (((-654 $) (-966 $)) 88) (((-654 $) (-1189 $)) 87) (((-654 $) (-1189 $) (-1193)) 86) (((-654 $) $) 137) (((-654 $) $ (-1193)) 135)) (-2432 (($ (-966 $)) 91) (($ (-1189 $)) 90) (($ (-1189 $) (-1193)) 89) (($ $) 138) (($ $ (-1193)) 136)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1193)) $) 206)) (-4172 (((-417 (-1189 $)) $ (-622 $)) 238 (|has| |#1| (-566)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-4068 (((-654 (-622 $)) $) 169)) (-3290 (((-3 $ "failed") $ $) 20)) (-2559 (($ $ (-654 (-622 $)) (-654 $)) 159) (($ $ (-654 (-302 $))) 158) (($ $ (-302 $)) 157)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-4212 (($ $) 100)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-3961 (((-654 $) (-966 $)) 94) (((-654 $) (-1189 $)) 93) (((-654 $) (-1189 $) (-1193)) 92) (((-654 $) $) 141) (((-654 $) $ (-1193)) 139)) (-2231 (($ (-966 $)) 97) (($ (-1189 $)) 96) (($ (-1189 $) (-1193)) 95) (($ $) 142) (($ $ (-1193)) 140)) (-1704 (((-3 (-966 |#1|) "failed") $) 256 (|has| |#1| (-1065))) (((-3 (-417 (-966 |#1|)) "failed") $) 240 (|has| |#1| (-566))) (((-3 |#1| "failed") $) 202) (((-3 (-574) "failed") $) 199 (|has| |#1| (-1054 (-574)))) (((-3 (-1193) "failed") $) 193) (((-3 (-622 $) "failed") $) 144) (((-3 (-417 (-574)) "failed") $) 132 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2216 (((-966 |#1|) $) 255 (|has| |#1| (-1065))) (((-417 (-966 |#1|)) $) 239 (|has| |#1| (-566))) ((|#1| $) 201) (((-574) $) 200 (|has| |#1| (-1054 (-574)))) (((-1193) $) 192) (((-622 $) $) 143) (((-417 (-574)) $) 133 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2801 (($ $ $) 61)) (-1557 (((-699 |#1|) (-1284 $)) 246 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 245 (|has| |#1| (-1065))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 244 (|has| |#1| (-1065))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 131 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (((-699 (-574)) (-699 $)) 130 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (((-699 (-574)) (-1284 $)) 129 (-2833 (-2095 (|has| |#1| (-1065)) (|has| |#1| (-649 (-574)))) (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 197 (|has| |#1| (-897 (-574))))) (-3253 (($ (-654 $)) 163) (($ $) 162)) (-2256 (((-654 (-115)) $) 170)) (-4150 (((-115) (-115)) 171)) (-3943 (((-112) $) 35)) (-1476 (((-112) $) 191 (|has| $ (-1054 (-574))))) (-2447 (($ $) 223 (|has| |#1| (-1065)))) (-2970 (((-1141 |#1| (-622 $)) $) 222 (|has| |#1| (-1065)))) (-4439 (($ $ (-574)) 99)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2860 (((-1189 $) (-622 $)) 188 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 177)) (-1761 (((-3 (-622 $) "failed") $) 167)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-4140 (((-654 (-622 $)) $) 168)) (-1782 (($ (-115) (-654 $)) 176) (($ (-115) $) 175)) (-1730 (((-3 (-654 $) "failed") $) 217 (|has| |#1| (-1128)))) (-3921 (((-3 (-2 (|:| |val| $) (|:| -2754 (-574))) "failed") $) 226 (|has| |#1| (-1065)))) (-4245 (((-3 (-654 $) "failed") $) 219 (|has| |#1| (-25)))) (-2567 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 220 (|has| |#1| (-25)))) (-4436 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-1193)) 225 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-115)) 224 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $) 218 (|has| |#1| (-1128)))) (-1575 (((-112) $ (-1193)) 174) (((-112) $ (-115)) 173)) (-1328 (($ $) 78)) (-1846 (((-781) $) 166)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 204)) (-1355 ((|#1| $) 205)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3882 (((-112) $ (-1193)) 179) (((-112) $ $) 178)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4434 (((-112) $) 190 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-1193) (-781) (-1 $ $)) 230 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) 229 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 228 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 227 (|has| |#1| (-1065))) (($ $ (-654 (-115)) (-654 $) (-1193)) 216 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 215 (|has| |#1| (-624 (-546)))) (($ $) 214 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) 213 (|has| |#1| (-624 (-546)))) (($ $ (-1193)) 212 (|has| |#1| (-624 (-546)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-654 $))) 186) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 185) (($ $ (-654 (-115)) (-654 (-1 $ $))) 184) (($ $ (-1193) (-1 $ $)) 183) (($ $ (-1193) (-1 $ (-654 $))) 182) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 181) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 180) (($ $ (-654 $) (-654 $)) 151) (($ $ $ $) 150) (($ $ (-302 $)) 149) (($ $ (-654 (-302 $))) 148) (($ $ (-654 (-622 $)) (-654 $)) 147) (($ $ (-622 $) $) 146)) (-4220 (((-781) $) 64)) (-2207 (($ (-115) (-654 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-3457 (($ $ $) 165) (($ $) 164)) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) 251 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 250 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 249 (|has| |#1| (-1065))) (($ $ (-1193)) 247 (|has| |#1| (-1065)))) (-1611 (($ $) 233 (|has| |#1| (-566)))) (-2980 (((-1141 |#1| (-622 $)) $) 232 (|has| |#1| (-566)))) (-2966 (($ $) 189 (|has| $ (-1065)))) (-1844 (((-546) $) 260 (|has| |#1| (-624 (-546)))) (($ (-428 $)) 231 (|has| |#1| (-566))) (((-903 (-388)) $) 196 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 195 (|has| |#1| (-624 (-903 (-574)))))) (-4090 (($ $ $) 259 (|has| |#1| (-483)))) (-3082 (($ $ $) 258 (|has| |#1| (-483)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-966 |#1|)) 257 (|has| |#1| (-1065))) (($ (-417 (-966 |#1|))) 241 (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) 237 (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) 236 (|has| |#1| (-566))) (($ (-417 |#1|)) 235 (|has| |#1| (-566))) (($ (-1141 |#1| (-622 $))) 221 (|has| |#1| (-1065))) (($ |#1|) 203) (($ (-1193)) 194) (($ (-622 $)) 145)) (-2705 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2078 (($ (-654 $)) 161) (($ $) 160)) (-2138 (((-112) (-115)) 172)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2513 (($ (-1193) (-654 $)) 211) (($ (-1193) $ $ $ $) 210) (($ (-1193) $ $ $) 209) (($ (-1193) $ $) 208) (($ (-1193) $) 207)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 (-1193)) (-654 (-781))) 254 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 253 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 252 (|has| |#1| (-1065))) (($ $ (-1193)) 248 (|has| |#1| (-1065)))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73) (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 234 (|has| |#1| (-566)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 98)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1065)))))
-(((-29 |#1|) (-141) (-566)) (T -29))
-((-2231 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-3961 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-2231 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-3961 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))) (-2432 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))) (-2910 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-440 |t#1|) (-10 -8 (-15 -2231 ($ $)) (-15 -3961 ((-654 $) $)) (-15 -2231 ($ $ (-1193))) (-15 -3961 ((-654 $) $ (-1193))) (-15 -2432 ($ $)) (-15 -2910 ((-654 $) $)) (-15 -2432 ($ $ (-1193))) (-15 -2910 ((-654 $) $ (-1193)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 #1=(-417 (-966 |#1|))) |has| |#1| (-566)) ((-626 (-574)) . T) ((-626 #2=(-622 $)) . T) ((-626 #3=(-966 |#1|)) |has| |#1| (-1065)) ((-626 #4=(-1193)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) . T) ((-298) . T) ((-315) . T) ((-317 $) . T) ((-310) . T) ((-372) . T) ((-386 |#1|) |has| |#1| (-1065)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-440 |#1|) . T) ((-462) . T) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-656 $) . T) ((-658 #0#) . T) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-658 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) . T) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-649 |#1|) |has| |#1| (-1065)) ((-727 #0#) . T) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) . T) ((-736) . T) ((-907 $ #6=(-1193)) |has| |#1| (-1065)) ((-912 #6#) |has| |#1| (-1065)) ((-914 #6#) |has| |#1| (-1065)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-934) . T) ((-1018) . T) ((-1054 (-417 (-574))) -2833 (|has| |#1| (-1054 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) ((-1054 #1#) |has| |#1| (-566)) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 #3#) |has| |#1| (-1065)) ((-1054 #4#) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) . T))
-((-2439 (((-1110 (-227)) $) NIL)) (-2426 (((-1110 (-227)) $) NIL)) (-1432 (($ $ (-227)) 164)) (-3798 (($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574)))) 104)) (-3368 (((-654 (-654 (-957 (-227)))) $) 180)) (-2951 (((-872) $) 194)))
-(((-30) (-13 (-969) (-10 -8 (-15 -3798 ($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574))))) (-15 -1432 ($ $ (-227)))))) (T -30))
-((-3798 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-966 (-574))) (-5 *3 (-1193)) (-5 *4 (-1110 (-417 (-574)))) (-5 *1 (-30)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
-(-13 (-969) (-10 -8 (-15 -3798 ($ (-966 (-574)) (-1193) (-1193) (-1110 (-417 (-574))) (-1110 (-417 (-574))))) (-15 -1432 ($ $ (-227)))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 11)) (-2981 (((-112) $ $) NIL)) (-2644 (((-1151) $) 9)) (-2986 (((-112) $ $) NIL)))
-(((-31) (-13 (-1099) (-10 -8 (-15 -2644 ((-1151) $)) (-15 -2051 ((-1151) $))))) (T -31))
-((-2644 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31)))))
-(-13 (-1099) (-10 -8 (-15 -2644 ((-1151) $)) (-15 -2051 ((-1151) $))))
-((-2231 ((|#2| (-1189 |#2|) (-1193)) 41)) (-4150 (((-115) (-115)) 55)) (-2860 (((-1189 |#2|) (-622 |#2|)) 149 (|has| |#1| (-1054 (-574))))) (-3254 ((|#2| |#1| (-574)) 137 (|has| |#1| (-1054 (-574))))) (-2733 ((|#2| (-1189 |#2|) |#2|) 29)) (-1754 (((-872) (-654 |#2|)) 86)) (-2966 ((|#2| |#2|) 144 (|has| |#1| (-1054 (-574))))) (-2138 (((-112) (-115)) 17)) (** ((|#2| |#2| (-417 (-574))) 103 (|has| |#1| (-1054 (-574))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2231 (|#2| (-1189 |#2|) (-1193))) (-15 -4150 ((-115) (-115))) (-15 -2138 ((-112) (-115))) (-15 -2733 (|#2| (-1189 |#2|) |#2|)) (-15 -1754 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1054 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -2860 ((-1189 |#2|) (-622 |#2|))) (-15 -2966 (|#2| |#2|)) (-15 -3254 (|#2| |#1| (-574)))) |%noBranch|)) (-566) (-440 |#1|)) (T -32))
-((-3254 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1054 *4)) (-4 *3 (-566)))) (-2966 (*1 *2 *2) (-12 (-4 *3 (-1054 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2)) (-4 *2 (-440 *3)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1054 (-574))) (-4 *4 (-566)) (-5 *2 (-1189 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1054 (-574))) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566)) (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))) (-2733 (*1 *2 *3 *2) (-12 (-5 *3 (-1189 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-32 *4 *2)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-440 *4)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4)) (-4 *4 (-440 *3)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *2)) (-5 *4 (-1193)) (-4 *2 (-440 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-566)))))
-(-10 -7 (-15 -2231 (|#2| (-1189 |#2|) (-1193))) (-15 -4150 ((-115) (-115))) (-15 -2138 ((-112) (-115))) (-15 -2733 (|#2| (-1189 |#2|) |#2|)) (-15 -1754 ((-872) (-654 |#2|))) (IF (|has| |#1| (-1054 (-574))) (PROGN (-15 ** (|#2| |#2| (-417 (-574)))) (-15 -2860 ((-1189 |#2|) (-622 |#2|))) (-15 -2966 (|#2| |#2|)) (-15 -3254 (|#2| |#1| (-574)))) |%noBranch|))
-((-2832 (((-112) $ (-781)) 20)) (-1430 (($) 10)) (-3814 (((-112) $ (-781)) 19)) (-2302 (((-112) $ (-781)) 17)) (-3788 (((-112) $ $) 8)) (-2265 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -1430 (|#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))) (-15 -2265 ((-112) |#1|)) (-15 -3788 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -1430 (|#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))) (-15 -2265 ((-112) |#1|)) (-15 -3788 ((-112) |#1| |#1|)))
-((-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-3814 (((-112) $ (-781)) 9)) (-2302 (((-112) $ (-781)) 10)) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3157 (($ $) 13)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
+((-3028 (*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) (-3028 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-3028 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1)))))
+(-13 (-374) (-1020) (-10 -8 (-15 -3028 ($ (-968 $))) (-15 -3028 ($ (-1191 $))) (-15 -3028 ($ (-1191 $) (-1195))) (-15 -3190 ((-656 $) (-968 $))) (-15 -3190 ((-656 $) (-1191 $))) (-15 -3190 ((-656 $) (-1191 $) (-1195))) (-15 -2272 ($ (-968 $))) (-15 -2272 ($ (-1191 $))) (-15 -2272 ($ (-1191 $) (-1195))) (-15 -3246 ((-656 $) (-968 $))) (-15 -3246 ((-656 $) (-1191 $))) (-15 -3246 ((-656 $) (-1191 $) (-1195)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1020) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-3246 (((-656 $) (-968 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 55) (((-656 $) $) 22) (((-656 $) $ (-1195)) 46)) (-2272 (($ (-968 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) 57) (($ $) 20) (($ $ (-1195)) 40)) (-3190 (((-656 $) (-968 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 53) (((-656 $) $) 18) (((-656 $) $ (-1195)) 48)) (-3028 (($ (-968 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) NIL) (($ $) 15) (($ $ (-1195)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3246 ((-656 |#1|) |#1| (-1195))) (-15 -2272 (|#1| |#1| (-1195))) (-15 -3246 ((-656 |#1|) |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -3190 ((-656 |#1|) |#1| (-1195))) (-15 -3028 (|#1| |#1| (-1195))) (-15 -3190 ((-656 |#1|) |#1|)) (-15 -3028 (|#1| |#1|)) (-15 -3246 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3246 ((-656 |#1|) (-1191 |#1|))) (-15 -3246 ((-656 |#1|) (-968 |#1|))) (-15 -2272 (|#1| (-1191 |#1|) (-1195))) (-15 -2272 (|#1| (-1191 |#1|))) (-15 -2272 (|#1| (-968 |#1|))) (-15 -3190 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3190 ((-656 |#1|) (-1191 |#1|))) (-15 -3190 ((-656 |#1|) (-968 |#1|))) (-15 -3028 (|#1| (-1191 |#1|) (-1195))) (-15 -3028 (|#1| (-1191 |#1|))) (-15 -3028 (|#1| (-968 |#1|)))) (-29 |#2|) (-568)) (T -28))
+NIL
+(-10 -8 (-15 -3246 ((-656 |#1|) |#1| (-1195))) (-15 -2272 (|#1| |#1| (-1195))) (-15 -3246 ((-656 |#1|) |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -3190 ((-656 |#1|) |#1| (-1195))) (-15 -3028 (|#1| |#1| (-1195))) (-15 -3190 ((-656 |#1|) |#1|)) (-15 -3028 (|#1| |#1|)) (-15 -3246 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3246 ((-656 |#1|) (-1191 |#1|))) (-15 -3246 ((-656 |#1|) (-968 |#1|))) (-15 -2272 (|#1| (-1191 |#1|) (-1195))) (-15 -2272 (|#1| (-1191 |#1|))) (-15 -2272 (|#1| (-968 |#1|))) (-15 -3190 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -3190 ((-656 |#1|) (-1191 |#1|))) (-15 -3190 ((-656 |#1|) (-968 |#1|))) (-15 -3028 (|#1| (-1191 |#1|) (-1195))) (-15 -3028 (|#1| (-1191 |#1|))) (-15 -3028 (|#1| (-968 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3246 (((-656 $) (-968 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86) (((-656 $) $) 137) (((-656 $) $ (-1195)) 135)) (-2272 (($ (-968 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89) (($ $) 138) (($ $ (-1195)) 136)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1195)) $) 206)) (-4174 (((-419 (-1191 $)) $ (-624 $)) 238 (|has| |#1| (-568)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-4071 (((-656 (-624 $)) $) 169)) (-3798 (((-3 $ "failed") $ $) 20)) (-2564 (($ $ (-656 (-624 $)) (-656 $)) 159) (($ $ (-656 (-304 $))) 158) (($ $ (-304 $)) 157)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-4214 (($ $) 100)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-3190 (((-656 $) (-968 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92) (((-656 $) $) 141) (((-656 $) $ (-1195)) 139)) (-3028 (($ (-968 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95) (($ $) 142) (($ $ (-1195)) 140)) (-1706 (((-3 (-968 |#1|) "failed") $) 256 (|has| |#1| (-1067))) (((-3 (-419 (-968 |#1|)) "failed") $) 240 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 202) (((-3 (-576) "failed") $) 199 (|has| |#1| (-1056 (-576)))) (((-3 (-1195) "failed") $) 193) (((-3 (-624 $) "failed") $) 144) (((-3 (-419 (-576)) "failed") $) 132 (-2838 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2216 (((-968 |#1|) $) 255 (|has| |#1| (-1067))) (((-419 (-968 |#1|)) $) 239 (|has| |#1| (-568))) ((|#1| $) 201) (((-576) $) 200 (|has| |#1| (-1056 (-576)))) (((-1195) $) 192) (((-624 $) $) 143) (((-419 (-576)) $) 133 (-2838 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2806 (($ $ $) 61)) (-3928 (((-701 |#1|) (-1286 $)) 246 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 245 (|has| |#1| (-1067))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 244 (|has| |#1| (-1067))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 131 (-2838 (-2096 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (((-701 (-576)) (-701 $)) 130 (-2838 (-2096 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (((-701 (-576)) (-1286 $)) 129 (-2838 (-2096 (|has| |#1| (-1067)) (|has| |#1| (-651 (-576)))) (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 197 (|has| |#1| (-899 (-576))))) (-1492 (($ (-656 $)) 163) (($ $) 162)) (-3245 (((-656 (-115)) $) 170)) (-4153 (((-115) (-115)) 171)) (-4192 (((-112) $) 35)) (-4314 (((-112) $) 191 (|has| $ (-1056 (-576))))) (-4299 (($ $) 223 (|has| |#1| (-1067)))) (-2976 (((-1143 |#1| (-624 $)) $) 222 (|has| |#1| (-1067)))) (-2333 (($ $ (-576)) 99)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3982 (((-1191 $) (-624 $)) 188 (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) 177)) (-2161 (((-3 (-624 $) "failed") $) 167)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-4142 (((-656 (-624 $)) $) 168)) (-1784 (($ (-115) (-656 $)) 176) (($ (-115) $) 175)) (-1864 (((-3 (-656 $) "failed") $) 217 (|has| |#1| (-1130)))) (-4004 (((-3 (-2 (|:| |val| $) (|:| -2300 (-576))) "failed") $) 226 (|has| |#1| (-1067)))) (-4139 (((-3 (-656 $) "failed") $) 219 (|has| |#1| (-25)))) (-3002 (((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 $))) "failed") $) 220 (|has| |#1| (-25)))) (-2302 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-1195)) 225 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-115)) 224 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $) 218 (|has| |#1| (-1130)))) (-2881 (((-112) $ (-1195)) 174) (((-112) $ (-115)) 173)) (-1330 (($ $) 78)) (-1850 (((-783) $) 166)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 204)) (-1357 ((|#1| $) 205)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-1679 (((-112) $ (-1195)) 179) (((-112) $ $) 178)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2280 (((-112) $) 190 (|has| $ (-1056 (-576))))) (-2666 (($ $ (-1195) (-783) (-1 $ $)) 230 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 229 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 228 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 227 (|has| |#1| (-1067))) (($ $ (-656 (-115)) (-656 $) (-1195)) 216 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 215 (|has| |#1| (-626 (-548)))) (($ $) 214 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 213 (|has| |#1| (-626 (-548)))) (($ $ (-1195)) 212 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-656 $))) 186) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 185) (($ $ (-656 (-115)) (-656 (-1 $ $))) 184) (($ $ (-1195) (-1 $ $)) 183) (($ $ (-1195) (-1 $ (-656 $))) 182) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 181) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 180) (($ $ (-656 $) (-656 $)) 151) (($ $ $ $) 150) (($ $ (-304 $)) 149) (($ $ (-656 (-304 $))) 148) (($ $ (-656 (-624 $)) (-656 $)) 147) (($ $ (-624 $) $) 146)) (-3927 (((-783) $) 64)) (-2209 (($ (-115) (-656 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-1854 (($ $ $) 165) (($ $) 164)) (-3884 (($ $ (-656 (-1195)) (-656 (-783))) 251 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 250 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 249 (|has| |#1| (-1067))) (($ $ (-1195)) 247 (|has| |#1| (-1067)))) (-3210 (($ $) 233 (|has| |#1| (-568)))) (-2987 (((-1143 |#1| (-624 $)) $) 232 (|has| |#1| (-568)))) (-2477 (($ $) 189 (|has| $ (-1067)))) (-1846 (((-548) $) 260 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 231 (|has| |#1| (-568))) (((-905 (-390)) $) 196 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 195 (|has| |#1| (-626 (-905 (-576)))))) (-1979 (($ $ $) 259 (|has| |#1| (-485)))) (-3516 (($ $ $) 258 (|has| |#1| (-485)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-968 |#1|)) 257 (|has| |#1| (-1067))) (($ (-419 (-968 |#1|))) 241 (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) 237 (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) 236 (|has| |#1| (-568))) (($ (-419 |#1|)) 235 (|has| |#1| (-568))) (($ (-1143 |#1| (-624 $))) 221 (|has| |#1| (-1067))) (($ |#1|) 203) (($ (-1195)) 194) (($ (-624 $)) 145)) (-1817 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2113 (($ (-656 $)) 161) (($ $) 160)) (-1483 (((-112) (-115)) 172)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2519 (($ (-1195) (-656 $)) 211) (($ (-1195) $ $ $ $) 210) (($ (-1195) $ $ $) 209) (($ (-1195) $ $) 208) (($ (-1195) $) 207)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 (-1195)) (-656 (-783))) 254 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 253 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 252 (|has| |#1| (-1067))) (($ $ (-1195)) 248 (|has| |#1| (-1067)))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 234 (|has| |#1| (-568)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1067)))))
+(((-29 |#1|) (-141) (-568)) (T -29))
+((-3028 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3190 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-2272 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3246 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3246 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -3028 ($ $)) (-15 -3190 ((-656 $) $)) (-15 -3028 ($ $ (-1195))) (-15 -3190 ((-656 $) $ (-1195))) (-15 -2272 ($ $)) (-15 -3246 ((-656 $) $)) (-15 -2272 ($ $ (-1195))) (-15 -3246 ((-656 $) $ (-1195)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-968 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-968 |#1|)) |has| |#1| (-1067)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-249) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1067)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -2838 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-660 |#1|) -2838 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-651 |#1|) |has| |#1| (-1067)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-909 $ #6=(-1195)) |has| |#1| (-1067)) ((-914 #6#) |has| |#1| (-1067)) ((-916 #6#) |has| |#1| (-1067)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-936) . T) ((-1020) . T) ((-1056 (-419 (-576))) -2838 (|has| |#1| (-1056 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) ((-1056 #1#) |has| |#1| (-568)) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 #3#) |has| |#1| (-1067)) ((-1056 #4#) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) |has| |#1| (-174)) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) . T))
+((-2444 (((-1112 (-227)) $) NIL)) (-2431 (((-1112 (-227)) $) NIL)) (-4358 (($ $ (-227)) 164)) (-2099 (($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576)))) 104)) (-3388 (((-656 (-656 (-959 (-227)))) $) 180)) (-2956 (((-874) $) 194)))
+(((-30) (-13 (-971) (-10 -8 (-15 -2099 ($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576))))) (-15 -4358 ($ $ (-227)))))) (T -30))
+((-2099 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-968 (-576))) (-5 *3 (-1195)) (-5 *4 (-1112 (-419 (-576)))) (-5 *1 (-30)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
+(-13 (-971) (-10 -8 (-15 -2099 ($ (-968 (-576)) (-1195) (-1195) (-1112 (-419 (-576))) (-1112 (-419 (-576))))) (-15 -4358 ($ $ (-227)))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 11)) (-2617 (((-112) $ $) NIL)) (-2650 (((-1153) $) 9)) (-2991 (((-112) $ $) NIL)))
+(((-31) (-13 (-1101) (-10 -8 (-15 -2650 ((-1153) $)) (-15 -2053 ((-1153) $))))) (T -31))
+((-2650 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31)))))
+(-13 (-1101) (-10 -8 (-15 -2650 ((-1153) $)) (-15 -2053 ((-1153) $))))
+((-3028 ((|#2| (-1191 |#2|) (-1195)) 41)) (-4153 (((-115) (-115)) 55)) (-3982 (((-1191 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1056 (-576))))) (-1503 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1056 (-576))))) (-2077 ((|#2| (-1191 |#2|) |#2|) 29)) (-2080 (((-874) (-656 |#2|)) 86)) (-2477 ((|#2| |#2|) 144 (|has| |#1| (-1056 (-576))))) (-1483 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1056 (-576))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3028 (|#2| (-1191 |#2|) (-1195))) (-15 -4153 ((-115) (-115))) (-15 -1483 ((-112) (-115))) (-15 -2077 (|#2| (-1191 |#2|) |#2|)) (-15 -2080 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1056 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3982 ((-1191 |#2|) (-624 |#2|))) (-15 -2477 (|#2| |#2|)) (-15 -1503 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32))
+((-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1056 *4)) (-4 *3 (-568)))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-1056 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1056 (-576))) (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1056 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-3028 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))))
+(-10 -7 (-15 -3028 (|#2| (-1191 |#2|) (-1195))) (-15 -4153 ((-115) (-115))) (-15 -1483 ((-112) (-115))) (-15 -2077 (|#2| (-1191 |#2|) |#2|)) (-15 -2080 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1056 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3982 ((-1191 |#2|) (-624 |#2|))) (-15 -2477 (|#2| |#2|)) (-15 -1503 (|#2| |#1| (-576)))) |%noBranch|))
+((-3762 (((-112) $ (-783)) 20)) (-4335 (($) 10)) (-2266 (((-112) $ (-783)) 19)) (-2356 (((-112) $ (-783)) 17)) (-2001 (((-112) $ $) 8)) (-3321 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -4335 (|#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))) (-15 -3321 ((-112) |#1|)) (-15 -2001 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -4335 (|#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))) (-15 -3321 ((-112) |#1|)) (-15 -2001 ((-112) |#1| |#1|)))
+((-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-2266 (((-112) $ (-783)) 9)) (-2356 (((-112) $ (-783)) 10)) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3162 (($ $) 13)) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
(((-34) (-141)) (T -34))
-((-3788 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3157 (*1 *1 *1) (-4 *1 (-34))) (-3014 (*1 *1) (-4 *1 (-34))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2302 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-3814 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-2832 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))) (-1430 (*1 *1) (-4 *1 (-34))) (-2877 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-34)) (-5 *2 (-781)))))
-(-13 (-1234) (-10 -8 (-15 -3788 ((-112) $ $)) (-15 -3157 ($ $)) (-15 -3014 ($)) (-15 -2265 ((-112) $)) (-15 -2302 ((-112) $ (-781))) (-15 -3814 ((-112) $ (-781))) (-15 -2832 ((-112) $ (-781))) (-15 -1430 ($) -1714) (IF (|has| $ (-6 -4459)) (-15 -2877 ((-781) $)) |%noBranch|)))
-(((-1234) . T))
-((-2456 (($ $) 11)) (-2429 (($ $) 10)) (-2480 (($ $) 9)) (-2536 (($ $) 8)) (-2468 (($ $) 7)) (-2443 (($ $) 6)))
+((-2001 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3162 (*1 *1 *1) (-4 *1 (-34))) (-2953 (*1 *1) (-4 *1 (-34))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2356 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3762 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-4335 (*1 *1) (-4 *1 (-34))) (-2882 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783)))))
+(-13 (-1236) (-10 -8 (-15 -2001 ((-112) $ $)) (-15 -3162 ($ $)) (-15 -2953 ($)) (-15 -3321 ((-112) $)) (-15 -2356 ((-112) $ (-783))) (-15 -2266 ((-112) $ (-783))) (-15 -3762 ((-112) $ (-783))) (-15 -4335 ($) -1716) (IF (|has| $ (-6 -4461)) (-15 -2882 ((-783) $)) |%noBranch|)))
+(((-1236) . T))
+((-2461 (($ $) 11)) (-2434 (($ $) 10)) (-2485 (($ $) 9)) (-2541 (($ $) 8)) (-2473 (($ $) 7)) (-2447 (($ $) 6)))
(((-35) (-141)) (T -35))
-((-2456 (*1 *1 *1) (-4 *1 (-35))) (-2429 (*1 *1 *1) (-4 *1 (-35))) (-2480 (*1 *1 *1) (-4 *1 (-35))) (-2536 (*1 *1 *1) (-4 *1 (-35))) (-2468 (*1 *1 *1) (-4 *1 (-35))) (-2443 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -2443 ($ $)) (-15 -2468 ($ $)) (-15 -2536 ($ $)) (-15 -2480 ($ $)) (-15 -2429 ($ $)) (-15 -2456 ($ $))))
-((-2864 (((-112) $ $) 19 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3079 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 127)) (-2421 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 150)) (-1978 (($ $) 148)) (-3752 (($) 73) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 72)) (-2620 (((-1289) $ |#1| |#1|) 100 (|has| $ (-6 -4460))) (((-1289) $ (-574) (-574)) 180 (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 161 (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4287 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 202 (|has| $ (-6 -4460))) (($ $) 201 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2832 (((-112) $ (-781)) 8)) (-2234 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 136 (|has| $ (-6 -4460)))) (-3373 (($ $ $) 157 (|has| $ (-6 -4460)))) (-3755 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 159 (|has| $ (-6 -4460)))) (-3784 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 155 (|has| $ (-6 -4460)))) (-3135 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 191 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-1251 (-574)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 162 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 160 (|has| $ (-6 -4460))) (($ $ "rest" $) 158 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 156 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 135 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 134 (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 218)) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 177 (|has| $ (-6 -4459)))) (-2408 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 149)) (-2170 (((-3 |#2| "failed") |#1| $) 62)) (-1430 (($) 7 T CONST)) (-2060 (($ $) 203 (|has| $ (-6 -4460)))) (-4425 (($ $) 213)) (-2935 (($ $ (-781)) 144) (($ $) 142)) (-2218 (($ $) 216 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1573 (($ $) 59 (-2833 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))) (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 222) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 217 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 176 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 178 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 175 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 174 (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 192 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 89) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 190)) (-1648 (((-112) $) 194)) (-1452 (((-574) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 210) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 209 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 208 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459))) (((-654 |#2|) $) 80 (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 116 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 125)) (-3514 (((-112) $ $) 133 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3764 (($ (-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 170)) (-3814 (((-112) $ (-781)) 9)) (-2761 ((|#1| $) 97 (|has| |#1| (-860))) (((-574) $) 182 (|has| (-574) (-860)))) (-3634 (($ $ $) 200 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2645 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2470 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459))) (((-654 |#2|) $) 81 (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 117 (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2790 ((|#1| $) 96 (|has| |#1| (-860))) (((-574) $) 183 (|has| (-574) (-860)))) (-2976 (($ $ $) 199 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 112 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 111)) (-1795 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 227)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 130)) (-2899 (((-112) $) 126)) (-4420 (((-1175) $) 22 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3334 (($ $ (-781)) 147) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 145)) (-1772 (((-654 |#1|) $) 64)) (-2968 (((-112) |#1| $) 65)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 221) (($ $ $ (-574)) 220)) (-1602 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 164) (($ $ $ (-574)) 163)) (-1583 (((-654 |#1|) $) 94) (((-654 (-574)) $) 185)) (-1470 (((-112) |#1| $) 93) (((-112) (-574) $) 186)) (-3940 (((-1136) $) 21 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2925 ((|#2| $) 98 (|has| |#1| (-860))) (($ $ (-781)) 141) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 139)) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52) (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 173)) (-1465 (($ $ |#2|) 99 (|has| $ (-6 -4460))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 181 (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-3388 (((-112) $) 193)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 114 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 123 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 122 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 121 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 120 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 184 (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2445 (((-654 |#2|) $) 92) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 187)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 189) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) 188) (($ $ (-1251 (-574))) 171) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first") 140) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value") 128)) (-4072 (((-574) $ $) 131)) (-1734 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-3032 (($ $ (-574)) 224) (($ $ (-1251 (-574))) 223)) (-2855 (($ $ (-574)) 166) (($ $ (-1251 (-574))) 165)) (-3864 (((-112) $) 129)) (-3333 (($ $) 153)) (-1823 (($ $) 154 (|has| $ (-6 -4460)))) (-1984 (((-781) $) 152)) (-1852 (($ $) 151)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 115 (|has| $ (-6 -4459)))) (-2663 (($ $ $ (-574)) 204 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546)))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 172)) (-2589 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 226) (($ $ $) 225)) (-4132 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 169) (($ (-654 $)) 168) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 138) (($ $ $) 137)) (-2951 (((-872) $) 18 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))))) (-1418 (((-654 $) $) 124)) (-3779 (((-112) $ $) 132 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2981 (((-112) $ $) 23 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-3343 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") |#1| $) 110)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 113 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 197 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3020 (((-112) $ $) 196 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2986 (((-112) $ $) 20 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3031 (((-112) $ $) 198 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3009 (((-112) $ $) 195 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-36 |#1| |#2|) (-141) (-1116) (-1116)) (T -36))
-((-3343 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| -3667 *3) (|:| -1916 *4))))))
-(-13 (-1210 |t#1| |t#2|) (-676 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))) (-10 -8 (-15 -3343 ((-3 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #1=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 #2=(-574) #1#) . T) ((-294 (-1251 (-574)) $) . T) ((-294 |#1| |#2|) . T) ((-296 #2# #1#) . T) ((-296 |#1| |#2|) . T) ((-317 #1#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-290 #1#) . T) ((-382 #1#) . T) ((-499 #1#) . T) ((-499 |#2|) . T) ((-614 #2# #1#) . T) ((-614 |#1| |#2|) . T) ((-524 #1# #1#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-620 |#1| |#2|) . T) ((-661 #1#) . T) ((-676 #1#) . T) ((-860) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)) ((-1026 #1#) . T) ((-1116) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))) ((-1165 #1#) . T) ((-1210 |#1| |#2|) . T) ((-1234) . T) ((-1272 #1#) . T))
-((-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-38 |#2|) (-174)) (T -37))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-2461 (*1 *1 *1) (-4 *1 (-35))) (-2434 (*1 *1 *1) (-4 *1 (-35))) (-2485 (*1 *1 *1) (-4 *1 (-35))) (-2541 (*1 *1 *1) (-4 *1 (-35))) (-2473 (*1 *1 *1) (-4 *1 (-35))) (-2447 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -2447 ($ $)) (-15 -2473 ($ $)) (-15 -2541 ($ $)) (-15 -2485 ($ $)) (-15 -2434 ($ $)) (-15 -2461 ($ $))))
+((-2869 (((-112) $ $) 19 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3084 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 127)) (-2426 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 150)) (-1980 (($ $) 148)) (-3757 (($) 73) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 72)) (-3526 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) 180 (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 161 (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3330 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 202 (|has| $ (-6 -4462))) (($ $) 201 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3052 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 136 (|has| $ (-6 -4462)))) (-3439 (($ $ $) 157 (|has| $ (-6 -4462)))) (-1730 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 159 (|has| $ (-6 -4462)))) (-1961 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 155 (|has| $ (-6 -4462)))) (-3140 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 191 (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-1253 (-576)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 162 (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "last" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 160 (|has| $ (-6 -4462))) (($ $ "rest" $) 158 (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "first" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 156 (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "value" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 135 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 134 (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 218)) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 177 (|has| $ (-6 -4461)))) (-2413 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 149)) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-4335 (($) 7 T CONST)) (-2002 (($ $) 203 (|has| $ (-6 -4462)))) (-4427 (($ $) 213)) (-2940 (($ $ (-783)) 144) (($ $) 142)) (-4099 (($ $) 216 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-4060 (($ $) 59 (-2838 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))) (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 222) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 217 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4461))) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 176 (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 178 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 175 (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 174 (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 192 (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) 89) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) 190)) (-2281 (((-112) $) 194)) (-1454 (((-576) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 210) (((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 209 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) (((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 116 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 125)) (-4344 (((-112) $ $) 133 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-3769 (($ (-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 170)) (-2266 (((-112) $ (-783)) 9)) (-4280 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-3639 (($ $ $) 200 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2470 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-1383 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 117 (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-1475 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-2571 (($ $ $) 199 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 112 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 111)) (-1798 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 227)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 130)) (-3126 (((-112) $) 126)) (-2148 (((-1177) $) 22 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3338 (($ $ (-783)) 147) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 145)) (-1773 (((-656 |#1|) $) 64)) (-2499 (((-112) |#1| $) 65)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 40)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 41) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-1604 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-2961 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-4254 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3945 (((-1138) $) 21 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2930 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-783)) 141) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 139)) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 52) (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 173)) (-4211 (($ $ |#2|) 99 (|has| $ (-6 -4462))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 181 (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 42)) (-2326 (((-112) $) 193)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 114 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 123 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 122 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 121 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) 120 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 184 (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-4274 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 187)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 189) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) 188) (($ $ (-1253 (-576))) 171) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "first") 140) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "value") 128)) (-1785 (((-576) $ $) 131)) (-1904 (($) 50) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 49)) (-3012 (($ $ (-576)) 224) (($ $ (-1253 (-576))) 223)) (-2860 (($ $ (-576)) 166) (($ $ (-1253 (-576))) 165)) (-1558 (((-112) $) 129)) (-3029 (($ $) 153)) (-1508 (($ $) 154 (|has| $ (-6 -4462)))) (-2550 (((-783) $) 152)) (-3704 (($ $) 151)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 115 (|has| $ (-6 -4461)))) (-2647 (($ $ $ (-576)) 204 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548)))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 51) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 172)) (-3228 (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 226) (($ $ $) 225)) (-4136 (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 138) (($ $ $) 137)) (-2956 (((-874) $) 18 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874)))))) (-4197 (((-656 $) $) 124)) (-1931 (((-112) $ $) 132 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-2617 (((-112) $ $) 23 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 43)) (-3348 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") |#1| $) 110)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 113 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 197 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3024 (((-112) $ $) 196 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2991 (((-112) $ $) 20 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3034 (((-112) $ $) 198 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3014 (((-112) $ $) 195 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-36 |#1| |#2|) (-141) (-1118) (-1118)) (T -36))
+((-3348 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| -3672 *3) (|:| -1918 *4))))))
+(-13 (-1212 |t#1| |t#2|) (-678 (-2 (|:| -3672 |t#1|) (|:| -1918 |t#2|))) (-10 -8 (-15 -3348 ((-3 (-2 (|:| -3672 |t#1|) (|:| -1918 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((-102) -2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862))) ((-625 (-874)) -2838 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874)))) ((-152 #1=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1253 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-862) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)) ((-1028 #1#) . T) ((-1118) -2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862))) ((-1167 #1#) . T) ((-1212 |#1| |#2|) . T) ((-1236) . T) ((-1274 #1#) . T))
+((-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-38 |#2|) (-174)) (T -37))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-141) (-174)) (T -38))
NIL
-(-13 (-1065) (-727 |t#1|) (-626 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1433 (((-428 |#1|) |#1|) 41)) (-4201 (((-428 |#1|) |#1|) 30) (((-428 |#1|) |#1| (-654 (-48))) 33)) (-1356 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -4201 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -1433 ((-428 |#1|) |#1|)) (-15 -1356 ((-112) |#1|))) (-1260 (-48))) (T -39))
-((-1356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-1433 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))))
-(-10 -7 (-15 -4201 ((-428 |#1|) |#1| (-654 (-48)))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -1433 ((-428 |#1|) |#1|)) (-15 -1356 ((-112) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4229 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-4141 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2475 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-4348 (((-699 (-417 |#2|)) (-1284 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1644 (((-417 |#2|) $) NIL)) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3171 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1374 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4073 (((-112)) NIL)) (-2718 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3114 (($ (-1284 (-417 |#2|)) (-1284 $)) NIL) (($ (-1284 (-417 |#2|))) 61) (($ (-1284 |#2|) |#2|) 131)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2801 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2375 (((-699 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-2710 (((-1284 $) (-1284 $)) NIL)) (-2882 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3612 (((-3 $ "failed") $) NIL)) (-4009 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-3142 (((-112) |#1| |#1|) NIL)) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-417 |#2|) (-377)))) (-4048 (((-112)) NIL)) (-3995 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2812 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-4135 (($ $) NIL)) (-1615 (($) NIL (|has| (-417 |#2|) (-358)))) (-3502 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-2613 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-3342 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-1518 (((-935) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) NIL (|has| (-417 |#2|) (-358)))) (-3943 (((-112) $) NIL)) (-1948 (((-781)) NIL)) (-3318 (((-1284 $) (-1284 $)) 106)) (-2608 (((-417 |#2|) $) NIL)) (-3657 (((-654 (-966 |#1|)) (-1193)) NIL (|has| |#1| (-372)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3446 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3507 (((-935) $) NIL (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4420 (((-1175) $) NIL)) (-2292 (((-1289) (-781)) 84)) (-2994 (((-699 (-417 |#2|))) 56)) (-4377 (((-699 (-417 |#2|))) 49)) (-1328 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2013 (($ (-1284 |#2|) |#2|) 132)) (-3395 (((-699 (-417 |#2|))) 50)) (-2222 (((-699 (-417 |#2|))) 48)) (-3537 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2677 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 68)) (-3174 (((-1284 $)) 47)) (-2825 (((-1284 $)) 46)) (-3196 (((-112) $) NIL)) (-2983 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3792 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-417 |#2|) (-377)))) (-2919 (((-3 |#2| "failed")) NIL)) (-3940 (((-1136) $) NIL)) (-3364 (((-781)) NIL)) (-2975 (($) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4201 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-4220 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) NIL)) (-4148 (((-3 |#2| "failed")) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1924 (((-417 |#2|) (-1284 $)) NIL) (((-417 |#2|)) 44)) (-1532 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3898 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2966 ((|#3|) 55)) (-3951 (($) NIL (|has| (-417 |#2|) (-358)))) (-2282 (((-1284 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 |#2|)) $) 62) (((-699 (-417 |#2|)) (-1284 $)) 107)) (-1844 (((-1284 (-417 |#2|)) $) NIL) (($ (-1284 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2572 (((-1284 $) (-1284 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2705 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-2451 ((|#3| $) NIL)) (-3070 (((-781)) NIL T CONST)) (-4418 (((-112)) 42)) (-2600 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL)) (-3750 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-4089 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4428 (((-112)) NIL)) (-2141 (($) 17 T CONST)) (-2153 (($) 27 T CONST)) (-3585 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -2292 ((-1289) (-781))))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) |#3|) (T -40))
-((-2292 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *2 (-1289)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1260 (-417 *5))) (-14 *7 *6))))
-(-13 (-351 |#1| |#2| |#3|) (-10 -7 (-15 -2292 ((-1289) (-781)))))
-((-3146 ((|#2| |#2|) 47)) (-3908 ((|#2| |#2|) 139 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-2454 ((|#2| |#2|) 100 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-3188 ((|#2| |#2|) 101 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-2769 ((|#2| (-115) |#2| (-781)) 135 (-12 (|has| |#2| (-440 |#1|)) (|has| |#1| (-13 (-462) (-1054 (-574))))))) (-3015 (((-1189 |#2|) |#2|) 44)) (-2852 ((|#2| |#2| (-654 (-622 |#2|))) 18) ((|#2| |#2| (-654 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3146 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| |#2|)) (-15 -2852 (|#2| |#2| (-654 |#2|))) (-15 -2852 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -3015 ((-1189 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1054 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3188 (|#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -2769 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|)) (-566) (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 |#1| (-622 $)) $)) (-15 -2980 ((-1141 |#1| (-622 $)) $)) (-15 -2951 ($ (-1141 |#1| (-622 $))))))) (T -41))
-((-2769 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)))) (-4 *5 (-566)) (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *5 (-622 $)) $)) (-15 -2980 ((-1141 *5 (-622 $)) $)) (-15 -2951 ($ (-1141 *5 (-622 $))))))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-2454 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-3188 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-3015 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1189 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $)) (-15 -2980 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))))) (-2852 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-622 *2))) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $)) (-15 -2980 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $)) (-15 -2980 ((-1141 *4 (-622 $)) $)) (-15 -2951 ($ (-1141 *4 (-622 $))))))) (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))) (-2852 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))) (-3146 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-372) (-310) (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $)) (-15 -2980 ((-1141 *3 (-622 $)) $)) (-15 -2951 ($ (-1141 *3 (-622 $))))))))))
-(-10 -7 (-15 -3146 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -2852 (|#2| |#2| |#2|)) (-15 -2852 (|#2| |#2| (-654 |#2|))) (-15 -2852 (|#2| |#2| (-654 (-622 |#2|)))) (-15 -3015 ((-1189 |#2|) |#2|)) (IF (|has| |#1| (-13 (-462) (-1054 (-574)))) (IF (|has| |#2| (-440 |#1|)) (PROGN (-15 -3188 (|#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -2769 (|#2| (-115) |#2| (-781)))) |%noBranch|) |%noBranch|))
-((-4201 (((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48))) 23) (((-428 |#3|) |#3| (-654 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4201 ((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48))))) (-860) (-803) (-963 (-48) |#2| |#1|)) (T -42))
-((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *7 (-963 (-48) *6 *5)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-963 (-48) *6 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#3|) |#3| (-654 (-48)))) (-15 -4201 ((-428 (-1189 |#3|)) (-1189 |#3|) (-654 (-48)))))
-((-3736 (((-781) |#2|) 70)) (-3005 (((-781) |#2|) 74)) (-3038 (((-654 |#2|)) 37)) (-3524 (((-781) |#2|) 73)) (-1387 (((-781) |#2|) 69)) (-2780 (((-781) |#2|) 72)) (-2294 (((-654 (-699 |#1|))) 65)) (-3603 (((-654 |#2|)) 60)) (-2906 (((-654 |#2|) |#2|) 48)) (-1932 (((-654 |#2|)) 62)) (-3517 (((-654 |#2|)) 61)) (-3714 (((-654 (-699 |#1|))) 53)) (-3050 (((-654 |#2|)) 59)) (-2631 (((-654 |#2|) |#2|) 47)) (-2854 (((-654 |#2|)) 55)) (-2839 (((-654 (-699 |#1|))) 66)) (-3801 (((-654 |#2|)) 64)) (-1895 (((-1284 |#2|) (-1284 |#2|)) 99 (|has| |#1| (-315)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3524 ((-781) |#2|)) (-15 -3005 ((-781) |#2|)) (-15 -1387 ((-781) |#2|)) (-15 -3736 ((-781) |#2|)) (-15 -2780 ((-781) |#2|)) (-15 -2854 ((-654 |#2|))) (-15 -2631 ((-654 |#2|) |#2|)) (-15 -2906 ((-654 |#2|) |#2|)) (-15 -3050 ((-654 |#2|))) (-15 -3603 ((-654 |#2|))) (-15 -3517 ((-654 |#2|))) (-15 -1932 ((-654 |#2|))) (-15 -3801 ((-654 |#2|))) (-15 -3714 ((-654 (-699 |#1|)))) (-15 -2294 ((-654 (-699 |#1|)))) (-15 -2839 ((-654 (-699 |#1|)))) (-15 -3038 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -1895 ((-1284 |#2|) (-1284 |#2|))) |%noBranch|)) (-566) (-427 |#1|)) (T -43))
-((-1895 (*1 *2 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-43 *3 *4)))) (-3038 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2839 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2294 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3714 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3801 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-1932 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3517 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3603 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-3050 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2906 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2631 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-2854 (*1 *2) (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-427 *3)))) (-2780 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3005 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))) (-3524 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3)) (-4 *3 (-427 *4)))))
-(-10 -7 (-15 -3524 ((-781) |#2|)) (-15 -3005 ((-781) |#2|)) (-15 -1387 ((-781) |#2|)) (-15 -3736 ((-781) |#2|)) (-15 -2780 ((-781) |#2|)) (-15 -2854 ((-654 |#2|))) (-15 -2631 ((-654 |#2|) |#2|)) (-15 -2906 ((-654 |#2|) |#2|)) (-15 -3050 ((-654 |#2|))) (-15 -3603 ((-654 |#2|))) (-15 -3517 ((-654 |#2|))) (-15 -1932 ((-654 |#2|))) (-15 -3801 ((-654 |#2|))) (-15 -3714 ((-654 (-699 |#1|)))) (-15 -2294 ((-654 (-699 |#1|)))) (-15 -2839 ((-654 (-699 |#1|)))) (-15 -3038 ((-654 |#2|))) (IF (|has| |#1| (-315)) (-15 -1895 ((-1284 |#2|) (-1284 |#2|))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2020 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1955 (((-1284 (-699 |#1|)) (-1284 $)) NIL) (((-1284 (-699 |#1|))) 24)) (-4022 (((-1284 $)) 52)) (-1430 (($) NIL T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-4272 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-3516 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-2984 ((|#1| $) NIL)) (-2287 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-2339 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-2266 (((-1189 (-966 |#1|))) NIL (|has| |#1| (-372)))) (-3344 (($ $ (-935)) NIL)) (-2104 ((|#1| $) NIL)) (-4316 (((-1189 |#1|) $) NIL (|has| |#1| (-566)))) (-3288 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-1668 (((-1189 |#1|) $) NIL)) (-4306 (((-112)) 99)) (-3114 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) NIL)) (-3612 (((-3 $ "failed") $) 14 (|has| |#1| (-566)))) (-3558 (((-935)) 53)) (-1837 (((-112)) NIL)) (-1855 (($ $ (-935)) NIL)) (-2183 (((-112)) NIL)) (-3630 (((-112)) NIL)) (-3226 (((-112)) 101)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (|has| |#1| (-566)))) (-3988 (((-3 $ "failed")) NIL (|has| |#1| (-566)))) (-1542 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-1603 ((|#1| $) NIL)) (-3323 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-566)))) (-3532 (((-1189 (-966 |#1|))) NIL (|has| |#1| (-372)))) (-3484 (($ $ (-935)) NIL)) (-4273 ((|#1| $) NIL)) (-1323 (((-1189 |#1|) $) NIL (|has| |#1| (-566)))) (-2816 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-1479 (((-1189 |#1|) $) NIL)) (-2650 (((-112)) 98)) (-4420 (((-1175) $) NIL)) (-1806 (((-112)) 106)) (-2556 (((-112)) 105)) (-3035 (((-112)) 107)) (-3940 (((-1136) $) NIL)) (-1769 (((-112)) 100)) (-2207 ((|#1| $ (-574)) 55)) (-2282 (((-1284 |#1|) $ (-1284 $)) 48) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) 28) (((-699 |#1|) (-1284 $)) NIL)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL)) (-3385 (((-654 (-966 |#1|)) (-1284 $)) NIL) (((-654 (-966 |#1|))) NIL)) (-3082 (($ $ $) NIL)) (-3642 (((-112)) 95)) (-2951 (((-872) $) 71) (($ (-1284 |#1|)) 22)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 51)) (-1899 (((-654 (-1284 |#1|))) NIL (|has| |#1| (-566)))) (-2362 (($ $ $ $) NIL)) (-4358 (((-112)) 91)) (-2912 (($ (-699 |#1|) $) 18)) (-2030 (($ $ $) NIL)) (-2640 (((-112)) 97)) (-3247 (((-112)) 92)) (-2528 (((-112)) 90)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1158 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-427 |#1|) (-658 (-1158 |#2| |#1|)) (-10 -8 (-15 -2951 ($ (-1284 |#1|))))) (-372) (-935) (-654 (-1193)) (-1284 (-699 |#1|))) (T -44))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-14 *6 (-1284 (-699 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))))))
-(-13 (-427 |#1|) (-658 (-1158 |#2| |#1|)) (-10 -8 (-15 -2951 ($ (-1284 |#1|)))))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3079 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-2421 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1978 (($ $) NIL)) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460))) (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-4287 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860))))) (-2786 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-2234 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-3373 (($ $ $) 33 (|has| $ (-6 -4460)))) (-3755 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-3784 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 35 (|has| $ (-6 -4460)))) (-3135 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-1251 (-574)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value" (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2408 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-2170 (((-3 |#2| "failed") |#1| $) 43)) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $ (-781)) NIL) (($ $) 29)) (-2218 (($ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL)) (-1648 (((-112) $) NIL)) (-1452 (((-574) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) (((-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 20 (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 20 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3764 (($ (-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 38 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2645 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2470 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860))) (((-574) $) 40 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1795 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) 49 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3334 (($ $ (-781)) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1772 (((-654 |#1|) $) 22)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1602 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 |#1|) $) NIL) (((-654 (-574)) $) NIL)) (-1470 (((-112) |#1| $) NIL) (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860))) (($ $ (-781)) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 27)) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3388 (((-112) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2445 (((-654 |#2|) $) NIL) (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 19)) (-2265 (((-112) $) 18)) (-3014 (($) 14)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "first") NIL) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $ "value") NIL)) (-4072 (((-574) $ $) NIL)) (-1734 (($) 13) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3032 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3864 (((-112) $) NIL)) (-3333 (($ $) NIL)) (-1823 (($ $) NIL (|has| $ (-6 -4460)))) (-1984 (((-781) $) NIL)) (-1852 (($ $) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2589 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (($ $ $) NIL)) (-4132 (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL) (($ (-654 $)) NIL) (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 31) (($ $ $) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3343 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") |#1| $) 51)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3031 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-860)))) (-2877 (((-781) $) 25 (|has| $ (-6 -4459)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1116) (-1116)) (T -45))
+(-13 (-1067) (-729 |t#1|) (-628 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-4368 (((-430 |#1|) |#1|) 41)) (-4205 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-1828 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -4205 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -4368 ((-430 |#1|) |#1|)) (-15 -1828 ((-112) |#1|))) (-1262 (-48))) (T -39))
+((-1828 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-4368 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))))
+(-10 -7 (-15 -4205 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -4368 ((-430 |#1|) |#1|)) (-15 -1828 ((-112) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4009 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4334 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1428 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2674 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1646 (((-419 |#2|) $) NIL)) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1870 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1323 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1499 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-1797 (((-112)) NIL)) (-1939 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2524 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 61) (($ (-1286 |#2|) |#2|) 131)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2806 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1796 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-1860 (((-1286 $) (-1286 $)) NIL)) (-2887 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-4077 (((-3 $ "failed") $) NIL)) (-2387 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2826 (((-112) |#1| |#1|) NIL)) (-3563 (((-937)) NIL)) (-2840 (($) NIL (|has| (-419 |#2|) (-379)))) (-2809 (((-112)) NIL)) (-3533 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2818 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-4290 (($ $) NIL)) (-3243 (($) NIL (|has| (-419 |#2|) (-360)))) (-4208 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3454 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3124 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3540 (((-937) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) NIL (|has| (-419 |#2|) (-360)))) (-4192 (((-112) $) NIL)) (-3464 (((-783)) NIL)) (-4072 (((-1286 $) (-1286 $)) 106)) (-3404 (((-419 |#2|) $) NIL)) (-3340 (((-656 (-968 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1733 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4261 (((-937) $) NIL (|has| (-419 |#2|) (-379)))) (-2874 ((|#3| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-1177) $) NIL)) (-3551 (((-1291) (-783)) 84)) (-2757 (((-701 (-419 |#2|))) 56)) (-2980 (((-701 (-419 |#2|))) 49)) (-1330 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2824 (($ (-1286 |#2|) |#2|) 132)) (-2396 (((-701 (-419 |#2|))) 50)) (-2950 (((-701 (-419 |#2|))) 48)) (-1446 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2793 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 68)) (-1900 (((-1286 $)) 47)) (-3701 (((-1286 $)) 46)) (-2118 (((-112) $) NIL)) (-2642 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3796 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2596 (($ (-937)) NIL (|has| (-419 |#2|) (-379)))) (-3334 (((-3 |#2| "failed")) NIL)) (-3945 (((-1138) $) NIL)) (-3344 (((-783)) NIL)) (-2981 (($) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-2892 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-4205 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2858 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3927 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2209 ((|#1| $ |#1| |#1|) NIL)) (-4409 (((-3 |#2| "failed")) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3206 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 44)) (-3665 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-3884 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3767 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2477 ((|#3|) 55)) (-3087 (($) NIL (|has| (-419 |#2|) (-360)))) (-3458 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1286 $)) 107)) (-1846 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-3058 (((-1286 $) (-1286 $)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2838 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1817 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4343 ((|#3| $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2124 (((-112)) 42)) (-3328 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL)) (-2946 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2214 (((-112)) NIL)) (-2143 (($) 17 T CONST)) (-2155 (($) 27 T CONST)) (-3590 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3551 ((-1291) (-783))))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) |#3|) (T -40))
+((-3551 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6))))
+(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3551 ((-1291) (-783)))))
+((-2875 ((|#2| |#2|) 47)) (-3868 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-4365 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-2033 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-4372 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1056 (-576))))))) (-2964 (((-1191 |#2|) |#2|) 44)) (-3922 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -2875 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| |#2|)) (-15 -3922 (|#2| |#2| (-656 |#2|))) (-15 -3922 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2964 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1056 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2033 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -3868 (|#2| |#2|)) (-15 -4372 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 |#1| (-624 $)) $)) (-15 -2987 ((-1143 |#1| (-624 $)) $)) (-15 -2956 ($ (-1143 |#1| (-624 $))))))) (T -41))
+((-4372 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *5 (-624 $)) $)) (-15 -2987 ((-1143 *5 (-624 $)) $)) (-15 -2956 ($ (-1143 *5 (-624 $))))))))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))) (-2964 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $)) (-15 -2987 ((-1143 *4 (-624 $)) $)) (-15 -2956 ($ (-1143 *4 (-624 $))))))))) (-3922 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $)) (-15 -2987 ((-1143 *4 (-624 $)) $)) (-15 -2956 ($ (-1143 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3922 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $)) (-15 -2987 ((-1143 *4 (-624 $)) $)) (-15 -2956 ($ (-1143 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3922 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))) (-2875 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $)) (-15 -2987 ((-1143 *3 (-624 $)) $)) (-15 -2956 ($ (-1143 *3 (-624 $))))))))))
+(-10 -7 (-15 -2875 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3922 (|#2| |#2| |#2|)) (-15 -3922 (|#2| |#2| (-656 |#2|))) (-15 -3922 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -2964 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1056 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2033 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -3868 (|#2| |#2|)) (-15 -4372 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|))
+((-4205 (((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4205 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -4205 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))))) (-862) (-805) (-965 (-48) |#2| |#1|)) (T -42))
+((-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *7 (-965 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-965 (-48) *6 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -4205 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48)))))
+((-2792 (((-783) |#2|) 70)) (-2872 (((-783) |#2|) 74)) (-3076 (((-656 |#2|)) 37)) (-1334 (((-783) |#2|) 73)) (-3192 (((-783) |#2|) 69)) (-1378 (((-783) |#2|) 72)) (-2305 (((-656 (-701 |#1|))) 65)) (-3986 (((-656 |#2|)) 60)) (-3201 (((-656 |#2|) |#2|) 48)) (-3293 (((-656 |#2|)) 62)) (-4375 (((-656 |#2|)) 61)) (-2585 (((-656 (-701 |#1|))) 53)) (-3205 (((-656 |#2|)) 59)) (-2351 (((-656 |#2|) |#2|) 47)) (-3931 (((-656 |#2|)) 55)) (-3816 (((-656 (-701 |#1|))) 66)) (-2135 (((-656 |#2|)) 64)) (-4093 (((-1286 |#2|) (-1286 |#2|)) 99 (|has| |#1| (-317)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1334 ((-783) |#2|)) (-15 -2872 ((-783) |#2|)) (-15 -3192 ((-783) |#2|)) (-15 -2792 ((-783) |#2|)) (-15 -1378 ((-783) |#2|)) (-15 -3931 ((-656 |#2|))) (-15 -2351 ((-656 |#2|) |#2|)) (-15 -3201 ((-656 |#2|) |#2|)) (-15 -3205 ((-656 |#2|))) (-15 -3986 ((-656 |#2|))) (-15 -4375 ((-656 |#2|))) (-15 -3293 ((-656 |#2|))) (-15 -2135 ((-656 |#2|))) (-15 -2585 ((-656 (-701 |#1|)))) (-15 -2305 ((-656 (-701 |#1|)))) (-15 -3816 ((-656 (-701 |#1|)))) (-15 -3076 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -4093 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43))
+((-4093 (*1 *2 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-3076 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3816 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2305 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2585 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2135 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3293 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4375 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3986 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3205 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3931 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1378 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3192 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1334 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))))
+(-10 -7 (-15 -1334 ((-783) |#2|)) (-15 -2872 ((-783) |#2|)) (-15 -3192 ((-783) |#2|)) (-15 -2792 ((-783) |#2|)) (-15 -1378 ((-783) |#2|)) (-15 -3931 ((-656 |#2|))) (-15 -2351 ((-656 |#2|) |#2|)) (-15 -3201 ((-656 |#2|) |#2|)) (-15 -3205 ((-656 |#2|))) (-15 -3986 ((-656 |#2|))) (-15 -4375 ((-656 |#2|))) (-15 -3293 ((-656 |#2|))) (-15 -2135 ((-656 |#2|))) (-15 -2585 ((-656 (-701 |#1|)))) (-15 -2305 ((-656 (-701 |#1|)))) (-15 -3816 ((-656 (-701 |#1|)))) (-15 -3076 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -4093 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1651 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2264 (((-1286 (-701 |#1|)) (-1286 $)) NIL) (((-1286 (-701 |#1|))) 24)) (-2548 (((-1286 $)) 52)) (-4335 (($) NIL T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3197 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4366 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-2655 ((|#1| $) NIL)) (-3512 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-2710 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3333 (((-1191 (-968 |#1|))) NIL (|has| |#1| (-374)))) (-3133 (($ $ (-937)) NIL)) (-4316 ((|#1| $) NIL)) (-3589 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-3775 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-2495 (((-1191 |#1|) $) NIL)) (-3498 (((-112)) 99)) (-2524 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-4077 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-3563 (((-937)) 53)) (-3574 (((-112)) NIL)) (-3728 (($ $ (-937)) NIL)) (-3788 (((-112)) NIL)) (-3059 (((-112)) NIL)) (-4337 (((-112)) 101)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3471 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3774 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-3144 ((|#1| $) NIL)) (-4120 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-1643 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-1418 (((-1191 (-968 |#1|))) NIL (|has| |#1| (-374)))) (-2128 (($ $ (-937)) NIL)) (-3209 ((|#1| $) NIL)) (-1564 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-3640 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-4347 (((-1191 |#1|) $) NIL)) (-2513 (((-112)) 98)) (-2148 (((-1177) $) NIL)) (-1358 (((-112)) 106)) (-4085 (((-112)) 105)) (-3045 (((-112)) 107)) (-3945 (((-1138) $) NIL)) (-4145 (((-112)) 100)) (-2209 ((|#1| $ (-576)) 55)) (-3458 (((-1286 |#1|) $ (-1286 $)) 48) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 28) (((-701 |#1|) (-1286 $)) NIL)) (-1846 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL)) (-2292 (((-656 (-968 |#1|)) (-1286 $)) NIL) (((-656 (-968 |#1|))) NIL)) (-3516 (($ $ $) NIL)) (-3184 (((-112)) 95)) (-2956 (((-874) $) 71) (($ (-1286 |#1|)) 22)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 51)) (-2943 (((-656 (-1286 |#1|))) NIL (|has| |#1| (-568)))) (-2927 (($ $ $ $) NIL)) (-2763 (((-112)) 91)) (-2917 (($ (-701 |#1|) $) 18)) (-1736 (($ $ $) NIL)) (-2417 (((-112)) 97)) (-1431 (((-112)) 92)) (-3842 (((-112)) 90)) (-2143 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1160 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1160 |#2| |#1|)) (-10 -8 (-15 -2956 ($ (-1286 |#1|))))) (-374) (-937) (-656 (-1195)) (-1286 (-701 |#1|))) (T -44))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))))))
+(-13 (-429 |#1|) (-660 (-1160 |#2| |#1|)) (-10 -8 (-15 -2956 ($ (-1286 |#1|)))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3084 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2426 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1980 (($ $) NIL)) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3330 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862))))) (-2791 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3052 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462)))) (-3439 (($ $ $) 33 (|has| $ (-6 -4462)))) (-1730 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462)))) (-1961 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 35 (|has| $ (-6 -4462)))) (-3140 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-1253 (-576)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "last" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "first" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "value" (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2413 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2172 (((-3 |#2| "failed") |#1| $) 43)) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-2940 (($ $ (-783)) NIL) (($ $) 29)) (-4099 (($ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) NIL)) (-2281 (((-112) $) NIL)) (-1454 (((-576) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) (((-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 20 (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 20 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-3769 (($ (-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2470 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-1383 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-1798 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) 49 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3338 (($ $ (-783)) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1773 (((-656 |#1|) $) 22)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1604 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-4254 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-783)) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 27)) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2326 (((-112) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-4274 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 19)) (-3321 (((-112) $) 18)) (-2953 (($) 14)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "first") NIL) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $ "value") NIL)) (-1785 (((-576) $ $) NIL)) (-1904 (($) 13) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3012 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1558 (((-112) $) NIL)) (-3029 (($ $) NIL)) (-1508 (($ $) NIL (|has| $ (-6 -4462)))) (-2550 (((-783) $) NIL)) (-3704 (($ $) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3228 (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL) (($ $ $) NIL)) (-4136 (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 31) (($ $ $) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3348 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") |#1| $) 51)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3034 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-862)))) (-2882 (((-783) $) 25 (|has| $ (-6 -4461)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1118) (-1118)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3873 (((-112) $) 12)) (-1785 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-417 (-574)) $) 25) (($ $ (-417 (-574))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-47 |#2| |#3|) (-1065) (-802)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-3873 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3735 ((|#2| $) 76)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1788 ((|#1| $ |#2|) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-47 |#1| |#2|) (-141) (-1065) (-802)) (T -47))
-((-1378 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-1366 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-112)))) (-4328 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-1788 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-372)))))
-(-13 (-1065) (-111 |t#1| |t#1|) (-10 -8 (-15 -1378 (|t#1| $)) (-15 -1366 ($ $)) (-15 -3735 (|t#2| $)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -3873 ((-112) $)) (-15 -4328 ($ |t#1| |t#2|)) (-15 -1402 ($ $)) (-15 -1788 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-372)) (-15 -3099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-566)) (-6 (-566)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-6 (-38 (-417 (-574)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-2910 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-2432 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-4311 (((-112) $) 9)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-4068 (((-654 (-622 $)) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3961 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-2231 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2801 (($ $ $) NIL)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 (-417 (-574)))) (|:| |vec| (-1284 (-417 (-574))))) (-699 $) (-1284 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1284 $)) NIL)) (-2882 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3253 (($ $) NIL) (($ (-654 $)) NIL)) (-2256 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3943 (((-112) $) 11)) (-1476 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2970 (((-1141 (-574) (-622 $)) $) NIL)) (-4439 (($ $ (-574)) NIL)) (-2608 (((-1189 $) (-1189 $) (-622 $)) NIL) (((-1189 $) (-1189 $) (-654 (-622 $))) NIL) (($ $ (-622 $)) NIL) (($ $ (-654 (-622 $))) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2860 (((-1189 $) (-622 $)) NIL (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-1761 (((-3 (-622 $) "failed") $) NIL)) (-2845 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-4140 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-1575 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1328 (($ $) NIL)) (-1846 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3882 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4220 (((-781) $) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3457 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2980 (((-1141 (-574) (-622 $)) $) NIL)) (-2966 (($ $) NIL (|has| $ (-1065)))) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-171 (-388)) $) NIL)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1141 (-574) (-622 $))) NIL)) (-3070 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2138 (((-112) (-115)) NIL)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 6 T CONST)) (-2153 (($) 10 T CONST)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) 13)) (-3099 (($ $ $) NIL)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) NIL) (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL)))
-(((-48) (-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2970 ((-1141 (-574) (-622 $)) $)) (-15 -2980 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2608 ((-1189 $) (-1189 $) (-622 $))) (-15 -2608 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -2608 ($ $ (-622 $))) (-15 -2608 ($ $ (-654 (-622 $))))))) (T -48))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48)))) (-2882 (*1 *1 *1) (-5 *1 (-48))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48)))))
-(-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2970 ((-1141 (-574) (-622 $)) $)) (-15 -2980 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2608 ((-1189 $) (-1189 $) (-622 $))) (-15 -2608 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -2608 ($ $ (-622 $))) (-15 -2608 ($ $ (-654 (-622 $))))))
-((-2864 (((-112) $ $) NIL)) (-2639 (((-654 (-516)) $) 17)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-2051 (((-1198) $) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-49) (-13 (-1116) (-10 -8 (-15 -2639 ((-654 (-516)) $)) (-15 -2051 ((-1198) $))))) (T -49))
-((-2639 (*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-49)))))
-(-13 (-1116) (-10 -8 (-15 -2639 ((-654 (-516)) $)) (-15 -2051 ((-1198) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 85)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3620 (((-112) $) 30)) (-1704 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1402 (($ $) 40)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1378 ((|#1| $) 31)) (-3754 (($ $) 74)) (-4420 (((-1175) $) NIL)) (-3757 (((-112) $) 43)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) 72)) (-1617 (($ (-654 (-574))) 73)) (-3735 (((-781) $) 44)) (-2951 (((-872) $) 91) (($ (-574)) 69) (($ |#1|) 67)) (-1788 ((|#1| $ $) 28)) (-3070 (((-781)) 71 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 45 T CONST)) (-2153 (($) 17 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 64)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
-(((-50 |#1| |#2|) (-13 (-630 |#1|) (-1054 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -3754 ($ $)) (-15 -1402 ($ $)) (-15 -1788 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1617 ($ (-654 (-574)))) (-15 -3757 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -3735 ((-781) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)))) (-1065) (-654 (-1193))) (T -50))
-((-1378 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))))) (-1788 (*1 *2 *1 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065)) (-14 *4 (-654 (-1193))))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-50 *3 *4)) (-14 *4 (-654 (-1193))))))
-(-13 (-630 |#1|) (-1054 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -3754 ($ $)) (-15 -1402 ($ $)) (-15 -1788 (|#1| $ $)) (-15 -2975 ($ (-781))) (-15 -1617 ($ (-654 (-574)))) (-15 -3757 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -3735 ((-781) $)) (-15 -1785 ($ (-1 |#1| |#1|) $))))
-((-3620 (((-112) (-52)) 18)) (-1704 (((-3 |#1| "failed") (-52)) 20)) (-2216 ((|#1| (-52)) 21)) (-2951 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -2951 ((-52) |#1|)) (-15 -1704 ((-3 |#1| "failed") (-52))) (-15 -3620 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) (-1234)) (T -51))
-((-2216 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1234)))) (-1704 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1234)))))
-(-10 -7 (-15 -2951 ((-52) |#1|)) (-15 -1704 ((-3 |#1| "failed") (-52))) (-15 -3620 ((-112) (-52))) (-15 -2216 (|#1| (-52))))
-((-2864 (((-112) $ $) NIL)) (-1703 (((-784) $) 8)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1877 (((-1120) $) 10)) (-2951 (((-872) $) 15)) (-2981 (((-112) $ $) NIL)) (-3938 (($ (-1120) (-784)) 16)) (-2986 (((-112) $ $) 12)))
-(((-52) (-13 (-1116) (-10 -8 (-15 -3938 ($ (-1120) (-784))) (-15 -1877 ((-1120) $)) (-15 -1703 ((-784) $))))) (T -52))
-((-3938 (*1 *1 *2 *3) (-12 (-5 *2 (-1120)) (-5 *3 (-784)) (-5 *1 (-52)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-52)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52)))))
-(-13 (-1116) (-10 -8 (-15 -3938 ($ (-1120) (-784))) (-15 -1877 ((-1120) $)) (-15 -1703 ((-784) $))))
-((-2912 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2912 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1065) (-658 |#1|) (-862 |#1|)) (T -53))
-((-2912 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1065)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5)))))
-(-10 -7 (-15 -2912 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2721 ((|#3| |#3| (-654 (-1193))) 44)) (-3439 ((|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935)) 32) ((|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3439 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|)) (-15 -3439 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935))) (-15 -2721 (|#3| |#3| (-654 (-1193))))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -54))
-((-2721 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-3439 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 (-1092 *5 *6 *2))) (-5 *4 (-935)) (-4 *5 (-1116)) (-4 *6 (-13 (-1065) (-897 *5) (-624 (-903 *5)))) (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3439 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-1092 *4 *5 *2))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3439 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3|)) (-15 -3439 (|#3| (-654 (-1092 |#1| |#2| |#3|)) |#3| (-935))) (-15 -2721 (|#3| |#3| (-654 (-1193)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 14)) (-1704 (((-3 (-781) "failed") $) 34)) (-2216 (((-781) $) NIL)) (-3943 (((-112) $) 16)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) 18)) (-2951 (((-872) $) 23) (($ (-781)) 29)) (-2981 (((-112) $ $) NIL)) (-3622 (($) 11 T CONST)) (-2986 (((-112) $ $) 20)))
-(((-55) (-13 (-1116) (-1054 (-781)) (-10 -8 (-15 -3622 ($) -1714) (-15 -4311 ((-112) $)) (-15 -3943 ((-112) $))))) (T -55))
-((-3622 (*1 *1) (-5 *1 (-55))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1116) (-1054 (-781)) (-10 -8 (-15 -3622 ($) -1714) (-15 -4311 ((-112) $)) (-15 -3943 ((-112) $))))
-((-2832 (((-112) $ (-781)) 27)) (-2334 (($ $ (-574) |#3|) 66)) (-3269 (($ $ (-574) |#4|) 70)) (-2273 ((|#3| $ (-574)) 79)) (-1871 (((-654 |#2|) $) 47)) (-3814 (((-112) $ (-781)) 31)) (-2333 (((-112) |#2| $) 74)) (-2462 (($ (-1 |#2| |#2|) $) 55)) (-1785 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2302 (((-112) $ (-781)) 29)) (-1465 (($ $ |#2|) 52)) (-1731 (((-112) (-1 (-112) |#2|) $) 21)) (-2207 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) 35)) (-3949 (((-781) (-1 (-112) |#2|) $) 41) (((-781) |#2| $) 76)) (-3157 (($ $) 51)) (-4239 ((|#4| $ (-574)) 82)) (-2951 (((-872) $) 88)) (-2859 (((-112) (-1 (-112) |#2|) $) 20)) (-2986 (((-112) $ $) 73)) (-2877 (((-781) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3269 (|#1| |#1| (-574) |#4|)) (-15 -2334 (|#1| |#1| (-574) |#3|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -4239 (|#4| |#1| (-574))) (-15 -2273 (|#3| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574))) (-15 -1465 (|#1| |#1| |#2|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))) (-15 -3157 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1234) (-382 |#2|) (-382 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3269 (|#1| |#1| (-574) |#4|)) (-15 -2334 (|#1| |#1| (-574) |#3|)) (-15 -1871 ((-654 |#2|) |#1|)) (-15 -4239 (|#4| |#1| (-574))) (-15 -2273 (|#3| |#1| (-574))) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574))) (-15 -1465 (|#1| |#1| |#2|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))) (-15 -3157 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) (-574) |#1|) 45)) (-2334 (($ $ (-574) |#2|) 43)) (-3269 (($ $ (-574) |#3|) 42)) (-1430 (($) 7 T CONST)) (-2273 ((|#2| $ (-574)) 47)) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2400 ((|#1| $ (-574) (-574)) 49)) (-1871 (((-654 |#1|) $) 31)) (-2197 (((-781) $) 52)) (-3764 (($ (-781) (-781) |#1|) 58)) (-2206 (((-781) $) 51)) (-3814 (((-112) $ (-781)) 9)) (-4075 (((-574) $) 56)) (-1351 (((-574) $) 54)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3183 (((-574) $) 55)) (-2759 (((-574) $) 53)) (-2462 (($ (-1 |#1| |#1|) $) 35)) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) 57)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-4239 ((|#3| $ (-574)) 46)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-57 |#1| |#2| |#3|) (-141) (-1234) (-382 |t#1|) (-382 |t#1|)) (T -57))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3764 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1234)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1465 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-574)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-781)))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1234)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *2 (-382 *4)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 *3)))) (-3135 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2473 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234)) (-4 *4 (-382 *2)) (-4 *5 (-382 *2)))) (-2334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1234)) (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))) (-3269 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1234)) (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1785 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
-(-13 (-499 |t#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3764 ($ (-781) (-781) |t#1|)) (-15 -1465 ($ $ |t#1|)) (-15 -4075 ((-574) $)) (-15 -3183 ((-574) $)) (-15 -1351 ((-574) $)) (-15 -2759 ((-574) $)) (-15 -2197 ((-781) $)) (-15 -2206 ((-781) $)) (-15 -2207 (|t#1| $ (-574) (-574))) (-15 -2400 (|t#1| $ (-574) (-574))) (-15 -2207 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2273 (|t#2| $ (-574))) (-15 -4239 (|t#3| $ (-574))) (-15 -1871 ((-654 |t#1|) $)) (-15 -3135 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2473 (|t#1| $ (-574) (-574) |t#1|)) (-15 -2334 ($ $ (-574) |t#2|)) (-15 -3269 ($ $ (-574) |t#3|)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -2462 ($ (-1 |t#1| |t#1|) $)) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-1904 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1785 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -1904 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1785 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1234) (-1234)) (T -58))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-58 *5 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -1904 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1785 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3363 (($ (-654 |#1|)) 11) (($ (-781) |#1|) 14)) (-3764 (($ (-781) |#1|) 13)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 10)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3363 ($ (-654 |#1|))) (-15 -3363 ($ (-781) |#1|)))) (-1234)) (T -59))
-((-3363 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-59 *3)))) (-3363 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1234)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3363 ($ (-654 |#1|))) (-15 -3363 ($ (-781) |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2334 (($ $ (-574) (-59 |#1|)) NIL)) (-3269 (($ $ (-574) (-59 |#1|)) NIL)) (-1430 (($) NIL T CONST)) (-2273 (((-59 |#1|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-4239 (((-59 |#1|) $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4460))) (-1234)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4460)))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 74) (((-3 $ "failed") (-1284 (-324 (-574)))) 63) (((-3 $ "failed") (-1284 (-966 (-388)))) 94) (((-3 $ "failed") (-1284 (-966 (-574)))) 84) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 52) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 39)) (-2216 (($ (-1284 (-324 (-388)))) 70) (($ (-1284 (-324 (-574)))) 59) (($ (-1284 (-966 (-388)))) 90) (($ (-1284 (-966 (-574)))) 80) (($ (-1284 (-417 (-966 (-388))))) 48) (($ (-1284 (-417 (-966 (-574))))) 32)) (-3742 (((-1289) $) 124)) (-2951 (((-872) $) 118) (($ (-654 (-338))) 103) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 101) (($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709)))) 31)))
-(((-61 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709))))))) (-1193)) (T -61))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709)))) (-5 *1 (-61 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2963) (-709)))))))
-((-3742 (((-1289) $) 54) (((-1289)) 55)) (-2951 (((-872) $) 51)))
-(((-62 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -62))
-((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-62 *3)) (-14 *3 (-1193)))))
-(-13 (-405) (-10 -7 (-15 -3742 ((-1289)))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 150) (((-3 $ "failed") (-1284 (-324 (-574)))) 140) (((-3 $ "failed") (-1284 (-966 (-388)))) 170) (((-3 $ "failed") (-1284 (-966 (-574)))) 160) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 129) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 117)) (-2216 (($ (-1284 (-324 (-388)))) 146) (($ (-1284 (-324 (-574)))) 136) (($ (-1284 (-966 (-388)))) 166) (($ (-1284 (-966 (-574)))) 156) (($ (-1284 (-417 (-966 (-388))))) 125) (($ (-1284 (-417 (-966 (-574))))) 110)) (-3742 (((-1289) $) 103)) (-2951 (((-872) $) 97) (($ (-654 (-338))) 30) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 33) (($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) 95)))
-(((-63 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) (-1193)) (T -63))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) (-5 *1 (-63 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))))))
-((-1704 (((-3 $ "failed") (-324 (-388))) 41) (((-3 $ "failed") (-324 (-574))) 46) (((-3 $ "failed") (-966 (-388))) 50) (((-3 $ "failed") (-966 (-574))) 54) (((-3 $ "failed") (-417 (-966 (-388)))) 36) (((-3 $ "failed") (-417 (-966 (-574)))) 29)) (-2216 (($ (-324 (-388))) 39) (($ (-324 (-574))) 44) (($ (-966 (-388))) 48) (($ (-966 (-574))) 52) (($ (-417 (-966 (-388)))) 34) (($ (-417 (-966 (-574)))) 26)) (-3742 (((-1289) $) 76)) (-2951 (((-872) $) 69) (($ (-654 (-338))) 61) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 64) (($ (-348 (-2963 (QUOTE X)) (-2963) (-709))) 25)))
-(((-64 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963) (-709)))))) (-1193)) (T -64))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963 (QUOTE X)) (-2963) (-709))) (-5 *1 (-64 *3)) (-14 *3 (-1193)))))
-(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963) (-709))))))
-((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 111) (((-3 $ "failed") (-699 (-324 (-574)))) 99) (((-3 $ "failed") (-699 (-966 (-388)))) 133) (((-3 $ "failed") (-699 (-966 (-574)))) 122) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 87) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 73)) (-2216 (($ (-699 (-324 (-388)))) 107) (($ (-699 (-324 (-574)))) 95) (($ (-699 (-966 (-388)))) 129) (($ (-699 (-966 (-574)))) 118) (($ (-699 (-417 (-966 (-388))))) 83) (($ (-699 (-417 (-966 (-574))))) 66)) (-3742 (((-1289) $) 141)) (-2951 (((-872) $) 135) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 32) (($ (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709)))) 56)))
-(((-65 |#1|) (-13 (-393) (-626 (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709))))) (-1193)) (T -65))
-NIL
-(-13 (-393) (-626 (-699 (-348 (-2963) (-2963 (QUOTE X) (QUOTE HESS)) (-709)))))
-((-1704 (((-3 $ "failed") (-324 (-388))) 60) (((-3 $ "failed") (-324 (-574))) 65) (((-3 $ "failed") (-966 (-388))) 69) (((-3 $ "failed") (-966 (-574))) 73) (((-3 $ "failed") (-417 (-966 (-388)))) 55) (((-3 $ "failed") (-417 (-966 (-574)))) 48)) (-2216 (($ (-324 (-388))) 58) (($ (-324 (-574))) 63) (($ (-966 (-388))) 67) (($ (-966 (-574))) 71) (($ (-417 (-966 (-388)))) 53) (($ (-417 (-966 (-574)))) 45)) (-3742 (((-1289) $) 82)) (-2951 (((-872) $) 76) (($ (-654 (-338))) 29) (($ (-338)) 34) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 32) (($ (-348 (-2963) (-2963 (QUOTE XC)) (-709))) 40)))
-(((-66 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE XC)) (-709)))))) (-1193)) (T -66))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE XC)) (-709))) (-5 *1 (-66 *3)) (-14 *3 (-1193)))))
-(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))
-((-3742 (((-1289) $) 65)) (-2951 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 50) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 55)))
-(((-67 |#1|) (-392) (-1193)) (T -67))
-NIL
-(-392)
-((-3742 (((-1289) $) 66)) (-2951 (((-872) $) 60) (($ (-699 (-709))) 52) (($ (-654 (-338))) 51) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 57)))
-(((-68 |#1|) (-392) (-1193)) (T -68))
-NIL
-(-392)
-((-3742 (((-1289) $) NIL) (((-1289)) 33)) (-2951 (((-872) $) NIL)))
-(((-69 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -69))
-((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-69 *3)) (-14 *3 (-1193)))))
-(-13 (-405) (-10 -7 (-15 -3742 ((-1289)))))
-((-3742 (((-1289) $) 75)) (-2951 (((-872) $) 69) (($ (-699 (-709))) 61) (($ (-654 (-338))) 63) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 60)))
-(((-70 |#1|) (-392) (-1193)) (T -70))
-NIL
-(-392)
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 109) (((-3 $ "failed") (-1284 (-324 (-574)))) 98) (((-3 $ "failed") (-1284 (-966 (-388)))) 129) (((-3 $ "failed") (-1284 (-966 (-574)))) 119) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 87) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 74)) (-2216 (($ (-1284 (-324 (-388)))) 105) (($ (-1284 (-324 (-574)))) 94) (($ (-1284 (-966 (-388)))) 125) (($ (-1284 (-966 (-574)))) 115) (($ (-1284 (-417 (-966 (-388))))) 83) (($ (-1284 (-417 (-966 (-574))))) 67)) (-3742 (((-1289) $) 142)) (-2951 (((-872) $) 136) (($ (-654 (-338))) 131) (($ (-338)) 134) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 59) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) 60)))
-(((-71 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) (-1193)) (T -71))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-71 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))))))
-((-3742 (((-1289) $) 33) (((-1289)) 32)) (-2951 (((-872) $) 36)))
-(((-72 |#1|) (-13 (-405) (-10 -7 (-15 -3742 ((-1289))))) (-1193)) (T -72))
-((-3742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-72 *3)) (-14 *3 (-1193)))))
-(-13 (-405) (-10 -7 (-15 -3742 ((-1289)))))
-((-3742 (((-1289) $) 65)) (-2951 (((-872) $) 59) (($ (-699 (-709))) 51) (($ (-654 (-338))) 53) (($ (-338)) 56) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 50)))
-(((-73 |#1|) (-392) (-1193)) (T -73))
-NIL
-(-392)
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 127) (((-3 $ "failed") (-1284 (-324 (-574)))) 117) (((-3 $ "failed") (-1284 (-966 (-388)))) 147) (((-3 $ "failed") (-1284 (-966 (-574)))) 137) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 107) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 95)) (-2216 (($ (-1284 (-324 (-388)))) 123) (($ (-1284 (-324 (-574)))) 113) (($ (-1284 (-966 (-388)))) 143) (($ (-1284 (-966 (-574)))) 133) (($ (-1284 (-417 (-966 (-388))))) 103) (($ (-1284 (-417 (-966 (-574))))) 88)) (-3742 (((-1289) $) 80)) (-2951 (((-872) $) 28) (($ (-654 (-338))) 70) (($ (-338)) 66) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 73) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 67)))
-(((-74 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) (-1193)) (T -74))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) (-5 *1 (-74 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 132) (((-3 $ "failed") (-1284 (-324 (-574)))) 121) (((-3 $ "failed") (-1284 (-966 (-388)))) 152) (((-3 $ "failed") (-1284 (-966 (-574)))) 142) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 110) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 97)) (-2216 (($ (-1284 (-324 (-388)))) 128) (($ (-1284 (-324 (-574)))) 117) (($ (-1284 (-966 (-388)))) 148) (($ (-1284 (-966 (-574)))) 138) (($ (-1284 (-417 (-966 (-388))))) 106) (($ (-1284 (-417 (-966 (-574))))) 90)) (-3742 (((-1289) $) 82)) (-2951 (((-872) $) 74) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) NIL) (($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709)))) 69)))
-(((-75 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709))))))) (-1193) (-1193) (-1193)) (T -75))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) (-14 *5 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE EPS)) (-2963 (QUOTE -1889)) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 138) (((-3 $ "failed") (-1284 (-324 (-574)))) 127) (((-3 $ "failed") (-1284 (-966 (-388)))) 158) (((-3 $ "failed") (-1284 (-966 (-574)))) 148) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 116) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 103)) (-2216 (($ (-1284 (-324 (-388)))) 134) (($ (-1284 (-324 (-574)))) 123) (($ (-1284 (-966 (-388)))) 154) (($ (-1284 (-966 (-574)))) 144) (($ (-1284 (-417 (-966 (-388))))) 112) (($ (-1284 (-417 (-966 (-574))))) 96)) (-3742 (((-1289) $) 88)) (-2951 (((-872) $) 80) (($ (-654 (-338))) NIL) (($ (-338)) NIL) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) NIL) (($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709)))) 75)))
-(((-76 |#1| |#2| |#3|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709))))))) (-1193) (-1193) (-1193)) (T -76))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193)) (-14 *5 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE EPS)) (-2963 (QUOTE YA) (QUOTE YB)) (-709)))))))
-((-1704 (((-3 $ "failed") (-324 (-388))) 83) (((-3 $ "failed") (-324 (-574))) 88) (((-3 $ "failed") (-966 (-388))) 92) (((-3 $ "failed") (-966 (-574))) 96) (((-3 $ "failed") (-417 (-966 (-388)))) 78) (((-3 $ "failed") (-417 (-966 (-574)))) 71)) (-2216 (($ (-324 (-388))) 81) (($ (-324 (-574))) 86) (($ (-966 (-388))) 90) (($ (-966 (-574))) 94) (($ (-417 (-966 (-388)))) 76) (($ (-417 (-966 (-574)))) 68)) (-3742 (((-1289) $) 63)) (-2951 (((-872) $) 51) (($ (-654 (-338))) 47) (($ (-338)) 57) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 55) (($ (-348 (-2963) (-2963 (QUOTE X)) (-709))) 48)))
-(((-77 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) (-1193)) (T -77))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE X)) (-709))) (-5 *1 (-77 *3)) (-14 *3 (-1193)))))
-(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709))))))
-((-1704 (((-3 $ "failed") (-324 (-388))) 47) (((-3 $ "failed") (-324 (-574))) 52) (((-3 $ "failed") (-966 (-388))) 56) (((-3 $ "failed") (-966 (-574))) 60) (((-3 $ "failed") (-417 (-966 (-388)))) 42) (((-3 $ "failed") (-417 (-966 (-574)))) 35)) (-2216 (($ (-324 (-388))) 45) (($ (-324 (-574))) 50) (($ (-966 (-388))) 54) (($ (-966 (-574))) 58) (($ (-417 (-966 (-388)))) 40) (($ (-417 (-966 (-574)))) 32)) (-3742 (((-1289) $) 81)) (-2951 (((-872) $) 75) (($ (-654 (-338))) 67) (($ (-338)) 72) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 70) (($ (-348 (-2963) (-2963 (QUOTE X)) (-709))) 31)))
-(((-78 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709)))))) (-1193)) (T -78))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963) (-2963 (QUOTE X)) (-709))) (-5 *1 (-78 *3)) (-14 *3 (-1193)))))
-(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963) (-2963 (QUOTE X)) (-709))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 90) (((-3 $ "failed") (-1284 (-324 (-574)))) 79) (((-3 $ "failed") (-1284 (-966 (-388)))) 110) (((-3 $ "failed") (-1284 (-966 (-574)))) 100) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 68) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 55)) (-2216 (($ (-1284 (-324 (-388)))) 86) (($ (-1284 (-324 (-574)))) 75) (($ (-1284 (-966 (-388)))) 106) (($ (-1284 (-966 (-574)))) 96) (($ (-1284 (-417 (-966 (-388))))) 64) (($ (-1284 (-417 (-966 (-574))))) 48)) (-3742 (((-1289) $) 126)) (-2951 (((-872) $) 120) (($ (-654 (-338))) 113) (($ (-338)) 38) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 116) (($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) 39)))
-(((-79 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709))))))) (-1193)) (T -79))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))) (-5 *1 (-79 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE XC)) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 151) (((-3 $ "failed") (-1284 (-324 (-574)))) 141) (((-3 $ "failed") (-1284 (-966 (-388)))) 171) (((-3 $ "failed") (-1284 (-966 (-574)))) 161) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 131) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 119)) (-2216 (($ (-1284 (-324 (-388)))) 147) (($ (-1284 (-324 (-574)))) 137) (($ (-1284 (-966 (-388)))) 167) (($ (-1284 (-966 (-574)))) 157) (($ (-1284 (-417 (-966 (-388))))) 127) (($ (-1284 (-417 (-966 (-574))))) 112)) (-3742 (((-1289) $) 105)) (-2951 (((-872) $) 99) (($ (-654 (-338))) 90) (($ (-338)) 97) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 95) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 91)))
-(((-80 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))))) (-1193)) (T -80))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) (-5 *1 (-80 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 79) (((-3 $ "failed") (-1284 (-324 (-574)))) 68) (((-3 $ "failed") (-1284 (-966 (-388)))) 99) (((-3 $ "failed") (-1284 (-966 (-574)))) 89) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 57) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 44)) (-2216 (($ (-1284 (-324 (-388)))) 75) (($ (-1284 (-324 (-574)))) 64) (($ (-1284 (-966 (-388)))) 95) (($ (-1284 (-966 (-574)))) 85) (($ (-1284 (-417 (-966 (-388))))) 53) (($ (-1284 (-417 (-966 (-574))))) 37)) (-3742 (((-1289) $) 125)) (-2951 (((-872) $) 119) (($ (-654 (-338))) 110) (($ (-338)) 116) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 114) (($ (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))) 36)))
-(((-81 |#1|) (-13 (-451) (-626 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709))))) (-1193)) (T -81))
-NIL
-(-13 (-451) (-626 (-1284 (-348 (-2963) (-2963 (QUOTE X)) (-709)))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 98) (((-3 $ "failed") (-1284 (-324 (-574)))) 87) (((-3 $ "failed") (-1284 (-966 (-388)))) 118) (((-3 $ "failed") (-1284 (-966 (-574)))) 108) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 76) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 63)) (-2216 (($ (-1284 (-324 (-388)))) 94) (($ (-1284 (-324 (-574)))) 83) (($ (-1284 (-966 (-388)))) 114) (($ (-1284 (-966 (-574)))) 104) (($ (-1284 (-417 (-966 (-388))))) 72) (($ (-1284 (-417 (-966 (-574))))) 56)) (-3742 (((-1289) $) 48)) (-2951 (((-872) $) 42) (($ (-654 (-338))) 32) (($ (-338)) 35) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 38) (($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) 33)))
-(((-82 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) (-1193)) (T -82))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) (-5 *1 (-82 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))))))
-((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 118) (((-3 $ "failed") (-699 (-324 (-574)))) 107) (((-3 $ "failed") (-699 (-966 (-388)))) 140) (((-3 $ "failed") (-699 (-966 (-574)))) 129) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 96) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 83)) (-2216 (($ (-699 (-324 (-388)))) 114) (($ (-699 (-324 (-574)))) 103) (($ (-699 (-966 (-388)))) 136) (($ (-699 (-966 (-574)))) 125) (($ (-699 (-417 (-966 (-388))))) 92) (($ (-699 (-417 (-966 (-574))))) 76)) (-3742 (((-1289) $) 66)) (-2951 (((-872) $) 53) (($ (-654 (-338))) 60) (($ (-338)) 49) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 58) (($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) 50)))
-(((-83 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709))))))) (-1193)) (T -83))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))) (-5 *1 (-83 *3)) (-14 *3 (-1193)))))
-(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X) (QUOTE -1889)) (-2963) (-709)))))))
-((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 113) (((-3 $ "failed") (-699 (-324 (-574)))) 101) (((-3 $ "failed") (-699 (-966 (-388)))) 135) (((-3 $ "failed") (-699 (-966 (-574)))) 124) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 89) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 75)) (-2216 (($ (-699 (-324 (-388)))) 109) (($ (-699 (-324 (-574)))) 97) (($ (-699 (-966 (-388)))) 131) (($ (-699 (-966 (-574)))) 120) (($ (-699 (-417 (-966 (-388))))) 85) (($ (-699 (-417 (-966 (-574))))) 68)) (-3742 (((-1289) $) 60)) (-2951 (((-872) $) 54) (($ (-654 (-338))) 48) (($ (-338)) 51) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 45) (($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) 46)))
-(((-84 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) (-1193)) (T -84))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) (-5 *1 (-84 *3)) (-14 *3 (-1193)))))
-(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE X)) (-2963) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 105) (((-3 $ "failed") (-1284 (-324 (-574)))) 94) (((-3 $ "failed") (-1284 (-966 (-388)))) 125) (((-3 $ "failed") (-1284 (-966 (-574)))) 115) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 83) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 70)) (-2216 (($ (-1284 (-324 (-388)))) 101) (($ (-1284 (-324 (-574)))) 90) (($ (-1284 (-966 (-388)))) 121) (($ (-1284 (-966 (-574)))) 111) (($ (-1284 (-417 (-966 (-388))))) 79) (($ (-1284 (-417 (-966 (-574))))) 63)) (-3742 (((-1289) $) 47)) (-2951 (((-872) $) 41) (($ (-654 (-338))) 50) (($ (-338)) 37) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 53) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) 38)))
-(((-85 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709))))))) (-1193)) (T -85))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709)))) (-5 *1 (-85 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963) (-709)))))))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 80) (((-3 $ "failed") (-1284 (-324 (-574)))) 69) (((-3 $ "failed") (-1284 (-966 (-388)))) 100) (((-3 $ "failed") (-1284 (-966 (-574)))) 90) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 58) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 45)) (-2216 (($ (-1284 (-324 (-388)))) 76) (($ (-1284 (-324 (-574)))) 65) (($ (-1284 (-966 (-388)))) 96) (($ (-1284 (-966 (-574)))) 86) (($ (-1284 (-417 (-966 (-388))))) 54) (($ (-1284 (-417 (-966 (-574))))) 38)) (-3742 (((-1289) $) 126)) (-2951 (((-872) $) 120) (($ (-654 (-338))) 111) (($ (-338)) 117) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 115) (($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) 37)))
-(((-86 |#1|) (-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))) (-1193)) (T -86))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))) (-5 *1 (-86 *3)) (-14 *3 (-1193)))))
-(-13 (-451) (-10 -8 (-15 -2951 ($ (-1284 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))))))
-((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 117) (((-3 $ "failed") (-699 (-324 (-574)))) 105) (((-3 $ "failed") (-699 (-966 (-388)))) 139) (((-3 $ "failed") (-699 (-966 (-574)))) 128) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 93) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 79)) (-2216 (($ (-699 (-324 (-388)))) 113) (($ (-699 (-324 (-574)))) 101) (($ (-699 (-966 (-388)))) 135) (($ (-699 (-966 (-574)))) 124) (($ (-699 (-417 (-966 (-388))))) 89) (($ (-699 (-417 (-966 (-574))))) 72)) (-3742 (((-1289) $) 63)) (-2951 (((-872) $) 57) (($ (-654 (-338))) 47) (($ (-338)) 54) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 52) (($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709)))) 48)))
-(((-87 |#1|) (-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709))))))) (-1193)) (T -87))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709)))) (-5 *1 (-87 *3)) (-14 *3 (-1193)))))
-(-13 (-393) (-10 -8 (-15 -2951 ($ (-699 (-348 (-2963 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2963) (-709)))))))
-((-3742 (((-1289) $) 45)) (-2951 (((-872) $) 39) (($ (-1284 (-709))) 100) (($ (-654 (-338))) 31) (($ (-338)) 36) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 34)))
-(((-88 |#1|) (-450) (-1193)) (T -88))
-NIL
-(-450)
-((-1704 (((-3 $ "failed") (-324 (-388))) 48) (((-3 $ "failed") (-324 (-574))) 53) (((-3 $ "failed") (-966 (-388))) 57) (((-3 $ "failed") (-966 (-574))) 61) (((-3 $ "failed") (-417 (-966 (-388)))) 43) (((-3 $ "failed") (-417 (-966 (-574)))) 36)) (-2216 (($ (-324 (-388))) 46) (($ (-324 (-574))) 51) (($ (-966 (-388))) 55) (($ (-966 (-574))) 59) (($ (-417 (-966 (-388)))) 41) (($ (-417 (-966 (-574)))) 33)) (-3742 (((-1289) $) 91)) (-2951 (((-872) $) 85) (($ (-654 (-338))) 79) (($ (-338)) 82) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 77) (($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))) 32)))
-(((-89 |#1|) (-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709)))))) (-1193)) (T -89))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))) (-5 *1 (-89 *3)) (-14 *3 (-1193)))))
-(-13 (-406) (-10 -8 (-15 -2951 ($ (-348 (-2963 (QUOTE X)) (-2963 (QUOTE -1889)) (-709))))))
-((-1416 (((-1284 (-699 |#1|)) (-699 |#1|)) 61)) (-3905 (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935)) 49)) (-3711 (((-2 (|:| |minor| (-654 (-935))) (|:| -4097 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935)) 72 (|has| |#1| (-372)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -3905 ((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935))) (-15 -1416 ((-1284 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3711 ((-2 (|:| |minor| (-654 (-935))) (|:| -4097 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935))) |%noBranch|)) (-566) (-666 |#1|)) (T -90))
-((-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |minor| (-654 (-935))) (|:| -4097 *3) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))) (-3905 (*1 *2 *3 *4) (-12 (-4 *5 (-566)) (-5 *2 (-2 (|:| -3479 (-699 *5)) (|:| |vec| (-1284 (-654 (-935)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5)))))
-(-10 -7 (-15 -3905 ((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 (-654 (-935))))) |#2| (-935))) (-15 -1416 ((-1284 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-372)) (-15 -3711 ((-2 (|:| |minor| (-654 (-935))) (|:| -4097 |#2|) (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 |#2|))) |#2| (-935))) |%noBranch|))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2010 ((|#1| $) 40)) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-2990 ((|#1| |#1| $) 35)) (-1763 ((|#1| $) 33)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) NIL)) (-3705 (($ |#1| $) 36)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2098 ((|#1| $) 34)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 18)) (-3014 (($) 45)) (-4291 (((-781) $) 31)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 17)) (-2951 (((-872) $) 30 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) NIL)) (-2461 (($ (-654 |#1|)) 42)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 15 (|has| |#1| (-1116)))) (-2877 (((-781) $) 12 (|has| $ (-6 -4459)))))
-(((-91 |#1|) (-13 (-1137 |#1|) (-10 -8 (-15 -2461 ($ (-654 |#1|))))) (-1116)) (T -91))
-((-2461 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-91 *3)))))
-(-13 (-1137 |#1|) (-10 -8 (-15 -2461 ($ (-654 |#1|)))))
-((-2951 (((-872) $) 13) (($ (-1198)) 9) (((-1198) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2951 ((-1198) |#1|)) (-15 -2951 (|#1| (-1198))) (-15 -2951 ((-872) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2951 ((-1198) |#1|)) (-15 -2951 (|#1| (-1198))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
+((-1614 (((-112) $) 12)) (-1787 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1614 ((-112) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-47 |#2| |#3|) (-1067) (-804)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1614 ((-112) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-1614 (((-112) $) 74)) (-4330 (($ |#1| |#2|) 73)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2782 ((|#2| $) 76)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4309 ((|#1| $ |#2|) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-47 |#1| |#2|) (-141) (-1067) (-804)) (T -47))
+((-1380 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-112)))) (-4330 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-1404 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-374)))))
+(-13 (-1067) (-111 |t#1| |t#1|) (-10 -8 (-15 -1380 (|t#1| $)) (-15 -1368 ($ $)) (-15 -2782 (|t#2| $)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -1614 ((-112) $)) (-15 -4330 ($ |t#1| |t#2|)) (-15 -1404 ($ $)) (-15 -4309 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3108 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3246 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-2272 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-3549 (((-112) $) 9)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-4071 (((-656 (-624 $)) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-3190 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-3028 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-1706 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2216 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2806 (($ $ $) NIL)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2887 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-1492 (($ $) NIL) (($ (-656 $)) NIL)) (-3245 (((-656 (-115)) $) NIL)) (-4153 (((-115) (-115)) NIL)) (-4192 (((-112) $) 11)) (-4314 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2976 (((-1143 (-576) (-624 $)) $) NIL)) (-2333 (($ $ (-576)) NIL)) (-3404 (((-1191 $) (-1191 $) (-624 $)) NIL) (((-1191 $) (-1191 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3982 (((-1191 $) (-624 $)) NIL (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) NIL)) (-2161 (((-3 (-624 $) "failed") $) NIL)) (-2850 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-4142 (((-656 (-624 $)) $) NIL)) (-1784 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2881 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-1330 (($ $) NIL)) (-1850 (((-783) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1679 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3927 (((-783) $) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1854 (($ $) NIL) (($ $ $) NIL)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2987 (((-1143 (-576) (-624 $)) $) NIL)) (-2477 (($ $) NIL (|has| $ (-1067)))) (-1846 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-2956 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1143 (-576) (-624 $))) NIL)) (-3423 (((-783)) NIL T CONST)) (-2113 (($ $) NIL) (($ (-656 $)) NIL)) (-1483 (((-112) (-115)) NIL)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 6 T CONST)) (-2155 (($) 10 T CONST)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) 13)) (-3108 (($ $ $) NIL)) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL)))
+(((-48) (-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2956 ($ (-1143 (-576) (-624 $)))) (-15 -2976 ((-1143 (-576) (-624 $)) $)) (-15 -2987 ((-1143 (-576) (-624 $)) $)) (-15 -2887 ($ $)) (-15 -3404 ((-1191 $) (-1191 $) (-624 $))) (-15 -3404 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -3404 ($ $ (-624 $))) (-15 -3404 ($ $ (-656 (-624 $))))))) (T -48))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2887 (*1 *1 *1) (-5 *1 (-48))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))))
+(-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2956 ($ (-1143 (-576) (-624 $)))) (-15 -2976 ((-1143 (-576) (-624 $)) $)) (-15 -2987 ((-1143 (-576) (-624 $)) $)) (-15 -2887 ($ $)) (-15 -3404 ((-1191 $) (-1191 $) (-624 $))) (-15 -3404 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -3404 ($ $ (-624 $))) (-15 -3404 ($ $ (-656 (-624 $))))))
+((-2869 (((-112) $ $) NIL)) (-2644 (((-656 (-518)) $) 17)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 7)) (-2053 (((-1200) $) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-49) (-13 (-1118) (-10 -8 (-15 -2644 ((-656 (-518)) $)) (-15 -2053 ((-1200) $))))) (T -49))
+((-2644 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49)))))
+(-13 (-1118) (-10 -8 (-15 -2644 ((-656 (-518)) $)) (-15 -2053 ((-1200) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 85)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4158 (((-112) $) 30)) (-1706 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1404 (($ $) 40)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1380 ((|#1| $) 31)) (-1719 (($ $) 74)) (-2148 (((-1177) $) NIL)) (-1747 (((-112) $) 43)) (-3945 (((-1138) $) NIL)) (-2981 (($ (-783)) 72)) (-1619 (($ (-656 (-576))) 73)) (-2782 (((-783) $) 44)) (-2956 (((-874) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-4309 ((|#1| $ $) 28)) (-3423 (((-783)) 71 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 45 T CONST)) (-2155 (($) 17 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 64)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
+(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1056 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1719 ($ $)) (-15 -1404 ($ $)) (-15 -4309 (|#1| $ $)) (-15 -2981 ($ (-783))) (-15 -1619 ($ (-656 (-576)))) (-15 -1747 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2782 ((-783) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)))) (-1067) (-656 (-1195))) (T -50))
+((-1380 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-1719 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) (-1404 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))))) (-4309 (*1 *2 *1 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067)) (-14 *4 (-656 (-1195))))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1195))))))
+(-13 (-632 |#1|) (-1056 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1719 ($ $)) (-15 -1404 ($ $)) (-15 -4309 (|#1| $ $)) (-15 -2981 ($ (-783))) (-15 -1619 ($ (-656 (-576)))) (-15 -1747 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2782 ((-783) $)) (-15 -1787 ($ (-1 |#1| |#1|) $))))
+((-4158 (((-112) (-52)) 18)) (-1706 (((-3 |#1| "failed") (-52)) 20)) (-2216 ((|#1| (-52)) 21)) (-2956 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -2956 ((-52) |#1|)) (-15 -1706 ((-3 |#1| "failed") (-52))) (-15 -4158 ((-112) (-52))) (-15 -2216 (|#1| (-52)))) (-1236)) (T -51))
+((-2216 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236)))) (-1706 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236)))))
+(-10 -7 (-15 -2956 ((-52) |#1|)) (-15 -1706 ((-3 |#1| "failed") (-52))) (-15 -4158 ((-112) (-52))) (-15 -2216 (|#1| (-52))))
+((-2869 (((-112) $ $) NIL)) (-1705 (((-786) $) 8)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1879 (((-1122) $) 10)) (-2956 (((-874) $) 15)) (-2617 (((-112) $ $) NIL)) (-3943 (($ (-1122) (-786)) 16)) (-2991 (((-112) $ $) 12)))
+(((-52) (-13 (-1118) (-10 -8 (-15 -3943 ($ (-1122) (-786))) (-15 -1879 ((-1122) $)) (-15 -1705 ((-786) $))))) (T -52))
+((-3943 (*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-786)) (-5 *1 (-52)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-52)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52)))))
+(-13 (-1118) (-10 -8 (-15 -3943 ($ (-1122) (-786))) (-15 -1879 ((-1122) $)) (-15 -1705 ((-786) $))))
+((-2917 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2917 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1067) (-660 |#1|) (-864 |#1|)) (T -53))
+((-2917 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1067)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))))
+(-10 -7 (-15 -2917 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1971 ((|#3| |#3| (-656 (-1195))) 44)) (-2915 ((|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937)) 32) ((|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2915 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|)) (-15 -2915 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937))) (-15 -1971 (|#3| |#3| (-656 (-1195))))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -54))
+((-1971 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2915 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1094 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1118)) (-4 *6 (-13 (-1067) (-899 *5) (-626 (-905 *5)))) (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2915 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1094 *4 *5 *2))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -2915 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3|)) (-15 -2915 (|#3| (-656 (-1094 |#1| |#2| |#3|)) |#3| (-937))) (-15 -1971 (|#3| |#3| (-656 (-1195)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 14)) (-1706 (((-3 (-783) "failed") $) 34)) (-2216 (((-783) $) NIL)) (-4192 (((-112) $) 16)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) 18)) (-2956 (((-874) $) 23) (($ (-783)) 29)) (-2617 (((-112) $ $) NIL)) (-2988 (($) 11 T CONST)) (-2991 (((-112) $ $) 20)))
+(((-55) (-13 (-1118) (-1056 (-783)) (-10 -8 (-15 -2988 ($) -1716) (-15 -3549 ((-112) $)) (-15 -4192 ((-112) $))))) (T -55))
+((-2988 (*1 *1) (-5 *1 (-55))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1118) (-1056 (-783)) (-10 -8 (-15 -2988 ($) -1716) (-15 -3549 ((-112) $)) (-15 -4192 ((-112) $))))
+((-3762 (((-112) $ (-783)) 27)) (-2663 (($ $ (-576) |#3|) 66)) (-3581 (($ $ (-576) |#4|) 70)) (-3389 ((|#3| $ (-576)) 79)) (-1873 (((-656 |#2|) $) 47)) (-2266 (((-112) $ (-783)) 31)) (-2653 (((-112) |#2| $) 74)) (-2466 (($ (-1 |#2| |#2|) $) 55)) (-1787 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2356 (((-112) $ (-783)) 29)) (-4211 (($ $ |#2|) 52)) (-1875 (((-112) (-1 (-112) |#2|) $) 21)) (-2209 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3954 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-3162 (($ $) 51)) (-4087 ((|#4| $ (-576)) 82)) (-2956 (((-874) $) 88)) (-3972 (((-112) (-1 (-112) |#2|) $) 20)) (-2991 (((-112) $ $) 73)) (-2882 (((-783) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 (|#1| |#1| (-576) |#4|)) (-15 -2663 (|#1| |#1| (-576) |#3|)) (-15 -1873 ((-656 |#2|) |#1|)) (-15 -4087 (|#4| |#1| (-576))) (-15 -3389 (|#3| |#1| (-576))) (-15 -2209 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576))) (-15 -4211 (|#1| |#1| |#2|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2653 ((-112) |#2| |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))) (-15 -3162 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1236) (-384 |#2|) (-384 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 (|#1| |#1| (-576) |#4|)) (-15 -2663 (|#1| |#1| (-576) |#3|)) (-15 -1873 ((-656 |#2|) |#1|)) (-15 -4087 (|#4| |#1| (-576))) (-15 -3389 (|#3| |#1| (-576))) (-15 -2209 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576))) (-15 -4211 (|#1| |#1| |#2|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2653 ((-112) |#2| |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))) (-15 -3162 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) (-576) |#1|) 45)) (-2663 (($ $ (-576) |#2|) 43)) (-3581 (($ $ (-576) |#3|) 42)) (-4335 (($) 7 T CONST)) (-3389 ((|#2| $ (-576)) 47)) (-2481 ((|#1| $ (-576) (-576) |#1|) 44)) (-2405 ((|#1| $ (-576) (-576)) 49)) (-1873 (((-656 |#1|) $) 31)) (-2199 (((-783) $) 52)) (-3769 (($ (-783) (-783) |#1|) 58)) (-2208 (((-783) $) 51)) (-2266 (((-112) $ (-783)) 9)) (-1823 (((-576) $) 56)) (-1780 (((-576) $) 54)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1982 (((-576) $) 55)) (-4259 (((-576) $) 53)) (-2466 (($ (-1 |#1| |#1|) $) 35)) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) 57)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-4087 ((|#3| $ (-576)) 46)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-57 |#1| |#2| |#3|) (-141) (-1236) (-384 |t#1|) (-384 |t#1|)) (T -57))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3769 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-2405 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-2209 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3389 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-4087 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3140 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2481 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2663 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-3581 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-2466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1787 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -3769 ($ (-783) (-783) |t#1|)) (-15 -4211 ($ $ |t#1|)) (-15 -1823 ((-576) $)) (-15 -1982 ((-576) $)) (-15 -1780 ((-576) $)) (-15 -4259 ((-576) $)) (-15 -2199 ((-783) $)) (-15 -2208 ((-783) $)) (-15 -2209 (|t#1| $ (-576) (-576))) (-15 -2405 (|t#1| $ (-576) (-576))) (-15 -2209 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3389 (|t#2| $ (-576))) (-15 -4087 (|t#3| $ (-576))) (-15 -1873 ((-656 |t#1|) $)) (-15 -3140 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2481 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2663 ($ $ (-576) |t#2|)) (-15 -3581 ($ $ (-576) |t#3|)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -2466 ($ (-1 |t#1| |t#1|) $)) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-3000 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2887 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1787 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3000 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1787 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1236) (-1236)) (T -58))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-58 *5 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3000 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1787 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3332 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-3769 (($ (-783) |#1|) 13)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 10)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3332 ($ (-656 |#1|))) (-15 -3332 ($ (-783) |#1|)))) (-1236)) (T -59))
+((-3332 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3)))) (-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -3332 ($ (-656 |#1|))) (-15 -3332 ($ (-783) |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2663 (($ $ (-576) (-59 |#1|)) NIL)) (-3581 (($ $ (-576) (-59 |#1|)) NIL)) (-4335 (($) NIL T CONST)) (-3389 (((-59 |#1|) $ (-576)) NIL)) (-2481 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2405 ((|#1| $ (-576) (-576)) NIL)) (-1873 (((-656 |#1|) $) NIL)) (-2199 (((-783) $) NIL)) (-3769 (($ (-783) (-783) |#1|) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-4087 (((-59 |#1|) $ (-576)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462))) (-1236)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462)))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 74) (((-3 $ "failed") (-1286 (-326 (-576)))) 63) (((-3 $ "failed") (-1286 (-968 (-390)))) 94) (((-3 $ "failed") (-1286 (-968 (-576)))) 84) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 52) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 39)) (-2216 (($ (-1286 (-326 (-390)))) 70) (($ (-1286 (-326 (-576)))) 59) (($ (-1286 (-968 (-390)))) 90) (($ (-1286 (-968 (-576)))) 80) (($ (-1286 (-419 (-968 (-390))))) 48) (($ (-1286 (-419 (-968 (-576))))) 32)) (-3747 (((-1291) $) 124)) (-2956 (((-874) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 101) (($ (-1286 (-350 (-2968 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2968) (-711)))) 31)))
+(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2968) (-711))))))) (-1195)) (T -61))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2968) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2968) (-711)))))))
+((-3747 (((-1291) $) 54) (((-1291)) 55)) (-2956 (((-874) $) 51)))
+(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -3747 ((-1291))))) (-1195)) (T -62))
+((-3747 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195)))))
+(-13 (-407) (-10 -7 (-15 -3747 ((-1291)))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 150) (((-3 $ "failed") (-1286 (-326 (-576)))) 140) (((-3 $ "failed") (-1286 (-968 (-390)))) 170) (((-3 $ "failed") (-1286 (-968 (-576)))) 160) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 129) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 117)) (-2216 (($ (-1286 (-326 (-390)))) 146) (($ (-1286 (-326 (-576)))) 136) (($ (-1286 (-968 (-390)))) 166) (($ (-1286 (-968 (-576)))) 156) (($ (-1286 (-419 (-968 (-390))))) 125) (($ (-1286 (-419 (-968 (-576))))) 110)) (-3747 (((-1291) $) 103)) (-2956 (((-874) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 33) (($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))) 95)))
+(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711))))))) (-1195)) (T -63))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))))))
+((-1706 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-968 (-390))) 50) (((-3 $ "failed") (-968 (-576))) 54) (((-3 $ "failed") (-419 (-968 (-390)))) 36) (((-3 $ "failed") (-419 (-968 (-576)))) 29)) (-2216 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-968 (-390))) 48) (($ (-968 (-576))) 52) (($ (-419 (-968 (-390)))) 34) (($ (-419 (-968 (-576)))) 26)) (-3747 (((-1291) $) 76)) (-2956 (((-874) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 64) (($ (-350 (-2968 (QUOTE X)) (-2968) (-711))) 25)))
+(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968 (QUOTE X)) (-2968) (-711)))))) (-1195)) (T -64))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-350 (-2968 (QUOTE X)) (-2968) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1195)))))
+(-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968 (QUOTE X)) (-2968) (-711))))))
+((-1706 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-968 (-390)))) 133) (((-3 $ "failed") (-701 (-968 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 73)) (-2216 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-968 (-390)))) 129) (($ (-701 (-968 (-576)))) 118) (($ (-701 (-419 (-968 (-390))))) 83) (($ (-701 (-419 (-968 (-576))))) 66)) (-3747 (((-1291) $) 141)) (-2956 (((-874) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 32) (($ (-701 (-350 (-2968) (-2968 (QUOTE X) (QUOTE HESS)) (-711)))) 56)))
+(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-2968) (-2968 (QUOTE X) (QUOTE HESS)) (-711))))) (-1195)) (T -65))
+NIL
+(-13 (-395) (-628 (-701 (-350 (-2968) (-2968 (QUOTE X) (QUOTE HESS)) (-711)))))
+((-1706 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-968 (-390))) 69) (((-3 $ "failed") (-968 (-576))) 73) (((-3 $ "failed") (-419 (-968 (-390)))) 55) (((-3 $ "failed") (-419 (-968 (-576)))) 48)) (-2216 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-968 (-390))) 67) (($ (-968 (-576))) 71) (($ (-419 (-968 (-390)))) 53) (($ (-419 (-968 (-576)))) 45)) (-3747 (((-1291) $) 82)) (-2956 (((-874) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 32) (($ (-350 (-2968) (-2968 (QUOTE XC)) (-711))) 40)))
+(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE XC)) (-711)))))) (-1195)) (T -66))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-350 (-2968) (-2968 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1195)))))
+(-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE XC)) (-711))))))
+((-3747 (((-1291) $) 65)) (-2956 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 55)))
+(((-67 |#1|) (-394) (-1195)) (T -67))
+NIL
+(-394)
+((-3747 (((-1291) $) 66)) (-2956 (((-874) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 57)))
+(((-68 |#1|) (-394) (-1195)) (T -68))
+NIL
+(-394)
+((-3747 (((-1291) $) NIL) (((-1291)) 33)) (-2956 (((-874) $) NIL)))
+(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -3747 ((-1291))))) (-1195)) (T -69))
+((-3747 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195)))))
+(-13 (-407) (-10 -7 (-15 -3747 ((-1291)))))
+((-3747 (((-1291) $) 75)) (-2956 (((-874) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 60)))
+(((-70 |#1|) (-394) (-1195)) (T -70))
+NIL
+(-394)
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 109) (((-3 $ "failed") (-1286 (-326 (-576)))) 98) (((-3 $ "failed") (-1286 (-968 (-390)))) 129) (((-3 $ "failed") (-1286 (-968 (-576)))) 119) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 87) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 74)) (-2216 (($ (-1286 (-326 (-390)))) 105) (($ (-1286 (-326 (-576)))) 94) (($ (-1286 (-968 (-390)))) 125) (($ (-1286 (-968 (-576)))) 115) (($ (-1286 (-419 (-968 (-390))))) 83) (($ (-1286 (-419 (-968 (-576))))) 67)) (-3747 (((-1291) $) 142)) (-2956 (((-874) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 59) (($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))) 60)))
+(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711))))))) (-1195)) (T -71))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))))))
+((-3747 (((-1291) $) 33) (((-1291)) 32)) (-2956 (((-874) $) 36)))
+(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -3747 ((-1291))))) (-1195)) (T -72))
+((-3747 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195)))))
+(-13 (-407) (-10 -7 (-15 -3747 ((-1291)))))
+((-3747 (((-1291) $) 65)) (-2956 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 50)))
+(((-73 |#1|) (-394) (-1195)) (T -73))
+NIL
+(-394)
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 127) (((-3 $ "failed") (-1286 (-326 (-576)))) 117) (((-3 $ "failed") (-1286 (-968 (-390)))) 147) (((-3 $ "failed") (-1286 (-968 (-576)))) 137) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 107) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 95)) (-2216 (($ (-1286 (-326 (-390)))) 123) (($ (-1286 (-326 (-576)))) 113) (($ (-1286 (-968 (-390)))) 143) (($ (-1286 (-968 (-576)))) 133) (($ (-1286 (-419 (-968 (-390))))) 103) (($ (-1286 (-419 (-968 (-576))))) 88)) (-3747 (((-1291) $) 80)) (-2956 (((-874) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 73) (($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) 67)))
+(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711))))))) (-1195)) (T -74))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 132) (((-3 $ "failed") (-1286 (-326 (-576)))) 121) (((-3 $ "failed") (-1286 (-968 (-390)))) 152) (((-3 $ "failed") (-1286 (-968 (-576)))) 142) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 110) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 97)) (-2216 (($ (-1286 (-326 (-390)))) 128) (($ (-1286 (-326 (-576)))) 117) (($ (-1286 (-968 (-390)))) 148) (($ (-1286 (-968 (-576)))) 138) (($ (-1286 (-419 (-968 (-390))))) 106) (($ (-1286 (-419 (-968 (-576))))) 90)) (-3747 (((-1291) $) 82)) (-2956 (((-874) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) NIL) (($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE EPS)) (-2968 (QUOTE -1891)) (-711)))) 69)))
+(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE EPS)) (-2968 (QUOTE -1891)) (-711))))))) (-1195) (-1195) (-1195)) (T -75))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE X) (QUOTE EPS)) (-2968 (QUOTE -1891)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE EPS)) (-2968 (QUOTE -1891)) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 138) (((-3 $ "failed") (-1286 (-326 (-576)))) 127) (((-3 $ "failed") (-1286 (-968 (-390)))) 158) (((-3 $ "failed") (-1286 (-968 (-576)))) 148) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 116) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 103)) (-2216 (($ (-1286 (-326 (-390)))) 134) (($ (-1286 (-326 (-576)))) 123) (($ (-1286 (-968 (-390)))) 154) (($ (-1286 (-968 (-576)))) 144) (($ (-1286 (-419 (-968 (-390))))) 112) (($ (-1286 (-419 (-968 (-576))))) 96)) (-3747 (((-1291) $) 88)) (-2956 (((-874) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) NIL) (($ (-1286 (-350 (-2968 (QUOTE EPS)) (-2968 (QUOTE YA) (QUOTE YB)) (-711)))) 75)))
+(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE EPS)) (-2968 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1195) (-1195) (-1195)) (T -76))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE EPS)) (-2968 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE EPS)) (-2968 (QUOTE YA) (QUOTE YB)) (-711)))))))
+((-1706 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-968 (-390))) 92) (((-3 $ "failed") (-968 (-576))) 96) (((-3 $ "failed") (-419 (-968 (-390)))) 78) (((-3 $ "failed") (-419 (-968 (-576)))) 71)) (-2216 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-968 (-390))) 90) (($ (-968 (-576))) 94) (($ (-419 (-968 (-390)))) 76) (($ (-419 (-968 (-576)))) 68)) (-3747 (((-1291) $) 63)) (-2956 (((-874) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 55) (($ (-350 (-2968) (-2968 (QUOTE X)) (-711))) 48)))
+(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE X)) (-711)))))) (-1195)) (T -77))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-350 (-2968) (-2968 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1195)))))
+(-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE X)) (-711))))))
+((-1706 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-968 (-390))) 56) (((-3 $ "failed") (-968 (-576))) 60) (((-3 $ "failed") (-419 (-968 (-390)))) 42) (((-3 $ "failed") (-419 (-968 (-576)))) 35)) (-2216 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-968 (-390))) 54) (($ (-968 (-576))) 58) (($ (-419 (-968 (-390)))) 40) (($ (-419 (-968 (-576)))) 32)) (-3747 (((-1291) $) 81)) (-2956 (((-874) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 70) (($ (-350 (-2968) (-2968 (QUOTE X)) (-711))) 31)))
+(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE X)) (-711)))))) (-1195)) (T -78))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-350 (-2968) (-2968 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1195)))))
+(-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968) (-2968 (QUOTE X)) (-711))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 90) (((-3 $ "failed") (-1286 (-326 (-576)))) 79) (((-3 $ "failed") (-1286 (-968 (-390)))) 110) (((-3 $ "failed") (-1286 (-968 (-576)))) 100) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 68) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 55)) (-2216 (($ (-1286 (-326 (-390)))) 86) (($ (-1286 (-326 (-576)))) 75) (($ (-1286 (-968 (-390)))) 106) (($ (-1286 (-968 (-576)))) 96) (($ (-1286 (-419 (-968 (-390))))) 64) (($ (-1286 (-419 (-968 (-576))))) 48)) (-3747 (((-1291) $) 126)) (-2956 (((-874) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 116) (($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))) 39)))
+(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711))))))) (-1195)) (T -79))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE XC)) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 151) (((-3 $ "failed") (-1286 (-326 (-576)))) 141) (((-3 $ "failed") (-1286 (-968 (-390)))) 171) (((-3 $ "failed") (-1286 (-968 (-576)))) 161) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 131) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 119)) (-2216 (($ (-1286 (-326 (-390)))) 147) (($ (-1286 (-326 (-576)))) 137) (($ (-1286 (-968 (-390)))) 167) (($ (-1286 (-968 (-576)))) 157) (($ (-1286 (-419 (-968 (-390))))) 127) (($ (-1286 (-419 (-968 (-576))))) 112)) (-3747 (((-1291) $) 105)) (-2956 (((-874) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 95) (($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) 91)))
+(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711))))))) (-1195)) (T -80))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 79) (((-3 $ "failed") (-1286 (-326 (-576)))) 68) (((-3 $ "failed") (-1286 (-968 (-390)))) 99) (((-3 $ "failed") (-1286 (-968 (-576)))) 89) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 57) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 44)) (-2216 (($ (-1286 (-326 (-390)))) 75) (($ (-1286 (-326 (-576)))) 64) (($ (-1286 (-968 (-390)))) 95) (($ (-1286 (-968 (-576)))) 85) (($ (-1286 (-419 (-968 (-390))))) 53) (($ (-1286 (-419 (-968 (-576))))) 37)) (-3747 (((-1291) $) 125)) (-2956 (((-874) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 114) (($ (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))) 36)))
+(((-81 |#1|) (-13 (-453) (-628 (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711))))) (-1195)) (T -81))
+NIL
+(-13 (-453) (-628 (-1286 (-350 (-2968) (-2968 (QUOTE X)) (-711)))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 98) (((-3 $ "failed") (-1286 (-326 (-576)))) 87) (((-3 $ "failed") (-1286 (-968 (-390)))) 118) (((-3 $ "failed") (-1286 (-968 (-576)))) 108) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 76) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 63)) (-2216 (($ (-1286 (-326 (-390)))) 94) (($ (-1286 (-326 (-576)))) 83) (($ (-1286 (-968 (-390)))) 114) (($ (-1286 (-968 (-576)))) 104) (($ (-1286 (-419 (-968 (-390))))) 72) (($ (-1286 (-419 (-968 (-576))))) 56)) (-3747 (((-1291) $) 48)) (-2956 (((-874) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 38) (($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))) 33)))
+(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711))))))) (-1195)) (T -82))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))))))
+((-1706 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-968 (-390)))) 140) (((-3 $ "failed") (-701 (-968 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 83)) (-2216 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-968 (-390)))) 136) (($ (-701 (-968 (-576)))) 125) (($ (-701 (-419 (-968 (-390))))) 92) (($ (-701 (-419 (-968 (-576))))) 76)) (-3747 (((-1291) $) 66)) (-2956 (((-874) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 58) (($ (-701 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))) 50)))
+(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711))))))) (-1195)) (T -83))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1195)))))
+(-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE X) (QUOTE -1891)) (-2968) (-711)))))))
+((-1706 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-968 (-390)))) 135) (((-3 $ "failed") (-701 (-968 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 75)) (-2216 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-968 (-390)))) 131) (($ (-701 (-968 (-576)))) 120) (($ (-701 (-419 (-968 (-390))))) 85) (($ (-701 (-419 (-968 (-576))))) 68)) (-3747 (((-1291) $) 60)) (-2956 (((-874) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 45) (($ (-701 (-350 (-2968 (QUOTE X)) (-2968) (-711)))) 46)))
+(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE X)) (-2968) (-711))))))) (-1195)) (T -84))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2968 (QUOTE X)) (-2968) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1195)))))
+(-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE X)) (-2968) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 105) (((-3 $ "failed") (-1286 (-326 (-576)))) 94) (((-3 $ "failed") (-1286 (-968 (-390)))) 125) (((-3 $ "failed") (-1286 (-968 (-576)))) 115) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 83) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 70)) (-2216 (($ (-1286 (-326 (-390)))) 101) (($ (-1286 (-326 (-576)))) 90) (($ (-1286 (-968 (-390)))) 121) (($ (-1286 (-968 (-576)))) 111) (($ (-1286 (-419 (-968 (-390))))) 79) (($ (-1286 (-419 (-968 (-576))))) 63)) (-3747 (((-1291) $) 47)) (-2956 (((-874) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 53) (($ (-1286 (-350 (-2968 (QUOTE X)) (-2968) (-711)))) 38)))
+(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968) (-711))))))) (-1195)) (T -85))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE X)) (-2968) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968) (-711)))))))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 80) (((-3 $ "failed") (-1286 (-326 (-576)))) 69) (((-3 $ "failed") (-1286 (-968 (-390)))) 100) (((-3 $ "failed") (-1286 (-968 (-576)))) 90) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 58) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 45)) (-2216 (($ (-1286 (-326 (-390)))) 76) (($ (-1286 (-326 (-576)))) 65) (($ (-1286 (-968 (-390)))) 96) (($ (-1286 (-968 (-576)))) 86) (($ (-1286 (-419 (-968 (-390))))) 54) (($ (-1286 (-419 (-968 (-576))))) 38)) (-3747 (((-1291) $) 126)) (-2956 (((-874) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 115) (($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))) 37)))
+(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711))))))) (-1195)) (T -86))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1195)))))
+(-13 (-453) (-10 -8 (-15 -2956 ($ (-1286 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))))))
+((-1706 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-968 (-390)))) 139) (((-3 $ "failed") (-701 (-968 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 79)) (-2216 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-968 (-390)))) 135) (($ (-701 (-968 (-576)))) 124) (($ (-701 (-419 (-968 (-390))))) 89) (($ (-701 (-419 (-968 (-576))))) 72)) (-3747 (((-1291) $) 63)) (-2956 (((-874) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 52) (($ (-701 (-350 (-2968 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2968) (-711)))) 48)))
+(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2968) (-711))))))) (-1195)) (T -87))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2968 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2968) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1195)))))
+(-13 (-395) (-10 -8 (-15 -2956 ($ (-701 (-350 (-2968 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2968) (-711)))))))
+((-3747 (((-1291) $) 45)) (-2956 (((-874) $) 39) (($ (-1286 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 34)))
+(((-88 |#1|) (-452) (-1195)) (T -88))
+NIL
+(-452)
+((-1706 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-968 (-390))) 57) (((-3 $ "failed") (-968 (-576))) 61) (((-3 $ "failed") (-419 (-968 (-390)))) 43) (((-3 $ "failed") (-419 (-968 (-576)))) 36)) (-2216 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-968 (-390))) 55) (($ (-968 (-576))) 59) (($ (-419 (-968 (-390)))) 41) (($ (-419 (-968 (-576)))) 33)) (-3747 (((-1291) $) 91)) (-2956 (((-874) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 77) (($ (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711))) 32)))
+(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711)))))) (-1195)) (T -89))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1195)))))
+(-13 (-408) (-10 -8 (-15 -2956 ($ (-350 (-2968 (QUOTE X)) (-2968 (QUOTE -1891)) (-711))))))
+((-4177 (((-1286 (-701 |#1|)) (-701 |#1|)) 61)) (-3835 (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937)) 49)) (-2551 (((-2 (|:| |minor| (-656 (-937))) (|:| -4102 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937)) 72 (|has| |#1| (-374)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -3835 ((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937))) (-15 -4177 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2551 ((-2 (|:| |minor| (-656 (-937))) (|:| -4102 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937))) |%noBranch|)) (-568) (-668 |#1|)) (T -90))
+((-2551 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-937))) (|:| -4102 *3) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5)))) (-4177 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-3835 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -2081 (-701 *5)) (|:| |vec| (-1286 (-656 (-937)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5)))))
+(-10 -7 (-15 -3835 ((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-937))))) |#2| (-937))) (-15 -4177 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2551 ((-2 (|:| |minor| (-656 (-937))) (|:| -4102 |#2|) (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 |#2|))) |#2| (-937))) |%noBranch|))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2012 ((|#1| $) 40)) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-2714 ((|#1| |#1| $) 35)) (-2175 ((|#1| $) 33)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) NIL)) (-2504 (($ |#1| $) 36)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4256 ((|#1| $) 34)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 18)) (-2953 (($) 45)) (-4295 (((-783) $) 31)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 17)) (-2956 (((-874) $) 30 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) NIL)) (-4418 (($ (-656 |#1|)) 42)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 15 (|has| |#1| (-1118)))) (-2882 (((-783) $) 12 (|has| $ (-6 -4461)))))
+(((-91 |#1|) (-13 (-1139 |#1|) (-10 -8 (-15 -4418 ($ (-656 |#1|))))) (-1118)) (T -91))
+((-4418 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-91 *3)))))
+(-13 (-1139 |#1|) (-10 -8 (-15 -4418 ($ (-656 |#1|)))))
+((-2956 (((-874) $) 13) (($ (-1200)) 9) (((-1200) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -2956 ((-1200) |#1|)) (-15 -2956 (|#1| (-1200))) (-15 -2956 ((-874) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -2956 ((-1200) |#1|)) (-15 -2956 (|#1| (-1200))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
(((-93) (-141)) (T -93))
NIL
-(-13 (-1116) (-500 (-1198)))
-(((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T))
-((-2340 (($ $) 10)) (-2349 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1118) (-502 (-1200)))
+(((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T))
+((-2345 (($ $) 10)) (-2354 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -2354 (|#1| |#1|)) (-15 -2345 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)))
-((-2320 (($ $) 11)) (-2301 (($ $) 10)) (-2340 (($ $) 9)) (-2349 (($ $) 8)) (-2330 (($ $) 7)) (-2312 (($ $) 6)))
+(-10 -8 (-15 -2354 (|#1| |#1|)) (-15 -2345 (|#1| |#1|)))
+((-2324 (($ $) 11)) (-2304 (($ $) 10)) (-2345 (($ $) 9)) (-2354 (($ $) 8)) (-2335 (($ $) 7)) (-2315 (($ $) 6)))
(((-95) (-141)) (T -95))
-((-2320 (*1 *1 *1) (-4 *1 (-95))) (-2301 (*1 *1 *1) (-4 *1 (-95))) (-2340 (*1 *1 *1) (-4 *1 (-95))) (-2349 (*1 *1 *1) (-4 *1 (-95))) (-2330 (*1 *1 *1) (-4 *1 (-95))) (-2312 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -2312 ($ $)) (-15 -2330 ($ $)) (-15 -2349 ($ $)) (-15 -2340 ($ $)) (-15 -2301 ($ $)) (-15 -2320 ($ $))))
-((-2864 (((-112) $ $) NIL)) (-2039 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-96) (-13 (-1099) (-10 -8 (-15 -2039 ((-1151) $))))) (T -96))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-96)))))
-(-13 (-1099) (-10 -8 (-15 -2039 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-2208 (((-388) (-1175) (-388)) 46) (((-388) (-1175) (-1175) (-388)) 44)) (-3500 (((-388) (-388)) 35)) (-3818 (((-1289)) 37)) (-4420 (((-1175) $) NIL)) (-3280 (((-388) (-1175) (-1175)) 50) (((-388) (-1175)) 52)) (-3940 (((-1136) $) NIL)) (-1999 (((-388) (-1175) (-1175)) 51)) (-2103 (((-388) (-1175) (-1175)) 53) (((-388) (-1175)) 54)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-97) (-13 (-1116) (-10 -7 (-15 -3280 ((-388) (-1175) (-1175))) (-15 -3280 ((-388) (-1175))) (-15 -2103 ((-388) (-1175) (-1175))) (-15 -2103 ((-388) (-1175))) (-15 -1999 ((-388) (-1175) (-1175))) (-15 -3818 ((-1289))) (-15 -3500 ((-388) (-388))) (-15 -2208 ((-388) (-1175) (-388))) (-15 -2208 ((-388) (-1175) (-1175) (-388))) (-6 -4459)))) (T -97))
-((-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2103 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-1999 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))) (-3818 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-97)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))) (-2208 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97)))) (-2208 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97)))))
-(-13 (-1116) (-10 -7 (-15 -3280 ((-388) (-1175) (-1175))) (-15 -3280 ((-388) (-1175))) (-15 -2103 ((-388) (-1175) (-1175))) (-15 -2103 ((-388) (-1175))) (-15 -1999 ((-388) (-1175) (-1175))) (-15 -3818 ((-1289))) (-15 -3500 ((-388) (-388))) (-15 -2208 ((-388) (-1175) (-388))) (-15 -2208 ((-388) (-1175) (-1175) (-388))) (-6 -4459)))
+((-2324 (*1 *1 *1) (-4 *1 (-95))) (-2304 (*1 *1 *1) (-4 *1 (-95))) (-2345 (*1 *1 *1) (-4 *1 (-95))) (-2354 (*1 *1 *1) (-4 *1 (-95))) (-2335 (*1 *1 *1) (-4 *1 (-95))) (-2315 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2315 ($ $)) (-15 -2335 ($ $)) (-15 -2354 ($ $)) (-15 -2345 ($ $)) (-15 -2304 ($ $)) (-15 -2324 ($ $))))
+((-2869 (((-112) $ $) NIL)) (-2041 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-96) (-13 (-1101) (-10 -8 (-15 -2041 ((-1153) $))))) (T -96))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-96)))))
+(-13 (-1101) (-10 -8 (-15 -2041 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-4010 (((-390) (-1177) (-390)) 46) (((-390) (-1177) (-1177) (-390)) 44)) (-4195 (((-390) (-390)) 35)) (-2298 (((-1291)) 37)) (-2148 (((-1177) $) NIL)) (-3686 (((-390) (-1177) (-1177)) 50) (((-390) (-1177)) 52)) (-3945 (((-1138) $) NIL)) (-2704 (((-390) (-1177) (-1177)) 51)) (-4305 (((-390) (-1177) (-1177)) 53) (((-390) (-1177)) 54)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-97) (-13 (-1118) (-10 -7 (-15 -3686 ((-390) (-1177) (-1177))) (-15 -3686 ((-390) (-1177))) (-15 -4305 ((-390) (-1177) (-1177))) (-15 -4305 ((-390) (-1177))) (-15 -2704 ((-390) (-1177) (-1177))) (-15 -2298 ((-1291))) (-15 -4195 ((-390) (-390))) (-15 -4010 ((-390) (-1177) (-390))) (-15 -4010 ((-390) (-1177) (-1177) (-390))) (-6 -4461)))) (T -97))
+((-3686 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3686 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4305 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4305 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2704 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2298 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-4010 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))) (-4010 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))))
+(-13 (-1118) (-10 -7 (-15 -3686 ((-390) (-1177) (-1177))) (-15 -3686 ((-390) (-1177))) (-15 -4305 ((-390) (-1177) (-1177))) (-15 -4305 ((-390) (-1177))) (-15 -2704 ((-390) (-1177) (-1177))) (-15 -2298 ((-1291))) (-15 -4195 ((-390) (-390))) (-15 -4010 ((-390) (-1177) (-390))) (-15 -4010 ((-390) (-1177) (-1177) (-390))) (-6 -4461)))
NIL
(((-98) (-141)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4459) (-6 (-4461 "*")) (-6 -4460) (-6 -4456) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4457) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4455) (-6 -4458) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4446)))
-((-2864 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-1361 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-574))) 24)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 16)) (-3940 (((-1136) $) NIL)) (-2207 ((|#1| $ |#1|) 13)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) 22)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 8 T CONST)) (-2986 (((-112) $ $) 10)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) 32) (($ $ (-781)) NIL) (($ $ (-574)) 18)) (* (($ $ $) 33)))
-(((-99 |#1|) (-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1361 ($ (-1 |#1| |#1|))) (-15 -1361 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1361 ($ (-1 |#1| |#1| (-574)))))) (-1065)) (T -99))
-((-1361 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) (-1361 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-99 *3)))))
-(-13 (-483) (-294 |#1| |#1|) (-10 -8 (-15 -1361 ($ (-1 |#1| |#1|))) (-15 -1361 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1361 ($ (-1 |#1| |#1| (-574))))))
-((-3803 (((-428 |#2|) |#2| (-654 |#2|)) 10) (((-428 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3803 ((-428 |#2|) |#2| |#2|)) (-15 -3803 ((-428 |#2|) |#2| (-654 |#2|)))) (-13 (-462) (-148)) (-1260 |#1|)) (T -100))
-((-3803 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))) (-3803 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -3803 ((-428 |#2|) |#2| |#2|)) (-15 -3803 ((-428 |#2|) |#2| (-654 |#2|))))
-((-2864 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2864 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2864 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-2986 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4461) (-6 (-4463 "*")) (-6 -4462) (-6 -4458) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4459) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4457) (-6 -4460) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4448)))
+((-2869 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-1951 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 16)) (-3945 (((-1138) $) NIL)) (-2209 ((|#1| $ |#1|) 13)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) 22)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 8 T CONST)) (-2991 (((-112) $ $) 10)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33)))
+(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1951 ($ (-1 |#1| |#1|))) (-15 -1951 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1951 ($ (-1 |#1| |#1| (-576)))))) (-1067)) (T -99))
+((-1951 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) (-1951 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-99 *3)))))
+(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1951 ($ (-1 |#1| |#1|))) (-15 -1951 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1951 ($ (-1 |#1| |#1| (-576))))))
+((-2158 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -2158 ((-430 |#2|) |#2| |#2|)) (-15 -2158 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1262 |#1|)) (T -100))
+((-2158 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-2158 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -2158 ((-430 |#2|) |#2| |#2|)) (-15 -2158 ((-430 |#2|) |#2| (-656 |#2|))))
+((-2869 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2869 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2869 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2991 (((-112) $ $) 6)))
(((-102) (-141)) (T -102))
-((-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2986 ((-112) $ $)) (-15 -2864 ((-112) $ $))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) 24 (|has| $ (-6 -4460)))) (-1755 (($ $ $) NIL (|has| $ (-6 -4460)))) (-1400 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3206 (($ $ (-654 |#1|)) 30)) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-3878 (($ $) 12)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 32)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3033 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2667 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)) 49)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3865 (($ $) 11)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) 13)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 9)) (-3014 (($) 31)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2481 (($ (-781) |#1|) 33)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2481 ($ (-781) |#1|)) (-15 -3206 ($ $ (-654 |#1|))) (-15 -3033 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3033 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2667 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2667 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|))))) (-1116)) (T -103))
-((-2481 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1116)))) (-3206 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))) (-3033 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1116)))) (-3033 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2481 ($ (-781) |#1|)) (-15 -3206 ($ $ (-654 |#1|))) (-15 -3033 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3033 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2667 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2667 ($ $ |#1| (-1 (-654 |#1|) |#1| |#1| |#1|)))))
-((-3341 ((|#3| |#2| |#2|) 34)) (-3286 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4461 "*"))))) (-3727 ((|#3| |#2| |#2|) 36)) (-3187 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4461 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3341 (|#3| |#2| |#2|)) (-15 -3727 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4461 "*"))) (PROGN (-15 -3286 (|#1| |#2| |#2|)) (-15 -3187 (|#1| |#2|))) |%noBranch|)) (-1065) (-1260 |#1|) (-697 |#1| |#4| |#5|) (-382 |#1|) (-382 |#1|)) (T -104))
-((-3187 (*1 *2 *3) (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3286 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2)) (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2)) (-4 *4 (-697 *2 *5 *6)))) (-3727 (*1 *2 *3 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)))))
-(-10 -7 (-15 -3341 (|#3| |#2| |#2|)) (-15 -3727 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4461 "*"))) (PROGN (-15 -3286 (|#1| |#2| |#2|)) (-15 -3187 (|#1| |#2|))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-4388 (((-654 (-1193))) 37)) (-1636 (((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193)) 39)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-105) (-13 (-1116) (-10 -7 (-15 -4388 ((-654 (-1193)))) (-15 -1636 ((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193))) (-6 -4459)))) (T -105))
-((-4388 (*1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-105)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227))))) (-5 *1 (-105)))))
-(-13 (-1116) (-10 -7 (-15 -4388 ((-654 (-1193)))) (-15 -1636 ((-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227))) (|:| |singularities| (-1173 (-227)))) (-1193))) (-6 -4459)))
-((-3703 (($ (-654 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -3703 (|#1| (-654 |#2|)))) (-107 |#2|) (-1234)) (T -106))
-NIL
-(-10 -8 (-15 -3703 (|#1| (-654 |#2|))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-107 |#1|) (-141) (-1234)) (T -107))
-((-3703 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-107 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))) (-3705 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))))
-(-13 (-499 |t#1|) (-10 -8 (-6 -4460) (-15 -3703 ($ (-654 |t#1|))) (-15 -2098 (|t#1| $)) (-15 -3705 ($ |t#1| $)) (-15 -1759 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-574) $) NIL (|has| (-574) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-574) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2216 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-574) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-1935 (((-112) $) NIL (|has| (-574) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3229 (((-574) $) NIL (|has| (-574) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-574) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 2) $) 10)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-574) $) NIL (|has| (-574) (-555)))) (-2964 (($ (-417 (-574))) 9)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3099 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
-(((-108) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 2)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -2964 ($ (-417 (-574))))))) (T -108))
-((-3577 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108)))))
-(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 2)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -2964 ($ (-417 (-574))))))
-((-2806 (((-654 (-979)) $) 13)) (-2039 (((-516) $) 9)) (-2951 (((-872) $) 20)) (-3601 (($ (-516) (-654 (-979))) 15)))
-(((-109) (-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2806 ((-654 (-979)) $)) (-15 -3601 ($ (-516) (-654 (-979))))))) (T -109))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-654 (-979))) (-5 *1 (-109)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-109)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -2806 ((-654 (-979)) $)) (-15 -3601 ($ (-516) (-654 (-979))))))
-((-2864 (((-112) $ $) NIL)) (-2890 (($ $) NIL)) (-2117 (($ $ $) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4287 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-112) $ (-1251 (-574)) (-112)) NIL (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) NIL)) (-1452 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1116))) (((-574) (-112) $) NIL (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1871 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2106 (($ $ $) NIL)) (-2084 (($ $) NIL)) (-3216 (($ $ $) NIL)) (-3764 (($ (-781) (-112)) 10)) (-3594 (($ $ $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL)) (-2470 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1764 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL)) (-2462 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-112) $) NIL (|has| (-574) (-860)))) (-3748 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1465 (($ $ (-112)) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2445 (((-654 (-112)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 (($ $ (-1251 (-574))) NIL) (((-112) $ (-574)) NIL) (((-112) $ (-574) (-112)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3949 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) NIL)) (-4132 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2951 (((-872) $) NIL)) (-4098 (($ (-781) (-112)) 11)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2095 (($ $ $) NIL)) (-2934 (($ $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2923 (($ $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-110) (-13 (-124) (-10 -8 (-15 -4098 ($ (-781) (-112)))))) (T -110))
-((-4098 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-124) (-10 -8 (-15 -4098 ($ (-781) (-112)))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-141) (-1065) (-1065)) (T -111))
-NIL
-(-13 (-658 |t#1|) (-1072 |t#2|) (-10 -7 (-6 -4454) (-6 -4453)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-2890 (($ $) 10)) (-2117 (($ $ $) 15)) (-1569 (($) 7 T CONST)) (-4138 (($ $) 6)) (-1496 (((-781)) 24)) (-2835 (($) 32)) (-2106 (($ $ $) 13)) (-2084 (($ $) 9)) (-3216 (($ $ $) 16)) (-3594 (($ $ $) 17)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) 30)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) 28)) (-3335 (($ $ $) 20)) (-3940 (((-1136) $) NIL)) (-2896 (($) 8 T CONST)) (-2728 (($ $ $) 21)) (-1844 (((-546) $) 34)) (-2951 (((-872) $) 36)) (-2981 (((-112) $ $) NIL)) (-2095 (($ $ $) 11)) (-2934 (($ $ $) 14)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 19)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-2923 (($ $ $) 12)))
-(((-112) (-13 (-854) (-671) (-983) (-624 (-546)) (-10 -8 (-15 -2117 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -4138 ($ $))))) (T -112))
-((-2117 (*1 *1 *1 *1) (-5 *1 (-112))) (-3594 (*1 *1 *1 *1) (-5 *1 (-112))) (-3216 (*1 *1 *1 *1) (-5 *1 (-112))) (-4138 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-854) (-671) (-983) (-624 (-546)) (-10 -8 (-15 -2117 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -4138 ($ $))))
-((-2106 (($ $ $) 6)) (-2084 (($ $) 8)) (-2095 (($ $ $) 7)))
+((-2869 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2991 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2991 ((-112) $ $)) (-15 -2869 ((-112) $ $))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) 24 (|has| $ (-6 -4462)))) (-2092 (($ $ $) NIL (|has| $ (-6 -4462)))) (-2543 (($ $ $) NIL (|has| $ (-6 -4462)))) (-2220 (($ $ (-656 |#1|)) 30)) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-3883 (($ $) 12)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1592 (($ $ |#1| $) 32)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3020 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2682 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3870 (($ $) 11)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) 13)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 9)) (-2953 (($) 31)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1479 (($ (-783) |#1|) 33)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1479 ($ (-783) |#1|)) (-15 -2220 ($ $ (-656 |#1|))) (-15 -3020 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3020 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2682 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2682 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1118)) (T -103))
+((-1479 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1118)))) (-2220 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))) (-3020 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1118)))) (-3020 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))) (-2682 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2)))) (-2682 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1479 ($ (-783) |#1|)) (-15 -2220 ($ $ (-656 |#1|))) (-15 -3020 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3020 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2682 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2682 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)))))
+((-3112 ((|#3| |#2| |#2|) 34)) (-3753 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4463 "*"))))) (-2706 ((|#3| |#2| |#2|) 36)) (-2024 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4463 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3112 (|#3| |#2| |#2|)) (-15 -2706 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -3753 (|#1| |#2| |#2|)) (-15 -2024 (|#1| |#2|))) |%noBranch|)) (-1067) (-1262 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104))
+((-2024 (*1 *2 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3753 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-2706 (*1 *2 *3 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-3112 (*1 *2 *3 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))))
+(-10 -7 (-15 -3112 (|#3| |#2| |#2|)) (-15 -2706 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -3753 (|#1| |#2| |#2|)) (-15 -2024 (|#1| |#2|))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1834 (((-656 (-1195))) 37)) (-3437 (((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195)) 39)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-105) (-13 (-1118) (-10 -7 (-15 -1834 ((-656 (-1195)))) (-15 -3437 ((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195))) (-6 -4461)))) (T -105))
+((-1834 (*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227))))) (-5 *1 (-105)))))
+(-13 (-1118) (-10 -7 (-15 -1834 ((-656 (-1195)))) (-15 -3437 ((-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227))) (|:| |singularities| (-1175 (-227)))) (-1195))) (-6 -4461)))
+((-2478 (($ (-656 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -2478 (|#1| (-656 |#2|)))) (-107 |#2|) (-1236)) (T -106))
+NIL
+(-10 -8 (-15 -2478 (|#1| (-656 |#2|))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-107 |#1|) (-141) (-1236)) (T -107))
+((-2478 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-2504 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))))
+(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-15 -2478 ($ (-656 |t#1|))) (-15 -4256 (|t#1| $)) (-15 -2504 ($ |t#1| $)) (-15 -2138 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-576) $) NIL (|has| (-576) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-576) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-2216 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-576) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-576) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-576) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-3327 (((-112) $) NIL (|has| (-576) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-576) (-862)))) (-1787 (($ (-1 (-576) (-576)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-576) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4371 (((-576) $) NIL (|has| (-576) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-576) $) NIL)) (-1846 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 2) $) 10)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-576) $) NIL (|has| (-576) (-557)))) (-2451 (($ (-419 (-576))) 9)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| (-576) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3108 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-108) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 2)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2451 ($ (-419 (-576))))))) (T -108))
+((-3739 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))))
+(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 2)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2451 ($ (-419 (-576))))))
+((-2811 (((-656 (-981)) $) 13)) (-2041 (((-518) $) 9)) (-2956 (((-874) $) 20)) (-3966 (($ (-518) (-656 (-981))) 15)))
+(((-109) (-13 (-625 (-874)) (-10 -8 (-15 -2041 ((-518) $)) (-15 -2811 ((-656 (-981)) $)) (-15 -3966 ($ (-518) (-656 (-981))))))) (T -109))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-656 (-981))) (-5 *1 (-109)))) (-3966 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-109)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2041 ((-518) $)) (-15 -2811 ((-656 (-981)) $)) (-15 -3966 ($ (-518) (-656 (-981))))))
+((-2869 (((-112) $ $) NIL)) (-2895 (($ $) NIL)) (-2119 (($ $ $) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3330 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2791 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3316 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2887 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2481 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2405 (((-112) $ (-576)) NIL)) (-1454 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1118))) (((-576) (-112) $) NIL (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1873 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2107 (($ $ $) NIL)) (-2085 (($ $) NIL)) (-4232 (($ $ $) NIL)) (-3769 (($ (-783) (-112)) 10)) (-3907 (($ $ $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL)) (-1383 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2186 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL)) (-2466 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-112) $) NIL (|has| (-576) (-862)))) (-2922 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4211 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-4274 (((-656 (-112)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3954 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2968 (($ (-656 (-112))) NIL)) (-4136 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2956 (((-874) $) NIL)) (-2054 (($ (-783) (-112)) 11)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2096 (($ $ $) NIL)) (-2939 (($ $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-2926 (($ $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-110) (-13 (-124) (-10 -8 (-15 -2054 ($ (-783) (-112)))))) (T -110))
+((-2054 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-124) (-10 -8 (-15 -2054 ($ (-783) (-112)))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-141) (-1067) (-1067)) (T -111))
+NIL
+(-13 (-660 |t#1|) (-1074 |t#2|) (-10 -7 (-6 -4456) (-6 -4455)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-2895 (($ $) 10)) (-2119 (($ $ $) 15)) (-1571 (($) 7 T CONST)) (-4141 (($ $) 6)) (-1499 (((-783)) 24)) (-2840 (($) 32)) (-2107 (($ $ $) 13)) (-2085 (($ $) 9)) (-4232 (($ $ $) 16)) (-3907 (($ $ $) 17)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) 30)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) 28)) (-3039 (($ $ $) 20)) (-3945 (((-1138) $) NIL)) (-2901 (($) 8 T CONST)) (-2027 (($ $ $) 21)) (-1846 (((-548) $) 34)) (-2956 (((-874) $) 36)) (-2617 (((-112) $ $) NIL)) (-2096 (($ $ $) 11)) (-2939 (($ $ $) 14)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 19)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 22)) (-2926 (($ $ $) 12)))
+(((-112) (-13 (-856) (-673) (-985) (-626 (-548)) (-10 -8 (-15 -2119 ($ $ $)) (-15 -3907 ($ $ $)) (-15 -4232 ($ $ $)) (-15 -4141 ($ $))))) (T -112))
+((-2119 (*1 *1 *1 *1) (-5 *1 (-112))) (-3907 (*1 *1 *1 *1) (-5 *1 (-112))) (-4232 (*1 *1 *1 *1) (-5 *1 (-112))) (-4141 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-856) (-673) (-985) (-626 (-548)) (-10 -8 (-15 -2119 ($ $ $)) (-15 -3907 ($ $ $)) (-15 -4232 ($ $ $)) (-15 -4141 ($ $))))
+((-2107 (($ $ $) 6)) (-2085 (($ $) 8)) (-2096 (($ $ $) 7)))
(((-113) (-141)) (T -113))
-((-2084 (*1 *1 *1) (-4 *1 (-113))) (-2095 (*1 *1 *1 *1) (-4 *1 (-113))) (-2106 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-13 (-1234) (-10 -8 (-15 -2084 ($ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $))))
-(((-1234) . T))
-((-3672 (((-3 (-1 |#1| (-654 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-654 |#1|))) 11) (((-3 |#1| "failed") (-115) (-654 |#1|)) 25)) (-2165 (((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-654 (-1 |#1| (-654 |#1|)))) 30)) (-2194 (((-115) |#1|) 63)) (-3273 (((-3 |#1| "failed") (-115)) 58)))
-(((-114 |#1|) (-10 -7 (-15 -3672 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3672 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3672 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3672 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -2165 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2165 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2165 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2194 ((-115) |#1|)) (-15 -3273 ((-3 |#1| "failed") (-115)))) (-1116)) (T -114))
-((-3273 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1116)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1116)))) (-2165 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1116)))) (-2165 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-2165 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3672 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1116)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3672 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1116)) (-5 *1 (-114 *4)))) (-3672 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1116)))))
-(-10 -7 (-15 -3672 ((-3 |#1| "failed") (-115) (-654 |#1|))) (-15 -3672 ((-115) (-115) (-1 |#1| (-654 |#1|)))) (-15 -3672 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3672 ((-3 (-1 |#1| (-654 |#1|)) "failed") (-115))) (-15 -2165 ((-115) (-115) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2165 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2165 ((-3 (-654 (-1 |#1| (-654 |#1|))) "failed") (-115))) (-15 -2194 ((-115) |#1|)) (-15 -3273 ((-3 |#1| "failed") (-115))))
-((-2864 (((-112) $ $) NIL)) (-3716 (((-781) $) 91) (($ $ (-781)) 37)) (-3635 (((-112) $) 41)) (-1797 (($ $ (-1175) (-784)) 58) (($ $ (-516) (-784)) 33)) (-3433 (($ $ (-45 (-1175) (-784))) 16)) (-3134 (((-3 (-784) "failed") $ (-1175)) 27) (((-701 (-784)) $ (-516)) 32)) (-2806 (((-45 (-1175) (-784)) $) 15)) (-4150 (($ (-1193)) 20) (($ (-1193) (-781)) 23) (($ (-1193) (-55)) 24)) (-2726 (((-112) $) 39)) (-3181 (((-112) $) 43)) (-2039 (((-1193) $) 8)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1575 (((-112) $ (-1193)) 11)) (-1463 (($ $ (-1 (-546) (-654 (-546)))) 64) (((-3 (-1 (-546) (-654 (-546))) "failed") $) 71)) (-3940 (((-1136) $) NIL)) (-1410 (((-112) $ (-516)) 36)) (-3827 (($ $ (-1 (-112) $ $)) 45)) (-1414 (((-3 (-1 (-872) (-654 (-872))) "failed") $) 69) (($ $ (-1 (-872) (-654 (-872)))) 51) (($ $ (-1 (-872) (-872))) 53)) (-3267 (($ $ (-1175)) 55) (($ $ (-516)) 56)) (-3157 (($ $) 77)) (-4205 (($ $ (-1 (-112) $ $)) 46)) (-2951 (((-872) $) 60)) (-2981 (((-112) $ $) NIL)) (-2121 (($ $ (-516)) 34)) (-4069 (((-55) $) 72)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 89)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 103)))
-(((-115) (-13 (-860) (-845 (-1193)) (-10 -8 (-15 -2806 ((-45 (-1175) (-784)) $)) (-15 -3157 ($ $)) (-15 -4150 ($ (-1193))) (-15 -4150 ($ (-1193) (-781))) (-15 -4150 ($ (-1193) (-55))) (-15 -2726 ((-112) $)) (-15 -3635 ((-112) $)) (-15 -3181 ((-112) $)) (-15 -3716 ((-781) $)) (-15 -3716 ($ $ (-781))) (-15 -3827 ($ $ (-1 (-112) $ $))) (-15 -4205 ($ $ (-1 (-112) $ $))) (-15 -1414 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1414 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1414 ($ $ (-1 (-872) (-872)))) (-15 -1463 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1463 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -1410 ((-112) $ (-516))) (-15 -2121 ($ $ (-516))) (-15 -3267 ($ $ (-1175))) (-15 -3267 ($ $ (-516))) (-15 -3134 ((-3 (-784) "failed") $ (-1175))) (-15 -3134 ((-701 (-784)) $ (-516))) (-15 -1797 ($ $ (-1175) (-784))) (-15 -1797 ($ $ (-516) (-784))) (-15 -3433 ($ $ (-45 (-1175) (-784))))))) (T -115))
-((-2806 (*1 *2 *1) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115)))) (-3157 (*1 *1 *1) (-5 *1 (-115))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *1 (-115)))) (-4150 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1414 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115)))) (-1414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115)))) (-1463 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1463 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115)))) (-1410 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2121 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-115)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115)))) (-3134 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-784)) (-5 *1 (-115)))) (-3134 (*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115)))) (-1797 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-784)) (-5 *1 (-115)))) (-1797 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115)))) (-3433 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115)))))
-(-13 (-860) (-845 (-1193)) (-10 -8 (-15 -2806 ((-45 (-1175) (-784)) $)) (-15 -3157 ($ $)) (-15 -4150 ($ (-1193))) (-15 -4150 ($ (-1193) (-781))) (-15 -4150 ($ (-1193) (-55))) (-15 -2726 ((-112) $)) (-15 -3635 ((-112) $)) (-15 -3181 ((-112) $)) (-15 -3716 ((-781) $)) (-15 -3716 ($ $ (-781))) (-15 -3827 ($ $ (-1 (-112) $ $))) (-15 -4205 ($ $ (-1 (-112) $ $))) (-15 -1414 ((-3 (-1 (-872) (-654 (-872))) "failed") $)) (-15 -1414 ($ $ (-1 (-872) (-654 (-872))))) (-15 -1414 ($ $ (-1 (-872) (-872)))) (-15 -1463 ($ $ (-1 (-546) (-654 (-546))))) (-15 -1463 ((-3 (-1 (-546) (-654 (-546))) "failed") $)) (-15 -1410 ((-112) $ (-516))) (-15 -2121 ($ $ (-516))) (-15 -3267 ($ $ (-1175))) (-15 -3267 ($ $ (-516))) (-15 -3134 ((-3 (-784) "failed") $ (-1175))) (-15 -3134 ((-701 (-784)) $ (-516))) (-15 -1797 ($ $ (-1175) (-784))) (-15 -1797 ($ $ (-516) (-784))) (-15 -3433 ($ $ (-45 (-1175) (-784))))))
-((-2913 (((-574) |#2|) 41)))
-(((-116 |#1| |#2|) (-10 -7 (-15 -2913 ((-574) |#2|))) (-13 (-372) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -116))
-((-2913 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-1054 (-417 *2)))) (-5 *2 (-574)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -2913 ((-574) |#2|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3843 (($ (-1189 (-574)) (-574)) NIL)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-1809 (($ $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1518 (((-781) $) NIL)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1500 (((-574)) NIL)) (-1673 (((-574) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2249 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1773 (((-1173 (-574)) $) NIL)) (-3263 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
-(((-117 |#1|) (-879 |#1|) (-574)) (T -117))
-NIL
-(-879 |#1|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-117 |#1|) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-117 |#1|) (-1054 (-574))))) (-2216 (((-117 |#1|) $) NIL) (((-1193) $) NIL (|has| (-117 |#1|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-117 |#1|) (-1054 (-574)))) (((-574) $) NIL (|has| (-117 |#1|) (-1054 (-574))))) (-3358 (($ $) NIL) (($ (-574) $) NIL)) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-117 |#1|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-117 |#1|))) (|:| |vec| (-1284 (-117 |#1|)))) (-699 $) (-1284 $)) NIL) (((-699 (-117 |#1|)) (-699 $)) NIL) (((-699 (-117 |#1|)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-117 |#1|) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-117 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-117 |#1|) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-117 |#1|) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1168)))) (-1935 (((-112) $) NIL (|has| (-117 |#1|) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-2976 (($ $ $) NIL (|has| (-117 |#1|) (-860)))) (-1785 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-117 |#1|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-117 |#1|) (-315)))) (-3229 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-117 |#1|) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-117 |#1|)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-302 (-117 |#1|))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-302 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-317 (-117 |#1|)))) (($ $ (-654 (-1193)) (-654 (-117 |#1|))) NIL (|has| (-117 |#1|) (-524 (-1193) (-117 |#1|)))) (($ $ (-1193) (-117 |#1|)) NIL (|has| (-117 |#1|) (-524 (-1193) (-117 |#1|))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-294 (-117 |#1|) (-117 |#1|))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-117 |#1|) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-117 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-117 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-117 |#1|) (-1038))) (((-227) $) NIL (|has| (-117 |#1|) (-1038)))) (-3653 (((-176 (-417 (-574))) $) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-117 |#1|)) NIL) (($ (-1193)) NIL (|has| (-117 |#1|) (-1054 (-1193))))) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-923))) (|has| (-117 |#1|) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) NIL)) (-4107 (($ $) NIL (|has| (-117 |#1|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-117 |#1|) (-912 (-1193)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-781)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-117 |#1|) (-860)))) (-3099 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
-(((-118 |#1|) (-13 (-1008 (-117 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $)))) (-574)) (T -118))
-((-3525 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574)))) (-3358 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2))))
-(-13 (-1008 (-117 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $))))
-((-3135 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4345 (((-654 $) $) 31)) (-3514 (((-112) $ $) 36)) (-2333 (((-112) |#2| $) 40)) (-3482 (((-654 |#2|) $) 25)) (-2899 (((-112) $) 18)) (-2207 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3864 (((-112) $) 57)) (-2951 (((-872) $) 47)) (-1418 (((-654 $) $) 32)) (-2986 (((-112) $ $) 38)) (-2877 (((-781) $) 50)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3135 (|#1| |#1| "right" |#1|)) (-15 -3135 (|#1| |#1| "left" |#1|)) (-15 -2207 (|#1| |#1| "right")) (-15 -2207 (|#1| |#1| "left")) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3482 ((-654 |#2|) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#2| |#1|)) (-15 -2877 ((-781) |#1|))) (-120 |#2|) (-1234)) (T -119))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -3135 (|#1| |#1| "right" |#1|)) (-15 -3135 (|#1| |#1| "left" |#1|)) (-15 -2207 (|#1| |#1| "right")) (-15 -2207 (|#1| |#1| "left")) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3482 ((-654 |#2|) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#2| |#1|)) (-15 -2877 ((-781) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-1755 (($ $ $) 53 (|has| $ (-6 -4460)))) (-1400 (($ $ $) 55 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) (($ $ "left" $) 56 (|has| $ (-6 -4460))) (($ $ "right" $) 54 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-3878 (($ $) 58)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-3865 (($ $) 60)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4072 (((-574) $ $) 45)) (-3864 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-120 |#1|) (-141) (-1234)) (T -120))
-((-3865 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-3878 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-1400 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3)) (-4 *3 (-1234)))) (-1755 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234)))))
-(-13 (-1026 |t#1|) (-10 -8 (-15 -3865 ($ $)) (-15 -2207 ($ $ "left")) (-15 -3878 ($ $)) (-15 -2207 ($ $ "right")) (IF (|has| $ (-6 -4460)) (PROGN (-15 -3135 ($ $ "left" $)) (-15 -1400 ($ $ $)) (-15 -3135 ($ $ "right" $)) (-15 -1755 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-3069 (((-112) |#1|) 29)) (-2697 (((-781) (-781)) 28) (((-781)) 27)) (-2578 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-121 |#1|) (-10 -7 (-15 -2578 ((-112) |#1|)) (-15 -2578 ((-112) |#1| (-112))) (-15 -2697 ((-781))) (-15 -2697 ((-781) (-781))) (-15 -3069 ((-112) |#1|))) (-1260 (-574))) (T -121))
-((-3069 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-2697 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-2697 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-2578 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))) (-2578 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))))
-(-10 -7 (-15 -2578 ((-112) |#1|)) (-15 -2578 ((-112) |#1| (-112))) (-15 -2697 ((-781))) (-15 -2697 ((-781) (-781))) (-15 -3069 ((-112) |#1|)))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 18)) (-1433 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-1755 (($ $ $) 21 (|has| $ (-6 -4460)))) (-1400 (($ $ $) 23 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-3878 (($ $) 20)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 27)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3865 (($ $) 22)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2092 (($ |#1| $) 28)) (-3705 (($ |#1| $) 15)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3153 (($ (-654 |#1|)) 16)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3153 ($ (-654 |#1|))) (-15 -3705 ($ |#1| $)) (-15 -2092 ($ |#1| $)) (-15 -1433 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -122))
-((-3153 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))) (-3705 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-2092 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))) (-1433 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-860)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3153 ($ (-654 |#1|))) (-15 -3705 ($ |#1| $)) (-15 -2092 ($ |#1| $)) (-15 -1433 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2890 (($ $) 13)) (-2084 (($ $) 11)) (-3216 (($ $ $) 23)) (-3594 (($ $ $) 21)) (-2934 (($ $ $) 19)) (-2923 (($ $ $) 17)))
-(((-123 |#1|) (-10 -8 (-15 -3216 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -2923 (|#1| |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|))) (-124)) (T -123))
-NIL
-(-10 -8 (-15 -3216 (|#1| |#1| |#1|)) (-15 -3594 (|#1| |#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -2923 (|#1| |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-2890 (($ $) 103)) (-2117 (($ $ $) 28)) (-2620 (((-1289) $ (-574) (-574)) 66 (|has| $ (-6 -4460)))) (-1492 (((-112) $) 98 (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-4287 (($ $) 102 (-12 (|has| (-112) (-860)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4460)))) (-2786 (($ $) 97 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2832 (((-112) $ (-781)) 37)) (-3135 (((-112) $ (-1251 (-574)) (-112)) 88 (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) 54 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4459)))) (-1430 (($) 38 T CONST)) (-2060 (($ $) 100 (|has| $ (-6 -4460)))) (-4425 (($ $) 90)) (-1573 (($ $) 68 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4459))) (($ (-112) $) 69 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-2473 (((-112) $ (-574) (-112)) 53 (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) 55)) (-1452 (((-574) (-112) $ (-574)) 95 (|has| (-112) (-1116))) (((-574) (-112) $) 94 (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) 93)) (-1871 (((-654 (-112)) $) 45 (|has| $ (-6 -4459)))) (-2106 (($ $ $) 108)) (-2084 (($ $) 106)) (-3216 (($ $ $) 29)) (-3764 (($ (-781) (-112)) 78)) (-3594 (($ $ $) 30)) (-3814 (((-112) $ (-781)) 36)) (-2761 (((-574) $) 63 (|has| (-574) (-860)))) (-3634 (($ $ $) 14)) (-2470 (($ $ $) 96 (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1764 (((-654 (-112)) $) 46 (|has| $ (-6 -4459)))) (-2333 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 62 (|has| (-574) (-860)))) (-2976 (($ $ $) 15)) (-2462 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2302 (((-112) $ (-781)) 35)) (-4420 (((-1175) $) 10)) (-1602 (($ $ $ (-574)) 87) (($ (-112) $ (-574)) 86)) (-1583 (((-654 (-574)) $) 60)) (-1470 (((-112) (-574) $) 59)) (-3940 (((-1136) $) 11)) (-2925 (((-112) $) 64 (|has| (-574) (-860)))) (-3748 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1465 (($ $ (-112)) 65 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) 52 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) 50 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) 49 (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-3788 (((-112) $ $) 31)) (-3542 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2445 (((-654 (-112)) $) 58)) (-2265 (((-112) $) 34)) (-3014 (($) 33)) (-2207 (($ $ (-1251 (-574))) 77) (((-112) $ (-574)) 57) (((-112) $ (-574) (-112)) 56)) (-2855 (($ $ (-1251 (-574))) 85) (($ $ (-574)) 84)) (-3949 (((-781) (-112) $) 47 (-12 (|has| (-112) (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4459)))) (-2663 (($ $ $ (-574)) 99 (|has| $ (-6 -4460)))) (-3157 (($ $) 32)) (-1844 (((-546) $) 67 (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) 76)) (-4132 (($ (-654 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2859 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4459)))) (-2095 (($ $ $) 107)) (-2934 (($ $ $) 105)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-2923 (($ $ $) 104)) (-2877 (((-781) $) 39 (|has| $ (-6 -4459)))))
+((-2085 (*1 *1 *1) (-4 *1 (-113))) (-2096 (*1 *1 *1 *1) (-4 *1 (-113))) (-2107 (*1 *1 *1 *1) (-4 *1 (-113))))
+(-13 (-1236) (-10 -8 (-15 -2085 ($ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $))))
+(((-1236) . T))
+((-3462 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-3628 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-3902 (((-115) |#1|) 63)) (-3619 (((-3 |#1| "failed") (-115)) 58)))
+(((-114 |#1|) (-10 -7 (-15 -3462 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3462 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3462 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3462 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3628 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3628 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3628 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3902 ((-115) |#1|)) (-15 -3619 ((-3 |#1| "failed") (-115)))) (-1118)) (T -114))
+((-3619 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1118)))) (-3902 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1118)))) (-3628 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1118)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-3462 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1118)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1118)) (-5 *1 (-114 *4)))) (-3462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1118)))))
+(-10 -7 (-15 -3462 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -3462 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -3462 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3462 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3628 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3628 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3628 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3902 ((-115) |#1|)) (-15 -3619 ((-3 |#1| "failed") (-115))))
+((-2869 (((-112) $ $) NIL)) (-2599 (((-783) $) 91) (($ $ (-783)) 37)) (-3104 (((-112) $) 41)) (-4394 (($ $ (-1177) (-786)) 58) (($ $ (-518) (-786)) 33)) (-2846 (($ $ (-45 (-1177) (-786))) 16)) (-2748 (((-3 (-786) "failed") $ (-1177)) 27) (((-703 (-786)) $ (-518)) 32)) (-2811 (((-45 (-1177) (-786)) $) 15)) (-4153 (($ (-1195)) 20) (($ (-1195) (-783)) 23) (($ (-1195) (-55)) 24)) (-2015 (((-112) $) 39)) (-1958 (((-112) $) 43)) (-2041 (((-1195) $) 8)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-2881 (((-112) $ (-1195)) 11)) (-1465 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3945 (((-1138) $) NIL)) (-3055 (((-112) $ (-518)) 36)) (-4307 (($ $ (-1 (-112) $ $)) 45)) (-1416 (((-3 (-1 (-874) (-656 (-874))) "failed") $) 69) (($ $ (-1 (-874) (-656 (-874)))) 51) (($ $ (-1 (-874) (-874))) 53)) (-1632 (($ $ (-1177)) 55) (($ $ (-518)) 56)) (-3162 (($ $) 77)) (-3784 (($ $ (-1 (-112) $ $)) 46)) (-2956 (((-874) $) 60)) (-2617 (((-112) $ $) NIL)) (-2123 (($ $ (-518)) 34)) (-1755 (((-55) $) 72)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 89)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 103)))
+(((-115) (-13 (-862) (-847 (-1195)) (-10 -8 (-15 -2811 ((-45 (-1177) (-786)) $)) (-15 -3162 ($ $)) (-15 -4153 ($ (-1195))) (-15 -4153 ($ (-1195) (-783))) (-15 -4153 ($ (-1195) (-55))) (-15 -2015 ((-112) $)) (-15 -3104 ((-112) $)) (-15 -1958 ((-112) $)) (-15 -2599 ((-783) $)) (-15 -2599 ($ $ (-783))) (-15 -4307 ($ $ (-1 (-112) $ $))) (-15 -3784 ($ $ (-1 (-112) $ $))) (-15 -1416 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -1416 ($ $ (-1 (-874) (-656 (-874))))) (-15 -1416 ($ $ (-1 (-874) (-874)))) (-15 -1465 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1465 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3055 ((-112) $ (-518))) (-15 -2123 ($ $ (-518))) (-15 -1632 ($ $ (-1177))) (-15 -1632 ($ $ (-518))) (-15 -2748 ((-3 (-786) "failed") $ (-1177))) (-15 -2748 ((-703 (-786)) $ (-518))) (-15 -4394 ($ $ (-1177) (-786))) (-15 -4394 ($ $ (-518) (-786))) (-15 -2846 ($ $ (-45 (-1177) (-786))))))) (T -115))
+((-2811 (*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))) (-3162 (*1 *1 *1) (-5 *1 (-115))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115)))) (-4153 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115)))) (-4153 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2599 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-4307 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1416 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1465 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-3055 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2123 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2748 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115)))) (-2748 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-4394 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115)))) (-4394 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2846 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))))
+(-13 (-862) (-847 (-1195)) (-10 -8 (-15 -2811 ((-45 (-1177) (-786)) $)) (-15 -3162 ($ $)) (-15 -4153 ($ (-1195))) (-15 -4153 ($ (-1195) (-783))) (-15 -4153 ($ (-1195) (-55))) (-15 -2015 ((-112) $)) (-15 -3104 ((-112) $)) (-15 -1958 ((-112) $)) (-15 -2599 ((-783) $)) (-15 -2599 ($ $ (-783))) (-15 -4307 ($ $ (-1 (-112) $ $))) (-15 -3784 ($ $ (-1 (-112) $ $))) (-15 -1416 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -1416 ($ $ (-1 (-874) (-656 (-874))))) (-15 -1416 ($ $ (-1 (-874) (-874)))) (-15 -1465 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1465 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3055 ((-112) $ (-518))) (-15 -2123 ($ $ (-518))) (-15 -1632 ($ $ (-1177))) (-15 -1632 ($ $ (-518))) (-15 -2748 ((-3 (-786) "failed") $ (-1177))) (-15 -2748 ((-703 (-786)) $ (-518))) (-15 -4394 ($ $ (-1177) (-786))) (-15 -4394 ($ $ (-518) (-786))) (-15 -2846 ($ $ (-45 (-1177) (-786))))))
+((-3264 (((-576) |#2|) 41)))
+(((-116 |#1| |#2|) (-10 -7 (-15 -3264 ((-576) |#2|))) (-13 (-374) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -116))
+((-3264 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1056 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -3264 ((-576) |#2|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $ (-576)) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-1343 (($ (-1191 (-576)) (-576)) NIL)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-1381 (($ $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3540 (((-783) $) NIL)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1440 (((-576)) NIL)) (-2554 (((-576) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3167 (($ $ (-576)) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-4176 (((-1175 (-576)) $) NIL)) (-1588 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-576) $ (-576)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-117 |#1|) (-881 |#1|) (-576)) (T -117))
+NIL
+(-881 |#1|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1056 (-576))))) (-2216 (((-117 |#1|) $) NIL) (((-1195) $) NIL (|has| (-117 |#1|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1056 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1056 (-576))))) (-3279 (($ $) NIL) (($ (-576) $) NIL)) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-117 |#1|))) (|:| |vec| (-1286 (-117 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL) (((-701 (-117 |#1|)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-117 |#1|) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-117 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-117 |#1|) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-117 |#1|) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1170)))) (-3327 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2571 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-1787 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-117 |#1|) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-4371 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1195)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|)))) (($ $ (-1195) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-117 |#1|) $) NIL)) (-1846 (((-905 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1040))) (((-227) $) NIL (|has| (-117 |#1|) (-1040)))) (-3296 (((-176 (-419 (-576))) $) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1195)) NIL (|has| (-117 |#1|) (-1056 (-1195))))) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-925))) (|has| (-117 |#1|) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-419 (-576)) $ (-576)) NIL)) (-2130 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-117 |#1|) (-239))) (($ $) NIL (|has| (-117 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-914 (-1195)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3108 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
+(((-118 |#1|) (-13 (-1010 (-117 |#1|)) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $)))) (-576)) (T -118))
+((-3530 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-3279 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))))
+(-13 (-1010 (-117 |#1|)) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $))))
+((-3140 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2635 (((-656 $) $) 31)) (-4344 (((-112) $ $) 36)) (-2653 (((-112) |#2| $) 40)) (-3488 (((-656 |#2|) $) 25)) (-3126 (((-112) $) 18)) (-2209 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1558 (((-112) $) 57)) (-2956 (((-874) $) 47)) (-4197 (((-656 $) $) 32)) (-2991 (((-112) $ $) 38)) (-2882 (((-783) $) 50)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -3140 (|#1| |#1| "right" |#1|)) (-15 -3140 (|#1| |#1| "left" |#1|)) (-15 -2209 (|#1| |#1| "right")) (-15 -2209 (|#1| |#1| "left")) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -4344 ((-112) |#1| |#1|)) (-15 -3488 ((-656 |#2|) |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2653 ((-112) |#2| |#1|)) (-15 -2882 ((-783) |#1|))) (-120 |#2|) (-1236)) (T -119))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -3140 (|#1| |#1| "right" |#1|)) (-15 -3140 (|#1| |#1| "left" |#1|)) (-15 -2209 (|#1| |#1| "right")) (-15 -2209 (|#1| |#1| "left")) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -4344 ((-112) |#1| |#1|)) (-15 -3488 ((-656 |#2|) |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2653 ((-112) |#2| |#1|)) (-15 -2882 ((-783) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-2092 (($ $ $) 53 (|has| $ (-6 -4462)))) (-2543 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-3883 (($ $) 58)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-3870 (($ $) 60)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1785 (((-576) $ $) 45)) (-1558 (((-112) $) 47)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-120 |#1|) (-141) (-1236)) (T -120))
+((-3870 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3883 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-2543 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-2092 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))))
+(-13 (-1028 |t#1|) (-10 -8 (-15 -3870 ($ $)) (-15 -2209 ($ $ "left")) (-15 -3883 ($ $)) (-15 -2209 ($ $ "right")) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3140 ($ $ "left" $)) (-15 -2543 ($ $ $)) (-15 -3140 ($ $ "right" $)) (-15 -2092 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-3412 (((-112) |#1|) 29)) (-1738 (((-783) (-783)) 28) (((-783)) 27)) (-3129 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-121 |#1|) (-10 -7 (-15 -3129 ((-112) |#1|)) (-15 -3129 ((-112) |#1| (-112))) (-15 -1738 ((-783))) (-15 -1738 ((-783) (-783))) (-15 -3412 ((-112) |#1|))) (-1262 (-576))) (T -121))
+((-3412 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-1738 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))))
+(-10 -7 (-15 -3129 ((-112) |#1|)) (-15 -3129 ((-112) |#1| (-112))) (-15 -1738 ((-783))) (-15 -1738 ((-783) (-783))) (-15 -3412 ((-112) |#1|)))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) 18)) (-4368 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-2092 (($ $ $) 21 (|has| $ (-6 -4462)))) (-2543 (($ $ $) 23 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-3883 (($ $) 20)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1592 (($ $ |#1| $) 27)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3870 (($ $) 22)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-4201 (($ |#1| $) 28)) (-2504 (($ |#1| $) 15)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1687 (($ (-656 |#1|)) 16)) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1687 ($ (-656 |#1|))) (-15 -2504 ($ |#1| $)) (-15 -4201 ($ |#1| $)) (-15 -4368 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122))
+((-1687 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-4201 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-4368 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1687 ($ (-656 |#1|))) (-15 -2504 ($ |#1| $)) (-15 -4201 ($ |#1| $)) (-15 -4368 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2895 (($ $) 13)) (-2085 (($ $) 11)) (-4232 (($ $ $) 23)) (-3907 (($ $ $) 21)) (-2939 (($ $ $) 19)) (-2926 (($ $ $) 17)))
+(((-123 |#1|) (-10 -8 (-15 -4232 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -2926 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1|))) (-124)) (T -123))
+NIL
+(-10 -8 (-15 -4232 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -2926 (|#1| |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2895 (($ $) 103)) (-2119 (($ $ $) 28)) (-3526 (((-1291) $ (-576) (-576)) 66 (|has| $ (-6 -4462)))) (-1375 (((-112) $) 98 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3330 (($ $) 102 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4462)))) (-2791 (($ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3762 (((-112) $ (-783)) 37)) (-3140 (((-112) $ (-1253 (-576)) (-112)) 88 (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4461)))) (-4335 (($) 38 T CONST)) (-2002 (($ $) 100 (|has| $ (-6 -4462)))) (-4427 (($ $) 90)) (-4060 (($ $) 68 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4461))) (($ (-112) $) 69 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-2887 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-2481 (((-112) $ (-576) (-112)) 53 (|has| $ (-6 -4462)))) (-2405 (((-112) $ (-576)) 55)) (-1454 (((-576) (-112) $ (-576)) 95 (|has| (-112) (-1118))) (((-576) (-112) $) 94 (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) 93)) (-1873 (((-656 (-112)) $) 45 (|has| $ (-6 -4461)))) (-2107 (($ $ $) 108)) (-2085 (($ $) 106)) (-4232 (($ $ $) 29)) (-3769 (($ (-783) (-112)) 78)) (-3907 (($ $ $) 30)) (-2266 (((-112) $ (-783)) 36)) (-4280 (((-576) $) 63 (|has| (-576) (-862)))) (-3639 (($ $ $) 14)) (-1383 (($ $ $) 96 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2186 (((-656 (-112)) $) 46 (|has| $ (-6 -4461)))) (-2653 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 62 (|has| (-576) (-862)))) (-2571 (($ $ $) 15)) (-2466 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2356 (((-112) $ (-783)) 35)) (-2148 (((-1177) $) 10)) (-1604 (($ $ $ (-576)) 87) (($ (-112) $ (-576)) 86)) (-2961 (((-656 (-576)) $) 60)) (-4254 (((-112) (-576) $) 59)) (-3945 (((-1138) $) 11)) (-2930 (((-112) $) 64 (|has| (-576) (-862)))) (-2922 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4211 (($ $ (-112)) 65 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-112)) (-656 (-112))) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) 49 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2001 (((-112) $ $) 31)) (-1498 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-4274 (((-656 (-112)) $) 58)) (-3321 (((-112) $) 34)) (-2953 (($) 33)) (-2209 (($ $ (-1253 (-576))) 77) (((-112) $ (-576)) 57) (((-112) $ (-576) (-112)) 56)) (-2860 (($ $ (-1253 (-576))) 85) (($ $ (-576)) 84)) (-3954 (((-783) (-112) $) 47 (-12 (|has| (-112) (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4461)))) (-2647 (($ $ $ (-576)) 99 (|has| $ (-6 -4462)))) (-3162 (($ $) 32)) (-1846 (((-548) $) 67 (|has| (-112) (-626 (-548))))) (-2968 (($ (-656 (-112))) 76)) (-4136 (($ (-656 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3972 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4461)))) (-2096 (($ $ $) 107)) (-2939 (($ $ $) 105)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-2926 (($ $ $) 104)) (-2882 (((-783) $) 39 (|has| $ (-6 -4461)))))
(((-124) (-141)) (T -124))
-((-3594 (*1 *1 *1 *1) (-4 *1 (-124))) (-3216 (*1 *1 *1 *1) (-4 *1 (-124))) (-2117 (*1 *1 *1 *1) (-4 *1 (-124))))
-(-13 (-860) (-113) (-671) (-19 (-112)) (-10 -8 (-15 -3594 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -2117 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-152 #0=(-112)) . T) ((-624 (-546)) |has| (-112) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))) ((-661 #0#) . T) ((-671) . T) ((-19 #0#) . T) ((-860) . T) ((-1116) . T) ((-1234) . T))
-((-2462 (($ (-1 |#2| |#2|) $) 22)) (-3157 (($ $) 16)) (-2877 (((-781) $) 25)))
-(((-125 |#1| |#2|) (-10 -8 (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3157 (|#1| |#1|))) (-126 |#2|) (-1116)) (T -125))
-NIL
-(-10 -8 (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -3157 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-1755 (($ $ $) 53 (|has| $ (-6 -4460)))) (-1400 (($ $ $) 55 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) (($ $ "left" $) 56 (|has| $ (-6 -4460))) (($ $ "right" $) 54 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-3878 (($ $) 58)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 61)) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-3865 (($ $) 60)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4072 (((-574) $ $) 45)) (-3864 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-126 |#1|) (-141) (-1116)) (T -126))
-((-1590 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1116)))))
-(-13 (-120 |t#1|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -1590 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-120 |#1|) . T) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 18)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) 22 (|has| $ (-6 -4460)))) (-1755 (($ $ $) 23 (|has| $ (-6 -4460)))) (-1400 (($ $ $) 21 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-3878 (($ $) 24)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3865 (($ $) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3705 (($ |#1| $) 15)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 20)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2561 (($ (-654 |#1|)) 16)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-15 -2561 ($ (-654 |#1|))) (-15 -3705 ($ |#1| $)))) (-860)) (T -127))
-((-2561 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))) (-3705 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-15 -2561 ($ (-654 |#1|))) (-15 -3705 ($ |#1| $))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 30)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) 32 (|has| $ (-6 -4460)))) (-1755 (($ $ $) 36 (|has| $ (-6 -4460)))) (-1400 (($ $ $) 34 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-3878 (($ $) 23)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1590 (($ $ |#1| $) 16)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3865 (($ $) 22)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) 25)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 20)) (-3014 (($) 11)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4213 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 10 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -4213 ($ |#1|)) (-15 -4213 ($ $ |#1| $)))) (-1116)) (T -128))
-((-4213 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116)))) (-4213 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116)))))
-(-13 (-126 |#1|) (-10 -8 (-15 -4213 ($ |#1|)) (-15 -4213 ($ $ |#1| $))))
-((-2864 (((-112) $ $) NIL (|has| (-130) (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-860)))) (-4287 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-860))))) (-2786 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-130) $ (-574) (-130)) 26 (|has| $ (-6 -4460))) (((-130) $ (-1251 (-574)) (-130)) NIL (|has| $ (-6 -4460)))) (-2928 (((-781) $ (-781)) 34)) (-2173 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-3311 (($ (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4459))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-130) $ (-574) (-130)) 25 (|has| $ (-6 -4460)))) (-2400 (((-130) $ (-574)) 20)) (-1452 (((-574) (-1 (-112) (-130)) $) NIL) (((-574) (-130) $) NIL (|has| (-130) (-1116))) (((-574) (-130) $ (-574)) NIL (|has| (-130) (-1116)))) (-1871 (((-654 (-130)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-130)) 14)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 27 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-130) (-860)))) (-2470 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-860)))) (-1764 (((-654 (-130)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-2790 (((-574) $) 30 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-130) (-860)))) (-2462 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| (-130) (-1116)))) (-1602 (($ (-130) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| (-130) (-1116)))) (-2925 (((-130) $) NIL (|has| (-574) (-860)))) (-3748 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1465 (($ $ (-130)) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-130)))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-302 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116)))) (($ $ (-654 (-130)) (-654 (-130))) NIL (-12 (|has| (-130) (-317 (-130))) (|has| (-130) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-2445 (((-654 (-130)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 12)) (-2207 (((-130) $ (-574) (-130)) NIL) (((-130) $ (-574)) 23) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459))) (((-781) (-130) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-130) (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-130) (-624 (-546))))) (-2963 (($ (-654 (-130))) 46)) (-4132 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-654 $)) NIL)) (-2951 (((-972 (-130)) $) 35) (((-1175) $) 43) (((-872) $) NIL (|has| (-130) (-623 (-872))))) (-2551 (((-781) $) 18)) (-1392 (($ (-781)) 8)) (-2981 (((-112) $ $) NIL (|has| (-130) (-1116)))) (-2859 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2986 (((-112) $ $) 32 (|has| (-130) (-1116)))) (-3031 (((-112) $ $) NIL (|has| (-130) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-130) (-860)))) (-2877 (((-781) $) 15 (|has| $ (-6 -4459)))))
-(((-129) (-13 (-19 (-130)) (-623 (-972 (-130))) (-623 (-1175)) (-10 -8 (-15 -1392 ($ (-781))) (-15 -2551 ((-781) $)) (-15 -2928 ((-781) $ (-781))) (-6 -4459)))) (T -129))
-((-1392 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))) (-2928 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
-(-13 (-19 (-130)) (-623 (-972 (-130))) (-623 (-1175)) (-10 -8 (-15 -1392 ($ (-781))) (-15 -2551 ((-781) $)) (-15 -2928 ((-781) $ (-781))) (-6 -4459)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 26)) (-1430 (($) NIL T CONST)) (-2835 (($) 35)) (-3634 (($ $ $) NIL) (($) 24 T CONST)) (-2976 (($ $ $) NIL) (($) 25 T CONST)) (-3507 (((-935) $) 33)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) 31)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3006 (($ (-781)) 8)) (-1762 (($ $ $) 37)) (-1750 (($ $ $) 36)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) 22)) (-3020 (((-112) $ $) 20)) (-2986 (((-112) $ $) 18)) (-3031 (((-112) $ $) 21)) (-3009 (((-112) $ $) 19)))
-(((-130) (-13 (-854) (-500 (-145)) (-10 -8 (-15 -3006 ($ (-781))) (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))) (T -130))
-((-3006 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))) (-1750 (*1 *1 *1 *1) (-5 *1 (-130))) (-1762 (*1 *1 *1 *1) (-5 *1 (-130))) (-1430 (*1 *1) (-5 *1 (-130))))
-(-13 (-854) (-500 (-145)) (-10 -8 (-15 -3006 ($ (-781))) (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-3907 (*1 *1 *1 *1) (-4 *1 (-124))) (-4232 (*1 *1 *1 *1) (-4 *1 (-124))) (-2119 (*1 *1 *1 *1) (-4 *1 (-124))))
+(-13 (-862) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -3907 ($ $ $)) (-15 -4232 ($ $ $)) (-15 -2119 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-862) . T) ((-1118) . T) ((-1236) . T))
+((-2466 (($ (-1 |#2| |#2|) $) 22)) (-3162 (($ $) 16)) (-2882 (((-783) $) 25)))
+(((-125 |#1| |#2|) (-10 -8 (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3162 (|#1| |#1|))) (-126 |#2|) (-1118)) (T -125))
+NIL
+(-10 -8 (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3162 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-2092 (($ $ $) 53 (|has| $ (-6 -4462)))) (-2543 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-3883 (($ $) 58)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-1592 (($ $ |#1| $) 61)) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-3870 (($ $) 60)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1785 (((-576) $ $) 45)) (-1558 (((-112) $) 47)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-126 |#1|) (-141) (-1118)) (T -126))
+((-1592 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1118)))))
+(-13 (-120 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -1592 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-120 |#1|) . T) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) 18)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) 22 (|has| $ (-6 -4462)))) (-2092 (($ $ $) 23 (|has| $ (-6 -4462)))) (-2543 (($ $ $) 21 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-3883 (($ $) 24)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1592 (($ $ |#1| $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3870 (($ $) NIL)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2504 (($ |#1| $) 15)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 20)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4127 (($ (-656 |#1|)) 16)) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -4127 ($ (-656 |#1|))) (-15 -2504 ($ |#1| $)))) (-862)) (T -127))
+((-4127 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -4127 ($ (-656 |#1|))) (-15 -2504 ($ |#1| $))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) 30)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) 32 (|has| $ (-6 -4462)))) (-2092 (($ $ $) 36 (|has| $ (-6 -4462)))) (-2543 (($ $ $) 34 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-3883 (($ $) 23)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1592 (($ $ |#1| $) 16)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3870 (($ $) 22)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) 25)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 20)) (-2953 (($) 11)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3854 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 10 (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3854 ($ |#1|)) (-15 -3854 ($ $ |#1| $)))) (-1118)) (T -128))
+((-3854 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118)))) (-3854 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118)))))
+(-13 (-126 |#1|) (-10 -8 (-15 -3854 ($ |#1|)) (-15 -3854 ($ $ |#1| $))))
+((-2869 (((-112) $ $) NIL (|has| (-130) (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-3330 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-862))))) (-2791 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4462))) (((-130) $ (-1253 (-576)) (-130)) NIL (|has| $ (-6 -4462)))) (-3400 (((-783) $ (-783)) 34)) (-2174 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-3316 (($ (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4461))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2481 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4462)))) (-2405 (((-130) $ (-576)) 20)) (-1454 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1118))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1118)))) (-1873 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) (-130)) 14)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 27 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| (-130) (-862)))) (-1383 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-2186 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-1475 (((-576) $) 30 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-130) (-862)))) (-2466 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| (-130) (-1118)))) (-1604 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| (-130) (-1118)))) (-2930 (((-130) $) NIL (|has| (-576) (-862)))) (-2922 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4211 (($ $ (-130)) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-4274 (((-656 (-130)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 12)) (-2209 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1253 (-576))) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-2968 (($ (-656 (-130))) 46)) (-4136 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-2956 (((-974 (-130)) $) 35) (((-1177) $) 43) (((-874) $) NIL (|has| (-130) (-625 (-874))))) (-4036 (((-783) $) 18)) (-3268 (($ (-783)) 8)) (-2617 (((-112) $ $) NIL (|has| (-130) (-1118)))) (-3972 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2991 (((-112) $ $) 32 (|has| (-130) (-1118)))) (-3034 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2882 (((-783) $) 15 (|has| $ (-6 -4461)))))
+(((-129) (-13 (-19 (-130)) (-625 (-974 (-130))) (-625 (-1177)) (-10 -8 (-15 -3268 ($ (-783))) (-15 -4036 ((-783) $)) (-15 -3400 ((-783) $ (-783))) (-6 -4461)))) (T -129))
+((-3268 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3400 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(-13 (-19 (-130)) (-625 (-974 (-130))) (-625 (-1177)) (-10 -8 (-15 -3268 ($ (-783))) (-15 -4036 ((-783) $)) (-15 -3400 ((-783) $ (-783))) (-6 -4461)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) 26)) (-4335 (($) NIL T CONST)) (-2840 (($) 35)) (-3639 (($ $ $) NIL) (($) 24 T CONST)) (-2571 (($ $ $) NIL) (($) 25 T CONST)) (-4261 (((-937) $) 33)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) 31)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3010 (($ (-783)) 8)) (-1764 (($ $ $) 37)) (-1753 (($ $ $) 36)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) 22)) (-3024 (((-112) $ $) 20)) (-2991 (((-112) $ $) 18)) (-3034 (((-112) $ $) 21)) (-3014 (((-112) $ $) 19)))
+(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -3010 ($ (-783))) (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))) (T -130))
+((-3010 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-1753 (*1 *1 *1 *1) (-5 *1 (-130))) (-1764 (*1 *1 *1 *1) (-5 *1 (-130))) (-4335 (*1 *1) (-5 *1 (-130))))
+(-13 (-856) (-502 (-145)) (-10 -8 (-15 -3010 ($ (-783))) (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%ilt| |#1| 256))
-((-2864 (((-112) $ $) NIL)) (-3650 (($) 6 T CONST)) (-1551 (($) 7 T CONST)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 14)) (-4410 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 10)))
-(((-131) (-13 (-1116) (-10 -8 (-15 -1551 ($) -1714) (-15 -4410 ($) -1714) (-15 -3650 ($) -1714)))) (T -131))
-((-1551 (*1 *1) (-5 *1 (-131))) (-4410 (*1 *1) (-5 *1 (-131))) (-3650 (*1 *1) (-5 *1 (-131))))
-(-13 (-1116) (-10 -8 (-15 -1551 ($) -1714) (-15 -4410 ($) -1714) (-15 -3650 ($) -1714)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16)))
+((-2869 (((-112) $ $) NIL)) (-3261 (($) 6 T CONST)) (-3865 (($) 7 T CONST)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 14)) (-2048 (($) 8 T CONST)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 10)))
+(((-131) (-13 (-1118) (-10 -8 (-15 -3865 ($) -1716) (-15 -2048 ($) -1716) (-15 -3261 ($) -1716)))) (T -131))
+((-3865 (*1 *1) (-5 *1 (-131))) (-2048 (*1 *1) (-5 *1 (-131))) (-3261 (*1 *1) (-5 *1 (-131))))
+(-13 (-1118) (-10 -8 (-15 -3865 ($) -1716) (-15 -2048 ($) -1716) (-15 -3261 ($) -1716)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16)))
(((-132) (-141)) (T -132))
-((-3290 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-23) (-10 -8 (-15 -3290 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-2625 (((-1289) $ (-781)) 14)) (-1452 (((-781) $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
+((-3798 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-23) (-10 -8 (-15 -3798 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3564 (((-1291) $ (-783)) 14)) (-1454 (((-783) $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
(((-133) (-141)) (T -133))
-((-1452 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781)))) (-2625 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1289)))))
-(-13 (-1116) (-10 -8 (-15 -1452 ((-781) $)) (-15 -2625 ((-1289) $ (-781)))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-654 (-1151)) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-134) (-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $))))) (T -134))
-((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-134)))))
-(-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $))))
-((-2864 (((-112) $ $) 49)) (-4311 (((-112) $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-781) "failed") $) 58)) (-2216 (((-781) $) 56)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) 37)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1810 (((-112)) 59)) (-1657 (((-112) (-112)) 61)) (-3272 (((-112) $) 30)) (-1527 (((-112) $) 55)) (-2951 (((-872) $) 28) (($ (-781)) 20)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 18 T CONST)) (-2153 (($) 19 T CONST)) (-3743 (($ (-781)) 21)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) 40)) (-2986 (((-112) $ $) 32)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 35)) (-3090 (((-3 $ "failed") $ $) 42)) (-3074 (($ $ $) 38)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL) (($ $ $) 54)) (* (($ (-781) $) 48) (($ (-935) $) NIL) (($ $ $) 45)))
-(((-135) (-13 (-860) (-23) (-736) (-1054 (-781)) (-10 -8 (-6 (-4461 "*")) (-15 -3090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3743 ($ (-781))) (-15 -3272 ((-112) $)) (-15 -1527 ((-112) $)) (-15 -1810 ((-112))) (-15 -1657 ((-112) (-112)))))) (T -135))
-((-3090 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1810 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(-13 (-860) (-23) (-736) (-1054 (-781)) (-10 -8 (-6 (-4461 "*")) (-15 -3090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3743 ($ (-781))) (-15 -3272 ((-112) $)) (-15 -1527 ((-112) $)) (-15 -1810 ((-112))) (-15 -1657 ((-112) (-112)))))
-((-1344 (((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1785 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
-(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1785 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-574) (-781) (-174) (-174)) (T -136))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574)) (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1344 ((-137 |#1| |#2| |#4|) (-654 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1785 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
-((-2864 (((-112) $ $) NIL)) (-3631 (($ (-654 |#3|)) 61)) (-2622 (($ $) 123) (($ $ (-574) (-574)) 122)) (-1430 (($) 20)) (-1704 (((-3 |#3| "failed") $) 83)) (-2216 ((|#3| $) NIL)) (-2797 (($ $ (-654 (-574))) 124)) (-1329 (((-654 |#3|) $) 56)) (-3558 (((-781) $) 66)) (-4118 (($ $ $) 117)) (-3904 (($) 65)) (-4420 (((-1175) $) NIL)) (-2042 (($) 19)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ (-574)) 69) ((|#3| $) 68) ((|#3| $ (-574) (-574)) 70) ((|#3| $ (-574) (-574) (-574)) 71) ((|#3| $ (-574) (-574) (-574) (-574)) 72) ((|#3| $ (-654 (-574))) 73)) (-3735 (((-781) $) 67)) (-2066 (($ $ (-574) $ (-574)) 118) (($ $ (-574) (-574)) 120)) (-2951 (((-872) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1158 |#2| |#3|)) 102) (($ (-654 |#3|)) 74) (($ (-654 $)) 80)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 93 T CONST)) (-2153 (($) 94 T CONST)) (-2986 (((-112) $ $) 104)) (-3090 (($ $) 110) (($ $ $) 108)) (-3074 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-574)) 113) (($ (-574) $) 112) (($ $ $) 119)))
-(((-137 |#1| |#2| |#3|) (-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2951 ($ (-246 |#2| |#3|))) (-15 -2951 ($ (-1158 |#2| |#3|))) (-15 -2951 ($ (-654 |#3|))) (-15 -2951 ($ (-654 $))) (-15 -3558 ((-781) $)) (-15 -2207 (|#3| $)) (-15 -2207 (|#3| $ (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-654 (-574)))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 -2066 ($ $ (-574) $ (-574))) (-15 -2066 ($ $ (-574) (-574))) (-15 -2622 ($ $)) (-15 -2622 ($ $ (-574) (-574))) (-15 -2797 ($ $ (-654 (-574)))) (-15 -2042 ($)) (-15 -3904 ($)) (-15 -1329 ((-654 |#3|) $)) (-15 -3631 ($ (-654 |#3|))) (-15 -1430 ($)))) (-574) (-781) (-174)) (T -137))
-((-4118 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 *2) (-4 *5 (-174)))) (-2207 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574)) (-14 *4 (-781)))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-781)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-574)) (-14 *5 (-781)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2066 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2066 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2622 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-2622 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-781)) (-4 *5 (-174)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2042 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-3904 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574)) (-14 *4 (-781)))) (-1430 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781)) (-4 *4 (-174)))))
-(-13 (-475 |#3| (-781)) (-480 (-574) (-781)) (-294 (-574) |#3|) (-10 -8 (-15 -2951 ($ (-246 |#2| |#3|))) (-15 -2951 ($ (-1158 |#2| |#3|))) (-15 -2951 ($ (-654 |#3|))) (-15 -2951 ($ (-654 $))) (-15 -3558 ((-781) $)) (-15 -2207 (|#3| $)) (-15 -2207 (|#3| $ (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-574) (-574) (-574) (-574))) (-15 -2207 (|#3| $ (-654 (-574)))) (-15 -4118 ($ $ $)) (-15 * ($ $ $)) (-15 -2066 ($ $ (-574) $ (-574))) (-15 -2066 ($ $ (-574) (-574))) (-15 -2622 ($ $)) (-15 -2622 ($ $ (-574) (-574))) (-15 -2797 ($ $ (-654 (-574)))) (-15 -2042 ($)) (-15 -3904 ($)) (-15 -1329 ((-654 |#3|) $)) (-15 -3631 ($ (-654 |#3|))) (-15 -1430 ($))))
-((-2864 (((-112) $ $) NIL)) (-1816 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-138) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))) (T -138))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138)))))
-(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-4270 (((-188) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-654 (-1151)) $) 13)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-139) (-13 (-1099) (-10 -8 (-15 -4270 ((-188) $)) (-15 -2051 ((-654 (-1151)) $))))) (T -139))
-((-4270 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-139)))))
-(-13 (-1099) (-10 -8 (-15 -4270 ((-188) $)) (-15 -2051 ((-654 (-1151)) $))))
-((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) NIL)) (-4420 (((-1175) $) NIL)) (-4270 (((-188) $) NIL)) (-1575 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-2229 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL) (((-189) $) 6)) (-2981 (((-112) $ $) NIL)) (-4069 (((-55) $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-140) (-13 (-187) (-623 (-189)))) (T -140))
-NIL
-(-13 (-187) (-623 (-189)))
-((-1332 (((-654 (-185 (-140))) $) 13)) (-1320 (((-654 (-185 (-140))) $) 14)) (-4139 (((-654 (-848)) $) 10)) (-1972 (((-140) $) 7)) (-2951 (((-872) $) 16)))
-(((-141) (-13 (-623 (-872)) (-10 -8 (-15 -1972 ((-140) $)) (-15 -4139 ((-654 (-848)) $)) (-15 -1332 ((-654 (-185 (-140))) $)) (-15 -1320 ((-654 (-185 (-140))) $))))) (T -141))
-((-1972 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -1972 ((-140) $)) (-15 -4139 ((-654 (-848)) $)) (-15 -1332 ((-654 (-185 (-140))) $)) (-15 -1320 ((-654 (-185 (-140))) $))))
-((-2864 (((-112) $ $) NIL)) (-4385 (($) 17 T CONST)) (-2791 (($) NIL (|has| (-145) (-377)))) (-4353 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3421 (($ $ $) NIL)) (-3089 (((-112) $ $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| (-145) (-377)))) (-1515 (($) NIL) (($ (-654 (-145))) NIL)) (-3155 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2175 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (($ (-145) $) 60 (|has| $ (-6 -4459)))) (-3311 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2835 (($) NIL (|has| (-145) (-377)))) (-1871 (((-654 (-145)) $) 69 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-3634 (((-145) $) NIL (|has| (-145) (-860)))) (-1764 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2976 (((-145) $) NIL (|has| (-145) (-860)))) (-2462 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 64)) (-2230 (($) 18 T CONST)) (-3507 (((-935) $) NIL (|has| (-145) (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3655 (($ $ $) 30)) (-1759 (((-145) $) 61)) (-3705 (($ (-145) $) 59)) (-2591 (($ (-935)) NIL (|has| (-145) (-377)))) (-4153 (($) 16 T CONST)) (-3940 (((-1136) $) NIL)) (-3748 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2098 (((-145) $) 62)) (-1731 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 57)) (-1985 (($) 15 T CONST)) (-3848 (($ $ $) 32) (($ $ (-145)) NIL)) (-1734 (($ (-654 (-145))) NIL) (($) NIL)) (-3949 (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-1175) $) 37) (((-546) $) NIL (|has| (-145) (-624 (-546)))) (((-654 (-145)) $) 35)) (-2963 (($ (-654 (-145))) NIL)) (-2351 (($ $) 33 (|has| (-145) (-377)))) (-2951 (((-872) $) 53)) (-4143 (($ (-1175)) 14) (($ (-654 (-145))) 50)) (-1561 (((-781) $) NIL)) (-4269 (($) 58) (($ (-654 (-145))) NIL)) (-2981 (((-112) $ $) NIL)) (-3703 (($ (-654 (-145))) NIL)) (-2859 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-4416 (($) 21 T CONST)) (-3434 (($) 20 T CONST)) (-2986 (((-112) $ $) 24)) (-2877 (((-781) $) 56 (|has| $ (-6 -4459)))))
-(((-142) (-13 (-1116) (-624 (-1175)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -4143 ($ (-1175))) (-15 -4143 ($ (-654 (-145)))) (-15 -1985 ($) -1714) (-15 -4153 ($) -1714) (-15 -4385 ($) -1714) (-15 -2230 ($) -1714) (-15 -3434 ($) -1714) (-15 -4416 ($) -1714)))) (T -142))
-((-4143 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-142)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142)))) (-1985 (*1 *1) (-5 *1 (-142))) (-4153 (*1 *1) (-5 *1 (-142))) (-4385 (*1 *1) (-5 *1 (-142))) (-2230 (*1 *1) (-5 *1 (-142))) (-3434 (*1 *1) (-5 *1 (-142))) (-4416 (*1 *1) (-5 *1 (-142))))
-(-13 (-1116) (-624 (-1175)) (-435 (-145)) (-624 (-654 (-145))) (-10 -8 (-15 -4143 ($ (-1175))) (-15 -4143 ($ (-654 (-145)))) (-15 -1985 ($) -1714) (-15 -4153 ($) -1714) (-15 -4385 ($) -1714) (-15 -2230 ($) -1714) (-15 -3434 ($) -1714) (-15 -4416 ($) -1714)))
-((-2212 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3994 ((|#1| |#3|) 9)) (-2191 ((|#3| |#3|) 15)))
-(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3994 (|#1| |#3|)) (-15 -2191 (|#3| |#3|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1008 |#1|) (-382 |#2|)) (T -143))
-((-2212 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-382 *5)))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-382 *4)))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-382 *4)))))
-(-10 -7 (-15 -3994 (|#1| |#3|)) (-15 -2191 (|#3| |#3|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1371 (($ $ $) 8)) (-2035 (($ $) 7)) (-3751 (($ $ $) 6)))
+((-1454 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291)))))
+(-13 (-1118) (-10 -8 (-15 -1454 ((-783) $)) (-15 -3564 ((-1291) $ (-783)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-656 (-1153)) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-134) (-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $))))) (T -134))
+((-2053 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-134)))))
+(-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $))))
+((-2869 (((-112) $ $) 49)) (-3549 (((-112) $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-783) "failed") $) 58)) (-2216 (((-783) $) 56)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) 37)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1393 (((-112)) 59)) (-2372 (((-112) (-112)) 61)) (-3610 (((-112) $) 30)) (-3627 (((-112) $) 55)) (-2956 (((-874) $) 28) (($ (-783)) 20)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 18 T CONST)) (-2155 (($) 19 T CONST)) (-2865 (($ (-783)) 21)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) 40)) (-2991 (((-112) $ $) 32)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 35)) (-3096 (((-3 $ "failed") $ $) 42)) (-3081 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-937) $) NIL) (($ $ $) 45)))
+(((-135) (-13 (-862) (-23) (-738) (-1056 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -3096 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2865 ($ (-783))) (-15 -3610 ((-112) $)) (-15 -3627 ((-112) $)) (-15 -1393 ((-112))) (-15 -2372 ((-112) (-112)))))) (T -135))
+((-3096 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2865 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1393 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(-13 (-862) (-23) (-738) (-1056 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -3096 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2865 ($ (-783))) (-15 -3610 ((-112) $)) (-15 -3627 ((-112) $)) (-15 -1393 ((-112))) (-15 -2372 ((-112) (-112)))))
+((-1346 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1787 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
+(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1787 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1346 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1787 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
+((-2869 (((-112) $ $) NIL)) (-3065 (($ (-656 |#3|)) 61)) (-3548 (($ $) 123) (($ $ (-576) (-576)) 122)) (-4335 (($) 20)) (-1706 (((-3 |#3| "failed") $) 83)) (-2216 ((|#3| $) NIL)) (-1543 (($ $ (-656 (-576))) 124)) (-1331 (((-656 |#3|) $) 56)) (-3563 (((-783) $) 66)) (-2230 (($ $ $) 117)) (-3829 (($) 65)) (-2148 (((-1177) $) NIL)) (-1845 (($) 19)) (-3945 (((-1138) $) NIL)) (-2209 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-2782 (((-783) $) 67)) (-2065 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-2956 (((-874) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1160 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 93 T CONST)) (-2155 (($) 94 T CONST)) (-2991 (((-112) $ $) 104)) (-3096 (($ $) 110) (($ $ $) 108)) (-3081 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119)))
+(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2956 ($ (-246 |#2| |#3|))) (-15 -2956 ($ (-1160 |#2| |#3|))) (-15 -2956 ($ (-656 |#3|))) (-15 -2956 ($ (-656 $))) (-15 -3563 ((-783) $)) (-15 -2209 (|#3| $)) (-15 -2209 (|#3| $ (-576) (-576))) (-15 -2209 (|#3| $ (-576) (-576) (-576))) (-15 -2209 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2209 (|#3| $ (-656 (-576)))) (-15 -2230 ($ $ $)) (-15 * ($ $ $)) (-15 -2065 ($ $ (-576) $ (-576))) (-15 -2065 ($ $ (-576) (-576))) (-15 -3548 ($ $)) (-15 -3548 ($ $ (-576) (-576))) (-15 -1543 ($ $ (-656 (-576)))) (-15 -1845 ($)) (-15 -3829 ($)) (-15 -1331 ((-656 |#3|) $)) (-15 -3065 ($ (-656 |#3|))) (-15 -4335 ($)))) (-576) (-783) (-174)) (T -137))
+((-2230 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2209 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2209 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2065 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2065 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3548 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3548 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1845 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3829 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3065 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4335 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))))
+(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2956 ($ (-246 |#2| |#3|))) (-15 -2956 ($ (-1160 |#2| |#3|))) (-15 -2956 ($ (-656 |#3|))) (-15 -2956 ($ (-656 $))) (-15 -3563 ((-783) $)) (-15 -2209 (|#3| $)) (-15 -2209 (|#3| $ (-576) (-576))) (-15 -2209 (|#3| $ (-576) (-576) (-576))) (-15 -2209 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2209 (|#3| $ (-656 (-576)))) (-15 -2230 ($ $ $)) (-15 * ($ $ $)) (-15 -2065 ($ $ (-576) $ (-576))) (-15 -2065 ($ $ (-576) (-576))) (-15 -3548 ($ $)) (-15 -3548 ($ $ (-576) (-576))) (-15 -1543 ($ $ (-656 (-576)))) (-15 -1845 ($)) (-15 -3829 ($)) (-15 -1331 ((-656 |#3|) $)) (-15 -3065 ($ (-656 |#3|))) (-15 -4335 ($))))
+((-2869 (((-112) $ $) NIL)) (-1818 (((-1153) $) 11)) (-1806 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-138) (-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))) (T -138))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138)))))
+(-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-4272 (((-188) $) 10)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-656 (-1153)) $) 13)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-139) (-13 (-1101) (-10 -8 (-15 -4272 ((-188) $)) (-15 -2053 ((-656 (-1153)) $))))) (T -139))
+((-4272 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-139)))))
+(-13 (-1101) (-10 -8 (-15 -4272 ((-188) $)) (-15 -2053 ((-656 (-1153)) $))))
+((-2869 (((-112) $ $) NIL)) (-1725 (((-656 (-877)) $) NIL)) (-2041 (((-518) $) NIL)) (-2148 (((-1177) $) NIL)) (-4272 (((-188) $) NIL)) (-2881 (((-112) $ (-518)) NIL)) (-3945 (((-1138) $) NIL)) (-3005 (((-656 (-112)) $) NIL)) (-2956 (((-874) $) NIL) (((-189) $) 6)) (-2617 (((-112) $ $) NIL)) (-1755 (((-55) $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-140) (-13 (-187) (-625 (-189)))) (T -140))
+NIL
+(-13 (-187) (-625 (-189)))
+((-1621 (((-656 (-185 (-140))) $) 13)) (-1322 (((-656 (-185 (-140))) $) 14)) (-4323 (((-656 (-850)) $) 10)) (-1974 (((-140) $) 7)) (-2956 (((-874) $) 16)))
+(((-141) (-13 (-625 (-874)) (-10 -8 (-15 -1974 ((-140) $)) (-15 -4323 ((-656 (-850)) $)) (-15 -1621 ((-656 (-185 (-140))) $)) (-15 -1322 ((-656 (-185 (-140))) $))))) (T -141))
+((-1974 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -1974 ((-140) $)) (-15 -4323 ((-656 (-850)) $)) (-15 -1621 ((-656 (-185 (-140))) $)) (-15 -1322 ((-656 (-185 (-140))) $))))
+((-2869 (((-112) $ $) NIL)) (-1805 (($) 17 T CONST)) (-1485 (($) NIL (|has| (-145) (-379)))) (-4356 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2711 (($ $ $) NIL)) (-2297 (((-112) $ $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| (-145) (-379)))) (-1517 (($) NIL) (($ (-656 (-145))) NIL)) (-1707 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3710 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) 60 (|has| $ (-6 -4461)))) (-3316 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2887 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2840 (($) NIL (|has| (-145) (-379)))) (-1873 (((-656 (-145)) $) 69 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3639 (((-145) $) NIL (|has| (-145) (-862)))) (-2186 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2571 (((-145) $) NIL (|has| (-145) (-862)))) (-2466 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-145) (-145)) $) 64)) (-3019 (($) 18 T CONST)) (-4261 (((-937) $) NIL (|has| (-145) (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3318 (($ $ $) 30)) (-2138 (((-145) $) 61)) (-2504 (($ (-145) $) 59)) (-2596 (($ (-937)) NIL (|has| (-145) (-379)))) (-1336 (($) 16 T CONST)) (-3945 (((-1138) $) NIL)) (-2922 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4256 (((-145) $) 62)) (-1875 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 57)) (-2560 (($) 15 T CONST)) (-1403 (($ $ $) 32) (($ $ (-145)) NIL)) (-1904 (($ (-656 (-145))) NIL) (($) NIL)) (-3954 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-1177) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-2968 (($ (-656 (-145))) NIL)) (-2807 (($ $) 33 (|has| (-145) (-379)))) (-2956 (((-874) $) 53)) (-4357 (($ (-1177)) 14) (($ (-656 (-145))) 50)) (-3969 (((-783) $) NIL)) (-4271 (($) 58) (($ (-656 (-145))) NIL)) (-2617 (((-112) $ $) NIL)) (-2478 (($ (-656 (-145))) NIL)) (-3972 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2101 (($) 21 T CONST)) (-2857 (($) 20 T CONST)) (-2991 (((-112) $ $) 24)) (-2882 (((-783) $) 56 (|has| $ (-6 -4461)))))
+(((-142) (-13 (-1118) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4357 ($ (-1177))) (-15 -4357 ($ (-656 (-145)))) (-15 -2560 ($) -1716) (-15 -1336 ($) -1716) (-15 -1805 ($) -1716) (-15 -3019 ($) -1716) (-15 -2857 ($) -1716) (-15 -2101 ($) -1716)))) (T -142))
+((-4357 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142)))) (-4357 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-2560 (*1 *1) (-5 *1 (-142))) (-1336 (*1 *1) (-5 *1 (-142))) (-1805 (*1 *1) (-5 *1 (-142))) (-3019 (*1 *1) (-5 *1 (-142))) (-2857 (*1 *1) (-5 *1 (-142))) (-2101 (*1 *1) (-5 *1 (-142))))
+(-13 (-1118) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -4357 ($ (-1177))) (-15 -4357 ($ (-656 (-145)))) (-15 -2560 ($) -1716) (-15 -1336 ($) -1716) (-15 -1805 ($) -1716) (-15 -3019 ($) -1716) (-15 -2857 ($) -1716) (-15 -2101 ($) -1716)))
+((-4052 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3525 ((|#1| |#3|) 9)) (-3867 ((|#3| |#3|) 15)))
+(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3525 (|#1| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-384 |#2|)) (T -143))
+((-4052 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4)))))
+(-10 -7 (-15 -3525 (|#1| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2636 (($ $ $) 8)) (-1786 (($ $) 7)) (-2959 (($ $ $) 6)))
(((-144) (-141)) (T -144))
-((-1371 (*1 *1 *1 *1) (-4 *1 (-144))) (-2035 (*1 *1 *1) (-4 *1 (-144))) (-3751 (*1 *1 *1 *1) (-4 *1 (-144))))
-(-13 (-10 -8 (-15 -3751 ($ $ $)) (-15 -2035 ($ $)) (-15 -1371 ($ $ $))))
-((-2864 (((-112) $ $) NIL)) (-1444 (((-112) $) 39)) (-4385 (($ $) 55)) (-2453 (($) 26 T CONST)) (-1496 (((-781)) 13)) (-2835 (($) 25)) (-1391 (($) 27 T CONST)) (-3998 (((-781) $) 21)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-4177 (((-112) $) 41)) (-2230 (($ $) 56)) (-3507 (((-935) $) 23)) (-4420 (((-1175) $) 49)) (-2591 (($ (-935)) 20)) (-4330 (((-112) $) 37)) (-3940 (((-1136) $) NIL)) (-3034 (($) 28 T CONST)) (-1826 (((-112) $) 35)) (-2951 (((-872) $) 30)) (-2335 (($ (-781)) 19) (($ (-1175)) 54)) (-2981 (((-112) $ $) NIL)) (-2717 (((-112) $) 45)) (-2086 (((-112) $) 43)) (-3042 (((-112) $ $) 11)) (-3020 (((-112) $ $) 9)) (-2986 (((-112) $ $) 7)) (-3031 (((-112) $ $) 10)) (-3009 (((-112) $ $) 8)))
-(((-145) (-13 (-854) (-10 -8 (-15 -3998 ((-781) $)) (-15 -2335 ($ (-781))) (-15 -2335 ($ (-1175))) (-15 -2453 ($) -1714) (-15 -1391 ($) -1714) (-15 -3034 ($) -1714) (-15 -4385 ($ $)) (-15 -2230 ($ $)) (-15 -1826 ((-112) $)) (-15 -4330 ((-112) $)) (-15 -2086 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -4177 ((-112) $)) (-15 -2717 ((-112) $))))) (T -145))
-((-3998 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-145)))) (-2453 (*1 *1) (-5 *1 (-145))) (-1391 (*1 *1) (-5 *1 (-145))) (-3034 (*1 *1) (-5 *1 (-145))) (-4385 (*1 *1 *1) (-5 *1 (-145))) (-2230 (*1 *1 *1) (-5 *1 (-145))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(-13 (-854) (-10 -8 (-15 -3998 ((-781) $)) (-15 -2335 ($ (-781))) (-15 -2335 ($ (-1175))) (-15 -2453 ($) -1714) (-15 -1391 ($) -1714) (-15 -3034 ($) -1714) (-15 -4385 ($ $)) (-15 -2230 ($ $)) (-15 -1826 ((-112) $)) (-15 -4330 ((-112) $)) (-15 -2086 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -4177 ((-112) $)) (-15 -2717 ((-112) $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-2705 (((-3 $ "failed") $) 39)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+((-2636 (*1 *1 *1 *1) (-4 *1 (-144))) (-1786 (*1 *1 *1) (-4 *1 (-144))) (-2959 (*1 *1 *1 *1) (-4 *1 (-144))))
+(-13 (-10 -8 (-15 -2959 ($ $ $)) (-15 -1786 ($ $)) (-15 -2636 ($ $ $))))
+((-2869 (((-112) $ $) NIL)) (-1373 (((-112) $) 39)) (-1805 (($ $) 55)) (-4353 (($) 26 T CONST)) (-1499 (((-783)) 13)) (-2840 (($) 25)) (-3258 (($) 27 T CONST)) (-3560 (((-783) $) 21)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-1583 (((-112) $) 41)) (-3019 (($ $) 56)) (-4261 (((-937) $) 23)) (-2148 (((-1177) $) 49)) (-2596 (($ (-937)) 20)) (-2471 (((-112) $) 37)) (-3945 (((-1138) $) NIL)) (-3032 (($) 28 T CONST)) (-1539 (((-112) $) 35)) (-2956 (((-874) $) 30)) (-2339 (($ (-783)) 19) (($ (-1177)) 54)) (-2617 (((-112) $ $) NIL)) (-1930 (((-112) $) 45)) (-2231 (((-112) $) 43)) (-3047 (((-112) $ $) 11)) (-3024 (((-112) $ $) 9)) (-2991 (((-112) $ $) 7)) (-3034 (((-112) $ $) 10)) (-3014 (((-112) $ $) 8)))
+(((-145) (-13 (-856) (-10 -8 (-15 -3560 ((-783) $)) (-15 -2339 ($ (-783))) (-15 -2339 ($ (-1177))) (-15 -4353 ($) -1716) (-15 -3258 ($) -1716) (-15 -3032 ($) -1716) (-15 -1805 ($ $)) (-15 -3019 ($ $)) (-15 -1539 ((-112) $)) (-15 -2471 ((-112) $)) (-15 -2231 ((-112) $)) (-15 -1373 ((-112) $)) (-15 -1583 ((-112) $)) (-15 -1930 ((-112) $))))) (T -145))
+((-3560 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2339 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-2339 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145)))) (-4353 (*1 *1) (-5 *1 (-145))) (-3258 (*1 *1) (-5 *1 (-145))) (-3032 (*1 *1) (-5 *1 (-145))) (-1805 (*1 *1 *1) (-5 *1 (-145))) (-3019 (*1 *1 *1) (-5 *1 (-145))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(-13 (-856) (-10 -8 (-15 -3560 ((-783) $)) (-15 -2339 ($ (-783))) (-15 -2339 ($ (-1177))) (-15 -4353 ($) -1716) (-15 -3258 ($) -1716) (-15 -3032 ($) -1716) (-15 -1805 ($ $)) (-15 -3019 ($ $)) (-15 -1539 ((-112) $)) (-15 -2471 ((-112) $)) (-15 -2231 ((-112) $)) (-15 -1373 ((-112) $)) (-15 -1583 ((-112) $)) (-15 -1930 ((-112) $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-1817 (((-3 $ "failed") $) 39)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-146) (-141)) (T -146))
-((-2705 (*1 *1 *1) (|partial| -4 *1 (-146))))
-(-13 (-1065) (-10 -8 (-15 -2705 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2451 ((|#1| (-699 |#1|) |#1|) 19)))
-(((-147 |#1|) (-10 -7 (-15 -2451 (|#1| (-699 |#1|) |#1|))) (-174)) (T -147))
-((-2451 (*1 *2 *3 *2) (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
-(-10 -7 (-15 -2451 (|#1| (-699 |#1|) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+((-1817 (*1 *1 *1) (|partial| -4 *1 (-146))))
+(-13 (-1067) (-10 -8 (-15 -1817 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-4343 ((|#1| (-701 |#1|) |#1|) 19)))
+(((-147 |#1|) (-10 -7 (-15 -4343 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147))
+((-4343 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
+(-10 -7 (-15 -4343 (|#1| (-701 |#1|) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-148) (-141)) (T -148))
NIL
-(-13 (-1065))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-3931 (((-2 (|:| -2754 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781)) 76)) (-2062 (((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|) 56)) (-2546 (((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4346 ((|#1| |#3| |#3|) 44)) (-2661 ((|#3| |#3| (-417 |#2|) (-417 |#2|)) 20)) (-1458 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|) 53)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2546 ((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2062 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -3931 ((-2 (|:| -2754 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4346 (|#1| |#3| |#3|)) (-15 -2661 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -1458 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|))) (-1238) (-1260 |#1|) (-1260 (-417 |#2|))) (T -149))
-((-1458 (*1 *2 *3 *3) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5)) (|:| |c2| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))) (-2661 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1260 *3)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1238)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *6)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1260 *3)))) (-2062 (*1 *2 *3) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -1866 (-417 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))))
-(-10 -7 (-15 -2546 ((-2 (|:| -1866 (-417 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2062 ((-3 (-2 (|:| |radicand| (-417 |#2|)) (|:| |deg| (-781))) "failed") |#3|)) (-15 -3931 ((-2 (|:| -2754 (-781)) (|:| -1866 (-417 |#2|)) (|:| |radicand| |#2|)) (-417 |#2|) (-781))) (-15 -4346 (|#1| |#3| |#3|)) (-15 -2661 (|#3| |#3| (-417 |#2|) (-417 |#2|))) (-15 -1458 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| |deg| (-781))) |#3| |#3|)))
-((-3571 (((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)) 35)))
-(((-150 |#1| |#2|) (-10 -7 (-15 -3571 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)))) (-555) (-167 |#1|)) (T -150))
-((-3571 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5)))))
-(-10 -7 (-15 -3571 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|))))
-((-2173 (($ (-1 (-112) |#2|) $) 37)) (-1573 (($ $) 44)) (-3311 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3748 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1731 (((-112) (-1 (-112) |#2|) $) 24)) (-3949 (((-781) (-1 (-112) |#2|) $) 18) (((-781) |#2| $) NIL)) (-2859 (((-112) (-1 (-112) |#2|) $) 21)) (-2877 (((-781) $) 12)))
-(((-151 |#1| |#2|) (-10 -8 (-15 -1573 (|#1| |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) (-152 |#2|) (-1234)) (T -151))
-NIL
-(-10 -8 (-15 -1573 (|#1| |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-2173 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-1573 (($ $) 42 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459))) (($ |#1| $) 43 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 41 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 50)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-152 |#1|) (-141) (-1234)) (T -152))
-((-2963 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-152 *3)))) (-3748 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-2882 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-2882 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) (-4 *3 (-1234)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3)) (-4 *3 (-1234)))) (-2882 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)))) (-3311 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-1573 (*1 *1 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))))
-(-13 (-499 |t#1|) (-10 -8 (-15 -2963 ($ (-654 |t#1|))) (-15 -3748 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3311 ($ (-1 (-112) |t#1|) $)) (-15 -2173 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -2882 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3311 ($ |t#1| $)) (-15 -1573 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) 111)) (-3943 (((-112) $) NIL)) (-4328 (($ |#2| (-654 (-935))) 71)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3884 (($ (-935)) 57)) (-2732 (((-135)) 23)) (-2951 (((-872) $) 86) (($ (-574)) 53) (($ |#2|) 54)) (-1788 ((|#2| $ (-654 (-935))) 74)) (-3070 (((-781)) 20 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 47 T CONST)) (-2153 (($) 51 T CONST)) (-2986 (((-112) $ $) 33)) (-3099 (($ $ |#2|) NIL)) (-3090 (($ $) 42) (($ $ $) 40)) (-3074 (($ $ $) 38)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
-(((-153 |#1| |#2| |#3|) (-13 (-1065) (-38 |#2|) (-1291 |#2|) (-10 -8 (-15 -3884 ($ (-935))) (-15 -4328 ($ |#2| (-654 (-935)))) (-15 -1788 (|#2| $ (-654 (-935)))) (-15 -3612 ((-3 $ "failed") $)))) (-935) (-372) (-1009 |#1| |#2|)) (T -153))
-((-3612 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-935)) (-4 *3 (-372)) (-14 *4 (-1009 *2 *3)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-372)) (-14 *5 (-1009 *3 *4)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935)) (-4 *2 (-372)) (-14 *5 (-1009 *4 *2)))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-935))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935)) (-14 *5 (-1009 *4 *2)))))
-(-13 (-1065) (-38 |#2|) (-1291 |#2|) (-10 -8 (-15 -3884 ($ (-935))) (-15 -4328 ($ |#2| (-654 (-935)))) (-15 -1788 (|#2| $ (-654 (-935)))) (-15 -3612 ((-3 $ "failed") $))))
-((-2264 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-4169 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574))) 95) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941)) 96)) (-3442 (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227))))) 99) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227)))) 98) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574))) 90) (((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941)) 91)))
-(((-154) (-10 -7 (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -4169 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -4169 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -2264 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227))))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))))))) (T -154))
-((-3442 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 (-227))))))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)) (-5 *3 (-654 (-957 (-227)))))) (-2264 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 *4)))) (|:| |xValues| (-1110 *4)) (|:| |yValues| (-1110 *4)))) (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 *4)))))) (-4169 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-3442 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574))) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227))))) (-5 *1 (-154)))))
-(-10 -7 (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -4169 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941))) (-15 -4169 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-941) (-417 (-574)) (-417 (-574)))) (-15 -2264 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-957 (-227))))) (-15 -3442 ((-2 (|:| |brans| (-654 (-654 (-957 (-227))))) (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))) (-654 (-654 (-957 (-227)))))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1508 (((-654 (-1151)) $) 20)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 9)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-155) (-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2051 ((-1151) $))))) (T -155))
-((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-155)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-155)))))
-(-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2051 ((-1151) $))))
-((-2259 (((-654 (-171 |#2|)) |#1| |#2|) 50)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -2259 ((-654 (-171 |#2|)) |#1| |#2|))) (-1260 (-171 (-574))) (-13 (-372) (-858))) (T -156))
-((-2259 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1260 (-171 (-574)))) (-4 *4 (-13 (-372) (-858))))))
-(-10 -7 (-15 -2259 ((-654 (-171 |#2|)) |#1| |#2|)))
-((-2864 (((-112) $ $) NIL)) (-1816 (((-1233) $) 12)) (-1804 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-157) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1233) $))))) (T -157))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-157)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-157)))))
-(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1233) $))))
-((-2864 (((-112) $ $) NIL)) (-3595 (($) 41)) (-2599 (($) 40)) (-3808 (((-935)) 46)) (-4420 (((-1175) $) NIL)) (-1646 (((-574) $) 44)) (-3940 (((-1136) $) NIL)) (-3886 (($) 42)) (-4393 (($ (-574)) 47)) (-2951 (((-872) $) 53)) (-4246 (($) 43)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 38)) (-3074 (($ $ $) 35)) (* (($ (-935) $) 45) (($ (-227) $) 11)))
-(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-935) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -2599 ($)) (-15 -3595 ($)) (-15 -3886 ($)) (-15 -4246 ($)) (-15 -1646 ((-574) $)) (-15 -3808 ((-935))) (-15 -4393 ($ (-574)))))) (T -158))
-((-3074 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2599 (*1 *1) (-5 *1 (-158))) (-3595 (*1 *1) (-5 *1 (-158))) (-3886 (*1 *1) (-5 *1 (-158))) (-4246 (*1 *1) (-5 *1 (-158))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158)))) (-3808 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-158)))) (-4393 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-935) $)) (-15 * ($ (-227) $)) (-15 -3074 ($ $ $)) (-15 -2599 ($)) (-15 -3595 ($)) (-15 -3886 ($)) (-15 -4246 ($)) (-15 -1646 ((-574) $)) (-15 -3808 ((-935))) (-15 -4393 ($ (-574)))))
-((-1856 ((|#2| |#2| (-1108 |#2|)) 98) ((|#2| |#2| (-1193)) 75)) (-4118 ((|#2| |#2| (-1108 |#2|)) 97) ((|#2| |#2| (-1193)) 74)) (-1371 ((|#2| |#2| |#2|) 25)) (-4150 (((-115) (-115)) 111)) (-3797 ((|#2| (-654 |#2|)) 130)) (-1596 ((|#2| (-654 |#2|)) 151)) (-3713 ((|#2| (-654 |#2|)) 138)) (-3509 ((|#2| |#2|) 136)) (-1345 ((|#2| (-654 |#2|)) 124)) (-4248 ((|#2| (-654 |#2|)) 125)) (-2804 ((|#2| (-654 |#2|)) 149)) (-3822 ((|#2| |#2| (-1193)) 63) ((|#2| |#2|) 62)) (-2035 ((|#2| |#2|) 21)) (-3751 ((|#2| |#2| |#2|) 24)) (-2138 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-159 |#1| |#2|) (-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2|)) (-15 -1371 (|#2| |#2| |#2|)) (-15 -2035 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3822 (|#2| |#2| (-1193))) (-15 -1856 (|#2| |#2| (-1193))) (-15 -1856 (|#2| |#2| (-1108 |#2|))) (-15 -4118 (|#2| |#2| (-1193))) (-15 -4118 (|#2| |#2| (-1108 |#2|))) (-15 -3509 (|#2| |#2|)) (-15 -2804 (|#2| (-654 |#2|))) (-15 -3713 (|#2| (-654 |#2|))) (-15 -1596 (|#2| (-654 |#2|))) (-15 -1345 (|#2| (-654 |#2|))) (-15 -4248 (|#2| (-654 |#2|))) (-15 -3797 (|#2| (-654 |#2|)))) (-566) (-440 |#1|)) (T -159))
-((-3797 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-566)))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4118 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-4118 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-3822 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2)) (-4 *2 (-440 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-2035 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-1371 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4)) (-4 *4 (-440 *3)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4)))))
-(-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2|)) (-15 -1371 (|#2| |#2| |#2|)) (-15 -2035 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3822 (|#2| |#2| (-1193))) (-15 -1856 (|#2| |#2| (-1193))) (-15 -1856 (|#2| |#2| (-1108 |#2|))) (-15 -4118 (|#2| |#2| (-1193))) (-15 -4118 (|#2| |#2| (-1108 |#2|))) (-15 -3509 (|#2| |#2|)) (-15 -2804 (|#2| (-654 |#2|))) (-15 -3713 (|#2| (-654 |#2|))) (-15 -1596 (|#2| (-654 |#2|))) (-15 -1345 (|#2| (-654 |#2|))) (-15 -4248 (|#2| (-654 |#2|))) (-15 -3797 (|#2| (-654 |#2|))))
-((-2802 ((|#1| |#1| |#1|) 64)) (-3589 ((|#1| |#1| |#1|) 61)) (-1371 ((|#1| |#1| |#1|) 55)) (-4320 ((|#1| |#1|) 42)) (-3945 ((|#1| |#1| (-654 |#1|)) 53)) (-2035 ((|#1| |#1|) 46)) (-3751 ((|#1| |#1| |#1|) 49)))
-(((-160 |#1|) (-10 -7 (-15 -3751 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1|)) (-15 -3945 (|#1| |#1| (-654 |#1|))) (-15 -4320 (|#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|))) (-555)) (T -160))
-((-2802 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3589 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-4320 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))) (-2035 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))) (-3751 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
-(-10 -7 (-15 -3751 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1|)) (-15 -3945 (|#1| |#1| (-654 |#1|))) (-15 -4320 (|#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -2802 (|#1| |#1| |#1|)))
-((-1856 (($ $ (-1193)) 12) (($ $ (-1108 $)) 11)) (-4118 (($ $ (-1193)) 10) (($ $ (-1108 $)) 9)) (-1371 (($ $ $) 8)) (-3822 (($ $) 14) (($ $ (-1193)) 13)) (-2035 (($ $) 7)) (-3751 (($ $ $) 6)))
+(-13 (-1067))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-4098 (((-2 (|:| -2300 (-783)) (|:| -1868 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-2025 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-3997 (((-2 (|:| -1868 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2649 ((|#1| |#3| |#3|) 44)) (-2666 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-4160 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3997 ((-2 (|:| -1868 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2025 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -4098 ((-2 (|:| -2300 (-783)) (|:| -1868 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2649 (|#1| |#3| |#3|)) (-15 -2666 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -4160 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|))) (T -149))
+((-4160 (*1 *2 *3 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-2666 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3)))) (-2649 (*1 *2 *3 *3) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3)))) (-2025 (*1 *2 *3) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1868 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))))
+(-10 -7 (-15 -3997 ((-2 (|:| -1868 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2025 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -4098 ((-2 (|:| -2300 (-783)) (|:| -1868 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2649 (|#1| |#3| |#3|)) (-15 -2666 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -4160 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|)))
+((-3695 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 35)))
+(((-150 |#1| |#2|) (-10 -7 (-15 -3695 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)))) (-557) (-167 |#1|)) (T -150))
+((-3695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))))
+(-10 -7 (-15 -3695 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))))
+((-2174 (($ (-1 (-112) |#2|) $) 37)) (-4060 (($ $) 44)) (-3316 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2887 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2922 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1875 (((-112) (-1 (-112) |#2|) $) 24)) (-3954 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-3972 (((-112) (-1 (-112) |#2|) $) 21)) (-2882 (((-783) $) 12)))
+(((-151 |#1| |#2|) (-10 -8 (-15 -4060 (|#1| |#1|)) (-15 -3316 (|#1| |#2| |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2174 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|))) (-152 |#2|) (-1236)) (T -151))
+NIL
+(-10 -8 (-15 -4060 (|#1| |#1|)) (-15 -3316 (|#1| |#2| |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2174 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-2174 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4060 (($ $) 42 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461))) (($ |#1| $) 43 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 50)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-152 |#1|) (-141) (-1236)) (T -152))
+((-2968 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3)))) (-2922 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2887 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2887 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-2174 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-2887 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3316 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-4060 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))))
+(-13 (-501 |t#1|) (-10 -8 (-15 -2968 ($ (-656 |t#1|))) (-15 -2922 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2887 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2887 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3316 ($ (-1 (-112) |t#1|) $)) (-15 -2174 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -2887 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3316 ($ |t#1| $)) (-15 -4060 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) 111)) (-4192 (((-112) $) NIL)) (-4330 (($ |#2| (-656 (-937))) 71)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3889 (($ (-937)) 57)) (-2068 (((-135)) 23)) (-2956 (((-874) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-4309 ((|#2| $ (-656 (-937))) 74)) (-3423 (((-783)) 20 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 47 T CONST)) (-2155 (($) 51 T CONST)) (-2991 (((-112) $ $) 33)) (-3108 (($ $ |#2|) NIL)) (-3096 (($ $) 42) (($ $ $) 40)) (-3081 (($ $ $) 38)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
+(((-153 |#1| |#2| |#3|) (-13 (-1067) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -3889 ($ (-937))) (-15 -4330 ($ |#2| (-656 (-937)))) (-15 -4309 (|#2| $ (-656 (-937)))) (-15 -4077 ((-3 $ "failed") $)))) (-937) (-374) (-1011 |#1| |#2|)) (T -153))
+((-4077 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-374)) (-14 *4 (-1011 *2 *3)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1011 *3 *4)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937)) (-4 *2 (-374)) (-14 *5 (-1011 *4 *2)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-937))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937)) (-14 *5 (-1011 *4 *2)))))
+(-13 (-1067) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -3889 ($ (-937))) (-15 -4330 ($ |#2| (-656 (-937)))) (-15 -4309 (|#2| $ (-656 (-937)))) (-15 -4077 ((-3 $ "failed") $))))
+((-3309 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1511 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943)) 96)) (-1693 (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943)) 91)))
+(((-154) (-10 -7 (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -1511 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1511 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -3309 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227))))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))))))) (T -154))
+((-1693 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 (-227))))))) (-1693 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-959 (-227)))))) (-3309 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 *4)))) (|:| |xValues| (-1112 *4)) (|:| |yValues| (-1112 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 *4)))))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1693 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227))))) (-5 *1 (-154)))))
+(-10 -7 (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -1511 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943))) (-15 -1511 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-943) (-419 (-576)) (-419 (-576)))) (-15 -3309 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-959 (-227))))) (-15 -1693 ((-2 (|:| |brans| (-656 (-656 (-959 (-227))))) (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))) (-656 (-656 (-959 (-227)))))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1510 (((-656 (-1153)) $) 20)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 9)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-155) (-13 (-1101) (-10 -8 (-15 -1510 ((-656 (-1153)) $)) (-15 -2053 ((-1153) $))))) (T -155))
+((-1510 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-155)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-155)))))
+(-13 (-1101) (-10 -8 (-15 -1510 ((-656 (-1153)) $)) (-15 -2053 ((-1153) $))))
+((-3254 (((-656 (-171 |#2|)) |#1| |#2|) 50)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -3254 ((-656 (-171 |#2|)) |#1| |#2|))) (-1262 (-171 (-576))) (-13 (-374) (-860))) (T -156))
+((-3254 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -3254 ((-656 (-171 |#2|)) |#1| |#2|)))
+((-2869 (((-112) $ $) NIL)) (-1818 (((-1235) $) 12)) (-1806 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-157) (-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1235) $))))) (T -157))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-157)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157)))))
+(-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1235) $))))
+((-2869 (((-112) $ $) NIL)) (-3916 (($) 41)) (-3317 (($) 40)) (-2202 (((-937)) 46)) (-2148 (((-1177) $) NIL)) (-2259 (((-576) $) 44)) (-3945 (((-1138) $) NIL)) (-3641 (($) 42)) (-1894 (($ (-576)) 47)) (-2956 (((-874) $) 53)) (-4148 (($) 43)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 38)) (-3081 (($ $ $) 35)) (* (($ (-937) $) 45) (($ (-227) $) 11)))
+(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-937) $)) (-15 * ($ (-227) $)) (-15 -3081 ($ $ $)) (-15 -3317 ($)) (-15 -3916 ($)) (-15 -3641 ($)) (-15 -4148 ($)) (-15 -2259 ((-576) $)) (-15 -2202 ((-937))) (-15 -1894 ($ (-576)))))) (T -158))
+((-3081 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3317 (*1 *1) (-5 *1 (-158))) (-3916 (*1 *1) (-5 *1 (-158))) (-3641 (*1 *1) (-5 *1 (-158))) (-4148 (*1 *1) (-5 *1 (-158))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-2202 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-158)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-937) $)) (-15 * ($ (-227) $)) (-15 -3081 ($ $ $)) (-15 -3317 ($)) (-15 -3916 ($)) (-15 -3641 ($)) (-15 -4148 ($)) (-15 -2259 ((-576) $)) (-15 -2202 ((-937))) (-15 -1894 ($ (-576)))))
+((-3738 ((|#2| |#2| (-1110 |#2|)) 98) ((|#2| |#2| (-1195)) 75)) (-2230 ((|#2| |#2| (-1110 |#2|)) 97) ((|#2| |#2| (-1195)) 74)) (-2636 ((|#2| |#2| |#2|) 25)) (-4153 (((-115) (-115)) 111)) (-2089 ((|#2| (-656 |#2|)) 130)) (-3071 ((|#2| (-656 |#2|)) 151)) (-2574 ((|#2| (-656 |#2|)) 138)) (-4285 ((|#2| |#2|) 136)) (-1721 ((|#2| (-656 |#2|)) 124)) (-4159 ((|#2| (-656 |#2|)) 125)) (-1609 ((|#2| (-656 |#2|)) 149)) (-4247 ((|#2| |#2| (-1195)) 63) ((|#2| |#2|) 62)) (-1786 ((|#2| |#2|) 21)) (-2959 ((|#2| |#2| |#2|) 24)) (-1483 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-159 |#1| |#2|) (-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2959 (|#2| |#2| |#2|)) (-15 -2636 (|#2| |#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -4247 (|#2| |#2| (-1195))) (-15 -3738 (|#2| |#2| (-1195))) (-15 -3738 (|#2| |#2| (-1110 |#2|))) (-15 -2230 (|#2| |#2| (-1195))) (-15 -2230 (|#2| |#2| (-1110 |#2|))) (-15 -4285 (|#2| |#2|)) (-15 -1609 (|#2| (-656 |#2|))) (-15 -2574 (|#2| (-656 |#2|))) (-15 -3071 (|#2| (-656 |#2|))) (-15 -1721 (|#2| (-656 |#2|))) (-15 -4159 (|#2| (-656 |#2|))) (-15 -2089 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159))
+((-2089 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2230 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-2230 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-3738 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3738 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4247 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4247 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1786 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2636 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2959 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))))
+(-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2959 (|#2| |#2| |#2|)) (-15 -2636 (|#2| |#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -4247 (|#2| |#2| (-1195))) (-15 -3738 (|#2| |#2| (-1195))) (-15 -3738 (|#2| |#2| (-1110 |#2|))) (-15 -2230 (|#2| |#2| (-1195))) (-15 -2230 (|#2| |#2| (-1110 |#2|))) (-15 -4285 (|#2| |#2|)) (-15 -1609 (|#2| (-656 |#2|))) (-15 -2574 (|#2| (-656 |#2|))) (-15 -3071 (|#2| (-656 |#2|))) (-15 -1721 (|#2| (-656 |#2|))) (-15 -4159 (|#2| (-656 |#2|))) (-15 -2089 (|#2| (-656 |#2|))))
+((-1584 ((|#1| |#1| |#1|) 64)) (-3852 ((|#1| |#1| |#1|) 61)) (-2636 ((|#1| |#1| |#1|) 55)) (-3626 ((|#1| |#1|) 42)) (-3030 ((|#1| |#1| (-656 |#1|)) 53)) (-1786 ((|#1| |#1|) 46)) (-2959 ((|#1| |#1| |#1|) 49)))
+(((-160 |#1|) (-10 -7 (-15 -2959 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -3030 (|#1| |#1| (-656 |#1|))) (-15 -3626 (|#1| |#1|)) (-15 -2636 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1| |#1|))) (-557)) (T -160))
+((-1584 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3852 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2636 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3626 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3030 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-1786 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2959 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(-10 -7 (-15 -2959 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -3030 (|#1| |#1| (-656 |#1|))) (-15 -3626 (|#1| |#1|)) (-15 -2636 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1| |#1|)))
+((-3738 (($ $ (-1195)) 12) (($ $ (-1110 $)) 11)) (-2230 (($ $ (-1195)) 10) (($ $ (-1110 $)) 9)) (-2636 (($ $ $) 8)) (-4247 (($ $) 14) (($ $ (-1195)) 13)) (-1786 (($ $) 7)) (-2959 (($ $ $) 6)))
(((-161) (-141)) (T -161))
-((-3822 (*1 *1 *1) (-4 *1 (-161))) (-3822 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-1856 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161)))) (-4118 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161)))))
-(-13 (-144) (-10 -8 (-15 -3822 ($ $)) (-15 -3822 ($ $ (-1193))) (-15 -1856 ($ $ (-1193))) (-15 -1856 ($ $ (-1108 $))) (-15 -4118 ($ $ (-1193))) (-15 -4118 ($ $ (-1108 $)))))
+((-4247 (*1 *1 *1) (-4 *1 (-161))) (-4247 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-3738 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161)))) (-2230 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161)))))
+(-13 (-144) (-10 -8 (-15 -4247 ($ $)) (-15 -4247 ($ $ (-1195))) (-15 -3738 ($ $ (-1195))) (-15 -3738 ($ $ (-1110 $))) (-15 -2230 ($ $ (-1195))) (-15 -2230 ($ $ (-1110 $)))))
(((-144) . T))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-654 (-1151)) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-162) (-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $))))) (T -162))
-((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-162)))))
-(-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $))))
-((-2864 (((-112) $ $) NIL)) (-4018 (($ (-574)) 14) (($ $ $) 15)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)))
-(((-163) (-13 (-1116) (-10 -8 (-15 -4018 ($ (-574))) (-15 -4018 ($ $ $))))) (T -163))
-((-4018 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))) (-4018 (*1 *1 *1 *1) (-5 *1 (-163))))
-(-13 (-1116) (-10 -8 (-15 -4018 ($ (-574))) (-15 -4018 ($ $ $))))
-((-4150 (((-115) (-1193)) 102)))
-(((-164) (-10 -7 (-15 -4150 ((-115) (-1193))))) (T -164))
-((-4150 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-115)) (-5 *1 (-164)))))
-(-10 -7 (-15 -4150 ((-115) (-1193))))
-((-4219 ((|#3| |#3|) 19)))
-(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -4219 (|#3| |#3|))) (-1065) (-1260 |#1|) (-1260 |#2|)) (T -165))
-((-4219 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-4 *4 (-1260 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1260 *4)))))
-(-10 -7 (-15 -4219 (|#3| |#3|)))
-((-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 223)) (-1644 ((|#2| $) 102)) (-2379 (($ $) 256)) (-2258 (($ $) 250)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 47)) (-2358 (($ $) 254)) (-2236 (($ $) 248)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 144)) (-2801 (($ $ $) 229)) (-1557 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 160) (((-699 |#2|) (-699 $)) 154) (((-699 |#2|) (-1284 $)) NIL)) (-2882 (($ (-1189 |#2|)) 125) (((-3 $ "failed") (-417 (-1189 |#2|))) NIL)) (-3612 (((-3 $ "failed") $) 214)) (-3701 (((-3 (-417 (-574)) "failed") $) 204)) (-4391 (((-112) $) 199)) (-3805 (((-417 (-574)) $) 202)) (-3558 (((-935)) 96)) (-2812 (($ $ $) 231)) (-4129 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3004 (($) 245)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 193) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 198)) (-2608 ((|#2| $) 100)) (-3446 (((-1189 |#2|) $) 127)) (-1785 (($ (-1 |#2| |#2|) $) 108)) (-3113 (($ $) 247)) (-2869 (((-1189 |#2|) $) 126)) (-1328 (($ $) 207)) (-2262 (($) 103)) (-3235 (((-428 (-1189 $)) (-1189 $)) 95)) (-3000 (((-428 (-1189 $)) (-1189 $)) 64)) (-2853 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1617 (($ $) 246)) (-4220 (((-781) $) 226)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 236)) (-1924 ((|#2| (-1284 $)) NIL) ((|#2|) 98)) (-3879 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2966 (((-1189 |#2|)) 120)) (-2368 (($ $) 255)) (-2247 (($ $) 249)) (-2282 (((-1284 |#2|) $ (-1284 $)) 136) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 116) (((-699 |#2|) (-1284 $)) NIL)) (-1844 (((-1284 |#2|) $) NIL) (($ (-1284 |#2|)) NIL) (((-1189 |#2|) $) NIL) (($ (-1189 |#2|)) NIL) (((-903 (-574)) $) 184) (((-903 (-388)) $) 188) (((-171 (-388)) $) 172) (((-171 (-227)) $) 167) (((-546) $) 180)) (-4090 (($ $) 104)) (-2951 (((-872) $) 143) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-417 (-574))) NIL) (($ $) NIL)) (-2451 (((-1189 |#2|) $) 32)) (-3070 (((-781)) 106)) (-2981 (((-112) $ $) 13)) (-2456 (($ $) 259)) (-2320 (($ $) 253)) (-2429 (($ $) 257)) (-2301 (($ $) 251)) (-4310 ((|#2| $) 242)) (-2443 (($ $) 258)) (-2312 (($ $) 252)) (-4107 (($ $) 162)) (-2986 (((-112) $ $) 110)) (-3090 (($ $) 112) (($ $ $) NIL)) (-3074 (($ $ $) 111)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) 276) (($ $ $) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL)))
-(((-166 |#1| |#2|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -4220 ((-781) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-171 (-227)) |#1|)) (-15 -1844 ((-171 (-388)) |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3004 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4129 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4310 (|#2| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4090 (|#1| |#1|)) (-15 -2262 (|#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2882 ((-3 |#1| "failed") (-417 (-1189 |#2|)))) (-15 -2869 ((-1189 |#2|) |#1|)) (-15 -1844 (|#1| (-1189 |#2|))) (-15 -2882 (|#1| (-1189 |#2|))) (-15 -2966 ((-1189 |#2|))) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-1189 |#2|) |#1|)) (-15 -1924 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -3446 ((-1189 |#2|) |#1|)) (-15 -2451 ((-1189 |#2|) |#1|)) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2608 (|#2| |#1|)) (-15 -1644 (|#2| |#1|)) (-15 -3558 ((-935))) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
-((-3070 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-935)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1924 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2966 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
-(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -4220 ((-781) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-171 (-227)) |#1|)) (-15 -1844 ((-171 (-388)) |#1|)) (-15 -2258 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3004 (|#1|)) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4129 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4310 (|#2| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4090 (|#1| |#1|)) (-15 -2262 (|#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -2882 ((-3 |#1| "failed") (-417 (-1189 |#2|)))) (-15 -2869 ((-1189 |#2|) |#1|)) (-15 -1844 (|#1| (-1189 |#2|))) (-15 -2882 (|#1| (-1189 |#2|))) (-15 -2966 ((-1189 |#2|))) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-1189 |#2|) |#1|)) (-15 -1924 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -3446 ((-1189 |#2|) |#1|)) (-15 -2451 ((-1189 |#2|) |#1|)) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2608 (|#2| |#1|)) (-15 -1644 (|#2| |#1|)) (-15 -3558 ((-935))) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-4141 (($ $) 105 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2475 (((-112) $) 107 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-4348 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-2379 (($ $) 233 (|has| |#1| (-1219)))) (-2258 (($ $) 216 (|has| |#1| (-1219)))) (-3210 (((-1206 (-935) (-781)) (-574)) 157 (|has| |#1| (-358)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 247 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-2684 (($ $) 124 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-3171 (((-428 $) $) 125 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4212 (($ $) 246 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 250 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-1374 (((-112) $ $) 115 (|has| |#1| (-315)))) (-1496 (((-781)) 98 (|has| |#1| (-377)))) (-2358 (($ $) 232 (|has| |#1| (-1219)))) (-2236 (($ $) 217 (|has| |#1| (-1219)))) (-2404 (($ $) 231 (|has| |#1| (-1219)))) (-2280 (($ $) 218 (|has| |#1| (-1219)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 177)) (-2216 (((-574) $) 181 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 178)) (-3114 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-358)))) (-2801 (($ $ $) 119 (|has| |#1| (-315)))) (-2375 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-1557 (((-699 (-574)) (-1284 $)) 176 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 173) (((-699 |#1|) (-699 $)) 172) (((-699 |#1|) (-1284 $)) 171)) (-2882 (($ (-1189 |#1|)) 168) (((-3 $ "failed") (-417 (-1189 |#1|))) 165 (|has| |#1| (-372)))) (-3612 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 258)) (-3701 (((-3 (-417 (-574)) "failed") $) 251 (|has| |#1| (-555)))) (-4391 (((-112) $) 253 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 252 (|has| |#1| (-555)))) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| |#1| (-377)))) (-2812 (($ $ $) 118 (|has| |#1| (-315)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| |#1| (-315)))) (-1615 (($) 159 (|has| |#1| (-358)))) (-3502 (((-112) $) 160 (|has| |#1| (-358)))) (-2613 (($ $ (-781)) 151 (|has| |#1| (-358))) (($ $) 150 (|has| |#1| (-358)))) (-3342 (((-112) $) 126 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4129 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 254 (-12 (|has| |#1| (-1076)) (|has| |#1| (-1219))))) (-3004 (($) 243 (|has| |#1| (-1219)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 266 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 265 (|has| |#1| (-897 (-388))))) (-1518 (((-935) $) 162 (|has| |#1| (-358))) (((-843 (-935)) $) 148 (|has| |#1| (-358)))) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 245 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-2608 ((|#1| $) 58)) (-2081 (((-3 $ "failed") $) 152 (|has| |#1| (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| |#1| (-315)))) (-3446 (((-1189 |#1|) $) 51 (|has| |#1| (-372)))) (-1785 (($ (-1 |#1| |#1|) $) 267)) (-3507 (((-935) $) 100 (|has| |#1| (-377)))) (-3113 (($ $) 240 (|has| |#1| (-1219)))) (-2869 (((-1189 |#1|) $) 166)) (-2845 (($ (-654 $)) 111 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (($ $ $) 110 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 127 (|has| |#1| (-372)))) (-3792 (($) 153 (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| |#1| (-377)))) (-2262 (($) 262)) (-4234 ((|#1| $) 259)) (-3940 (((-1136) $) 11)) (-2975 (($) 170)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 112 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2887 (($ (-654 $)) 109 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (($ $ $) 108 (-2833 (|has| |#1| (-315)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 156 (|has| |#1| (-358)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 249 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3000 (((-428 (-1189 $)) (-1189 $)) 248 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-4201 (((-428 $) $) 123 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| |#1| (-315)))) (-2853 (((-3 $ "failed") $ |#1|) 257 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 103 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| |#1| (-315)))) (-1617 (($ $) 241 (|has| |#1| (-1219)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 273 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 272 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 271 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 270 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 269 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 268 (|has| |#1| (-524 (-1193) |#1|)))) (-4220 (((-781) $) 116 (|has| |#1| (-315)))) (-2207 (($ $ |#1|) 274 (|has| |#1| (-294 |#1| |#1|)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 117 (|has| |#1| (-315)))) (-1924 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-1532 (((-781) $) 161 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 149 (|has| |#1| (-358)))) (-3879 (($ $ (-1 |#1| |#1|) (-781)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-1193)) 136 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 138 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 139 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (|has| |#1| (-912 (-1193)))) (($ $) 144 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 146 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-3898 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-372)))) (-2966 (((-1189 |#1|)) 169)) (-2417 (($ $) 230 (|has| |#1| (-1219)))) (-2288 (($ $) 219 (|has| |#1| (-1219)))) (-3951 (($) 158 (|has| |#1| (-358)))) (-2390 (($ $) 229 (|has| |#1| (-1219)))) (-2269 (($ $) 220 (|has| |#1| (-1219)))) (-2368 (($ $) 228 (|has| |#1| (-1219)))) (-2247 (($ $) 221 (|has| |#1| (-1219)))) (-2282 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69) (((-1189 |#1|) $) 183) (($ (-1189 |#1|)) 167) (((-903 (-574)) $) 264 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 263 (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) 215 (|has| |#1| (-1038))) (((-171 (-227)) $) 214 (|has| |#1| (-1038))) (((-546) $) 213 (|has| |#1| (-624 (-546))))) (-4090 (($ $) 261)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 155 (-2833 (-2095 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (|has| |#1| (-358))))) (-3536 (($ |#1| |#1|) 260)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 97 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) 102 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2705 (($ $) 154 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (-2833 (-2095 (|has| $ (-146)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))) (|has| |#1| (-146))))) (-2451 (((-1189 |#1|) $) 52)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 74)) (-2456 (($ $) 239 (|has| |#1| (-1219)))) (-2320 (($ $) 227 (|has| |#1| (-1219)))) (-3750 (((-112) $ $) 106 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))) (-2429 (($ $) 238 (|has| |#1| (-1219)))) (-2301 (($ $) 226 (|has| |#1| (-1219)))) (-2480 (($ $) 237 (|has| |#1| (-1219)))) (-2340 (($ $) 225 (|has| |#1| (-1219)))) (-4310 ((|#1| $) 255 (|has| |#1| (-1219)))) (-2536 (($ $) 236 (|has| |#1| (-1219)))) (-2349 (($ $) 224 (|has| |#1| (-1219)))) (-2468 (($ $) 235 (|has| |#1| (-1219)))) (-2330 (($ $) 223 (|has| |#1| (-1219)))) (-2443 (($ $) 234 (|has| |#1| (-1219)))) (-2312 (($ $) 222 (|has| |#1| (-1219)))) (-4107 (($ $) 256 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1 |#1| |#1|) (-781)) 135) (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1193)) 137 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 141 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 142 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (|has| |#1| (-912 (-1193)))) (($ $) 145 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))))) (($ $ (-781)) 147 (-2833 (-2095 (|has| |#1| (-372)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2095 (|has| |#1| (-239)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 131 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-417 (-574))) 244 (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219)))) (($ $ $) 242 (|has| |#1| (-1219))) (($ $ (-574)) 128 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 130 (|has| |#1| (-372))) (($ $ (-417 (-574))) 129 (|has| |#1| (-372)))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-656 (-1153)) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-162) (-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $))))) (T -162))
+((-2053 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-162)))))
+(-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $))))
+((-2869 (((-112) $ $) NIL)) (-2498 (($ (-576)) 14) (($ $ $) 15)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)))
+(((-163) (-13 (-1118) (-10 -8 (-15 -2498 ($ (-576))) (-15 -2498 ($ $ $))))) (T -163))
+((-2498 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-2498 (*1 *1 *1 *1) (-5 *1 (-163))))
+(-13 (-1118) (-10 -8 (-15 -2498 ($ (-576))) (-15 -2498 ($ $ $))))
+((-4153 (((-115) (-1195)) 102)))
+(((-164) (-10 -7 (-15 -4153 ((-115) (-1195))))) (T -164))
+((-4153 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164)))))
+(-10 -7 (-15 -4153 ((-115) (-1195))))
+((-3918 ((|#3| |#3|) 19)))
+(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3918 (|#3| |#3|))) (-1067) (-1262 |#1|) (-1262 |#2|)) (T -165))
+((-3918 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1262 *4)))))
+(-10 -7 (-15 -3918 (|#3| |#3|)))
+((-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 223)) (-1646 ((|#2| $) 102)) (-2384 (($ $) 256)) (-2260 (($ $) 250)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 47)) (-2363 (($ $) 254)) (-2238 (($ $) 248)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-2806 (($ $ $) 229)) (-3928 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 160) (((-701 |#2|) (-701 $)) 154) (((-701 |#2|) (-1286 $)) NIL)) (-2887 (($ (-1191 |#2|)) 125) (((-3 $ "failed") (-419 (-1191 |#2|))) NIL)) (-4077 (((-3 $ "failed") $) 214)) (-2456 (((-3 (-419 (-576)) "failed") $) 204)) (-1874 (((-112) $) 199)) (-2183 (((-419 (-576)) $) 202)) (-3563 (((-937)) 96)) (-2818 (($ $ $) 231)) (-2327 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3009 (($) 245)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 193) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198)) (-3404 ((|#2| $) 100)) (-1733 (((-1191 |#2|) $) 127)) (-1787 (($ (-1 |#2| |#2|) $) 108)) (-3118 (($ $) 247)) (-2874 (((-1191 |#2|) $) 126)) (-1330 (($ $) 207)) (-3289 (($) 103)) (-4412 (((-430 (-1191 $)) (-1191 $)) 95)) (-2822 (((-430 (-1191 $)) (-1191 $)) 64)) (-2858 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1619 (($ $) 246)) (-3927 (((-783) $) 226)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 236)) (-3206 ((|#2| (-1286 $)) NIL) ((|#2|) 98)) (-3884 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2477 (((-1191 |#2|)) 120)) (-2373 (($ $) 255)) (-2249 (($ $) 249)) (-3458 (((-1286 |#2|) $ (-1286 $)) 136) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 116) (((-701 |#2|) (-1286 $)) NIL)) (-1846 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) (((-1191 |#2|) $) NIL) (($ (-1191 |#2|)) NIL) (((-905 (-576)) $) 184) (((-905 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-1979 (($ $) 104)) (-2956 (((-874) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4343 (((-1191 |#2|) $) 32)) (-3423 (((-783)) 106)) (-2617 (((-112) $ $) 13)) (-2461 (($ $) 259)) (-2324 (($ $) 253)) (-2434 (($ $) 257)) (-2304 (($ $) 251)) (-3538 ((|#2| $) 242)) (-2447 (($ $) 258)) (-2315 (($ $) 252)) (-2130 (($ $) 162)) (-2991 (((-112) $ $) 110)) (-3096 (($ $) 112) (($ $ $) NIL)) (-3081 (($ $ $) 111)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL)))
+(((-166 |#1| |#2|) (-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3927 ((-783) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-171 (-227)) |#1|)) (-15 -1846 ((-171 (-390)) |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3009 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2327 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -2130 (|#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1979 (|#1| |#1|)) (-15 -3289 (|#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2887 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2874 ((-1191 |#2|) |#1|)) (-15 -1846 (|#1| (-1191 |#2|))) (-15 -2887 (|#1| (-1191 |#2|))) (-15 -2477 ((-1191 |#2|))) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 ((-1191 |#2|) |#1|)) (-15 -3206 (|#2|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1733 ((-1191 |#2|) |#1|)) (-15 -4343 ((-1191 |#2|) |#1|)) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3404 (|#2| |#1|)) (-15 -1646 (|#2| |#1|)) (-15 -3563 ((-937))) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
+((-3423 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3563 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-937)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3206 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2477 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
+(-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3927 ((-783) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-171 (-227)) |#1|)) (-15 -1846 ((-171 (-390)) |#1|)) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3009 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2327 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -2130 (|#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1979 (|#1| |#1|)) (-15 -3289 (|#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2887 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2874 ((-1191 |#2|) |#1|)) (-15 -1846 (|#1| (-1191 |#2|))) (-15 -2887 (|#1| (-1191 |#2|))) (-15 -2477 ((-1191 |#2|))) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 ((-1191 |#2|) |#1|)) (-15 -3206 (|#2|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1733 ((-1191 |#2|) |#1|)) (-15 -4343 ((-1191 |#2|) |#1|)) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3404 (|#2| |#1|)) (-15 -1646 (|#2| |#1|)) (-15 -3563 ((-937))) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-4334 (($ $) 105 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-1428 (((-112) $) 107 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2674 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-2384 (($ $) 233 (|has| |#1| (-1221)))) (-2260 (($ $) 216 (|has| |#1| (-1221)))) (-4171 (((-1208 (-937) (-783)) (-576)) 157 (|has| |#1| (-360)))) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 247 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2879 (($ $) 124 (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-1870 (((-430 $) $) 125 (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-4214 (($ $) 246 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-1323 (((-112) $ $) 115 (|has| |#1| (-317)))) (-1499 (((-783)) 98 (|has| |#1| (-379)))) (-2363 (($ $) 232 (|has| |#1| (-1221)))) (-2238 (($ $) 217 (|has| |#1| (-1221)))) (-2409 (($ $) 231 (|has| |#1| (-1221)))) (-2282 (($ $) 218 (|has| |#1| (-1221)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 182 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 177)) (-2216 (((-576) $) 181 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 178)) (-2524 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-360)))) (-2806 (($ $ $) 119 (|has| |#1| (-317)))) (-1796 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-3928 (((-701 (-576)) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 173) (((-701 |#1|) (-701 $)) 172) (((-701 |#1|) (-1286 $)) 171)) (-2887 (($ (-1191 |#1|)) 168) (((-3 $ "failed") (-419 (-1191 |#1|))) 165 (|has| |#1| (-374)))) (-4077 (((-3 $ "failed") $) 37)) (-4225 ((|#1| $) 258)) (-2456 (((-3 (-419 (-576)) "failed") $) 251 (|has| |#1| (-557)))) (-1874 (((-112) $) 253 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 252 (|has| |#1| (-557)))) (-3563 (((-937)) 61)) (-2840 (($) 101 (|has| |#1| (-379)))) (-2818 (($ $ $) 118 (|has| |#1| (-317)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 113 (|has| |#1| (-317)))) (-3243 (($) 159 (|has| |#1| (-360)))) (-4208 (((-112) $) 160 (|has| |#1| (-360)))) (-3454 (($ $ (-783)) 151 (|has| |#1| (-360))) (($ $) 150 (|has| |#1| (-360)))) (-3124 (((-112) $) 126 (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2327 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 254 (-12 (|has| |#1| (-1078)) (|has| |#1| (-1221))))) (-3009 (($) 243 (|has| |#1| (-1221)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 266 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 265 (|has| |#1| (-899 (-390))))) (-3540 (((-937) $) 162 (|has| |#1| (-360))) (((-845 (-937)) $) 148 (|has| |#1| (-360)))) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 245 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3404 ((|#1| $) 58)) (-2211 (((-3 $ "failed") $) 152 (|has| |#1| (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| |#1| (-317)))) (-1733 (((-1191 |#1|) $) 51 (|has| |#1| (-374)))) (-1787 (($ (-1 |#1| |#1|) $) 267)) (-4261 (((-937) $) 100 (|has| |#1| (-379)))) (-3118 (($ $) 240 (|has| |#1| (-1221)))) (-2874 (((-1191 |#1|) $) 166)) (-2850 (($ (-656 $)) 111 (-2838 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (($ $ $) 110 (-2838 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 127 (|has| |#1| (-374)))) (-3796 (($) 153 (|has| |#1| (-360)) CONST)) (-2596 (($ (-937)) 99 (|has| |#1| (-379)))) (-3289 (($) 262)) (-4236 ((|#1| $) 259)) (-3945 (((-1138) $) 11)) (-2981 (($) 170)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 112 (-2838 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2892 (($ (-656 $)) 109 (-2838 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (($ $ $) 108 (-2838 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 156 (|has| |#1| (-360)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 249 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2822 (((-430 (-1191 $)) (-1191 $)) 248 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-4205 (((-430 $) $) 123 (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 120 (|has| |#1| (-317)))) (-2858 (((-3 $ "failed") $ |#1|) 257 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 103 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| |#1| (-317)))) (-1619 (($ $) 241 (|has| |#1| (-1221)))) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) 273 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 272 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 271 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 270 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 269 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 268 (|has| |#1| (-526 (-1195) |#1|)))) (-3927 (((-783) $) 116 (|has| |#1| (-317)))) (-2209 (($ $ |#1|) 274 (|has| |#1| (-296 |#1| |#1|)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 117 (|has| |#1| (-317)))) (-3206 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3665 (((-783) $) 161 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 149 (|has| |#1| (-360)))) (-3884 (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-1195)) 136 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 138 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 139 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (|has| |#1| (-914 (-1195)))) (($ $) 144 (-2838 (-2096 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))))) (($ $ (-783)) 146 (-2838 (-2096 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-374)))))) (-3767 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-374)))) (-2477 (((-1191 |#1|)) 169)) (-2422 (($ $) 230 (|has| |#1| (-1221)))) (-2291 (($ $) 219 (|has| |#1| (-1221)))) (-3087 (($) 158 (|has| |#1| (-360)))) (-2394 (($ $) 229 (|has| |#1| (-1221)))) (-2270 (($ $) 220 (|has| |#1| (-1221)))) (-2373 (($ $) 228 (|has| |#1| (-1221)))) (-2249 (($ $) 221 (|has| |#1| (-1221)))) (-3458 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-1846 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) (((-1191 |#1|) $) 183) (($ (-1191 |#1|)) 167) (((-905 (-576)) $) 264 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 263 (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) 215 (|has| |#1| (-1040))) (((-171 (-227)) $) 214 (|has| |#1| (-1040))) (((-548) $) 213 (|has| |#1| (-626 (-548))))) (-1979 (($ $) 261)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 155 (-2838 (-2096 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (|has| |#1| (-360))))) (-3541 (($ |#1| |#1|) 260)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 97 (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) 102 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-1817 (($ $) 154 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2838 (-2096 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))) (|has| |#1| (-146))))) (-4343 (((-1191 |#1|) $) 52)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 74)) (-2461 (($ $) 239 (|has| |#1| (-1221)))) (-2324 (($ $) 227 (|has| |#1| (-1221)))) (-2946 (((-112) $ $) 106 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))) (-2434 (($ $) 238 (|has| |#1| (-1221)))) (-2304 (($ $) 226 (|has| |#1| (-1221)))) (-2485 (($ $) 237 (|has| |#1| (-1221)))) (-2345 (($ $) 225 (|has| |#1| (-1221)))) (-3538 ((|#1| $) 255 (|has| |#1| (-1221)))) (-2541 (($ $) 236 (|has| |#1| (-1221)))) (-2354 (($ $) 224 (|has| |#1| (-1221)))) (-2473 (($ $) 235 (|has| |#1| (-1221)))) (-2335 (($ $) 223 (|has| |#1| (-1221)))) (-2447 (($ $) 234 (|has| |#1| (-1221)))) (-2315 (($ $) 222 (|has| |#1| (-1221)))) (-2130 (($ $) 256 (|has| |#1| (-1078)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1195)) 137 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 141 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 142 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (|has| |#1| (-914 (-1195)))) (($ $) 145 (-2838 (-2096 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))))) (($ $ (-783)) 147 (-2838 (-2096 (|has| |#1| (-374)) (|has| |#1| (-239))) (|has| |#1| (-239)) (-2096 (|has| |#1| (-239)) (|has| |#1| (-374)))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 131 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 244 (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221)))) (($ $ $) 242 (|has| |#1| (-1221))) (($ $ (-576)) 128 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 130 (|has| |#1| (-374))) (($ $ (-419 (-576))) 129 (|has| |#1| (-374)))))
(((-167 |#1|) (-141) (-174)) (T -167))
-((-2608 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2262 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3536 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1219)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1076)) (-4 *3 (-1219)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3701 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))))
-(-13 (-734 |t#1| (-1189 |t#1|)) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-410 |t#1|) (-895 |t#1|) (-386 |t#1|) (-174) (-10 -8 (-6 -3536) (-15 -2262 ($)) (-15 -4090 ($ $)) (-15 -3536 ($ |t#1| |t#1|)) (-15 -4234 (|t#1| $)) (-15 -4223 (|t#1| $)) (-15 -2608 (|t#1| $)) (IF (|has| |t#1| (-566)) (PROGN (-6 (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-315)) (-6 (-315)) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1038)) (PROGN (-6 (-624 (-171 (-227)))) (-6 (-624 (-171 (-388))))) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -4107 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1219)) (PROGN (-6 (-1219)) (-15 -4310 (|t#1| $)) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -4129 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-923)) (IF (|has| |t#1| (-315)) (-6 (-923)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-35) |has| |#1| (-1219)) ((-95) |has| |#1| (-1219)) ((-102) . T) ((-111 #0# #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-623 (-872)) . T) ((-174) . T) ((-624 (-171 (-227))) |has| |#1| (-1038)) ((-624 (-171 (-388))) |has| |#1| (-1038)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-624 #1=(-1189 |#1|)) . T) ((-235 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-238) -2833 (|has| |#1| (-358)) (|has| |#1| (-239))) ((-249) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-292) |has| |#1| (-1219)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-315) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2833 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| #1#) . T) ((-419 |#1| #1#) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-503) |has| |#1| (-1219)) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-656 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-734 |#1| #1#) . T) ((-736) . T) ((-907 $ #3=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #3#) |has| |#1| (-912 (-1193))) ((-914 #3#) |has| |#1| (-912 (-1193))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-923) -12 (|has| |#1| (-315)) (|has| |#1| (-923))) ((-934) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (|has| |#1| (-315))) ((-1018) -12 (|has| |#1| (-1018)) (|has| |#1| (-1219))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-358)) ((-1219) |has| |#1| (-1219)) ((-1222) |has| |#1| (-1219)) ((-1234) . T) ((-1238) -2833 (|has| |#1| (-358)) (|has| |#1| (-372)) (-12 (|has| |#1| (-315)) (|has| |#1| (-923)))))
-((-4201 (((-428 |#2|) |#2|) 67)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -4201 ((-428 |#2|) |#2|))) (-315) (-1260 (-171 |#1|))) (T -168))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
-(-10 -7 (-15 -4201 ((-428 |#2|) |#2|)))
-((-3501 (((-1151) (-1151) (-299)) 8)) (-1439 (((-654 (-701 (-288))) (-1175)) 81)) (-2902 (((-701 (-288)) (-1151)) 76)))
-(((-169) (-13 (-1234) (-10 -7 (-15 -3501 ((-1151) (-1151) (-299))) (-15 -2902 ((-701 (-288)) (-1151))) (-15 -1439 ((-654 (-701 (-288))) (-1175)))))) (T -169))
-((-3501 (*1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-299)) (-5 *1 (-169)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169)))))
-(-13 (-1234) (-10 -7 (-15 -3501 ((-1151) (-1151) (-299))) (-15 -2902 ((-701 (-288)) (-1151))) (-15 -1439 ((-654 (-701 (-288))) (-1175)))))
-((-1785 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -1785 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
-(-10 -7 (-15 -1785 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 34)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-4141 (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-2475 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-4348 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) NIL)) (-1644 ((|#1| $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-1219)))) (-2258 (($ $) NIL (|has| |#1| (-1219)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-2684 (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-3171 (((-428 $) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4212 (($ $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-315)))) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-2358 (($ $) NIL (|has| |#1| (-1219)))) (-2236 (($ $) NIL (|has| |#1| (-1219)))) (-2404 (($ $) NIL (|has| |#1| (-1219)))) (-2280 (($ $) NIL (|has| |#1| (-1219)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-3114 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2801 (($ $ $) NIL (|has| |#1| (-315)))) (-2375 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ (-1189 |#1|)) NIL) (((-3 $ "failed") (-417 (-1189 |#1|))) NIL (|has| |#1| (-372)))) (-3612 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 13)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4391 (((-112) $) NIL (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2812 (($ $ $) NIL (|has| |#1| (-315)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-315)))) (-1615 (($) NIL (|has| |#1| (-358)))) (-3502 (((-112) $) NIL (|has| |#1| (-358)))) (-2613 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-3342 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-4129 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#1| (-1219))))) (-3004 (($) NIL (|has| |#1| (-1219)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-1518 (((-935) $) NIL (|has| |#1| (-358))) (((-843 (-935)) $) NIL (|has| |#1| (-358)))) (-3943 (((-112) $) 36)) (-4439 (($ $ (-574)) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219))))) (-2608 ((|#1| $) 47)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-3446 (((-1189 |#1|) $) NIL (|has| |#1| (-372)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-3113 (($ $) NIL (|has| |#1| (-1219)))) (-2869 (((-1189 |#1|) $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3792 (($) NIL (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2262 (($) NIL)) (-4234 ((|#1| $) 15)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-315)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-315))) (($ $ $) NIL (|has| |#1| (-315)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| |#1| (-358)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#1| (-315)) (|has| |#1| (-923))))) (-4201 (((-428 $) $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-372))))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-315)))) (-2853 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 48 (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-315)))) (-1617 (($ $) NIL (|has| |#1| (-1219)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-4220 (((-781) $) NIL (|has| |#1| (-315)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-315)))) (-1924 ((|#1| (-1284 $)) NIL) ((|#1|) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3879 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3898 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2966 (((-1189 |#1|)) NIL)) (-2417 (($ $) NIL (|has| |#1| (-1219)))) (-2288 (($ $) NIL (|has| |#1| (-1219)))) (-3951 (($) NIL (|has| |#1| (-358)))) (-2390 (($ $) NIL (|has| |#1| (-1219)))) (-2269 (($ $) NIL (|has| |#1| (-1219)))) (-2368 (($ $) NIL (|has| |#1| (-1219)))) (-2247 (($ $) NIL (|has| |#1| (-1219)))) (-2282 (((-1284 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL) (((-1189 |#1|) $) NIL) (($ (-1189 |#1|)) NIL) (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-171 (-388)) $) NIL (|has| |#1| (-1038))) (((-171 (-227)) $) NIL (|has| |#1| (-1038))) (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-4090 (($ $) 46)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-358))))) (-3536 (($ |#1| |#1|) 38)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 37) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-2705 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-2451 (((-1189 |#1|) $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL)) (-2456 (($ $) NIL (|has| |#1| (-1219)))) (-2320 (($ $) NIL (|has| |#1| (-1219)))) (-3750 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-315)) (|has| |#1| (-923))) (|has| |#1| (-566))))) (-2429 (($ $) NIL (|has| |#1| (-1219)))) (-2301 (($ $) NIL (|has| |#1| (-1219)))) (-2480 (($ $) NIL (|has| |#1| (-1219)))) (-2340 (($ $) NIL (|has| |#1| (-1219)))) (-4310 ((|#1| $) NIL (|has| |#1| (-1219)))) (-2536 (($ $) NIL (|has| |#1| (-1219)))) (-2349 (($ $) NIL (|has| |#1| (-1219)))) (-2468 (($ $) NIL (|has| |#1| (-1219)))) (-2330 (($ $) NIL (|has| |#1| (-1219)))) (-2443 (($ $) NIL (|has| |#1| (-1219)))) (-2312 (($ $) NIL (|has| |#1| (-1219)))) (-4107 (($ $) NIL (|has| |#1| (-1076)))) (-2141 (($) 28 T CONST)) (-2153 (($) 30 T CONST)) (-4029 (((-1175) $) 23 (|has| |#1| (-838))) (((-1175) $ (-112)) 25 (|has| |#1| (-838))) (((-1289) (-832) $) 26 (|has| |#1| (-838))) (((-1289) (-832) $ (-112)) 27 (|has| |#1| (-838)))) (-3585 (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 40)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-417 (-574))) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1219)))) (($ $ $) NIL (|has| |#1| (-1219))) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372)))))
-(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-174)) (T -171))
-NIL
-(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|)))
-((-1844 (((-903 |#1|) |#3|) 22)))
-(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1844 ((-903 |#1|) |#3|))) (-1116) (-13 (-624 (-903 |#1|)) (-174)) (-167 |#2|)) (T -172))
-((-1844 (*1 *2 *3) (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1116)) (-4 *3 (-167 *5)))))
-(-10 -7 (-15 -1844 ((-903 |#1|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-3027 (((-112) $) 9)) (-1567 (((-112) $ (-112)) 11)) (-3764 (($) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3157 (($ $) 14)) (-2951 (((-872) $) 18)) (-3271 (((-112) $) 8)) (-1390 (((-112) $ (-112)) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-173) (-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -3271 ((-112) $)) (-15 -3027 ((-112) $)) (-15 -1390 ((-112) $ (-112))) (-15 -1567 ((-112) $ (-112))) (-15 -3157 ($ $))))) (T -173))
-((-3764 (*1 *1) (-5 *1 (-173))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1390 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1567 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3157 (*1 *1 *1) (-5 *1 (-173))))
-(-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -3271 ((-112) $)) (-15 -3027 ((-112) $)) (-15 -1390 ((-112) $ (-112))) (-15 -1567 ((-112) $ (-112))) (-15 -3157 ($ $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+((-3404 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3289 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3541 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2858 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2130 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1078)) (-4 *3 (-1221)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2456 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))))
+(-13 (-736 |t#1| (-1191 |t#1|)) (-423 |t#1|) (-233 |t#1|) (-349 |t#1|) (-412 |t#1|) (-897 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -3541) (-15 -3289 ($)) (-15 -1979 ($ $)) (-15 -3541 ($ |t#1| |t#1|)) (-15 -4236 (|t#1| $)) (-15 -4225 (|t#1| $)) (-15 -3404 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -2858 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1040)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2130 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1221)) (PROGN (-6 (-1221)) (-15 -3538 (|t#1| $)) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2327 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-925)) (IF (|has| |t#1| (-317)) (-6 (-925)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1221)) ((-95) |has| |#1| (-1221)) ((-102) . T) ((-111 #0# #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2838 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-874)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1040)) ((-626 (-171 (-390))) |has| |#1| (-1040)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-626 #1=(-1191 |#1|)) . T) ((-235 $) -2838 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2838 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-238) -2838 (|has| |#1| (-360)) (|has| |#1| (-239))) ((-249) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1221)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2838 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2838 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1221)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-909 $ #3=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #3#) |has| |#1| (-914 (-1195))) ((-916 #3#) |has| |#1| (-914 (-1195))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-925) -12 (|has| |#1| (-317)) (|has| |#1| (-925))) ((-936) -2838 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1020) -12 (|has| |#1| (-1020)) (|has| |#1| (-1221))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-360)) ((-1221) |has| |#1| (-1221)) ((-1224) |has| |#1| (-1221)) ((-1236) . T) ((-1240) -2838 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-925)))))
+((-4205 (((-430 |#2|) |#2|) 67)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -4205 ((-430 |#2|) |#2|))) (-317) (-1262 (-171 |#1|))) (T -168))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
+(-10 -7 (-15 -4205 ((-430 |#2|) |#2|)))
+((-3505 (((-1153) (-1153) (-301)) 8)) (-4432 (((-656 (-703 (-290))) (-1177)) 81)) (-3158 (((-703 (-290)) (-1153)) 76)))
+(((-169) (-13 (-1236) (-10 -7 (-15 -3505 ((-1153) (-1153) (-301))) (-15 -3158 ((-703 (-290)) (-1153))) (-15 -4432 ((-656 (-703 (-290))) (-1177)))))) (T -169))
+((-3505 (*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-301)) (-5 *1 (-169)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169)))))
+(-13 (-1236) (-10 -7 (-15 -3505 ((-1153) (-1153) (-301))) (-15 -3158 ((-703 (-290)) (-1153))) (-15 -4432 ((-656 (-703 (-290))) (-1177)))))
+((-1787 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -1787 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
+(-10 -7 (-15 -1787 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 34)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-4334 (($ $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-1428 (((-112) $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-2674 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-1646 ((|#1| $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-1221)))) (-2260 (($ $) NIL (|has| |#1| (-1221)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2879 (($ $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-1870 (((-430 $) $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-4214 (($ $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-317)))) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-2363 (($ $) NIL (|has| |#1| (-1221)))) (-2238 (($ $) NIL (|has| |#1| (-1221)))) (-2409 (($ $) NIL (|has| |#1| (-1221)))) (-2282 (($ $) NIL (|has| |#1| (-1221)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-2524 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2806 (($ $ $) NIL (|has| |#1| (-317)))) (-1796 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2887 (($ (-1191 |#1|)) NIL) (((-3 $ "failed") (-419 (-1191 |#1|))) NIL (|has| |#1| (-374)))) (-4077 (((-3 $ "failed") $) NIL)) (-4225 ((|#1| $) 13)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1874 (((-112) $) NIL (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3563 (((-937)) NIL)) (-2840 (($) NIL (|has| |#1| (-379)))) (-2818 (($ $ $) NIL (|has| |#1| (-317)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-3243 (($) NIL (|has| |#1| (-360)))) (-4208 (((-112) $) NIL (|has| |#1| (-360)))) (-3454 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3124 (((-112) $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-2327 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1078)) (|has| |#1| (-1221))))) (-3009 (($) NIL (|has| |#1| (-1221)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-3540 (((-937) $) NIL (|has| |#1| (-360))) (((-845 (-937)) $) NIL (|has| |#1| (-360)))) (-4192 (((-112) $) 36)) (-2333 (($ $ (-576)) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221))))) (-3404 ((|#1| $) 47)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-1733 (((-1191 |#1|) $) NIL (|has| |#1| (-374)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-3118 (($ $) NIL (|has| |#1| (-1221)))) (-2874 (((-1191 |#1|) $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-3796 (($) NIL (|has| |#1| (-360)) CONST)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-3289 (($) NIL)) (-4236 ((|#1| $) 15)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-317)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| |#1| (-360)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-925))))) (-4205 (((-430 $) $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-374))))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-317)))) (-2858 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-1619 (($ $) NIL (|has| |#1| (-1221)))) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-3927 (((-783) $) NIL (|has| |#1| (-317)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-317)))) (-3206 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-3884 (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-3767 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2477 (((-1191 |#1|)) NIL)) (-2422 (($ $) NIL (|has| |#1| (-1221)))) (-2291 (($ $) NIL (|has| |#1| (-1221)))) (-3087 (($) NIL (|has| |#1| (-360)))) (-2394 (($ $) NIL (|has| |#1| (-1221)))) (-2270 (($ $) NIL (|has| |#1| (-1221)))) (-2373 (($ $) NIL (|has| |#1| (-1221)))) (-2249 (($ $) NIL (|has| |#1| (-1221)))) (-3458 (((-1286 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1846 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) (((-1191 |#1|) $) NIL) (($ (-1191 |#1|)) NIL) (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1040))) (((-171 (-227)) $) NIL (|has| |#1| (-1040))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1979 (($ $) 46)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-360))))) (-3541 (($ |#1| |#1|) 38)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-1817 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-4343 (((-1191 |#1|) $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL)) (-2461 (($ $) NIL (|has| |#1| (-1221)))) (-2324 (($ $) NIL (|has| |#1| (-1221)))) (-2946 (((-112) $ $) NIL (-2838 (-12 (|has| |#1| (-317)) (|has| |#1| (-925))) (|has| |#1| (-568))))) (-2434 (($ $) NIL (|has| |#1| (-1221)))) (-2304 (($ $) NIL (|has| |#1| (-1221)))) (-2485 (($ $) NIL (|has| |#1| (-1221)))) (-2345 (($ $) NIL (|has| |#1| (-1221)))) (-3538 ((|#1| $) NIL (|has| |#1| (-1221)))) (-2541 (($ $) NIL (|has| |#1| (-1221)))) (-2354 (($ $) NIL (|has| |#1| (-1221)))) (-2473 (($ $) NIL (|has| |#1| (-1221)))) (-2335 (($ $) NIL (|has| |#1| (-1221)))) (-2447 (($ $) NIL (|has| |#1| (-1221)))) (-2315 (($ $) NIL (|has| |#1| (-1221)))) (-2130 (($ $) NIL (|has| |#1| (-1078)))) (-2143 (($) 28 T CONST)) (-2155 (($) 30 T CONST)) (-2616 (((-1177) $) 23 (|has| |#1| (-840))) (((-1177) $ (-112)) 25 (|has| |#1| (-840))) (((-1291) (-834) $) 26 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-3590 (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 40)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1221)))) (($ $ $) NIL (|has| |#1| (-1221))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374)))))
+(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171))
+NIL
+(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|)))
+((-1846 (((-905 |#1|) |#3|) 22)))
+(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1846 ((-905 |#1|) |#3|))) (-1118) (-13 (-626 (-905 |#1|)) (-174)) (-167 |#2|)) (T -172))
+((-1846 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1118)) (-4 *3 (-167 *5)))))
+(-10 -7 (-15 -1846 ((-905 |#1|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-2966 (((-112) $) 9)) (-4020 (((-112) $ (-112)) 11)) (-3769 (($) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3162 (($ $) 14)) (-2956 (((-874) $) 18)) (-3601 (((-112) $) 8)) (-1392 (((-112) $ (-112)) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-173) (-13 (-1118) (-10 -8 (-15 -3769 ($)) (-15 -3601 ((-112) $)) (-15 -2966 ((-112) $)) (-15 -1392 ((-112) $ (-112))) (-15 -4020 ((-112) $ (-112))) (-15 -3162 ($ $))))) (T -173))
+((-3769 (*1 *1) (-5 *1 (-173))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1392 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4020 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3162 (*1 *1 *1) (-5 *1 (-173))))
+(-13 (-1118) (-10 -8 (-15 -3769 ($)) (-15 -3601 ((-112) $)) (-15 -2966 ((-112) $)) (-15 -1392 ((-112) $ (-112))) (-15 -4020 ((-112) $ (-112))) (-15 -3162 ($ $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-174) (-141)) (T -174))
NIL
-(-13 (-1065) (-111 $ $) (-10 -7 (-6 (-4461 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1839 (($ $) 6)))
+(-13 (-1067) (-111 $ $) (-10 -7 (-6 (-4463 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-3597 (($ $) 6)))
(((-175) (-141)) (T -175))
-((-1839 (*1 *1 *1) (-4 *1 (-175))))
-(-13 (-10 -8 (-15 -1839 ($ $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 ((|#1| $) 81)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL)) (-2434 (($ $) 21)) (-3513 (($ |#1| (-1173 |#1|)) 50)) (-3612 (((-3 $ "failed") $) 123)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2168 (((-1173 |#1|) $) 88)) (-1890 (((-1173 |#1|) $) 85)) (-1494 (((-1173 |#1|) $) 86)) (-3943 (((-112) $) NIL)) (-3551 (((-1173 |#1|) $) 94)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2845 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2249 (($ $ (-574)) 97)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2819 (((-1173 |#1|) $) 95)) (-2829 (((-1173 (-417 |#1|)) $) 14)) (-3653 (($ (-417 |#1|)) 17) (($ |#1| (-1173 |#1|) (-1173 |#1|)) 40)) (-3263 (($ $) 99)) (-2951 (((-872) $) 139) (($ (-574)) 53) (($ |#1|) 54) (($ (-417 |#1|)) 38) (($ (-417 (-574))) NIL) (($ $) NIL)) (-3070 (((-781)) 69 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4263 (((-1173 (-417 |#1|)) $) 20)) (-2141 (($) 27 T CONST)) (-2153 (($) 30 T CONST)) (-2986 (((-112) $ $) 37)) (-3099 (($ $ $) 121)) (-3090 (($ $) 112) (($ $ $) 109)) (-3074 (($ $ $) 107)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-417 |#1|) $) 117) (($ $ (-417 |#1|)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL)))
-(((-176 |#1|) (-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -3653 ($ (-417 |#1|))) (-15 -3653 ($ |#1| (-1173 |#1|) (-1173 |#1|))) (-15 -3513 ($ |#1| (-1173 |#1|))) (-15 -1890 ((-1173 |#1|) $)) (-15 -1494 ((-1173 |#1|) $)) (-15 -2168 ((-1173 |#1|) $)) (-15 -4356 (|#1| $)) (-15 -2434 ($ $)) (-15 -4263 ((-1173 (-417 |#1|)) $)) (-15 -2829 ((-1173 (-417 |#1|)) $)) (-15 -3551 ((-1173 |#1|) $)) (-15 -2819 ((-1173 |#1|) $)) (-15 -2249 ($ $ (-574))) (-15 -3263 ($ $)))) (-315)) (T -176))
-((-3653 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3)))) (-3653 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-4356 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-2434 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315)))) (-3263 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))))
-(-13 (-38 |#1|) (-38 (-417 |#1|)) (-372) (-10 -8 (-15 -3653 ($ (-417 |#1|))) (-15 -3653 ($ |#1| (-1173 |#1|) (-1173 |#1|))) (-15 -3513 ($ |#1| (-1173 |#1|))) (-15 -1890 ((-1173 |#1|) $)) (-15 -1494 ((-1173 |#1|) $)) (-15 -2168 ((-1173 |#1|) $)) (-15 -4356 (|#1| $)) (-15 -2434 ($ $)) (-15 -4263 ((-1173 (-417 |#1|)) $)) (-15 -2829 ((-1173 (-417 |#1|)) $)) (-15 -3551 ((-1173 |#1|) $)) (-15 -2819 ((-1173 |#1|) $)) (-15 -2249 ($ $ (-574))) (-15 -3263 ($ $))))
-((-2395 (($ (-109) $) 15)) (-2342 (((-701 (-109)) (-516) $) 14)) (-2951 (((-872) $) 18)) (-2947 (((-654 (-109)) $) 8)))
-(((-177) (-13 (-623 (-872)) (-10 -8 (-15 -2947 ((-654 (-109)) $)) (-15 -2395 ($ (-109) $)) (-15 -2342 ((-701 (-109)) (-516) $))))) (T -177))
-((-2947 (*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))) (-2395 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2342 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2947 ((-654 (-109)) $)) (-15 -2395 ($ (-109) $)) (-15 -2342 ((-701 (-109)) (-516) $))))
-((-4175 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 38)) (-1696 (((-957 |#1|) (-957 |#1|)) 22)) (-4362 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 34)) (-3960 (((-957 |#1|) (-957 |#1|)) 20)) (-4437 (((-957 |#1|) (-957 |#1|)) 28)) (-4065 (((-957 |#1|) (-957 |#1|)) 27)) (-1620 (((-957 |#1|) (-957 |#1|)) 26)) (-1989 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 35)) (-3432 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 33)) (-4148 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 32)) (-3466 (((-957 |#1|) (-957 |#1|)) 21)) (-1411 (((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|) 41)) (-1619 (((-957 |#1|) (-957 |#1|)) 8)) (-3306 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 37)) (-2336 (((-1 (-957 |#1|) (-957 |#1|)) |#1|) 36)))
-(((-178 |#1|) (-10 -7 (-15 -1619 ((-957 |#1|) (-957 |#1|))) (-15 -3960 ((-957 |#1|) (-957 |#1|))) (-15 -3466 ((-957 |#1|) (-957 |#1|))) (-15 -1696 ((-957 |#1|) (-957 |#1|))) (-15 -1620 ((-957 |#1|) (-957 |#1|))) (-15 -4065 ((-957 |#1|) (-957 |#1|))) (-15 -4437 ((-957 |#1|) (-957 |#1|))) (-15 -4148 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3432 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -4362 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1989 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -2336 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3306 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -4175 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1411 ((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|))) (-13 (-372) (-1219) (-1018))) (T -178))
-((-1411 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-4175 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-1989 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-4362 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-4148 (*1 *2 *3) (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))))) (-4437 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018))) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -1619 ((-957 |#1|) (-957 |#1|))) (-15 -3960 ((-957 |#1|) (-957 |#1|))) (-15 -3466 ((-957 |#1|) (-957 |#1|))) (-15 -1696 ((-957 |#1|) (-957 |#1|))) (-15 -1620 ((-957 |#1|) (-957 |#1|))) (-15 -4065 ((-957 |#1|) (-957 |#1|))) (-15 -4437 ((-957 |#1|) (-957 |#1|))) (-15 -4148 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3432 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -4362 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1989 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -2336 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -3306 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -4175 ((-1 (-957 |#1|) (-957 |#1|)) |#1|)) (-15 -1411 ((-1 (-957 |#1|) (-957 |#1|)) |#1| |#1|)))
-((-2451 ((|#2| |#3|) 28)))
-(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2451 (|#2| |#3|))) (-174) (-1260 |#1|) (-734 |#1| |#2|)) (T -179))
-((-2451 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1260 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-734 *4 *2)))))
-(-10 -7 (-15 -2451 (|#2| |#3|)))
-((-1821 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 44 (|has| (-966 |#2|) (-897 |#1|)))))
-(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-966 |#2|) (-897 |#1|)) (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|)) (-1116) (-13 (-897 |#1|) (-174)) (-167 |#2|)) (T -180))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *3 (-167 *6)) (-4 (-966 *6) (-897 *5)) (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-966 |#2|) (-897 |#1|)) (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) |%noBranch|))
-((-1798 (((-654 |#1|) (-654 |#1|) |#1|) 41)) (-4341 (((-654 |#1|) |#1| (-654 |#1|)) 20)) (-1883 (((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|)) 36) ((|#1| (-654 |#1|) (-654 |#1|)) 32)))
-(((-181 |#1|) (-10 -7 (-15 -4341 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -1883 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -1883 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1798 ((-654 |#1|) (-654 |#1|) |#1|))) (-315)) (T -181))
-((-1798 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))) (-1883 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315)) (-5 *1 (-181 *4)))) (-1883 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315)))) (-4341 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
-(-10 -7 (-15 -4341 ((-654 |#1|) |#1| (-654 |#1|))) (-15 -1883 (|#1| (-654 |#1|) (-654 |#1|))) (-15 -1883 ((-654 |#1|) (-654 (-654 |#1|)) (-654 |#1|))) (-15 -1798 ((-654 |#1|) (-654 |#1|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-182) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -182))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-182)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-182)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))
-((-3868 (((-2 (|:| |start| |#2|) (|:| -3996 (-428 |#2|))) |#2|) 66)) (-2105 ((|#1| |#1|) 58)) (-1945 (((-171 |#1|) |#2|) 93)) (-2457 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-4267 ((|#2| |#2|) 91)) (-1694 (((-428 |#2|) |#2| |#1|) 118) (((-428 |#2|) |#2| |#1| (-112)) 88)) (-2608 ((|#1| |#2|) 117)) (-3973 ((|#2| |#2|) 130)) (-4201 (((-428 |#2|) |#2|) 153) (((-428 |#2|) |#2| |#1|) 33) (((-428 |#2|) |#2| |#1| (-112)) 152)) (-2115 (((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2|) 151) (((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2| (-112)) 81)) (-2259 (((-654 (-171 |#1|)) |#2| |#1|) 42) (((-654 (-171 |#1|)) |#2|) 43)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -2259 ((-654 (-171 |#1|)) |#2|)) (-15 -2259 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -2115 ((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2| (-112))) (-15 -2115 ((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2|)) (-15 -4201 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4201 ((-428 |#2|) |#2| |#1|)) (-15 -4201 ((-428 |#2|) |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -2608 (|#1| |#2|)) (-15 -1694 ((-428 |#2|) |#2| |#1| (-112))) (-15 -1694 ((-428 |#2|) |#2| |#1|)) (-15 -4267 (|#2| |#2|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -2457 (|#1| |#2|)) (-15 -1945 ((-171 |#1|) |#2|)) (-15 -2105 (|#1| |#1|)) (-15 -3868 ((-2 (|:| |start| |#2|) (|:| -3996 (-428 |#2|))) |#2|))) (-13 (-372) (-858)) (-1260 (-171 |#1|))) (T -183))
-((-3868 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-2 (|:| |start| *3) (|:| -3996 (-428 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2105 (*1 *2 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-1945 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1260 *2)))) (-2457 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-2457 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-4267 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1260 (-171 *3))))) (-1694 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2608 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1260 (-171 *2))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1260 (-171 *3))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4201 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2115 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3996 (-654 *3)) (|:| -2691 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2115 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858))) (-5 *2 (-654 (-2 (|:| -3996 (-654 *3)) (|:| -2691 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1260 (-171 *5))))) (-2259 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))) (-2259 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
-(-10 -7 (-15 -2259 ((-654 (-171 |#1|)) |#2|)) (-15 -2259 ((-654 (-171 |#1|)) |#2| |#1|)) (-15 -2115 ((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2| (-112))) (-15 -2115 ((-654 (-2 (|:| -3996 (-654 |#2|)) (|:| -2691 |#1|))) |#2| |#2|)) (-15 -4201 ((-428 |#2|) |#2| |#1| (-112))) (-15 -4201 ((-428 |#2|) |#2| |#1|)) (-15 -4201 ((-428 |#2|) |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -2608 (|#1| |#2|)) (-15 -1694 ((-428 |#2|) |#2| |#1| (-112))) (-15 -1694 ((-428 |#2|) |#2| |#1|)) (-15 -4267 (|#2| |#2|)) (-15 -2457 (|#1| |#2| |#1|)) (-15 -2457 (|#1| |#2|)) (-15 -1945 ((-171 |#1|) |#2|)) (-15 -2105 (|#1| |#1|)) (-15 -3868 ((-2 (|:| |start| |#2|) (|:| -3996 (-428 |#2|))) |#2|)))
-((-3909 (((-3 |#2| "failed") |#2|) 16)) (-3067 (((-781) |#2|) 18)) (-3365 ((|#2| |#2| |#2|) 20)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -3909 ((-3 |#2| "failed") |#2|)) (-15 -3067 ((-781) |#2|)) (-15 -3365 (|#2| |#2| |#2|))) (-1234) (-684 |#1|)) (T -184))
-((-3365 (*1 *2 *2 *2) (-12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))) (-3067 (*1 *2 *3) (-12 (-4 *4 (-1234)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3)) (-4 *3 (-684 *4)))) (-3909 (*1 *2 *2) (|partial| -12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))))
-(-10 -7 (-15 -3909 ((-3 |#2| "failed") |#2|)) (-15 -3067 ((-781) |#2|)) (-15 -3365 (|#2| |#2| |#2|)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1972 ((|#1| $) 7)) (-2951 (((-872) $) 14)) (-2981 (((-112) $ $) NIL)) (-1572 (((-654 (-1198)) $) 10)) (-2986 (((-112) $ $) 12)))
-(((-185 |#1|) (-13 (-1116) (-10 -8 (-15 -1972 (|#1| $)) (-15 -1572 ((-654 (-1198)) $)))) (-187)) (T -185))
-((-1972 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(-13 (-1116) (-10 -8 (-15 -1972 (|#1| $)) (-15 -1572 ((-654 (-1198)) $))))
-((-1723 (((-654 (-875)) $) 16)) (-4270 (((-188) $) 8)) (-2229 (((-654 (-112)) $) 13)) (-4069 (((-55) $) 10)))
-(((-186 |#1|) (-10 -8 (-15 -1723 ((-654 (-875)) |#1|)) (-15 -2229 ((-654 (-112)) |#1|)) (-15 -4270 ((-188) |#1|)) (-15 -4069 ((-55) |#1|))) (-187)) (T -186))
-NIL
-(-10 -8 (-15 -1723 ((-654 (-875)) |#1|)) (-15 -2229 ((-654 (-112)) |#1|)) (-15 -4270 ((-188) |#1|)) (-15 -4069 ((-55) |#1|)))
-((-2864 (((-112) $ $) 7)) (-1723 (((-654 (-875)) $) 19)) (-2039 (((-516) $) 16)) (-4420 (((-1175) $) 10)) (-4270 (((-188) $) 21)) (-1575 (((-112) $ (-516)) 14)) (-3940 (((-1136) $) 11)) (-2229 (((-654 (-112)) $) 20)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-4069 (((-55) $) 15)) (-2986 (((-112) $ $) 6)))
+((-3597 (*1 *1 *1) (-4 *1 (-175))))
+(-13 (-10 -8 (-15 -3597 ($ $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 ((|#1| $) 81)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL)) (-4196 (($ $) 21)) (-4332 (($ |#1| (-1175 |#1|)) 50)) (-4077 (((-3 $ "failed") $) 123)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3657 (((-1175 |#1|) $) 88)) (-4044 (((-1175 |#1|) $) 85)) (-1399 (((-1175 |#1|) $) 86)) (-4192 (((-112) $) NIL)) (-1594 (((-1175 |#1|) $) 94)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2850 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-3167 (($ $ (-576)) 97)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3659 (((-1175 |#1|) $) 95)) (-3745 (((-1175 (-419 |#1|)) $) 14)) (-3296 (($ (-419 |#1|)) 17) (($ |#1| (-1175 |#1|) (-1175 |#1|)) 40)) (-1588 (($ $) 99)) (-2956 (((-874) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3423 (((-783)) 69 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3131 (((-1175 (-419 |#1|)) $) 20)) (-2143 (($) 27 T CONST)) (-2155 (($) 30 T CONST)) (-2991 (((-112) $ $) 37)) (-3108 (($ $ $) 121)) (-3096 (($ $) 112) (($ $ $) 109)) (-3081 (($ $ $) 107)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL)))
+(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3296 ($ (-419 |#1|))) (-15 -3296 ($ |#1| (-1175 |#1|) (-1175 |#1|))) (-15 -4332 ($ |#1| (-1175 |#1|))) (-15 -4044 ((-1175 |#1|) $)) (-15 -1399 ((-1175 |#1|) $)) (-15 -3657 ((-1175 |#1|) $)) (-15 -2742 (|#1| $)) (-15 -4196 ($ $)) (-15 -3131 ((-1175 (-419 |#1|)) $)) (-15 -3745 ((-1175 (-419 |#1|)) $)) (-15 -1594 ((-1175 |#1|) $)) (-15 -3659 ((-1175 |#1|) $)) (-15 -3167 ($ $ (-576))) (-15 -1588 ($ $)))) (-317)) (T -176))
+((-3296 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-3296 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-4332 (*1 *1 *2 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2742 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-4196 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1588 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))))
+(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -3296 ($ (-419 |#1|))) (-15 -3296 ($ |#1| (-1175 |#1|) (-1175 |#1|))) (-15 -4332 ($ |#1| (-1175 |#1|))) (-15 -4044 ((-1175 |#1|) $)) (-15 -1399 ((-1175 |#1|) $)) (-15 -3657 ((-1175 |#1|) $)) (-15 -2742 (|#1| $)) (-15 -4196 ($ $)) (-15 -3131 ((-1175 (-419 |#1|)) $)) (-15 -3745 ((-1175 (-419 |#1|)) $)) (-15 -1594 ((-1175 |#1|) $)) (-15 -3659 ((-1175 |#1|) $)) (-15 -3167 ($ $ (-576))) (-15 -1588 ($ $))))
+((-1965 (($ (-109) $) 15)) (-2735 (((-703 (-109)) (-518) $) 14)) (-2956 (((-874) $) 18)) (-3561 (((-656 (-109)) $) 8)))
+(((-177) (-13 (-625 (-874)) (-10 -8 (-15 -3561 ((-656 (-109)) $)) (-15 -1965 ($ (-109) $)) (-15 -2735 ((-703 (-109)) (-518) $))))) (T -177))
+((-3561 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-1965 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2735 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3561 ((-656 (-109)) $)) (-15 -1965 ($ (-109) $)) (-15 -2735 ((-703 (-109)) (-518) $))))
+((-1562 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 38)) (-2805 (((-959 |#1|) (-959 |#1|)) 22)) (-2804 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 34)) (-3179 (((-959 |#1|) (-959 |#1|)) 20)) (-2312 (((-959 |#1|) (-959 |#1|)) 28)) (-2985 (((-959 |#1|) (-959 |#1|)) 27)) (-3288 (((-959 |#1|) (-959 |#1|)) 26)) (-2597 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 35)) (-2832 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 33)) (-4409 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 32)) (-1944 (((-959 |#1|) (-959 |#1|)) 21)) (-3068 (((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|) 41)) (-3277 (((-959 |#1|) (-959 |#1|)) 8)) (-3961 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 37)) (-2676 (((-1 (-959 |#1|) (-959 |#1|)) |#1|) 36)))
+(((-178 |#1|) (-10 -7 (-15 -3277 ((-959 |#1|) (-959 |#1|))) (-15 -3179 ((-959 |#1|) (-959 |#1|))) (-15 -1944 ((-959 |#1|) (-959 |#1|))) (-15 -2805 ((-959 |#1|) (-959 |#1|))) (-15 -3288 ((-959 |#1|) (-959 |#1|))) (-15 -2985 ((-959 |#1|) (-959 |#1|))) (-15 -2312 ((-959 |#1|) (-959 |#1|))) (-15 -4409 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2832 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2804 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2597 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2676 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3961 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -1562 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3068 ((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|))) (-13 (-374) (-1221) (-1020))) (T -178))
+((-3068 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-1562 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-3961 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-2676 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-2597 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-2832 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-4409 (*1 *2 *3) (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020))) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -3277 ((-959 |#1|) (-959 |#1|))) (-15 -3179 ((-959 |#1|) (-959 |#1|))) (-15 -1944 ((-959 |#1|) (-959 |#1|))) (-15 -2805 ((-959 |#1|) (-959 |#1|))) (-15 -3288 ((-959 |#1|) (-959 |#1|))) (-15 -2985 ((-959 |#1|) (-959 |#1|))) (-15 -2312 ((-959 |#1|) (-959 |#1|))) (-15 -4409 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2832 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2804 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2597 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -2676 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3961 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -1562 ((-1 (-959 |#1|) (-959 |#1|)) |#1|)) (-15 -3068 ((-1 (-959 |#1|) (-959 |#1|)) |#1| |#1|)))
+((-4343 ((|#2| |#3|) 28)))
+(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4343 (|#2| |#3|))) (-174) (-1262 |#1|) (-736 |#1| |#2|)) (T -179))
+((-4343 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2)))))
+(-10 -7 (-15 -4343 (|#2| |#3|)))
+((-1487 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 44 (|has| (-968 |#2|) (-899 |#1|)))))
+(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-968 |#2|) (-899 |#1|)) (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1118) (-13 (-899 |#1|) (-174)) (-167 |#2|)) (T -180))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *3 (-167 *6)) (-4 (-968 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-968 |#2|) (-899 |#1|)) (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|))
+((-4405 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-2587 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-3985 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32)))
+(((-181 |#1|) (-10 -7 (-15 -2587 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3985 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3985 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -4405 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181))
+((-4405 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-3985 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-3985 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-2587 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
+(-10 -7 (-15 -2587 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3985 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3985 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -4405 ((-656 |#1|) (-656 |#1|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-2355 (((-1235) $) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 10)) (-2956 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-182) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))) (T -182))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-182)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))
+((-1575 (((-2 (|:| |start| |#2|) (|:| -3544 (-430 |#2|))) |#2|) 66)) (-4326 ((|#1| |#1|) 58)) (-3432 (((-171 |#1|) |#2|) 93)) (-4385 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3165 ((|#2| |#2|) 91)) (-2784 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-3404 ((|#1| |#2|) 117)) (-3323 ((|#2| |#2|) 130)) (-4205 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-4423 (((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2| (-112)) 81)) (-3254 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -3254 ((-656 (-171 |#1|)) |#2|)) (-15 -3254 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -4423 ((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2| (-112))) (-15 -4423 ((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2|)) (-15 -4205 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4205 ((-430 |#2|) |#2| |#1|)) (-15 -4205 ((-430 |#2|) |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -3404 (|#1| |#2|)) (-15 -2784 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2784 ((-430 |#2|) |#2| |#1|)) (-15 -3165 (|#2| |#2|)) (-15 -4385 (|#1| |#2| |#1|)) (-15 -4385 (|#1| |#2|)) (-15 -3432 ((-171 |#1|) |#2|)) (-15 -4326 (|#1| |#1|)) (-15 -1575 ((-2 (|:| |start| |#2|) (|:| -3544 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1262 (-171 |#1|))) (T -183))
+((-1575 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -3544 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4326 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2)))) (-4385 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-4385 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-2784 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-2784 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3404 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4205 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4205 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4423 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3544 (-656 *3)) (|:| -2696 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4423 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3544 (-656 *3)) (|:| -2696 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5))))) (-3254 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3254 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
+(-10 -7 (-15 -3254 ((-656 (-171 |#1|)) |#2|)) (-15 -3254 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -4423 ((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2| (-112))) (-15 -4423 ((-656 (-2 (|:| -3544 (-656 |#2|)) (|:| -2696 |#1|))) |#2| |#2|)) (-15 -4205 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4205 ((-430 |#2|) |#2| |#1|)) (-15 -4205 ((-430 |#2|) |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -3404 (|#1| |#2|)) (-15 -2784 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2784 ((-430 |#2|) |#2| |#1|)) (-15 -3165 (|#2| |#2|)) (-15 -4385 (|#1| |#2| |#1|)) (-15 -4385 (|#1| |#2|)) (-15 -3432 ((-171 |#1|) |#2|)) (-15 -4326 (|#1| |#1|)) (-15 -1575 ((-2 (|:| |start| |#2|) (|:| -3544 (-430 |#2|))) |#2|)))
+((-3881 (((-3 |#2| "failed") |#2|) 16)) (-3392 (((-783) |#2|) 18)) (-3355 ((|#2| |#2| |#2|) 20)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -3881 ((-3 |#2| "failed") |#2|)) (-15 -3392 ((-783) |#2|)) (-15 -3355 (|#2| |#2| |#2|))) (-1236) (-686 |#1|)) (T -184))
+((-3355 (*1 *2 *2 *2) (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-3392 (*1 *2 *3) (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-3881 (*1 *2 *2) (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))))
+(-10 -7 (-15 -3881 ((-3 |#2| "failed") |#2|)) (-15 -3392 ((-783) |#2|)) (-15 -3355 (|#2| |#2| |#2|)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1974 ((|#1| $) 7)) (-2956 (((-874) $) 14)) (-2617 (((-112) $ $) NIL)) (-1574 (((-656 (-1200)) $) 10)) (-2991 (((-112) $ $) 12)))
+(((-185 |#1|) (-13 (-1118) (-10 -8 (-15 -1974 (|#1| $)) (-15 -1574 ((-656 (-1200)) $)))) (-187)) (T -185))
+((-1974 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(-13 (-1118) (-10 -8 (-15 -1974 (|#1| $)) (-15 -1574 ((-656 (-1200)) $))))
+((-1725 (((-656 (-877)) $) 16)) (-4272 (((-188) $) 8)) (-3005 (((-656 (-112)) $) 13)) (-1755 (((-55) $) 10)))
+(((-186 |#1|) (-10 -8 (-15 -1725 ((-656 (-877)) |#1|)) (-15 -3005 ((-656 (-112)) |#1|)) (-15 -4272 ((-188) |#1|)) (-15 -1755 ((-55) |#1|))) (-187)) (T -186))
+NIL
+(-10 -8 (-15 -1725 ((-656 (-877)) |#1|)) (-15 -3005 ((-656 (-112)) |#1|)) (-15 -4272 ((-188) |#1|)) (-15 -1755 ((-55) |#1|)))
+((-2869 (((-112) $ $) 7)) (-1725 (((-656 (-877)) $) 19)) (-2041 (((-518) $) 16)) (-2148 (((-1177) $) 10)) (-4272 (((-188) $) 21)) (-2881 (((-112) $ (-518)) 14)) (-3945 (((-1138) $) 11)) (-3005 (((-656 (-112)) $) 20)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-1755 (((-55) $) 15)) (-2991 (((-112) $ $) 6)))
(((-187) (-141)) (T -187))
-((-4270 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875))))))
-(-13 (-845 (-516)) (-10 -8 (-15 -4270 ((-188) $)) (-15 -2229 ((-654 (-112)) $)) (-15 -1723 ((-654 (-875)) $))))
-(((-102) . T) ((-623 (-872)) . T) ((-845 (-516)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-8 (($) 7 T CONST)) (-2951 (((-872) $) 12)) (-9 (($) 6 T CONST)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 10)))
-(((-188) (-13 (-1116) (-10 -8 (-15 -9 ($) -1714) (-15 -8 ($) -1714) (-15 -7 ($) -1714)))) (T -188))
+((-4272 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877))))))
+(-13 (-847 (-518)) (-10 -8 (-15 -4272 ((-188) $)) (-15 -3005 ((-656 (-112)) $)) (-15 -1725 ((-656 (-877)) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-847 (-518)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-8 (($) 7 T CONST)) (-2956 (((-874) $) 12)) (-9 (($) 6 T CONST)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 10)))
+(((-188) (-13 (-1118) (-10 -8 (-15 -9 ($) -1716) (-15 -8 ($) -1716) (-15 -7 ($) -1716)))) (T -188))
((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188))))
-(-13 (-1116) (-10 -8 (-15 -9 ($) -1714) (-15 -8 ($) -1714) (-15 -7 ($) -1714)))
-((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) 8)) (-4420 (((-1175) $) NIL)) (-4270 (((-188) $) 10)) (-1575 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-3616 (((-701 $) (-516)) 17)) (-2229 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-4069 (((-55) $) 12)) (-2986 (((-112) $ $) NIL)))
-(((-189) (-13 (-187) (-10 -8 (-15 -3616 ((-701 $) (-516)))))) (T -189))
-((-3616 (*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189)))))
-(-13 (-187) (-10 -8 (-15 -3616 ((-701 $) (-516)))))
-((-2134 ((|#2| |#2|) 28)) (-2463 (((-112) |#2|) 19)) (-4223 (((-324 |#1|) |#2|) 12)) (-4234 (((-324 |#1|) |#2|) 14)) (-1460 ((|#2| |#2| (-1193)) 69) ((|#2| |#2|) 70)) (-3110 (((-171 (-324 |#1|)) |#2|) 10)) (-2366 ((|#2| |#2| (-1193)) 66) ((|#2| |#2|) 60)))
-(((-190 |#1| |#2|) (-10 -7 (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1193))) (-15 -2366 (|#2| |#2|)) (-15 -2366 (|#2| |#2| (-1193))) (-15 -4223 ((-324 |#1|) |#2|)) (-15 -4234 ((-324 |#1|) |#2|)) (-15 -2463 ((-112) |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3110 ((-171 (-324 |#1|)) |#2|))) (-13 (-566) (-1054 (-574))) (-13 (-27) (-1219) (-440 (-171 |#1|)))) (T -190))
-((-3110 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-171 (-324 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-4234 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-4223 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4)))))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3)))))))
-(-10 -7 (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1193))) (-15 -2366 (|#2| |#2|)) (-15 -2366 (|#2| |#2| (-1193))) (-15 -4223 ((-324 |#1|) |#2|)) (-15 -4234 ((-324 |#1|) |#2|)) (-15 -2463 ((-112) |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3110 ((-171 (-324 |#1|)) |#2|)))
-((-3194 (((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|))) 26)) (-2951 (((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|))) 37)))
-(((-191 |#1|) (-10 -7 (-15 -3194 ((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|)))) (-15 -2951 ((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|))))) (-174)) (T -191))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1284 (-699 (-417 (-966 *4))))) (-5 *1 (-191 *4)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174)) (-5 *2 (-1284 (-699 (-966 *4)))) (-5 *1 (-191 *4)))))
-(-10 -7 (-15 -3194 ((-1284 (-699 (-966 |#1|))) (-1284 (-699 |#1|)))) (-15 -2951 ((-1284 (-699 (-417 (-966 |#1|)))) (-1284 (-699 |#1|)))))
-((-2681 (((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 93)) (-2889 (((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574))) 107)) (-3967 (((-1195 (-417 (-574))) (-935)) 54)) (-3024 (((-1195 (-417 (-574))) (-935)) 79)) (-2661 (((-417 (-574)) (-1195 (-417 (-574)))) 89)) (-2627 (((-1195 (-417 (-574))) (-935)) 37)) (-1552 (((-1195 (-417 (-574))) (-935)) 66)) (-4372 (((-1195 (-417 (-574))) (-935)) 61)) (-3060 (((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 87)) (-3263 (((-1195 (-417 (-574))) (-935)) 29)) (-3278 (((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574)))) 91)) (-2941 (((-1195 (-417 (-574))) (-935)) 35)) (-3120 (((-1195 (-417 (-574))) (-654 (-935))) 100)))
-(((-192) (-10 -7 (-15 -3263 ((-1195 (-417 (-574))) (-935))) (-15 -3967 ((-1195 (-417 (-574))) (-935))) (-15 -2627 ((-1195 (-417 (-574))) (-935))) (-15 -2941 ((-1195 (-417 (-574))) (-935))) (-15 -4372 ((-1195 (-417 (-574))) (-935))) (-15 -1552 ((-1195 (-417 (-574))) (-935))) (-15 -3024 ((-1195 (-417 (-574))) (-935))) (-15 -3278 ((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3060 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -2661 ((-417 (-574)) (-1195 (-417 (-574))))) (-15 -2681 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3120 ((-1195 (-417 (-574))) (-654 (-935)))) (-15 -2889 ((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574)))))) (T -192))
-((-2889 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2681 (*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3278 (*1 *2 *3 *3) (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-192)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(-10 -7 (-15 -3263 ((-1195 (-417 (-574))) (-935))) (-15 -3967 ((-1195 (-417 (-574))) (-935))) (-15 -2627 ((-1195 (-417 (-574))) (-935))) (-15 -2941 ((-1195 (-417 (-574))) (-935))) (-15 -4372 ((-1195 (-417 (-574))) (-935))) (-15 -1552 ((-1195 (-417 (-574))) (-935))) (-15 -3024 ((-1195 (-417 (-574))) (-935))) (-15 -3278 ((-417 (-574)) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3060 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -2661 ((-417 (-574)) (-1195 (-417 (-574))))) (-15 -2681 ((-1195 (-417 (-574))) (-1195 (-417 (-574))) (-1195 (-417 (-574))))) (-15 -3120 ((-1195 (-417 (-574))) (-654 (-935)))) (-15 -2889 ((-1195 (-417 (-574))) (-654 (-574)) (-654 (-574)))))
-((-2361 (((-428 (-1189 (-574))) (-574)) 38)) (-2547 (((-654 (-1189 (-574))) (-574)) 33)) (-2638 (((-1189 (-574)) (-574)) 28)))
-(((-193) (-10 -7 (-15 -2547 ((-654 (-1189 (-574))) (-574))) (-15 -2638 ((-1189 (-574)) (-574))) (-15 -2361 ((-428 (-1189 (-574))) (-574))))) (T -193))
-((-2361 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))) (-2638 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-193)) (-5 *3 (-574)))) (-2547 (*1 *2 *3) (-12 (-5 *2 (-654 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
-(-10 -7 (-15 -2547 ((-654 (-1189 (-574))) (-574))) (-15 -2638 ((-1189 (-574)) (-574))) (-15 -2361 ((-428 (-1189 (-574))) (-574))))
-((-4331 (((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2359 (((-654 (-1175)) (-1173 (-227))) NIL)) (-2926 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2133 (((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227)))) NIL)) (-1369 (((-654 (-1175)) (-654 (-227))) NIL)) (-2858 (((-227) (-1110 (-853 (-227)))) 31)) (-2978 (((-227) (-1110 (-853 (-227)))) 32)) (-3172 (((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2784 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3352 (((-1175) (-227)) NIL)) (-2107 (((-1175) (-654 (-1175))) 27)) (-3737 (((-1051) (-1193) (-1193) (-1051)) 13)))
-(((-194) (-10 -7 (-15 -2926 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2784 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -3172 ((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2133 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))) (-15 -2107 ((-1175) (-654 (-1175)))) (-15 -3737 ((-1051) (-1193) (-1193) (-1051))))) (T -194))
-((-3737 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-194)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-194)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-194)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-194)))) (-2133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-194)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
-(-10 -7 (-15 -2926 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2784 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -3172 ((-388) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2133 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))) (-15 -2107 ((-1175) (-654 (-1175)))) (-15 -3737 ((-1051) (-1193) (-1193) (-1051))))
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 61) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-195) (-797)) (T -195))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 66) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-196) (-797)) (T -196))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 81) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-197) (-797)) (T -197))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 63) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-198) (-797)) (T -198))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 75) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-199) (-797)) (T -199))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 93) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-200) (-797)) (T -200))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 90) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-201) (-797)) (T -201))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 77) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-202) (-797)) (T -202))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 76)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-203) (-797)) (T -203))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 77)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-204) (-797)) (T -204))
-NIL
-(-797)
-((-2864 (((-112) $ $) NIL)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 105) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-205) (-797)) (T -205))
-NIL
-(-797)
-((-1981 (((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2147 (((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-1592 (((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
-(((-206) (-10 -7 (-15 -1981 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1592 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2147 ((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
-((-2147 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-574)) (-5 *1 (-206)))) (-1592 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-206)))) (-1981 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(-10 -7 (-15 -1981 ((-3 (-2 (|:| -4285 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1592 ((-3 (-654 (-227)) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2147 ((-574) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2116 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-1991 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3217 (((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227)))) 112)) (-1990 (((-388) (-699 (-324 (-227)))) 140)) (-1982 (((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193))) 136)) (-3065 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4265 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2661 (((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227)))) 125)) (-3277 (((-388) (-388) (-654 (-388))) 133) (((-388) (-388) (-388)) 128)) (-1409 (((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
-(((-207) (-10 -7 (-15 -3277 ((-388) (-388) (-388))) (-15 -3277 ((-388) (-388) (-654 (-388)))) (-15 -1990 ((-388) (-699 (-324 (-227))))) (-15 -1982 ((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193)))) (-15 -2661 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227))))) (-15 -3217 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -1991 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2116 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4265 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1409 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3065 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
-((-3065 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388)))) (-5 *1 (-207)))) (-2661 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1193))) (-5 *4 (-1284 (-324 (-227)))) (-5 *1 (-207)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3277 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))) (-3277 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207)))))
-(-10 -7 (-15 -3277 ((-388) (-388) (-388))) (-15 -3277 ((-388) (-388) (-654 (-388)))) (-15 -1990 ((-388) (-699 (-324 (-227))))) (-15 -1982 ((-699 (-324 (-227))) (-1284 (-324 (-227))) (-654 (-1193)))) (-15 -2661 ((-699 (-324 (-227))) (-699 (-324 (-227))) (-654 (-1193)) (-1284 (-324 (-227))))) (-15 -3217 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-699 (-324 (-227))))) (-15 -1991 ((-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2116 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4265 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1409 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3065 ((-388) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1364 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2986 (((-112) $ $) NIL)))
-(((-208) (-810)) (T -208))
-NIL
-(-810)
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1364 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2986 (((-112) $ $) NIL)))
-(((-209) (-810)) (T -209))
-NIL
-(-810)
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1364 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2986 (((-112) $ $) NIL)))
-(((-210) (-810)) (T -210))
-NIL
-(-810)
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1364 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2986 (((-112) $ $) NIL)))
-(((-211) (-810)) (T -211))
-NIL
-(-810)
-((-1663 (((-654 (-1193)) (-1193) (-781)) 26)) (-3830 (((-324 (-227)) (-324 (-227))) 35)) (-4326 (((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 87)) (-2927 (((-112) (-227) (-227) (-654 (-324 (-227)))) 47)))
-(((-212) (-10 -7 (-15 -1663 ((-654 (-1193)) (-1193) (-781))) (-15 -3830 ((-324 (-227)) (-324 (-227)))) (-15 -2927 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -4326 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))))) (T -212))
-((-4326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2927 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-212)) (-5 *3 (-1193)))))
-(-10 -7 (-15 -1663 ((-654 (-1193)) (-1193) (-781))) (-15 -3830 ((-324 (-227)) (-324 (-227)))) (-15 -2927 ((-112) (-227) (-227) (-654 (-324 (-227))))) (-15 -4326 ((-112) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))))
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 28)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1863 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 70)) (-2986 (((-112) $ $) NIL)))
-(((-213) (-908)) (T -213))
-NIL
-(-908)
-((-2864 (((-112) $ $) NIL)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 24)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-1863 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-214) (-908)) (T -214))
-NIL
-(-908)
-((-2864 (((-112) $ $) NIL)) (-2409 ((|#2| $ (-781) |#2|) 11)) (-2400 ((|#2| $ (-781)) 10)) (-3764 (($) 8)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 13)))
-(((-215 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -2400 (|#2| $ (-781))) (-15 -2409 (|#2| $ (-781) |#2|)))) (-935) (-1116)) (T -215))
-((-3764 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1116)))) (-2400 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-1116)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935)))) (-2409 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935)) (-4 *2 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -3764 ($)) (-15 -2400 (|#2| $ (-781))) (-15 -2409 (|#2| $ (-781) |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3220 (((-1289) $) 37) (((-1289) $ (-935) (-935)) 41)) (-2207 (($ $ (-1005)) 19) (((-251 (-1175)) $ (-1193)) 15)) (-1414 (((-1289) $) 35)) (-2951 (((-872) $) 32) (($ (-654 |#1|)) 8)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $ $) 27)) (-3074 (($ $ $) 22)))
-(((-216 |#1|) (-13 (-1116) (-626 (-654 |#1|)) (-10 -8 (-15 -2207 ($ $ (-1005))) (-15 -2207 ((-251 (-1175)) $ (-1193))) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $)) (-15 -3220 ((-1289) $ (-935) (-935))))) (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $))))) (T -216))
-((-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $))))))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-251 (-1175))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ *3)) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $))))))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $))))))) (-3090 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $))))))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3220 (*2 $))))))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3220 (*2 $))))))) (-3220 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $)) (-15 -3220 (*2 $))))))))
-(-13 (-1116) (-626 (-654 |#1|)) (-10 -8 (-15 -2207 ($ $ (-1005))) (-15 -2207 ((-251 (-1175)) $ (-1193))) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $)) (-15 -3220 ((-1289) $ (-935) (-935)))))
-((-1368 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1368 (|#2| |#4| (-1 |#2| |#2|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -217))
-((-1368 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1260 (-417 *2))) (-4 *2 (-1260 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-351 *5 *2 *6)))))
-(-10 -7 (-15 -1368 (|#2| |#4| (-1 |#2| |#2|))))
-((-1530 ((|#2| |#2| (-781) |#2|) 55)) (-2870 ((|#2| |#2| (-781) |#2|) 51)) (-2028 (((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|)))) 79)) (-2531 (((-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|))) |#2|) 73)) (-2272 (((-112) |#2|) 71)) (-3037 (((-428 |#2|) |#2|) 91)) (-4201 (((-428 |#2|) |#2|) 90)) (-3228 ((|#2| |#2| (-781) |#2|) 49)) (-4243 (((-2 (|:| |cont| |#1|) (|:| -3996 (-654 (-2 (|:| |irr| |#2|) (|:| -1545 (-574)))))) |#2| (-112)) 85)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -4201 ((-428 |#2|) |#2|)) (-15 -3037 ((-428 |#2|) |#2|)) (-15 -4243 ((-2 (|:| |cont| |#1|) (|:| -3996 (-654 (-2 (|:| |irr| |#2|) (|:| -1545 (-574)))))) |#2| (-112))) (-15 -2531 ((-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|))) |#2|)) (-15 -2028 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|))))) (-15 -3228 (|#2| |#2| (-781) |#2|)) (-15 -2870 (|#2| |#2| (-781) |#2|)) (-15 -1530 (|#2| |#2| (-781) |#2|)) (-15 -2272 ((-112) |#2|))) (-358) (-1260 |#1|)) (T -218))
-((-2272 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-1530 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-2870 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-3228 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1260 *4)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1322 *5)))) (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5)) (-5 *1 (-218 *4 *5)))) (-2531 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1322 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-4243 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1260 *5)))) (-3037 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -4201 ((-428 |#2|) |#2|)) (-15 -3037 ((-428 |#2|) |#2|)) (-15 -4243 ((-2 (|:| |cont| |#1|) (|:| -3996 (-654 (-2 (|:| |irr| |#2|) (|:| -1545 (-574)))))) |#2| (-112))) (-15 -2531 ((-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|))) |#2|)) (-15 -2028 ((-654 |#2|) (-654 (-2 (|:| |deg| (-781)) (|:| -1322 |#2|))))) (-15 -3228 (|#2| |#2| (-781) |#2|)) (-15 -2870 (|#2| |#2| (-781) |#2|)) (-15 -1530 (|#2| |#2| (-781) |#2|)) (-15 -2272 ((-112) |#2|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-574) $) NIL (|has| (-574) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-574) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2216 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-574) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-1935 (((-112) $) NIL (|has| (-574) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3229 (((-574) $) NIL (|has| (-574) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-574) $) NIL)) (-1721 (($ (-417 (-574))) 9)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 10) $) 10)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-574) $) NIL (|has| (-574) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3099 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
-(((-219) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 10)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -1721 ($ (-417 (-574))))))) (T -219))
-((-3577 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))))
-(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 10)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -1721 ($ (-417 (-574))))))
-((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 13)) (-4420 (((-1175) $) NIL)) (-4046 (((-493) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 15)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-220) (-13 (-1099) (-10 -8 (-15 -4046 ((-493) $)) (-15 -3132 ((-1134) $)) (-15 -2051 ((-1151) $))))) (T -220))
-((-4046 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-220)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-220)))))
-(-13 (-1099) (-10 -8 (-15 -4046 ((-493) $)) (-15 -3132 ((-1134) $)) (-15 -2051 ((-1151) $))))
-((-3083 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175)) 29) (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|))) 25)) (-3689 (((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112)) 17)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -3083 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)))) (-15 -3083 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175))) (-15 -3689 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -221))
-((-3689 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1193)) (-5 *6 (-112)) (-4 *7 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-1219) (-973) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-853 *3))) (-5 *5 (-1175)) (-4 *3 (-13 (-1219) (-973) (-29 *6))) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-853 *3))) (-4 *3 (-13 (-1219) (-973) (-29 *5))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
-(-10 -7 (-15 -3083 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)))) (-15 -3083 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1108 (-853 |#2|)) (-1175))) (-15 -3689 ((-3 (|:| |f1| (-853 |#2|)) (|:| |f2| (-654 (-853 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1193) (-853 |#2|) (-853 |#2|) (-112))))
-((-3083 (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175)) 49) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|))))) 46) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175)) 50) (((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|)))) 22)))
-(((-222 |#1|) (-10 -7 (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (T -222))
-((-3083 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-853 (-417 (-966 *6))))) (-5 *5 (-1175)) (-5 *3 (-417 (-966 *6))) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-853 (-417 (-966 *5))))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1108 (-853 (-324 *6)))) (-5 *5 (-1175)) (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1108 (-853 (-324 *5)))) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
-(-10 -7 (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-324 |#1|))) (-1175))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))))) (-15 -3083 ((-3 (|:| |f1| (-853 (-324 |#1|))) (|:| |f2| (-654 (-853 (-324 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-417 (-966 |#1|)) (-1108 (-853 (-417 (-966 |#1|)))) (-1175))))
-((-2882 (((-2 (|:| -3414 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|)) 26)) (-2136 (((-654 (-324 |#2|)) (-324 |#2|) (-935)) 51)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -2882 ((-2 (|:| -3414 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|))) (-15 -2136 ((-654 (-324 |#2|)) (-324 |#2|) (-935)))) (-1065) (-566)) (T -223))
-((-2136 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1065)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-2 (|:| -3414 (-1189 *4)) (|:| |deg| (-935)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1189 *4)) (-4 *5 (-566)))))
-(-10 -7 (-15 -2882 ((-2 (|:| -3414 (-1189 |#1|)) (|:| |deg| (-935))) (-1189 |#1|))) (-15 -2136 ((-654 (-324 |#2|)) (-324 |#2|) (-935))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3077 ((|#1| $) NIL)) (-2010 ((|#1| $) 30)) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-2041 (($ $) NIL)) (-2060 (($ $) 39)) (-2990 ((|#1| |#1| $) NIL)) (-1763 ((|#1| $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4109 (((-781) $) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) NIL)) (-1346 ((|#1| |#1| $) 35)) (-4383 ((|#1| |#1| $) 37)) (-3705 (($ |#1| $) NIL)) (-1846 (((-781) $) 33)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1757 ((|#1| $) NIL)) (-3168 ((|#1| $) 31)) (-3970 ((|#1| $) 29)) (-2098 ((|#1| $) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-4006 ((|#1| |#1| $) NIL)) (-2265 (((-112) $) 9)) (-3014 (($) NIL)) (-2605 ((|#1| $) NIL)) (-1697 (($) NIL) (($ (-654 |#1|)) 16)) (-4291 (((-781) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-4061 ((|#1| $) 13)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) NIL)) (-2146 ((|#1| $) NIL)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -1697 ($ (-654 |#1|))))) (-1116)) (T -224))
-((-1697 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-224 *3)))))
-(-13 (-261 |#1|) (-10 -8 (-15 -1697 ($ (-654 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-1717 (($ (-324 |#1|)) 24)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3620 (((-112) $) NIL)) (-1704 (((-3 (-324 |#1|) "failed") $) NIL)) (-2216 (((-324 |#1|) $) NIL)) (-1402 (($ $) 32)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-1785 (($ (-1 (-324 |#1|) (-324 |#1|)) $) NIL)) (-1378 (((-324 |#1|) $) NIL)) (-3754 (($ $) 31)) (-4420 (((-1175) $) NIL)) (-3757 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) NIL)) (-4343 (($ $) 33)) (-3735 (((-574) $) NIL)) (-2951 (((-872) $) 65) (($ (-574)) NIL) (($ (-324 |#1|)) NIL)) (-1788 (((-324 |#1|) $ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 26 T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) 29)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 25) (($ (-324 |#1|) $) 19)))
-(((-225 |#1| |#2|) (-13 (-630 (-324 |#1|)) (-1054 (-324 |#1|)) (-10 -8 (-15 -1378 ((-324 |#1|) $)) (-15 -3754 ($ $)) (-15 -1402 ($ $)) (-15 -1788 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -3757 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -3735 ((-574) $)) (-15 -1785 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -1717 ($ (-324 |#1|))) (-15 -4343 ($ $)))) (-13 (-1065) (-860)) (-654 (-1193))) (T -225))
-((-1378 (*1 *2 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193))))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193))))) (-1788 (*1 *2 *1 *1) (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193))))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1065) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1065) (-860))) (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860))) (-14 *3 (-654 (-1193))))))
-(-13 (-630 (-324 |#1|)) (-1054 (-324 |#1|)) (-10 -8 (-15 -1378 ((-324 |#1|) $)) (-15 -3754 ($ $)) (-15 -1402 ($ $)) (-15 -1788 ((-324 |#1|) $ $)) (-15 -2975 ($ (-781))) (-15 -3757 ((-112) $)) (-15 -3620 ((-112) $)) (-15 -3735 ((-574) $)) (-15 -1785 ($ (-1 (-324 |#1|) (-324 |#1|)) $)) (-15 -1717 ($ (-324 |#1|))) (-15 -4343 ($ $))))
-((-2883 (((-112) (-1175)) 26)) (-2491 (((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112)) 35)) (-3641 (((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112)) 84) (((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112)) 85)))
-(((-226 |#1| |#2|) (-10 -7 (-15 -2883 ((-112) (-1175))) (-15 -2491 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3641 ((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3641 ((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-29 |#1|))) (T -226))
-((-3641 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1189 *6)) (-5 *4 (-853 *6)) (-4 *6 (-13 (-1219) (-29 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-226 *5 *6)))) (-3641 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-966 *6)) (-5 *4 (-1193)) (-5 *5 (-853 *7)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *7 (-13 (-1219) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2491 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1219) (-29 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-226 *6 *4)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1219) (-29 *4))))))
-(-10 -7 (-15 -2883 ((-112) (-1175))) (-15 -2491 ((-3 (-853 |#2|) "failed") (-622 |#2|) |#2| (-853 |#2|) (-853 |#2|) (-112))) (-15 -3641 ((-3 (-112) "failed") (-966 |#1|) (-1193) (-853 |#2|) (-853 |#2|) (-112))) (-15 -3641 ((-3 (-112) "failed") (-1189 |#2|) (-853 |#2|) (-853 |#2|) (-112))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 98)) (-4356 (((-574) $) 35)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-2991 (($ $) NIL)) (-2379 (($ $) 87)) (-2258 (($ $) 75)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) 66)) (-1374 (((-112) $ $) NIL)) (-2358 (($ $) 85)) (-2236 (($ $) 73)) (-1370 (((-574) $) 128)) (-2404 (($ $) 90)) (-2280 (($ $) 77)) (-1430 (($) NIL T CONST)) (-3274 (($ $) NIL)) (-1704 (((-3 (-574) "failed") $) 127) (((-3 (-417 (-574)) "failed") $) 124)) (-2216 (((-574) $) 125) (((-417 (-574)) $) 122)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) 103)) (-2878 (((-417 (-574)) $ (-781)) 117) (((-417 (-574)) $ (-781) (-781)) 116)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3760 (((-935)) 29) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-2516 (((-112) $) NIL)) (-3004 (($) 46)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-1518 (((-574) $) 42)) (-3943 (((-112) $) 99)) (-4439 (($ $ (-574)) NIL)) (-2608 (($ $) NIL)) (-1935 (((-112) $) 97)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) 63) (($) 38 (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-2976 (($ $ $) 62) (($) 37 (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 27)) (-2708 (($ $) 33)) (-1740 (($ $) 67)) (-3113 (($ $) 72)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-2189 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-3940 (((-1136) $) 101)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL)) (-3229 (($ $) NIL)) (-2399 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-935)) 110)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2754 (((-574) $) 28)) (-1951 (($) 45)) (-1617 (($ $) 71)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1773 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-3879 (($ $) 104) (($ $ (-781)) NIL)) (-2326 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-2417 (($ $) 88)) (-2288 (($ $) 78)) (-2390 (($ $) 89)) (-2269 (($ $) 76)) (-2368 (($ $) 86)) (-2247 (($ $) 74)) (-1844 (((-388) $) 113) (((-227) $) 14) (((-903 (-388)) $) NIL) (((-546) $) 52)) (-2951 (((-872) $) 49) (($ (-574)) 70) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 70) (($ (-417 (-574))) NIL)) (-3070 (((-781)) NIL T CONST)) (-3941 (($ $) NIL)) (-4098 (((-935)) 36) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-2981 (((-112) $ $) NIL)) (-2644 (((-935)) 25)) (-2456 (($ $) 93)) (-2320 (($ $) 81) (($ $ $) 120)) (-3750 (((-112) $ $) NIL)) (-2429 (($ $) 91)) (-2301 (($ $) 79)) (-2480 (($ $) 96)) (-2340 (($ $) 84)) (-2536 (($ $) 94)) (-2349 (($ $) 82)) (-2468 (($ $) 95)) (-2330 (($ $) 83)) (-2443 (($ $) 92)) (-2312 (($ $) 80)) (-4107 (($ $) 119)) (-2141 (($) 23 T CONST)) (-2153 (($) 43 T CONST)) (-4029 (((-1175) $) 18) (((-1175) $ (-112)) 20) (((-1289) (-832) $) 21) (((-1289) (-832) $ (-112)) 22)) (-2651 (($ $) 107)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2636 (($ $ $) 109)) (-3042 (((-112) $ $) 56)) (-3020 (((-112) $ $) 54)) (-2986 (((-112) $ $) 64)) (-3031 (((-112) $ $) 55)) (-3009 (((-112) $ $) 53)) (-3099 (($ $ $) 44) (($ $ (-574)) 65)) (-3090 (($ $) 57) (($ $ $) 59)) (-3074 (($ $ $) 58)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 68) (($ $ (-417 (-574))) 152) (($ $ $) 69)) (* (($ (-935) $) 34) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 60) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-227) (-13 (-414) (-239) (-838) (-1219) (-624 (-546)) (-10 -8 (-15 -3099 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1951 ($)) (-15 -2708 ($ $)) (-15 -1740 ($ $)) (-15 -2320 ($ $ $)) (-15 -2651 ($ $)) (-15 -2636 ($ $ $)) (-15 -2878 ((-417 (-574)) $ (-781))) (-15 -2878 ((-417 (-574)) $ (-781) (-781)))))) (T -227))
-((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227)))) (-1951 (*1 *1) (-5 *1 (-227))) (-2708 (*1 *1 *1) (-5 *1 (-227))) (-1740 (*1 *1 *1) (-5 *1 (-227))) (-2320 (*1 *1 *1 *1) (-5 *1 (-227))) (-2651 (*1 *1 *1) (-5 *1 (-227))) (-2636 (*1 *1 *1 *1) (-5 *1 (-227))) (-2878 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))) (-2878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227)))))
-(-13 (-414) (-239) (-838) (-1219) (-624 (-546)) (-10 -8 (-15 -3099 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1951 ($)) (-15 -2708 ($ $)) (-15 -1740 ($ $)) (-15 -2320 ($ $ $)) (-15 -2651 ($ $)) (-15 -2636 ($ $ $)) (-15 -2878 ((-417 (-574)) $ (-781))) (-15 -2878 ((-417 (-574)) $ (-781) (-781)))))
-((-1349 (((-171 (-227)) (-781) (-171 (-227))) 11) (((-227) (-781) (-227)) 12)) (-4180 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2214 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2467 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3119 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1861 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1489 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-4315 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-4415 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-4147 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2651 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2636 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
-(((-228) (-10 -7 (-15 -2651 ((-227) (-227))) (-15 -2651 ((-171 (-227)) (-171 (-227)))) (-15 -2636 ((-227) (-227) (-227))) (-15 -2636 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4180 ((-227) (-227))) (-15 -4180 ((-171 (-227)) (-171 (-227)))) (-15 -2467 ((-227) (-227))) (-15 -2467 ((-171 (-227)) (-171 (-227)))) (-15 -1349 ((-227) (-781) (-227))) (-15 -1349 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -1489 ((-227) (-227) (-227))) (-15 -1489 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3119 ((-227) (-227) (-227))) (-15 -3119 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4315 ((-227) (-227) (-227))) (-15 -4315 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1861 ((-227) (-227) (-227))) (-15 -1861 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4147 ((-171 (-227)) (-171 (-227)))) (-15 -4147 ((-227) (-227))) (-15 -4415 ((-227) (-227))) (-15 -4415 ((-171 (-227)) (-171 (-227)))) (-15 -2214 ((-227) (-227) (-227))) (-15 -2214 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
-((-2214 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2214 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4415 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4415 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1861 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1861 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4315 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4315 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3119 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3119 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1489 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1489 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228)))) (-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2636 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2636 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
-(-10 -7 (-15 -2651 ((-227) (-227))) (-15 -2651 ((-171 (-227)) (-171 (-227)))) (-15 -2636 ((-227) (-227) (-227))) (-15 -2636 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4180 ((-227) (-227))) (-15 -4180 ((-171 (-227)) (-171 (-227)))) (-15 -2467 ((-227) (-227))) (-15 -2467 ((-171 (-227)) (-171 (-227)))) (-15 -1349 ((-227) (-781) (-227))) (-15 -1349 ((-171 (-227)) (-781) (-171 (-227)))) (-15 -1489 ((-227) (-227) (-227))) (-15 -1489 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3119 ((-227) (-227) (-227))) (-15 -3119 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4315 ((-227) (-227) (-227))) (-15 -4315 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1861 ((-227) (-227) (-227))) (-15 -1861 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4147 ((-171 (-227)) (-171 (-227)))) (-15 -4147 ((-227) (-227))) (-15 -4415 ((-227) (-227))) (-15 -4415 ((-171 (-227)) (-171 (-227)))) (-15 -2214 ((-227) (-227) (-227))) (-15 -2214 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781) (-781)) NIL)) (-2283 (($ $ $) NIL)) (-2622 (($ (-1284 |#1|)) NIL) (($ $) NIL)) (-2823 (($ |#1| |#1| |#1|) 33)) (-2406 (((-112) $) NIL)) (-4378 (($ $ (-574) (-574)) NIL)) (-3144 (($ $ (-574) (-574)) NIL)) (-1827 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3965 (($ $) NIL)) (-1836 (((-112) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2331 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2334 (($ $ (-574) (-1284 |#1|)) NIL)) (-3269 (($ $ (-574) (-1284 |#1|)) NIL)) (-4157 (($ |#1| |#1| |#1|) 32)) (-2469 (($ (-781) |#1|) NIL)) (-1430 (($) NIL T CONST)) (-4300 (($ $) NIL (|has| |#1| (-315)))) (-2273 (((-1284 |#1|) $ (-574)) NIL)) (-3969 (($ |#1|) 31)) (-3670 (($ |#1|) 30)) (-3870 (($ |#1|) 29)) (-3558 (((-781) $) NIL (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-3026 (((-781) $) NIL (|has| |#1| (-566)))) (-3580 (((-654 (-1284 |#1|)) $) NIL (|has| |#1| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1625 ((|#1| $) NIL (|has| |#1| (-6 (-4461 "*"))))) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#1|))) 11)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2796 (((-654 (-654 |#1|)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3858 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1886 (($) 12)) (-4256 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2125 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-2783 (((-112) $) NIL)) (-2293 ((|#1| $) NIL (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-4239 (((-1284 |#1|) $ (-574)) NIL)) (-2951 (($ (-1284 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1284 |#1|) $ (-1284 |#1|)) 15) (((-1284 |#1|) (-1284 |#1|) $) NIL) (((-957 |#1|) $ (-957 |#1|)) 21)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-229 |#1|) (-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 * ((-957 |#1|) $ (-957 |#1|))) (-15 -1886 ($)) (-15 -3870 ($ |#1|)) (-15 -3670 ($ |#1|)) (-15 -3969 ($ |#1|)) (-15 -4157 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|)))) (-13 (-372) (-1219))) (T -229))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219))) (-5 *1 (-229 *3)))) (-1886 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-3870 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-3670 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-3969 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-4157 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))) (-2823 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))))
-(-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 * ((-957 |#1|) $ (-957 |#1|))) (-15 -1886 ($)) (-15 -3870 ($ |#1|)) (-15 -3670 ($ |#1|)) (-15 -3969 ($ |#1|)) (-15 -4157 ($ |#1| |#1| |#1|)) (-15 -2823 ($ |#1| |#1| |#1|))))
-((-3155 (($ (-1 (-112) |#2|) $) 16)) (-2175 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1734 (($) NIL) (($ (-654 |#2|)) 11)) (-2986 (((-112) $ $) 26)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3155 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -1734 (|#1| (-654 |#2|))) (-15 -1734 (|#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-231 |#2|) (-1116)) (T -230))
-NIL
-(-10 -8 (-15 -3155 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -1734 (|#1| (-654 |#2|))) (-15 -1734 (|#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-231 |#1|) (-141) (-1116)) (T -231))
+(-13 (-1118) (-10 -8 (-15 -9 ($) -1716) (-15 -8 ($) -1716) (-15 -7 ($) -1716)))
+((-2869 (((-112) $ $) NIL)) (-1725 (((-656 (-877)) $) NIL)) (-2041 (((-518) $) 8)) (-2148 (((-1177) $) NIL)) (-4272 (((-188) $) 10)) (-2881 (((-112) $ (-518)) NIL)) (-3945 (((-1138) $) NIL)) (-4115 (((-703 $) (-518)) 17)) (-3005 (((-656 (-112)) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-1755 (((-55) $) 12)) (-2991 (((-112) $ $) NIL)))
+(((-189) (-13 (-187) (-10 -8 (-15 -4115 ((-703 $) (-518)))))) (T -189))
+((-4115 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189)))))
+(-13 (-187) (-10 -8 (-15 -4115 ((-703 $) (-518)))))
+((-1451 ((|#2| |#2|) 28)) (-4431 (((-112) |#2|) 19)) (-4225 (((-326 |#1|) |#2|) 12)) (-4236 (((-326 |#1|) |#2|) 14)) (-4179 ((|#2| |#2| (-1195)) 69) ((|#2| |#2|) 70)) (-2491 (((-171 (-326 |#1|)) |#2|) 10)) (-1713 ((|#2| |#2| (-1195)) 66) ((|#2| |#2|) 60)))
+(((-190 |#1| |#2|) (-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -4179 (|#2| |#2| (-1195))) (-15 -1713 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-1195))) (-15 -4225 ((-326 |#1|) |#2|)) (-15 -4236 ((-326 |#1|) |#2|)) (-15 -4431 ((-112) |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2491 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1056 (-576))) (-13 (-27) (-1221) (-442 (-171 |#1|)))) (T -190))
+((-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-4431 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1713 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-4179 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))))
+(-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -4179 (|#2| |#2| (-1195))) (-15 -1713 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-1195))) (-15 -4225 ((-326 |#1|) |#2|)) (-15 -4236 ((-326 |#1|) |#2|)) (-15 -4431 ((-112) |#2|)) (-15 -1451 (|#2| |#2|)) (-15 -2491 ((-171 (-326 |#1|)) |#2|)))
+((-2097 (((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|))) 26)) (-2956 (((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|))) 37)))
+(((-191 |#1|) (-10 -7 (-15 -2097 ((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|)))) (-15 -2956 ((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|))))) (-174)) (T -191))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-419 (-968 *4))))) (-5 *1 (-191 *4)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-968 *4)))) (-5 *1 (-191 *4)))))
+(-10 -7 (-15 -2097 ((-1286 (-701 (-968 |#1|))) (-1286 (-701 |#1|)))) (-15 -2956 ((-1286 (-701 (-419 (-968 |#1|)))) (-1286 (-701 |#1|)))))
+((-2841 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 93)) (-3031 (((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-3256 (((-1197 (-419 (-576))) (-937)) 54)) (-2934 (((-1197 (-419 (-576))) (-937)) 79)) (-2666 (((-419 (-576)) (-1197 (-419 (-576)))) 89)) (-3587 (((-1197 (-419 (-576))) (-937)) 37)) (-3877 (((-1197 (-419 (-576))) (-937)) 66)) (-2924 (((-1197 (-419 (-576))) (-937)) 61)) (-3313 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 87)) (-1588 (((-1197 (-419 (-576))) (-937)) 29)) (-3664 (((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 91)) (-3503 (((-1197 (-419 (-576))) (-937)) 35)) (-2598 (((-1197 (-419 (-576))) (-656 (-937))) 100)))
+(((-192) (-10 -7 (-15 -1588 ((-1197 (-419 (-576))) (-937))) (-15 -3256 ((-1197 (-419 (-576))) (-937))) (-15 -3587 ((-1197 (-419 (-576))) (-937))) (-15 -3503 ((-1197 (-419 (-576))) (-937))) (-15 -2924 ((-1197 (-419 (-576))) (-937))) (-15 -3877 ((-1197 (-419 (-576))) (-937))) (-15 -2934 ((-1197 (-419 (-576))) (-937))) (-15 -3664 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3313 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2666 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -2841 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2598 ((-1197 (-419 (-576))) (-656 (-937)))) (-15 -3031 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192))
+((-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2841 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3313 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(-10 -7 (-15 -1588 ((-1197 (-419 (-576))) (-937))) (-15 -3256 ((-1197 (-419 (-576))) (-937))) (-15 -3587 ((-1197 (-419 (-576))) (-937))) (-15 -3503 ((-1197 (-419 (-576))) (-937))) (-15 -2924 ((-1197 (-419 (-576))) (-937))) (-15 -3877 ((-1197 (-419 (-576))) (-937))) (-15 -2934 ((-1197 (-419 (-576))) (-937))) (-15 -3664 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3313 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2666 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -2841 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2598 ((-1197 (-419 (-576))) (-656 (-937)))) (-15 -3031 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576)))))
+((-2916 (((-430 (-1191 (-576))) (-576)) 38)) (-4007 (((-656 (-1191 (-576))) (-576)) 33)) (-2402 (((-1191 (-576)) (-576)) 28)))
+(((-193) (-10 -7 (-15 -4007 ((-656 (-1191 (-576))) (-576))) (-15 -2402 ((-1191 (-576)) (-576))) (-15 -2916 ((-430 (-1191 (-576))) (-576))))) (T -193))
+((-2916 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2402 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-4007 (*1 *2 *3) (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
+(-10 -7 (-15 -4007 ((-656 (-1191 (-576))) (-576))) (-15 -2402 ((-1191 (-576)) (-576))) (-15 -2916 ((-430 (-1191 (-576))) (-576))))
+((-2483 (((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2896 (((-656 (-1177)) (-1175 (-227))) NIL)) (-3379 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1441 (((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227)))) NIL)) (-3282 (((-656 (-1177)) (-656 (-227))) NIL)) (-3963 (((-227) (-1112 (-855 (-227)))) 31)) (-2589 (((-227) (-1112 (-855 (-227)))) 32)) (-1880 (((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-1424 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3221 (((-1177) (-227)) NIL)) (-4338 (((-1177) (-656 (-1177))) 27)) (-2802 (((-1053) (-1195) (-1195) (-1053)) 13)))
+(((-194) (-10 -7 (-15 -3379 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1424 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -1880 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1441 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))) (-15 -4338 ((-1177) (-656 (-1177)))) (-15 -2802 ((-1053) (-1195) (-1195) (-1053))))) (T -194))
+((-2802 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-194)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-194)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
+(-10 -7 (-15 -3379 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1424 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -1880 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1441 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))) (-15 -4338 ((-1177) (-656 (-1177)))) (-15 -2802 ((-1053) (-1195) (-1195) (-1053))))
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 61) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-195) (-799)) (T -195))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 66) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-196) (-799)) (T -196))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 81) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-197) (-799)) (T -197))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 63) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-198) (-799)) (T -198))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 75) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-199) (-799)) (T -199))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 93) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-200) (-799)) (T -200))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 90) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-201) (-799)) (T -201))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 77) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-202) (-799)) (T -202))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 76)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-203) (-799)) (T -203))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 77)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-204) (-799)) (T -204))
+NIL
+(-799)
+((-2869 (((-112) $ $) NIL)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 105) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-205) (-799)) (T -205))
+NIL
+(-799)
+((-2512 (((-3 (-2 (|:| -4288 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1563 (((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3038 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
+(((-206) (-10 -7 (-15 -2512 ((-3 (-2 (|:| -4288 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3038 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1563 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
+((-1563 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-3038 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2512 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4288 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(-10 -7 (-15 -2512 ((-3 (-2 (|:| -4288 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3038 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1563 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-4435 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2618 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-4245 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-2607 (((-390) (-701 (-326 (-227)))) 140)) (-2525 (((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195))) 136)) (-3370 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3153 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2666 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227)))) 125)) (-3658 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-3043 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
+(((-207) (-10 -7 (-15 -3658 ((-390) (-390) (-390))) (-15 -3658 ((-390) (-390) (-656 (-390)))) (-15 -2607 ((-390) (-701 (-326 (-227))))) (-15 -2525 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -2666 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -4245 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2618 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4435 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3153 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3043 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3370 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
+((-3370 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4435 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2666 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195))) (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3658 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3658 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))))
+(-10 -7 (-15 -3658 ((-390) (-390) (-390))) (-15 -3658 ((-390) (-390) (-656 (-390)))) (-15 -2607 ((-390) (-701 (-326 (-227))))) (-15 -2525 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -2666 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -4245 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2618 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4435 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3153 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3043 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3370 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3891 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2991 (((-112) $ $) NIL)))
+(((-208) (-812)) (T -208))
+NIL
+(-812)
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3891 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2991 (((-112) $ $) NIL)))
+(((-209) (-812)) (T -209))
+NIL
+(-812)
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3891 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2991 (((-112) $ $) NIL)))
+(((-210) (-812)) (T -210))
+NIL
+(-812)
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3891 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2991 (((-112) $ $) NIL)))
+(((-211) (-812)) (T -211))
+NIL
+(-812)
+((-1665 (((-656 (-1195)) (-1195) (-783)) 26)) (-4339 (((-326 (-227)) (-326 (-227))) 35)) (-2432 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 87)) (-3390 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47)))
+(((-212) (-10 -7 (-15 -1665 ((-656 (-1195)) (-1195) (-783))) (-15 -4339 ((-326 (-227)) (-326 (-227)))) (-15 -3390 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2432 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))) (T -212))
+((-2432 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212)) (-5 *3 (-1195)))))
+(-10 -7 (-15 -1665 ((-656 (-1195)) (-1195) (-783))) (-15 -4339 ((-326 (-227)) (-326 (-227)))) (-15 -3390 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2432 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 28)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3812 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 70)) (-2991 (((-112) $ $) NIL)))
+(((-213) (-910)) (T -213))
+NIL
+(-910)
+((-2869 (((-112) $ $) NIL)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 24)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3812 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-214) (-910)) (T -214))
+NIL
+(-910)
+((-2869 (((-112) $ $) NIL)) (-2414 ((|#2| $ (-783) |#2|) 11)) (-2405 ((|#2| $ (-783)) 10)) (-3769 (($) 8)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 23)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 13)))
+(((-215 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3769 ($)) (-15 -2405 (|#2| $ (-783))) (-15 -2414 (|#2| $ (-783) |#2|)))) (-937) (-1118)) (T -215))
+((-3769 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1118)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1118)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937)))) (-2414 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937)) (-4 *2 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -3769 ($)) (-15 -2405 (|#2| $ (-783))) (-15 -2414 (|#2| $ (-783) |#2|))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4278 (((-1291) $) 37) (((-1291) $ (-937) (-937)) 41)) (-2209 (($ $ (-1007)) 19) (((-251 (-1177)) $ (-1195)) 15)) (-1416 (((-1291) $) 35)) (-2956 (((-874) $) 32) (($ (-656 |#1|)) 8)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $ $) 27)) (-3081 (($ $ $) 22)))
+(((-216 |#1|) (-13 (-1118) (-628 (-656 |#1|)) (-10 -8 (-15 -2209 ($ $ (-1007))) (-15 -2209 ((-251 (-1177)) $ (-1195))) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $)) (-15 -4278 ((-1291) $ (-937) (-937))))) (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $))))) (T -216))
+((-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $))))))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-251 (-1177))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ *3)) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $))))))) (-3081 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $))))))) (-3096 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $))))))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $)) (-15 -4278 (*2 $))))))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $)) (-15 -4278 (*2 $))))))) (-4278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $)) (-15 -4278 (*2 $))))))))
+(-13 (-1118) (-628 (-656 |#1|)) (-10 -8 (-15 -2209 ($ $ (-1007))) (-15 -2209 ((-251 (-1177)) $ (-1195))) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $)) (-15 -4278 ((-1291) $ (-937) (-937)))))
+((-3270 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3270 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217))
+((-3270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6)))))
+(-10 -7 (-15 -3270 (|#2| |#4| (-1 |#2| |#2|))))
+((-3656 ((|#2| |#2| (-783) |#2|) 55)) (-4063 ((|#2| |#2| (-783) |#2|) 51)) (-1717 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|)))) 79)) (-3862 (((-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|))) |#2|) 73)) (-3377 (((-112) |#2|) 71)) (-3067 (((-430 |#2|) |#2|) 91)) (-4205 (((-430 |#2|) |#2|) 90)) (-4361 ((|#2| |#2| (-783) |#2|) 49)) (-4117 (((-2 (|:| |cont| |#1|) (|:| -3544 (-656 (-2 (|:| |irr| |#2|) (|:| -3807 (-576)))))) |#2| (-112)) 85)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -4205 ((-430 |#2|) |#2|)) (-15 -3067 ((-430 |#2|) |#2|)) (-15 -4117 ((-2 (|:| |cont| |#1|) (|:| -3544 (-656 (-2 (|:| |irr| |#2|) (|:| -3807 (-576)))))) |#2| (-112))) (-15 -3862 ((-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|))) |#2|)) (-15 -1717 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|))))) (-15 -4361 (|#2| |#2| (-783) |#2|)) (-15 -4063 (|#2| |#2| (-783) |#2|)) (-15 -3656 (|#2| |#2| (-783) |#2|)) (-15 -3377 ((-112) |#2|))) (-360) (-1262 |#1|)) (T -218))
+((-3377 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-3656 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-4063 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-4361 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -1557 *5)))) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3862 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -1557 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5)))) (-3067 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -4205 ((-430 |#2|) |#2|)) (-15 -3067 ((-430 |#2|) |#2|)) (-15 -4117 ((-2 (|:| |cont| |#1|) (|:| -3544 (-656 (-2 (|:| |irr| |#2|) (|:| -3807 (-576)))))) |#2| (-112))) (-15 -3862 ((-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|))) |#2|)) (-15 -1717 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -1557 |#2|))))) (-15 -4361 (|#2| |#2| (-783) |#2|)) (-15 -4063 (|#2| |#2| (-783) |#2|)) (-15 -3656 (|#2| |#2| (-783) |#2|)) (-15 -3377 ((-112) |#2|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-576) $) NIL (|has| (-576) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-576) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-2216 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-576) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-576) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-576) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-3327 (((-112) $) NIL (|has| (-576) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-576) (-862)))) (-1787 (($ (-1 (-576) (-576)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-576) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4371 (((-576) $) NIL (|has| (-576) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-576) $) NIL)) (-1771 (($ (-419 (-576))) 9)) (-1846 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 10) $) 10)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-576) $) NIL (|has| (-576) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| (-576) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3108 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-219) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 10)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -1771 ($ (-419 (-576))))))) (T -219))
+((-3739 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))))
+(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 10)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -1771 ($ (-419 (-576))))))
+((-2869 (((-112) $ $) NIL)) (-3137 (((-1136) $) 13)) (-2148 (((-1177) $) NIL)) (-2788 (((-495) $) 10)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 23) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 15)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-220) (-13 (-1101) (-10 -8 (-15 -2788 ((-495) $)) (-15 -3137 ((-1136) $)) (-15 -2053 ((-1153) $))))) (T -220))
+((-2788 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-220)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-220)))))
+(-13 (-1101) (-10 -8 (-15 -2788 ((-495) $)) (-15 -3137 ((-1136) $)) (-15 -2053 ((-1153) $))))
+((-2254 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|))) 25)) (-2342 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)) 17)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -2254 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)))) (-15 -2254 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177))) (-15 -2342 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -221))
+((-2342 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1195)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1221) (-975) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-855 *3))) (-5 *5 (-1177)) (-4 *3 (-13 (-1221) (-975) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-855 *3))) (-4 *3 (-13 (-1221) (-975) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
+(-10 -7 (-15 -2254 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)))) (-15 -2254 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1110 (-855 |#2|)) (-1177))) (-15 -2342 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112))))
+((-2254 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|)))) 22)))
+(((-222 |#1|) (-10 -7 (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (T -222))
+((-2254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-855 (-419 (-968 *6))))) (-5 *5 (-1177)) (-5 *3 (-419 (-968 *6))) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-855 (-419 (-968 *5))))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1110 (-855 (-326 *6)))) (-5 *5 (-1177)) (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1110 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
+(-10 -7 (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-326 |#1|))) (-1177))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))))) (-15 -2254 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-968 |#1|)) (-1110 (-855 (-419 (-968 |#1|)))) (-1177))))
+((-2887 (((-2 (|:| -2625 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|)) 26)) (-2139 (((-656 (-326 |#2|)) (-326 |#2|) (-937)) 51)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -2887 ((-2 (|:| -2625 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|))) (-15 -2139 ((-656 (-326 |#2|)) (-326 |#2|) (-937)))) (-1067) (-568)) (T -223))
+((-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1067)))) (-2887 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-2 (|:| -2625 (-1191 *4)) (|:| |deg| (-937)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568)))))
+(-10 -7 (-15 -2887 ((-2 (|:| -2625 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|))) (-15 -2139 ((-656 (-326 |#2|)) (-326 |#2|) (-937))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3484 ((|#1| $) NIL)) (-2012 ((|#1| $) 30)) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-1836 (($ $) NIL)) (-2002 (($ $) 39)) (-2714 ((|#1| |#1| $) NIL)) (-2175 ((|#1| $) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-4114 (((-783) $) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) NIL)) (-1731 ((|#1| |#1| $) 35)) (-3049 ((|#1| |#1| $) 37)) (-2504 (($ |#1| $) NIL)) (-1850 (((-783) $) 33)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2114 ((|#1| $) NIL)) (-1835 ((|#1| $) 31)) (-3291 ((|#1| $) 29)) (-4256 ((|#1| $) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-2367 ((|#1| |#1| $) NIL)) (-3321 (((-112) $) 9)) (-2953 (($) NIL)) (-3385 ((|#1| $) NIL)) (-2817 (($) NIL) (($ (-656 |#1|)) 16)) (-4295 (((-783) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2952 ((|#1| $) 13)) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) NIL)) (-1556 ((|#1| $) NIL)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2817 ($ (-656 |#1|))))) (-1118)) (T -224))
+((-2817 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-224 *3)))))
+(-13 (-261 |#1|) (-10 -8 (-15 -2817 ($ (-656 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1732 (($ (-326 |#1|)) 24)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4158 (((-112) $) NIL)) (-1706 (((-3 (-326 |#1|) "failed") $) NIL)) (-2216 (((-326 |#1|) $) NIL)) (-1404 (($ $) 32)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-1787 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-1380 (((-326 |#1|) $) NIL)) (-1719 (($ $) 31)) (-2148 (((-1177) $) NIL)) (-1747 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($ (-783)) NIL)) (-2611 (($ $) 33)) (-2782 (((-576) $) NIL)) (-2956 (((-874) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-4309 (((-326 |#1|) $ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 26 T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) 29)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19)))
+(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1056 (-326 |#1|)) (-10 -8 (-15 -1380 ((-326 |#1|) $)) (-15 -1719 ($ $)) (-15 -1404 ($ $)) (-15 -4309 ((-326 |#1|) $ $)) (-15 -2981 ($ (-783))) (-15 -1747 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2782 ((-576) $)) (-15 -1787 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1732 ($ (-326 |#1|))) (-15 -2611 ($ $)))) (-13 (-1067) (-862)) (-656 (-1195))) (T -225))
+((-1380 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-1719 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195))))) (-1404 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195))))) (-4309 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195))))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1067) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-1732 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1067) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-2611 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862))) (-14 *3 (-656 (-1195))))))
+(-13 (-632 (-326 |#1|)) (-1056 (-326 |#1|)) (-10 -8 (-15 -1380 ((-326 |#1|) $)) (-15 -1719 ($ $)) (-15 -1404 ($ $)) (-15 -4309 ((-326 |#1|) $ $)) (-15 -2981 ($ (-783))) (-15 -1747 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -2782 ((-576) $)) (-15 -1787 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1732 ($ (-326 |#1|))) (-15 -2611 ($ $))))
+((-4163 (((-112) (-1177)) 26)) (-1581 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-3173 (((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112)) 85)))
+(((-226 |#1| |#2|) (-10 -7 (-15 -4163 ((-112) (-1177))) (-15 -1581 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3173 ((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3173 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -226))
+((-3173 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1221) (-29 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-3173 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-968 *6)) (-5 *4 (-1195)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-1581 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1221) (-29 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4))))))
+(-10 -7 (-15 -4163 ((-112) (-1177))) (-15 -1581 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3173 ((-3 (-112) "failed") (-968 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3173 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 98)) (-2742 (((-576) $) 35)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-2725 (($ $) NIL)) (-2384 (($ $) 87)) (-2260 (($ $) 75)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) 66)) (-1323 (((-112) $ $) NIL)) (-2363 (($ $) 85)) (-2238 (($ $) 73)) (-2627 (((-576) $) 128)) (-2409 (($ $) 90)) (-2282 (($ $) 77)) (-4335 (($) NIL T CONST)) (-3629 (($ $) NIL)) (-1706 (((-3 (-576) "failed") $) 127) (((-3 (-419 (-576)) "failed") $) 124)) (-2216 (((-576) $) 125) (((-419 (-576)) $) 122)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) 103)) (-4119 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3765 (((-937)) 29) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-3730 (((-112) $) NIL)) (-3009 (($) 46)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-3540 (((-576) $) 42)) (-4192 (((-112) $) 99)) (-2333 (($ $ (-576)) NIL)) (-3404 (($ $) NIL)) (-3327 (((-112) $) 97)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) 63) (($) 38 (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-2571 (($ $ $) 62) (($) 37 (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-4292 (((-576) $) 27)) (-1837 (($ $) 33)) (-1741 (($ $) 67)) (-3118 (($ $) 72)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3847 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-3945 (((-1138) $) 101)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL)) (-4371 (($ $) NIL)) (-2404 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-937)) 110)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2300 (((-576) $) 28)) (-3494 (($) 45)) (-1619 (($ $) 71)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-4176 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-3884 (($ $) 104) (($ $ (-783)) NIL)) (-2592 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-2422 (($ $) 88)) (-2291 (($ $) 78)) (-2394 (($ $) 89)) (-2270 (($ $) 76)) (-2373 (($ $) 86)) (-2249 (($ $) 74)) (-1846 (((-390) $) 113) (((-227) $) 14) (((-905 (-390)) $) NIL) (((-548) $) 52)) (-2956 (((-874) $) 49) (($ (-576)) 70) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 70) (($ (-419 (-576))) NIL)) (-3423 (((-783)) NIL T CONST)) (-4175 (($ $) NIL)) (-2054 (((-937)) 36) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-2617 (((-112) $ $) NIL)) (-2650 (((-937)) 25)) (-2461 (($ $) 93)) (-2324 (($ $) 81) (($ $ $) 120)) (-2946 (((-112) $ $) NIL)) (-2434 (($ $) 91)) (-2304 (($ $) 79)) (-2485 (($ $) 96)) (-2345 (($ $) 84)) (-2541 (($ $) 94)) (-2354 (($ $) 82)) (-2473 (($ $) 95)) (-2335 (($ $) 83)) (-2447 (($ $) 92)) (-2315 (($ $) 80)) (-2130 (($ $) 119)) (-2143 (($) 23 T CONST)) (-2155 (($) 43 T CONST)) (-2616 (((-1177) $) 18) (((-1177) $ (-112)) 20) (((-1291) (-834) $) 21) (((-1291) (-834) $ (-112)) 22)) (-2527 (($ $) 107)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2381 (($ $ $) 109)) (-3047 (((-112) $ $) 56)) (-3024 (((-112) $ $) 54)) (-2991 (((-112) $ $) 64)) (-3034 (((-112) $ $) 55)) (-3014 (((-112) $ $) 53)) (-3108 (($ $ $) 44) (($ $ (-576)) 65)) (-3096 (($ $) 57) (($ $ $) 59)) (-3081 (($ $ $) 58)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 152) (($ $ $) 69)) (* (($ (-937) $) 34) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-227) (-13 (-416) (-239) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -3108 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3494 ($)) (-15 -1837 ($ $)) (-15 -1741 ($ $)) (-15 -2324 ($ $ $)) (-15 -2527 ($ $)) (-15 -2381 ($ $ $)) (-15 -4119 ((-419 (-576)) $ (-783))) (-15 -4119 ((-419 (-576)) $ (-783) (-783)))))) (T -227))
+((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-3494 (*1 *1) (-5 *1 (-227))) (-1837 (*1 *1 *1) (-5 *1 (-227))) (-1741 (*1 *1 *1) (-5 *1 (-227))) (-2324 (*1 *1 *1 *1) (-5 *1 (-227))) (-2527 (*1 *1 *1) (-5 *1 (-227))) (-2381 (*1 *1 *1 *1) (-5 *1 (-227))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-4119 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))))
+(-13 (-416) (-239) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -3108 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3494 ($)) (-15 -1837 ($ $)) (-15 -1741 ($ $)) (-15 -2324 ($ $ $)) (-15 -2527 ($ $)) (-15 -2381 ($ $ $)) (-15 -4119 ((-419 (-576)) $ (-783))) (-15 -4119 ((-419 (-576)) $ (-783) (-783)))))
+((-1760 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-1620 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-4070 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1360 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2584 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3792 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1340 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-3578 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2091 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-4398 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2527 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2381 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
+(((-228) (-10 -7 (-15 -2527 ((-227) (-227))) (-15 -2527 ((-171 (-227)) (-171 (-227)))) (-15 -2381 ((-227) (-227) (-227))) (-15 -2381 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1620 ((-227) (-227))) (-15 -1620 ((-171 (-227)) (-171 (-227)))) (-15 -1360 ((-227) (-227))) (-15 -1360 ((-171 (-227)) (-171 (-227)))) (-15 -1760 ((-227) (-783) (-227))) (-15 -1760 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1340 ((-227) (-227) (-227))) (-15 -1340 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2584 ((-227) (-227) (-227))) (-15 -2584 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3578 ((-227) (-227) (-227))) (-15 -3578 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3792 ((-227) (-227) (-227))) (-15 -3792 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4398 ((-171 (-227)) (-171 (-227)))) (-15 -4398 ((-227) (-227))) (-15 -2091 ((-227) (-227))) (-15 -2091 ((-171 (-227)) (-171 (-227)))) (-15 -4070 ((-227) (-227) (-227))) (-15 -4070 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
+((-4070 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4070 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3578 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3578 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2584 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2584 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1340 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1340 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1760 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-1760 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
+(-10 -7 (-15 -2527 ((-227) (-227))) (-15 -2527 ((-171 (-227)) (-171 (-227)))) (-15 -2381 ((-227) (-227) (-227))) (-15 -2381 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1620 ((-227) (-227))) (-15 -1620 ((-171 (-227)) (-171 (-227)))) (-15 -1360 ((-227) (-227))) (-15 -1360 ((-171 (-227)) (-171 (-227)))) (-15 -1760 ((-227) (-783) (-227))) (-15 -1760 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1340 ((-227) (-227) (-227))) (-15 -1340 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2584 ((-227) (-227) (-227))) (-15 -2584 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3578 ((-227) (-227) (-227))) (-15 -3578 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3792 ((-227) (-227) (-227))) (-15 -3792 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4398 ((-171 (-227)) (-171 (-227)))) (-15 -4398 ((-227) (-227))) (-15 -2091 ((-227) (-227))) (-15 -2091 ((-171 (-227)) (-171 (-227)))) (-15 -4070 ((-227) (-227) (-227))) (-15 -4070 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783) (-783)) NIL)) (-3470 (($ $ $) NIL)) (-3548 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-2827 (($ |#1| |#1| |#1|) 33)) (-2052 (((-112) $) NIL)) (-2993 (($ $ (-576) (-576)) NIL)) (-2852 (($ $ (-576) (-576)) NIL)) (-1549 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3235 (($ $) NIL)) (-3562 (((-112) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2640 (($ $ (-576) (-576) $) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2663 (($ $ (-576) (-1286 |#1|)) NIL)) (-3581 (($ $ (-576) (-1286 |#1|)) NIL)) (-1384 (($ |#1| |#1| |#1|) 32)) (-1372 (($ (-783) |#1|) NIL)) (-4335 (($) NIL T CONST)) (-3446 (($ $) NIL (|has| |#1| (-317)))) (-3389 (((-1286 |#1|) $ (-576)) NIL)) (-3280 (($ |#1|) 31)) (-3444 (($ |#1|) 30)) (-1598 (($ |#1|) 29)) (-3563 (((-783) $) NIL (|has| |#1| (-568)))) (-2481 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2405 ((|#1| $ (-576) (-576)) NIL)) (-1873 (((-656 |#1|) $) NIL)) (-2954 (((-783) $) NIL (|has| |#1| (-568)))) (-3772 (((-656 (-1286 |#1|)) $) NIL (|has| |#1| (-568)))) (-2199 (((-783) $) NIL)) (-3769 (($ (-783) (-783) |#1|) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3331 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2929 (($ (-656 (-656 |#1|))) 11)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1538 (((-656 (-656 |#1|)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1495 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-4016 (($) 12)) (-4230 (($ $ $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1388 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1415 (((-112) $) NIL)) (-2293 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-4087 (((-1286 |#1|) $ (-576)) NIL)) (-2956 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) 15) (((-1286 |#1|) (-1286 |#1|) $) NIL) (((-959 |#1|) $ (-959 |#1|)) 21)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-229 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-959 |#1|) $ (-959 |#1|))) (-15 -4016 ($)) (-15 -1598 ($ |#1|)) (-15 -3444 ($ |#1|)) (-15 -3280 ($ |#1|)) (-15 -1384 ($ |#1| |#1| |#1|)) (-15 -2827 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1221))) (T -229))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221))) (-5 *1 (-229 *3)))) (-4016 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1598 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-3444 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-3280 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1384 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-2827 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))))
+(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-959 |#1|) $ (-959 |#1|))) (-15 -4016 ($)) (-15 -1598 ($ |#1|)) (-15 -3444 ($ |#1|)) (-15 -3280 ($ |#1|)) (-15 -1384 ($ |#1| |#1| |#1|)) (-15 -2827 ($ |#1| |#1| |#1|))))
+((-1707 (($ (-1 (-112) |#2|) $) 16)) (-3710 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1904 (($) NIL) (($ (-656 |#2|)) 11)) (-2991 (((-112) $ $) 26)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -1707 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -1904 (|#1| (-656 |#2|))) (-15 -1904 (|#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-231 |#2|) (-1118)) (T -230))
+NIL
+(-10 -8 (-15 -1707 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -1904 (|#1| (-656 |#2|))) (-15 -1904 (|#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-231 |#1|) (-141) (-1118)) (T -231))
NIL
(-13 (-241 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) 11) (($ $ (-1193)) 19) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) 16) (($ $ (-781)) NIL)) (-3585 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-781)) 14) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)))
-(((-232 |#1| |#2|) (-10 -8 (-15 -3585 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3585 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3585 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3585 (|#1| |#1| (-1193) (-781))) (-15 -3585 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3585 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3585 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3585 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1065)) (T -232))
-NIL
-(-10 -8 (-15 -3585 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3585 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3585 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3585 (|#1| |#1| (-1193) (-781))) (-15 -3585 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3585 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3585 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3585 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1 |#1| |#1|) (-781)) 57) (($ $ (-1193)) 54 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 52 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 51 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 50 (|has| |#1| (-912 (-1193)))) (($ $) 46 (|has| |#1| (-239))) (($ $ (-781)) 44 (|has| |#1| (-239)))) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-781)) 55) (($ $ (-1193)) 53 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 49 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 48 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 47 (|has| |#1| (-912 (-1193)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-781)) 43 (|has| |#1| (-239)))) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-233 |#1|) (-141) (-1065)) (T -233))
-((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1065)))) (-3585 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065)))) (-3585 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4)) (-4 *4 (-1065)))))
-(-13 (-1065) (-10 -8 (-15 -3879 ($ $ (-1 |t#1| |t#1|))) (-15 -3879 ($ $ (-1 |t#1| |t#1|) (-781))) (-15 -3585 ($ $ (-1 |t#1| |t#1|))) (-15 -3585 ($ $ (-1 |t#1| |t#1|) (-781))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-907 $ #0=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #0#) |has| |#1| (-912 (-1193))) ((-914 #0#) |has| |#1| (-912 (-1193))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-239))))
-((-3585 ((|#2| $) 9)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -3585 (|#2| |#1|))) (-235 |#2|) (-1234)) (T -234))
-NIL
-(-10 -8 (-15 -3585 (|#2| |#1|)))
-((-3879 ((|#1| $) 7)) (-3585 ((|#1| $) 6)))
-(((-235 |#1|) (-141) (-1234)) (T -235))
-((-3879 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -3879 (|t#1| $)) (-15 -3585 (|t#1| $))))
-(((-1234) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 36) (($ $) 34)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-3585 (($ $ (-781)) 37) (($ $) 35)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-3884 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-1195)) 19) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) 16) (($ $ (-783)) NIL)) (-3590 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)))
+(((-232 |#1| |#2|) (-10 -8 (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3590 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-1195) (-783))) (-15 -3590 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3590 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1067)) (T -232))
+NIL
+(-10 -8 (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3590 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-1195) (-783))) (-15 -3590 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3590 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3884 (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1195)) 54 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 52 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 51 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 50 (|has| |#1| (-914 (-1195)))) (($ $) 46 (|has| |#1| (-239))) (($ $ (-783)) 44 (|has| |#1| (-239)))) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-783)) 55) (($ $ (-1195)) 53 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 49 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 48 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 47 (|has| |#1| (-914 (-1195)))) (($ $) 45 (|has| |#1| (-239))) (($ $ (-783)) 43 (|has| |#1| (-239)))) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-233 |#1|) (-141) (-1067)) (T -233))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) (-3884 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) (-4 *4 (-1067)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4)) (-4 *4 (-1067)))))
+(-13 (-1067) (-10 -8 (-15 -3884 ($ $ (-1 |t#1| |t#1|))) (-15 -3884 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3590 ($ $ (-1 |t#1| |t#1|))) (-15 -3590 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-235 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ #0=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #0#) |has| |#1| (-914 (-1195))) ((-916 #0#) |has| |#1| (-914 (-1195))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) -2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-239))))
+((-3590 ((|#2| $) 9)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -3590 (|#2| |#1|))) (-235 |#2|) (-1236)) (T -234))
+NIL
+(-10 -8 (-15 -3590 (|#2| |#1|)))
+((-3884 ((|#1| $) 7)) (-3590 ((|#1| $) 6)))
+(((-235 |#1|) (-141) (-1236)) (T -235))
+((-3884 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -3884 (|t#1| $)) (-15 -3590 (|t#1| $))))
+(((-1236) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3884 (($ $ (-783)) 36) (($ $) 34)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-3590 (($ $ (-783)) 37) (($ $) 35)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-236 |#1|) (-141) (-174)) (T -236))
NIL
-(-13 (-727 |t#1|) (-238))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-3879 (($ $) NIL) (($ $ (-781)) 9)) (-3585 (($ $) NIL) (($ $ (-781)) 11)))
-(((-237 |#1|) (-10 -8 (-15 -3585 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3585 (|#1| |#1|)) (-15 -3879 (|#1| |#1|))) (-238)) (T -237))
+(-13 (-729 |t#1|) (-238))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-3884 (($ $) NIL) (($ $ (-783)) 9)) (-3590 (($ $) NIL) (($ $ (-783)) 11)))
+(((-237 |#1|) (-10 -8 (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1|))) (-238)) (T -237))
NIL
-(-10 -8 (-15 -3585 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3585 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)))
-((-3879 (($ $) 7) (($ $ (-781)) 10)) (-3585 (($ $) 6) (($ $ (-781)) 9)))
+(-10 -8 (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1|)))
+((-3884 (($ $) 7) (($ $ (-783)) 10)) (-3590 (($ $) 6) (($ $ (-783)) 9)))
(((-238) (-141)) (T -238))
-((-3879 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))) (-3585 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781)))))
-(-13 (-235 $) (-10 -8 (-15 -3879 ($ $ (-781))) (-15 -3585 ($ $ (-781)))))
-(((-235 $) . T) ((-1234) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 42) (($ $) 40)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-781)) 43) (($ $) 41)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
+((-3884 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783)))) (-3590 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783)))))
+(-13 (-235 $) (-10 -8 (-15 -3884 ($ $ (-783))) (-15 -3590 ($ $ (-783)))))
+(((-235 $) . T) ((-1236) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3884 (($ $ (-783)) 42) (($ $) 40)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-783)) 43) (($ $) 41)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-239) (-141)) (T -239))
NIL
-(-13 (-1065) (-238))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T))
-((-1734 (($) 12) (($ (-654 |#2|)) NIL)) (-3157 (($ $) 14)) (-2963 (($ (-654 |#2|)) 10)) (-2951 (((-872) $) 21)))
-(((-240 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1734 (|#1| (-654 |#2|))) (-15 -1734 (|#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3157 (|#1| |#1|))) (-241 |#2|) (-1116)) (T -240))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -1734 (|#1| (-654 |#2|))) (-15 -1734 (|#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3157 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-241 |#1|) (-141) (-1116)) (T -241))
-((-1734 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1116)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-241 *3)))) (-2175 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-241 *2)) (-4 *2 (-1116)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) (-4 *3 (-1116)))) (-3155 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3)) (-4 *3 (-1116)))))
-(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1734 ($)) (-15 -1734 ($ (-654 |t#1|))) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2175 ($ |t#1| $)) (-15 -2175 ($ (-1 (-112) |t#1|) $)) (-15 -3155 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-3939 (((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574)))) 42)))
-(((-242) (-10 -7 (-15 -3939 ((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574))))))) (T -242))
-((-3939 (*1 *2 *3) (-12 (-5 *3 (-302 (-966 (-574)))) (-5 *2 (-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781)))))) (-5 *1 (-242)))))
-(-10 -7 (-15 -3939 ((-2 (|:| |varOrder| (-654 (-1193))) (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed")) (|:| |hom| (-654 (-1284 (-781))))) (-302 (-966 (-574))))))
-((-1496 (((-781)) 56)) (-1557 (((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) 53) (((-699 |#3|) (-699 $)) 44) (((-699 |#3|) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-2732 (((-135)) 62)) (-3879 (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2951 (((-1284 |#3|) $) NIL) (($ |#3|) NIL) (((-872) $) NIL) (($ (-574)) 12) (($ (-417 (-574))) NIL)) (-3070 (((-781)) 15)) (-3099 (($ $ |#3|) 59)))
-(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)) (-15 -3070 ((-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -1557 ((-699 |#3|) (-1284 |#1|))) (-15 -1557 ((-699 |#3|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1496 ((-781))) (-15 -3099 (|#1| |#1| |#3|)) (-15 -2732 ((-135))) (-15 -2951 ((-1284 |#3|) |#1|))) (-244 |#2| |#3|) (-781) (-1234)) (T -243))
-((-2732 (*1 *2) (-12 (-14 *4 (-781)) (-4 *5 (-1234)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1496 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3070 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))))
-(-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)) (-15 -3070 ((-781))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -1557 ((-699 |#3|) (-1284 |#1|))) (-15 -1557 ((-699 |#3|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1496 ((-781))) (-15 -3099 (|#1| |#1| |#3|)) (-15 -2732 ((-135))) (-15 -2951 ((-1284 |#3|) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#2| (-1116)))) (-4311 (((-112) $) 75 (-2833 (|has| |#2| (-23)) (|has| |#2| (-736))))) (-3472 (($ (-935)) 126 (|has| |#2| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-2354 (($ $ $) 122 (|has| |#2| (-803)))) (-3290 (((-3 $ "failed") $ $) 77 (|has| |#2| (-132)))) (-2832 (((-112) $ (-781)) 8)) (-1496 (((-781)) 112 (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) 53 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-1704 (((-3 (-574) "failed") $) 70 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) 67 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) 64 (|has| |#2| (-1116)))) (-2216 (((-574) $) 69 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) 66 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) 65 (|has| |#2| (-1116)))) (-1557 (((-699 (-574)) (-1284 $)) 111 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) 110 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 109 (-2095 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 108 (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) 107 (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) 106 (|has| |#2| (-1065)))) (-3612 (((-3 $ "failed") $) 85 (|has| |#2| (-1065)))) (-2835 (($) 115 (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 52)) (-1871 (((-654 |#2|) $) 31 (|has| $ (-6 -4459)))) (-3943 (((-112) $) 87 (|has| |#2| (-1065)))) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 121 (|has| |#2| (-860)))) (-1764 (((-654 |#2|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 120 (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) 36)) (-3507 (((-935) $) 114 (|has| |#2| (-377)))) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#2| (-1116)))) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-2591 (($ (-935)) 113 (|has| |#2| (-377)))) (-3940 (((-1136) $) 21 (|has| |#2| (-1116)))) (-2925 ((|#2| $) 43 (|has| (-574) (-860)))) (-1465 (($ $ |#2|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#2| $ (-574) |#2|) 51) ((|#2| $ (-574)) 50)) (-3936 ((|#2| $ $) 125 (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) 127)) (-2732 (((-135)) 124 (|has| |#2| (-372)))) (-3879 (($ $ (-781)) 104 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) 102 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) 98 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) 97 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) 96 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) 94 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) 91 (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4459))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-1284 |#2|) $) 128) (($ (-574)) 71 (-2833 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) 68 (-2095 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) 63 (|has| |#2| (-1116))) (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-3070 (((-781)) 89 (|has| |#2| (-1065)) CONST)) (-2981 (((-112) $ $) 23 (|has| |#2| (-1116)))) (-2859 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4459)))) (-2141 (($) 74 (-2833 (|has| |#2| (-23)) (|has| |#2| (-736))) CONST)) (-2153 (($) 88 (|has| |#2| (-1065)) CONST)) (-3585 (($ $ (-781)) 105 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) 103 (-2095 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) 100 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) 99 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) 95 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) 93 (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1065)))) (-3042 (((-112) $ $) 118 (|has| |#2| (-860)))) (-3020 (((-112) $ $) 117 (|has| |#2| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#2| (-1116)))) (-3031 (((-112) $ $) 119 (|has| |#2| (-860)))) (-3009 (((-112) $ $) 116 (|has| |#2| (-860)))) (-3099 (($ $ |#2|) 123 (|has| |#2| (-372)))) (-3090 (($ $ $) 80 (|has| |#2| (-21))) (($ $) 79 (|has| |#2| (-21)))) (-3074 (($ $ $) 72 (|has| |#2| (-25)))) (** (($ $ (-781)) 86 (|has| |#2| (-1065))) (($ $ (-935)) 83 (|has| |#2| (-1065)))) (* (($ $ $) 84 (|has| |#2| (-1065))) (($ $ |#2|) 82 (|has| |#2| (-736))) (($ |#2| $) 81 (|has| |#2| (-736))) (($ (-574) $) 78 (|has| |#2| (-21))) (($ (-781) $) 76 (|has| |#2| (-23))) (($ (-935) $) 73 (|has| |#2| (-25)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-244 |#1| |#2|) (-141) (-781) (-1234)) (T -244))
-((-4247 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1234)) (-4 *1 (-244 *3 *4)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1065)) (-4 *4 (-1234)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))))
-(-13 (-614 (-574) |t#2|) (-623 (-1284 |t#2|)) (-10 -8 (-6 -4459) (-15 -4247 ($ (-1284 |t#2|))) (IF (|has| |t#2| (-1116)) (-6 (-421 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1065)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-386 |t#2|)) (-15 -3472 ($ (-935))) (-15 -3936 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-736)) (-6 (-650 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#2| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#2| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-1291 |t#2|)) |%noBranch|)))
-(((-21) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-132) -2833 (|has| |#2| (-1065)) (|has| |#2| (-803)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-626 #0=(-417 (-574))) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))) ((-626 (-574)) -2833 (|has| |#2| (-1065)) (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) ((-626 |#2|) |has| |#2| (-1116)) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-623 (-872))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-623 (-1284 |#2|)) . T) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-233 |#2|) |has| |#2| (-1065)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1065))) ((-294 #1=(-574) |#2|) . T) ((-296 #1# |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-377) |has| |#2| (-377)) ((-386 |#2|) |has| |#2| (-1065)) ((-421 |#2|) |has| |#2| (-1116)) ((-499 |#2|) . T) ((-614 #1# |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-656 (-574)) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-656 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-656 $) |has| |#2| (-1065)) ((-658 #2=(-574)) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))) ((-658 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1065)) ((-650 |#2|) -2833 (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-649 #2#) -12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065))) ((-649 |#2|) |has| |#2| (-1065)) ((-727 |#2|) -2833 (|has| |#2| (-372)) (|has| |#2| (-174))) ((-736) |has| |#2| (-1065)) ((-802) |has| |#2| (-803)) ((-803) |has| |#2| (-803)) ((-804) |has| |#2| (-803)) ((-805) |has| |#2| (-803)) ((-860) -2833 (|has| |#2| (-860)) (|has| |#2| (-803))) ((-907 $ #3=(-1193)) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-912 #3#) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-914 #3#) -12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065))) ((-1054 #0#) -12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116))) ((-1054 (-574)) -12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) ((-1054 |#2|) |has| |#2| (-1116)) ((-1067 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-736)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1072 |#2|) -2833 (|has| |#2| (-1065)) (|has| |#2| (-372)) (|has| |#2| (-174))) ((-1065) |has| |#2| (-1065)) ((-1074) |has| |#2| (-1065)) ((-1128) |has| |#2| (-1065)) ((-1116) -2833 (|has| |#2| (-1116)) (|has| |#2| (-1065)) (|has| |#2| (-860)) (|has| |#2| (-803)) (|has| |#2| (-736)) (|has| |#2| (-377)) (|has| |#2| (-372)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1234) . T) ((-1291 |#2|) |has| |#2| (-372)))
-((-1904 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2882 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1785 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18)))
-(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -1904 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2882 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1785 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-781) (-1234) (-1234)) (T -245))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781)) (-4 *6 (-1234)) (-4 *2 (-1234)) (-5 *1 (-245 *5 *6 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781)) (-4 *7 (-1234)) (-4 *5 (-1234)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5)))))
-(-10 -7 (-15 -1904 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2882 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1785 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|))))
-((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-4311 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3472 (($ (-935)) 62 (|has| |#2| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) 68 (|has| |#2| (-803)))) (-3290 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1116)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) 28 (|has| |#2| (-1116)))) (-1557 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-3612 (((-3 $ "failed") $) 58 (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 56)) (-1871 (((-654 |#2|) $) 14 (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#2| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 19 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-1764 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#2| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) 20)) (-3936 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) 17)) (-2732 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) 9) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) 12 (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3070 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2859 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) 36 (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) 40 (|has| |#2| (-1065)) CONST)) (-3585 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) 27 (|has| |#2| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 66 (|has| |#2| (-860)))) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) 46 (|has| |#2| (-1065))) (($ $ |#2|) 44 (|has| |#2| (-736))) (($ |#2| $) 45 (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-246 |#1| |#2|) (-244 |#1| |#2|) (-781) (-1234)) (T -246))
+(-13 (-1067) (-238))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T))
+((-1904 (($) 12) (($ (-656 |#2|)) NIL)) (-3162 (($ $) 14)) (-2968 (($ (-656 |#2|)) 10)) (-2956 (((-874) $) 21)))
+(((-240 |#1| |#2|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -1904 (|#1| (-656 |#2|))) (-15 -1904 (|#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -3162 (|#1| |#1|))) (-241 |#2|) (-1118)) (T -240))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -1904 (|#1| (-656 |#2|))) (-15 -1904 (|#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -3162 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-241 |#1|) (-141) (-1118)) (T -241))
+((-1904 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1118)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-241 *3)))) (-3710 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-241 *2)) (-4 *2 (-1118)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) (-4 *3 (-1118)))) (-1707 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3)) (-4 *3 (-1118)))))
+(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1904 ($)) (-15 -1904 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3710 ($ |t#1| $)) (-15 -3710 ($ (-1 (-112) |t#1|) $)) (-15 -1707 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-4164 (((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576)))) 42)))
+(((-242) (-10 -7 (-15 -4164 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576))))))) (T -242))
+((-4164 (*1 *2 *3) (-12 (-5 *3 (-304 (-968 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783)))))) (-5 *1 (-242)))))
+(-10 -7 (-15 -4164 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-968 (-576))))))
+((-1499 (((-783)) 56)) (-3928 (((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-701 |#3|) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-2068 (((-135)) 62)) (-3884 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2956 (((-1286 |#3|) $) NIL) (($ |#3|) NIL) (((-874) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-3423 (((-783)) 15)) (-3108 (($ $ |#3|) 59)))
+(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)) (-15 -3423 ((-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2956 (|#1| |#3|)) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3928 ((-701 |#3|) (-1286 |#1|))) (-15 -3928 ((-701 |#3|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -1499 ((-783))) (-15 -3108 (|#1| |#1| |#3|)) (-15 -2068 ((-135))) (-15 -2956 ((-1286 |#3|) |#1|))) (-244 |#2| |#3|) (-783) (-1236)) (T -243))
+((-2068 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1499 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3423 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))))
+(-10 -8 (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)) (-15 -3423 ((-783))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -2956 (|#1| |#3|)) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3928 ((-701 |#3|) (-1286 |#1|))) (-15 -3928 ((-701 |#3|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -1499 ((-783))) (-15 -3108 (|#1| |#1| |#3|)) (-15 -2068 ((-135))) (-15 -2956 ((-1286 |#3|) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#2| (-1118)))) (-3549 (((-112) $) 75 (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2010 (($ (-937)) 126 (|has| |#2| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2847 (($ $ $) 122 (|has| |#2| (-805)))) (-3798 (((-3 $ "failed") $ $) 77 (|has| |#2| (-132)))) (-3762 (((-112) $ (-783)) 8)) (-1499 (((-783)) 112 (|has| |#2| (-379)))) (-3140 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-1706 (((-3 (-576) "failed") $) 70 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) 67 (-2096 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) 64 (|has| |#2| (-1118)))) (-2216 (((-576) $) 69 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) 66 (-2096 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) 65 (|has| |#2| (-1118)))) (-3928 (((-701 (-576)) (-1286 $)) 111 (-2096 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) 110 (-2096 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 109 (-2096 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 108 (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) 107 (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) 106 (|has| |#2| (-1067)))) (-4077 (((-3 $ "failed") $) 85 (|has| |#2| (-1067)))) (-2840 (($) 115 (|has| |#2| (-379)))) (-2481 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#2| $ (-576)) 52)) (-1873 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-4192 (((-112) $) 87 (|has| |#2| (-1067)))) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 121 (|has| |#2| (-862)))) (-2186 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 120 (|has| |#2| (-862)))) (-2466 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2|) $) 36)) (-4261 (((-937) $) 114 (|has| |#2| (-379)))) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#2| (-1118)))) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-2596 (($ (-937)) 113 (|has| |#2| (-379)))) (-3945 (((-1138) $) 21 (|has| |#2| (-1118)))) (-2930 ((|#2| $) 43 (|has| (-576) (-862)))) (-4211 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-4144 ((|#2| $ $) 125 (|has| |#2| (-1067)))) (-4249 (($ (-1286 |#2|)) 127)) (-2068 (((-135)) 124 (|has| |#2| (-374)))) (-3884 (($ $ (-783)) 104 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) 102 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) 98 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) 97 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) 96 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) 94 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-1067)))) (-3954 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-1286 |#2|) $) 128) (($ (-576)) 71 (-2838 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) 68 (-2096 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) 63 (|has| |#2| (-1118))) (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-3423 (((-783)) 89 (|has| |#2| (-1067)) CONST)) (-2617 (((-112) $ $) 23 (|has| |#2| (-1118)))) (-3972 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-2143 (($) 74 (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2155 (($) 88 (|has| |#2| (-1067)) CONST)) (-3590 (($ $ (-783)) 105 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) 103 (-2096 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) 100 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) 99 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) 95 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1067)))) (-3047 (((-112) $ $) 118 (|has| |#2| (-862)))) (-3024 (((-112) $ $) 117 (|has| |#2| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#2| (-1118)))) (-3034 (((-112) $ $) 119 (|has| |#2| (-862)))) (-3014 (((-112) $ $) 116 (|has| |#2| (-862)))) (-3108 (($ $ |#2|) 123 (|has| |#2| (-374)))) (-3096 (($ $ $) 80 (|has| |#2| (-21))) (($ $) 79 (|has| |#2| (-21)))) (-3081 (($ $ $) 72 (|has| |#2| (-25)))) (** (($ $ (-783)) 86 (|has| |#2| (-1067))) (($ $ (-937)) 83 (|has| |#2| (-1067)))) (* (($ $ $) 84 (|has| |#2| (-1067))) (($ $ |#2|) 82 (|has| |#2| (-738))) (($ |#2| $) 81 (|has| |#2| (-738))) (($ (-576) $) 78 (|has| |#2| (-21))) (($ (-783) $) 76 (|has| |#2| (-23))) (($ (-937) $) 73 (|has| |#2| (-25)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-244 |#1| |#2|) (-141) (-783) (-1236)) (T -244))
+((-4249 (*1 *1 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-244 *3 *4)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1067)) (-4 *4 (-1236)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))))
+(-13 (-616 (-576) |t#2|) (-625 (-1286 |t#2|)) (-10 -8 (-6 -4461) (-15 -4249 ($ (-1286 |t#2|))) (IF (|has| |t#2| (-1118)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1067)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-388 |t#2|)) (-15 -2010 ($ (-937))) (-15 -4144 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1293 |t#2|)) |%noBranch|)))
+(((-21) -2838 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2838 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2838 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2838 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2838 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2838 (|has| |#2| (-1067)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))) ((-628 (-576)) -2838 (|has| |#2| (-1067)) (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) ((-628 |#2|) |has| |#2| (-1118)) ((-625 (-874)) -2838 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-874))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1286 |#2|)) . T) ((-235 $) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-233 |#2|) |has| |#2| (-1067)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-238) -12 (|has| |#2| (-239)) (|has| |#2| (-1067))) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1067)) ((-423 |#2|) |has| |#2| (-1118)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-658 (-576)) -2838 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -2838 (|has| |#2| (-1067)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1067)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))) ((-660 |#2|) -2838 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1067)) ((-652 |#2|) -2838 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067))) ((-651 |#2|) |has| |#2| (-1067)) ((-729 |#2|) -2838 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1067)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-862) -2838 (|has| |#2| (-862)) (|has| |#2| (-805))) ((-909 $ #3=(-1195)) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-914 #3#) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-916 #3#) -12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067))) ((-1056 #0#) -12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118))) ((-1056 (-576)) -12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) ((-1056 |#2|) |has| |#2| (-1118)) ((-1069 |#2|) -2838 (|has| |#2| (-1067)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1074 |#2|) -2838 (|has| |#2| (-1067)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1067) |has| |#2| (-1067)) ((-1076) |has| |#2| (-1067)) ((-1130) |has| |#2| (-1067)) ((-1118) -2838 (|has| |#2| (-1118)) (|has| |#2| (-1067)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1236) . T) ((-1293 |#2|) |has| |#2| (-374)))
+((-3000 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-2887 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-1787 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18)))
+(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -3000 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2887 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1787 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-783) (-1236) (-1236)) (T -245))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-245 *5 *6 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5)))))
+(-10 -7 (-15 -3000 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2887 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1787 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|))))
+((-2869 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3549 (((-112) $) NIL (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2010 (($ (-937)) 62 (|has| |#2| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) 68 (|has| |#2| (-805)))) (-3798 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#2| (-379)))) (-3140 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1118)))) (-2216 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) 28 (|has| |#2| (-1118)))) (-3928 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-4077 (((-3 $ "failed") $) 58 (|has| |#2| (-1067)))) (-2840 (($) NIL (|has| |#2| (-379)))) (-2481 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ (-576)) 56)) (-1873 (((-656 |#2|) $) 14 (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#2| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 19 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#2| (-862)))) (-2186 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#2| (-862)))) (-2466 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#2| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#2| (-1118)))) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#2| (-379)))) (-3945 (((-1138) $) NIL (|has| |#2| (-1118)))) (-2930 ((|#2| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-4144 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-4249 (($ (-1286 |#2|)) 17)) (-2068 (((-135)) NIL (|has| |#2| (-374)))) (-3884 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3954 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#2|) $) 9) (($ (-576)) NIL (-2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) 12 (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-3423 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-2617 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3972 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) 36 (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2155 (($) 40 (|has| |#2| (-1067)) CONST)) (-3590 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3047 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2991 (((-112) $ $) 27 (|has| |#2| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3014 (((-112) $ $) 66 (|has| |#2| (-862)))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3081 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) 46 (|has| |#2| (-1067))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-246 |#1| |#2|) (-244 |#1| |#2|) (-783) (-1236)) (T -246))
NIL
(-244 |#1| |#2|)
-((-3374 (((-574) (-654 (-1175))) 36) (((-574) (-1175)) 29)) (-1566 (((-1289) (-654 (-1175))) 40) (((-1289) (-1175)) 39)) (-3292 (((-1175)) 16)) (-2735 (((-1175) (-574) (-1175)) 23)) (-3332 (((-654 (-1175)) (-654 (-1175)) (-574) (-1175)) 37) (((-1175) (-1175) (-574) (-1175)) 35)) (-2635 (((-654 (-1175)) (-654 (-1175))) 15) (((-654 (-1175)) (-1175)) 11)))
-(((-247) (-10 -7 (-15 -2635 ((-654 (-1175)) (-1175))) (-15 -2635 ((-654 (-1175)) (-654 (-1175)))) (-15 -3292 ((-1175))) (-15 -2735 ((-1175) (-574) (-1175))) (-15 -3332 ((-1175) (-1175) (-574) (-1175))) (-15 -3332 ((-654 (-1175)) (-654 (-1175)) (-574) (-1175))) (-15 -1566 ((-1289) (-1175))) (-15 -1566 ((-1289) (-654 (-1175)))) (-15 -3374 ((-574) (-1175))) (-15 -3374 ((-574) (-654 (-1175)))))) (T -247))
-((-3374 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-574)) (-5 *1 (-247)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-247)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1289)) (-5 *1 (-247)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 (-1175))) (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *1 (-247)))) (-3332 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))) (-2735 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))) (-3292 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-247)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)) (-5 *3 (-1175)))))
-(-10 -7 (-15 -2635 ((-654 (-1175)) (-1175))) (-15 -2635 ((-654 (-1175)) (-654 (-1175)))) (-15 -3292 ((-1175))) (-15 -2735 ((-1175) (-574) (-1175))) (-15 -3332 ((-1175) (-1175) (-574) (-1175))) (-15 -3332 ((-654 (-1175)) (-654 (-1175)) (-574) (-1175))) (-15 -1566 ((-1289) (-1175))) (-15 -1566 ((-1289) (-654 (-1175)))) (-15 -3374 ((-574) (-1175))) (-15 -3374 ((-574) (-654 (-1175)))))
-((** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 20)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) NIL)))
-(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-249)) (T -248))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 47)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 51)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 48)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 50) (($ $ (-417 (-574))) 49)))
+((-3448 (((-576) (-656 (-1177))) 36) (((-576) (-1177)) 29)) (-1568 (((-1291) (-656 (-1177))) 40) (((-1291) (-1177)) 39)) (-3818 (((-1177)) 16)) (-2100 (((-1177) (-576) (-1177)) 23)) (-3337 (((-656 (-1177)) (-656 (-1177)) (-576) (-1177)) 37) (((-1177) (-1177) (-576) (-1177)) 35)) (-2641 (((-656 (-1177)) (-656 (-1177))) 15) (((-656 (-1177)) (-1177)) 11)))
+(((-247) (-10 -7 (-15 -2641 ((-656 (-1177)) (-1177))) (-15 -2641 ((-656 (-1177)) (-656 (-1177)))) (-15 -3818 ((-1177))) (-15 -2100 ((-1177) (-576) (-1177))) (-15 -3337 ((-1177) (-1177) (-576) (-1177))) (-15 -3337 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -1568 ((-1291) (-1177))) (-15 -1568 ((-1291) (-656 (-1177)))) (-15 -3448 ((-576) (-1177))) (-15 -3448 ((-576) (-656 (-1177)))))) (T -247))
+((-3448 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-247)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-247)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-247)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-247)))) (-3337 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *1 (-247)))) (-3337 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))) (-2100 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))) (-3818 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-247)))) (-2641 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)))) (-2641 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)) (-5 *3 (-1177)))))
+(-10 -7 (-15 -2641 ((-656 (-1177)) (-1177))) (-15 -2641 ((-656 (-1177)) (-656 (-1177)))) (-15 -3818 ((-1177))) (-15 -2100 ((-1177) (-576) (-1177))) (-15 -3337 ((-1177) (-1177) (-576) (-1177))) (-15 -3337 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -1568 ((-1291) (-1177))) (-15 -1568 ((-1291) (-656 (-1177)))) (-15 -3448 ((-576) (-1177))) (-15 -3448 ((-576) (-656 (-1177)))))
+((** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL)))
+(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-249)) (T -248))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 47)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49)))
(((-249) (-141)) (T -249))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574)))) (-1328 (*1 *1 *1) (-4 *1 (-249))))
-(-13 (-298) (-38 (-417 (-574))) (-10 -8 (-15 ** ($ $ (-574))) (-15 -1328 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-298) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-727 #0#) . T) ((-736) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-1978 (($ $) 58)) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3294 (($ $ $) 54 (|has| $ (-6 -4460)))) (-3093 (($ $ $) 53 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-1531 (($ $) 57)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3953 (($ $) 56)) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 60)) (-4046 (($ $) 59)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48)) (-4072 (((-574) $ $) 45)) (-3864 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2589 (($ $ $) 55 (|has| $ (-6 -4460)))) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-250 |#1|) (-141) (-1234)) (T -250))
-((-3334 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-4046 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-1531 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-2589 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))) (-3093 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))))
-(-13 (-1026 |t#1|) (-10 -8 (-15 -3334 (|t#1| $)) (-15 -4046 ($ $)) (-15 -1978 ($ $)) (-15 -1531 ($ $)) (-15 -3953 ($ $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2589 ($ $ $)) (-15 -3294 ($ $ $)) (-15 -3093 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4287 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) 10 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3373 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $) NIL) (($ $ (-781)) NIL)) (-2218 (($ $) NIL (|has| |#1| (-1116)))) (-1573 (($ $) 7 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1648 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2645 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2470 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3705 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3388 (((-112) $) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-781) $ "count") 16)) (-4072 (((-574) $ $) NIL)) (-3032 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3176 (($ (-654 |#1|)) 22)) (-3864 (((-112) $) NIL)) (-3333 (($ $) NIL)) (-1823 (($ $) NIL (|has| $ (-6 -4460)))) (-1984 (((-781) $) NIL)) (-1852 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2589 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (($ (-654 |#1|)) 17) (((-654 |#1|) $) 18) (((-872) $) 21 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 14 (|has| $ (-6 -4459)))))
-(((-251 |#1|) (-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3176 ($ (-654 |#1|))) (-15 -2207 ($ $ "unique")) (-15 -2207 ($ $ "sort")) (-15 -2207 ((-781) $ "count")))) (-860)) (T -251))
-((-3176 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860)))))
-(-13 (-676 |#1|) (-500 (-654 |#1|)) (-10 -8 (-15 -3176 ($ (-654 |#1|))) (-15 -2207 ($ $ "unique")) (-15 -2207 ($ $ "sort")) (-15 -2207 ((-781) $ "count"))))
-((-3443 (((-3 (-781) "failed") |#1| |#1| (-781)) 40)))
-(((-252 |#1|) (-10 -7 (-15 -3443 ((-3 (-781) "failed") |#1| |#1| (-781)))) (-13 (-736) (-377) (-10 -7 (-15 ** (|#1| |#1| (-574)))))) (T -252))
-((-3443 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-781)) (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574)))))) (-5 *1 (-252 *3)))))
-(-10 -7 (-15 -3443 ((-3 (-781) "failed") |#1| |#1| (-781))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4141 (($ $) NIL (|has| |#2| (-566)))) (-2475 (((-112) $) NIL (|has| |#2| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL (|has| |#2| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-4047 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2156 (($ $ (-654 (-574))) NIL)) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#2| (-923)))) (-3637 (($ $ |#2| (-246 (-2877 |#1|) (-781)) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#2| (-246 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-874 |#1|)) NIL)) (-2043 (((-246 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3431 (($ (-1 (-246 (-2877 |#1|) (-781)) (-246 (-2877 |#1|) (-781))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3444 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2754 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1924 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3735 (((-246 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-246 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-253 |#1| |#2|) (-13 (-963 |#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065)) (T -253))
-((-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4)) (-14 *3 (-654 (-1193))) (-4 *4 (-1065)))))
-(-13 (-963 |#2| (-246 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574))))))
-((-2864 (((-112) $ $) NIL)) (-1993 (((-1289) $) 17)) (-3923 (((-185 (-255)) $) 11)) (-2202 (($ (-185 (-255))) 12)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1972 (((-255) $) 7)) (-2951 (((-872) $) 9)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15)))
-(((-254) (-13 (-1116) (-10 -8 (-15 -1972 ((-255) $)) (-15 -3923 ((-185 (-255)) $)) (-15 -2202 ($ (-185 (-255)))) (-15 -1993 ((-1289) $))))) (T -254))
-((-1972 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-254)))))
-(-13 (-1116) (-10 -8 (-15 -1972 ((-255) $)) (-15 -3923 ((-185 (-255)) $)) (-15 -2202 ($ (-185 (-255)))) (-15 -1993 ((-1289) $))))
-((-2864 (((-112) $ $) NIL)) (-1723 (((-654 (-875)) $) NIL)) (-2039 (((-516) $) NIL)) (-4420 (((-1175) $) NIL)) (-4270 (((-188) $) NIL)) (-1575 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-4254 (((-341) $) 7)) (-2229 (((-654 (-112)) $) NIL)) (-2951 (((-872) $) NIL) (((-189) $) 8)) (-2981 (((-112) $ $) NIL)) (-4069 (((-55) $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-255) (-13 (-187) (-623 (-189)) (-10 -8 (-15 -4254 ((-341) $))))) (T -255))
-((-4254 (*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255)))))
-(-13 (-187) (-623 (-189)) (-10 -8 (-15 -4254 ((-341) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 (((-1198) $ (-781)) 13)) (-2951 (((-872) $) 20)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 16)) (-2877 (((-781) $) 9)))
-(((-256) (-13 (-1116) (-294 (-781) (-1198)) (-10 -8 (-15 -2877 ((-781) $))))) (T -256))
-((-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256)))))
-(-13 (-1116) (-294 (-781) (-1198)) (-10 -8 (-15 -2877 ((-781) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3472 (($ (-935)) NIL (|has| |#4| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) NIL (|has| |#4| (-803)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#4| (-377)))) (-3135 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1116))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-2216 ((|#4| $) NIL (|has| |#4| (-1116))) (((-574) $) NIL (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-1557 (((-2 (|:| -3479 (-699 |#4|)) (|:| |vec| (-1284 |#4|))) (-699 $) (-1284 $)) NIL (|has| |#4| (-1065))) (((-699 |#4|) (-699 $)) NIL (|has| |#4| (-1065))) (((-699 |#4|) (-1284 $)) NIL (|has| |#4| (-1065))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#4| (-649 (-574))) (|has| |#4| (-1065))))) (-3612 (((-3 $ "failed") $) NIL (|has| |#4| (-1065)))) (-2835 (($) NIL (|has| |#4| (-377)))) (-2473 ((|#4| $ (-574) |#4|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#4| $ (-574)) NIL)) (-1871 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#4| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#4| (-860)))) (-1764 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#4| (-860)))) (-2462 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#4| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#4| (-377)))) (-3940 (((-1136) $) NIL)) (-2925 ((|#4| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#4|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2445 (((-654 |#4|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#4| $ (-574) |#4|) NIL) ((|#4| $ (-574)) 12)) (-3936 ((|#4| $ $) NIL (|has| |#4| (-1065)))) (-4247 (($ (-1284 |#4|)) NIL)) (-2732 (((-135)) NIL (|has| |#4| (-372)))) (-3879 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1065))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065))))) (-3949 (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1116))) (((-872) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#4| (-1054 (-574))) (|has| |#4| (-1116))) (|has| |#4| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#4| (-1054 (-417 (-574)))) (|has| |#4| (-1116))))) (-3070 (((-781)) NIL (|has| |#4| (-1065)) CONST)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL (|has| |#4| (-1065)) CONST)) (-3585 (($ $ (-1 |#4| |#4|) (-781)) NIL (|has| |#4| (-1065))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#4| (-912 (-1193))) (|has| |#4| (-1065)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1065))))) (-3042 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#4| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#4| (-860)))) (-3099 (($ $ |#4|) NIL (|has| |#4| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#4| (-1065))) (($ $ (-935)) NIL (|has| |#4| (-1065)))) (* (($ |#2| $) 14) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-736))) (($ |#4| $) NIL (|has| |#4| (-736))) (($ $ $) NIL (|has| |#4| (-1065)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|)) (-935) (-1065) (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-658 |#2|)) (T -257))
-NIL
-(-13 (-244 |#1| |#4|) (-658 |#2|) (-658 |#3|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3472 (($ (-935)) NIL (|has| |#3| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) NIL (|has| |#3| (-803)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3135 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1116))) (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-2216 ((|#3| $) NIL (|has| |#3| (-1116))) (((-574) $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-1557 (((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-1284 $)) NIL (|has| |#3| (-1065))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065))))) (-3612 (((-3 $ "failed") $) NIL (|has| |#3| (-1065)))) (-2835 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#3| $ (-574)) NIL)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#3| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#3| (-860)))) (-1764 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#3| (-860)))) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#3| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#3| (-377)))) (-3940 (((-1136) $) NIL)) (-2925 ((|#3| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#3|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2445 (((-654 |#3|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) 11)) (-3936 ((|#3| $ $) NIL (|has| |#3| (-1065)))) (-4247 (($ (-1284 |#3|)) NIL)) (-2732 (((-135)) NIL (|has| |#3| (-372)))) (-3879 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065))))) (-3949 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1116))) (((-872) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116))))) (-3070 (((-781)) NIL (|has| |#3| (-1065)) CONST)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL (|has| |#3| (-1065)) CONST)) (-3585 (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065))))) (-3042 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3099 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL (|has| |#3| (-1065))) (($ $ (-935)) NIL (|has| |#3| (-1065)))) (* (($ |#2| $) 13) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ $ $) NIL (|has| |#3| (-1065)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-658 |#2|)) (-781) (-1065) (-658 |#2|)) (T -258))
-NIL
-(-13 (-244 |#1| |#3|) (-658 |#2|))
-((-3555 (((-654 (-781)) $) 56) (((-654 (-781)) $ |#3|) 59)) (-3716 (((-781) $) 58) (((-781) $ |#3|) 61)) (-3632 (($ $) 76)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1518 (((-781) $ |#3|) 43) (((-781) $) 38)) (-4071 (((-1 $ (-781)) |#3|) 15) (((-1 $ (-781)) $) 88)) (-3680 ((|#4| $) 69)) (-1966 (((-112) $) 67)) (-2606 (($ $) 75)) (-2661 (($ $ (-654 (-302 $))) 111) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-654 |#3|) (-654 |#2|)) 97)) (-3879 (($ $ (-654 |#4|) (-654 (-781))) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1593 (((-654 |#3|) $) 86)) (-3735 ((|#5| $) NIL) (((-781) $ |#4|) NIL) (((-654 (-781)) $ (-654 |#4|)) NIL) (((-781) $ |#3|) 49)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-417 (-574))) NIL) (($ $) NIL)))
-(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#3| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#3| |#1|)) (-15 -4071 ((-1 |#1| (-781)) |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -3716 ((-781) |#1| |#3|)) (-15 -3555 ((-654 (-781)) |#1| |#3|)) (-15 -3716 ((-781) |#1|)) (-15 -3555 ((-654 (-781)) |#1|)) (-15 -3735 ((-781) |#1| |#3|)) (-15 -1518 ((-781) |#1|)) (-15 -1518 ((-781) |#1| |#3|)) (-15 -1593 ((-654 |#3|) |#1|)) (-15 -4071 ((-1 |#1| (-781)) |#3|)) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3735 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3735 ((-781) |#1| |#4|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3735 (|#5| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3879 (|#1| |#1| |#4|)) (-15 -3879 (|#1| |#1| (-654 |#4|))) (-15 -3879 (|#1| |#1| |#4| (-781))) (-15 -3879 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1065) (-860) (-273 |#3|) (-803)) (T -259))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#3| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#3|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#3| |#1|)) (-15 -4071 ((-1 |#1| (-781)) |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3680 (|#4| |#1|)) (-15 -1966 ((-112) |#1|)) (-15 -3716 ((-781) |#1| |#3|)) (-15 -3555 ((-654 (-781)) |#1| |#3|)) (-15 -3716 ((-781) |#1|)) (-15 -3555 ((-654 (-781)) |#1|)) (-15 -3735 ((-781) |#1| |#3|)) (-15 -1518 ((-781) |#1|)) (-15 -1518 ((-781) |#1| |#3|)) (-15 -1593 ((-654 |#3|) |#1|)) (-15 -4071 ((-1 |#1| (-781)) |#3|)) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3735 ((-654 (-781)) |#1| (-654 |#4|))) (-15 -3735 ((-781) |#1| |#4|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3735 (|#5| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -3879 (|#1| |#1| |#4|)) (-15 -3879 (|#1| |#1| (-654 |#4|))) (-15 -3879 (|#1| |#1| |#4| (-781))) (-15 -3879 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3555 (((-654 (-781)) $) 221) (((-654 (-781)) $ |#2|) 219)) (-3716 (((-781) $) 220) (((-781) $ |#2|) 218)) (-4350 (((-654 |#3|) $) 113)) (-4172 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-4141 (($ $) 91 (|has| |#1| (-566)))) (-2475 (((-112) $) 93 (|has| |#1| (-566)))) (-3654 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2684 (($ $) 101 (|has| |#1| (-462)))) (-3171 (((-428 $) $) 100 (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-3632 (($ $) 214)) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 228)) (-2216 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142) ((|#2| $) 229)) (-4047 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1402 (($ $) 159)) (-1557 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-3612 (((-3 $ "failed") $) 37)) (-4135 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3342 (((-112) $) 99 (|has| |#1| (-923)))) (-3637 (($ $ |#1| |#4| $) 177)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ |#2|) 224) (((-781) $) 223)) (-3943 (((-112) $) 35)) (-2993 (((-781) $) 174)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-2306 (((-654 $) $) 129)) (-3873 (((-112) $) 157)) (-4328 (($ |#1| |#4|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#3|) 123)) (-2043 ((|#4| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-3431 (($ (-1 |#4| |#4|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-4071 (((-1 $ (-781)) |#2|) 226) (((-1 $ (-781)) $) 213 (|has| |#1| (-239)))) (-3444 (((-3 |#3| "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-3680 ((|#3| $) 216)) (-2845 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-4420 (((-1175) $) 10)) (-1966 (((-112) $) 217)) (-1730 (((-3 (-654 $) "failed") $) 117)) (-4245 (((-3 (-654 $) "failed") $) 118)) (-4436 (((-3 (-2 (|:| |var| |#3|) (|:| -2754 (-781))) "failed") $) 116)) (-2606 (($ $) 215)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 102 (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143) (($ $ |#2| $) 212 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) 211 (|has| |#1| (-239))) (($ $ |#2| |#1|) 210 (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) 209 (|has| |#1| (-239)))) (-1924 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-781)) 244 (|has| |#1| (-239))) (($ $) 242 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 238 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 237 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 236 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 234 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-1593 (((-654 |#2|) $) 225)) (-3735 ((|#4| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132) (((-781) $ |#2|) 222)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 227) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) 173)) (-1788 ((|#1| $ |#4|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-2705 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 32 T CONST)) (-3245 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-781)) 245 (|has| |#1| (-239))) (($ $) 243 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 241 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 240 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 239 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 235 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 233) (($ $ (-1 |#1| |#1|)) 232)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-260 |#1| |#2| |#3| |#4|) (-141) (-1065) (-860) (-273 |t#2|) (-803)) (T -260))
-((-4071 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781)))) (-3555 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))) (-3716 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-803)) (-4 *2 (-273 *4)))) (-2606 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-3632 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-273 *3)) (-4 *5 (-803)))) (-4071 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6)))))
-(-13 (-963 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1054 |t#2|) (-10 -8 (-15 -4071 ((-1 $ (-781)) |t#2|)) (-15 -1593 ((-654 |t#2|) $)) (-15 -1518 ((-781) $ |t#2|)) (-15 -1518 ((-781) $)) (-15 -3735 ((-781) $ |t#2|)) (-15 -3555 ((-654 (-781)) $)) (-15 -3716 ((-781) $)) (-15 -3555 ((-654 (-781)) $ |t#2|)) (-15 -3716 ((-781) $ |t#2|)) (-15 -1966 ((-112) $)) (-15 -3680 (|t#3| $)) (-15 -2606 ($ $)) (-15 -3632 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-524 |t#2| |t#1|)) (-6 (-524 |t#2| $)) (-6 (-317 $)) (-15 -4071 ((-1 $ (-781)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#4|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#2| |#1|) |has| |#1| (-239)) ((-524 |#2| $) |has| |#1| (-239)) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ #2=(-1193)) |has| |#1| (-912 (-1193))) ((-907 $ |#3|) . T) ((-912 #2#) |has| |#1| (-912 (-1193))) ((-912 |#3|) . T) ((-914 #2#) |has| |#1| (-912 (-1193))) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-963 |#1| |#4| |#3|) . T) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#2|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3077 ((|#1| $) 55)) (-2010 ((|#1| $) 45)) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-2041 (($ $) 61)) (-2060 (($ $) 49)) (-2990 ((|#1| |#1| $) 47)) (-1763 ((|#1| $) 46)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4109 (((-781) $) 62)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-1346 ((|#1| |#1| $) 53)) (-4383 ((|#1| |#1| $) 52)) (-3705 (($ |#1| $) 41)) (-1846 (((-781) $) 56)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1757 ((|#1| $) 63)) (-3168 ((|#1| $) 51)) (-3970 ((|#1| $) 50)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-4006 ((|#1| |#1| $) 59)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2605 ((|#1| $) 60)) (-1697 (($) 58) (($ (-654 |#1|)) 57)) (-4291 (((-781) $) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-4061 ((|#1| $) 54)) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2146 ((|#1| $) 64)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-261 |#1|) (-141) (-1234)) (T -261))
-((-1697 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-261 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-1346 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-4383 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))) (-2060 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(-13 (-1137 |t#1|) (-1011 |t#1|) (-10 -8 (-15 -1697 ($)) (-15 -1697 ($ (-654 |t#1|))) (-15 -1846 ((-781) $)) (-15 -3077 (|t#1| $)) (-15 -4061 (|t#1| $)) (-15 -1346 (|t#1| |t#1| $)) (-15 -4383 (|t#1| |t#1| $)) (-15 -3168 (|t#1| $)) (-15 -3970 (|t#1| $)) (-15 -2060 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1011 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1137 |#1|) . T) ((-1234) . T))
-((-1905 (((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1854 (((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388))) 173) (((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 171) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 176) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 172) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 164) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 163) (((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388))) 145) (((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270))) 143) (((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388))) 144) (((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 141)) (-1808 (((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388))) 175) (((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 174) (((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 178) (((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 177) (((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388))) 166) (((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270))) 165) (((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388))) 151) (((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270))) 150) (((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388))) 149) (((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 148) (((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388))) 113) (((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270))) 112) (((-1285) (-1 (-227) (-227)) (-1110 (-388))) 107) (((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270))) 105)))
-(((-262) (-10 -7 (-15 -1808 ((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-1 (-227) (-227)) (-1110 (-388)))) (-15 -1808 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1808 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1808 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1905 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262))
-((-1905 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *2 (-1285)) (-5 *1 (-262)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1808 ((-1285) (-1 (-227) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-1 (-227) (-227)) (-1110 (-388)))) (-15 -1808 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-888 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1808 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 (-1 (-227) (-227))) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227)) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-388)) (-1110 (-388)))) (-15 -1808 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 (-1 (-227) (-227) (-227))) (-1110 (-388)) (-1110 (-388)))) (-15 -1905 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-1808 (((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270))) 101)))
-(((-263 |#1| |#2|) (-10 -7 (-15 -1808 ((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270))))) (-13 (-566) (-860) (-1054 (-574))) (-440 |#1|)) (T -263))
-((-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-1193)) (-5 *5 (-654 (-270))) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1054 (-574)))) (-5 *2 (-1285)) (-5 *1 (-263 *6 *7)))))
-(-10 -7 (-15 -1808 ((-1285) (-302 |#2|) (-1193) (-1193) (-654 (-270)))))
-((-1699 (((-574) (-574)) 71)) (-2807 (((-574) (-574)) 72)) (-4030 (((-227) (-227)) 73)) (-3566 (((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227))) 70)) (-1824 (((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112)) 68)))
-(((-264) (-10 -7 (-15 -1824 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112))) (-15 -3566 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -1699 ((-574) (-574))) (-15 -2807 ((-574) (-574))) (-15 -4030 ((-227) (-227))))) (T -264))
-((-4030 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))) (-3566 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) (-5 *2 (-1286)) (-5 *1 (-264)))) (-1824 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227))) (-5 *5 (-112)) (-5 *2 (-1286)) (-5 *1 (-264)))))
-(-10 -7 (-15 -1824 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)) (-112))) (-15 -3566 ((-1286) (-1 (-171 (-227)) (-171 (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -1699 ((-574) (-574))) (-15 -2807 ((-574) (-574))) (-15 -4030 ((-227) (-227))))
-((-2951 (((-1108 (-388)) (-1108 (-324 |#1|))) 16)))
-(((-265 |#1|) (-10 -7 (-15 -2951 ((-1108 (-388)) (-1108 (-324 |#1|))))) (-13 (-860) (-566) (-624 (-388)))) (T -265))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-1108 (-324 *4))) (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1108 (-388))) (-5 *1 (-265 *4)))))
-(-10 -7 (-15 -2951 ((-1108 (-388)) (-1108 (-324 |#1|)))))
-((-1854 (((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388))) 75) (((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 74) (((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388))) 65) (((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 64) (((-1149 (-227)) (-890 |#1|) (-1108 (-388))) 56) (((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270))) 55)) (-1808 (((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388))) 78) (((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 77) (((-1286) |#1| (-1108 (-388)) (-1108 (-388))) 68) (((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270))) 67) (((-1286) (-890 |#1|) (-1108 (-388))) 60) (((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270))) 59) (((-1285) (-888 |#1|) (-1108 (-388))) 47) (((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270))) 46) (((-1285) |#1| (-1108 (-388))) 38) (((-1285) |#1| (-1108 (-388)) (-654 (-270))) 36)))
-(((-266 |#1|) (-10 -7 (-15 -1808 ((-1285) |#1| (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) |#1| (-1108 (-388)))) (-15 -1808 ((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-888 |#1|) (-1108 (-388)))) (-15 -1808 ((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-890 |#1|) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)))) (-15 -1808 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1808 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388))))) (-13 (-624 (-546)) (-1116))) (T -266))
-((-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5)))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) (-1808 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) (-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1854 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1808 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1286)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1808 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *5)))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *6)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *5)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286)) (-5 *1 (-266 *6)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1108 (-388))) (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *5)))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285)) (-5 *1 (-266 *6)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116))))))
-(-10 -7 (-15 -1808 ((-1285) |#1| (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) |#1| (-1108 (-388)))) (-15 -1808 ((-1285) (-888 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1285) (-888 |#1|) (-1108 (-388)))) (-15 -1808 ((-1286) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-890 |#1|) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-890 |#1|) (-1108 (-388)))) (-15 -1808 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) |#1| (-1108 (-388)) (-1108 (-388)))) (-15 -1808 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1808 ((-1286) (-893 |#1|) (-1108 (-388)) (-1108 (-388)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)) (-654 (-270)))) (-15 -1854 ((-1149 (-227)) (-893 |#1|) (-1108 (-388)) (-1108 (-388)))))
-((-1808 (((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270))) 23) (((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227))) 24) (((-1285) (-654 (-957 (-227))) (-654 (-270))) 16) (((-1285) (-654 (-957 (-227)))) 17) (((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270))) 20) (((-1285) (-654 (-227)) (-654 (-227))) 21)))
-(((-267) (-10 -7 (-15 -1808 ((-1285) (-654 (-227)) (-654 (-227)))) (-15 -1808 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1808 ((-1285) (-654 (-957 (-227))))) (-15 -1808 ((-1285) (-654 (-957 (-227))) (-654 (-270)))) (-15 -1808 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1808 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))) (T -267))
-((-1808 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-267)))) (-1808 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1286)) (-5 *1 (-267)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1808 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-267)))) (-1808 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267)))))
-(-10 -7 (-15 -1808 ((-1285) (-654 (-227)) (-654 (-227)))) (-15 -1808 ((-1285) (-654 (-227)) (-654 (-227)) (-654 (-270)))) (-15 -1808 ((-1285) (-654 (-957 (-227))))) (-15 -1808 ((-1285) (-654 (-957 (-227))) (-654 (-270)))) (-15 -1808 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)))) (-15 -1808 ((-1286) (-654 (-227)) (-654 (-227)) (-654 (-227)) (-654 (-270)))))
-((-4277 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-1597 (((-935) (-654 (-270)) (-935)) 52)) (-3659 (((-935) (-654 (-270)) (-935)) 51)) (-2005 (((-654 (-388)) (-654 (-270)) (-654 (-388))) 68)) (-4086 (((-388) (-654 (-270)) (-388)) 57)) (-3881 (((-935) (-654 (-270)) (-935)) 53)) (-3002 (((-112) (-654 (-270)) (-112)) 27)) (-3851 (((-1175) (-654 (-270)) (-1175)) 19)) (-1867 (((-1175) (-654 (-270)) (-1175)) 26)) (-2453 (((-1149 (-227)) (-654 (-270))) 46)) (-3066 (((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388)))) 40)) (-3302 (((-884) (-654 (-270)) (-884)) 32)) (-3204 (((-884) (-654 (-270)) (-884)) 33)) (-4435 (((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227)))) 63)) (-1739 (((-112) (-654 (-270)) (-112)) 14)) (-3270 (((-112) (-654 (-270)) (-112)) 13)))
-(((-268) (-10 -7 (-15 -3270 ((-112) (-654 (-270)) (-112))) (-15 -1739 ((-112) (-654 (-270)) (-112))) (-15 -4277 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ((-1175) (-654 (-270)) (-1175))) (-15 -1867 ((-1175) (-654 (-270)) (-1175))) (-15 -3002 ((-112) (-654 (-270)) (-112))) (-15 -3302 ((-884) (-654 (-270)) (-884))) (-15 -3204 ((-884) (-654 (-270)) (-884))) (-15 -3066 ((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388))))) (-15 -3659 ((-935) (-654 (-270)) (-935))) (-15 -1597 ((-935) (-654 (-270)) (-935))) (-15 -2453 ((-1149 (-227)) (-654 (-270)))) (-15 -3881 ((-935) (-654 (-270)) (-935))) (-15 -4086 ((-388) (-654 (-270)) (-388))) (-15 -4435 ((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227))))) (-15 -2005 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))) (T -268))
-((-2005 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4435 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4086 (*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-268)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3659 (*1 *2 *3 *2) (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3066 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3302 (*1 *2 *3 *2) (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3002 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1867 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-4277 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-1739 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))) (-3270 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
-(-10 -7 (-15 -3270 ((-112) (-654 (-270)) (-112))) (-15 -1739 ((-112) (-654 (-270)) (-112))) (-15 -4277 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-654 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ((-1175) (-654 (-270)) (-1175))) (-15 -1867 ((-1175) (-654 (-270)) (-1175))) (-15 -3002 ((-112) (-654 (-270)) (-112))) (-15 -3302 ((-884) (-654 (-270)) (-884))) (-15 -3204 ((-884) (-654 (-270)) (-884))) (-15 -3066 ((-654 (-1110 (-388))) (-654 (-270)) (-654 (-1110 (-388))))) (-15 -3659 ((-935) (-654 (-270)) (-935))) (-15 -1597 ((-935) (-654 (-270)) (-935))) (-15 -2453 ((-1149 (-227)) (-654 (-270)))) (-15 -3881 ((-935) (-654 (-270)) (-935))) (-15 -4086 ((-388) (-654 (-270)) (-388))) (-15 -4435 ((-1 (-957 (-227)) (-957 (-227))) (-654 (-270)) (-1 (-957 (-227)) (-957 (-227))))) (-15 -2005 ((-654 (-388)) (-654 (-270)) (-654 (-388)))))
-((-1988 (((-3 |#1| "failed") (-654 (-270)) (-1193)) 17)))
-(((-269 |#1|) (-10 -7 (-15 -1988 ((-3 |#1| "failed") (-654 (-270)) (-1193)))) (-1234)) (T -269))
-((-1988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *1 (-269 *2)) (-4 *2 (-1234)))))
-(-10 -7 (-15 -1988 ((-3 |#1| "failed") (-654 (-270)) (-1193))))
-((-2864 (((-112) $ $) NIL)) (-4277 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-1597 (($ (-935)) 81)) (-3659 (($ (-935)) 80)) (-2020 (($ (-654 (-388))) 87)) (-4086 (($ (-388)) 66)) (-3881 (($ (-935)) 82)) (-3002 (($ (-112)) 33)) (-3851 (($ (-1175)) 28)) (-1867 (($ (-1175)) 29)) (-2453 (($ (-1149 (-227))) 76)) (-3066 (($ (-654 (-1110 (-388)))) 72)) (-2065 (($ (-654 (-1110 (-388)))) 68) (($ (-654 (-1110 (-417 (-574))))) 71)) (-3164 (($ (-388)) 38) (($ (-884)) 42)) (-2367 (((-112) (-654 $) (-1193)) 100)) (-1988 (((-3 (-52) "failed") (-654 $) (-1193)) 102)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3929 (($ (-388)) 43) (($ (-884)) 44)) (-2282 (($ (-1 (-957 (-227)) (-957 (-227)))) 65)) (-4435 (($ (-1 (-957 (-227)) (-957 (-227)))) 83)) (-2198 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2951 (((-872) $) 93)) (-3442 (($ (-112)) 34) (($ (-654 (-1110 (-388)))) 60)) (-2981 (((-112) $ $) NIL)) (-3270 (($ (-112)) 35)) (-2986 (((-112) $ $) 97)))
-(((-270) (-13 (-1116) (-10 -8 (-15 -3270 ($ (-112))) (-15 -3442 ($ (-112))) (-15 -4277 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ($ (-1175))) (-15 -1867 ($ (-1175))) (-15 -3002 ($ (-112))) (-15 -3442 ($ (-654 (-1110 (-388))))) (-15 -2282 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -3164 ($ (-388))) (-15 -3164 ($ (-884))) (-15 -3929 ($ (-388))) (-15 -3929 ($ (-884))) (-15 -2198 ($ (-1 (-227) (-227)))) (-15 -2198 ($ (-1 (-227) (-227) (-227)))) (-15 -2198 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -4086 ($ (-388))) (-15 -2065 ($ (-654 (-1110 (-388))))) (-15 -2065 ($ (-654 (-1110 (-417 (-574)))))) (-15 -3066 ($ (-654 (-1110 (-388))))) (-15 -2453 ($ (-1149 (-227)))) (-15 -3659 ($ (-935))) (-15 -1597 ($ (-935))) (-15 -3881 ($ (-935))) (-15 -4435 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -2020 ($ (-654 (-388)))) (-15 -1988 ((-3 (-52) "failed") (-654 $) (-1193))) (-15 -2367 ((-112) (-654 $) (-1193)))))) (T -270))
-((-3270 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))) (-1867 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3442 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-417 (-574))))) (-5 *1 (-270)))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))) (-2453 (*1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-270)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))) (-4435 (*1 *1 *2) (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270)))) (-2020 (*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270)))) (-1988 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-52)) (-5 *1 (-270)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-112)) (-5 *1 (-270)))))
-(-13 (-1116) (-10 -8 (-15 -3270 ($ (-112))) (-15 -3442 ($ (-112))) (-15 -4277 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3851 ($ (-1175))) (-15 -1867 ($ (-1175))) (-15 -3002 ($ (-112))) (-15 -3442 ($ (-654 (-1110 (-388))))) (-15 -2282 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -3164 ($ (-388))) (-15 -3164 ($ (-884))) (-15 -3929 ($ (-388))) (-15 -3929 ($ (-884))) (-15 -2198 ($ (-1 (-227) (-227)))) (-15 -2198 ($ (-1 (-227) (-227) (-227)))) (-15 -2198 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -4086 ($ (-388))) (-15 -2065 ($ (-654 (-1110 (-388))))) (-15 -2065 ($ (-654 (-1110 (-417 (-574)))))) (-15 -3066 ($ (-654 (-1110 (-388))))) (-15 -2453 ($ (-1149 (-227)))) (-15 -3659 ($ (-935))) (-15 -1597 ($ (-935))) (-15 -3881 ($ (-935))) (-15 -4435 ($ (-1 (-957 (-227)) (-957 (-227))))) (-15 -2020 ($ (-654 (-388)))) (-15 -1988 ((-3 (-52) "failed") (-654 $) (-1193))) (-15 -2367 ((-112) (-654 $) (-1193)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3555 (((-654 (-781)) $) NIL) (((-654 (-781)) $ |#2|) NIL)) (-3716 (((-781) $) NIL) (((-781) $ |#2|) NIL)) (-4350 (((-654 |#3|) $) NIL)) (-4172 (((-1189 $) $ |#3|) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 |#3|)) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3632 (($ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1141 |#1| |#2|) "failed") $) 23)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1141 |#1| |#2|) $) NIL)) (-4047 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-541 |#3|) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))))) (-1518 (((-781) $ |#2|) NIL) (((-781) $) 10)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) |#3|) NIL) (($ (-1189 $) |#3|) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#3|) NIL)) (-2043 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL)) (-3431 (($ (-1 (-541 |#3|) (-541 |#3|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (((-1 $ (-781)) |#2|) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-3444 (((-3 |#3| "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 ((|#3| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-1966 (((-112) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| |#3|) (|:| -2754 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-654 |#3|) (-654 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-654 |#3|) (-654 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 |#2|) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1924 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-654 |#2|) $) NIL)) (-3735 (((-541 |#3|) $) NIL) (((-781) $ |#3|) NIL) (((-654 (-781)) $ (-654 |#3|)) NIL) (((-781) $ |#2|) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ |#3|) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1141 |#1| |#2|)) 32) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-541 |#3|)) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 |#3|) (-654 (-781))) NIL) (($ $ |#3| (-781)) NIL) (($ $ (-654 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-271 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1054 (-1141 |#1| |#2|))) (-1065) (-860) (-273 |#2|)) (T -271))
-NIL
-(-13 (-260 |#1| |#2| |#3| (-541 |#3|)) (-1054 (-1141 |#1| |#2|)))
-((-3716 (((-781) $) 37)) (-1704 (((-3 |#2| "failed") $) 22)) (-2216 ((|#2| $) 33)) (-3879 (($ $ (-781)) 18) (($ $) 14)) (-2951 (((-872) $) 32) (($ |#2|) 11)) (-2986 (((-112) $ $) 26)) (-3009 (((-112) $ $) 36)))
-(((-272 |#1| |#2|) (-10 -8 (-15 -3716 ((-781) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-273 |#2|) (-860)) (T -272))
-NIL
-(-10 -8 (-15 -3716 ((-781) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-3716 (((-781) $) 22)) (-1498 ((|#1| $) 23)) (-1704 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-1518 (((-781) $) 24)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4071 (($ |#1| (-781)) 25)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-781)) 31) (($ $) 29)) (-2951 (((-872) $) 12) (($ |#1|) 26)) (-2981 (((-112) $ $) 9)) (-3585 (($ $ (-781)) 32) (($ $) 30)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)))
-(((-273 |#1|) (-141) (-860)) (T -273))
-((-2951 (*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-4071 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))))
-(-13 (-860) (-238) (-1054 |t#1|) (-10 -8 (-15 -4071 ($ |t#1| (-781))) (-15 -1518 ((-781) $)) (-15 -1498 (|t#1| $)) (-15 -3716 ((-781) $)) (-15 -2951 ($ |t#1|))))
-(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-235 $) . T) ((-238) . T) ((-860) . T) ((-1054 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-4350 (((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 53)) (-1663 (((-654 (-1193)) (-324 (-227)) (-781)) 94)) (-4028 (((-3 (-324 (-227)) "failed") (-324 (-227))) 63)) (-2900 (((-324 (-227)) (-324 (-227))) 79)) (-1919 (((-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 38)) (-2557 (((-112) (-654 (-324 (-227)))) 104)) (-3820 (((-112) (-324 (-227))) 36)) (-3776 (((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))))) 132)) (-2701 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 108)) (-4185 (((-654 (-324 (-227))) (-654 (-324 (-227)))) 106)) (-3051 (((-699 (-227)) (-654 (-324 (-227))) (-781)) 120)) (-3387 (((-112) (-324 (-227))) 31) (((-112) (-654 (-324 (-227)))) 105)) (-1667 (((-654 (-227)) (-654 (-853 (-227))) (-227)) 15)) (-3045 (((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 126)) (-3046 (((-1051) (-1193) (-1051)) 46)))
-(((-274) (-10 -7 (-15 -1667 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -1919 ((-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -4028 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2900 ((-324 (-227)) (-324 (-227)))) (-15 -2557 ((-112) (-654 (-324 (-227))))) (-15 -3387 ((-112) (-654 (-324 (-227))))) (-15 -3387 ((-112) (-324 (-227)))) (-15 -3051 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4185 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2701 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3820 ((-112) (-324 (-227)))) (-15 -4350 ((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -1663 ((-654 (-1193)) (-324 (-227)) (-781))) (-15 -3046 ((-1051) (-1193) (-1051))) (-15 -3045 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -3776 ((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))))))) (T -274))
-((-3776 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))))) (-5 *2 (-654 (-1175))) (-5 *1 (-274)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) (-5 *2 (-388)) (-5 *1 (-274)))) (-3046 (*1 *2 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-274)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) (-5 *2 (-654 (-1193))) (-5 *1 (-274)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-274)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-4028 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-274)))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4)) (-5 *1 (-274)))))
-(-10 -7 (-15 -1667 ((-654 (-227)) (-654 (-853 (-227))) (-227))) (-15 -1919 ((-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -4028 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -2900 ((-324 (-227)) (-324 (-227)))) (-15 -2557 ((-112) (-654 (-324 (-227))))) (-15 -3387 ((-112) (-654 (-324 (-227))))) (-15 -3387 ((-112) (-324 (-227)))) (-15 -3051 ((-699 (-227)) (-654 (-324 (-227))) (-781))) (-15 -4185 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -2701 ((-654 (-324 (-227))) (-654 (-324 (-227))))) (-15 -3820 ((-112) (-324 (-227)))) (-15 -4350 ((-654 (-1193)) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -1663 ((-654 (-1193)) (-324 (-227)) (-781))) (-15 -3046 ((-1051) (-1193) (-1051))) (-15 -3045 ((-388) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -3776 ((-654 (-1175)) (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))))))
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 56)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-275) (-849)) (T -275))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 72) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 63)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 41) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 43)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-276) (-849)) (T -276))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 90) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 85)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 52) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 65)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-277) (-849)) (T -277))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 73)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 45) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-278) (-849)) (T -278))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 65)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 31) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-279) (-849)) (T -279))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 90)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 33) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-280) (-849)) (T -280))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 87)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 32) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-281) (-849)) (T -281))
-NIL
-(-849)
-((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1425 (((-654 (-574)) $) 29)) (-3735 (((-781) $) 27)) (-2951 (((-872) $) 33) (($ (-654 (-574))) 23)) (-2981 (((-112) $ $) NIL)) (-1513 (($ (-781)) 30)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 17)))
-(((-282) (-13 (-860) (-10 -8 (-15 -2951 ($ (-654 (-574)))) (-15 -3735 ((-781) $)) (-15 -1425 ((-654 (-574)) $)) (-15 -1513 ($ (-781)))))) (T -282))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282)))))
-(-13 (-860) (-10 -8 (-15 -2951 ($ (-654 (-574)))) (-15 -3735 ((-781) $)) (-15 -1425 ((-654 (-574)) $)) (-15 -1513 ($ (-781)))))
-((-2379 ((|#2| |#2|) 77)) (-2258 ((|#2| |#2|) 65)) (-1434 (((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2358 ((|#2| |#2|) 75)) (-2236 ((|#2| |#2|) 63)) (-2404 ((|#2| |#2|) 79)) (-2280 ((|#2| |#2|) 67)) (-3004 ((|#2|) 46)) (-4150 (((-115) (-115)) 100)) (-3113 ((|#2| |#2|) 61)) (-2087 (((-112) |#2|) 147)) (-2662 ((|#2| |#2|) 195)) (-3355 ((|#2| |#2|) 171)) (-2762 ((|#2|) 59)) (-2768 ((|#2|) 58)) (-2414 ((|#2| |#2|) 191)) (-2365 ((|#2| |#2|) 167)) (-2479 ((|#2| |#2|) 199)) (-1670 ((|#2| |#2|) 175)) (-4082 ((|#2| |#2|) 163)) (-2553 ((|#2| |#2|) 165)) (-2904 ((|#2| |#2|) 201)) (-3947 ((|#2| |#2|) 177)) (-2427 ((|#2| |#2|) 197)) (-2007 ((|#2| |#2|) 173)) (-3121 ((|#2| |#2|) 193)) (-2668 ((|#2| |#2|) 169)) (-2657 ((|#2| |#2|) 207)) (-1407 ((|#2| |#2|) 183)) (-3924 ((|#2| |#2|) 203)) (-3039 ((|#2| |#2|) 179)) (-2396 ((|#2| |#2|) 211)) (-4199 ((|#2| |#2|) 187)) (-2615 ((|#2| |#2|) 213)) (-2415 ((|#2| |#2|) 189)) (-3177 ((|#2| |#2|) 209)) (-1568 ((|#2| |#2|) 185)) (-4110 ((|#2| |#2|) 205)) (-2255 ((|#2| |#2|) 181)) (-1617 ((|#2| |#2|) 62)) (-2417 ((|#2| |#2|) 80)) (-2288 ((|#2| |#2|) 68)) (-2390 ((|#2| |#2|) 78)) (-2269 ((|#2| |#2|) 66)) (-2368 ((|#2| |#2|) 76)) (-2247 ((|#2| |#2|) 64)) (-2138 (((-112) (-115)) 98)) (-2456 ((|#2| |#2|) 83)) (-2320 ((|#2| |#2|) 71)) (-2429 ((|#2| |#2|) 81)) (-2301 ((|#2| |#2|) 69)) (-2480 ((|#2| |#2|) 85)) (-2340 ((|#2| |#2|) 73)) (-2536 ((|#2| |#2|) 86)) (-2349 ((|#2| |#2|) 74)) (-2468 ((|#2| |#2|) 84)) (-2330 ((|#2| |#2|) 72)) (-2443 ((|#2| |#2|) 82)) (-2312 ((|#2| |#2|) 70)))
-(((-283 |#1| |#2|) (-10 -7 (-15 -1617 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -3004 (|#2|)) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -2768 (|#2|)) (-15 -2762 (|#2|)) (-15 -2553 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -3355 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -1434 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2087 ((-112) |#2|))) (-566) (-13 (-440 |#1|) (-1018))) (T -283))
-((-2087 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3)) (-4 *3 (-13 (-440 *4) (-1018))))) (-1434 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-440 *4) (-1018))) (-4 *4 (-566)) (-5 *1 (-283 *4 *2)))) (-2615 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2396 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2657 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3121 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2414 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4199 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3039 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2007 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3355 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2762 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2768 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4)) (-4 *4 (-13 (-440 *3) (-1018))))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018))))) (-3004 (*1 *2) (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2)) (-4 *3 (-566)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018))))))
-(-10 -7 (-15 -1617 (|#2| |#2|)) (-15 -3113 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -2301 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2390 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2417 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -3004 (|#2|)) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -2768 (|#2|)) (-15 -2762 (|#2|)) (-15 -2553 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -3355 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -3039 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2414 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -2657 (|#2| |#2|)) (-15 -3177 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -2615 (|#2| |#2|)) (-15 -1434 ((-3 |#2| "failed") |#2| (-654 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2087 ((-112) |#2|)))
-((-4303 (((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193)) 151)) (-4276 ((|#2| (-417 (-574)) |#2|) 49)) (-1581 ((|#2| |#2| (-622 |#2|)) 144)) (-4077 (((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193)) 143)) (-1473 ((|#2| |#2| (-1193)) 20) ((|#2| |#2|) 23)) (-1747 ((|#2| |#2| (-1193)) 157) ((|#2| |#2|) 155)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -1747 (|#2| |#2|)) (-15 -1747 (|#2| |#2| (-1193))) (-15 -4077 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193))) (-15 -1473 (|#2| |#2|)) (-15 -1473 (|#2| |#2| (-1193))) (-15 -4303 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193))) (-15 -1581 (|#2| |#2| (-622 |#2|))) (-15 -4276 (|#2| (-417 (-574)) |#2|))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -284))
-((-4276 (*1 *2 *3 *2) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1581 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)))) (-4303 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1193)) (-4 *2 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *5 *2)))) (-1473 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3))) (|:| |vals| (-654 *3)))) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1747 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))))
-(-10 -7 (-15 -1747 (|#2| |#2|)) (-15 -1747 (|#2| |#2| (-1193))) (-15 -4077 ((-2 (|:| |func| |#2|) (|:| |kers| (-654 (-622 |#2|))) (|:| |vals| (-654 |#2|))) |#2| (-1193))) (-15 -1473 (|#2| |#2|)) (-15 -1473 (|#2| |#2| (-1193))) (-15 -4303 ((-3 |#2| "failed") (-654 (-622 |#2|)) |#2| (-1193))) (-15 -1581 (|#2| |#2| (-622 |#2|))) (-15 -4276 (|#2| (-417 (-574)) |#2|)))
-((-2747 (((-3 |#3| "failed") |#3|) 120)) (-2379 ((|#3| |#3|) 142)) (-3540 (((-3 |#3| "failed") |#3|) 89)) (-2258 ((|#3| |#3|) 132)) (-4137 (((-3 |#3| "failed") |#3|) 65)) (-2358 ((|#3| |#3|) 140)) (-2074 (((-3 |#3| "failed") |#3|) 53)) (-2236 ((|#3| |#3|) 130)) (-3412 (((-3 |#3| "failed") |#3|) 122)) (-2404 ((|#3| |#3|) 144)) (-2948 (((-3 |#3| "failed") |#3|) 91)) (-2280 ((|#3| |#3|) 134)) (-2114 (((-3 |#3| "failed") |#3| (-781)) 41)) (-3900 (((-3 |#3| "failed") |#3|) 81)) (-3113 ((|#3| |#3|) 129)) (-1979 (((-3 |#3| "failed") |#3|) 51)) (-1617 ((|#3| |#3|) 128)) (-3044 (((-3 |#3| "failed") |#3|) 123)) (-2417 ((|#3| |#3|) 145)) (-1776 (((-3 |#3| "failed") |#3|) 92)) (-2288 ((|#3| |#3|) 135)) (-3214 (((-3 |#3| "failed") |#3|) 121)) (-2390 ((|#3| |#3|) 143)) (-2430 (((-3 |#3| "failed") |#3|) 90)) (-2269 ((|#3| |#3|) 133)) (-2323 (((-3 |#3| "failed") |#3|) 67)) (-2368 ((|#3| |#3|) 141)) (-3856 (((-3 |#3| "failed") |#3|) 55)) (-2247 ((|#3| |#3|) 131)) (-3390 (((-3 |#3| "failed") |#3|) 73)) (-2456 ((|#3| |#3|) 148)) (-3359 (((-3 |#3| "failed") |#3|) 114)) (-2320 ((|#3| |#3|) 152)) (-3018 (((-3 |#3| "failed") |#3|) 69)) (-2429 ((|#3| |#3|) 146)) (-1383 (((-3 |#3| "failed") |#3|) 57)) (-2301 ((|#3| |#3|) 136)) (-3579 (((-3 |#3| "failed") |#3|) 77)) (-2480 ((|#3| |#3|) 150)) (-3626 (((-3 |#3| "failed") |#3|) 61)) (-2340 ((|#3| |#3|) 138)) (-1525 (((-3 |#3| "failed") |#3|) 79)) (-2536 ((|#3| |#3|) 151)) (-3613 (((-3 |#3| "failed") |#3|) 63)) (-2349 ((|#3| |#3|) 139)) (-1381 (((-3 |#3| "failed") |#3|) 75)) (-2468 ((|#3| |#3|) 149)) (-3893 (((-3 |#3| "failed") |#3|) 117)) (-2330 ((|#3| |#3|) 153)) (-3336 (((-3 |#3| "failed") |#3|) 71)) (-2443 ((|#3| |#3|) 147)) (-1656 (((-3 |#3| "failed") |#3|) 59)) (-2312 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-417 (-574))) 47 (|has| |#1| (-372)))))
-(((-285 |#1| |#2| |#3|) (-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2288 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) (-38 (-417 (-574))) (-1275 |#1|) (-1246 |#1| |#2|)) (T -285))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1275 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1246 *4 *5)))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3)) (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4)))))
-(-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2288 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|))))
-((-2747 (((-3 |#3| "failed") |#3|) 70)) (-2379 ((|#3| |#3|) 137)) (-3540 (((-3 |#3| "failed") |#3|) 54)) (-2258 ((|#3| |#3|) 125)) (-4137 (((-3 |#3| "failed") |#3|) 66)) (-2358 ((|#3| |#3|) 135)) (-2074 (((-3 |#3| "failed") |#3|) 50)) (-2236 ((|#3| |#3|) 123)) (-3412 (((-3 |#3| "failed") |#3|) 74)) (-2404 ((|#3| |#3|) 139)) (-2948 (((-3 |#3| "failed") |#3|) 58)) (-2280 ((|#3| |#3|) 127)) (-2114 (((-3 |#3| "failed") |#3| (-781)) 38)) (-3900 (((-3 |#3| "failed") |#3|) 48)) (-3113 ((|#3| |#3|) 111)) (-1979 (((-3 |#3| "failed") |#3|) 46)) (-1617 ((|#3| |#3|) 122)) (-3044 (((-3 |#3| "failed") |#3|) 76)) (-2417 ((|#3| |#3|) 140)) (-1776 (((-3 |#3| "failed") |#3|) 60)) (-2288 ((|#3| |#3|) 128)) (-3214 (((-3 |#3| "failed") |#3|) 72)) (-2390 ((|#3| |#3|) 138)) (-2430 (((-3 |#3| "failed") |#3|) 56)) (-2269 ((|#3| |#3|) 126)) (-2323 (((-3 |#3| "failed") |#3|) 68)) (-2368 ((|#3| |#3|) 136)) (-3856 (((-3 |#3| "failed") |#3|) 52)) (-2247 ((|#3| |#3|) 124)) (-3390 (((-3 |#3| "failed") |#3|) 78)) (-2456 ((|#3| |#3|) 143)) (-3359 (((-3 |#3| "failed") |#3|) 62)) (-2320 ((|#3| |#3|) 131)) (-3018 (((-3 |#3| "failed") |#3|) 112)) (-2429 ((|#3| |#3|) 141)) (-1383 (((-3 |#3| "failed") |#3|) 100)) (-2301 ((|#3| |#3|) 129)) (-3579 (((-3 |#3| "failed") |#3|) 116)) (-2480 ((|#3| |#3|) 145)) (-3626 (((-3 |#3| "failed") |#3|) 107)) (-2340 ((|#3| |#3|) 133)) (-1525 (((-3 |#3| "failed") |#3|) 117)) (-2536 ((|#3| |#3|) 146)) (-3613 (((-3 |#3| "failed") |#3|) 109)) (-2349 ((|#3| |#3|) 134)) (-1381 (((-3 |#3| "failed") |#3|) 80)) (-2468 ((|#3| |#3|) 144)) (-3893 (((-3 |#3| "failed") |#3|) 64)) (-2330 ((|#3| |#3|) 132)) (-3336 (((-3 |#3| "failed") |#3|) 113)) (-2443 ((|#3| |#3|) 142)) (-1656 (((-3 |#3| "failed") |#3|) 103)) (-2312 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-417 (-574))) 44 (|has| |#1| (-372)))))
-(((-286 |#1| |#2| |#3| |#4|) (-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2288 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)))) (-38 (-417 (-574))) (-1244 |#1|) (-1267 |#1| |#2|) (-999 |#2|)) (T -286))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3)) (-4 *5 (-1244 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1267 *4 *5)) (-4 *6 (-999 *5)))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2301 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2390 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2417 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4)))))
-(-13 (-999 |#3|) (-10 -7 (IF (|has| |#1| (-372)) (-15 ** (|#3| |#3| (-417 (-574)))) |%noBranch|) (-15 -1617 (|#3| |#3|)) (-15 -3113 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2247 (|#3| |#3|)) (-15 -2258 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2280 (|#3| |#3|)) (-15 -2288 (|#3| |#3|)) (-15 -2301 (|#3| |#3|)) (-15 -2312 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2330 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2349 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2390 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2417 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2443 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2480 (|#3| |#3|)) (-15 -2536 (|#3| |#3|))))
-((-1654 (((-112) $) 20)) (-2377 (((-1198) $) 7)) (-2347 (((-3 (-516) "failed") $) 14)) (-3396 (((-3 (-654 $) "failed") $) NIL)) (-2118 (((-3 (-516) "failed") $) 21)) (-1548 (((-3 (-1120) "failed") $) 18)) (-3102 (((-112) $) 16)) (-2951 (((-872) $) NIL)) (-3932 (((-112) $) 9)))
-(((-287) (-13 (-623 (-872)) (-10 -8 (-15 -2377 ((-1198) $)) (-15 -3102 ((-112) $)) (-15 -1548 ((-3 (-1120) "failed") $)) (-15 -1654 ((-112) $)) (-15 -2118 ((-3 (-516) "failed") $)) (-15 -3932 ((-112) $)) (-15 -2347 ((-3 (-516) "failed") $)) (-15 -3396 ((-3 (-654 $) "failed") $))))) (T -287))
-((-2377 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-287)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-1548 (*1 *2 *1) (|partial| -12 (-5 *2 (-1120)) (-5 *1 (-287)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2118 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))) (-2347 (*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))) (-3396 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2377 ((-1198) $)) (-15 -3102 ((-112) $)) (-15 -1548 ((-3 (-1120) "failed") $)) (-15 -1654 ((-112) $)) (-15 -2118 ((-3 (-516) "failed") $)) (-15 -3932 ((-112) $)) (-15 -2347 ((-3 (-516) "failed") $)) (-15 -3396 ((-3 (-654 $) "failed") $))))
-((-4301 (((-607) $) 10)) (-1459 (((-595) $) 8)) (-4171 (((-299) $) 12)) (-4337 (($ (-595) (-607) (-299)) NIL)) (-2951 (((-872) $) 19)))
-(((-288) (-13 (-623 (-872)) (-10 -8 (-15 -4337 ($ (-595) (-607) (-299))) (-15 -1459 ((-595) $)) (-15 -4301 ((-607) $)) (-15 -4171 ((-299) $))))) (T -288))
-((-4337 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -4337 ($ (-595) (-607) (-299))) (-15 -1459 ((-595) $)) (-15 -4301 ((-607) $)) (-15 -4171 ((-299) $))))
-((-2173 (($ (-1 (-112) |#2|) $) 24)) (-1573 (($ $) 38)) (-2175 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3311 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2645 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1602 (($ |#2| $ (-574)) 20) (($ $ $ (-574)) 22)) (-2855 (($ $ (-574)) 11) (($ $ (-1251 (-574))) 14)) (-2589 (($ $ |#2|) 32) (($ $ $) NIL)) (-4132 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-654 $)) NIL)))
-(((-289 |#1| |#2|) (-10 -8 (-15 -2645 (|#1| |#1| |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -2645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2589 (|#1| |#1| |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -1573 (|#1| |#1|))) (-290 |#2|) (-1234)) (T -289))
-NIL
-(-10 -8 (-15 -2645 (|#1| |#1| |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -2645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2589 (|#1| |#1| |#2|)) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -3311 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2173 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3311 (|#1| |#2| |#1|)) (-15 -1573 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) 88)) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2218 (($ $) 86 (|has| |#1| (-1116)))) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1116)))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-2645 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3705 (($ |#1| $ (-574)) 91) (($ $ $ (-574)) 90)) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-3032 (($ $ (-574)) 94) (($ $ (-1251 (-574))) 93)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-2589 (($ $ |#1|) 96) (($ $ $) 95)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-290 |#1|) (-141) (-1234)) (T -290))
-((-2589 (*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-2589 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-3705 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1234)))) (-3705 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-2645 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-3155 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))) (-2175 (*1 *1 *2 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-2218 (*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))))
-(-13 (-661 |t#1|) (-10 -8 (-6 -4460) (-15 -2589 ($ $ |t#1|)) (-15 -2589 ($ $ $)) (-15 -3032 ($ $ (-574))) (-15 -3032 ($ $ (-1251 (-574)))) (-15 -2175 ($ (-1 (-112) |t#1|) $)) (-15 -3705 ($ |t#1| $ (-574))) (-15 -3705 ($ $ $ (-574))) (-15 -2645 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3155 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -2175 ($ |t#1| $)) (-15 -2218 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -2645 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-576)))) (-1330 (*1 *1 *1) (-4 *1 (-249))))
+(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -1330 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-1980 (($ $) 58)) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3837 (($ $ $) 54 (|has| $ (-6 -4462)))) (-2328 (($ $ $) 53 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-1532 (($ $) 57)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-3958 (($ $) 56)) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3338 ((|#1| $) 60)) (-2788 (($ $) 59)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48)) (-1785 (((-576) $ $) 45)) (-1558 (((-112) $) 47)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-3228 (($ $ $) 55 (|has| $ (-6 -4462)))) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-250 |#1|) (-141) (-1236)) (T -250))
+((-3338 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-2788 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-3228 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-3837 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))) (-2328 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))))
+(-13 (-1028 |t#1|) (-10 -8 (-15 -3338 (|t#1| $)) (-15 -2788 ($ $)) (-15 -1980 ($ $)) (-15 -1532 ($ $)) (-15 -3958 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3228 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -2328 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) NIL)) (-2426 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3330 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2791 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3439 (($ $ $) NIL (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) NIL)) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2413 ((|#1| $) NIL)) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-2940 (($ $) NIL) (($ $ (-783)) NIL)) (-4099 (($ $) NIL (|has| |#1| (-1118)))) (-4060 (($ $) 7 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-2281 (((-112) $) NIL)) (-1454 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2470 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1383 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1798 (($ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3338 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2504 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2326 (((-112) $) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-1785 (((-576) $ $) NIL)) (-3012 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3181 (($ (-656 |#1|)) 22)) (-1558 (((-112) $) NIL)) (-3029 (($ $) NIL)) (-1508 (($ $) NIL (|has| $ (-6 -4462)))) (-2550 (((-783) $) NIL)) (-3704 (($ $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-3228 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4136 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2956 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-874) $) 21 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) 14 (|has| $ (-6 -4461)))))
+(((-251 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3181 ($ (-656 |#1|))) (-15 -2209 ($ $ "unique")) (-15 -2209 ($ $ "sort")) (-15 -2209 ((-783) $ "count")))) (-862)) (T -251))
+((-3181 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-251 *3)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-862)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-862)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-251 *4)) (-4 *4 (-862)))))
+(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3181 ($ (-656 |#1|))) (-15 -2209 ($ $ "unique")) (-15 -2209 ($ $ "sort")) (-15 -2209 ((-783) $ "count"))))
+((-1702 (((-3 (-783) "failed") |#1| |#1| (-783)) 40)))
+(((-252 |#1|) (-10 -7 (-15 -1702 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -252))
+((-1702 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-252 *3)))))
+(-10 -7 (-15 -1702 ((-3 (-783) "failed") |#1| |#1| (-783))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-876 |#1|)) $) NIL)) (-4174 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4334 (($ $) NIL (|has| |#2| (-568)))) (-1428 (((-112) $) NIL (|has| |#2| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL (|has| |#2| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2799 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1634 (($ $ (-656 (-576))) NIL)) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#2| (-925)))) (-3130 (($ $ |#2| (-246 (-2882 |#1|) (-783)) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#2| (-246 (-2882 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-876 |#1|)) NIL)) (-1859 (((-246 (-2882 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2819 (($ (-1 (-246 (-2882 |#1|) (-783)) (-246 (-2882 |#1|) (-783))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1712 (((-3 (-876 |#1|) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#2| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2300 (-783))) "failed") $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#2| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3206 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3884 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2782 (((-246 (-2882 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-246 (-2882 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-253 |#1| |#2|) (-13 (-965 |#2| (-246 (-2882 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067)) (T -253))
+((-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1067)))))
+(-13 (-965 |#2| (-246 (-2882 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576))))))
+((-2869 (((-112) $ $) NIL)) (-1995 (((-1291) $) 17)) (-4023 (((-185 (-255)) $) 11)) (-3970 (($ (-185 (-255))) 12)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1974 (((-255) $) 7)) (-2956 (((-874) $) 9)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 15)))
+(((-254) (-13 (-1118) (-10 -8 (-15 -1974 ((-255) $)) (-15 -4023 ((-185 (-255)) $)) (-15 -3970 ($ (-185 (-255)))) (-15 -1995 ((-1291) $))))) (T -254))
+((-1974 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254)))))
+(-13 (-1118) (-10 -8 (-15 -1974 ((-255) $)) (-15 -4023 ((-185 (-255)) $)) (-15 -3970 ($ (-185 (-255)))) (-15 -1995 ((-1291) $))))
+((-2869 (((-112) $ $) NIL)) (-1725 (((-656 (-877)) $) NIL)) (-2041 (((-518) $) NIL)) (-2148 (((-1177) $) NIL)) (-4272 (((-188) $) NIL)) (-2881 (((-112) $ (-518)) NIL)) (-3945 (((-1138) $) NIL)) (-4210 (((-343) $) 7)) (-3005 (((-656 (-112)) $) NIL)) (-2956 (((-874) $) NIL) (((-189) $) 8)) (-2617 (((-112) $ $) NIL)) (-1755 (((-55) $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -4210 ((-343) $))))) (T -255))
+((-4210 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255)))))
+(-13 (-187) (-625 (-189)) (-10 -8 (-15 -4210 ((-343) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2209 (((-1200) $ (-783)) 13)) (-2956 (((-874) $) 20)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 16)) (-2882 (((-783) $) 9)))
+(((-256) (-13 (-1118) (-296 (-783) (-1200)) (-10 -8 (-15 -2882 ((-783) $))))) (T -256))
+((-2882 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))))
+(-13 (-1118) (-296 (-783) (-1200)) (-10 -8 (-15 -2882 ((-783) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2010 (($ (-937)) NIL (|has| |#4| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) NIL (|has| |#4| (-805)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#4| (-379)))) (-3140 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1118))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-2216 ((|#4| $) NIL (|has| |#4| (-1118))) (((-576) $) NIL (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-3928 (((-2 (|:| -2081 (-701 |#4|)) (|:| |vec| (-1286 |#4|))) (-701 $) (-1286 $)) NIL (|has| |#4| (-1067))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1067))) (((-701 |#4|) (-1286 $)) NIL (|has| |#4| (-1067))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1067))))) (-4077 (((-3 $ "failed") $) NIL (|has| |#4| (-1067)))) (-2840 (($) NIL (|has| |#4| (-379)))) (-2481 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#4| $ (-576)) NIL)) (-1873 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#4| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#4| (-862)))) (-2186 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#4| (-862)))) (-2466 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#4| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#4| (-379)))) (-3945 (((-1138) $) NIL)) (-2930 ((|#4| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#4|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-4274 (((-656 |#4|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-4144 ((|#4| $ $) NIL (|has| |#4| (-1067)))) (-4249 (($ (-1286 |#4|)) NIL)) (-2068 (((-135)) NIL (|has| |#4| (-374)))) (-3884 (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1067))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067))))) (-3954 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1118))) (((-874) $) NIL) (($ (-576)) NIL (-2838 (-12 (|has| |#4| (-1056 (-576))) (|has| |#4| (-1118))) (|has| |#4| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1056 (-419 (-576)))) (|has| |#4| (-1118))))) (-3423 (((-783)) NIL (|has| |#4| (-1067)) CONST)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL (|has| |#4| (-1067)) CONST)) (-3590 (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1067))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#4| (-914 (-1195))) (|has| |#4| (-1067)))) (($ $) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#4| (-239)) (|has| |#4| (-1067))))) (-3047 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3108 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1067))) (($ $ (-937)) NIL (|has| |#4| (-1067)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1067)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-257 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-937) (-1067) (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-660 |#2|)) (T -257))
+NIL
+(-13 (-244 |#1| |#4|) (-660 |#2|) (-660 |#3|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2010 (($ (-937)) NIL (|has| |#3| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) NIL (|has| |#3| (-805)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#3| (-379)))) (-3140 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1118))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-2216 ((|#3| $) NIL (|has| |#3| (-1118))) (((-576) $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-3928 (((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1067))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067))))) (-4077 (((-3 $ "failed") $) NIL (|has| |#3| (-1067)))) (-2840 (($) NIL (|has| |#3| (-379)))) (-2481 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#3| $ (-576)) NIL)) (-1873 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#3| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#3| (-862)))) (-2186 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#3| (-862)))) (-2466 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#3| |#3|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#3| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#3| (-379)))) (-3945 (((-1138) $) NIL)) (-2930 ((|#3| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-4274 (((-656 |#3|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-4144 ((|#3| $ $) NIL (|has| |#3| (-1067)))) (-4249 (($ (-1286 |#3|)) NIL)) (-2068 (((-135)) NIL (|has| |#3| (-374)))) (-3884 (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067))))) (-3954 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1118))) (((-874) $) NIL) (($ (-576)) NIL (-2838 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118))))) (-3423 (((-783)) NIL (|has| |#3| (-1067)) CONST)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL (|has| |#3| (-1067)) CONST)) (-3590 (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067))))) (-3047 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3108 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1067))) (($ $ (-937)) NIL (|has| |#3| (-1067)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1067)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-258 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-660 |#2|)) (-783) (-1067) (-660 |#2|)) (T -258))
+NIL
+(-13 (-244 |#1| |#3|) (-660 |#2|))
+((-1638 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2599 (((-783) $) 58) (((-783) $ |#3|) 61)) (-3077 (($ $) 76)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3540 (((-783) $ |#3|) 43) (((-783) $) 38)) (-1775 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-3685 ((|#4| $) 69)) (-2368 (((-112) $) 67)) (-2612 (($ $) 75)) (-2666 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-3884 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3050 (((-656 |#3|) $) 86)) (-2782 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL)))
+(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2666 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#3| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#3| |#1|)) (-15 -1775 ((-1 |#1| (-783)) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2368 ((-112) |#1|)) (-15 -2599 ((-783) |#1| |#3|)) (-15 -1638 ((-656 (-783)) |#1| |#3|)) (-15 -2599 ((-783) |#1|)) (-15 -1638 ((-656 (-783)) |#1|)) (-15 -2782 ((-783) |#1| |#3|)) (-15 -3540 ((-783) |#1|)) (-15 -3540 ((-783) |#1| |#3|)) (-15 -3050 ((-656 |#3|) |#1|)) (-15 -1775 ((-1 |#1| (-783)) |#3|)) (-15 -2956 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -2782 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2782 ((-783) |#1| |#4|)) (-15 -2956 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#4| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2782 (|#5| |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -3884 (|#1| |#1| |#4|)) (-15 -3884 (|#1| |#1| (-656 |#4|))) (-15 -3884 (|#1| |#1| |#4| (-783))) (-15 -3884 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1067) (-862) (-275 |#3|) (-805)) (T -259))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2666 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#3| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#3| |#1|)) (-15 -1775 ((-1 |#1| (-783)) |#1|)) (-15 -3077 (|#1| |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2368 ((-112) |#1|)) (-15 -2599 ((-783) |#1| |#3|)) (-15 -1638 ((-656 (-783)) |#1| |#3|)) (-15 -2599 ((-783) |#1|)) (-15 -1638 ((-656 (-783)) |#1|)) (-15 -2782 ((-783) |#1| |#3|)) (-15 -3540 ((-783) |#1|)) (-15 -3540 ((-783) |#1| |#3|)) (-15 -3050 ((-656 |#3|) |#1|)) (-15 -1775 ((-1 |#1| (-783)) |#3|)) (-15 -2956 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -2782 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2782 ((-783) |#1| |#4|)) (-15 -2956 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#4| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2782 (|#5| |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -3884 (|#1| |#1| |#4|)) (-15 -3884 (|#1| |#1| (-656 |#4|))) (-15 -3884 (|#1| |#1| |#4| (-783))) (-15 -3884 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1638 (((-656 (-783)) $) 221) (((-656 (-783)) $ |#2|) 219)) (-2599 (((-783) $) 220) (((-783) $ |#2|) 218)) (-4352 (((-656 |#3|) $) 113)) (-4174 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4334 (($ $) 91 (|has| |#1| (-568)))) (-1428 (((-112) $) 93 (|has| |#1| (-568)))) (-3306 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2879 (($ $) 101 (|has| |#1| (-464)))) (-1870 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-3077 (($ $) 214)) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 228)) (-2216 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142) ((|#2| $) 229)) (-2799 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1404 (($ $) 159)) (-3928 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-4077 (((-3 $ "failed") $) 37)) (-4290 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1391 (((-656 $) $) 112)) (-3124 (((-112) $) 99 (|has| |#1| (-925)))) (-3130 (($ $ |#1| |#4| $) 177)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ |#2|) 224) (((-783) $) 223)) (-4192 (((-112) $) 35)) (-2747 (((-783) $) 174)) (-4341 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-2397 (((-656 $) $) 129)) (-1614 (((-112) $) 157)) (-4330 (($ |#1| |#4|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#3|) 123)) (-1859 ((|#4| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2819 (($ (-1 |#4| |#4|) $) 176)) (-1787 (($ (-1 |#1| |#1|) $) 156)) (-1775 (((-1 $ (-783)) |#2|) 226) (((-1 $ (-783)) $) 213 (|has| |#1| (-239)))) (-1712 (((-3 |#3| "failed") $) 126)) (-1368 (($ $) 154)) (-1380 ((|#1| $) 153)) (-3685 ((|#3| $) 216)) (-2850 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2148 (((-1177) $) 10)) (-2368 (((-112) $) 217)) (-1864 (((-3 (-656 $) "failed") $) 117)) (-4139 (((-3 (-656 $) "failed") $) 118)) (-2302 (((-3 (-2 (|:| |var| |#3|) (|:| -2300 (-783))) "failed") $) 116)) (-2612 (($ $) 215)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 171)) (-1357 ((|#1| $) 172)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-2892 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 102 (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143) (($ $ |#2| $) 212 (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 $)) 211 (|has| |#1| (-239))) (($ $ |#2| |#1|) 210 (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 |#1|)) 209 (|has| |#1| (-239)))) (-3206 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-783)) 244 (|has| |#1| (-239))) (($ $) 242 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 238 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 237 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 236 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 234 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 231) (($ $ (-1 |#1| |#1|)) 230)) (-3050 (((-656 |#2|) $) 225)) (-2782 ((|#4| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 222)) (-1846 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2096 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 227) (($ (-419 (-576))) 81 (-2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) 173)) (-4309 ((|#1| $ |#4|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1817 (((-3 $ "failed") $) 82 (-2838 (-2096 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 32 T CONST)) (-1412 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-783)) 245 (|has| |#1| (-239))) (($ $) 243 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 241 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 240 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 239 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 235 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 233) (($ $ (-1 |#1| |#1|)) 232)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-260 |#1| |#2| |#3| |#4|) (-141) (-1067) (-862) (-275 |t#2|) (-805)) (T -260))
+((-1775 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3540 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2782 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1638 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2599 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-2612 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3077 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-1775 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))))
+(-13 (-965 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1056 |t#2|) (-10 -8 (-15 -1775 ((-1 $ (-783)) |t#2|)) (-15 -3050 ((-656 |t#2|) $)) (-15 -3540 ((-783) $ |t#2|)) (-15 -3540 ((-783) $)) (-15 -2782 ((-783) $ |t#2|)) (-15 -1638 ((-656 (-783)) $)) (-15 -2599 ((-783) $)) (-15 -1638 ((-656 (-783)) $ |t#2|)) (-15 -2599 ((-783) $ |t#2|)) (-15 -2368 ((-112) $)) (-15 -3685 (|t#3| $)) (-15 -2612 ($ $)) (-15 -3077 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -1775 ((-1 $ (-783)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-300) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-239)) ((-526 |#2| $) |has| |#1| (-239)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ #2=(-1195)) |has| |#1| (-914 (-1195))) ((-909 $ |#3|) . T) ((-914 #2#) |has| |#1| (-914 (-1195))) ((-914 |#3|) . T) ((-916 #2#) |has| |#1| (-914 (-1195))) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-965 |#1| |#4| |#3|) . T) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#2|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3484 ((|#1| $) 55)) (-2012 ((|#1| $) 45)) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-1836 (($ $) 61)) (-2002 (($ $) 49)) (-2714 ((|#1| |#1| $) 47)) (-2175 ((|#1| $) 46)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-4114 (((-783) $) 62)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-1731 ((|#1| |#1| $) 53)) (-3049 ((|#1| |#1| $) 52)) (-2504 (($ |#1| $) 41)) (-1850 (((-783) $) 56)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2114 ((|#1| $) 63)) (-1835 ((|#1| $) 51)) (-3291 ((|#1| $) 50)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-2367 ((|#1| |#1| $) 59)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3385 ((|#1| $) 60)) (-2817 (($) 58) (($ (-656 |#1|)) 57)) (-4295 (((-783) $) 44)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2952 ((|#1| $) 54)) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-1556 ((|#1| $) 64)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-261 |#1|) (-141) (-1236)) (T -261))
+((-2817 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1731 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3049 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2002 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(-13 (-1139 |t#1|) (-1013 |t#1|) (-10 -8 (-15 -2817 ($)) (-15 -2817 ($ (-656 |t#1|))) (-15 -1850 ((-783) $)) (-15 -3484 (|t#1| $)) (-15 -2952 (|t#1| $)) (-15 -1731 (|t#1| |t#1| $)) (-15 -3049 (|t#1| |t#1| $)) (-15 -1835 (|t#1| $)) (-15 -3291 (|t#1| $)) (-15 -2002 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1013 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1139 |#1|) . T) ((-1236) . T))
+((-3011 (((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1856 (((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390))) 173) (((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 171) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 176) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 172) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 164) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 163) (((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390))) 145) (((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270))) 143) (((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390))) 144) (((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 141)) (-1810 (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390))) 175) (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 174) (((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 178) (((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 177) (((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390))) 166) (((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270))) 165) (((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390))) 151) (((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270))) 150) (((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390))) 149) (((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 148) (((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390))) 113) (((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270))) 112) (((-1287) (-1 (-227) (-227)) (-1112 (-390))) 107) (((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270))) 105)))
+(((-262) (-10 -7 (-15 -1810 ((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-1 (-227) (-227)) (-1112 (-390)))) (-15 -1810 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1810 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1810 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -3011 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262))
+((-3011 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))))
+(-10 -7 (-15 -1810 ((-1287) (-1 (-227) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-1 (-227) (-227)) (-1112 (-390)))) (-15 -1810 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-890 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1810 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-892 (-1 (-227) (-227))) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227)) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-390)) (-1112 (-390)))) (-15 -1810 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -1856 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1112 (-390)) (-1112 (-390)))) (-15 -3011 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-1810 (((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))) 101)))
+(((-263 |#1| |#2|) (-10 -7 (-15 -1810 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))))) (-13 (-568) (-862) (-1056 (-576))) (-442 |#1|)) (T -263))
+((-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1056 (-576)))) (-5 *2 (-1287)) (-5 *1 (-263 *6 *7)))))
+(-10 -7 (-15 -1810 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270)))))
+((-2844 (((-576) (-576)) 71)) (-1633 (((-576) (-576)) 72)) (-2623 (((-227) (-227)) 73)) (-3653 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227))) 70)) (-1518 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112)) 68)))
+(((-264) (-10 -7 (-15 -1518 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112))) (-15 -3653 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2844 ((-576) (-576))) (-15 -1633 ((-576) (-576))) (-15 -2623 ((-227) (-227))))) (T -264))
+((-2623 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3653 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) (-5 *2 (-1288)) (-5 *1 (-264)))) (-1518 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227))) (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264)))))
+(-10 -7 (-15 -1518 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)) (-112))) (-15 -3653 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2844 ((-576) (-576))) (-15 -1633 ((-576) (-576))) (-15 -2623 ((-227) (-227))))
+((-2956 (((-1110 (-390)) (-1110 (-326 |#1|))) 16)))
+(((-265 |#1|) (-10 -7 (-15 -2956 ((-1110 (-390)) (-1110 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-1110 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1110 (-390))) (-5 *1 (-265 *4)))))
+(-10 -7 (-15 -2956 ((-1110 (-390)) (-1110 (-326 |#1|)))))
+((-1856 (((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390))) 75) (((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 74) (((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390))) 65) (((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 64) (((-1151 (-227)) (-892 |#1|) (-1110 (-390))) 56) (((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270))) 55)) (-1810 (((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390))) 78) (((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 77) (((-1288) |#1| (-1110 (-390)) (-1110 (-390))) 68) (((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270))) 67) (((-1288) (-892 |#1|) (-1110 (-390))) 60) (((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270))) 59) (((-1287) (-890 |#1|) (-1110 (-390))) 47) (((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270))) 46) (((-1287) |#1| (-1110 (-390))) 38) (((-1287) |#1| (-1110 (-390)) (-656 (-270))) 36)))
+(((-266 |#1|) (-10 -7 (-15 -1810 ((-1287) |#1| (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) |#1| (-1110 (-390)))) (-15 -1810 ((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-890 |#1|) (-1110 (-390)))) (-15 -1810 ((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-892 |#1|) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)))) (-15 -1810 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1810 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390))))) (-13 (-626 (-548)) (-1118))) (T -266))
+((-1856 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *5)))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1856 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1856 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1810 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *5)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1110 (-390))) (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) (-5 *1 (-266 *5)))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287)) (-5 *1 (-266 *6)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))) (-1810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118))))))
+(-10 -7 (-15 -1810 ((-1287) |#1| (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) |#1| (-1110 (-390)))) (-15 -1810 ((-1287) (-890 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1287) (-890 |#1|) (-1110 (-390)))) (-15 -1810 ((-1288) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-892 |#1|) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-892 |#1|) (-1110 (-390)))) (-15 -1810 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) |#1| (-1110 (-390)) (-1110 (-390)))) (-15 -1810 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1810 ((-1288) (-895 |#1|) (-1110 (-390)) (-1110 (-390)))) (-15 -1856 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)) (-656 (-270)))) (-15 -1856 ((-1151 (-227)) (-895 |#1|) (-1110 (-390)) (-1110 (-390)))))
+((-1810 (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1287) (-656 (-959 (-227))) (-656 (-270))) 16) (((-1287) (-656 (-959 (-227)))) 17) (((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1287) (-656 (-227)) (-656 (-227))) 21)))
+(((-267) (-10 -7 (-15 -1810 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1810 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1810 ((-1287) (-656 (-959 (-227))))) (-15 -1810 ((-1287) (-656 (-959 (-227))) (-656 (-270)))) (-15 -1810 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1810 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267))
+((-1810 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1810 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267)))))
+(-10 -7 (-15 -1810 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1810 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1810 ((-1287) (-656 (-959 (-227))))) (-15 -1810 ((-1287) (-656 (-959 (-227))) (-656 (-270)))) (-15 -1810 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1810 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))
+((-3252 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3083 (((-937) (-656 (-270)) (-937)) 52)) (-3362 (((-937) (-656 (-270)) (-937)) 51)) (-2007 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-1936 (((-390) (-656 (-270)) (-390)) 57)) (-1672 (((-937) (-656 (-270)) (-937)) 53)) (-2848 (((-112) (-656 (-270)) (-112)) 27)) (-3856 (((-1177) (-656 (-270)) (-1177)) 19)) (-3841 (((-1177) (-656 (-270)) (-1177)) 26)) (-4353 (((-1151 (-227)) (-656 (-270))) 46)) (-3382 (((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390)))) 40)) (-3920 (((-886) (-656 (-270)) (-886)) 32)) (-2200 (((-886) (-656 (-270)) (-886)) 33)) (-2289 (((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227)))) 63)) (-1953 (((-112) (-656 (-270)) (-112)) 14)) (-3592 (((-112) (-656 (-270)) (-112)) 13)))
+(((-268) (-10 -7 (-15 -3592 ((-112) (-656 (-270)) (-112))) (-15 -1953 ((-112) (-656 (-270)) (-112))) (-15 -3252 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3856 ((-1177) (-656 (-270)) (-1177))) (-15 -3841 ((-1177) (-656 (-270)) (-1177))) (-15 -2848 ((-112) (-656 (-270)) (-112))) (-15 -3920 ((-886) (-656 (-270)) (-886))) (-15 -2200 ((-886) (-656 (-270)) (-886))) (-15 -3382 ((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390))))) (-15 -3362 ((-937) (-656 (-270)) (-937))) (-15 -3083 ((-937) (-656 (-270)) (-937))) (-15 -4353 ((-1151 (-227)) (-656 (-270)))) (-15 -1672 ((-937) (-656 (-270)) (-937))) (-15 -1936 ((-390) (-656 (-270)) (-390))) (-15 -2289 ((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227))))) (-15 -2007 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268))
+((-2007 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2289 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1936 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-268)))) (-3083 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3362 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3382 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2200 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3920 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2848 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3841 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3856 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3252 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1953 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3592 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(-10 -7 (-15 -3592 ((-112) (-656 (-270)) (-112))) (-15 -1953 ((-112) (-656 (-270)) (-112))) (-15 -3252 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3856 ((-1177) (-656 (-270)) (-1177))) (-15 -3841 ((-1177) (-656 (-270)) (-1177))) (-15 -2848 ((-112) (-656 (-270)) (-112))) (-15 -3920 ((-886) (-656 (-270)) (-886))) (-15 -2200 ((-886) (-656 (-270)) (-886))) (-15 -3382 ((-656 (-1112 (-390))) (-656 (-270)) (-656 (-1112 (-390))))) (-15 -3362 ((-937) (-656 (-270)) (-937))) (-15 -3083 ((-937) (-656 (-270)) (-937))) (-15 -4353 ((-1151 (-227)) (-656 (-270)))) (-15 -1672 ((-937) (-656 (-270)) (-937))) (-15 -1936 ((-390) (-656 (-270)) (-390))) (-15 -2289 ((-1 (-959 (-227)) (-959 (-227))) (-656 (-270)) (-1 (-959 (-227)) (-959 (-227))))) (-15 -2007 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))
+((-1990 (((-3 |#1| "failed") (-656 (-270)) (-1195)) 17)))
+(((-269 |#1|) (-10 -7 (-15 -1990 ((-3 |#1| "failed") (-656 (-270)) (-1195)))) (-1236)) (T -269))
+((-1990 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *1 (-269 *2)) (-4 *2 (-1236)))))
+(-10 -7 (-15 -1990 ((-3 |#1| "failed") (-656 (-270)) (-1195))))
+((-2869 (((-112) $ $) NIL)) (-3252 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3083 (($ (-937)) 81)) (-3362 (($ (-937)) 80)) (-1651 (($ (-656 (-390))) 87)) (-1936 (($ (-390)) 66)) (-1672 (($ (-937)) 82)) (-2848 (($ (-112)) 33)) (-3856 (($ (-1177)) 28)) (-3841 (($ (-1177)) 29)) (-4353 (($ (-1151 (-227))) 76)) (-3382 (($ (-656 (-1112 (-390)))) 72)) (-2055 (($ (-656 (-1112 (-390)))) 68) (($ (-656 (-1112 (-419 (-576))))) 71)) (-1788 (($ (-390)) 38) (($ (-886)) 42)) (-1723 (((-112) (-656 $) (-1195)) 100)) (-1990 (((-3 (-52) "failed") (-656 $) (-1195)) 102)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4082 (($ (-390)) 43) (($ (-886)) 44)) (-3458 (($ (-1 (-959 (-227)) (-959 (-227)))) 65)) (-2289 (($ (-1 (-959 (-227)) (-959 (-227)))) 83)) (-3929 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2956 (((-874) $) 93)) (-1693 (($ (-112)) 34) (($ (-656 (-1112 (-390)))) 60)) (-2617 (((-112) $ $) NIL)) (-3592 (($ (-112)) 35)) (-2991 (((-112) $ $) 97)))
+(((-270) (-13 (-1118) (-10 -8 (-15 -3592 ($ (-112))) (-15 -1693 ($ (-112))) (-15 -3252 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3856 ($ (-1177))) (-15 -3841 ($ (-1177))) (-15 -2848 ($ (-112))) (-15 -1693 ($ (-656 (-1112 (-390))))) (-15 -3458 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1788 ($ (-390))) (-15 -1788 ($ (-886))) (-15 -4082 ($ (-390))) (-15 -4082 ($ (-886))) (-15 -3929 ($ (-1 (-227) (-227)))) (-15 -3929 ($ (-1 (-227) (-227) (-227)))) (-15 -3929 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1936 ($ (-390))) (-15 -2055 ($ (-656 (-1112 (-390))))) (-15 -2055 ($ (-656 (-1112 (-419 (-576)))))) (-15 -3382 ($ (-656 (-1112 (-390))))) (-15 -4353 ($ (-1151 (-227)))) (-15 -3362 ($ (-937))) (-15 -3083 ($ (-937))) (-15 -1672 ($ (-937))) (-15 -2289 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1651 ($ (-656 (-390)))) (-15 -1990 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -1723 ((-112) (-656 $) (-1195)))))) (T -270))
+((-3592 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-419 (-576))))) (-5 *1 (-270)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))) (-4353 (*1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-270)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-1672 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-2289 (*1 *1 *2) (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-1990 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52)) (-5 *1 (-270)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112)) (-5 *1 (-270)))))
+(-13 (-1118) (-10 -8 (-15 -3592 ($ (-112))) (-15 -1693 ($ (-112))) (-15 -3252 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3856 ($ (-1177))) (-15 -3841 ($ (-1177))) (-15 -2848 ($ (-112))) (-15 -1693 ($ (-656 (-1112 (-390))))) (-15 -3458 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1788 ($ (-390))) (-15 -1788 ($ (-886))) (-15 -4082 ($ (-390))) (-15 -4082 ($ (-886))) (-15 -3929 ($ (-1 (-227) (-227)))) (-15 -3929 ($ (-1 (-227) (-227) (-227)))) (-15 -3929 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1936 ($ (-390))) (-15 -2055 ($ (-656 (-1112 (-390))))) (-15 -2055 ($ (-656 (-1112 (-419 (-576)))))) (-15 -3382 ($ (-656 (-1112 (-390))))) (-15 -4353 ($ (-1151 (-227)))) (-15 -3362 ($ (-937))) (-15 -3083 ($ (-937))) (-15 -1672 ($ (-937))) (-15 -2289 ($ (-1 (-959 (-227)) (-959 (-227))))) (-15 -1651 ($ (-656 (-390)))) (-15 -1990 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -1723 ((-112) (-656 $) (-1195)))))
+((-3884 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-3590 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL)))
+(((-271 |#1| |#2|) (-10 -8 (-15 -3884 (|#1| |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3590 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-656 (-1195)))) (-15 -3590 (|#1| |#1| (-1195) (-783))) (-15 -3590 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1236)) (T -271))
+NIL
+(-10 -8 (-15 -3884 (|#1| |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3590 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3590 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-656 (-1195)))) (-15 -3590 (|#1| |#1| (-1195) (-783))) (-15 -3590 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3590 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))))
+((-3884 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1195)) (-656 (-783))) 16 (|has| |#1| (-916 (-1195)))) (($ $ (-1195) (-783)) 15 (|has| |#1| (-916 (-1195)))) (($ $ (-656 (-1195))) 14 (|has| |#1| (-916 (-1195)))) (($ $ (-1195)) 12 (|has| |#1| (-916 (-1195)))) (($ $ (-783)) 10 (|has| |#1| (-238))) (($ $) 8 (|has| |#1| (-238)))) (-3590 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1195)) (-656 (-783))) 19 (|has| |#1| (-916 (-1195)))) (($ $ (-1195) (-783)) 18 (|has| |#1| (-916 (-1195)))) (($ $ (-656 (-1195))) 17 (|has| |#1| (-916 (-1195)))) (($ $ (-1195)) 13 (|has| |#1| (-916 (-1195)))) (($ $ (-783)) 11 (|has| |#1| (-238))) (($ $) 9 (|has| |#1| (-238)))))
+(((-272 |#1|) (-141) (-1236)) (T -272))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-3884 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -3884 ($ $ (-1 |t#1| |t#1|))) (-15 -3884 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3590 ($ $ (-1 |t#1| |t#1|))) (-15 -3590 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-916 (-1195))) (-6 (-916 (-1195))) |%noBranch|)))
+(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-909 $ #0=(-1195)) |has| |#1| (-916 (-1195))) ((-916 #0#) |has| |#1| (-916 (-1195))) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1638 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2599 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-4352 (((-656 |#3|) $) NIL)) (-4174 (((-1191 $) $ |#3|) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3077 (($ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1143 |#1| |#2|) "failed") $) 23)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1143 |#1| |#2|) $) NIL)) (-2799 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-543 |#3|) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))))) (-3540 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#1|) |#3|) NIL) (($ (-1191 $) |#3|) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#3|) NIL)) (-1859 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-2819 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1775 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-1712 (((-3 |#3| "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-3685 ((|#3| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2368 (((-112) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| |#3|) (|:| -2300 (-783))) "failed") $) NIL)) (-2612 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-3206 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3050 (((-656 |#2|) $) NIL)) (-2782 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1143 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1056 (-1143 |#1| |#2|))) (-1067) (-862) (-275 |#2|)) (T -273))
+NIL
+(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1056 (-1143 |#1| |#2|)))
+((-2599 (((-783) $) 37)) (-1706 (((-3 |#2| "failed") $) 22)) (-2216 ((|#2| $) 33)) (-3884 (($ $ (-783)) 18) (($ $) 14)) (-2956 (((-874) $) 32) (($ |#2|) 11)) (-2991 (((-112) $ $) 26)) (-3014 (((-112) $ $) 36)))
+(((-274 |#1| |#2|) (-10 -8 (-15 -2599 ((-783) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274))
+NIL
+(-10 -8 (-15 -2599 ((-783) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2599 (((-783) $) 22)) (-1500 ((|#1| $) 23)) (-1706 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-3540 (((-783) $) 24)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-1775 (($ |#1| (-783)) 25)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3884 (($ $ (-783)) 31) (($ $) 29)) (-2956 (((-874) $) 12) (($ |#1|) 26)) (-2617 (((-112) $ $) 9)) (-3590 (($ $ (-783)) 32) (($ $) 30)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)))
+(((-275 |#1|) (-141) (-862)) (T -275))
+((-2956 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))))
+(-13 (-862) (-238) (-1056 |t#1|) (-10 -8 (-15 -1775 ($ |t#1| (-783))) (-15 -3540 ((-783) $)) (-15 -1500 (|t#1| $)) (-15 -2599 ((-783) $)) (-15 -2956 ($ |t#1|))))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-235 $) . T) ((-238) . T) ((-862) . T) ((-1056 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-4352 (((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 53)) (-1665 (((-656 (-1195)) (-326 (-227)) (-783)) 94)) (-2605 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-3135 (((-326 (-227)) (-326 (-227))) 79)) (-3149 (((-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-4094 (((-112) (-656 (-326 (-227)))) 104)) (-4223 (((-112) (-326 (-227))) 36)) (-1901 (((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))))) 132)) (-1768 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-1669 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-3215 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-2316 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-2484 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3150 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 126)) (-3160 (((-1053) (-1195) (-1053)) 46)))
+(((-276) (-10 -7 (-15 -2484 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3149 ((-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2605 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3135 ((-326 (-227)) (-326 (-227)))) (-15 -4094 ((-112) (-656 (-326 (-227))))) (-15 -2316 ((-112) (-656 (-326 (-227))))) (-15 -2316 ((-112) (-326 (-227)))) (-15 -3215 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1669 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1768 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4223 ((-112) (-326 (-227)))) (-15 -4352 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -1665 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -3160 ((-1053) (-1195) (-1053))) (-15 -3150 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -1901 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))))))) (T -276))
+((-1901 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))))) (-5 *2 (-656 (-1177))) (-5 *1 (-276)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-3160 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-276)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2605 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276)))))
+(-10 -7 (-15 -2484 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3149 ((-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2605 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3135 ((-326 (-227)) (-326 (-227)))) (-15 -4094 ((-112) (-656 (-326 (-227))))) (-15 -2316 ((-112) (-656 (-326 (-227))))) (-15 -2316 ((-112) (-326 (-227)))) (-15 -3215 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1669 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1768 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -4223 ((-112) (-326 (-227)))) (-15 -4352 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -1665 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -3160 ((-1053) (-1195) (-1053))) (-15 -3150 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -1901 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))))))
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-277) (-851)) (T -277))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 72) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 43)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-278) (-851)) (T -278))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 90) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 65)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-279) (-851)) (T -279))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-280) (-851)) (T -280))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-281) (-851)) (T -281))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-282) (-851)) (T -282))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-283) (-851)) (T -283))
+NIL
+(-851)
+((-2869 (((-112) $ $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4276 (((-656 (-576)) $) 29)) (-2782 (((-783) $) 27)) (-2956 (((-874) $) 33) (($ (-656 (-576))) 23)) (-2617 (((-112) $ $) NIL)) (-3499 (($ (-783)) 30)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 17)))
+(((-284) (-13 (-862) (-10 -8 (-15 -2956 ($ (-656 (-576)))) (-15 -2782 ((-783) $)) (-15 -4276 ((-656 (-576)) $)) (-15 -3499 ($ (-783)))))) (T -284))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284)))))
+(-13 (-862) (-10 -8 (-15 -2956 ($ (-656 (-576)))) (-15 -2782 ((-783) $)) (-15 -4276 ((-656 (-576)) $)) (-15 -3499 ($ (-783)))))
+((-2384 ((|#2| |#2|) 77)) (-2260 ((|#2| |#2|) 65)) (-4377 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2363 ((|#2| |#2|) 75)) (-2238 ((|#2| |#2|) 63)) (-2409 ((|#2| |#2|) 79)) (-2282 ((|#2| |#2|) 67)) (-3009 ((|#2|) 46)) (-4153 (((-115) (-115)) 100)) (-3118 ((|#2| |#2|) 61)) (-4150 (((-112) |#2|) 147)) (-2632 ((|#2| |#2|) 195)) (-3244 ((|#2| |#2|) 171)) (-4296 ((|#2|) 59)) (-4362 ((|#2|) 58)) (-2115 ((|#2| |#2|) 191)) (-1703 ((|#2| |#2|) 167)) (-1468 ((|#2| |#2|) 199)) (-2518 ((|#2| |#2|) 175)) (-1898 ((|#2| |#2|) 163)) (-4056 ((|#2| |#2|) 165)) (-3180 ((|#2| |#2|) 201)) (-3053 ((|#2| |#2|) 177)) (-2228 ((|#2| |#2|) 197)) (-2769 ((|#2| |#2|) 173)) (-2608 ((|#2| |#2|) 193)) (-2693 ((|#2| |#2|) 169)) (-2586 ((|#2| |#2|) 207)) (-3719 ((|#2| |#2|) 183)) (-4033 ((|#2| |#2|) 203)) (-3091 ((|#2| |#2|) 179)) (-1977 ((|#2| |#2|) 211)) (-3731 ((|#2| |#2|) 187)) (-3473 ((|#2| |#2|) 213)) (-2125 ((|#2| |#2|) 189)) (-1919 ((|#2| |#2|) 209)) (-4029 ((|#2| |#2|) 185)) (-2154 ((|#2| |#2|) 205)) (-3231 ((|#2| |#2|) 181)) (-1619 ((|#2| |#2|) 62)) (-2422 ((|#2| |#2|) 80)) (-2291 ((|#2| |#2|) 68)) (-2394 ((|#2| |#2|) 78)) (-2270 ((|#2| |#2|) 66)) (-2373 ((|#2| |#2|) 76)) (-2249 ((|#2| |#2|) 64)) (-1483 (((-112) (-115)) 98)) (-2461 ((|#2| |#2|) 83)) (-2324 ((|#2| |#2|) 71)) (-2434 ((|#2| |#2|) 81)) (-2304 ((|#2| |#2|) 69)) (-2485 ((|#2| |#2|) 85)) (-2345 ((|#2| |#2|) 73)) (-2541 ((|#2| |#2|) 86)) (-2354 ((|#2| |#2|) 74)) (-2473 ((|#2| |#2|) 84)) (-2335 ((|#2| |#2|) 72)) (-2447 ((|#2| |#2|) 82)) (-2315 ((|#2| |#2|) 70)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -1619 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2270 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2394 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -3009 (|#2|)) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4362 (|#2|)) (-15 -4296 (|#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -2693 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -4377 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4150 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1020))) (T -285))
+((-4150 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1020))))) (-4377 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1020))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1977 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1919 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2115 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3231 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2693 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-4296 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4362 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1020))))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020))))) (-3009 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020))))))
+(-10 -7 (-15 -1619 (|#2| |#2|)) (-15 -3118 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2270 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2354 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -2394 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -3009 (|#2|)) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4362 (|#2|)) (-15 -4296 (|#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -2693 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1977 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -4377 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4150 ((-112) |#2|)))
+((-3467 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195)) 151)) (-3242 ((|#2| (-419 (-576)) |#2|) 49)) (-2949 ((|#2| |#2| (-624 |#2|)) 144)) (-1844 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195)) 143)) (-4291 ((|#2| |#2| (-1195)) 20) ((|#2| |#2|) 23)) (-2029 ((|#2| |#2| (-1195)) 157) ((|#2| |#2|) 155)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -2029 (|#2| |#2|)) (-15 -2029 (|#2| |#2| (-1195))) (-15 -1844 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -4291 (|#2| |#2|)) (-15 -4291 (|#2| |#2| (-1195))) (-15 -3467 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -2949 (|#2| |#2| (-624 |#2|))) (-15 -3242 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -286))
+((-3242 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2949 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-3467 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-4291 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4291 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2029 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2029 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))))
+(-10 -7 (-15 -2029 (|#2| |#2|)) (-15 -2029 (|#2| |#2| (-1195))) (-15 -1844 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -4291 (|#2| |#2|)) (-15 -4291 (|#2| |#2| (-1195))) (-15 -3467 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -2949 (|#2| |#2| (-624 |#2|))) (-15 -3242 (|#2| (-419 (-576)) |#2|)))
+((-2234 (((-3 |#3| "failed") |#3|) 120)) (-2384 ((|#3| |#3|) 142)) (-1480 (((-3 |#3| "failed") |#3|) 89)) (-2260 ((|#3| |#3|) 132)) (-4312 (((-3 |#3| "failed") |#3|) 65)) (-2363 ((|#3| |#3|) 140)) (-2145 (((-3 |#3| "failed") |#3|) 53)) (-2238 ((|#3| |#3|) 130)) (-2604 (((-3 |#3| "failed") |#3|) 122)) (-2409 ((|#3| |#3|) 144)) (-3572 (((-3 |#3| "failed") |#3|) 91)) (-2282 ((|#3| |#3|) 134)) (-4413 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3791 (((-3 |#3| "failed") |#3|) 81)) (-3118 ((|#3| |#3|) 129)) (-2490 (((-3 |#3| "failed") |#3|) 51)) (-1619 ((|#3| |#3|) 128)) (-3138 (((-3 |#3| "failed") |#3|) 123)) (-2422 ((|#3| |#3|) 145)) (-4206 (((-3 |#3| "failed") |#3|) 92)) (-2291 ((|#3| |#3|) 135)) (-4212 (((-3 |#3| "failed") |#3|) 121)) (-2394 ((|#3| |#3|) 143)) (-2251 (((-3 |#3| "failed") |#3|) 90)) (-2270 ((|#3| |#3|) 133)) (-2556 (((-3 |#3| "failed") |#3|) 67)) (-2373 ((|#3| |#3|) 141)) (-1476 (((-3 |#3| "failed") |#3|) 55)) (-2249 ((|#3| |#3|) 131)) (-2346 (((-3 |#3| "failed") |#3|) 73)) (-2461 ((|#3| |#3|) 148)) (-3290 (((-3 |#3| "failed") |#3|) 114)) (-2324 ((|#3| |#3|) 152)) (-2986 (((-3 |#3| "failed") |#3|) 69)) (-2434 ((|#3| |#3|) 146)) (-3981 (((-3 |#3| "failed") |#3|) 57)) (-2304 ((|#3| |#3|) 136)) (-3760 (((-3 |#3| "failed") |#3|) 77)) (-2485 ((|#3| |#3|) 150)) (-3025 (((-3 |#3| "failed") |#3|) 61)) (-2345 ((|#3| |#3|) 138)) (-3609 (((-3 |#3| "failed") |#3|) 79)) (-2541 ((|#3| |#3|) 151)) (-4086 (((-3 |#3| "failed") |#3|) 63)) (-2354 ((|#3| |#3|) 139)) (-3584 (((-3 |#3| "failed") |#3|) 75)) (-2473 ((|#3| |#3|) 149)) (-3712 (((-3 |#3| "failed") |#3|) 117)) (-2335 ((|#3| |#3|) 153)) (-3051 (((-3 |#3| "failed") |#3|) 71)) (-2447 ((|#3| |#3|) 147)) (-2362 (((-3 |#3| "failed") |#3|) 59)) (-2315 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374)))))
+(((-287 |#1| |#2| |#3|) (-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2345 (|#3| |#3|)) (-15 -2354 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2394 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2422 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -2461 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)))) (-38 (-419 (-576))) (-1277 |#1|) (-1248 |#1| |#2|)) (T -287))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))))
+(-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2345 (|#3| |#3|)) (-15 -2354 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2394 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2422 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -2461 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -2541 (|#3| |#3|))))
+((-2234 (((-3 |#3| "failed") |#3|) 70)) (-2384 ((|#3| |#3|) 137)) (-1480 (((-3 |#3| "failed") |#3|) 54)) (-2260 ((|#3| |#3|) 125)) (-4312 (((-3 |#3| "failed") |#3|) 66)) (-2363 ((|#3| |#3|) 135)) (-2145 (((-3 |#3| "failed") |#3|) 50)) (-2238 ((|#3| |#3|) 123)) (-2604 (((-3 |#3| "failed") |#3|) 74)) (-2409 ((|#3| |#3|) 139)) (-3572 (((-3 |#3| "failed") |#3|) 58)) (-2282 ((|#3| |#3|) 127)) (-4413 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3791 (((-3 |#3| "failed") |#3|) 48)) (-3118 ((|#3| |#3|) 111)) (-2490 (((-3 |#3| "failed") |#3|) 46)) (-1619 ((|#3| |#3|) 122)) (-3138 (((-3 |#3| "failed") |#3|) 76)) (-2422 ((|#3| |#3|) 140)) (-4206 (((-3 |#3| "failed") |#3|) 60)) (-2291 ((|#3| |#3|) 128)) (-4212 (((-3 |#3| "failed") |#3|) 72)) (-2394 ((|#3| |#3|) 138)) (-2251 (((-3 |#3| "failed") |#3|) 56)) (-2270 ((|#3| |#3|) 126)) (-2556 (((-3 |#3| "failed") |#3|) 68)) (-2373 ((|#3| |#3|) 136)) (-1476 (((-3 |#3| "failed") |#3|) 52)) (-2249 ((|#3| |#3|) 124)) (-2346 (((-3 |#3| "failed") |#3|) 78)) (-2461 ((|#3| |#3|) 143)) (-3290 (((-3 |#3| "failed") |#3|) 62)) (-2324 ((|#3| |#3|) 131)) (-2986 (((-3 |#3| "failed") |#3|) 112)) (-2434 ((|#3| |#3|) 141)) (-3981 (((-3 |#3| "failed") |#3|) 100)) (-2304 ((|#3| |#3|) 129)) (-3760 (((-3 |#3| "failed") |#3|) 116)) (-2485 ((|#3| |#3|) 145)) (-3025 (((-3 |#3| "failed") |#3|) 107)) (-2345 ((|#3| |#3|) 133)) (-3609 (((-3 |#3| "failed") |#3|) 117)) (-2541 ((|#3| |#3|) 146)) (-4086 (((-3 |#3| "failed") |#3|) 109)) (-2354 ((|#3| |#3|) 134)) (-3584 (((-3 |#3| "failed") |#3|) 80)) (-2473 ((|#3| |#3|) 144)) (-3712 (((-3 |#3| "failed") |#3|) 64)) (-2335 ((|#3| |#3|) 132)) (-3051 (((-3 |#3| "failed") |#3|) 113)) (-2447 ((|#3| |#3|) 142)) (-2362 (((-3 |#3| "failed") |#3|) 103)) (-2315 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374)))))
+(((-288 |#1| |#2| |#3| |#4|) (-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2345 (|#3| |#3|)) (-15 -2354 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2394 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2422 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -2461 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)))) (-38 (-419 (-576))) (-1246 |#1|) (-1269 |#1| |#2|) (-1001 |#2|)) (T -288))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5)) (-4 *6 (-1001 *5)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-3118 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2270 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4)))))
+(-13 (-1001 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -1619 (|#3| |#3|)) (-15 -3118 (|#3| |#3|)) (-15 -2238 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2260 (|#3| |#3|)) (-15 -2270 (|#3| |#3|)) (-15 -2282 (|#3| |#3|)) (-15 -2291 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2315 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2345 (|#3| |#3|)) (-15 -2354 (|#3| |#3|)) (-15 -2363 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2384 (|#3| |#3|)) (-15 -2394 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2422 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2447 (|#3| |#3|)) (-15 -2461 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -2541 (|#3| |#3|))))
+((-2344 (((-112) $) 20)) (-2382 (((-1200) $) 7)) (-2786 (((-3 (-518) "failed") $) 14)) (-2411 (((-3 (-656 $) "failed") $) NIL)) (-1325 (((-3 (-518) "failed") $) 21)) (-3836 (((-3 (-1122) "failed") $) 18)) (-2391 (((-112) $) 16)) (-2956 (((-874) $) NIL)) (-4107 (((-112) $) 9)))
+(((-289) (-13 (-625 (-874)) (-10 -8 (-15 -2382 ((-1200) $)) (-15 -2391 ((-112) $)) (-15 -3836 ((-3 (-1122) "failed") $)) (-15 -2344 ((-112) $)) (-15 -1325 ((-3 (-518) "failed") $)) (-15 -4107 ((-112) $)) (-15 -2786 ((-3 (-518) "failed") $)) (-15 -2411 ((-3 (-656 $) "failed") $))))) (T -289))
+((-2382 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3836 (*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-289)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1325 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2786 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2411 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2382 ((-1200) $)) (-15 -2391 ((-112) $)) (-15 -3836 ((-3 (-1122) "failed") $)) (-15 -2344 ((-112) $)) (-15 -1325 ((-3 (-518) "failed") $)) (-15 -4107 ((-112) $)) (-15 -2786 ((-3 (-518) "failed") $)) (-15 -2411 ((-3 (-656 $) "failed") $))))
+((-4303 (((-609) $) 10)) (-4170 (((-597) $) 8)) (-1531 (((-301) $) 12)) (-2553 (($ (-597) (-609) (-301)) NIL)) (-2956 (((-874) $) 19)))
+(((-290) (-13 (-625 (-874)) (-10 -8 (-15 -2553 ($ (-597) (-609) (-301))) (-15 -4170 ((-597) $)) (-15 -4303 ((-609) $)) (-15 -1531 ((-301) $))))) (T -290))
+((-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2553 ($ (-597) (-609) (-301))) (-15 -4170 ((-597) $)) (-15 -4303 ((-609) $)) (-15 -1531 ((-301) $))))
+((-2174 (($ (-1 (-112) |#2|) $) 24)) (-4060 (($ $) 38)) (-3710 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3316 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2470 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1604 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-2860 (($ $ (-576)) 11) (($ $ (-1253 (-576))) 14)) (-3228 (($ $ |#2|) 32) (($ $ $) NIL)) (-4136 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL)))
+(((-291 |#1| |#2|) (-10 -8 (-15 -2470 (|#1| |#1| |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -3228 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -3316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2174 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3316 (|#1| |#2| |#1|)) (-15 -4060 (|#1| |#1|))) (-292 |#2|) (-1236)) (T -291))
+NIL
+(-10 -8 (-15 -2470 (|#1| |#1| |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -3228 (|#1| |#1| |#2|)) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -3316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2174 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3316 (|#1| |#2| |#1|)) (-15 -4060 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) 88)) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4099 (($ $) 86 (|has| |#1| (-1118)))) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1118)))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2504 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3012 (($ $ (-576)) 94) (($ $ (-1253 (-576))) 93)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 72)) (-3228 (($ $ |#1|) 96) (($ $ $) 95)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-292 |#1|) (-141) (-1236)) (T -292))
+((-3228 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-3228 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2504 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-2504 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-1707 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3710 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))))
+(-13 (-663 |t#1|) (-10 -8 (-6 -4462) (-15 -3228 ($ $ |t#1|)) (-15 -3228 ($ $ $)) (-15 -3012 ($ $ (-576))) (-15 -3012 ($ $ (-1253 (-576)))) (-15 -3710 ($ (-1 (-112) |t#1|) $)) (-15 -2504 ($ |t#1| $ (-576))) (-15 -2504 ($ $ $ (-576))) (-15 -2470 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1707 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -3710 ($ |t#1| $)) (-15 -4099 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -2470 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
((** (($ $ $) 10)))
-(((-291 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-292)) (T -291))
+(((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3113 (($ $) 6)) (-1617 (($ $) 7)) (** (($ $ $) 8)))
-(((-292) (-141)) (T -292))
-((** (*1 *1 *1 *1) (-4 *1 (-292))) (-1617 (*1 *1 *1) (-4 *1 (-292))) (-3113 (*1 *1 *1) (-4 *1 (-292))))
-(-13 (-10 -8 (-15 -3113 ($ $)) (-15 -1617 ($ $)) (-15 ** ($ $ $))))
-((-3011 (((-654 (-1173 |#1|)) (-1173 |#1|) |#1|) 35)) (-2459 ((|#2| |#2| |#1|) 39)) (-1658 ((|#2| |#2| |#1|) 41)) (-3568 ((|#2| |#2| |#1|) 40)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -1658 (|#2| |#2| |#1|)) (-15 -3011 ((-654 (-1173 |#1|)) (-1173 |#1|) |#1|))) (-372) (-1275 |#1|)) (T -293))
-((-3011 (*1 *2 *3 *4) (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1173 *4))) (-5 *1 (-293 *4 *5)) (-5 *3 (-1173 *4)) (-4 *5 (-1275 *4)))) (-1658 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))) (-3568 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))) (-2459 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))))
-(-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3568 (|#2| |#2| |#1|)) (-15 -1658 (|#2| |#2| |#1|)) (-15 -3011 ((-654 (-1173 |#1|)) (-1173 |#1|) |#1|)))
-((-2207 ((|#2| $ |#1|) 6)))
-(((-294 |#1| |#2|) (-141) (-1234) (-1234)) (T -294))
-((-2207 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1234)) (-4 *2 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -2207 (|t#2| $ |t#1|))))
-(((-1234) . T))
-((-2473 ((|#3| $ |#2| |#3|) 12)) (-2400 ((|#3| $ |#2|) 10)))
-(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2400 (|#3| |#1| |#2|))) (-296 |#2| |#3|) (-1116) (-1234)) (T -295))
-NIL
-(-10 -8 (-15 -2473 (|#3| |#1| |#2| |#3|)) (-15 -2400 (|#3| |#1| |#2|)))
-((-3135 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4460)))) (-2473 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 11)) (-2207 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-296 |#1| |#2|) (-141) (-1116) (-1234)) (T -296))
-((-2207 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2400 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2473 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))))
-(-13 (-294 |t#1| |t#2|) (-10 -8 (-15 -2207 (|t#2| $ |t#1| |t#2|)) (-15 -2400 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -3135 (|t#2| $ |t#1| |t#2|)) (-15 -2473 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-294 |#1| |#2|) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 37)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 44)) (-4141 (($ $) 41)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) 35)) (-2882 (($ |#2| |#3|) 18)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1500 ((|#3| $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 19)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3738 (((-3 $ "failed") $ $) NIL)) (-4220 (((-781) $) 36)) (-2207 ((|#2| $ |#2|) 46)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 23)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 31 T CONST)) (-2153 (($) 39 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40)))
-(((-297 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -1500 (|#3| $)) (-15 -2951 (|#2| $)) (-15 -2882 ($ |#2| |#3|)) (-15 -3738 ((-3 $ "failed") $ $)) (-15 -3612 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) (-174) (-1260 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -297))
-((-3612 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1500 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1260 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2882 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1260 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3738 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1328 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
-(-13 (-315) (-294 |#2| |#2|) (-10 -8 (-15 -1500 (|#3| $)) (-15 -2951 (|#2| $)) (-15 -2882 ($ |#2| |#3|)) (-15 -3738 ((-3 $ "failed") $ $)) (-15 -3612 ((-3 $ "failed") $)) (-15 -1328 ($ $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-298) (-141)) (T -298))
-NIL
-(-13 (-1065) (-111 $ $) (-10 -7 (-6 -4452)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-4093 (((-654 (-1101)) $) 10)) (-1736 (($ (-516) (-516) (-1120) $) 19)) (-4297 (($ (-516) (-654 (-979)) $) 23)) (-3972 (($) 25)) (-3511 (((-701 (-1120)) (-516) (-516) $) 18)) (-1868 (((-654 (-979)) (-516) $) 22)) (-3014 (($) 7)) (-1832 (($) 24)) (-2951 (((-872) $) 29)) (-3169 (($) 26)))
-(((-299) (-13 (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -4093 ((-654 (-1101)) $)) (-15 -3511 ((-701 (-1120)) (-516) (-516) $)) (-15 -1736 ($ (-516) (-516) (-1120) $)) (-15 -1868 ((-654 (-979)) (-516) $)) (-15 -4297 ($ (-516) (-654 (-979)) $)) (-15 -1832 ($)) (-15 -3972 ($)) (-15 -3169 ($))))) (T -299))
-((-3014 (*1 *1) (-5 *1 (-299))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-654 (-1101))) (-5 *1 (-299)))) (-3511 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1120))) (-5 *1 (-299)))) (-1736 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-299)))) (-1868 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-654 (-979))) (-5 *1 (-299)))) (-4297 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-299)))) (-1832 (*1 *1) (-5 *1 (-299))) (-3972 (*1 *1) (-5 *1 (-299))) (-3169 (*1 *1) (-5 *1 (-299))))
-(-13 (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -4093 ((-654 (-1101)) $)) (-15 -3511 ((-701 (-1120)) (-516) (-516) $)) (-15 -1736 ($ (-516) (-516) (-1120) $)) (-15 -1868 ((-654 (-979)) (-516) $)) (-15 -4297 ($ (-516) (-654 (-979)) $)) (-15 -1832 ($)) (-15 -3972 ($)) (-15 -3169 ($))))
-((-1873 (((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))) 102)) (-3445 (((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|)))) 97) (((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781)) 41)) (-2308 (((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))) 99)) (-2519 (((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|)))) 75)) (-3307 (((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|)))) 74)) (-2451 (((-966 |#1|) (-699 (-417 (-966 |#1|)))) 55) (((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193)) 56)))
-(((-300 |#1|) (-10 -7 (-15 -2451 ((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193))) (-15 -2451 ((-966 |#1|) (-699 (-417 (-966 |#1|))))) (-15 -3307 ((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|))))) (-15 -2519 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))))) (-15 -3445 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781))) (-15 -3445 ((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|))))) (-15 -1873 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|))))) (-15 -2308 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|)))))) (-462)) (T -300))
-((-2308 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-462)) (-5 *2 (-654 (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 *4)))))))) (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))) (-3445 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))) (-3445 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-417 (-966 *6)) (-1182 (-1193) (-966 *6)))) (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *6))))) (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-966 *6)))))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5))))) (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-4 *4 (-462)) (-5 *2 (-654 (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4))))) (-5 *1 (-300 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-5 *2 (-966 *4)) (-5 *1 (-300 *4)) (-4 *4 (-462)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-966 *5)))) (-5 *4 (-1193)) (-5 *2 (-966 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462)))))
-(-10 -7 (-15 -2451 ((-966 |#1|) (-699 (-417 (-966 |#1|))) (-1193))) (-15 -2451 ((-966 |#1|) (-699 (-417 (-966 |#1|))))) (-15 -3307 ((-654 (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (-699 (-417 (-966 |#1|))))) (-15 -2519 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))))) (-15 -3445 ((-654 (-699 (-417 (-966 |#1|)))) (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|))) (-699 (-417 (-966 |#1|))) (-781) (-781))) (-15 -3445 ((-654 (-699 (-417 (-966 |#1|)))) (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|)))))) (-699 (-417 (-966 |#1|))))) (-15 -1873 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |geneigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|))))) (-15 -2308 ((-654 (-2 (|:| |eigval| (-3 (-417 (-966 |#1|)) (-1182 (-1193) (-966 |#1|)))) (|:| |eigmult| (-781)) (|:| |eigvec| (-654 (-699 (-417 (-966 |#1|))))))) (-699 (-417 (-966 |#1|))))))
-((-1785 (((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)) 14)))
-(((-301 |#1| |#2|) (-10 -7 (-15 -1785 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|)))) (-1234) (-1234)) (T -301))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6)))))
-(-10 -7 (-15 -1785 ((-302 |#2|) (-1 |#2| |#1|) (-302 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4311 (((-112) $) NIL (|has| |#1| (-21)))) (-4219 (($ $) 12)) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2559 (($ $ $) 95 (|has| |#1| (-310)))) (-1430 (($) NIL (-2833 (|has| |#1| (-21)) (|has| |#1| (-736))) CONST)) (-2690 (($ $) 51 (|has| |#1| (-21)))) (-4305 (((-3 $ "failed") $) 62 (|has| |#1| (-736)))) (-1816 ((|#1| $) 11)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-736)))) (-3943 (((-112) $) NIL (|has| |#1| (-736)))) (-1785 (($ (-1 |#1| |#1|) $) 14)) (-1804 ((|#1| $) 10)) (-3582 (($ $) 50 (|has| |#1| (-21)))) (-4430 (((-3 $ "failed") $) 61 (|has| |#1| (-736)))) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1328 (($ $) 64 (-2833 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1949 (((-654 $) $) 85 (|has| |#1| (-566)))) (-2661 (($ $ $) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 $)) 28 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-1193) |#1|) 17 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 21 (|has| |#1| (-524 (-1193) |#1|)))) (-2707 (($ |#1| |#1|) 9)) (-2732 (((-135)) 90 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 87 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193))))) (-4090 (($ $ $) NIL (|has| |#1| (-483)))) (-3082 (($ $ $) NIL (|has| |#1| (-483)))) (-2951 (($ (-574)) NIL (|has| |#1| (-1065))) (((-112) $) 37 (|has| |#1| (-1116))) (((-872) $) 36 (|has| |#1| (-1116)))) (-3070 (((-781)) 67 (|has| |#1| (-1065)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2141 (($) 47 (|has| |#1| (-21)) CONST)) (-2153 (($) 57 (|has| |#1| (-736)) CONST)) (-3585 (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193))))) (-2986 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1116)))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 92 (-2833 (|has| |#1| (-372)) (|has| |#1| (-483))))) (-3090 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3074 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-574)) NIL (|has| |#1| (-483))) (($ $ (-781)) NIL (|has| |#1| (-736))) (($ $ (-935)) NIL (|has| |#1| (-1128)))) (* (($ $ |#1|) 55 (|has| |#1| (-1128))) (($ |#1| $) 54 (|has| |#1| (-1128))) (($ $ $) 53 (|has| |#1| (-1128))) (($ (-574) $) 70 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-25)))))
-(((-302 |#1|) (-13 (-1234) (-10 -8 (-15 -2986 ($ |#1| |#1|)) (-15 -2707 ($ |#1| |#1|)) (-15 -4219 ($ $)) (-15 -1804 (|#1| $)) (-15 -1816 (|#1| $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1193) |#1|)) (-6 (-524 (-1193) |#1|)) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2661 ($ $ $)) (-15 -2661 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3582 ($ $)) (-15 -2690 ($ $)) (-15 -3090 ($ |#1| $)) (-15 -3090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1128)) (PROGN (-6 (-1128)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -4430 ((-3 $ "failed") $)) (-15 -4305 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -4430 ((-3 $ "failed") $)) (-15 -4305 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1949 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1291 |#1|)) (-15 -3099 ($ $ $)) (-15 -1328 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2559 ($ $ $)) |%noBranch|))) (-1234)) (T -302))
-((-2986 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-2707 (*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1804 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1816 (*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-302 *3)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *2 (-317 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)) (-5 *1 (-302 *2)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)) (-5 *1 (-302 *3)))) (-3074 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234)))) (-3582 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-2690 (*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-3090 (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))) (-4430 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))) (-4305 (*1 *1 *1) (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566)) (-4 *3 (-1234)))) (-2559 (*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1234)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234)))) (-3099 (*1 *1 *1 *1) (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234))))) (-1328 (*1 *1 *1) (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234))) (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234))))))
-(-13 (-1234) (-10 -8 (-15 -2986 ($ |#1| |#1|)) (-15 -2707 ($ |#1| |#1|)) (-15 -4219 ($ $)) (-15 -1804 (|#1| $)) (-15 -1816 (|#1| $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-524 (-1193) |#1|)) (-6 (-524 (-1193) |#1|)) |%noBranch|) (IF (|has| |#1| (-1116)) (PROGN (-6 (-1116)) (-6 (-623 (-112))) (IF (|has| |#1| (-317 |#1|)) (PROGN (-15 -2661 ($ $ $)) (-15 -2661 ($ $ (-654 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3074 ($ |#1| $)) (-15 -3074 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3582 ($ $)) (-15 -2690 ($ $)) (-15 -3090 ($ |#1| $)) (-15 -3090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1128)) (PROGN (-6 (-1128)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-736)) (PROGN (-6 (-736)) (-15 -4430 ((-3 $ "failed") $)) (-15 -4305 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-6 (-483)) (-15 -4430 ((-3 $ "failed") $)) (-15 -4305 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|) (IF (|has| |#1| (-566)) (-15 -1949 ((-654 $) $)) |%noBranch|) (IF (|has| |#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-1291 |#1|)) (-15 -3099 ($ $ $)) (-15 -1328 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2559 ($ $ $)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) NIL)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-303 |#1| |#2|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116)) (T -303))
-NIL
-(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))
-((-2691 (((-320) (-1175) (-654 (-1175))) 17) (((-320) (-1175) (-1175)) 16) (((-320) (-654 (-1175))) 15) (((-320) (-1175)) 14)))
-(((-304) (-10 -7 (-15 -2691 ((-320) (-1175))) (-15 -2691 ((-320) (-654 (-1175)))) (-15 -2691 ((-320) (-1175) (-1175))) (-15 -2691 ((-320) (-1175) (-654 (-1175)))))) (T -304))
-((-2691 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1175))) (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2691 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-320)) (-5 *1 (-304)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304)))))
-(-10 -7 (-15 -2691 ((-320) (-1175))) (-15 -2691 ((-320) (-654 (-1175)))) (-15 -2691 ((-320) (-1175) (-1175))) (-15 -2691 ((-320) (-1175) (-654 (-1175)))))
-((-1785 ((|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|)) 18)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|)))) (-310) (-1234)) (T -305))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1175)) (-5 *5 (-622 *6)) (-4 *6 (-310)) (-4 *2 (-1234)) (-5 *1 (-305 *6 *2)))))
-(-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-1175) (-622 |#1|))))
-((-1785 ((|#2| (-1 |#2| |#1|) (-622 |#1|)) 17)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-622 |#1|)))) (-310) (-310)) (T -306))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-306 *5 *2)))))
-(-10 -7 (-15 -1785 (|#2| (-1 |#2| |#1|) (-622 |#1|))))
-((-1341 (((-112) (-227)) 12)))
-(((-307 |#1| |#2|) (-10 -7 (-15 -1341 ((-112) (-227)))) (-227) (-227)) (T -307))
-((-1341 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1341 ((-112) (-227))))
-((-2910 (((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227)))) 118)) (-4331 (((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227)))) 135) (((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227)))) 72)) (-2359 (((-654 (-1175)) (-1173 (-227))) NIL)) (-2133 (((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227)))) 69)) (-2665 (((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227)))) 59)) (-1369 (((-654 (-1175)) (-654 (-227))) NIL)) (-2858 (((-227) (-1110 (-853 (-227)))) 29)) (-2978 (((-227) (-1110 (-853 (-227)))) 30)) (-2538 (((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3352 (((-1175) (-227)) NIL)))
-(((-308) (-10 -7 (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -2538 ((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2133 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -2910 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -2665 ((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))))) (T -308))
-((-2359 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-308)))) (-2665 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-2910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193))) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))) (-2133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193)) (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-308)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308)))))
-(-10 -7 (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -2538 ((-112) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2133 ((-654 (-227)) (-324 (-227)) (-1193) (-1110 (-853 (-227))))) (-15 -2910 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-324 (-227)) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -4331 ((-1173 (-227)) (-1284 (-324 (-227))) (-654 (-1193)) (-1110 (-853 (-227))))) (-15 -2665 ((-654 (-227)) (-966 (-417 (-574))) (-1193) (-1110 (-853 (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))))
-((-4068 (((-654 (-622 $)) $) 27)) (-2559 (($ $ (-302 $)) 78) (($ $ (-654 (-302 $))) 139) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) 127)) (-2216 (((-622 $) $) 126)) (-3253 (($ $) 17) (($ (-654 $)) 54)) (-2256 (((-654 (-115)) $) 35)) (-4150 (((-115) (-115)) 88)) (-1476 (((-112) $) 150)) (-1785 (($ (-1 $ $) (-622 $)) 86)) (-1761 (((-3 (-622 $) "failed") $) 94)) (-1782 (($ (-115) $) 59) (($ (-115) (-654 $)) 110)) (-1575 (((-112) $ (-115)) 132) (((-112) $ (-1193)) 131)) (-1846 (((-781) $) 44)) (-3882 (((-112) $ $) 57) (((-112) $ (-1193)) 49)) (-4434 (((-112) $) 148)) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) 137) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 81) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) 67) (($ $ (-1193) (-1 $ $)) 72) (($ $ (-654 (-115)) (-654 (-1 $ $))) 80) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 82) (($ $ (-115) (-1 $ (-654 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2207 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-654 $)) 123)) (-3457 (($ $) 51) (($ $ $) 135)) (-2078 (($ $) 15) (($ (-654 $)) 53)) (-2138 (((-112) (-115)) 21)))
-(((-309 |#1|) (-10 -8 (-15 -1476 ((-112) |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -3882 ((-112) |#1| (-1193))) (-15 -3882 ((-112) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1782 (|#1| (-115) (-654 |#1|))) (-15 -1782 (|#1| (-115) |#1|)) (-15 -1575 ((-112) |#1| (-1193))) (-15 -1575 ((-112) |#1| (-115))) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -2256 ((-654 (-115)) |#1|)) (-15 -4068 ((-654 (-622 |#1|)) |#1|)) (-15 -1761 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1846 ((-781) |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -3253 (|#1| (-654 |#1|))) (-15 -3253 (|#1| |#1|)) (-15 -2078 (|#1| (-654 |#1|))) (-15 -2078 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|))) (-310)) (T -309))
-((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310)))))
-(-10 -8 (-15 -1476 ((-112) |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -3882 ((-112) |#1| (-1193))) (-15 -3882 ((-112) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#1| |#1|) (-622 |#1|))) (-15 -1782 (|#1| (-115) (-654 |#1|))) (-15 -1782 (|#1| (-115) |#1|)) (-15 -1575 ((-112) |#1| (-1193))) (-15 -1575 ((-112) |#1| (-115))) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -2256 ((-654 (-115)) |#1|)) (-15 -4068 ((-654 (-622 |#1|)) |#1|)) (-15 -1761 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -1846 ((-781) |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -3253 (|#1| (-654 |#1|))) (-15 -3253 (|#1| |#1|)) (-15 -2078 (|#1| (-654 |#1|))) (-15 -2078 (|#1| |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4068 (((-654 (-622 $)) $) 39)) (-2559 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-1704 (((-3 (-622 $) "failed") $) 64)) (-2216 (((-622 $) $) 65)) (-3253 (($ $) 46) (($ (-654 $)) 45)) (-2256 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-1476 (((-112) $) 17 (|has| $ (-1054 (-574))))) (-2860 (((-1189 $) (-622 $)) 20 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 31)) (-1761 (((-3 (-622 $) "failed") $) 41)) (-4420 (((-1175) $) 10)) (-4140 (((-654 (-622 $)) $) 40)) (-1782 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-1575 (((-112) $ (-115)) 35) (((-112) $ (-1193)) 34)) (-1846 (((-781) $) 42)) (-3940 (((-1136) $) 11)) (-3882 (((-112) $ $) 30) (((-112) $ (-1193)) 29)) (-4434 (((-112) $) 18 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1193) (-1 $ (-654 $))) 26) (($ $ (-1193) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2207 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-3457 (($ $) 44) (($ $ $) 43)) (-2966 (($ $) 19 (|has| $ (-1065)))) (-2951 (((-872) $) 12) (($ (-622 $)) 63)) (-2078 (($ $) 48) (($ (-654 $)) 47)) (-2138 (((-112) (-115)) 36)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-310) (-141)) (T -310))
-((-2207 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310)))) (-2559 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-2078 (*1 *1 *1) (-4 *1 (-310))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-3253 (*1 *1 *1) (-4 *1 (-310))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310)))) (-3457 (*1 *1 *1) (-4 *1 (-310))) (-3457 (*1 *1 *1 *1) (-4 *1 (-310))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781)))) (-1761 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))) (-4150 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2138 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1575 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1575 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) (-1782 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310)))) (-3882 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-3882 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1065)) (-4 *1 (-310)) (-5 *2 (-1189 *1)))) (-2966 (*1 *1 *1) (-12 (-4 *1 (-1065)) (-4 *1 (-310)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112)))))
-(-13 (-1116) (-1054 (-622 $)) (-524 (-622 $) $) (-317 $) (-10 -8 (-15 -2207 ($ (-115) $)) (-15 -2207 ($ (-115) $ $)) (-15 -2207 ($ (-115) $ $ $)) (-15 -2207 ($ (-115) $ $ $ $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -2559 ($ $ (-302 $))) (-15 -2559 ($ $ (-654 (-302 $)))) (-15 -2559 ($ $ (-654 (-622 $)) (-654 $))) (-15 -2078 ($ $)) (-15 -2078 ($ (-654 $))) (-15 -3253 ($ $)) (-15 -3253 ($ (-654 $))) (-15 -3457 ($ $)) (-15 -3457 ($ $ $)) (-15 -1846 ((-781) $)) (-15 -1761 ((-3 (-622 $) "failed") $)) (-15 -4140 ((-654 (-622 $)) $)) (-15 -4068 ((-654 (-622 $)) $)) (-15 -2256 ((-654 (-115)) $)) (-15 -4150 ((-115) (-115))) (-15 -2138 ((-112) (-115))) (-15 -1575 ((-112) $ (-115))) (-15 -1575 ((-112) $ (-1193))) (-15 -1782 ($ (-115) $)) (-15 -1782 ($ (-115) (-654 $))) (-15 -1785 ($ (-1 $ $) (-622 $))) (-15 -3882 ((-112) $ $)) (-15 -3882 ((-112) $ (-1193))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-1193) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-1193) (-1 $ $))) (-15 -2661 ($ $ (-654 (-115)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-115)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-115) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1065)) (PROGN (-15 -2860 ((-1189 $) (-622 $))) (-15 -2966 ($ $))) |%noBranch|) (IF (|has| $ (-1054 (-574))) (PROGN (-15 -4434 ((-112) $)) (-15 -1476 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-626 #0=(-622 $)) . T) ((-623 (-872)) . T) ((-317 $) . T) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-1054 #0#) . T) ((-1116) . T))
-((-1448 (((-654 |#1|) (-654 |#1|)) 10)))
-(((-311 |#1|) (-10 -7 (-15 -1448 ((-654 |#1|) (-654 |#1|)))) (-858)) (T -311))
-((-1448 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3)))))
-(-10 -7 (-15 -1448 ((-654 |#1|) (-654 |#1|))))
-((-1785 (((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)) 17)))
-(((-312 |#1| |#2|) (-10 -7 (-15 -1785 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|)))) (-1065) (-1065)) (T -312))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6)))))
-(-10 -7 (-15 -1785 ((-699 |#2|) (-1 |#2| |#1|) (-699 |#1|))))
-((-2380 (((-1284 (-324 (-388))) (-1284 (-324 (-227)))) 110)) (-1819 (((-1110 (-853 (-227))) (-1110 (-853 (-388)))) 43)) (-2359 (((-654 (-1175)) (-1173 (-227))) 92)) (-2871 (((-324 (-388)) (-966 (-227))) 53)) (-3166 (((-227) (-966 (-227))) 49)) (-1471 (((-1175) (-388)) 195)) (-2764 (((-853 (-227)) (-853 (-388))) 37)) (-4261 (((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227)))) 165)) (-2109 (((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) 207) (((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) 205)) (-3479 (((-699 (-227)) (-654 (-227)) (-781)) 19)) (-2862 (((-1284 (-709)) (-654 (-227))) 99)) (-1369 (((-654 (-1175)) (-654 (-227))) 79)) (-1787 (((-3 (-324 (-227)) "failed") (-324 (-227))) 128)) (-1341 (((-112) (-227) (-1110 (-853 (-227)))) 117)) (-4154 (((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) 224)) (-2858 (((-227) (-1110 (-853 (-227)))) 112)) (-2978 (((-227) (-1110 (-853 (-227)))) 113)) (-1937 (((-227) (-417 (-574))) 31)) (-1660 (((-1175) (-388)) 77)) (-2346 (((-227) (-388)) 22)) (-3045 (((-388) (-1284 (-324 (-227)))) 177)) (-2973 (((-324 (-227)) (-324 (-388))) 28)) (-1995 (((-417 (-574)) (-324 (-227))) 56)) (-1909 (((-324 (-417 (-574))) (-324 (-227))) 73)) (-2435 (((-324 (-388)) (-324 (-227))) 103)) (-2363 (((-227) (-324 (-227))) 57)) (-2285 (((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) 68)) (-1829 (((-1110 (-853 (-227))) (-1110 (-853 (-227)))) 65)) (-3352 (((-1175) (-227)) 76)) (-3740 (((-709) (-227)) 95)) (-2466 (((-417 (-574)) (-227)) 58)) (-2836 (((-324 (-388)) (-227)) 52)) (-1844 (((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388))))) 46)) (-4132 (((-1051) (-654 (-1051))) 191) (((-1051) (-1051) (-1051)) 185)) (-2047 (((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
-(((-313) (-10 -7 (-15 -2346 ((-227) (-388))) (-15 -2973 ((-324 (-227)) (-324 (-388)))) (-15 -2764 ((-853 (-227)) (-853 (-388)))) (-15 -1819 ((-1110 (-853 (-227))) (-1110 (-853 (-388))))) (-15 -1844 ((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388)))))) (-15 -2466 ((-417 (-574)) (-227))) (-15 -1995 ((-417 (-574)) (-324 (-227)))) (-15 -2363 ((-227) (-324 (-227)))) (-15 -1787 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3045 ((-388) (-1284 (-324 (-227))))) (-15 -4261 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227))))) (-15 -1909 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1829 ((-1110 (-853 (-227))) (-1110 (-853 (-227))))) (-15 -2285 ((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-15 -3740 ((-709) (-227))) (-15 -2862 ((-1284 (-709)) (-654 (-227)))) (-15 -2435 ((-324 (-388)) (-324 (-227)))) (-15 -2380 ((-1284 (-324 (-388))) (-1284 (-324 (-227))))) (-15 -1341 ((-112) (-227) (-1110 (-853 (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1660 ((-1175) (-388))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))) (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -4132 ((-1051) (-1051) (-1051))) (-15 -4132 ((-1051) (-654 (-1051)))) (-15 -1471 ((-1175) (-388))) (-15 -2109 ((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))))) (-15 -2109 ((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))) (-15 -2047 ((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4154 ((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2871 ((-324 (-388)) (-966 (-227)))) (-15 -3166 ((-227) (-966 (-227)))) (-15 -2836 ((-324 (-388)) (-227))) (-15 -1937 ((-227) (-417 (-574)))) (-15 -3479 ((-699 (-227)) (-654 (-227)) (-781))))) (T -313))
-((-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227))) (-5 *1 (-313)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-654 (-1051))) (-5 *2 (-1051)) (-5 *1 (-313)))) (-4132 (*1 *2 *2 *2) (-12 (-5 *2 (-1051)) (-5 *1 (-313)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-313)))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-313)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-1284 (-324 (-388)))) (-5 *1 (-313)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284 (-709))) (-5 *1 (-313)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *2 (-654 (-227))) (-5 *1 (-313)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574)))) (-5 *1 (-313)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574)))) (-5 *1 (-313)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))) (-1787 (*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-654 (-1110 (-853 (-388))))) (-5 *2 (-654 (-1110 (-853 (-227))))) (-5 *1 (-313)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-1110 (-853 (-388)))) (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313)))))
-(-10 -7 (-15 -2346 ((-227) (-388))) (-15 -2973 ((-324 (-227)) (-324 (-388)))) (-15 -2764 ((-853 (-227)) (-853 (-388)))) (-15 -1819 ((-1110 (-853 (-227))) (-1110 (-853 (-388))))) (-15 -1844 ((-654 (-1110 (-853 (-227)))) (-654 (-1110 (-853 (-388)))))) (-15 -2466 ((-417 (-574)) (-227))) (-15 -1995 ((-417 (-574)) (-324 (-227)))) (-15 -2363 ((-227) (-324 (-227)))) (-15 -1787 ((-3 (-324 (-227)) "failed") (-324 (-227)))) (-15 -3045 ((-388) (-1284 (-324 (-227))))) (-15 -4261 ((-2 (|:| |additions| (-574)) (|:| |multiplications| (-574)) (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))) (-1284 (-324 (-227))))) (-15 -1909 ((-324 (-417 (-574))) (-324 (-227)))) (-15 -1829 ((-1110 (-853 (-227))) (-1110 (-853 (-227))))) (-15 -2285 ((-654 (-227)) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-15 -3740 ((-709) (-227))) (-15 -2862 ((-1284 (-709)) (-654 (-227)))) (-15 -2435 ((-324 (-388)) (-324 (-227)))) (-15 -2380 ((-1284 (-324 (-388))) (-1284 (-324 (-227))))) (-15 -1341 ((-112) (-227) (-1110 (-853 (-227))))) (-15 -3352 ((-1175) (-227))) (-15 -1660 ((-1175) (-388))) (-15 -1369 ((-654 (-1175)) (-654 (-227)))) (-15 -2359 ((-654 (-1175)) (-1173 (-227)))) (-15 -2858 ((-227) (-1110 (-853 (-227))))) (-15 -2978 ((-227) (-1110 (-853 (-227))))) (-15 -4132 ((-1051) (-1051) (-1051))) (-15 -4132 ((-1051) (-654 (-1051)))) (-15 -1471 ((-1175) (-388))) (-15 -2109 ((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))))) (-15 -2109 ((-1051) (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))) (-15 -2047 ((-1051) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4154 ((-1051) (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))) (-15 -2871 ((-324 (-388)) (-966 (-227)))) (-15 -3166 ((-227) (-966 (-227)))) (-15 -2836 ((-324 (-388)) (-227))) (-15 -1937 ((-227) (-417 (-574)))) (-15 -3479 ((-699 (-227)) (-654 (-227)) (-781))))
-((-1374 (((-112) $ $) 14)) (-2801 (($ $ $) 18)) (-2812 (($ $ $) 17)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 50)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 65)) (-2887 (($ $ $) 25) (($ (-654 $)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2853 (((-3 $ "failed") $ $) 21)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 53)))
-(((-314 |#1|) (-10 -8 (-15 -1661 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3238 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3238 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -1374 ((-112) |#1| |#1|)) (-15 -1987 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2046 ((-2 (|:| -1866 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) (-315)) (T -314))
-NIL
-(-10 -8 (-15 -1661 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -3238 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3238 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -1374 ((-112) |#1| |#1|)) (-15 -1987 ((-3 (-654 |#1|) "failed") (-654 |#1|) |#1|)) (-15 -2046 ((-2 (|:| -1866 (-654 |#1|)) (|:| -2975 |#1|)) (-654 |#1|))) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3943 (((-112) $) 35)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-315) (-141)) (T -315))
-((-1374 (*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))) (-2472 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-315)))) (-2812 (*1 *1 *1 *1) (-4 *1 (-315))) (-2801 (*1 *1 *1 *1) (-4 *1 (-315))) (-3238 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-315)))) (-3238 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-315)))) (-1661 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315)))))
-(-13 (-934) (-10 -8 (-15 -1374 ((-112) $ $)) (-15 -4220 ((-781) $)) (-15 -2472 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -2812 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -3238 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -3238 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1661 ((-3 (-654 $) "failed") (-654 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2661 (($ $ (-654 |#2|) (-654 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-302 |#2|)) 11) (($ $ (-654 (-302 |#2|))) NIL)))
-(((-316 |#1| |#2|) (-10 -8 (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|)))) (-317 |#2|) (-1116)) (T -316))
-NIL
-(-10 -8 (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))))
-((-2661 (($ $ (-654 |#1|) (-654 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-302 |#1|)) 11) (($ $ (-654 (-302 |#1|))) 10)))
-(((-317 |#1|) (-141) (-1116)) (T -317))
-((-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1116)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1116)))))
-(-13 (-524 |t#1| |t#1|) (-10 -8 (-15 -2661 ($ $ (-302 |t#1|))) (-15 -2661 ($ $ (-654 (-302 |t#1|))))))
-(((-524 |#1| |#1|) . T))
-((-2661 ((|#1| (-1 |#1| (-574)) (-1195 (-417 (-574)))) 26)))
-(((-318 |#1|) (-10 -7 (-15 -2661 (|#1| (-1 |#1| (-574)) (-1195 (-417 (-574)))))) (-38 (-417 (-574)))) (T -318))
-((-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1195 (-417 (-574)))) (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574)))))))
-(-10 -7 (-15 -2661 (|#1| (-1 |#1| (-574)) (-1195 (-417 (-574))))))
-((-2864 (((-112) $ $) NIL)) (-4313 (((-574) $) 12)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-319) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -4313 ((-574) $))))) (T -319))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-319)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -4313 ((-574) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)))
-(((-320) (-1116)) (T -320))
-NIL
-(-1116)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 60)) (-4356 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-1270 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-1269 |#2| |#3| |#4|) "failed") $) 26)) (-2216 (((-1270 |#1| |#2| |#3| |#4|) $) NIL) (((-1193) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-574) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-574)))) (((-1269 |#2| |#3| |#4|) $) NIL)) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-1270 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1284 (-1270 |#1| |#2| |#3| |#4|)))) (-699 $) (-1284 $)) NIL) (((-699 (-1270 |#1| |#2| |#3| |#4|)) (-699 $)) NIL) (((-699 (-1270 |#1| |#2| |#3| |#4|)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-1270 |#1| |#2| |#3| |#4|) $) 22)) (-2081 (((-3 $ "failed") $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1168)))) (-1935 (((-112) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-2976 (($ $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-1785 (($ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) $) NIL)) (-2541 (((-3 (-853 |#2|) "failed") $) 80)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-315)))) (-3229 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-1270 |#1| |#2| |#3| |#4|)) (-654 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-302 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-302 (-1270 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-317 (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-654 (-1193)) (-654 (-1270 |#1| |#2| |#3| |#4|))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-524 (-1193) (-1270 |#1| |#2| |#3| |#4|)))) (($ $ (-1193) (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-524 (-1193) (-1270 |#1| |#2| |#3| |#4|))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-1270 |#1| |#2| |#3| |#4|)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-294 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-1270 |#1| |#2| |#3| |#4|) $) 19)) (-1844 (((-903 (-574)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-624 (-546)))) (((-388) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1038))) (((-227) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1270 |#1| |#2| |#3| |#4|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-1270 |#1| |#2| |#3| |#4|)) 30) (($ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-1054 (-1193)))) (($ (-1269 |#2| |#3| |#4|)) 37)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1270 |#1| |#2| |#3| |#4|) (-923))) (|has| (-1270 |#1| |#2| |#3| |#4|) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-1270 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-912 (-1193)))) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) (-781)) NIL) (($ $ (-1 (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-1270 |#1| |#2| |#3| |#4|) (-860)))) (-3099 (($ $ $) 35) (($ (-1270 |#1| |#2| |#3| |#4|) (-1270 |#1| |#2| |#3| |#4|)) 32)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-1270 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1270 |#1| |#2| |#3| |#4|)) NIL)))
-(((-321 |#1| |#2| |#3| |#4|) (-13 (-1008 (-1270 |#1| |#2| |#3| |#4|)) (-1054 (-1269 |#2| |#3| |#4|)) (-10 -8 (-15 -2541 ((-3 (-853 |#2|) "failed") $)) (-15 -2951 ($ (-1269 |#2| |#3| |#4|))))) (-13 (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -321))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4) (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *1 (-321 *3 *4 *5 *6)))) (-2541 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4))))
-(-13 (-1008 (-1270 |#1| |#2| |#3| |#4|)) (-1054 (-1269 |#2| |#3| |#4|)) (-10 -8 (-15 -2541 ((-3 (-853 |#2|) "failed") $)) (-15 -2951 ($ (-1269 |#2| |#3| |#4|)))))
-((-1785 (((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)) 13)))
-(((-322 |#1| |#2|) (-10 -7 (-15 -1785 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|)))) (-1116) (-1116)) (T -322))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6)))))
-(-10 -7 (-15 -1785 ((-324 |#2|) (-1 |#2| |#1|) (-324 |#1|))))
-((-4402 (((-52) |#2| (-302 |#2|) (-781)) 40) (((-52) |#2| (-302 |#2|)) 32) (((-52) |#2| (-781)) 35) (((-52) |#2|) 33) (((-52) (-1193)) 26)) (-3597 (((-52) |#2| (-302 |#2|) (-417 (-574))) 59) (((-52) |#2| (-302 |#2|)) 56) (((-52) |#2| (-417 (-574))) 58) (((-52) |#2|) 57) (((-52) (-1193)) 55)) (-4426 (((-52) |#2| (-302 |#2|) (-417 (-574))) 54) (((-52) |#2| (-302 |#2|)) 51) (((-52) |#2| (-417 (-574))) 53) (((-52) |#2|) 52) (((-52) (-1193)) 50)) (-4414 (((-52) |#2| (-302 |#2|) (-574)) 47) (((-52) |#2| (-302 |#2|)) 44) (((-52) |#2| (-574)) 46) (((-52) |#2|) 45) (((-52) (-1193)) 43)))
-(((-323 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1193))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4414 ((-52) (-1193))) (-15 -4414 ((-52) |#2|)) (-15 -4414 ((-52) |#2| (-574))) (-15 -4414 ((-52) |#2| (-302 |#2|))) (-15 -4414 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4426 ((-52) (-1193))) (-15 -4426 ((-52) |#2|)) (-15 -4426 ((-52) |#2| (-417 (-574)))) (-15 -4426 ((-52) |#2| (-302 |#2|))) (-15 -4426 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3597 ((-52) (-1193))) (-15 -3597 ((-52) |#2|)) (-15 -3597 ((-52) |#2| (-417 (-574)))) (-15 -3597 ((-52) |#2| (-302 |#2|))) (-15 -3597 ((-52) |#2| (-302 |#2|) (-417 (-574))))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -323))
-((-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4426 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4426 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4426 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4426 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 *5) (-649 *5))) (-5 *5 (-574)) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4414 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1054 *4) (-649 *4))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4414 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-302 *3)) (-5 *5 (-781)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4))))))
-(-10 -7 (-15 -4402 ((-52) (-1193))) (-15 -4402 ((-52) |#2|)) (-15 -4402 ((-52) |#2| (-781))) (-15 -4402 ((-52) |#2| (-302 |#2|))) (-15 -4402 ((-52) |#2| (-302 |#2|) (-781))) (-15 -4414 ((-52) (-1193))) (-15 -4414 ((-52) |#2|)) (-15 -4414 ((-52) |#2| (-574))) (-15 -4414 ((-52) |#2| (-302 |#2|))) (-15 -4414 ((-52) |#2| (-302 |#2|) (-574))) (-15 -4426 ((-52) (-1193))) (-15 -4426 ((-52) |#2|)) (-15 -4426 ((-52) |#2| (-417 (-574)))) (-15 -4426 ((-52) |#2| (-302 |#2|))) (-15 -4426 ((-52) |#2| (-302 |#2|) (-417 (-574)))) (-15 -3597 ((-52) (-1193))) (-15 -3597 ((-52) |#2|)) (-15 -3597 ((-52) |#2| (-417 (-574)))) (-15 -3597 ((-52) |#2| (-302 |#2|))) (-15 -3597 ((-52) |#2| (-302 |#2|) (-417 (-574)))))
-((-2864 (((-112) $ $) NIL)) (-2910 (((-654 $) $ (-1193)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $)) NIL (|has| |#1| (-566))) (((-654 $) (-966 $)) NIL (|has| |#1| (-566)))) (-2432 (($ $ (-1193)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (($ (-1189 $)) NIL (|has| |#1| (-566))) (($ (-966 $)) NIL (|has| |#1| (-566)))) (-4311 (((-112) $) 27 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-4350 (((-654 (-1193)) $) 368)) (-4172 (((-417 (-1189 $)) $ (-622 $)) NIL (|has| |#1| (-566)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-4068 (((-654 (-622 $)) $) NIL)) (-2379 (($ $) 171 (|has| |#1| (-566)))) (-2258 (($ $) 147 (|has| |#1| (-566)))) (-1856 (($ $ (-1108 $)) 232 (|has| |#1| (-566))) (($ $ (-1193)) 228 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) NIL (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) 386) (($ $ (-654 (-622 $)) (-654 $)) 430)) (-1517 (((-428 (-1189 $)) (-1189 $)) 308 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-2684 (($ $) NIL (|has| |#1| (-566)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-566)))) (-4212 (($ $) NIL (|has| |#1| (-566)))) (-1374 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2358 (($ $) 167 (|has| |#1| (-566)))) (-2236 (($ $) 143 (|has| |#1| (-566)))) (-3811 (($ $ (-574)) 73 (|has| |#1| (-566)))) (-2404 (($ $) 175 (|has| |#1| (-566)))) (-2280 (($ $) 151 (|has| |#1| (-566)))) (-1430 (($) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) (|has| |#1| (-1128))) CONST)) (-3961 (((-654 $) $ (-1193)) NIL (|has| |#1| (-566))) (((-654 $) $) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $) (-1193)) NIL (|has| |#1| (-566))) (((-654 $) (-1189 $)) NIL (|has| |#1| (-566))) (((-654 $) (-966 $)) NIL (|has| |#1| (-566)))) (-2231 (($ $ (-1193)) NIL (|has| |#1| (-566))) (($ $) NIL (|has| |#1| (-566))) (($ (-1189 $) (-1193)) 134 (|has| |#1| (-566))) (($ (-1189 $)) NIL (|has| |#1| (-566))) (($ (-966 $)) NIL (|has| |#1| (-566)))) (-1704 (((-3 (-622 $) "failed") $) 18) (((-3 (-1193) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-966 |#1|)) "failed") $) NIL (|has| |#1| (-566))) (((-3 (-966 |#1|) "failed") $) NIL (|has| |#1| (-1065))) (((-3 (-417 (-574)) "failed") $) 46 (-2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2216 (((-622 $) $) 12) (((-1193) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-966 |#1|)) $) NIL (|has| |#1| (-566))) (((-966 |#1|) $) NIL (|has| |#1| (-1065))) (((-417 (-574)) $) 319 (-2833 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2801 (($ $ $) NIL (|has| |#1| (-566)))) (-1557 (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 125 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 115 (|has| |#1| (-1065))) (((-699 |#1|) (-1284 $)) NIL (|has| |#1| (-1065))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (-2882 (($ $) 96 (|has| |#1| (-566)))) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-2812 (($ $ $) NIL (|has| |#1| (-566)))) (-4118 (($ $ (-1108 $)) 236 (|has| |#1| (-566))) (($ $ (-1193)) 234 (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-566)))) (-3342 (((-112) $) NIL (|has| |#1| (-566)))) (-1349 (($ $ $) 202 (|has| |#1| (-566)))) (-3004 (($) 137 (|has| |#1| (-566)))) (-1371 (($ $ $) 222 (|has| |#1| (-566)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 392 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 399 (|has| |#1| (-897 (-388))))) (-3253 (($ $) NIL) (($ (-654 $)) NIL)) (-2256 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) 276)) (-3943 (((-112) $) 25 (|has| |#1| (-1128)))) (-1476 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2447 (($ $) 72 (|has| |#1| (-1065)))) (-2970 (((-1141 |#1| (-622 $)) $) 91 (|has| |#1| (-1065)))) (-3165 (((-112) $) 62 (|has| |#1| (-566)))) (-4439 (($ $ (-574)) NIL (|has| |#1| (-566)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-2860 (((-1189 $) (-622 $)) 277 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 426)) (-1761 (((-3 (-622 $) "failed") $) NIL)) (-3113 (($ $) 141 (|has| |#1| (-566)))) (-4053 (($ $) 247 (|has| |#1| (-566)))) (-2845 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-4420 (((-1175) $) NIL)) (-4140 (((-654 (-622 $)) $) 49)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) 431)) (-1730 (((-3 (-654 $) "failed") $) NIL (|has| |#1| (-1128)))) (-3921 (((-3 (-2 (|:| |val| $) (|:| -2754 (-574))) "failed") $) NIL (|has| |#1| (-1065)))) (-4245 (((-3 (-654 $) "failed") $) 436 (|has| |#1| (-25)))) (-2567 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 440 (|has| |#1| (-25)))) (-4436 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $) NIL (|has| |#1| (-1128))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-115)) NIL (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-1193)) NIL (|has| |#1| (-1065)))) (-1575 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) 51)) (-1328 (($ $) NIL (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-2961 (($ $ (-1193)) 251 (|has| |#1| (-566))) (($ $ (-1108 $)) 253 (|has| |#1| (-566)))) (-1846 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 43)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 301 (|has| |#1| (-566)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-3882 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-3822 (($ $ (-1193)) 226 (|has| |#1| (-566))) (($ $) 224 (|has| |#1| (-566)))) (-2035 (($ $) 218 (|has| |#1| (-566)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 306 (-12 (|has| |#1| (-462)) (|has| |#1| (-566))))) (-4201 (((-428 $) $) NIL (|has| |#1| (-566)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-566)))) (-1617 (($ $) 139 (|has| |#1| (-566)))) (-4434 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 425) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) 379) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1193)) NIL (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-624 (-546)))) (($ $) NIL (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 366 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1193)) 365 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ $)) NIL (|has| |#1| (-1065)))) (-4220 (((-781) $) NIL (|has| |#1| (-566)))) (-4043 (($ $) 239 (|has| |#1| (-566)))) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-3457 (($ $) NIL) (($ $ $) NIL)) (-2223 (($ $) 249 (|has| |#1| (-566)))) (-2467 (($ $) 200 (|has| |#1| (-566)))) (-3879 (($ $ (-1193)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-1065)))) (-1611 (($ $) 74 (|has| |#1| (-566)))) (-2980 (((-1141 |#1| (-622 $)) $) 93 (|has| |#1| (-566)))) (-2966 (($ $) 317 (|has| $ (-1065)))) (-2417 (($ $) 177 (|has| |#1| (-566)))) (-2288 (($ $) 153 (|has| |#1| (-566)))) (-2390 (($ $) 173 (|has| |#1| (-566)))) (-2269 (($ $) 149 (|has| |#1| (-566)))) (-2368 (($ $) 169 (|has| |#1| (-566)))) (-2247 (($ $) 145 (|has| |#1| (-566)))) (-1844 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) NIL (|has| |#1| (-566))) (((-546) $) 363 (|has| |#1| (-624 (-546))))) (-4090 (($ $ $) NIL (|has| |#1| (-483)))) (-3082 (($ $ $) NIL (|has| |#1| (-483)))) (-2951 (((-872) $) 424) (($ (-622 $)) 415) (($ (-1193)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-566))) (($ (-48)) 312 (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) (($ (-1141 |#1| (-622 $))) 95 (|has| |#1| (-1065))) (($ (-417 |#1|)) NIL (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) NIL (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) NIL (|has| |#1| (-566))) (($ (-417 (-966 |#1|))) NIL (|has| |#1| (-566))) (($ (-966 |#1|)) NIL (|has| |#1| (-1065))) (($ (-574)) 34 (-2833 (|has| |#1| (-1054 (-574))) (|has| |#1| (-1065)))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-566)) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL (|has| |#1| (-1065)) CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-3751 (($ $ $) 220 (|has| |#1| (-566)))) (-3119 (($ $ $) 206 (|has| |#1| (-566)))) (-1861 (($ $ $) 210 (|has| |#1| (-566)))) (-1489 (($ $ $) 204 (|has| |#1| (-566)))) (-4315 (($ $ $) 208 (|has| |#1| (-566)))) (-2138 (((-112) (-115)) 10)) (-2981 (((-112) $ $) 86)) (-2456 (($ $) 183 (|has| |#1| (-566)))) (-2320 (($ $) 159 (|has| |#1| (-566)))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 179 (|has| |#1| (-566)))) (-2301 (($ $) 155 (|has| |#1| (-566)))) (-2480 (($ $) 187 (|has| |#1| (-566)))) (-2340 (($ $) 163 (|has| |#1| (-566)))) (-2513 (($ (-1193) $) NIL) (($ (-1193) $ $) NIL) (($ (-1193) $ $ $) NIL) (($ (-1193) $ $ $ $) NIL) (($ (-1193) (-654 $)) NIL)) (-4415 (($ $) 214 (|has| |#1| (-566)))) (-4147 (($ $) 212 (|has| |#1| (-566)))) (-2536 (($ $) 189 (|has| |#1| (-566)))) (-2349 (($ $) 165 (|has| |#1| (-566)))) (-2468 (($ $) 185 (|has| |#1| (-566)))) (-2330 (($ $) 161 (|has| |#1| (-566)))) (-2443 (($ $) 181 (|has| |#1| (-566)))) (-2312 (($ $) 157 (|has| |#1| (-566)))) (-4107 (($ $) 192 (|has| |#1| (-566)))) (-2141 (($) 21 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) CONST)) (-3596 (($ $) 243 (|has| |#1| (-566)))) (-2153 (($) 23 (|has| |#1| (-1128)) CONST)) (-2651 (($ $) 194 (|has| |#1| (-566))) (($ $ $) 196 (|has| |#1| (-566)))) (-3606 (($ $) 241 (|has| |#1| (-566)))) (-3585 (($ $ (-1193)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-1065))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-1065)))) (-1858 (($ $) 245 (|has| |#1| (-566)))) (-2636 (($ $ $) 198 (|has| |#1| (-566)))) (-2986 (((-112) $ $) 88)) (-3099 (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 106 (|has| |#1| (-566))) (($ $ $) 42 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3090 (($ $ $) 40 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ $) 29 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (-3074 (($ $ $) 38 (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))) (** (($ $ $) 64 (|has| |#1| (-566))) (($ $ (-417 (-574))) 314 (|has| |#1| (-566))) (($ $ (-574)) 80 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 75 (|has| |#1| (-1128))) (($ $ (-935)) 84 (|has| |#1| (-1128)))) (* (($ (-417 (-574)) $) NIL (|has| |#1| (-566))) (($ $ (-417 (-574))) NIL (|has| |#1| (-566))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1065))) (($ $ $) 36 (|has| |#1| (-1128))) (($ (-574) $) 32 (-2833 (|has| |#1| (-21)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ (-781) $) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))))) (($ (-935) $) NIL (-2833 (|has| |#1| (-25)) (-12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))))))
-(((-324 |#1|) (-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1219)) (-6 (-161)) (-6 (-639)) (-6 (-1155)) (-15 -2882 ($ $)) (-15 -3165 ((-112) $)) (-15 -3811 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -3000 ((-428 (-1189 $)) (-1189 $))) (-15 -1517 ((-428 (-1189 $)) (-1189 $)))) |%noBranch|) (IF (|has| |#1| (-1054 (-574))) (-6 (-1054 (-48))) |%noBranch|)) |%noBranch|))) (-1116)) (T -324))
-((-2882 (*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1116)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-3000 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116)))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116)))))
-(-13 (-440 |#1|) (-10 -8 (IF (|has| |#1| (-566)) (PROGN (-6 (-29 |#1|)) (-6 (-1219)) (-6 (-161)) (-6 (-639)) (-6 (-1155)) (-15 -2882 ($ $)) (-15 -3165 ((-112) $)) (-15 -3811 ($ $ (-574))) (IF (|has| |#1| (-462)) (PROGN (-15 -3000 ((-428 (-1189 $)) (-1189 $))) (-15 -1517 ((-428 (-1189 $)) (-1189 $)))) |%noBranch|) (IF (|has| |#1| (-1054 (-574))) (-6 (-1054 (-48))) |%noBranch|)) |%noBranch|)))
-((-3813 (((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)) 89) (((-52) |#2| (-115) (-302 |#2|) (-302 |#2|)) 85) (((-52) |#2| (-115) (-302 |#2|) |#2|) 87) (((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|) 88) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 81) (((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 83) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|)) 84) (((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|))) 82) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 90) (((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|)) 86)))
-(((-325 |#1| |#2|) (-10 -7 (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3813 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-566) (-624 (-546))) (-440 |#1|)) (T -325))
-((-3813 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3)) (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *3)))) (-3813 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3813 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3813 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *5)))) (-3813 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8))) (-4 *8 (-440 *7)) (-5 *5 (-302 *8)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-3813 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3813 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8)) (-5 *6 (-654 *8)) (-4 *8 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *7 *8)))) (-3813 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3813 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7)) (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *7)))) (-3813 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5)) (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *6)))))
-(-10 -7 (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-302 |#2|))) (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3813 ((-52) (-654 (-302 |#2|)) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 |#2|))) (-15 -3813 ((-52) (-654 |#2|) (-654 (-115)) (-302 |#2|) (-654 (-302 |#2|)))) (-15 -3813 ((-52) (-302 |#2|) (-115) (-302 |#2|) |#2|)) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) |#2|)) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) (-302 |#2|))) (-15 -3813 ((-52) |#2| (-115) (-302 |#2|) (-654 |#2|))))
-((-2096 (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175)) 67) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574)) 68) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175)) 64) (((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574)) 65)) (-1956 (((-1 (-227) (-227)) (-227)) 66)))
-(((-326) (-10 -7 (-15 -1956 ((-1 (-227) (-227)) (-227))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175))))) (T -326))
-((-2096 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1175)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-2096 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-2096 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *7 (-1175)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-2096 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *2 (-1229 (-940))) (-5 *1 (-326)))) (-1956 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227)))))
-(-10 -7 (-15 -1956 ((-1 (-227) (-227)) (-227))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-1 (-227) (-227)) (-574) (-1175))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574))) (-15 -2096 ((-1229 (-940)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-227) (-574) (-1175))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 26)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 20)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 36)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) 16)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) NIL) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-4324 (((-417 (-574)) $) 17)) (-1417 (($ (-1269 |#1| |#2| |#3|)) 11)) (-2754 (((-1269 |#1| |#2| |#3|) $) 12)) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3735 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 10)) (-2951 (((-872) $) 42) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) 34)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 28)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 37)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-327 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-802) (-10 -8 (-15 -1417 ($ (-1269 |#1| |#2| |#3|))) (-15 -2754 ((-1269 |#1| |#2| |#3|) $)) (-15 -4324 ((-417 (-574)) $)))) (-372) (-1193) |#1|) (T -327))
-((-1417 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-327 *3 *4 *5)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193)) (-14 *5 *3))))
-(-13 (-1265 |#1|) (-802) (-10 -8 (-15 -1417 ($ (-1269 |#1| |#2| |#3|))) (-15 -2754 ((-1269 |#1| |#2| |#3|) $)) (-15 -4324 ((-417 (-574)) $))))
-((-4439 (((-2 (|:| -2754 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781)) 35)) (-3113 (((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|)) 40)))
-(((-328 |#1|) (-10 -7 (-15 -4439 ((-2 (|:| -2754 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3113 ((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|)))) (-566)) (T -328))
-((-3113 (*1 *2 *3) (-12 (-5 *3 (-428 *4)) (-4 *4 (-566)) (-5 *2 (-654 (-2 (|:| -1866 (-781)) (|:| |logand| *4)))) (-5 *1 (-328 *4)))) (-4439 (*1 *2 *3 *4) (-12 (-5 *3 (-428 *5)) (-4 *5 (-566)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *5) (|:| |radicand| (-654 *5)))) (-5 *1 (-328 *5)) (-5 *4 (-781)))))
-(-10 -7 (-15 -4439 ((-2 (|:| -2754 (-781)) (|:| -1866 |#1|) (|:| |radicand| (-654 |#1|))) (-428 |#1|) (-781))) (-15 -3113 ((-654 (-2 (|:| -1866 (-781)) (|:| |logand| |#1|))) (-428 |#1|))))
-((-4350 (((-654 |#2|) (-1189 |#4|)) 44)) (-1950 ((|#3| (-574)) 47)) (-3314 (((-1189 |#4|) (-1189 |#3|)) 30)) (-1450 (((-1189 |#4|) (-1189 |#4|) (-574)) 66)) (-1876 (((-1189 |#3|) (-1189 |#4|)) 21)) (-3735 (((-654 (-781)) (-1189 |#4|) (-654 |#2|)) 41)) (-3842 (((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|)) 35)))
-(((-329 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3842 ((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3735 ((-654 (-781)) (-1189 |#4|) (-654 |#2|))) (-15 -4350 ((-654 |#2|) (-1189 |#4|))) (-15 -1876 ((-1189 |#3|) (-1189 |#4|))) (-15 -3314 ((-1189 |#4|) (-1189 |#3|))) (-15 -1450 ((-1189 |#4|) (-1189 |#4|) (-574))) (-15 -1950 (|#3| (-574)))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|)) (T -329))
-((-1950 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1065)) (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-963 *2 *4 *5)))) (-1450 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 *7)) (-5 *3 (-574)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1189 *6)) (-4 *6 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1189 *7)) (-5 *1 (-329 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-329 *4 *5 *6 *7)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-654 *5)) (-5 *1 (-329 *4 *5 *6 *7)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860)) (-4 *8 (-963 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1065)) (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8)) (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-1189 *8)) (-5 *1 (-329 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3842 ((-1189 |#3|) (-1189 |#4|) (-654 |#2|) (-654 |#3|))) (-15 -3735 ((-654 (-781)) (-1189 |#4|) (-654 |#2|))) (-15 -4350 ((-654 |#2|) (-1189 |#4|))) (-15 -1876 ((-1189 |#3|) (-1189 |#4|))) (-15 -3314 ((-1189 |#4|) (-1189 |#3|))) (-15 -1450 ((-1189 |#4|) (-1189 |#4|) (-574))) (-15 -1950 (|#3| (-574))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 19)) (-2424 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $) 21)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1720 ((|#1| $ (-574)) NIL)) (-2387 (((-574) $ (-574)) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-2148 (($ (-1 (-574) (-574)) $) 11)) (-4420 (((-1175) $) NIL)) (-4130 (($ $ $) NIL (|has| (-574) (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-1788 (((-574) |#1| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 29 (|has| |#1| (-860)))) (-3090 (($ $) 12) (($ $ $) 28)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL) (($ (-574) |#1|) 27)))
-(((-330 |#1|) (-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1116)) (T -330))
-NIL
-(-13 (-21) (-727 (-574)) (-331 |#1| (-574)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2424 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 28)) (-3290 (((-3 $ "failed") $ $) 20)) (-1496 (((-781) $) 29)) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1720 ((|#1| $ (-574)) 26)) (-2387 ((|#2| $ (-574)) 27)) (-2737 (($ (-1 |#1| |#1|) $) 23)) (-2148 (($ (-1 |#2| |#2|) $) 24)) (-4420 (((-1175) $) 10)) (-4130 (($ $ $) 22 (|has| |#2| (-802)))) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ |#1|) 32)) (-1788 ((|#2| |#1| $) 25)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ |#2| |#1|) 30)))
-(((-331 |#1| |#2|) (-141) (-1116) (-132)) (T -331))
-((-3074 (*1 *1 *2 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) (-5 *2 (-781)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))))) (-2387 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1116)) (-4 *2 (-132)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1116)))) (-1788 (*1 *2 *3 *1) (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132)))) (-4130 (*1 *1 *1 *1) (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132)) (-4 *3 (-802)))))
-(-13 (-132) (-1054 |t#1|) (-10 -8 (-15 -3074 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1496 ((-781) $)) (-15 -2424 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1617 |t#2|))) $)) (-15 -2387 (|t#2| $ (-574))) (-15 -1720 (|t#1| $ (-574))) (-15 -1788 (|t#2| |t#1| $)) (-15 -2148 ($ (-1 |t#2| |t#2|) $)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-802)) (-15 -4130 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-1054 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2424 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1720 ((|#1| $ (-574)) NIL)) (-2387 (((-781) $ (-574)) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-2148 (($ (-1 (-781) (-781)) $) NIL)) (-4420 (((-1175) $) NIL)) (-4130 (($ $ $) NIL (|has| (-781) (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-1788 (((-781) |#1| $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-781) |#1|) NIL)))
-(((-332 |#1|) (-331 |#1| (-781)) (-1116)) (T -332))
-NIL
-(-331 |#1| (-781))
-((-4135 (($ $) 72)) (-3637 (($ $ |#2| |#3| $) 14)) (-3431 (($ (-1 |#3| |#3|) $) 51)) (-1343 (((-112) $) 42)) (-1355 ((|#2| $) 44)) (-2853 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1732 ((|#2| $) 68)) (-3382 (((-654 |#2|) $) 56)) (-3245 (($ $ $ (-781)) 37)) (-3099 (($ $ |#2|) 60)))
-(((-333 |#1| |#2| |#3|) (-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1| (-781))) (-15 -3637 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3431 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3382 ((-654 |#2|) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3099 (|#1| |#1| |#2|))) (-334 |#2| |#3|) (-1065) (-802)) (T -333))
-NIL
-(-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1| (-781))) (-15 -3637 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3431 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3382 ((-654 |#2|) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3099 (|#1| |#1| |#2|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 98 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 95)) (-2216 (((-574) $) 99 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 97 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 96)) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-4135 (($ $) 84 (|has| |#1| (-462)))) (-3637 (($ $ |#1| |#2| $) 88)) (-3943 (((-112) $) 35)) (-2993 (((-781) $) 91)) (-3873 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73)) (-2043 ((|#2| $) 90)) (-3431 (($ (-1 |#2| |#2|) $) 89)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 94)) (-1355 ((|#1| $) 93)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-566)))) (-3735 ((|#2| $) 76)) (-1732 ((|#1| $) 85 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59) (($ (-417 (-574))) 69 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3382 (((-654 |#1|) $) 92)) (-1788 ((|#1| $ |#2|) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3245 (($ $ $ (-781)) 87 (|has| |#1| (-174)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-334 |#1| |#2|) (-141) (-1065) (-802)) (T -334))
-((-1343 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-654 *3)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-781)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3431 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-3637 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))) (-3245 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *3 (-174)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-566)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *2 (-462)))))
-(-13 (-47 |t#1| |t#2|) (-421 |t#1|) (-10 -8 (-15 -1343 ((-112) $)) (-15 -1355 (|t#1| $)) (-15 -3382 ((-654 |t#1|) $)) (-15 -2993 ((-781) $)) (-15 -2043 (|t#2| $)) (-15 -3431 ($ (-1 |t#2| |t#2|) $)) (-15 -3637 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3245 ($ $ $ (-781))) |%noBranch|) (IF (|has| |t#1| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1732 (|t#1| $)) (-15 -4135 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-421 |#1|) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-1549 (((-112) (-112)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2218 (($ $) NIL (|has| |#1| (-1116)))) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-2989 (($ $ (-574)) NIL)) (-3413 (((-781) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2645 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3705 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1336 (($ (-654 |#1|)) NIL)) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3032 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2589 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-335 |#1|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1336 ($ (-654 |#1|))) (-15 -3413 ((-781) $)) (-15 -2989 ($ $ (-574))) (-15 -1549 ((-112) (-112))))) (-1234)) (T -335))
-((-1336 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-335 *3)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1234)))))
-(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1336 ($ (-654 |#1|))) (-15 -3413 ((-781) $)) (-15 -2989 ($ $ (-574))) (-15 -1549 ((-112) (-112)))))
-((-1738 (((-112) $) 47)) (-2276 (((-781)) 23)) (-1644 ((|#2| $) 51) (($ $ (-935)) 121)) (-1496 (((-781)) 122)) (-3114 (($ (-1284 |#2|)) 20)) (-3576 (((-112) $) 134)) (-2608 ((|#2| $) 53) (($ $ (-935)) 118)) (-3446 (((-1189 |#2|) $) NIL) (((-1189 $) $ (-935)) 109)) (-2739 (((-1189 |#2|) $) 95)) (-2873 (((-1189 |#2|) $) 91) (((-3 (-1189 |#2|) "failed") $ $) 88)) (-3200 (($ $ (-1189 |#2|)) 58)) (-1676 (((-843 (-935))) 30) (((-935)) 48)) (-2732 (((-135)) 27)) (-3735 (((-843 (-935)) $) 32) (((-935) $) 137)) (-3883 (($) 128)) (-2282 (((-1284 |#2|) $) NIL) (((-699 |#2|) (-1284 $)) 42)) (-2705 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4194 (((-112) $) 45)))
-(((-336 |#1| |#2|) (-10 -8 (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -2705 (|#1| |#1|)) (-15 -2873 ((-3 (-1189 |#2|) "failed") |#1| |#1|)) (-15 -2873 ((-1189 |#2|) |#1|)) (-15 -2739 ((-1189 |#2|) |#1|)) (-15 -3200 (|#1| |#1| (-1189 |#2|))) (-15 -3576 ((-112) |#1|)) (-15 -3883 (|#1|)) (-15 -1644 (|#1| |#1| (-935))) (-15 -2608 (|#1| |#1| (-935))) (-15 -3446 ((-1189 |#1|) |#1| (-935))) (-15 -1644 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -3735 ((-935) |#1|)) (-15 -1676 ((-935))) (-15 -3446 ((-1189 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -2276 ((-781))) (-15 -1676 ((-843 (-935)))) (-15 -3735 ((-843 (-935)) |#1|)) (-15 -1738 ((-112) |#1|)) (-15 -4194 ((-112) |#1|)) (-15 -2732 ((-135)))) (-337 |#2|) (-372)) (T -336))
-((-2732 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1676 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-843 (-935))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2276 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1676 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-935)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1496 (*1 *2) (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
-(-10 -8 (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-781))) (-15 -2705 (|#1| |#1|)) (-15 -2873 ((-3 (-1189 |#2|) "failed") |#1| |#1|)) (-15 -2873 ((-1189 |#2|) |#1|)) (-15 -2739 ((-1189 |#2|) |#1|)) (-15 -3200 (|#1| |#1| (-1189 |#2|))) (-15 -3576 ((-112) |#1|)) (-15 -3883 (|#1|)) (-15 -1644 (|#1| |#1| (-935))) (-15 -2608 (|#1| |#1| (-935))) (-15 -3446 ((-1189 |#1|) |#1| (-935))) (-15 -1644 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -3735 ((-935) |#1|)) (-15 -1676 ((-935))) (-15 -3446 ((-1189 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -2276 ((-781))) (-15 -1676 ((-843 (-935)))) (-15 -3735 ((-843 (-935)) |#1|)) (-15 -1738 ((-112) |#1|)) (-15 -4194 ((-112) |#1|)) (-15 -2732 ((-135))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-1738 (((-112) $) 104)) (-2276 (((-781)) 100)) (-1644 ((|#1| $) 151) (($ $ (-935)) 148 (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) 133 (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-1374 (((-112) $ $) 65)) (-1496 (((-781)) 123 (|has| |#1| (-377)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-3114 (($ (-1284 |#1|)) 157)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-377)))) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2835 (($) 120 (|has| |#1| (-377)))) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1615 (($) 135 (|has| |#1| (-377)))) (-3502 (((-112) $) 136 (|has| |#1| (-377)))) (-2613 (($ $ (-781)) 97 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) 79)) (-1518 (((-935) $) 138 (|has| |#1| (-377))) (((-843 (-935)) $) 94 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) 35)) (-4400 (($) 146 (|has| |#1| (-377)))) (-3576 (((-112) $) 145 (|has| |#1| (-377)))) (-2608 ((|#1| $) 152) (($ $ (-935)) 149 (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) 124 (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3446 (((-1189 |#1|) $) 156) (((-1189 $) $ (-935)) 150 (|has| |#1| (-377)))) (-3507 (((-935) $) 121 (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) 142 (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) 141 (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) 140 (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) 143 (|has| |#1| (-377)))) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3792 (($) 125 (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 122 (|has| |#1| (-377)))) (-2958 (((-112) $) 103)) (-3940 (((-1136) $) 11)) (-2975 (($) 144 (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 132 (|has| |#1| (-377)))) (-4201 (((-428 $) $) 82)) (-1676 (((-843 (-935))) 101) (((-935)) 154)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1532 (((-781) $) 137 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 95 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) 109)) (-3879 (($ $ (-781)) 128 (|has| |#1| (-377))) (($ $) 126 (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) 102) (((-935) $) 153)) (-2966 (((-1189 |#1|)) 155)) (-3951 (($) 134 (|has| |#1| (-377)))) (-3883 (($) 147 (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) 159) (((-699 |#1|) (-1284 $)) 158)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 131 (|has| |#1| (-377)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-2705 (($ $) 130 (|has| |#1| (-377))) (((-3 $ "failed") $) 93 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 161) (((-1284 $) (-935)) 160)) (-3750 (((-112) $ $) 45)) (-4194 (((-112) $) 105)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2535 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-3585 (($ $ (-781)) 129 (|has| |#1| (-377))) (($ $) 127 (|has| |#1| (-377)))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73) (($ $ |#1|) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-337 |#1|) (-141) (-372)) (T -337))
-((-1895 (*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *3)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *4)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1284 *3)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) (-2966 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3)))) (-1676 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1189 *1)) (-4 *1 (-337 *4)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)))) (-3883 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-4400 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112)))) (-2975 (*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))) (-3200 (*1 *1 *1 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3)) (-4 *3 (-372)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3)))) (-2873 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-1189 *3)))))
-(-13 (-1303 |t#1|) (-1054 |t#1|) (-10 -8 (-15 -1895 ((-1284 $))) (-15 -1895 ((-1284 $) (-935))) (-15 -2282 ((-1284 |t#1|) $)) (-15 -2282 ((-699 |t#1|) (-1284 $))) (-15 -3114 ($ (-1284 |t#1|))) (-15 -3446 ((-1189 |t#1|) $)) (-15 -2966 ((-1189 |t#1|))) (-15 -1676 ((-935))) (-15 -3735 ((-935) $)) (-15 -2608 (|t#1| $)) (-15 -1644 (|t#1| $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-358)) (-15 -3446 ((-1189 $) $ (-935))) (-15 -2608 ($ $ (-935))) (-15 -1644 ($ $ (-935))) (-15 -3883 ($)) (-15 -4400 ($)) (-15 -3576 ((-112) $)) (-15 -2975 ($)) (-15 -3200 ($ $ (-1189 |t#1|))) (-15 -2739 ((-1189 |t#1|) $)) (-15 -2873 ((-1189 |t#1|) $)) (-15 -2873 ((-3 (-1189 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) |has| |#1| (-377)) ((-239) |has| |#1| (-377)) ((-238) |has| |#1| (-377)) ((-249) . T) ((-298) . T) ((-315) . T) ((-1303 |#1|) . T) ((-372) . T) ((-412) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-377) |has| |#1| (-377)) ((-358) |has| |#1| (-377)) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-377)) ((-1234) |has| |#1| (-377)) ((-1238) . T) ((-1291 |#1|) . T))
-((-2864 (((-112) $ $) NIL)) (-3040 (($ (-1192) $) 100)) (-4240 (($) 89)) (-1793 (((-1136) (-1136)) 9)) (-1621 (($) 90)) (-2172 (($) 104) (($ (-324 (-709))) 112) (($ (-324 (-711))) 108) (($ (-324 (-704))) 116) (($ (-324 (-388))) 123) (($ (-324 (-574))) 119) (($ (-324 (-171 (-388)))) 127)) (-2090 (($ (-1192) $) 101)) (-3605 (($ (-654 (-872))) 91)) (-4004 (((-1289) $) 87)) (-1469 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2555 (($ (-1136)) 58)) (-3409 (((-1120) $) 30)) (-3279 (($ (-1108 (-966 (-574))) $) 97) (($ (-1108 (-966 (-574))) (-966 (-574)) $) 98)) (-2021 (($ (-1136)) 99)) (-3259 (($ (-1192) $) 129) (($ (-1192) $ $) 130)) (-3834 (($ (-1193) (-654 (-1193))) 88)) (-2048 (($ (-1175)) 94) (($ (-654 (-1175))) 92)) (-2951 (((-872) $) 132)) (-2057 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2265 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -2065 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $) 50)) (-1443 (($ (-1175)) 202)) (-1934 (($ (-654 $)) 128)) (-2981 (((-112) $ $) NIL)) (-2321 (($ (-1193) (-1175)) 135) (($ (-1193) (-324 (-711))) 175) (($ (-1193) (-324 (-709))) 176) (($ (-1193) (-324 (-704))) 177) (($ (-1193) (-699 (-711))) 138) (($ (-1193) (-699 (-709))) 141) (($ (-1193) (-699 (-704))) 144) (($ (-1193) (-1284 (-711))) 147) (($ (-1193) (-1284 (-709))) 150) (($ (-1193) (-1284 (-704))) 153) (($ (-1193) (-699 (-324 (-711)))) 156) (($ (-1193) (-699 (-324 (-709)))) 159) (($ (-1193) (-699 (-324 (-704)))) 162) (($ (-1193) (-1284 (-324 (-711)))) 165) (($ (-1193) (-1284 (-324 (-709)))) 168) (($ (-1193) (-1284 (-324 (-704)))) 171) (($ (-1193) (-654 (-966 (-574))) (-324 (-711))) 172) (($ (-1193) (-654 (-966 (-574))) (-324 (-709))) 173) (($ (-1193) (-654 (-966 (-574))) (-324 (-704))) 174) (($ (-1193) (-324 (-574))) 199) (($ (-1193) (-324 (-388))) 200) (($ (-1193) (-324 (-171 (-388)))) 201) (($ (-1193) (-699 (-324 (-574)))) 180) (($ (-1193) (-699 (-324 (-388)))) 183) (($ (-1193) (-699 (-324 (-171 (-388))))) 186) (($ (-1193) (-1284 (-324 (-574)))) 189) (($ (-1193) (-1284 (-324 (-388)))) 192) (($ (-1193) (-1284 (-324 (-171 (-388))))) 195) (($ (-1193) (-654 (-966 (-574))) (-324 (-574))) 196) (($ (-1193) (-654 (-966 (-574))) (-324 (-388))) 197) (($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388)))) 198)) (-2986 (((-112) $ $) NIL)))
-(((-338) (-13 (-1116) (-10 -8 (-15 -3279 ($ (-1108 (-966 (-574))) $)) (-15 -3279 ($ (-1108 (-966 (-574))) (-966 (-574)) $)) (-15 -3040 ($ (-1192) $)) (-15 -2090 ($ (-1192) $)) (-15 -2555 ($ (-1136))) (-15 -2021 ($ (-1136))) (-15 -2048 ($ (-1175))) (-15 -2048 ($ (-654 (-1175)))) (-15 -1443 ($ (-1175))) (-15 -2172 ($)) (-15 -2172 ($ (-324 (-709)))) (-15 -2172 ($ (-324 (-711)))) (-15 -2172 ($ (-324 (-704)))) (-15 -2172 ($ (-324 (-388)))) (-15 -2172 ($ (-324 (-574)))) (-15 -2172 ($ (-324 (-171 (-388))))) (-15 -3259 ($ (-1192) $)) (-15 -3259 ($ (-1192) $ $)) (-15 -2321 ($ (-1193) (-1175))) (-15 -2321 ($ (-1193) (-324 (-711)))) (-15 -2321 ($ (-1193) (-324 (-709)))) (-15 -2321 ($ (-1193) (-324 (-704)))) (-15 -2321 ($ (-1193) (-699 (-711)))) (-15 -2321 ($ (-1193) (-699 (-709)))) (-15 -2321 ($ (-1193) (-699 (-704)))) (-15 -2321 ($ (-1193) (-1284 (-711)))) (-15 -2321 ($ (-1193) (-1284 (-709)))) (-15 -2321 ($ (-1193) (-1284 (-704)))) (-15 -2321 ($ (-1193) (-699 (-324 (-711))))) (-15 -2321 ($ (-1193) (-699 (-324 (-709))))) (-15 -2321 ($ (-1193) (-699 (-324 (-704))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-711))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-709))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-704))))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-711)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-709)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-704)))) (-15 -2321 ($ (-1193) (-324 (-574)))) (-15 -2321 ($ (-1193) (-324 (-388)))) (-15 -2321 ($ (-1193) (-324 (-171 (-388))))) (-15 -2321 ($ (-1193) (-699 (-324 (-574))))) (-15 -2321 ($ (-1193) (-699 (-324 (-388))))) (-15 -2321 ($ (-1193) (-699 (-324 (-171 (-388)))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-574))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-388))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-171 (-388)))))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-574)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-388)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388))))) (-15 -1934 ($ (-654 $))) (-15 -4240 ($)) (-15 -1621 ($)) (-15 -3605 ($ (-654 (-872)))) (-15 -3834 ($ (-1193) (-654 (-1193)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2057 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2265 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -2065 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -4004 ((-1289) $)) (-15 -3409 ((-1120) $)) (-15 -1793 ((-1136) (-1136)))))) (T -338))
-((-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *1 (-338)))) (-3279 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *3 (-966 (-574))) (-5 *1 (-338)))) (-3040 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-2090 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-338)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))) (-2172 (*1 *1) (-5 *1 (-338))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-3259 (*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-3259 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-711))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-709))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-704))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-711))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-709))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-704))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-711))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-709))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-704))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-711)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-709)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-704)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-711))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-709))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-704))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-574))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-388))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-574)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-388)))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-171 (-388))))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-574))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-388))) (-5 *1 (-338)))) (-2321 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))) (-4240 (*1 *1) (-5 *1 (-338))) (-1621 (*1 *1) (-5 *1 (-338))) (-3605 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))) (-3834 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-338)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-338)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| (-338)) (|:| |elseClause| (-338)))) (|:| |returnBranch| (-2 (|:| -2265 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |blockBranch| (-654 (-338))) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -2065 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2051 (-338)))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2051 (-338)))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872))))) (-5 *1 (-338)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-338)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-338)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))))
-(-13 (-1116) (-10 -8 (-15 -3279 ($ (-1108 (-966 (-574))) $)) (-15 -3279 ($ (-1108 (-966 (-574))) (-966 (-574)) $)) (-15 -3040 ($ (-1192) $)) (-15 -2090 ($ (-1192) $)) (-15 -2555 ($ (-1136))) (-15 -2021 ($ (-1136))) (-15 -2048 ($ (-1175))) (-15 -2048 ($ (-654 (-1175)))) (-15 -1443 ($ (-1175))) (-15 -2172 ($)) (-15 -2172 ($ (-324 (-709)))) (-15 -2172 ($ (-324 (-711)))) (-15 -2172 ($ (-324 (-704)))) (-15 -2172 ($ (-324 (-388)))) (-15 -2172 ($ (-324 (-574)))) (-15 -2172 ($ (-324 (-171 (-388))))) (-15 -3259 ($ (-1192) $)) (-15 -3259 ($ (-1192) $ $)) (-15 -2321 ($ (-1193) (-1175))) (-15 -2321 ($ (-1193) (-324 (-711)))) (-15 -2321 ($ (-1193) (-324 (-709)))) (-15 -2321 ($ (-1193) (-324 (-704)))) (-15 -2321 ($ (-1193) (-699 (-711)))) (-15 -2321 ($ (-1193) (-699 (-709)))) (-15 -2321 ($ (-1193) (-699 (-704)))) (-15 -2321 ($ (-1193) (-1284 (-711)))) (-15 -2321 ($ (-1193) (-1284 (-709)))) (-15 -2321 ($ (-1193) (-1284 (-704)))) (-15 -2321 ($ (-1193) (-699 (-324 (-711))))) (-15 -2321 ($ (-1193) (-699 (-324 (-709))))) (-15 -2321 ($ (-1193) (-699 (-324 (-704))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-711))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-709))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-704))))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-711)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-709)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-704)))) (-15 -2321 ($ (-1193) (-324 (-574)))) (-15 -2321 ($ (-1193) (-324 (-388)))) (-15 -2321 ($ (-1193) (-324 (-171 (-388))))) (-15 -2321 ($ (-1193) (-699 (-324 (-574))))) (-15 -2321 ($ (-1193) (-699 (-324 (-388))))) (-15 -2321 ($ (-1193) (-699 (-324 (-171 (-388)))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-574))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-388))))) (-15 -2321 ($ (-1193) (-1284 (-324 (-171 (-388)))))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-574)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-388)))) (-15 -2321 ($ (-1193) (-654 (-966 (-574))) (-324 (-171 (-388))))) (-15 -1934 ($ (-654 $))) (-15 -4240 ($)) (-15 -1621 ($)) (-15 -3605 ($ (-654 (-872)))) (-15 -3834 ($ (-1193) (-654 (-1193)))) (-15 -1469 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2057 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1193)) (|:| |arrayIndex| (-654 (-966 (-574)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1193)) (|:| |rand| (-872)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1192)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2265 (-112)) (|:| -3079 (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872)))))) (|:| |blockBranch| (-654 $)) (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175)) (|:| |forBranch| (-2 (|:| -2065 (-1108 (-966 (-574)))) (|:| |span| (-966 (-574))) (|:| -2051 $))) (|:| |labelBranch| (-1136)) (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2051 $))) (|:| |commonBranch| (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193))))) (|:| |printBranch| (-654 (-872)))) $)) (-15 -4004 ((-1289) $)) (-15 -3409 ((-1120) $)) (-15 -1793 ((-1136) (-1136)))))
-((-2864 (((-112) $ $) NIL)) (-3419 (((-112) $) 13)) (-2236 (($ |#1|) 10)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2247 (($ |#1|) 12)) (-2951 (((-872) $) 19)) (-2981 (((-112) $ $) NIL)) (-4310 ((|#1| $) 14)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 21)))
-(((-339 |#1|) (-13 (-860) (-10 -8 (-15 -2236 ($ |#1|)) (-15 -2247 ($ |#1|)) (-15 -3419 ((-112) $)) (-15 -4310 (|#1| $)))) (-860)) (T -339))
-((-2236 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-2247 (*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))) (-4310 (*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860)))))
-(-13 (-860) (-10 -8 (-15 -2236 ($ |#1|)) (-15 -2247 ($ |#1|)) (-15 -3419 ((-112) $)) (-15 -4310 (|#1| $))))
-((-3339 (((-338) (-1193) (-966 (-574))) 23)) (-1677 (((-338) (-1193) (-966 (-574))) 27)) (-1929 (((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574)))) 26) (((-338) (-1193) (-966 (-574)) (-966 (-574))) 24)) (-1405 (((-338) (-1193) (-966 (-574))) 31)))
-(((-340) (-10 -7 (-15 -3339 ((-338) (-1193) (-966 (-574)))) (-15 -1929 ((-338) (-1193) (-966 (-574)) (-966 (-574)))) (-15 -1929 ((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574))))) (-15 -1677 ((-338) (-1193) (-966 (-574)))) (-15 -1405 ((-338) (-1193) (-966 (-574)))))) (T -340))
-((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-1108 (-966 (-574)))) (-5 *2 (-338)) (-5 *1 (-340)))) (-1929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338)) (-5 *1 (-340)))))
-(-10 -7 (-15 -3339 ((-338) (-1193) (-966 (-574)))) (-15 -1929 ((-338) (-1193) (-966 (-574)) (-966 (-574)))) (-15 -1929 ((-338) (-1193) (-1108 (-966 (-574))) (-1108 (-966 (-574))))) (-15 -1677 ((-338) (-1193) (-966 (-574)))) (-15 -1405 ((-338) (-1193) (-966 (-574)))))
-((-2864 (((-112) $ $) NIL)) (-3316 (((-516) $) 20)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2251 (((-972 (-781)) $) 18)) (-1710 (((-256) $) 7)) (-2951 (((-872) $) 26)) (-4281 (((-972 (-185 (-140))) $) 16)) (-2981 (((-112) $ $) NIL)) (-3984 (((-654 (-883 (-1198) (-781))) $) 12)) (-2986 (((-112) $ $) 22)))
-(((-341) (-13 (-1116) (-10 -8 (-15 -1710 ((-256) $)) (-15 -3984 ((-654 (-883 (-1198) (-781))) $)) (-15 -2251 ((-972 (-781)) $)) (-15 -4281 ((-972 (-185 (-140))) $)) (-15 -3316 ((-516) $))))) (T -341))
-((-1710 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1198) (-781)))) (-5 *1 (-341)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-972 (-781))) (-5 *1 (-341)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-972 (-185 (-140)))) (-5 *1 (-341)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341)))))
-(-13 (-1116) (-10 -8 (-15 -1710 ((-256) $)) (-15 -3984 ((-654 (-883 (-1198) (-781))) $)) (-15 -2251 ((-972 (-781)) $)) (-15 -4281 ((-972 (-185 (-140))) $)) (-15 -3316 ((-516) $))))
-((-1785 (((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)) 33)))
-(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-372) (-1260 |#5|) (-1260 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -342))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *9 (-372)) (-4 *10 (-1260 *9)) (-4 *11 (-1260 (-417 *10))) (-5 *2 (-345 *9 *10 *11 *12)) (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-351 *9 *10 *11)))))
-(-10 -7 (-15 -1785 ((-345 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-345 |#1| |#2| |#3| |#4|))))
-((-3423 (((-112) $) 14)))
-(((-343 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3423 ((-112) |#1|))) (-344 |#2| |#3| |#4| |#5|) (-372) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -343))
-NIL
-(-10 -8 (-15 -3423 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-2882 (($ $) 29)) (-3423 (((-112) $) 28)) (-4420 (((-1175) $) 10)) (-2611 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 35)) (-3940 (((-1136) $) 11)) (-2975 (((-3 |#4| "failed") $) 27)) (-1913 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-574)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3320 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24)))
-(((-344 |#1| |#2| |#3| |#4|) (-141) (-372) (-1260 |t#1|) (-1260 (-417 |t#2|)) (-351 |t#1| |t#2| |t#3|)) (T -344))
-((-2611 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-423 *4 (-417 *4) *5 *6)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372)) (-4 *1 (-344 *3 *4 *5 *6)))) (-1913 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5)))) (-1913 (*1 *1 *2 *2) (-12 (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))) (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4)))) (-1913 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1260 *2)) (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6)) (-4 *6 (-351 *2 *4 *5)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-2 (|:| -2818 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6))))) (-2882 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))) (-4 *5 (-351 *2 *3 *4)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))) (-2975 (*1 *2 *1) (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *2 (-351 *3 *4 *5)))) (-1913 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-372)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2611 ((-423 |t#2| (-417 |t#2|) |t#3| |t#4|) $)) (-15 -1913 ($ (-423 |t#2| (-417 |t#2|) |t#3| |t#4|))) (-15 -1913 ($ |t#4|)) (-15 -1913 ($ |t#1| |t#1|)) (-15 -1913 ($ |t#1| |t#1| (-574))) (-15 -3320 ((-2 (|:| -2818 (-423 |t#2| (-417 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2882 ($ $)) (-15 -3423 ((-112) $)) (-15 -2975 ((-3 |t#4| "failed") $)) (-15 -1913 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-2882 (($ $) 33)) (-3423 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-2316 (((-1284 |#4|) $) 134)) (-2611 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 31)) (-3940 (((-1136) $) NIL)) (-2975 (((-3 |#4| "failed") $) 36)) (-2044 (((-1284 |#4|) $) 126)) (-1913 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-574)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3320 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2951 (((-872) $) 17)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 14 T CONST)) (-2986 (((-112) $ $) 20)) (-3090 (($ $) 27) (($ $ $) NIL)) (-3074 (($ $ $) 25)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 23)))
-(((-345 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2044 ((-1284 |#4|) $)) (-15 -2316 ((-1284 |#4|) $)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -345))
-((-2044 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))) (-2316 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *6 (-351 *3 *4 *5)))))
-(-13 (-344 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2044 ((-1284 |#4|) $)) (-15 -2316 ((-1284 |#4|) $))))
-((-2661 (($ $ (-1193) |#2|) NIL) (($ $ (-654 (-1193)) (-654 |#2|)) 20) (($ $ (-654 (-302 |#2|))) 15) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-2207 (($ $ |#2|) 11)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -2207 (|#1| |#1| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1193) |#2|))) (-347 |#2|) (-1116)) (T -346))
-NIL
-(-10 -8 (-15 -2207 (|#1| |#1| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1193) |#2|)))
-((-1785 (($ (-1 |#1| |#1|) $) 6)) (-2661 (($ $ (-1193) |#1|) 17 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 16 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-654 (-302 |#1|))) 15 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 14 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-317 |#1|))) (($ $ (-654 |#1|) (-654 |#1|)) 12 (|has| |#1| (-317 |#1|)))) (-2207 (($ $ |#1|) 11 (|has| |#1| (-294 |#1| |#1|)))))
-(((-347 |#1|) (-141) (-1116)) (T -347))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1116)))))
-(-13 (-10 -8 (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-294 |t#1| |t#1|)) (-6 (-294 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-524 (-1193) |t#1|)) (-6 (-524 (-1193) |t#1|)) |%noBranch|)))
-(((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-1234) |has| |#1| (-294 |#1| |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) NIL)) (-2793 (((-112)) 96) (((-112) (-112)) 97)) (-4068 (((-654 (-622 $)) $) NIL)) (-2379 (($ $) NIL)) (-2258 (($ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-4212 (($ $) NIL)) (-2358 (($ $) NIL)) (-2236 (($ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-324 |#3|)) 76) (((-3 $ "failed") (-1193)) 103) (((-3 $ "failed") (-324 (-574))) 64 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-417 (-966 (-574)))) 70 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-966 (-574))) 65 (|has| |#3| (-1054 (-574)))) (((-3 $ "failed") (-324 (-388))) 94 (|has| |#3| (-1054 (-388)))) (((-3 $ "failed") (-417 (-966 (-388)))) 88 (|has| |#3| (-1054 (-388)))) (((-3 $ "failed") (-966 (-388))) 83 (|has| |#3| (-1054 (-388))))) (-2216 (((-622 $) $) NIL) ((|#3| $) NIL) (($ (-324 |#3|)) 77) (($ (-1193)) 104) (($ (-324 (-574))) 66 (|has| |#3| (-1054 (-574)))) (($ (-417 (-966 (-574)))) 71 (|has| |#3| (-1054 (-574)))) (($ (-966 (-574))) 67 (|has| |#3| (-1054 (-574)))) (($ (-324 (-388))) 95 (|has| |#3| (-1054 (-388)))) (($ (-417 (-966 (-388)))) 89 (|has| |#3| (-1054 (-388)))) (($ (-966 (-388))) 85 (|has| |#3| (-1054 (-388))))) (-3612 (((-3 $ "failed") $) NIL)) (-3004 (($) 101)) (-3253 (($ $) NIL) (($ (-654 $)) NIL)) (-2256 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3943 (((-112) $) NIL)) (-1476 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2860 (((-1189 $) (-622 $)) NIL (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-1761 (((-3 (-622 $) "failed") $) NIL)) (-1740 (($ $) 99)) (-3113 (($ $) NIL)) (-4420 (((-1175) $) NIL)) (-4140 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) 98) (($ (-115) (-654 $)) NIL)) (-1575 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1846 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-3882 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-1617 (($ $) NIL)) (-4434 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-3457 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-2966 (($ $) NIL (|has| $ (-1065)))) (-2368 (($ $) NIL)) (-2247 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ |#3|) NIL) (($ (-574)) NIL) (((-324 |#3|) $) 102)) (-3070 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2138 (((-112) (-115)) NIL)) (-2981 (((-112) $ $) NIL)) (-2320 (($ $) NIL)) (-2301 (($ $) NIL)) (-2312 (($ $) NIL)) (-4107 (($ $) NIL)) (-2141 (($) 100 T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL)))
-(((-348 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1054 |#3|) (-912 (-1193)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1704 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1193))) (-15 -1704 ((-3 $ "failed") (-1193))) (-15 -2951 ((-324 |#3|) $)) (IF (|has| |#3| (-1054 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574))))) (-15 -2216 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574))))) |%noBranch|) (IF (|has| |#3| (-1054 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2216 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388))))) |%noBranch|) (-15 -4107 ($ $)) (-15 -4212 ($ $)) (-15 -1617 ($ $)) (-15 -3113 ($ $)) (-15 -1740 ($ $)) (-15 -2236 ($ $)) (-15 -2247 ($ $)) (-15 -2258 ($ $)) (-15 -2301 ($ $)) (-15 -2312 ($ $)) (-15 -2320 ($ $)) (-15 -2358 ($ $)) (-15 -2368 ($ $)) (-15 -2379 ($ $)) (-15 -3004 ($)) (-15 -4350 ((-654 (-1193)) $)) (-15 -2793 ((-112))) (-15 -2793 ((-112) (-112))))) (-654 (-1193)) (-654 (-1193)) (-397)) (T -348))
-((-2216 (*1 *1 *2) (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5)) (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-1740 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2258 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2301 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-3004 (*1 *1) (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193))) (-14 *3 (-654 (-1193))) (-4 *4 (-397)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-397)))) (-2793 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))) (-2793 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397)))))
-(-13 (-310) (-38 |#3|) (-1054 |#3|) (-912 (-1193)) (-10 -8 (-15 -2216 ($ (-324 |#3|))) (-15 -1704 ((-3 $ "failed") (-324 |#3|))) (-15 -2216 ($ (-1193))) (-15 -1704 ((-3 $ "failed") (-1193))) (-15 -2951 ((-324 |#3|) $)) (IF (|has| |#3| (-1054 (-574))) (PROGN (-15 -2216 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574))))) (-15 -2216 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574))))) |%noBranch|) (IF (|has| |#3| (-1054 (-388))) (PROGN (-15 -2216 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2216 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388))))) |%noBranch|) (-15 -4107 ($ $)) (-15 -4212 ($ $)) (-15 -1617 ($ $)) (-15 -3113 ($ $)) (-15 -1740 ($ $)) (-15 -2236 ($ $)) (-15 -2247 ($ $)) (-15 -2258 ($ $)) (-15 -2301 ($ $)) (-15 -2312 ($ $)) (-15 -2320 ($ $)) (-15 -2358 ($ $)) (-15 -2368 ($ $)) (-15 -2379 ($ $)) (-15 -3004 ($)) (-15 -4350 ((-654 (-1193)) $)) (-15 -2793 ((-112))) (-15 -2793 ((-112) (-112)))))
-((-1785 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-349 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|))) (-1238) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-1238) (-1260 |#5|) (-1260 (-417 |#6|)) (-351 |#5| |#6| |#7|)) (T -349))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1238)) (-4 *8 (-1238)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *9 (-1260 *8)) (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1260 (-417 *9))))))
-(-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|)))
-((-4229 (((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) $) 39)) (-3114 (($ (-1284 (-417 |#3|)) (-1284 $)) NIL) (($ (-1284 (-417 |#3|))) NIL) (($ (-1284 |#3|) |#3|) 173)) (-2710 (((-1284 $) (-1284 $)) 156)) (-4009 (((-654 (-654 |#2|))) 126)) (-3142 (((-112) |#2| |#2|) 76)) (-4135 (($ $) 148)) (-1948 (((-781)) 172)) (-3318 (((-1284 $) (-1284 $)) 218)) (-3657 (((-654 (-966 |#2|)) (-1193)) 115)) (-3196 (((-112) $) 169)) (-2983 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2919 (((-3 |#3| "failed")) 52)) (-3364 (((-781)) 184)) (-2207 ((|#2| $ |#2| |#2|) 140)) (-4148 (((-3 |#3| "failed")) 71)) (-3879 (($ $ (-1 (-417 |#3|) (-417 |#3|)) (-781)) NIL) (($ $ (-1 (-417 |#3|) (-417 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-2572 (((-1284 $) (-1284 $)) 162)) (-4089 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-4428 (((-112)) 34)))
-(((-350 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -4009 ((-654 (-654 |#2|)))) (-15 -3657 ((-654 (-966 |#2|)) (-1193))) (-15 -4089 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2919 ((-3 |#3| "failed"))) (-15 -4148 ((-3 |#3| "failed"))) (-15 -2207 (|#2| |#1| |#2| |#2|)) (-15 -4135 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2983 ((-112) |#1| |#3|)) (-15 -2983 ((-112) |#1| |#2|)) (-15 -3114 (|#1| (-1284 |#3|) |#3|)) (-15 -4229 ((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2710 ((-1284 |#1|) (-1284 |#1|))) (-15 -3318 ((-1284 |#1|) (-1284 |#1|))) (-15 -2572 ((-1284 |#1|) (-1284 |#1|))) (-15 -2983 ((-112) |#1|)) (-15 -3196 ((-112) |#1|)) (-15 -3142 ((-112) |#2| |#2|)) (-15 -4428 ((-112))) (-15 -3364 ((-781))) (-15 -1948 ((-781))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3114 (|#1| (-1284 (-417 |#3|)))) (-15 -3114 (|#1| (-1284 (-417 |#3|)) (-1284 |#1|)))) (-351 |#2| |#3| |#4|) (-1238) (-1260 |#2|) (-1260 (-417 |#3|))) (T -350))
-((-1948 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3364 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-4428 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))) (-3142 (*1 *2 *3 *3) (-12 (-4 *3 (-1238)) (-4 *5 (-1260 *3)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6)))) (-4148 (*1 *2) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-2919 (*1 *2) (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5)) (-4 *3 (-351 *4 *2 *5)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *5 (-1238)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-654 (-966 *5))) (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7)))) (-4009 (*1 *2) (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6)))))
-(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -4009 ((-654 (-654 |#2|)))) (-15 -3657 ((-654 (-966 |#2|)) (-1193))) (-15 -4089 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2919 ((-3 |#3| "failed"))) (-15 -4148 ((-3 |#3| "failed"))) (-15 -2207 (|#2| |#1| |#2| |#2|)) (-15 -4135 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2983 ((-112) |#1| |#3|)) (-15 -2983 ((-112) |#1| |#2|)) (-15 -3114 (|#1| (-1284 |#3|) |#3|)) (-15 -4229 ((-2 (|:| |num| (-1284 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2710 ((-1284 |#1|) (-1284 |#1|))) (-15 -3318 ((-1284 |#1|) (-1284 |#1|))) (-15 -2572 ((-1284 |#1|) (-1284 |#1|))) (-15 -2983 ((-112) |#1|)) (-15 -3196 ((-112) |#1|)) (-15 -3142 ((-112) |#2| |#2|)) (-15 -4428 ((-112))) (-15 -3364 ((-781))) (-15 -1948 ((-781))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)))) (-15 -3879 (|#1| |#1| (-1 (-417 |#3|) (-417 |#3|)) (-781))) (-15 -3114 (|#1| (-1284 (-417 |#3|)))) (-15 -3114 (|#1| (-1284 (-417 |#3|)) (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4229 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 208)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (|has| (-417 |#2|) (-372)))) (-4141 (($ $) 105 (|has| (-417 |#2|) (-372)))) (-2475 (((-112) $) 107 (|has| (-417 |#2|) (-372)))) (-4348 (((-699 (-417 |#2|)) (-1284 $)) 53) (((-699 (-417 |#2|))) 68)) (-1644 (((-417 |#2|) $) 59)) (-3210 (((-1206 (-935) (-781)) (-574)) 157 (|has| (-417 |#2|) (-358)))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 124 (|has| (-417 |#2|) (-372)))) (-3171 (((-428 $) $) 125 (|has| (-417 |#2|) (-372)))) (-1374 (((-112) $ $) 115 (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) 98 (|has| (-417 |#2|) (-377)))) (-4073 (((-112)) 225)) (-2718 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) 177)) (-2216 (((-574) $) 181 (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) 178)) (-3114 (($ (-1284 (-417 |#2|)) (-1284 $)) 55) (($ (-1284 (-417 |#2|))) 71) (($ (-1284 |#2|) |#2|) 207)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| (-417 |#2|) (-358)))) (-2801 (($ $ $) 119 (|has| (-417 |#2|) (-372)))) (-2375 (((-699 (-417 |#2|)) $ (-1284 $)) 60) (((-699 (-417 |#2|)) $) 66)) (-1557 (((-699 (-574)) (-1284 $)) 176 (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) 173) (((-699 (-417 |#2|)) (-699 $)) 172) (((-699 (-417 |#2|)) (-1284 $)) 171)) (-2710 (((-1284 $) (-1284 $)) 213)) (-2882 (($ |#3|) 168) (((-3 $ "failed") (-417 |#3|)) 165 (|has| (-417 |#2|) (-372)))) (-3612 (((-3 $ "failed") $) 37)) (-4009 (((-654 (-654 |#1|))) 194 (|has| |#1| (-377)))) (-3142 (((-112) |#1| |#1|) 229)) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| (-417 |#2|) (-377)))) (-4048 (((-112)) 222)) (-3995 (((-112) |#1|) 221) (((-112) |#2|) 220)) (-2812 (($ $ $) 118 (|has| (-417 |#2|) (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| (-417 |#2|) (-372)))) (-4135 (($ $) 200)) (-1615 (($) 159 (|has| (-417 |#2|) (-358)))) (-3502 (((-112) $) 160 (|has| (-417 |#2|) (-358)))) (-2613 (($ $ (-781)) 151 (|has| (-417 |#2|) (-358))) (($ $) 150 (|has| (-417 |#2|) (-358)))) (-3342 (((-112) $) 126 (|has| (-417 |#2|) (-372)))) (-1518 (((-935) $) 162 (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) 148 (|has| (-417 |#2|) (-358)))) (-3943 (((-112) $) 35)) (-1948 (((-781)) 232)) (-3318 (((-1284 $) (-1284 $)) 214)) (-2608 (((-417 |#2|) $) 58)) (-3657 (((-654 (-966 |#1|)) (-1193)) 195 (|has| |#1| (-372)))) (-2081 (((-3 $ "failed") $) 152 (|has| (-417 |#2|) (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| (-417 |#2|) (-372)))) (-3446 ((|#3| $) 51 (|has| (-417 |#2|) (-372)))) (-3507 (((-935) $) 100 (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) 166)) (-2845 (($ (-654 $)) 111 (|has| (-417 |#2|) (-372))) (($ $ $) 110 (|has| (-417 |#2|) (-372)))) (-4420 (((-1175) $) 10)) (-2994 (((-699 (-417 |#2|))) 209)) (-4377 (((-699 (-417 |#2|))) 211)) (-1328 (($ $) 127 (|has| (-417 |#2|) (-372)))) (-2013 (($ (-1284 |#2|) |#2|) 205)) (-3395 (((-699 (-417 |#2|))) 210)) (-2222 (((-699 (-417 |#2|))) 212)) (-3537 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 204)) (-2677 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 206)) (-3174 (((-1284 $)) 218)) (-2825 (((-1284 $)) 219)) (-3196 (((-112) $) 217)) (-2983 (((-112) $) 216) (((-112) $ |#1|) 203) (((-112) $ |#2|) 202)) (-3792 (($) 153 (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| (-417 |#2|) (-377)))) (-2919 (((-3 |#2| "failed")) 197)) (-3940 (((-1136) $) 11)) (-3364 (((-781)) 231)) (-2975 (($) 170)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 112 (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) 109 (|has| (-417 |#2|) (-372))) (($ $ $) 108 (|has| (-417 |#2|) (-372)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 156 (|has| (-417 |#2|) (-358)))) (-4201 (((-428 $) $) 123 (|has| (-417 |#2|) (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) 103 (|has| (-417 |#2|) (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| (-417 |#2|) (-372)))) (-4220 (((-781) $) 116 (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) 199)) (-4148 (((-3 |#2| "failed")) 198)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 117 (|has| (-417 |#2|) (-372)))) (-1924 (((-417 |#2|) (-1284 $)) 54) (((-417 |#2|)) 67)) (-1532 (((-781) $) 161 (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) 149 (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 133 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 132 (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) 201) (($ $ (-1193)) 136 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193))) 138 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-1193) (-781)) 139 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $) 144 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 146 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3898 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) 164 (|has| (-417 |#2|) (-372)))) (-2966 ((|#3|) 169)) (-3951 (($) 158 (|has| (-417 |#2|) (-358)))) (-2282 (((-1284 (-417 |#2|)) $ (-1284 $)) 57) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) 56) (((-1284 (-417 |#2|)) $) 73) (((-699 (-417 |#2|)) (-1284 $)) 72)) (-1844 (((-1284 (-417 |#2|)) $) 70) (($ (-1284 (-417 |#2|))) 69) ((|#3| $) 183) (($ |#3|) 167)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 155 (|has| (-417 |#2|) (-358)))) (-2572 (((-1284 $) (-1284 $)) 215)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 |#2|)) 44) (($ (-417 (-574))) 97 (-2833 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-1054 (-417 (-574)))))) (($ $) 102 (|has| (-417 |#2|) (-372)))) (-2705 (($ $) 154 (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) 50 (|has| (-417 |#2|) (-146)))) (-2451 ((|#3| $) 52)) (-3070 (((-781)) 32 T CONST)) (-4418 (((-112)) 228)) (-2600 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 74)) (-3750 (((-112) $ $) 106 (|has| (-417 |#2|) (-372)))) (-4089 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 196)) (-4428 (((-112)) 230)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) 135 (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) 134 (|has| (-417 |#2|) (-372))) (($ $ (-1193)) 137 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193))) 141 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-1193) (-781)) 142 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-2095 (|has| (-417 |#2|) (-912 (-1193))) (|has| (-417 |#2|) (-372))))) (($ $) 145 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) 147 (-2833 (-2095 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-239))) (-2095 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 131 (|has| (-417 |#2|) (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 128 (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 |#2|)) 46) (($ (-417 |#2|) $) 45) (($ (-417 (-574)) $) 130 (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) 129 (|has| (-417 |#2|) (-372)))))
-(((-351 |#1| |#2| |#3|) (-141) (-1238) (-1260 |t#1|) (-1260 (-417 |t#2|))) (T -351))
-((-1948 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))) (-3364 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))) (-4428 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-3142 (*1 *2 *3 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-4418 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-4073 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2718 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2718 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-4048 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-3995 (*1 *2 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-3995 (*1 *2 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-2825 (*1 *2) (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3174 (*1 *2) (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-2222 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-4377 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-3395 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-2994 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))) (-2013 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238)) (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))) (-2983 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))) (-2983 (*1 *2 *1 *3) (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))))) (-2207 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3))))) (-4148 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))) (-2919 (*1 *2) (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238)) (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))) (-4089 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1238)) (-4 *6 (-1260 (-417 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-351 *4 *5 *6)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *4 (-372)) (-5 *2 (-654 (-966 *4))))) (-4009 (*1 *2) (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3))))))
-(-13 (-734 (-417 |t#2|) |t#3|) (-10 -8 (-15 -1948 ((-781))) (-15 -3364 ((-781))) (-15 -4428 ((-112))) (-15 -3142 ((-112) |t#1| |t#1|)) (-15 -4418 ((-112))) (-15 -2600 ((-112) |t#1|)) (-15 -2600 ((-112) |t#2|)) (-15 -4073 ((-112))) (-15 -2718 ((-112) |t#1|)) (-15 -2718 ((-112) |t#2|)) (-15 -4048 ((-112))) (-15 -3995 ((-112) |t#1|)) (-15 -3995 ((-112) |t#2|)) (-15 -2825 ((-1284 $))) (-15 -3174 ((-1284 $))) (-15 -3196 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -2572 ((-1284 $) (-1284 $))) (-15 -3318 ((-1284 $) (-1284 $))) (-15 -2710 ((-1284 $) (-1284 $))) (-15 -2222 ((-699 (-417 |t#2|)))) (-15 -4377 ((-699 (-417 |t#2|)))) (-15 -3395 ((-699 (-417 |t#2|)))) (-15 -2994 ((-699 (-417 |t#2|)))) (-15 -4229 ((-2 (|:| |num| (-1284 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3114 ($ (-1284 |t#2|) |t#2|)) (-15 -2677 ((-2 (|:| |num| (-1284 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2013 ($ (-1284 |t#2|) |t#2|)) (-15 -3537 ((-2 (|:| |num| (-699 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2983 ((-112) $ |t#1|)) (-15 -2983 ((-112) $ |t#2|)) (-15 -3879 ($ $ (-1 |t#2| |t#2|))) (-15 -4135 ($ $)) (-15 -2207 (|t#1| $ |t#1| |t#1|)) (-15 -4148 ((-3 |t#2| "failed"))) (-15 -2919 ((-3 |t#2| "failed"))) (-15 -4089 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-372)) (-15 -3657 ((-654 (-966 |t#1|)) (-1193))) |%noBranch|) (IF (|has| |t#1| (-377)) (-15 -4009 ((-654 (-654 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-38 #1=(-417 |#2|)) . T) ((-38 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-102) . T) ((-111 #0# #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-146))) ((-148) |has| (-417 |#2|) (-148)) ((-626 #0#) -2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-626 #1#) . T) ((-626 (-574)) . T) ((-626 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#3|) . T) ((-235 $) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-233 #1#) |has| (-417 |#2|) (-372)) ((-239) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-238) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-249) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-298) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-315) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-372) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-412) |has| (-417 |#2|) (-358)) ((-377) -2833 (|has| (-417 |#2|) (-377)) (|has| (-417 |#2|) (-358))) ((-358) |has| (-417 |#2|) (-358)) ((-379 #1# |#3|) . T) ((-419 #1# |#3|) . T) ((-386 #1#) . T) ((-421 #1#) . T) ((-462) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-566) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-656 #1#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-658 #1#) . T) ((-658 #2=(-574)) |has| (-417 |#2|) (-649 (-574))) ((-658 $) . T) ((-650 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-650 #1#) . T) ((-650 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-649 #1#) . T) ((-649 #2#) |has| (-417 |#2|) (-649 (-574))) ((-727 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-727 #1#) . T) ((-727 $) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-734 #1# |#3|) . T) ((-736) . T) ((-907 $ #3=(-1193)) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-912 #3#) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-914 #3#) -12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) ((-934) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1054 (-417 (-574))) |has| (-417 |#2|) (-1054 (-417 (-574)))) ((-1054 #1#) . T) ((-1054 (-574)) |has| (-417 |#2|) (-1054 (-574))) ((-1067 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1067 #1#) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))) ((-1072 #1#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| (-417 |#2|) (-358)) ((-1234) -2833 (|has| (-417 |#2|) (-358)) (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193)))) (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372)))) ((-1238) -2833 (|has| (-417 |#2|) (-358)) (|has| (-417 |#2|) (-372))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2216 (((-924 |#1|) $) NIL)) (-3114 (($ (-1284 (-924 |#1|))) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| (-924 |#1|) (-377)))) (-3502 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| (-924 |#1|) (-377)))) (-3576 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2608 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3507 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2739 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-2873 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-3200 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-4368 (((-972 (-1136))) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 (-924 |#1|))) NIL)) (-3951 (($) NIL (|has| (-924 |#1|) (-377)))) (-3883 (($) NIL (|has| (-924 |#1|) (-377)))) (-2282 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-2705 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3585 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL)))
-(((-352 |#1| |#2|) (-13 (-337 (-924 |#1|)) (-10 -7 (-15 -4368 ((-972 (-1136)))))) (-935) (-935)) (T -352))
-((-4368 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-352 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))))
-(-13 (-337 (-924 |#1|)) (-10 -7 (-15 -4368 ((-972 (-1136))))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 58)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) 56 (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 142)) (-2216 ((|#1| $) 113)) (-3114 (($ (-1284 |#1|)) 130)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) 124 (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) 160 (|has| |#1| (-377)))) (-3502 (((-112) $) 66 (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) 60 (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) 62)) (-4400 (($) 162 (|has| |#1| (-377)))) (-3576 (((-112) $) NIL (|has| |#1| (-377)))) (-2608 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) 117) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) 171 (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 178)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 96 (|has| |#1| (-377)))) (-2958 (((-112) $) 147)) (-3940 (((-1136) $) NIL)) (-4368 (((-972 (-1136))) 57)) (-2975 (($) 158 (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 119 (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) 90) (((-935)) 91)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) 161 (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) 154 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 |#1|)) 122)) (-3951 (($) 159 (|has| |#1| (-377)))) (-3883 (($) 167 (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) 77) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 174) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 100)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) 155 T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 144) (((-1284 $) (-935)) 98)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) 67 T CONST)) (-2153 (($) 103 T CONST)) (-2535 (($ $) 107 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 65)) (-3099 (($ $ $) 176) (($ $ |#1|) 177)) (-3090 (($ $) 157) (($ $ $) NIL)) (-3074 (($ $ $) 86)) (** (($ $ (-935)) 180) (($ $ (-781)) 181) (($ $ (-574)) 179)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 102) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-353 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -4368 ((-972 (-1136)))))) (-358) (-1189 |#1|)) (T -353))
-((-4368 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358)) (-14 *4 (-1189 *3)))))
-(-13 (-337 |#1|) (-10 -7 (-15 -4368 ((-972 (-1136))))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3114 (($ (-1284 |#1|)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| |#1| (-377)))) (-3502 (((-112) $) NIL (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| |#1| (-377)))) (-3576 (((-112) $) NIL (|has| |#1| (-377)))) (-2608 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-4368 (((-972 (-1136))) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 |#1|)) NIL)) (-3951 (($) NIL (|has| |#1| (-377)))) (-3883 (($) NIL (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-354 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -4368 ((-972 (-1136)))))) (-358) (-935)) (T -354))
-((-4368 (*1 *2) (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))))
-(-13 (-337 |#1|) (-10 -7 (-15 -4368 ((-972 (-1136))))))
-((-4178 (((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 61)) (-4037 (((-972 (-1136)) (-1189 |#1|)) 112)) (-1884 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|)) 103)) (-2341 (((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 113)) (-2318 (((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935)) 13)) (-2942 (((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935)) 18)))
-(((-355 |#1|) (-10 -7 (-15 -4037 ((-972 (-1136)) (-1189 |#1|))) (-15 -1884 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|))) (-15 -2341 ((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -4178 ((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2318 ((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935))) (-15 -2942 ((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935)))) (-358)) (T -355))
-((-2942 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-3 (-1189 *4) (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-2318 (*1 *2 *3) (|partial| -12 (-5 *3 (-935)) (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-5 *1 (-355 *4)) (-4 *4 (-358)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-5 *1 (-355 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-972 (-1136))) (-5 *1 (-355 *4)))))
-(-10 -7 (-15 -4037 ((-972 (-1136)) (-1189 |#1|))) (-15 -1884 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) (-1189 |#1|))) (-15 -2341 ((-699 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -4178 ((-781) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2318 ((-3 (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) "failed") (-935))) (-15 -2942 ((-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) (-935))))
-((-2951 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
-(((-356 |#1| |#2| |#3|) (-10 -7 (-15 -2951 (|#3| |#1|)) (-15 -2951 (|#1| |#3|))) (-337 |#2|) (-358) (-337 |#2|)) (T -356))
-((-2951 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3)) (-4 *3 (-337 *4)))) (-2951 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2)) (-4 *3 (-337 *4)))))
-(-10 -7 (-15 -2951 (|#3| |#1|)) (-15 -2951 (|#1| |#3|)))
-((-3502 (((-112) $) 60)) (-1518 (((-843 (-935)) $) 23) (((-935) $) 64)) (-2081 (((-3 $ "failed") $) 18)) (-3792 (($) 9)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 114)) (-1532 (((-3 (-781) "failed") $ $) 92) (((-781) $) 79)) (-3879 (($ $) 8) (($ $ (-781)) NIL)) (-3951 (($) 53)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 38)) (-2705 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-357 |#1|) (-10 -8 (-15 -1518 ((-935) |#1|)) (-15 -1532 ((-781) |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -3951 (|#1|)) (-15 -2263 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -2705 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1532 ((-3 (-781) "failed") |#1| |#1|)) (-15 -1518 ((-843 (-935)) |#1|)) (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) (-358)) (T -357))
-NIL
-(-10 -8 (-15 -1518 ((-935) |#1|)) (-15 -1532 ((-781) |#1|)) (-15 -3502 ((-112) |#1|)) (-15 -3951 (|#1|)) (-15 -2263 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -2705 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1532 ((-3 (-781) "failed") |#1| |#1|)) (-15 -1518 ((-843 (-935)) |#1|)) (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3210 (((-1206 (-935) (-781)) (-574)) 102)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-1374 (((-112) $ $) 65)) (-1496 (((-781)) 112)) (-1430 (($) 18 T CONST)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2835 (($) 115)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1615 (($) 100)) (-3502 (((-112) $) 99)) (-2613 (($ $) 87) (($ $ (-781)) 86)) (-3342 (((-112) $) 79)) (-1518 (((-843 (-935)) $) 89) (((-935) $) 97)) (-3943 (((-112) $) 35)) (-2081 (((-3 $ "failed") $) 111)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3507 (((-935) $) 114)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3792 (($) 110 T CONST)) (-2591 (($ (-935)) 113)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 103)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1532 (((-3 (-781) "failed") $ $) 88) (((-781) $) 98)) (-3879 (($ $) 109) (($ $ (-781)) 107)) (-3951 (($) 101)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 104)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-2705 (((-3 $ "failed") $) 90) (($ $) 105)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $) 108) (($ $ (-781)) 106)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
-(((-358) (-141)) (T -358))
-((-2705 (*1 *1 *1) (-4 *1 (-358))) (-2263 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1284 *1)))) (-1541 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))))) (-3210 (*1 *2 *3) (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1206 (-935) (-781))))) (-3951 (*1 *1) (-4 *1 (-358))) (-1615 (*1 *1) (-4 *1 (-358))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-935)))) (-1334 (*1 *2) (-12 (-4 *1 (-358)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-412) (-377) (-1168) (-239) (-10 -8 (-15 -2705 ($ $)) (-15 -2263 ((-3 (-1284 $) "failed") (-699 $))) (-15 -1541 ((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574)))))) (-15 -3210 ((-1206 (-935) (-781)) (-574))) (-15 -3951 ($)) (-15 -1615 ($)) (-15 -3502 ((-112) $)) (-15 -1532 ((-781) $)) (-15 -1518 ((-935) $)) (-15 -1334 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) . T) ((-377) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) . T) ((-1234) . T) ((-1238) . T))
-((-3001 (((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|) 55)) (-2825 (((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 53)))
-(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|))) (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))) (-1260 |#1|) (-419 |#1| |#2|)) (T -359))
-((-3001 (*1 *2 *3) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2825 (*1 *2) (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
-(-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4178 (((-781)) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2216 (((-924 |#1|) $) NIL)) (-3114 (($ (-1284 (-924 |#1|))) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| (-924 |#1|) (-377)))) (-3502 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| (-924 |#1|) (-377)))) (-3576 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2608 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3507 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2739 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-2873 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-3200 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-4040 (((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136)))))) NIL)) (-2184 (((-699 (-924 |#1|))) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 (-924 |#1|))) NIL)) (-3951 (($) NIL (|has| (-924 |#1|) (-377)))) (-3883 (($) NIL (|has| (-924 |#1|) (-377)))) (-2282 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-2705 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3585 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL)))
-(((-360 |#1| |#2|) (-13 (-337 (-924 |#1|)) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 (-924 |#1|)))) (-15 -4178 ((-781))))) (-935) (-935)) (T -360))
-((-4040 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 (-924 *3)) (|:| -2591 (-1136)))))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-2184 (*1 *2) (-12 (-5 *2 (-699 (-924 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-4178 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))))
-(-13 (-337 (-924 |#1|)) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 (-924 |#1|)) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 (-924 |#1|)))) (-15 -4178 ((-781)))))
-((-2864 (((-112) $ $) 73)) (-4311 (((-112) $) 88)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) 106) (($ $ (-935)) 104 (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) 170 (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4178 (((-781)) 103)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) 187 (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 127)) (-2216 ((|#1| $) 105)) (-3114 (($ (-1284 |#1|)) 71)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) 182 (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) 171 (|has| |#1| (-377)))) (-3502 (((-112) $) NIL (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) 113 (|has| |#1| (-377)))) (-3576 (((-112) $) 200 (|has| |#1| (-377)))) (-2608 ((|#1| $) 108) (($ $ (-935)) 107 (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) 214) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) 148 (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) 87 (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) 84 (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) 96 (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) 83 (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 218)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 150 (|has| |#1| (-377)))) (-2958 (((-112) $) 123)) (-3940 (((-1136) $) NIL)) (-4040 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) 97)) (-2184 (((-699 |#1|)) 101)) (-2975 (($) 110 (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 173 (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) 174)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) 75)) (-2966 (((-1189 |#1|)) 175)) (-3951 (($) 147 (|has| |#1| (-377)))) (-3883 (($) NIL (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) 121) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 140) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 70)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) 180 T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 197) (((-1284 $) (-935)) 116)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) 186 T CONST)) (-2153 (($) 161 T CONST)) (-2535 (($ $) 122 (|has| |#1| (-377))) (($ $ (-781)) 114 (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 208)) (-3099 (($ $ $) 119) (($ $ |#1|) 120)) (-3090 (($ $) 202) (($ $ $) 206)) (-3074 (($ $ $) 204)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 153)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 211) (($ $ $) 164) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
-(((-361 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 |#1|))) (-15 -4178 ((-781))))) (-358) (-3 (-1189 |#1|) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (T -361))
-((-4040 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) *2)))) (-2184 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))))) (-4178 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))))))
-(-13 (-337 |#1|) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 |#1|))) (-15 -4178 ((-781)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4178 (((-781)) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3114 (($ (-1284 |#1|)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| |#1| (-377)))) (-3502 (((-112) $) NIL (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| |#1| (-377)))) (-3576 (((-112) $) NIL (|has| |#1| (-377)))) (-2608 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-4040 (((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136)))))) NIL)) (-2184 (((-699 |#1|)) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 |#1|)) NIL)) (-3951 (($) NIL (|has| |#1| (-377)))) (-3883 (($) NIL (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-362 |#1| |#2|) (-13 (-337 |#1|) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 |#1|))) (-15 -4178 ((-781))))) (-358) (-935)) (T -362))
-((-4040 (*1 *2) (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))) (-2184 (*1 *2) (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))) (-4178 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))))
-(-13 (-337 |#1|) (-10 -7 (-15 -4040 ((-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))))) (-15 -2184 ((-699 |#1|))) (-15 -4178 ((-781)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-924 |#1|) (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-924 |#1|) (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-924 |#1|) "failed") $) NIL)) (-2216 (((-924 |#1|) $) NIL)) (-3114 (($ (-1284 (-924 |#1|))) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-924 |#1|) (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| (-924 |#1|) (-377)))) (-3502 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| (-924 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| (-924 |#1|) (-377)))) (-3576 (((-112) $) NIL (|has| (-924 |#1|) (-377)))) (-2608 (((-924 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-924 |#1|) (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 (-924 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-3507 (((-935) $) NIL (|has| (-924 |#1|) (-377)))) (-2739 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377)))) (-2873 (((-1189 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-1189 (-924 |#1|)) "failed") $ $) NIL (|has| (-924 |#1|) (-377)))) (-3200 (($ $ (-1189 (-924 |#1|))) NIL (|has| (-924 |#1|) (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-924 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-924 |#1|) (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| (-924 |#1|) (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-924 |#1|) (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| (-924 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 (-924 |#1|))) NIL)) (-3951 (($) NIL (|has| (-924 |#1|) (-377)))) (-3883 (($) NIL (|has| (-924 |#1|) (-377)))) (-2282 (((-1284 (-924 |#1|)) $) NIL) (((-699 (-924 |#1|)) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-924 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-924 |#1|)) NIL)) (-2705 (($ $) NIL (|has| (-924 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-924 |#1|) (-146)) (|has| (-924 |#1|) (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| (-924 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-924 |#1|) (-377)))) (-3585 (($ $ (-781)) NIL (|has| (-924 |#1|) (-377))) (($ $) NIL (|has| (-924 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ (-924 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-924 |#1|)) NIL) (($ (-924 |#1|) $) NIL)))
-(((-363 |#1| |#2|) (-337 (-924 |#1|)) (-935) (-935)) (T -363))
-NIL
-(-337 (-924 |#1|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) 129 (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) 155 (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 103)) (-2216 ((|#1| $) 100)) (-3114 (($ (-1284 |#1|)) 95)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) 92 (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) 51 (|has| |#1| (-377)))) (-3502 (((-112) $) NIL (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) 130 (|has| |#1| (-377)))) (-3576 (((-112) $) 84 (|has| |#1| (-377)))) (-2608 ((|#1| $) 47) (($ $ (-935)) 52 (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) 75) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) 107 (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) 105 (|has| |#1| (-377)))) (-2958 (((-112) $) 157)) (-3940 (((-1136) $) NIL)) (-2975 (($) 44 (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 124 (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) 154)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) 67)) (-2966 (((-1189 |#1|)) 98)) (-3951 (($) 135 (|has| |#1| (-377)))) (-3883 (($) NIL (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) 63) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) 153) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 97)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) 159 T CONST)) (-2981 (((-112) $ $) 161)) (-1895 (((-1284 $)) 119) (((-1284 $) (-935)) 58)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) 121 T CONST)) (-2153 (($) 40 T CONST)) (-2535 (($ $) 78 (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) 117)) (-3099 (($ $ $) 109) (($ $ |#1|) 110)) (-3090 (($ $) 90) (($ $ $) 115)) (-3074 (($ $ $) 113)) (** (($ $ (-935)) NIL) (($ $ (-781)) 53) (($ $ (-574)) 138)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 88) (($ $ $) 65) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
-(((-364 |#1| |#2|) (-337 |#1|) (-358) (-1189 |#1|)) (T -364))
-NIL
-(-337 |#1|)
-((-3126 ((|#1| (-1189 |#2|)) 59)))
-(((-365 |#1| |#2|) (-10 -7 (-15 -3126 (|#1| (-1189 |#2|)))) (-13 (-412) (-10 -7 (-15 -2951 (|#1| |#2|)) (-15 -3507 ((-935) |#1|)) (-15 -1895 ((-1284 |#1|) (-935))) (-15 -2535 (|#1| |#1|)))) (-358)) (T -365))
-((-3126 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-4 *2 (-13 (-412) (-10 -7 (-15 -2951 (*2 *4)) (-15 -3507 ((-935) *2)) (-15 -1895 ((-1284 *2) (-935))) (-15 -2535 (*2 *2))))) (-5 *1 (-365 *2 *4)))))
-(-10 -7 (-15 -3126 (|#1| (-1189 |#2|))))
-((-1926 (((-972 (-1189 |#1|)) (-1189 |#1|)) 49)) (-2835 (((-1189 |#1|) (-935) (-935)) 154) (((-1189 |#1|) (-935)) 150)) (-3502 (((-112) (-1189 |#1|)) 107)) (-4021 (((-935) (-935)) 85)) (-3449 (((-935) (-935)) 92)) (-3906 (((-935) (-935)) 83)) (-3576 (((-112) (-1189 |#1|)) 111)) (-3531 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 135)) (-1427 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 140)) (-2920 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 139)) (-3061 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 138)) (-1529 (((-3 (-1189 |#1|) "failed") (-1189 |#1|)) 131)) (-3275 (((-1189 |#1|) (-1189 |#1|)) 71)) (-3799 (((-1189 |#1|) (-935)) 145)) (-4126 (((-1189 |#1|) (-935)) 148)) (-2476 (((-1189 |#1|) (-935)) 147)) (-3086 (((-1189 |#1|) (-935)) 146)) (-2241 (((-1189 |#1|) (-935)) 143)))
-(((-366 |#1|) (-10 -7 (-15 -3502 ((-112) (-1189 |#1|))) (-15 -3576 ((-112) (-1189 |#1|))) (-15 -3906 ((-935) (-935))) (-15 -4021 ((-935) (-935))) (-15 -3449 ((-935) (-935))) (-15 -2241 ((-1189 |#1|) (-935))) (-15 -3799 ((-1189 |#1|) (-935))) (-15 -3086 ((-1189 |#1|) (-935))) (-15 -2476 ((-1189 |#1|) (-935))) (-15 -4126 ((-1189 |#1|) (-935))) (-15 -1529 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3531 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3061 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2920 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -1427 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2835 ((-1189 |#1|) (-935))) (-15 -2835 ((-1189 |#1|) (-935) (-935))) (-15 -3275 ((-1189 |#1|) (-1189 |#1|))) (-15 -1926 ((-972 (-1189 |#1|)) (-1189 |#1|)))) (-358)) (T -366))
-((-1926 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-972 (-1189 *4))) (-5 *1 (-366 *4)) (-5 *3 (-1189 *4)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-1427 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-2920 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3061 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-3531 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-1529 (*1 *2 *2) (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4)) (-4 *4 (-358)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-366 *4)))))
-(-10 -7 (-15 -3502 ((-112) (-1189 |#1|))) (-15 -3576 ((-112) (-1189 |#1|))) (-15 -3906 ((-935) (-935))) (-15 -4021 ((-935) (-935))) (-15 -3449 ((-935) (-935))) (-15 -2241 ((-1189 |#1|) (-935))) (-15 -3799 ((-1189 |#1|) (-935))) (-15 -3086 ((-1189 |#1|) (-935))) (-15 -2476 ((-1189 |#1|) (-935))) (-15 -4126 ((-1189 |#1|) (-935))) (-15 -1529 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3531 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -3061 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2920 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -1427 ((-3 (-1189 |#1|) "failed") (-1189 |#1|))) (-15 -2835 ((-1189 |#1|) (-935))) (-15 -2835 ((-1189 |#1|) (-935) (-935))) (-15 -3275 ((-1189 |#1|) (-1189 |#1|))) (-15 -1926 ((-972 (-1189 |#1|)) (-1189 |#1|))))
-((-3571 (((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|) 38)))
-(((-367 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|))) (-358) (-1260 |#1|) (-1260 |#2|)) (T -367))
-((-3571 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3)))))
-(-10 -7 (-15 -3571 ((-3 (-654 |#3|) "failed") (-654 |#3|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3114 (($ (-1284 |#1|)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| |#1| (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| |#1| (-377)))) (-3502 (((-112) $) NIL (|has| |#1| (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| |#1| (-377))) (((-843 (-935)) $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| |#1| (-377)))) (-3576 (((-112) $) NIL (|has| |#1| (-377)))) (-2608 ((|#1| $) NIL) (($ $ (-935)) NIL (|has| |#1| (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 |#1|) $) NIL) (((-1189 $) $ (-935)) NIL (|has| |#1| (-377)))) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-2739 (((-1189 |#1|) $) NIL (|has| |#1| (-377)))) (-2873 (((-1189 |#1|) $) NIL (|has| |#1| (-377))) (((-3 (-1189 |#1|) "failed") $ $) NIL (|has| |#1| (-377)))) (-3200 (($ $ (-1189 |#1|)) NIL (|has| |#1| (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| |#1| (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| |#1| (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| |#1| (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| |#1| (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 |#1|)) NIL)) (-3951 (($) NIL (|has| |#1| (-377)))) (-3883 (($) NIL (|has| |#1| (-377)))) (-2282 (((-1284 |#1|) $) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) NIL)) (-2705 (($ $) NIL (|has| |#1| (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| |#1| (-377))) (($ $ (-781)) NIL (|has| |#1| (-377)))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-377))) (($ $) NIL (|has| |#1| (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-368 |#1| |#2|) (-337 |#1|) (-358) (-935)) (T -368))
-NIL
-(-337 |#1|)
-((-1643 (((-112) (-654 (-966 |#1|))) 41)) (-4274 (((-654 (-966 |#1|)) (-654 (-966 |#1|))) 53)) (-4174 (((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|))) 48)))
-(((-369 |#1| |#2|) (-10 -7 (-15 -1643 ((-112) (-654 (-966 |#1|)))) (-15 -4174 ((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|)))) (-15 -4274 ((-654 (-966 |#1|)) (-654 (-966 |#1|))))) (-462) (-654 (-1193))) (T -369))
-((-4274 (*1 *2 *2) (-12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193))))) (-4174 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193))))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-112)) (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1193))))))
-(-10 -7 (-15 -1643 ((-112) (-654 (-966 |#1|)))) (-15 -4174 ((-3 (-654 (-966 |#1|)) "failed") (-654 (-966 |#1|)))) (-15 -4274 ((-654 (-966 |#1|)) (-654 (-966 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) 17)) (-1720 ((|#1| $ (-574)) NIL)) (-1910 (((-574) $ (-574)) NIL)) (-2737 (($ (-1 |#1| |#1|) $) 34)) (-2393 (($ (-1 (-574) (-574)) $) 26)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 28)) (-3940 (((-1136) $) NIL)) (-3996 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $) 30)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) 40) (($ |#1|) NIL)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ |#1| (-574)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-370 |#1|) (-13 (-483) (-1054 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -1910 ((-574) $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -2393 ($ (-1 (-574) (-574)) $)) (-15 -2737 ($ (-1 |#1| |#1|) $)) (-15 -3996 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $)))) (-1116)) (T -370))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-1910 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116)))) (-2393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1116)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-370 *3)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-574))))) (-5 *1 (-370 *3)) (-4 *3 (-1116)))))
-(-13 (-483) (-1054 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-574))) (-15 -1496 ((-781) $)) (-15 -1910 ((-574) $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -2393 ($ (-1 (-574) (-574)) $)) (-15 -2737 ($ (-1 |#1| |#1|) $)) (-15 -3996 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-574)))) $))))
-((-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 13)) (-4141 (($ $) 14)) (-3171 (((-428 $) $) 34)) (-3342 (((-112) $) 30)) (-1328 (($ $) 19)) (-2887 (($ $ $) 25) (($ (-654 $)) NIL)) (-4201 (((-428 $) $) 35)) (-2853 (((-3 $ "failed") $ $) 24)) (-4220 (((-781) $) 28)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 39)) (-3750 (((-112) $ $) 16)) (-3099 (($ $ $) 37)))
-(((-371 |#1|) (-10 -8 (-15 -3099 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -4220 ((-781) |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3750 ((-112) |#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|))) (-372)) (T -371))
-NIL
-(-10 -8 (-15 -3099 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -4220 ((-781) |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3750 ((-112) |#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-3943 (((-112) $) 35)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
-(((-372) (-141)) (T -372))
-((-3099 (*1 *1 *1 *1) (-4 *1 (-372))))
-(-13 (-315) (-1238) (-249) (-10 -8 (-15 -3099 ($ $ $)) (-6 -4457) (-6 -4451)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2864 (((-112) $ $) 7)) (-2772 ((|#2| $ |#2|) 14)) (-1426 (($ $ (-1175)) 19)) (-3455 ((|#2| $) 15)) (-1683 (($ |#1|) 21) (($ |#1| (-1175)) 20)) (-2039 ((|#1| $) 17)) (-4420 (((-1175) $) 10)) (-2188 (((-1175) $) 16)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-1839 (($ $) 18)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-373 |#1| |#2|) (-141) (-1116) (-1116)) (T -373))
-((-1683 (*1 *1 *2) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1683 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1116)) (-4 *4 (-1116)))) (-1426 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1839 (*1 *1 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-1175)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2772 (*1 *2 *1 *2) (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -1683 ($ |t#1|)) (-15 -1683 ($ |t#1| (-1175))) (-15 -1426 ($ $ (-1175))) (-15 -1839 ($ $)) (-15 -2039 (|t#1| $)) (-15 -2188 ((-1175) $)) (-15 -3455 (|t#2| $)) (-15 -2772 (|t#2| $ |t#2|))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-2772 ((|#1| $ |#1|) 31)) (-1426 (($ $ (-1175)) 23)) (-1348 (((-3 |#1| "failed") $) 30)) (-3455 ((|#1| $) 28)) (-1683 (($ (-398)) 22) (($ (-398) (-1175)) 21)) (-2039 (((-398) $) 25)) (-4420 (((-1175) $) NIL)) (-2188 (((-1175) $) 26)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20)) (-1839 (($ $) 24)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 19)))
-(((-374 |#1|) (-13 (-373 (-398) |#1|) (-10 -8 (-15 -1348 ((-3 |#1| "failed") $)))) (-1116)) (T -374))
-((-1348 (*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1116)))))
-(-13 (-373 (-398) |#1|) (-10 -8 (-15 -1348 ((-3 |#1| "failed") $))))
-((-1955 (((-1284 (-699 |#2|)) (-1284 $)) 67)) (-3516 (((-699 |#2|) (-1284 $)) 139)) (-2984 ((|#2| $) 36)) (-2287 (((-699 |#2|) $ (-1284 $)) 142)) (-2339 (((-3 $ "failed") $) 89)) (-2104 ((|#2| $) 39)) (-4316 (((-1189 |#2|) $) 98)) (-3288 ((|#2| (-1284 $)) 122)) (-1668 (((-1189 |#2|) $) 32)) (-4306 (((-112)) 116)) (-3114 (($ (-1284 |#2|) (-1284 $)) 132)) (-3612 (((-3 $ "failed") $) 93)) (-2183 (((-112)) 111)) (-3630 (((-112)) 106)) (-3226 (((-112)) 58)) (-1542 (((-699 |#2|) (-1284 $)) 137)) (-1603 ((|#2| $) 35)) (-3323 (((-699 |#2|) $ (-1284 $)) 141)) (-2808 (((-3 $ "failed") $) 87)) (-4273 ((|#2| $) 38)) (-1323 (((-1189 |#2|) $) 97)) (-2816 ((|#2| (-1284 $)) 120)) (-1479 (((-1189 |#2|) $) 30)) (-2650 (((-112)) 115)) (-1806 (((-112)) 108)) (-2556 (((-112)) 56)) (-3035 (((-112)) 103)) (-1769 (((-112)) 117)) (-2282 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) 128)) (-3642 (((-112)) 113)) (-1899 (((-654 (-1284 |#2|))) 102)) (-4358 (((-112)) 114)) (-2640 (((-112)) 112)) (-3247 (((-112)) 51)) (-2528 (((-112)) 118)))
-(((-375 |#1| |#2|) (-10 -8 (-15 -4316 ((-1189 |#2|) |#1|)) (-15 -1323 ((-1189 |#2|) |#1|)) (-15 -1899 ((-654 (-1284 |#2|)))) (-15 -2339 ((-3 |#1| "failed") |#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -3630 ((-112))) (-15 -1806 ((-112))) (-15 -2183 ((-112))) (-15 -2556 ((-112))) (-15 -3226 ((-112))) (-15 -3035 ((-112))) (-15 -2528 ((-112))) (-15 -1769 ((-112))) (-15 -4306 ((-112))) (-15 -2650 ((-112))) (-15 -3247 ((-112))) (-15 -4358 ((-112))) (-15 -2640 ((-112))) (-15 -3642 ((-112))) (-15 -1668 ((-1189 |#2|) |#1|)) (-15 -1479 ((-1189 |#2|) |#1|)) (-15 -3516 ((-699 |#2|) (-1284 |#1|))) (-15 -1542 ((-699 |#2|) (-1284 |#1|))) (-15 -3288 (|#2| (-1284 |#1|))) (-15 -2816 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2104 (|#2| |#1|)) (-15 -4273 (|#2| |#1|)) (-15 -2984 (|#2| |#1|)) (-15 -1603 (|#2| |#1|)) (-15 -2287 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3323 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1955 ((-1284 (-699 |#2|)) (-1284 |#1|)))) (-376 |#2|) (-174)) (T -375))
-((-3642 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2640 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4358 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3247 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2650 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-4306 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1769 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2528 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3035 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3226 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2556 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-2183 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1806 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-3630 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1284 *4))) (-5 *1 (-375 *3 *4)) (-4 *3 (-376 *4)))))
-(-10 -8 (-15 -4316 ((-1189 |#2|) |#1|)) (-15 -1323 ((-1189 |#2|) |#1|)) (-15 -1899 ((-654 (-1284 |#2|)))) (-15 -2339 ((-3 |#1| "failed") |#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -3630 ((-112))) (-15 -1806 ((-112))) (-15 -2183 ((-112))) (-15 -2556 ((-112))) (-15 -3226 ((-112))) (-15 -3035 ((-112))) (-15 -2528 ((-112))) (-15 -1769 ((-112))) (-15 -4306 ((-112))) (-15 -2650 ((-112))) (-15 -3247 ((-112))) (-15 -4358 ((-112))) (-15 -2640 ((-112))) (-15 -3642 ((-112))) (-15 -1668 ((-1189 |#2|) |#1|)) (-15 -1479 ((-1189 |#2|) |#1|)) (-15 -3516 ((-699 |#2|) (-1284 |#1|))) (-15 -1542 ((-699 |#2|) (-1284 |#1|))) (-15 -3288 (|#2| (-1284 |#1|))) (-15 -2816 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2104 (|#2| |#1|)) (-15 -4273 (|#2| |#1|)) (-15 -2984 (|#2| |#1|)) (-15 -1603 (|#2| |#1|)) (-15 -2287 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3323 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1955 ((-1284 (-699 |#2|)) (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2020 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1955 (((-1284 (-699 |#1|)) (-1284 $)) 83)) (-4022 (((-1284 $)) 86)) (-1430 (($) 18 T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-4272 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-3516 (((-699 |#1|) (-1284 $)) 70)) (-2984 ((|#1| $) 79)) (-2287 (((-699 |#1|) $ (-1284 $)) 81)) (-2339 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-3344 (($ $ (-935)) 31)) (-2104 ((|#1| $) 77)) (-4316 (((-1189 |#1|) $) 47 (|has| |#1| (-566)))) (-3288 ((|#1| (-1284 $)) 72)) (-1668 (((-1189 |#1|) $) 68)) (-4306 (((-112)) 62)) (-3114 (($ (-1284 |#1|) (-1284 $)) 74)) (-3612 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3558 (((-935)) 85)) (-1837 (((-112)) 59)) (-1855 (($ $ (-935)) 38)) (-2183 (((-112)) 55)) (-3630 (((-112)) 53)) (-3226 (((-112)) 57)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3988 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1542 (((-699 |#1|) (-1284 $)) 71)) (-1603 ((|#1| $) 80)) (-3323 (((-699 |#1|) $ (-1284 $)) 82)) (-2808 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-3484 (($ $ (-935)) 32)) (-4273 ((|#1| $) 78)) (-1323 (((-1189 |#1|) $) 48 (|has| |#1| (-566)))) (-2816 ((|#1| (-1284 $)) 73)) (-1479 (((-1189 |#1|) $) 69)) (-2650 (((-112)) 63)) (-4420 (((-1175) $) 10)) (-1806 (((-112)) 54)) (-2556 (((-112)) 56)) (-3035 (((-112)) 58)) (-3940 (((-1136) $) 11)) (-1769 (((-112)) 61)) (-2282 (((-1284 |#1|) $ (-1284 $)) 76) (((-699 |#1|) (-1284 $) (-1284 $)) 75)) (-3385 (((-654 (-966 |#1|)) (-1284 $)) 84)) (-3082 (($ $ $) 28)) (-3642 (((-112)) 67)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-1899 (((-654 (-1284 |#1|))) 49 (|has| |#1| (-566)))) (-2362 (($ $ $ $) 29)) (-4358 (((-112)) 65)) (-2030 (($ $ $) 27)) (-2640 (((-112)) 66)) (-3247 (((-112)) 64)) (-2528 (((-112)) 60)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-376 |#1|) (-141) (-174)) (T -376))
-((-4022 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-376 *3)))) (-3558 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-935)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))))) (-3323 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-1284 *4)))) (-2282 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) (-4 *1 (-376 *4)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))) (-3642 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2640 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4358 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3247 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2650 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4306 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1769 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2528 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1837 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3035 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3226 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2556 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2183 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1806 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3630 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3612 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2808 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-2339 (*1 *1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566)))) (-1899 (*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-654 (-1284 *3))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1189 *3)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566)) (-5 *2 (-1189 *3)))) (-4190 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1895 (-654 *1)))) (-4 *1 (-376 *3)))) (-3578 (*1 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1895 (-654 *1)))) (-4 *1 (-376 *3)))) (-3988 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-4272 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))) (-2020 (*1 *1) (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
-(-13 (-754 |t#1|) (-10 -8 (-15 -4022 ((-1284 $))) (-15 -3558 ((-935))) (-15 -3385 ((-654 (-966 |t#1|)) (-1284 $))) (-15 -1955 ((-1284 (-699 |t#1|)) (-1284 $))) (-15 -3323 ((-699 |t#1|) $ (-1284 $))) (-15 -2287 ((-699 |t#1|) $ (-1284 $))) (-15 -1603 (|t#1| $)) (-15 -2984 (|t#1| $)) (-15 -4273 (|t#1| $)) (-15 -2104 (|t#1| $)) (-15 -2282 ((-1284 |t#1|) $ (-1284 $))) (-15 -2282 ((-699 |t#1|) (-1284 $) (-1284 $))) (-15 -3114 ($ (-1284 |t#1|) (-1284 $))) (-15 -2816 (|t#1| (-1284 $))) (-15 -3288 (|t#1| (-1284 $))) (-15 -1542 ((-699 |t#1|) (-1284 $))) (-15 -3516 ((-699 |t#1|) (-1284 $))) (-15 -1479 ((-1189 |t#1|) $)) (-15 -1668 ((-1189 |t#1|) $)) (-15 -3642 ((-112))) (-15 -2640 ((-112))) (-15 -4358 ((-112))) (-15 -3247 ((-112))) (-15 -2650 ((-112))) (-15 -4306 ((-112))) (-15 -1769 ((-112))) (-15 -2528 ((-112))) (-15 -1837 ((-112))) (-15 -3035 ((-112))) (-15 -3226 ((-112))) (-15 -2556 ((-112))) (-15 -2183 ((-112))) (-15 -1806 ((-112))) (-15 -3630 ((-112))) (IF (|has| |t#1| (-566)) (PROGN (-15 -3612 ((-3 $ "failed") $)) (-15 -2808 ((-3 $ "failed") $)) (-15 -2339 ((-3 $ "failed") $)) (-15 -1899 ((-654 (-1284 |t#1|)))) (-15 -1323 ((-1189 |t#1|) $)) (-15 -4316 ((-1189 |t#1|) $)) (-15 -4190 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -3578 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -3988 ((-3 $ "failed"))) (-15 -4272 ((-3 $ "failed"))) (-15 -2020 ((-3 $ "failed"))) (-6 -4456)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-1496 (((-781)) 17)) (-2835 (($) 14)) (-3507 (((-935) $) 15)) (-4420 (((-1175) $) 10)) (-2591 (($ (-935)) 16)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-377) (-141)) (T -377))
-((-1496 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-377)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-935)))) (-2835 (*1 *1) (-4 *1 (-377))))
-(-13 (-1116) (-10 -8 (-15 -1496 ((-781))) (-15 -2591 ($ (-935))) (-15 -3507 ((-935) $)) (-15 -2835 ($))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-4348 (((-699 |#2|) (-1284 $)) 45)) (-3114 (($ (-1284 |#2|) (-1284 $)) 39)) (-2375 (((-699 |#2|) $ (-1284 $)) 47)) (-1924 ((|#2| (-1284 $)) 13)) (-2282 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) 27)))
-(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -4348 ((-699 |#2|) (-1284 |#1|))) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2375 ((-699 |#2|) |#1| (-1284 |#1|)))) (-379 |#2| |#3|) (-174) (-1260 |#2|)) (T -378))
-NIL
-(-10 -8 (-15 -4348 ((-699 |#2|) (-1284 |#1|))) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2375 ((-699 |#2|) |#1| (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4348 (((-699 |#1|) (-1284 $)) 53)) (-1644 ((|#1| $) 59)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3114 (($ (-1284 |#1|) (-1284 $)) 55)) (-2375 (((-699 |#1|) $ (-1284 $)) 60)) (-3612 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-3943 (((-112) $) 35)) (-2608 ((|#1| $) 58)) (-3446 ((|#2| $) 51 (|has| |#1| (-372)))) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1924 ((|#1| (-1284 $)) 54)) (-2282 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-2705 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2451 ((|#2| $) 52)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-379 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -379))
-((-3558 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-935)))) (-2375 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *4)))) (-2282 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-3114 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4 *5)) (-4 *5 (-1260 *4)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1260 *2)) (-4 *2 (-174)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372)) (-4 *2 (-1260 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3558 ((-935))) (-15 -2375 ((-699 |t#1|) $ (-1284 $))) (-15 -1644 (|t#1| $)) (-15 -2608 (|t#1| $)) (-15 -2282 ((-1284 |t#1|) $ (-1284 $))) (-15 -2282 ((-699 |t#1|) (-1284 $) (-1284 $))) (-15 -3114 ($ (-1284 |t#1|) (-1284 $))) (-15 -1924 (|t#1| (-1284 $))) (-15 -4348 ((-699 |t#1|) (-1284 $))) (-15 -2451 (|t#2| $)) (IF (|has| |t#1| (-372)) (-15 -3446 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1904 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2882 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1785 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1904 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1234) (-382 |#1|) (-1234) (-382 |#3|)) (T -380))
-((-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1904 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1492 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4287 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2786 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4425 (($ $) 25)) (-1452 (((-574) (-1 (-112) |#2|) $) NIL) (((-574) |#2| $) 11) (((-574) |#2| $ (-574)) NIL)) (-2470 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-381 |#1| |#2|) (-10 -8 (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2786 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-382 |#2|) (-1234)) (T -381))
-NIL
-(-10 -8 (-15 -4287 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2786 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4425 (|#1| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-382 |#1|) (-141) (-1234)) (T -382))
-((-2470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-4425 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)))) (-2786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-1492 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-1452 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) (-2786 (*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-860)) (-5 *2 (-112)))) (-2663 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-2060 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)))) (-4287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3)) (-4 *3 (-1234)))) (-4287 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860)))))
-(-13 (-661 |t#1|) (-10 -8 (-6 -4459) (-15 -2470 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4425 ($ $)) (-15 -2786 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1492 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1452 ((-574) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -1452 ((-574) |t#1| $)) (-15 -1452 ((-574) |t#1| $ (-574)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -2470 ($ $ $)) (-15 -2786 ($ $)) (-15 -1492 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2663 ($ $ $ (-574))) (-15 -2060 ($ $)) (-15 -4287 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -4287 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 37)) (-3665 (($ $ (-781)) 38)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3362 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 41)) (-1442 (($ $) 39)) (-2972 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 42)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2661 (($ $ |#1| $) 36) (($ $ (-654 |#1|) (-654 $)) 35)) (-3735 (((-781) $) 43)) (-2963 (($ $ $) 34)) (-2951 (((-872) $) 12) (($ |#1|) 46) (((-1299 |#1| |#2|) $) 45) (((-1308 |#1| |#2|) $) 44)) (-1866 ((|#2| (-1308 |#1| |#2|) $) 47)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2382 (($ (-682 |#1|)) 40)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#2|) 33 (|has| |#2| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
-(((-383 |#1| |#2|) (-141) (-860) (-174)) (T -383))
-((-1866 (*1 *2 *3 *1) (-12 (-5 *3 (-1308 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860)) (-4 *2 (-174)))) (-2951 (*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1299 *3 *4)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-1308 *3 *4)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-781)))) (-2972 (*1 *2 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-3362 (*1 *2 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2382 (*1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4)) (-4 *4 (-174)))) (-1442 (*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-3665 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *2 (-654 *3)))) (-2661 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-860)) (-4 *5 (-174)))))
-(-13 (-644 |t#2|) (-10 -8 (-15 -1866 (|t#2| (-1308 |t#1| |t#2|) $)) (-15 -2951 ($ |t#1|)) (-15 -2951 ((-1299 |t#1| |t#2|) $)) (-15 -2951 ((-1308 |t#1| |t#2|) $)) (-15 -3735 ((-781) $)) (-15 -2972 ((-1308 |t#1| |t#2|) (-1308 |t#1| |t#2|) $)) (-15 -3362 ((-1308 |t#1| |t#2|) (-1308 |t#1| |t#2|) $)) (-15 -2382 ($ (-682 |t#1|))) (-15 -1442 ($ $)) (-15 -3665 ($ $ (-781))) (-15 -1663 ((-654 |t#1|) $)) (-15 -2661 ($ $ |t#1| $)) (-15 -2661 ($ $ (-654 |t#1|) (-654 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-658 |#2|) . T) ((-644 |#2|) . T) ((-650 |#2|) . T) ((-727 |#2|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1116) . T))
-((-2569 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3847 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3452 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
-(((-384 |#1| |#2|) (-10 -7 (-15 -3847 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3452 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2569 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1234) (-13 (-382 |#1|) (-10 -7 (-6 -4460)))) (T -384))
-((-2569 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))) (-3452 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))) (-3847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2)) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))))
-(-10 -7 (-15 -3847 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3452 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2569 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1557 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 22) (((-699 (-574)) (-699 $)) 14) (((-699 (-574)) (-1284 $)) NIL)))
-(((-385 |#1| |#2|) (-10 -8 (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-699 |#2|) (-1284 |#1|)))) (-386 |#2|) (-1065)) (T -385))
-NIL
-(-10 -8 (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-699 |#2|) (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1557 (((-699 |#1|) (-1284 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 29) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 39 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 38 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-1284 $)) 37 (|has| |#1| (-649 (-574))))) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
-(((-386 |#1|) (-141) (-1065)) (T -386))
-NIL
-(-13 (-649 |t#1|) (-10 -7 (IF (|has| |t#1| (-649 (-574))) (-6 (-649 (-574))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 #0=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-649 #0#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-1116) . T))
-((-2507 (((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|) 51) (((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|) 50) (((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|) 47) (((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|) 41)) (-1709 (((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|) 30) (((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|) 18)))
-(((-387 |#1|) (-10 -7 (-15 -2507 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -2507 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|)) (-15 -2507 ((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -2507 ((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -1709 ((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -1709 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|))) (-13 (-372) (-858))) (T -387))
-((-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-171 *5)))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 (-171 (-574)))))) (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 (-171 (-574))))))) (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574)))))) (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858))))))
-(-10 -7 (-15 -2507 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -2507 ((-654 (-654 (-302 (-966 (-171 |#1|))))) (-654 (-302 (-417 (-966 (-171 (-574)))))) |#1|)) (-15 -2507 ((-654 (-302 (-966 (-171 |#1|)))) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -2507 ((-654 (-302 (-966 (-171 |#1|)))) (-302 (-417 (-966 (-171 (-574))))) |#1|)) (-15 -1709 ((-654 (-171 |#1|)) (-417 (-966 (-171 (-574)))) |#1|)) (-15 -1709 ((-654 (-654 (-171 |#1|))) (-654 (-417 (-966 (-171 (-574))))) (-654 (-1193)) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 35)) (-4356 (((-574) $) 62)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-2991 (($ $) 136)) (-2379 (($ $) 98)) (-2258 (($ $) 90)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) 47)) (-1374 (((-112) $ $) NIL)) (-2358 (($ $) 96)) (-2236 (($ $) 85)) (-1370 (((-574) $) 78)) (-3933 (($ $ (-574)) 73)) (-2404 (($ $) NIL)) (-2280 (($ $) NIL)) (-1430 (($) NIL T CONST)) (-3274 (($ $) 138)) (-1704 (((-3 (-574) "failed") $) 231) (((-3 (-417 (-574)) "failed") $) 227)) (-2216 (((-574) $) 229) (((-417 (-574)) $) 225)) (-2801 (($ $ $) NIL)) (-2703 (((-574) $ $) 125)) (-3612 (((-3 $ "failed") $) 141)) (-2878 (((-417 (-574)) $ (-781)) 232) (((-417 (-574)) $ (-781) (-781)) 224)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3760 (((-935)) 121) (((-935) (-935)) 122 (|has| $ (-6 -4450)))) (-2516 (((-112) $) 130)) (-3004 (($) 41)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-4351 (((-1289) (-781)) 191)) (-4108 (((-1289)) 196) (((-1289) (-781)) 197)) (-4084 (((-1289)) 198) (((-1289) (-781)) 199)) (-2166 (((-1289)) 194) (((-1289) (-781)) 195)) (-1518 (((-574) $) 68)) (-3943 (((-112) $) 40)) (-4439 (($ $ (-574)) NIL)) (-1747 (($ $) 51)) (-2608 (($ $) NIL)) (-1935 (((-112) $) 37)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-2976 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 17)) (-2708 (($) 106) (($ $) 113)) (-1740 (($) 112) (($ $) 114)) (-3113 (($ $) 101)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 143)) (-2189 (((-935) (-574)) 46 (|has| $ (-6 -4450)))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) 60)) (-3229 (($ $) 135)) (-2399 (($ (-574) (-574)) 131) (($ (-574) (-574) (-935)) 132)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2754 (((-574) $) 19)) (-1951 (($) 115)) (-1617 (($ $) 95)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1773 (((-935)) 123) (((-935) (-935)) 124 (|has| $ (-6 -4450)))) (-3879 (($ $) 142) (($ $ (-781)) NIL)) (-2326 (((-935) (-574)) 50 (|has| $ (-6 -4450)))) (-2417 (($ $) NIL)) (-2288 (($ $) NIL)) (-2390 (($ $) NIL)) (-2269 (($ $) NIL)) (-2368 (($ $) 97)) (-2247 (($ $) 89)) (-1844 (((-388) $) 216) (((-227) $) 218) (((-903 (-388)) $) NIL) (((-1175) $) 202) (((-546) $) 214) (($ (-227)) 223)) (-2951 (((-872) $) 206) (($ (-574)) 228) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-574)) 228) (($ (-417 (-574))) NIL) (((-227) $) 219)) (-3070 (((-781)) NIL T CONST)) (-3941 (($ $) 137)) (-4098 (((-935)) 61) (((-935) (-935)) 80 (|has| $ (-6 -4450)))) (-2981 (((-112) $ $) NIL)) (-2644 (((-935)) 126)) (-2456 (($ $) 104)) (-2320 (($ $) 49) (($ $ $) 59)) (-3750 (((-112) $ $) NIL)) (-2429 (($ $) 102)) (-2301 (($ $) 39)) (-2480 (($ $) NIL)) (-2340 (($ $) NIL)) (-2536 (($ $) NIL)) (-2349 (($ $) NIL)) (-2468 (($ $) NIL)) (-2330 (($ $) NIL)) (-2443 (($ $) 103)) (-2312 (($ $) 52)) (-4107 (($ $) 58)) (-2141 (($) 36 T CONST)) (-2153 (($) 43 T CONST)) (-4029 (((-1175) $) 27) (((-1175) $ (-112)) 29) (((-1289) (-832) $) 30) (((-1289) (-832) $ (-112)) 31)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) 203)) (-3020 (((-112) $ $) 45)) (-2986 (((-112) $ $) 56)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 57)) (-3099 (($ $ $) 48) (($ $ (-574)) 42)) (-3090 (($ $) 38) (($ $ $) 53)) (-3074 (($ $ $) 72)) (** (($ $ (-935)) 83) (($ $ (-781)) NIL) (($ $ (-574)) 107) (($ $ (-417 (-574))) 154) (($ $ $) 145)) (* (($ (-935) $) 79) (($ (-781) $) NIL) (($ (-574) $) 84) (($ $ $) 71) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-388) (-13 (-414) (-239) (-624 (-1175)) (-838) (-623 (-227)) (-1219) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3099 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1747 ($ $)) (-15 -2703 ((-574) $ $)) (-15 -3933 ($ $ (-574))) (-15 -2878 ((-417 (-574)) $ (-781))) (-15 -2878 ((-417 (-574)) $ (-781) (-781))) (-15 -2708 ($)) (-15 -1740 ($)) (-15 -1951 ($)) (-15 -2320 ($ $ $)) (-15 -2708 ($ $)) (-15 -1740 ($ $)) (-15 -4084 ((-1289))) (-15 -4084 ((-1289) (-781))) (-15 -2166 ((-1289))) (-15 -2166 ((-1289) (-781))) (-15 -4108 ((-1289))) (-15 -4108 ((-1289) (-781))) (-15 -4351 ((-1289) (-781))) (-6 -4450) (-6 -4442)))) (T -388))
-((** (*1 *1 *1 *1) (-5 *1 (-388))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-1747 (*1 *1 *1) (-5 *1 (-388))) (-2703 (*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388)))) (-2878 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))) (-2708 (*1 *1) (-5 *1 (-388))) (-1740 (*1 *1) (-5 *1 (-388))) (-1951 (*1 *1) (-5 *1 (-388))) (-2320 (*1 *1 *1 *1) (-5 *1 (-388))) (-2708 (*1 *1 *1) (-5 *1 (-388))) (-1740 (*1 *1 *1) (-5 *1 (-388))) (-4084 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-2166 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-4108 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))))
-(-13 (-414) (-239) (-624 (-1175)) (-838) (-623 (-227)) (-1219) (-624 (-546)) (-628 (-227)) (-10 -8 (-15 -3099 ($ $ (-574))) (-15 ** ($ $ $)) (-15 -1747 ($ $)) (-15 -2703 ((-574) $ $)) (-15 -3933 ($ $ (-574))) (-15 -2878 ((-417 (-574)) $ (-781))) (-15 -2878 ((-417 (-574)) $ (-781) (-781))) (-15 -2708 ($)) (-15 -1740 ($)) (-15 -1951 ($)) (-15 -2320 ($ $ $)) (-15 -2708 ($ $)) (-15 -1740 ($ $)) (-15 -4084 ((-1289))) (-15 -4084 ((-1289) (-781))) (-15 -2166 ((-1289))) (-15 -2166 ((-1289) (-781))) (-15 -4108 ((-1289))) (-15 -4108 ((-1289) (-781))) (-15 -4351 ((-1289) (-781))) (-6 -4450) (-6 -4442)))
-((-3426 (((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|) 46) (((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|) 45) (((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|) 42) (((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|) 36)) (-1665 (((-654 |#1|) (-417 (-966 (-574))) |#1|) 20) (((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|) 30)))
-(((-389 |#1|) (-10 -7 (-15 -3426 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|)) (-15 -3426 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|)) (-15 -3426 ((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|)) (-15 -3426 ((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|)) (-15 -1665 ((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|)) (-15 -1665 ((-654 |#1|) (-417 (-966 (-574))) |#1|))) (-13 (-858) (-372))) (T -389))
-((-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-1665 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-858) (-372))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 (-574))))) (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 (-574)))))) (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372))))))
-(-10 -7 (-15 -3426 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-417 (-966 (-574)))) |#1|)) (-15 -3426 ((-654 (-654 (-302 (-966 |#1|)))) (-654 (-302 (-417 (-966 (-574))))) |#1|)) (-15 -3426 ((-654 (-302 (-966 |#1|))) (-417 (-966 (-574))) |#1|)) (-15 -3426 ((-654 (-302 (-966 |#1|))) (-302 (-417 (-966 (-574)))) |#1|)) (-15 -1665 ((-654 (-654 |#1|)) (-654 (-417 (-966 (-574)))) (-654 (-1193)) |#1|)) (-15 -1665 ((-654 |#1|) (-417 (-966 (-574))) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 30)) (-2216 ((|#2| $) 32)) (-1402 (($ $) NIL)) (-2993 (((-781) $) 11)) (-2306 (((-654 $) $) 23)) (-3873 (((-112) $) NIL)) (-3806 (($ |#2| |#1|) 21)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2880 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1366 ((|#2| $) 18)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 51) (($ |#2|) 31)) (-3382 (((-654 |#1|) $) 20)) (-1788 ((|#1| $ |#2|) 55)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 33 T CONST)) (-4375 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-390 |#1| |#2|) (-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1065) (-860)) (T -390))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860)))))
-(-13 (-391 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 49)) (-2216 ((|#2| $) 50)) (-1402 (($ $) 35)) (-2993 (((-781) $) 39)) (-2306 (((-654 $) $) 40)) (-3873 (((-112) $) 43)) (-3806 (($ |#2| |#1|) 44)) (-1785 (($ (-1 |#1| |#1|) $) 45)) (-2880 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1366 ((|#2| $) 38)) (-1378 ((|#1| $) 37)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ |#2|) 48)) (-3382 (((-654 |#1|) $) 41)) (-1788 ((|#1| $ |#2|) 46)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-4375 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-391 |#1| |#2|) (-141) (-1065) (-1116)) (T -391))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116)))) (-1788 (*1 *2 *1 *3) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)))) (-3806 (*1 *1 *2 *3) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-112)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *3)))) (-2306 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-391 *3 *4)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-781)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116)))))
-(-13 (-111 |t#1| |t#1|) (-1054 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1788 (|t#1| $ |t#2|)) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -3806 ($ |t#2| |t#1|)) (-15 -3873 ((-112) $)) (-15 -4375 ((-654 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3382 ((-654 |t#1|) $)) (-15 -2306 ((-654 $) $)) (-15 -2993 ((-781) $)) (-15 -1366 (|t#2| $)) (-15 -1378 (|t#1| $)) (-15 -2880 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1402 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-727 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-1054 |#2|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-699 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 11)))
-(((-392) (-141)) (T -392))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-392)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-699 (-709)))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))))))
-(((-623 (-872)) . T) ((-405) . T) ((-1234) . T))
-((-1704 (((-3 $ "failed") (-699 (-324 (-388)))) 21) (((-3 $ "failed") (-699 (-324 (-574)))) 19) (((-3 $ "failed") (-699 (-966 (-388)))) 17) (((-3 $ "failed") (-699 (-966 (-574)))) 15) (((-3 $ "failed") (-699 (-417 (-966 (-388))))) 13) (((-3 $ "failed") (-699 (-417 (-966 (-574))))) 11)) (-2216 (($ (-699 (-324 (-388)))) 22) (($ (-699 (-324 (-574)))) 20) (($ (-699 (-966 (-388)))) 18) (($ (-699 (-966 (-574)))) 16) (($ (-699 (-417 (-966 (-388))))) 14) (($ (-699 (-417 (-966 (-574))))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23)))
-(((-393) (-141)) (T -393))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2216 ($ (-699 (-324 (-388))))) (-15 -1704 ((-3 $ "failed") (-699 (-324 (-388))))) (-15 -2216 ($ (-699 (-324 (-574))))) (-15 -1704 ((-3 $ "failed") (-699 (-324 (-574))))) (-15 -2216 ($ (-699 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-699 (-966 (-388))))) (-15 -2216 ($ (-699 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-699 (-966 (-574))))) (-15 -2216 ($ (-699 (-417 (-966 (-388)))))) (-15 -1704 ((-3 $ "failed") (-699 (-417 (-966 (-388)))))) (-15 -2216 ($ (-699 (-417 (-966 (-574)))))) (-15 -1704 ((-3 $ "failed") (-699 (-417 (-966 (-574))))))))
-(((-623 (-872)) . T) ((-405) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1727 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 33)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|))) (-1065) (-860)) (T -394))
-NIL
-(-13 (-111 |#1| |#1|) (-519 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-727 |#1|)) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-1496 (((-781) $) 34)) (-1430 (($) 19 T CONST)) (-3362 (((-3 $ "failed") $ $) 37)) (-1704 (((-3 |#1| "failed") $) 45)) (-2216 ((|#1| $) 46)) (-3612 (((-3 $ "failed") $) 16)) (-2888 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3943 (((-112) $) 18)) (-1720 ((|#1| $ (-574)) 31)) (-1910 (((-781) $ (-574)) 32)) (-3634 (($ $ $) 28 (|has| |#1| (-860)))) (-2976 (($ $ $) 27 (|has| |#1| (-860)))) (-2737 (($ (-1 |#1| |#1|) $) 29)) (-2393 (($ (-1 (-781) (-781)) $) 30)) (-2972 (((-3 $ "failed") $ $) 38)) (-4420 (((-1175) $) 10)) (-4314 (($ $ $) 39)) (-4041 (($ $ $) 40)) (-3940 (((-1136) $) 11)) (-3996 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) 33)) (-2472 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2951 (((-872) $) 12) (($ |#1|) 44)) (-2981 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) 25 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 24 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 26 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 23 (|has| |#1| (-860)))) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ |#1| (-781)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-395 |#1|) (-141) (-1116)) (T -395))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-4041 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-4314 (*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-2972 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-3362 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-2472 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1116)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-2888 (*1 *2 *1 *1) (-12 (-4 *3 (-1116)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-781))))))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1116)) (-5 *2 (-781)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1116)))) (-2393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1116)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1116)))))
-(-13 (-736) (-1054 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-781))) (-15 -4041 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -2972 ((-3 $ "failed") $ $)) (-15 -3362 ((-3 $ "failed") $ $)) (-15 -2472 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2888 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1496 ((-781) $)) (-15 -3996 ((-654 (-2 (|:| |gen| |t#1|) (|:| -1617 (-781)))) $)) (-15 -1910 ((-781) $ (-574))) (-15 -1720 (|t#1| $ (-574))) (-15 -2393 ($ (-1 (-781) (-781)) $)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|)))
-(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1054 |#1|) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) 74)) (-1430 (($) NIL T CONST)) (-3362 (((-3 $ "failed") $ $) 77)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2888 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3943 (((-112) $) 17)) (-1720 ((|#1| $ (-574)) NIL)) (-1910 (((-781) $ (-574)) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2737 (($ (-1 |#1| |#1|) $) 40)) (-2393 (($ (-1 (-781) (-781)) $) 37)) (-2972 (((-3 $ "failed") $ $) 60)) (-4420 (((-1175) $) NIL)) (-4314 (($ $ $) 28)) (-4041 (($ $ $) 26)) (-3940 (((-1136) $) NIL)) (-3996 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) 34)) (-2472 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2951 (((-872) $) 24) (($ |#1|) NIL)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 11 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 84 (|has| |#1| (-860)))) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-396 |#1|) (-395 |#1|) (-1116)) (T -396))
-NIL
-(-395 |#1|)
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 53)) (-2216 (((-574) $) 54)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-3634 (($ $ $) 60)) (-2976 (($ $ $) 59)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 52)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 57)) (-3020 (((-112) $ $) 56)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 58)) (-3009 (((-112) $ $) 55)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-397) (-141)) (T -397))
-NIL
-(-13 (-566) (-860) (-1054 (-574)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4024 (((-112) $) 25)) (-3915 (((-112) $) 22)) (-3764 (($ (-1175) (-1175) (-1175)) 26)) (-2039 (((-1175) $) 16)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3687 (($ (-1175) (-1175) (-1175)) 14)) (-3681 (((-1175) $) 17)) (-2782 (((-112) $) 18)) (-2582 (((-1175) $) 15)) (-2951 (((-872) $) 12) (($ (-1175)) 13) (((-1175) $) 9)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 7)))
-(((-398) (-399)) (T -398))
-NIL
-(-399)
-((-2864 (((-112) $ $) 7)) (-4024 (((-112) $) 17)) (-3915 (((-112) $) 18)) (-3764 (($ (-1175) (-1175) (-1175)) 16)) (-2039 (((-1175) $) 21)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3687 (($ (-1175) (-1175) (-1175)) 23)) (-3681 (((-1175) $) 20)) (-2782 (((-112) $) 19)) (-2582 (((-1175) $) 22)) (-2951 (((-872) $) 12) (($ (-1175)) 25) (((-1175) $) 24)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
+((-3118 (($ $) 6)) (-1619 (($ $) 7)) (** (($ $ $) 8)))
+(((-294) (-141)) (T -294))
+((** (*1 *1 *1 *1) (-4 *1 (-294))) (-1619 (*1 *1 *1) (-4 *1 (-294))) (-3118 (*1 *1 *1) (-4 *1 (-294))))
+(-13 (-10 -8 (-15 -3118 ($ $)) (-15 -1619 ($ $)) (-15 ** ($ $ $))))
+((-2918 (((-656 (-1175 |#1|)) (-1175 |#1|) |#1|) 35)) (-2459 ((|#2| |#2| |#1|) 39)) (-2383 ((|#2| |#2| |#1|) 41)) (-3573 ((|#2| |#2| |#1|) 40)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3573 (|#2| |#2| |#1|)) (-15 -2383 (|#2| |#2| |#1|)) (-15 -2918 ((-656 (-1175 |#1|)) (-1175 |#1|) |#1|))) (-374) (-1277 |#1|)) (T -295))
+((-2918 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1175 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-1277 *4)))) (-2383 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-3573 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-2459 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))))
+(-10 -7 (-15 -2459 (|#2| |#2| |#1|)) (-15 -3573 (|#2| |#2| |#1|)) (-15 -2383 (|#2| |#2| |#1|)) (-15 -2918 ((-656 (-1175 |#1|)) (-1175 |#1|) |#1|)))
+((-2209 ((|#2| $ |#1|) 6)))
+(((-296 |#1| |#2|) (-141) (-1236) (-1236)) (T -296))
+((-2209 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -2209 (|t#2| $ |t#1|))))
+(((-1236) . T))
+((-2481 ((|#3| $ |#2| |#3|) 12)) (-2405 ((|#3| $ |#2|) 10)))
+(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -2481 (|#3| |#1| |#2| |#3|)) (-15 -2405 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1118) (-1236)) (T -297))
+NIL
+(-10 -8 (-15 -2481 (|#3| |#1| |#2| |#3|)) (-15 -2405 (|#3| |#1| |#2|)))
+((-3140 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4462)))) (-2481 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) 11)) (-2209 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-298 |#1| |#2|) (-141) (-1118) (-1236)) (T -298))
+((-2209 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-2405 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-3140 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-2481 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))))
+(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2209 (|t#2| $ |t#1| |t#2|)) (-15 -2405 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3140 (|t#2| $ |t#1| |t#2|)) (-15 -2481 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-296 |#1| |#2|) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 37)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 44)) (-4334 (($ $) 41)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) 35)) (-2887 (($ |#2| |#3|) 18)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1440 ((|#3| $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 19)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2814 (((-3 $ "failed") $ $) NIL)) (-3927 (((-783) $) 36)) (-2209 ((|#2| $ |#2|) 46)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 23)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 31 T CONST)) (-2155 (($) 39 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40)))
+(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1440 (|#3| $)) (-15 -2956 (|#2| $)) (-15 -2887 ($ |#2| |#3|)) (-15 -2814 ((-3 $ "failed") $ $)) (-15 -4077 ((-3 $ "failed") $)) (-15 -1330 ($ $)))) (-174) (-1262 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299))
+((-4077 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1440 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2956 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2887 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2814 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1330 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
+(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1440 (|#3| $)) (-15 -2956 (|#2| $)) (-15 -2887 ($ |#2| |#3|)) (-15 -2814 ((-3 $ "failed") $ $)) (-15 -4077 ((-3 $ "failed") $)) (-15 -1330 ($ $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-300) (-141)) (T -300))
+NIL
+(-13 (-1067) (-111 $ $) (-10 -7 (-6 -4454)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2011 (((-656 (-1103)) $) 10)) (-1924 (($ (-518) (-518) (-1122) $) 19)) (-3416 (($ (-518) (-656 (-981)) $) 23)) (-3311 (($) 25)) (-4310 (((-703 (-1122)) (-518) (-518) $) 18)) (-3851 (((-656 (-981)) (-518) $) 22)) (-2953 (($) 7)) (-1839 (($) 24)) (-2956 (((-874) $) 29)) (-1847 (($) 26)))
+(((-301) (-13 (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -2011 ((-656 (-1103)) $)) (-15 -4310 ((-703 (-1122)) (-518) (-518) $)) (-15 -1924 ($ (-518) (-518) (-1122) $)) (-15 -3851 ((-656 (-981)) (-518) $)) (-15 -3416 ($ (-518) (-656 (-981)) $)) (-15 -1839 ($)) (-15 -3311 ($)) (-15 -1847 ($))))) (T -301))
+((-2953 (*1 *1) (-5 *1 (-301))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-656 (-1103))) (-5 *1 (-301)))) (-4310 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1122))) (-5 *1 (-301)))) (-1924 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-301)))) (-3851 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-981))) (-5 *1 (-301)))) (-3416 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-301)))) (-1839 (*1 *1) (-5 *1 (-301))) (-3311 (*1 *1) (-5 *1 (-301))) (-1847 (*1 *1) (-5 *1 (-301))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -2011 ((-656 (-1103)) $)) (-15 -4310 ((-703 (-1122)) (-518) (-518) $)) (-15 -1924 ($ (-518) (-518) (-1122) $)) (-15 -3851 ((-656 (-981)) (-518) $)) (-15 -3416 ($ (-518) (-656 (-981)) $)) (-15 -1839 ($)) (-15 -3311 ($)) (-15 -1847 ($))))
+((-3896 (((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))) 102)) (-1724 (((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|)))) 97) (((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783)) 41)) (-2420 (((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))) 99)) (-3759 (((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|)))) 75)) (-3971 (((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|)))) 74)) (-4343 (((-968 |#1|) (-701 (-419 (-968 |#1|)))) 55) (((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195)) 56)))
+(((-302 |#1|) (-10 -7 (-15 -4343 ((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195))) (-15 -4343 ((-968 |#1|) (-701 (-419 (-968 |#1|))))) (-15 -3971 ((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|))))) (-15 -3759 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))))) (-15 -1724 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783))) (-15 -1724 ((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|))))) (-15 -3896 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|))))) (-15 -2420 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|)))))) (-464)) (T -302))
+((-2420 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))) (-1724 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-968 *6)) (-1184 (-1195) (-968 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-968 *6)))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4))))) (-5 *1 (-302 *4)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-5 *2 (-968 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-968 *5)))) (-5 *4 (-1195)) (-5 *2 (-968 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))))
+(-10 -7 (-15 -4343 ((-968 |#1|) (-701 (-419 (-968 |#1|))) (-1195))) (-15 -4343 ((-968 |#1|) (-701 (-419 (-968 |#1|))))) (-15 -3971 ((-656 (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (-701 (-419 (-968 |#1|))))) (-15 -3759 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))))) (-15 -1724 ((-656 (-701 (-419 (-968 |#1|)))) (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|))) (-701 (-419 (-968 |#1|))) (-783) (-783))) (-15 -1724 ((-656 (-701 (-419 (-968 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|)))))) (-701 (-419 (-968 |#1|))))) (-15 -3896 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|))))) (-15 -2420 ((-656 (-2 (|:| |eigval| (-3 (-419 (-968 |#1|)) (-1184 (-1195) (-968 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-968 |#1|))))))) (-701 (-419 (-968 |#1|))))))
+((-1787 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14)))
+(((-303 |#1| |#2|) (-10 -7 (-15 -1787 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1236) (-1236)) (T -303))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))))
+(-10 -7 (-15 -1787 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3549 (((-112) $) NIL (|has| |#1| (-21)))) (-3918 (($ $) 12)) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2564 (($ $ $) 95 (|has| |#1| (-312)))) (-4335 (($) NIL (-2838 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-2935 (($ $) 51 (|has| |#1| (-21)))) (-3489 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1818 ((|#1| $) 11)) (-4077 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-4192 (((-112) $) NIL (|has| |#1| (-738)))) (-1787 (($ (-1 |#1| |#1|) $) 14)) (-1806 ((|#1| $) 10)) (-3793 (($ $) 50 (|has| |#1| (-21)))) (-2235 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1330 (($ $) 64 (-2838 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3474 (((-656 $) $) 85 (|has| |#1| (-568)))) (-2666 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1195) |#1|)))) (-2712 (($ |#1| |#1|) 9)) (-2068 (((-135)) 90 (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 87 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195))))) (-1979 (($ $ $) NIL (|has| |#1| (-485)))) (-3516 (($ $ $) NIL (|has| |#1| (-485)))) (-2956 (($ (-576)) NIL (|has| |#1| (-1067))) (((-112) $) 37 (|has| |#1| (-1118))) (((-874) $) 36 (|has| |#1| (-1118)))) (-3423 (((-783)) 67 (|has| |#1| (-1067)) CONST)) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2143 (($) 47 (|has| |#1| (-21)) CONST)) (-2155 (($) 57 (|has| |#1| (-738)) CONST)) (-3590 (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195))))) (-2991 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1118)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2838 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3096 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3081 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-937)) NIL (|has| |#1| (-1130)))) (* (($ $ |#1|) 55 (|has| |#1| (-1130))) (($ |#1| $) 54 (|has| |#1| (-1130))) (($ $ $) 53 (|has| |#1| (-1130))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-25)))))
+(((-304 |#1|) (-13 (-1236) (-10 -8 (-15 -2991 ($ |#1| |#1|)) (-15 -2712 ($ |#1| |#1|)) (-15 -3918 ($ $)) (-15 -1806 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2666 ($ $ $)) (-15 -2666 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3081 ($ |#1| $)) (-15 -3081 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3793 ($ $)) (-15 -2935 ($ $)) (-15 -3096 ($ |#1| $)) (-15 -3096 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2235 ((-3 $ "failed") $)) (-15 -3489 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2235 ((-3 $ "failed") $)) (-15 -3489 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3474 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -3108 ($ $ $)) (-15 -1330 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -2564 ($ $ $)) |%noBranch|))) (-1236)) (T -304))
+((-2991 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-2712 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1806 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1818 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-2666 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)) (-5 *1 (-304 *2)))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-3081 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3096 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3096 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-2235 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-3489 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1236)))) (-2564 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236)))) (-3108 (*1 *1 *1 *1) (-2838 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) (-1330 (*1 *1 *1) (-2838 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))))
+(-13 (-1236) (-10 -8 (-15 -2991 ($ |#1| |#1|)) (-15 -2712 ($ |#1| |#1|)) (-15 -3918 ($ $)) (-15 -1806 (|#1| $)) (-15 -1818 (|#1| $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2666 ($ $ $)) (-15 -2666 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3081 ($ |#1| $)) (-15 -3081 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3793 ($ $)) (-15 -2935 ($ $)) (-15 -3096 ($ |#1| $)) (-15 -3096 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2235 ((-3 $ "failed") $)) (-15 -3489 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2235 ((-3 $ "failed") $)) (-15 -3489 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3474 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -3108 ($ $ $)) (-15 -1330 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -2564 ($ $ $)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) NIL)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-305 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118)) (T -305))
+NIL
+(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))
+((-2696 (((-322) (-1177) (-656 (-1177))) 17) (((-322) (-1177) (-1177)) 16) (((-322) (-656 (-1177))) 15) (((-322) (-1177)) 14)))
+(((-306) (-10 -7 (-15 -2696 ((-322) (-1177))) (-15 -2696 ((-322) (-656 (-1177)))) (-15 -2696 ((-322) (-1177) (-1177))) (-15 -2696 ((-322) (-1177) (-656 (-1177)))))) (T -306))
+((-2696 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2696 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))))
+(-10 -7 (-15 -2696 ((-322) (-1177))) (-15 -2696 ((-322) (-656 (-1177)))) (-15 -2696 ((-322) (-1177) (-1177))) (-15 -2696 ((-322) (-1177) (-656 (-1177)))))
+((-1787 ((|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)) 18)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)))) (-312) (-1236)) (T -307))
+((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2)))))
+(-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|))))
+((-1787 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17)))
+(((-308 |#1| |#2|) (-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))))
+(-10 -7 (-15 -1787 (|#2| (-1 |#2| |#1|) (-624 |#1|))))
+((-1698 (((-112) (-227)) 12)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -1698 ((-112) (-227)))) (-227) (-227)) (T -309))
+((-1698 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1698 ((-112) (-227))))
+((-3246 (((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227)))) 118)) (-2483 (((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227)))) 135) (((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227)))) 72)) (-2896 (((-656 (-1177)) (-1175 (-227))) NIL)) (-1441 (((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227)))) 69)) (-2660 (((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227)))) 59)) (-3282 (((-656 (-1177)) (-656 (-227))) NIL)) (-3963 (((-227) (-1112 (-855 (-227)))) 29)) (-2589 (((-227) (-1112 (-855 (-227)))) 30)) (-3917 (((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3221 (((-1177) (-227)) NIL)))
+(((-310) (-10 -7 (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -3917 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1441 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3246 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2660 ((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))))) (T -310))
+((-2896 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-3246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))))
+(-10 -7 (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -3917 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1441 ((-656 (-227)) (-326 (-227)) (-1195) (-1112 (-855 (-227))))) (-15 -3246 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-326 (-227)) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2483 ((-1175 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1112 (-855 (-227))))) (-15 -2660 ((-656 (-227)) (-968 (-419 (-576))) (-1195) (-1112 (-855 (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))))
+((-4071 (((-656 (-624 $)) $) 27)) (-2564 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1706 (((-3 (-624 $) "failed") $) 127)) (-2216 (((-624 $) $) 126)) (-1492 (($ $) 17) (($ (-656 $)) 54)) (-3245 (((-656 (-115)) $) 35)) (-4153 (((-115) (-115)) 88)) (-4314 (((-112) $) 150)) (-1787 (($ (-1 $ $) (-624 $)) 86)) (-2161 (((-3 (-624 $) "failed") $) 94)) (-1784 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-2881 (((-112) $ (-115)) 132) (((-112) $ (-1195)) 131)) (-1850 (((-783) $) 44)) (-1679 (((-112) $ $) 57) (((-112) $ (-1195)) 49)) (-2280 (((-112) $) 148)) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) 67) (($ $ (-1195) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2209 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-1854 (($ $) 51) (($ $ $) 135)) (-2113 (($ $) 15) (($ (-656 $)) 53)) (-1483 (((-112) (-115)) 21)))
+(((-311 |#1|) (-10 -8 (-15 -4314 ((-112) |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -1679 ((-112) |#1| (-1195))) (-15 -1679 ((-112) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1784 (|#1| (-115) (-656 |#1|))) (-15 -1784 (|#1| (-115) |#1|)) (-15 -2881 ((-112) |#1| (-1195))) (-15 -2881 ((-112) |#1| (-115))) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -3245 ((-656 (-115)) |#1|)) (-15 -4071 ((-656 (-624 |#1|)) |#1|)) (-15 -2161 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1850 ((-783) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1854 (|#1| |#1|)) (-15 -1492 (|#1| (-656 |#1|))) (-15 -1492 (|#1| |#1|)) (-15 -2113 (|#1| (-656 |#1|))) (-15 -2113 (|#1| |#1|)) (-15 -2564 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2564 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2564 (|#1| |#1| (-304 |#1|))) (-15 -2209 (|#1| (-115) (-656 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1706 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2216 ((-624 |#1|) |#1|))) (-312)) (T -311))
+((-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))))
+(-10 -8 (-15 -4314 ((-112) |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -1679 ((-112) |#1| (-1195))) (-15 -1679 ((-112) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1784 (|#1| (-115) (-656 |#1|))) (-15 -1784 (|#1| (-115) |#1|)) (-15 -2881 ((-112) |#1| (-1195))) (-15 -2881 ((-112) |#1| (-115))) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -3245 ((-656 (-115)) |#1|)) (-15 -4071 ((-656 (-624 |#1|)) |#1|)) (-15 -2161 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1850 ((-783) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1854 (|#1| |#1|)) (-15 -1492 (|#1| (-656 |#1|))) (-15 -1492 (|#1| |#1|)) (-15 -2113 (|#1| (-656 |#1|))) (-15 -2113 (|#1| |#1|)) (-15 -2564 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2564 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2564 (|#1| |#1| (-304 |#1|))) (-15 -2209 (|#1| (-115) (-656 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1706 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2216 ((-624 |#1|) |#1|)))
+((-2869 (((-112) $ $) 7)) (-4071 (((-656 (-624 $)) $) 39)) (-2564 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1706 (((-3 (-624 $) "failed") $) 64)) (-2216 (((-624 $) $) 65)) (-1492 (($ $) 46) (($ (-656 $)) 45)) (-3245 (((-656 (-115)) $) 38)) (-4153 (((-115) (-115)) 37)) (-4314 (((-112) $) 17 (|has| $ (-1056 (-576))))) (-3982 (((-1191 $) (-624 $)) 20 (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) 31)) (-2161 (((-3 (-624 $) "failed") $) 41)) (-2148 (((-1177) $) 10)) (-4142 (((-656 (-624 $)) $) 40)) (-1784 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2881 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-1850 (((-783) $) 42)) (-3945 (((-1138) $) 11)) (-1679 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-2280 (((-112) $) 18 (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2209 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1854 (($ $) 44) (($ $ $) 43)) (-2477 (($ $) 19 (|has| $ (-1067)))) (-2956 (((-874) $) 12) (($ (-624 $)) 63)) (-2113 (($ $) 48) (($ (-656 $)) 47)) (-1483 (((-112) (-115)) 36)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-312) (-141)) (T -312))
+((-2209 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2209 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-2564 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2113 (*1 *1 *1) (-4 *1 (-312))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1492 (*1 *1 *1) (-4 *1 (-312))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1854 (*1 *1 *1) (-4 *1 (-312))) (-1854 (*1 *1 *1 *1) (-4 *1 (-312))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2161 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-4153 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1483 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-1784 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-1679 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-1679 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1067)) (-4 *1 (-312)) (-5 *2 (-1191 *1)))) (-2477 (*1 *1 *1) (-12 (-4 *1 (-1067)) (-4 *1 (-312)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))))
+(-13 (-1118) (-1056 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2209 ($ (-115) $)) (-15 -2209 ($ (-115) $ $)) (-15 -2209 ($ (-115) $ $ $)) (-15 -2209 ($ (-115) $ $ $ $)) (-15 -2209 ($ (-115) (-656 $))) (-15 -2564 ($ $ (-304 $))) (-15 -2564 ($ $ (-656 (-304 $)))) (-15 -2564 ($ $ (-656 (-624 $)) (-656 $))) (-15 -2113 ($ $)) (-15 -2113 ($ (-656 $))) (-15 -1492 ($ $)) (-15 -1492 ($ (-656 $))) (-15 -1854 ($ $)) (-15 -1854 ($ $ $)) (-15 -1850 ((-783) $)) (-15 -2161 ((-3 (-624 $) "failed") $)) (-15 -4142 ((-656 (-624 $)) $)) (-15 -4071 ((-656 (-624 $)) $)) (-15 -3245 ((-656 (-115)) $)) (-15 -4153 ((-115) (-115))) (-15 -1483 ((-112) (-115))) (-15 -2881 ((-112) $ (-115))) (-15 -2881 ((-112) $ (-1195))) (-15 -1784 ($ (-115) $)) (-15 -1784 ($ (-115) (-656 $))) (-15 -1787 ($ (-1 $ $) (-624 $))) (-15 -1679 ((-112) $ $)) (-15 -1679 ((-112) $ (-1195))) (-15 -2666 ($ $ (-656 (-1195)) (-656 (-1 $ $)))) (-15 -2666 ($ $ (-656 (-1195)) (-656 (-1 $ (-656 $))))) (-15 -2666 ($ $ (-1195) (-1 $ (-656 $)))) (-15 -2666 ($ $ (-1195) (-1 $ $))) (-15 -2666 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -2666 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -2666 ($ $ (-115) (-1 $ (-656 $)))) (-15 -2666 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1067)) (PROGN (-15 -3982 ((-1191 $) (-624 $))) (-15 -2477 ($ $))) |%noBranch|) (IF (|has| $ (-1056 (-576))) (PROGN (-15 -2280 ((-112) $)) (-15 -4314 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-874)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1056 #0#) . T) ((-1118) . T))
+((-4079 (((-656 |#1|) (-656 |#1|)) 10)))
+(((-313 |#1|) (-10 -7 (-15 -4079 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313))
+((-4079 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3)))))
+(-10 -7 (-15 -4079 ((-656 |#1|) (-656 |#1|))))
+((-1787 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -1787 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1067) (-1067)) (T -314))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))))
+(-10 -7 (-15 -1787 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|))))
+((-1831 (((-1286 (-326 (-390))) (-1286 (-326 (-227)))) 110)) (-1467 (((-1112 (-855 (-227))) (-1112 (-855 (-390)))) 43)) (-2896 (((-656 (-1177)) (-1175 (-227))) 92)) (-4073 (((-326 (-390)) (-968 (-227))) 53)) (-1812 (((-227) (-968 (-227))) 49)) (-4265 (((-1177) (-390)) 195)) (-4318 (((-855 (-227)) (-855 (-390))) 37)) (-3110 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227)))) 165)) (-4360 (((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) 207) (((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) 205)) (-2081 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-4003 (((-1286 (-711)) (-656 (-227))) 99)) (-3282 (((-656 (-1177)) (-656 (-227))) 79)) (-1790 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1698 (((-112) (-227) (-1112 (-855 (-227)))) 117)) (-1350 (((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-3963 (((-227) (-1112 (-855 (-227)))) 112)) (-2589 (((-227) (-1112 (-855 (-227)))) 113)) (-3349 (((-227) (-419 (-576))) 31)) (-2407 (((-1177) (-390)) 77)) (-2775 (((-227) (-390)) 22)) (-3150 (((-390) (-1286 (-326 (-227)))) 177)) (-2547 (((-326 (-227)) (-326 (-390))) 28)) (-2658 (((-419 (-576)) (-326 (-227))) 56)) (-3044 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-4207 (((-326 (-390)) (-326 (-227))) 103)) (-1683 (((-227) (-326 (-227))) 57)) (-3490 (((-656 (-227)) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) 68)) (-1569 (((-1112 (-855 (-227))) (-1112 (-855 (-227)))) 65)) (-3221 (((-1177) (-227)) 76)) (-2842 (((-711) (-227)) 95)) (-1348 (((-419 (-576)) (-227)) 58)) (-3785 (((-326 (-390)) (-227)) 52)) (-1846 (((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390))))) 46)) (-4136 (((-1053) (-656 (-1053))) 191) (((-1053) (-1053) (-1053)) 185)) (-1899 (((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
+(((-315) (-10 -7 (-15 -2775 ((-227) (-390))) (-15 -2547 ((-326 (-227)) (-326 (-390)))) (-15 -4318 ((-855 (-227)) (-855 (-390)))) (-15 -1467 ((-1112 (-855 (-227))) (-1112 (-855 (-390))))) (-15 -1846 ((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390)))))) (-15 -1348 ((-419 (-576)) (-227))) (-15 -2658 ((-419 (-576)) (-326 (-227)))) (-15 -1683 ((-227) (-326 (-227)))) (-15 -1790 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3150 ((-390) (-1286 (-326 (-227))))) (-15 -3110 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3044 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1569 ((-1112 (-855 (-227))) (-1112 (-855 (-227))))) (-15 -3490 ((-656 (-227)) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))) (-15 -2842 ((-711) (-227))) (-15 -4003 ((-1286 (-711)) (-656 (-227)))) (-15 -4207 ((-326 (-390)) (-326 (-227)))) (-15 -1831 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -1698 ((-112) (-227) (-1112 (-855 (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -2407 ((-1177) (-390))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))) (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -4136 ((-1053) (-1053) (-1053))) (-15 -4136 ((-1053) (-656 (-1053)))) (-15 -4265 ((-1177) (-390))) (-15 -4360 ((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -4360 ((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))) (-15 -1899 ((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1350 ((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4073 ((-326 (-390)) (-968 (-227)))) (-15 -1812 ((-227) (-968 (-227)))) (-15 -3785 ((-326 (-390)) (-227))) (-15 -3349 ((-227) (-419 (-576)))) (-15 -2081 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315))
+((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-4360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-4360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-656 (-1053))) (-5 *2 (-1053)) (-5 *1 (-315)))) (-4136 (*1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-315)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390)))) (-5 *1 (-315)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-1790 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-656 (-1112 (-855 (-390))))) (-5 *2 (-656 (-1112 (-855 (-227))))) (-5 *1 (-315)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-1112 (-855 (-390)))) (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315)))))
+(-10 -7 (-15 -2775 ((-227) (-390))) (-15 -2547 ((-326 (-227)) (-326 (-390)))) (-15 -4318 ((-855 (-227)) (-855 (-390)))) (-15 -1467 ((-1112 (-855 (-227))) (-1112 (-855 (-390))))) (-15 -1846 ((-656 (-1112 (-855 (-227)))) (-656 (-1112 (-855 (-390)))))) (-15 -1348 ((-419 (-576)) (-227))) (-15 -2658 ((-419 (-576)) (-326 (-227)))) (-15 -1683 ((-227) (-326 (-227)))) (-15 -1790 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3150 ((-390) (-1286 (-326 (-227))))) (-15 -3110 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3044 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1569 ((-1112 (-855 (-227))) (-1112 (-855 (-227))))) (-15 -3490 ((-656 (-227)) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))) (-15 -2842 ((-711) (-227))) (-15 -4003 ((-1286 (-711)) (-656 (-227)))) (-15 -4207 ((-326 (-390)) (-326 (-227)))) (-15 -1831 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -1698 ((-112) (-227) (-1112 (-855 (-227))))) (-15 -3221 ((-1177) (-227))) (-15 -2407 ((-1177) (-390))) (-15 -3282 ((-656 (-1177)) (-656 (-227)))) (-15 -2896 ((-656 (-1177)) (-1175 (-227)))) (-15 -3963 ((-227) (-1112 (-855 (-227))))) (-15 -2589 ((-227) (-1112 (-855 (-227))))) (-15 -4136 ((-1053) (-1053) (-1053))) (-15 -4136 ((-1053) (-656 (-1053)))) (-15 -4265 ((-1177) (-390))) (-15 -4360 ((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -4360 ((-1053) (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))) (-15 -1899 ((-1053) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1350 ((-1053) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4073 ((-326 (-390)) (-968 (-227)))) (-15 -1812 ((-227) (-968 (-227)))) (-15 -3785 ((-326 (-390)) (-227))) (-15 -3349 ((-227) (-419 (-576)))) (-15 -2081 ((-701 (-227)) (-656 (-227)) (-783))))
+((-1323 (((-112) $ $) 14)) (-2806 (($ $ $) 18)) (-2818 (($ $ $) 17)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 50)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-2892 (($ $ $) 25) (($ (-656 $)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2858 (((-3 $ "failed") $ $) 21)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 53)))
+(((-316 |#1|) (-10 -8 (-15 -2421 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1326 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1326 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -1323 ((-112) |#1| |#1|)) (-15 -2583 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1889 ((-2 (|:| -1868 (-656 |#1|)) (|:| -2981 |#1|)) (-656 |#1|))) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316))
+NIL
+(-10 -8 (-15 -2421 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1326 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1326 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -2806 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -1323 ((-112) |#1| |#1|)) (-15 -2583 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1889 ((-2 (|:| -1868 (-656 |#1|)) (|:| -2981 |#1|)) (-656 |#1|))) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-4192 (((-112) $) 35)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-317) (-141)) (T -317))
+((-1323 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-1408 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-317)))) (-2818 (*1 *1 *1 *1) (-4 *1 (-317))) (-2806 (*1 *1 *1 *1) (-4 *1 (-317))) (-1326 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1))) (-4 *1 (-317)))) (-1326 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2421 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317)))))
+(-13 (-936) (-10 -8 (-15 -1323 ((-112) $ $)) (-15 -3927 ((-783) $)) (-15 -1408 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2818 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -1326 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $)) (-15 -1326 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2421 ((-3 (-656 $) "failed") (-656 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2666 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL)))
+(((-318 |#1| |#2|) (-10 -8 (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1118)) (T -318))
+NIL
+(-10 -8 (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|))))
+((-2666 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10)))
+(((-319 |#1|) (-141) (-1118)) (T -319))
+((-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1118)))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1118)))))
+(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -2666 ($ $ (-304 |t#1|))) (-15 -2666 ($ $ (-656 (-304 |t#1|))))))
+(((-526 |#1| |#1|) . T))
+((-2666 ((|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))) 26)))
+(((-320 |#1|) (-10 -7 (-15 -2666 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320))
+((-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))))
+(-10 -7 (-15 -2666 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576))))))
+((-2869 (((-112) $ $) NIL)) (-4315 (((-576) $) 12)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 9)) (-2956 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-321) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -4315 ((-576) $))))) (T -321))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-321)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -4315 ((-576) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 7)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)))
+(((-322) (-1118)) (T -322))
+NIL
+(-1118)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 60)) (-2742 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-1272 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 26)) (-2216 (((-1272 |#1| |#2| |#3| |#4|) $) NIL) (((-1195) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-576)))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-1272 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1272 |#1| |#2| |#3| |#4|)))) (-701 $) (-1286 $)) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-701 $)) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-1272 |#1| |#2| |#3| |#4|) $) 22)) (-2211 (((-3 $ "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1170)))) (-3327 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-2571 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-1787 (($ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) $) NIL)) (-3947 (((-3 (-855 |#2|) "failed") $) 80)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-4371 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-1272 |#1| |#2| |#3| |#4|)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1272 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1195)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1195) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-296 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-1272 |#1| |#2| |#3| |#4|) $) 19)) (-1846 (((-905 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1040))) (((-227) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1272 |#1| |#2| |#3| |#4|)) 30) (($ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1056 (-1195)))) (($ (-1271 |#2| |#3| |#4|)) 37)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-925))) (|has| (-1272 |#1| |#2| |#3| |#4|) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-914 (-1195)))) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3108 (($ $ $) 35) (($ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) 32)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1272 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL)))
+(((-323 |#1| |#2| |#3| |#4|) (-13 (-1010 (-1272 |#1| |#2| |#3| |#4|)) (-1056 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -3947 ((-3 (-855 |#2|) "failed") $)) (-15 -2956 ($ (-1271 |#2| |#3| |#4|))))) (-13 (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -323))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4) (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-3947 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4))))
+(-13 (-1010 (-1272 |#1| |#2| |#3| |#4|)) (-1056 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -3947 ((-3 (-855 |#2|) "failed") $)) (-15 -2956 ($ (-1271 |#2| |#3| |#4|)))))
+((-1787 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13)))
+(((-324 |#1| |#2|) (-10 -7 (-15 -1787 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1118) (-1118)) (T -324))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))))
+(-10 -7 (-15 -1787 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|))))
+((-4404 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1195)) 26)) (-3602 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1195)) 55)) (-4428 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1195)) 50)) (-4416 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1195)) 43)))
+(((-325 |#1| |#2|) (-10 -7 (-15 -4404 ((-52) (-1195))) (-15 -4404 ((-52) |#2|)) (-15 -4404 ((-52) |#2| (-783))) (-15 -4404 ((-52) |#2| (-304 |#2|))) (-15 -4404 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4416 ((-52) (-1195))) (-15 -4416 ((-52) |#2|)) (-15 -4416 ((-52) |#2| (-576))) (-15 -4416 ((-52) |#2| (-304 |#2|))) (-15 -4416 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4428 ((-52) (-1195))) (-15 -4428 ((-52) |#2|)) (-15 -4428 ((-52) |#2| (-419 (-576)))) (-15 -4428 ((-52) |#2| (-304 |#2|))) (-15 -4428 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3602 ((-52) (-1195))) (-15 -3602 ((-52) |#2|)) (-15 -3602 ((-52) |#2| (-419 (-576)))) (-15 -3602 ((-52) |#2| (-304 |#2|))) (-15 -3602 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -325))
+((-3602 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4428 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4428 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4428 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4428 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4416 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4416 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1056 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4416 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4416 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-4404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4404 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4404 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4404 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4404 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))))
+(-10 -7 (-15 -4404 ((-52) (-1195))) (-15 -4404 ((-52) |#2|)) (-15 -4404 ((-52) |#2| (-783))) (-15 -4404 ((-52) |#2| (-304 |#2|))) (-15 -4404 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4416 ((-52) (-1195))) (-15 -4416 ((-52) |#2|)) (-15 -4416 ((-52) |#2| (-576))) (-15 -4416 ((-52) |#2| (-304 |#2|))) (-15 -4416 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4428 ((-52) (-1195))) (-15 -4428 ((-52) |#2|)) (-15 -4428 ((-52) |#2| (-419 (-576)))) (-15 -4428 ((-52) |#2| (-304 |#2|))) (-15 -4428 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3602 ((-52) (-1195))) (-15 -3602 ((-52) |#2|)) (-15 -3602 ((-52) |#2| (-419 (-576)))) (-15 -3602 ((-52) |#2| (-304 |#2|))) (-15 -3602 ((-52) |#2| (-304 |#2|) (-419 (-576)))))
+((-2869 (((-112) $ $) NIL)) (-3246 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-968 $)) NIL (|has| |#1| (-568)))) (-2272 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-968 $)) NIL (|has| |#1| (-568)))) (-3549 (((-112) $) 27 (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-4352 (((-656 (-1195)) $) 368)) (-4174 (((-419 (-1191 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-4071 (((-656 (-624 $)) $) NIL)) (-2384 (($ $) 171 (|has| |#1| (-568)))) (-2260 (($ $) 147 (|has| |#1| (-568)))) (-3738 (($ $ (-1110 $)) 232 (|has| |#1| (-568))) (($ $ (-1195)) 228 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) NIL (-2838 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-2564 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-3529 (((-430 (-1191 $)) (-1191 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2879 (($ $) NIL (|has| |#1| (-568)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-568)))) (-4214 (($ $) NIL (|has| |#1| (-568)))) (-1323 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2363 (($ $) 167 (|has| |#1| (-568)))) (-2238 (($ $) 143 (|has| |#1| (-568)))) (-2233 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-2409 (($ $) 175 (|has| |#1| (-568)))) (-2282 (($ $) 151 (|has| |#1| (-568)))) (-4335 (($) NIL (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) (|has| |#1| (-1130))) CONST)) (-3190 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-968 $)) NIL (|has| |#1| (-568)))) (-3028 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) 134 (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-968 $)) NIL (|has| |#1| (-568)))) (-1706 (((-3 (-624 $) "failed") $) 18) (((-3 (-1195) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-968 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-968 |#1|) "failed") $) NIL (|has| |#1| (-1067))) (((-3 (-419 (-576)) "failed") $) 46 (-2838 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-2216 (((-624 $) $) 12) (((-1195) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-968 |#1|)) $) NIL (|has| |#1| (-568))) (((-968 |#1|) $) NIL (|has| |#1| (-1067))) (((-419 (-576)) $) 319 (-2838 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-2806 (($ $ $) NIL (|has| |#1| (-568)))) (-3928 (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 125 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1067))) (((-701 |#1|) (-1286 $)) NIL (|has| |#1| (-1067))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (-2887 (($ $) 96 (|has| |#1| (-568)))) (-4077 (((-3 $ "failed") $) NIL (|has| |#1| (-1130)))) (-2818 (($ $ $) NIL (|has| |#1| (-568)))) (-2230 (($ $ (-1110 $)) 236 (|has| |#1| (-568))) (($ $ (-1195)) 234 (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-3124 (((-112) $) NIL (|has| |#1| (-568)))) (-1760 (($ $ $) 202 (|has| |#1| (-568)))) (-3009 (($) 137 (|has| |#1| (-568)))) (-2636 (($ $ $) 222 (|has| |#1| (-568)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 392 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 399 (|has| |#1| (-899 (-390))))) (-1492 (($ $) NIL) (($ (-656 $)) NIL)) (-3245 (((-656 (-115)) $) NIL)) (-4153 (((-115) (-115)) 276)) (-4192 (((-112) $) 25 (|has| |#1| (-1130)))) (-4314 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-4299 (($ $) 72 (|has| |#1| (-1067)))) (-2976 (((-1143 |#1| (-624 $)) $) 91 (|has| |#1| (-1067)))) (-1799 (((-112) $) 62 (|has| |#1| (-568)))) (-2333 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3982 (((-1191 $) (-624 $)) 277 (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) 426)) (-2161 (((-3 (-624 $) "failed") $) NIL)) (-3118 (($ $) 141 (|has| |#1| (-568)))) (-4058 (($ $) 247 (|has| |#1| (-568)))) (-2850 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2148 (((-1177) $) NIL)) (-4142 (((-656 (-624 $)) $) 49)) (-1784 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-1864 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1130)))) (-4004 (((-3 (-2 (|:| |val| $) (|:| -2300 (-576))) "failed") $) NIL (|has| |#1| (-1067)))) (-4139 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-3002 (((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2302 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $) NIL (|has| |#1| (-1130))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-1195)) NIL (|has| |#1| (-1067)))) (-2881 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) 51)) (-1330 (($ $) NIL (-2838 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2425 (($ $ (-1195)) 251 (|has| |#1| (-568))) (($ $ (-1110 $)) 253 (|has| |#1| (-568)))) (-1850 (((-783) $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) 43)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 301 (|has| |#1| (-568)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1679 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-4247 (($ $ (-1195)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-1786 (($ $) 218 (|has| |#1| (-568)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-4205 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-568)))) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-1619 (($ $) 139 (|has| |#1| (-568)))) (-2280 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ $)) NIL (|has| |#1| (-1067)))) (-3927 (((-783) $) NIL (|has| |#1| (-568)))) (-4049 (($ $) 239 (|has| |#1| (-568)))) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1854 (($ $) NIL) (($ $ $) NIL)) (-2224 (($ $) 249 (|has| |#1| (-568)))) (-1360 (($ $) 200 (|has| |#1| (-568)))) (-3884 (($ $ (-1195)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1067)))) (-3210 (($ $) 74 (|has| |#1| (-568)))) (-2987 (((-1143 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-2477 (($ $) 317 (|has| $ (-1067)))) (-2422 (($ $) 177 (|has| |#1| (-568)))) (-2291 (($ $) 153 (|has| |#1| (-568)))) (-2394 (($ $) 173 (|has| |#1| (-568)))) (-2270 (($ $) 149 (|has| |#1| (-568)))) (-2373 (($ $) 169 (|has| |#1| (-568)))) (-2249 (($ $) 145 (|has| |#1| (-568)))) (-1846 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-1979 (($ $ $) NIL (|has| |#1| (-485)))) (-3516 (($ $ $) NIL (|has| |#1| (-485)))) (-2956 (((-874) $) 424) (($ (-624 $)) 415) (($ (-1195)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) (($ (-1143 |#1| (-624 $))) 95 (|has| |#1| (-1067))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-968 |#1|))) NIL (|has| |#1| (-568))) (($ (-968 |#1|)) NIL (|has| |#1| (-1067))) (($ (-576)) 34 (-2838 (|has| |#1| (-1056 (-576))) (|has| |#1| (-1067)))) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-568)) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL (|has| |#1| (-1067)) CONST)) (-2113 (($ $) NIL) (($ (-656 $)) NIL)) (-2959 (($ $ $) 220 (|has| |#1| (-568)))) (-2584 (($ $ $) 206 (|has| |#1| (-568)))) (-3792 (($ $ $) 210 (|has| |#1| (-568)))) (-1340 (($ $ $) 204 (|has| |#1| (-568)))) (-3578 (($ $ $) 208 (|has| |#1| (-568)))) (-1483 (((-112) (-115)) 10)) (-2617 (((-112) $ $) 86)) (-2461 (($ $) 183 (|has| |#1| (-568)))) (-2324 (($ $) 159 (|has| |#1| (-568)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) 179 (|has| |#1| (-568)))) (-2304 (($ $) 155 (|has| |#1| (-568)))) (-2485 (($ $) 187 (|has| |#1| (-568)))) (-2345 (($ $) 163 (|has| |#1| (-568)))) (-2519 (($ (-1195) $) NIL) (($ (-1195) $ $) NIL) (($ (-1195) $ $ $) NIL) (($ (-1195) $ $ $ $) NIL) (($ (-1195) (-656 $)) NIL)) (-2091 (($ $) 214 (|has| |#1| (-568)))) (-4398 (($ $) 212 (|has| |#1| (-568)))) (-2541 (($ $) 189 (|has| |#1| (-568)))) (-2354 (($ $) 165 (|has| |#1| (-568)))) (-2473 (($ $) 185 (|has| |#1| (-568)))) (-2335 (($ $) 161 (|has| |#1| (-568)))) (-2447 (($ $) 181 (|has| |#1| (-568)))) (-2315 (($ $) 157 (|has| |#1| (-568)))) (-2130 (($ $) 192 (|has| |#1| (-568)))) (-2143 (($) 21 (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) CONST)) (-3926 (($ $) 243 (|has| |#1| (-568)))) (-2155 (($) 23 (|has| |#1| (-1130)) CONST)) (-2527 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-4017 (($ $) 241 (|has| |#1| (-568)))) (-3590 (($ $ (-1195)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1067))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1067)))) (-3758 (($ $) 245 (|has| |#1| (-568)))) (-2381 (($ $ $) 198 (|has| |#1| (-568)))) (-2991 (((-112) $ $) 88)) (-3108 (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2838 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3096 (($ $ $) 40 (-2838 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ $) 29 (-2838 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (-3081 (($ $ $) 38 (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2838 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1130))) (($ $ (-937)) 84 (|has| |#1| (-1130)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1067))) (($ $ $) 36 (|has| |#1| (-1130))) (($ (-576) $) 32 (-2838 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ (-783) $) NIL (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))))) (($ (-937) $) NIL (-2838 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))))))
+(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1157)) (-15 -2887 ($ $)) (-15 -1799 ((-112) $)) (-15 -2233 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2822 ((-430 (-1191 $)) (-1191 $))) (-15 -3529 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1056 (-576))) (-6 (-1056 (-48))) |%noBranch|)) |%noBranch|))) (-1118)) (T -326))
+((-2887 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1118)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-2822 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118)))) (-3529 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118)))))
+(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1157)) (-15 -2887 ($ $)) (-15 -1799 ((-112) $)) (-15 -2233 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2822 ((-430 (-1191 $)) (-1191 $))) (-15 -3529 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1056 (-576))) (-6 (-1056 (-48))) |%noBranch|)) |%noBranch|)))
+((-2255 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86)))
+(((-327 |#1| |#2|) (-10 -7 (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2255 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327))
+((-2255 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-2255 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2255 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2255 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-2255 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2255 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2255 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2255 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2255 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2255 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6)))))
+(-10 -7 (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2255 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2255 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2255 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2255 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|))))
+((-4233 (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177)) 67) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576)) 68) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177)) 64) (((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-2275 (((-1 (-227) (-227)) (-227)) 66)))
+(((-328) (-10 -7 (-15 -2275 ((-1 (-227) (-227)) (-227))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177))))) (T -328))
+((-4233 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-4233 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-4233 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *7 (-1177)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-4233 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-942))) (-5 *1 (-328)))) (-2275 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227)))))
+(-10 -7 (-15 -2275 ((-1 (-227) (-227)) (-227))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576))) (-15 -4233 ((-1231 (-942)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-227) (-576) (-1177))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 26)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) 36)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-419 (-576))) NIL) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2406 (((-419 (-576)) $) 17)) (-4187 (($ (-1271 |#1| |#2| |#3|)) 11)) (-2300 (((-1271 |#1| |#2| |#3|) $) 12)) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2782 (((-419 (-576)) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 10)) (-2956 (((-874) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) 34)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) NIL)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 28)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 37)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-329 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-804) (-10 -8 (-15 -4187 ($ (-1271 |#1| |#2| |#3|))) (-15 -2300 ((-1271 |#1| |#2| |#3|) $)) (-15 -2406 ((-419 (-576)) $)))) (-374) (-1195) |#1|) (T -329))
+((-4187 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3))))
+(-13 (-1267 |#1|) (-804) (-10 -8 (-15 -4187 ($ (-1271 |#1| |#2| |#3|))) (-15 -2300 ((-1271 |#1| |#2| |#3|) $)) (-15 -2406 ((-419 (-576)) $))))
+((-2333 (((-2 (|:| -2300 (-783)) (|:| -1868 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3118 (((-656 (-2 (|:| -1868 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40)))
+(((-330 |#1|) (-10 -7 (-15 -2333 ((-2 (|:| -2300 (-783)) (|:| -1868 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3118 ((-656 (-2 (|:| -1868 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330))
+((-3118 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1868 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783)))))
+(-10 -7 (-15 -2333 ((-2 (|:| -2300 (-783)) (|:| -1868 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3118 ((-656 (-2 (|:| -1868 (-783)) (|:| |logand| |#1|))) (-430 |#1|))))
+((-4352 (((-656 |#2|) (-1191 |#4|)) 44)) (-3485 ((|#3| (-576)) 47)) (-4030 (((-1191 |#4|) (-1191 |#3|)) 30)) (-4097 (((-1191 |#4|) (-1191 |#4|) (-576)) 66)) (-3924 (((-1191 |#3|) (-1191 |#4|)) 21)) (-2782 (((-656 (-783)) (-1191 |#4|) (-656 |#2|)) 41)) (-1327 (((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|)) 35)))
+(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1327 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2782 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -4352 ((-656 |#2|) (-1191 |#4|))) (-15 -3924 ((-1191 |#3|) (-1191 |#4|))) (-15 -4030 ((-1191 |#4|) (-1191 |#3|))) (-15 -4097 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3485 (|#3| (-576)))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|)) (T -331))
+((-3485 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1067)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-965 *2 *4 *5)))) (-4097 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *1 (-331 *4 *5 *6 *7)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) (-4 *8 (-965 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1067)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-1327 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1327 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2782 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -4352 ((-656 |#2|) (-1191 |#4|))) (-15 -3924 ((-1191 |#3|) (-1191 |#4|))) (-15 -4030 ((-1191 |#4|) (-1191 |#3|))) (-15 -4097 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3485 (|#3| (-576))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 19)) (-2206 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-576)))) $) 21)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783) $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1762 ((|#1| $ (-576)) NIL)) (-1896 (((-576) $ (-576)) NIL)) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2121 (($ (-1 |#1| |#1|) $) NIL)) (-1576 (($ (-1 (-576) (-576)) $) 11)) (-2148 (((-1177) $) NIL)) (-2338 (($ $ $) NIL (|has| (-576) (-804)))) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ |#1|) NIL)) (-4309 (((-576) |#1| $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) 29 (|has| |#1| (-862)))) (-3096 (($ $) 12) (($ $ $) 28)) (-3081 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27)))
+(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1118)) (T -332))
+NIL
+(-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2206 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 28)) (-3798 (((-3 $ "failed") $ $) 20)) (-1499 (((-783) $) 29)) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 33)) (-2216 ((|#1| $) 34)) (-1762 ((|#1| $ (-576)) 26)) (-1896 ((|#2| $ (-576)) 27)) (-2121 (($ (-1 |#1| |#1|) $) 23)) (-1576 (($ (-1 |#2| |#2|) $) 24)) (-2148 (((-1177) $) 10)) (-2338 (($ $ $) 22 (|has| |#2| (-804)))) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ |#1|) 32)) (-4309 ((|#2| |#1| $) 25)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30)))
+(((-333 |#1| |#2|) (-141) (-1118) (-132)) (T -333))
+((-3081 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) (-5 *2 (-783)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4)))))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1118)) (-4 *2 (-132)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1118)))) (-4309 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132)))) (-1576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)))) (-2121 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132)) (-4 *3 (-804)))))
+(-13 (-132) (-1056 |t#1|) (-10 -8 (-15 -3081 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1499 ((-783) $)) (-15 -2206 ((-656 (-2 (|:| |gen| |t#1|) (|:| -1619 |t#2|))) $)) (-15 -1896 (|t#2| $ (-576))) (-15 -1762 (|t#1| $ (-576))) (-15 -4309 (|t#2| |t#1| $)) (-15 -1576 ($ (-1 |t#2| |t#2|) $)) (-15 -2121 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -2338 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-1056 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2206 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-783)))) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783) $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1762 ((|#1| $ (-576)) NIL)) (-1896 (((-783) $ (-576)) NIL)) (-2121 (($ (-1 |#1| |#1|) $) NIL)) (-1576 (($ (-1 (-783) (-783)) $) NIL)) (-2148 (((-1177) $) NIL)) (-2338 (($ $ $) NIL (|has| (-783) (-804)))) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ |#1|) NIL)) (-4309 (((-783) |#1| $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3081 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL)))
+(((-334 |#1|) (-333 |#1| (-783)) (-1118)) (T -334))
+NIL
+(-333 |#1| (-783))
+((-4290 (($ $) 72)) (-3130 (($ $ |#2| |#3| $) 14)) (-2819 (($ (-1 |#3| |#3|) $) 51)) (-1345 (((-112) $) 42)) (-1357 ((|#2| $) 44)) (-2858 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1885 ((|#2| $) 68)) (-3532 (((-656 |#2|) $) 56)) (-1412 (($ $ $ (-783)) 37)) (-3108 (($ $ |#2|) 60)))
+(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -4290 (|#1| |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1412 (|#1| |#1| |#1| (-783))) (-15 -3130 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2819 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3532 ((-656 |#2|) |#1|)) (-15 -1357 (|#2| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3108 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1067) (-804)) (T -335))
+NIL
+(-10 -8 (-15 -4290 (|#1| |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1412 (|#1| |#1| |#1| (-783))) (-15 -3130 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2819 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3532 ((-656 |#2|) |#1|)) (-15 -1357 (|#2| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3108 (|#1| |#1| |#2|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2216 (((-576) $) 99 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 96)) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-4290 (($ $) 84 (|has| |#1| (-464)))) (-3130 (($ $ |#1| |#2| $) 88)) (-4192 (((-112) $) 35)) (-2747 (((-783) $) 91)) (-1614 (((-112) $) 74)) (-4330 (($ |#1| |#2|) 73)) (-1859 ((|#2| $) 90)) (-2819 (($ (-1 |#2| |#2|) $) 89)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 94)) (-1357 ((|#1| $) 93)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-2782 ((|#2| $) 76)) (-1885 ((|#1| $) 85 (|has| |#1| (-464)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3532 (((-656 |#1|) $) 92)) (-4309 ((|#1| $ |#2|) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-1412 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-336 |#1| |#2|) (-141) (-1067) (-804)) (T -336))
+((-1345 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-783)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2819 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-3130 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))) (-1412 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *3 (-174)))) (-2858 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-568)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-4290 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *2 (-464)))))
+(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -1345 ((-112) $)) (-15 -1357 (|t#1| $)) (-15 -3532 ((-656 |t#1|) $)) (-15 -2747 ((-783) $)) (-15 -1859 (|t#2| $)) (-15 -2819 ($ (-1 |t#2| |t#2|) $)) (-15 -3130 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1412 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -2858 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1885 (|t#1| $)) (-15 -4290 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3846 (((-112) (-112)) NIL)) (-3140 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) NIL)) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4099 (($ $) NIL (|has| |#1| (-1118)))) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-2700 (($ $ (-576)) NIL)) (-2615 (((-783) $) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2470 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2504 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1662 (($ (-656 |#1|)) NIL)) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3012 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-3228 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1662 ($ (-656 |#1|))) (-15 -2615 ((-783) $)) (-15 -2700 ($ $ (-576))) (-15 -3846 ((-112) (-112))))) (-1236)) (T -337))
+((-1662 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-2700 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))))
+(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1662 ($ (-656 |#1|))) (-15 -2615 ((-783) $)) (-15 -2700 ($ $ (-576))) (-15 -3846 ((-112) (-112)))))
+((-1943 (((-112) $) 47)) (-3419 (((-783)) 23)) (-1646 ((|#2| $) 51) (($ $ (-937)) 121)) (-1499 (((-783)) 122)) (-2524 (($ (-1286 |#2|)) 20)) (-3729 (((-112) $) 134)) (-3404 ((|#2| $) 53) (($ $ (-937)) 118)) (-1733 (((-1191 |#2|) $) NIL) (((-1191 $) $ (-937)) 109)) (-2146 (((-1191 |#2|) $) 95)) (-4091 (((-1191 |#2|) $) 91) (((-3 (-1191 |#2|) "failed") $ $) 88)) (-2156 (($ $ (-1191 |#2|)) 58)) (-2591 (((-845 (-937))) 30) (((-937)) 48)) (-2068 (((-135)) 27)) (-2782 (((-845 (-937)) $) 32) (((-937) $) 137)) (-1689 (($) 128)) (-3458 (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $)) 42)) (-1817 (($ $) NIL) (((-3 $ "failed") $) 98)) (-3684 (((-112) $) 45)))
+(((-338 |#1| |#2|) (-10 -8 (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -1499 ((-783))) (-15 -1817 (|#1| |#1|)) (-15 -4091 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -4091 ((-1191 |#2|) |#1|)) (-15 -2146 ((-1191 |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1191 |#2|))) (-15 -3729 ((-112) |#1|)) (-15 -1689 (|#1|)) (-15 -1646 (|#1| |#1| (-937))) (-15 -3404 (|#1| |#1| (-937))) (-15 -1733 ((-1191 |#1|) |#1| (-937))) (-15 -1646 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -2782 ((-937) |#1|)) (-15 -2591 ((-937))) (-15 -1733 ((-1191 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -3419 ((-783))) (-15 -2591 ((-845 (-937)))) (-15 -2782 ((-845 (-937)) |#1|)) (-15 -1943 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2068 ((-135)))) (-339 |#2|) (-374)) (T -338))
+((-2068 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2591 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-937))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3419 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2591 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-937)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1499 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))))
+(-10 -8 (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -1499 ((-783))) (-15 -1817 (|#1| |#1|)) (-15 -4091 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -4091 ((-1191 |#2|) |#1|)) (-15 -2146 ((-1191 |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1191 |#2|))) (-15 -3729 ((-112) |#1|)) (-15 -1689 (|#1|)) (-15 -1646 (|#1| |#1| (-937))) (-15 -3404 (|#1| |#1| (-937))) (-15 -1733 ((-1191 |#1|) |#1| (-937))) (-15 -1646 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -2782 ((-937) |#1|)) (-15 -2591 ((-937))) (-15 -1733 ((-1191 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -3419 ((-783))) (-15 -2591 ((-845 (-937)))) (-15 -2782 ((-845 (-937)) |#1|)) (-15 -1943 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -2068 ((-135))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-1943 (((-112) $) 104)) (-3419 (((-783)) 100)) (-1646 ((|#1| $) 151) (($ $ (-937)) 148 (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-1323 (((-112) $ $) 65)) (-1499 (((-783)) 123 (|has| |#1| (-379)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2524 (($ (-1286 |#1|)) 157)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2840 (($) 120 (|has| |#1| (-379)))) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3243 (($) 135 (|has| |#1| (-379)))) (-4208 (((-112) $) 136 (|has| |#1| (-379)))) (-3454 (($ $ (-783)) 97 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) 79)) (-3540 (((-937) $) 138 (|has| |#1| (-379))) (((-845 (-937)) $) 94 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) 35)) (-1962 (($) 146 (|has| |#1| (-379)))) (-3729 (((-112) $) 145 (|has| |#1| (-379)))) (-3404 ((|#1| $) 152) (($ $ (-937)) 149 (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1733 (((-1191 |#1|) $) 156) (((-1191 $) $ (-937)) 150 (|has| |#1| (-379)))) (-4261 (((-937) $) 121 (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) 142 (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) 143 (|has| |#1| (-379)))) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3796 (($) 125 (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) 122 (|has| |#1| (-379)))) (-2388 (((-112) $) 103)) (-3945 (((-1138) $) 11)) (-2981 (($) 144 (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 132 (|has| |#1| (-379)))) (-4205 (((-430 $) $) 82)) (-2591 (((-845 (-937))) 101) (((-937)) 154)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-3665 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) 109)) (-3884 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) 102) (((-937) $) 153)) (-2477 (((-1191 |#1|)) 155)) (-3087 (($) 134 (|has| |#1| (-379)))) (-1689 (($) 147 (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) 159) (((-701 |#1|) (-1286 $)) 158)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-1817 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 161) (((-1286 $) (-937)) 160)) (-2946 (((-112) $ $) 45)) (-3684 (((-112) $) 105)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3898 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3590 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ $ |#1|) 108)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-339 |#1|) (-141) (-374)) (T -339))
+((-4093 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *4)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-2524 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-2477 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-2591 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1733 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1)) (-4 *1 (-339 *4)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-1646 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-1689 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1962 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-2981 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-4091 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))))
+(-13 (-1305 |t#1|) (-1056 |t#1|) (-10 -8 (-15 -4093 ((-1286 $))) (-15 -4093 ((-1286 $) (-937))) (-15 -3458 ((-1286 |t#1|) $)) (-15 -3458 ((-701 |t#1|) (-1286 $))) (-15 -2524 ($ (-1286 |t#1|))) (-15 -1733 ((-1191 |t#1|) $)) (-15 -2477 ((-1191 |t#1|))) (-15 -2591 ((-937))) (-15 -2782 ((-937) $)) (-15 -3404 (|t#1| $)) (-15 -1646 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -1733 ((-1191 $) $ (-937))) (-15 -3404 ($ $ (-937))) (-15 -1646 ($ $ (-937))) (-15 -1689 ($)) (-15 -1962 ($)) (-15 -3729 ((-112) $)) (-15 -2981 ($)) (-15 -2156 ($ $ (-1191 |t#1|))) (-15 -2146 ((-1191 |t#1|) $)) (-15 -4091 ((-1191 |t#1|) $)) (-15 -4091 ((-3 (-1191 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2838 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-235 $) |has| |#1| (-379)) ((-239) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-249) . T) ((-300) . T) ((-317) . T) ((-1305 |#1|) . T) ((-374) . T) ((-414) -2838 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-379)) ((-1236) |has| |#1| (-379)) ((-1240) . T) ((-1293 |#1|) . T))
+((-2869 (((-112) $ $) NIL)) (-3106 (($ (-1194) $) 100)) (-4242 (($) 89)) (-4364 (((-1138) (-1138)) 9)) (-1622 (($) 90)) (-3688 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-4180 (($ (-1194) $) 101)) (-4008 (($ (-656 (-874))) 91)) (-3612 (((-1291) $) 87)) (-1471 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4076 (($ (-1138)) 58)) (-2566 (((-1122) $) 30)) (-3677 (($ (-1110 (-968 (-576))) $) 97) (($ (-1110 (-968 (-576))) (-968 (-576)) $) 98)) (-2023 (($ (-1138)) 99)) (-3271 (($ (-1194) $) 129) (($ (-1194) $ $) 130)) (-3839 (($ (-1195) (-656 (-1195))) 88)) (-2049 (($ (-1177)) 94) (($ (-656 (-1177))) 92)) (-2956 (((-874) $) 132)) (-2059 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3321 (-112)) (|:| -3084 (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2055 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -2053 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $) 50)) (-1361 (($ (-1177)) 202)) (-3315 (($ (-656 $)) 128)) (-2617 (((-112) $ $) NIL)) (-2531 (($ (-1195) (-1177)) 135) (($ (-1195) (-326 (-713))) 175) (($ (-1195) (-326 (-711))) 176) (($ (-1195) (-326 (-706))) 177) (($ (-1195) (-701 (-713))) 138) (($ (-1195) (-701 (-711))) 141) (($ (-1195) (-701 (-706))) 144) (($ (-1195) (-1286 (-713))) 147) (($ (-1195) (-1286 (-711))) 150) (($ (-1195) (-1286 (-706))) 153) (($ (-1195) (-701 (-326 (-713)))) 156) (($ (-1195) (-701 (-326 (-711)))) 159) (($ (-1195) (-701 (-326 (-706)))) 162) (($ (-1195) (-1286 (-326 (-713)))) 165) (($ (-1195) (-1286 (-326 (-711)))) 168) (($ (-1195) (-1286 (-326 (-706)))) 171) (($ (-1195) (-656 (-968 (-576))) (-326 (-713))) 172) (($ (-1195) (-656 (-968 (-576))) (-326 (-711))) 173) (($ (-1195) (-656 (-968 (-576))) (-326 (-706))) 174) (($ (-1195) (-326 (-576))) 199) (($ (-1195) (-326 (-390))) 200) (($ (-1195) (-326 (-171 (-390)))) 201) (($ (-1195) (-701 (-326 (-576)))) 180) (($ (-1195) (-701 (-326 (-390)))) 183) (($ (-1195) (-701 (-326 (-171 (-390))))) 186) (($ (-1195) (-1286 (-326 (-576)))) 189) (($ (-1195) (-1286 (-326 (-390)))) 192) (($ (-1195) (-1286 (-326 (-171 (-390))))) 195) (($ (-1195) (-656 (-968 (-576))) (-326 (-576))) 196) (($ (-1195) (-656 (-968 (-576))) (-326 (-390))) 197) (($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390)))) 198)) (-2991 (((-112) $ $) NIL)))
+(((-340) (-13 (-1118) (-10 -8 (-15 -3677 ($ (-1110 (-968 (-576))) $)) (-15 -3677 ($ (-1110 (-968 (-576))) (-968 (-576)) $)) (-15 -3106 ($ (-1194) $)) (-15 -4180 ($ (-1194) $)) (-15 -4076 ($ (-1138))) (-15 -2023 ($ (-1138))) (-15 -2049 ($ (-1177))) (-15 -2049 ($ (-656 (-1177)))) (-15 -1361 ($ (-1177))) (-15 -3688 ($)) (-15 -3688 ($ (-326 (-711)))) (-15 -3688 ($ (-326 (-713)))) (-15 -3688 ($ (-326 (-706)))) (-15 -3688 ($ (-326 (-390)))) (-15 -3688 ($ (-326 (-576)))) (-15 -3688 ($ (-326 (-171 (-390))))) (-15 -3271 ($ (-1194) $)) (-15 -3271 ($ (-1194) $ $)) (-15 -2531 ($ (-1195) (-1177))) (-15 -2531 ($ (-1195) (-326 (-713)))) (-15 -2531 ($ (-1195) (-326 (-711)))) (-15 -2531 ($ (-1195) (-326 (-706)))) (-15 -2531 ($ (-1195) (-701 (-713)))) (-15 -2531 ($ (-1195) (-701 (-711)))) (-15 -2531 ($ (-1195) (-701 (-706)))) (-15 -2531 ($ (-1195) (-1286 (-713)))) (-15 -2531 ($ (-1195) (-1286 (-711)))) (-15 -2531 ($ (-1195) (-1286 (-706)))) (-15 -2531 ($ (-1195) (-701 (-326 (-713))))) (-15 -2531 ($ (-1195) (-701 (-326 (-711))))) (-15 -2531 ($ (-1195) (-701 (-326 (-706))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-713))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-711))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-706))))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-713)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-711)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-706)))) (-15 -2531 ($ (-1195) (-326 (-576)))) (-15 -2531 ($ (-1195) (-326 (-390)))) (-15 -2531 ($ (-1195) (-326 (-171 (-390))))) (-15 -2531 ($ (-1195) (-701 (-326 (-576))))) (-15 -2531 ($ (-1195) (-701 (-326 (-390))))) (-15 -2531 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-576))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-390))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-576)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-390)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390))))) (-15 -3315 ($ (-656 $))) (-15 -4242 ($)) (-15 -1622 ($)) (-15 -4008 ($ (-656 (-874)))) (-15 -3839 ($ (-1195) (-656 (-1195)))) (-15 -1471 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2059 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3321 (-112)) (|:| -3084 (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2055 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -2053 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -3612 ((-1291) $)) (-15 -2566 ((-1122) $)) (-15 -4364 ((-1138) (-1138)))))) (T -340))
+((-3677 (*1 *1 *2 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *1 (-340)))) (-3677 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *3 (-968 (-576))) (-5 *1 (-340)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-3688 (*1 *1) (-5 *1 (-340))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3271 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-3271 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-2531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4242 (*1 *1) (-5 *1 (-340))) (-1622 (*1 *1) (-5 *1 (-340))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3321 (-112)) (|:| -3084 (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2055 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -2053 (-340)))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2053 (-340)))) (|:| |commonBranch| (-2 (|:| -2041 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874))))) (-5 *1 (-340)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-340)))) (-4364 (*1 *2 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))))
+(-13 (-1118) (-10 -8 (-15 -3677 ($ (-1110 (-968 (-576))) $)) (-15 -3677 ($ (-1110 (-968 (-576))) (-968 (-576)) $)) (-15 -3106 ($ (-1194) $)) (-15 -4180 ($ (-1194) $)) (-15 -4076 ($ (-1138))) (-15 -2023 ($ (-1138))) (-15 -2049 ($ (-1177))) (-15 -2049 ($ (-656 (-1177)))) (-15 -1361 ($ (-1177))) (-15 -3688 ($)) (-15 -3688 ($ (-326 (-711)))) (-15 -3688 ($ (-326 (-713)))) (-15 -3688 ($ (-326 (-706)))) (-15 -3688 ($ (-326 (-390)))) (-15 -3688 ($ (-326 (-576)))) (-15 -3688 ($ (-326 (-171 (-390))))) (-15 -3271 ($ (-1194) $)) (-15 -3271 ($ (-1194) $ $)) (-15 -2531 ($ (-1195) (-1177))) (-15 -2531 ($ (-1195) (-326 (-713)))) (-15 -2531 ($ (-1195) (-326 (-711)))) (-15 -2531 ($ (-1195) (-326 (-706)))) (-15 -2531 ($ (-1195) (-701 (-713)))) (-15 -2531 ($ (-1195) (-701 (-711)))) (-15 -2531 ($ (-1195) (-701 (-706)))) (-15 -2531 ($ (-1195) (-1286 (-713)))) (-15 -2531 ($ (-1195) (-1286 (-711)))) (-15 -2531 ($ (-1195) (-1286 (-706)))) (-15 -2531 ($ (-1195) (-701 (-326 (-713))))) (-15 -2531 ($ (-1195) (-701 (-326 (-711))))) (-15 -2531 ($ (-1195) (-701 (-326 (-706))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-713))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-711))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-706))))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-713)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-711)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-706)))) (-15 -2531 ($ (-1195) (-326 (-576)))) (-15 -2531 ($ (-1195) (-326 (-390)))) (-15 -2531 ($ (-1195) (-326 (-171 (-390))))) (-15 -2531 ($ (-1195) (-701 (-326 (-576))))) (-15 -2531 ($ (-1195) (-701 (-326 (-390))))) (-15 -2531 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-576))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-390))))) (-15 -2531 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-576)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-390)))) (-15 -2531 ($ (-1195) (-656 (-968 (-576))) (-326 (-171 (-390))))) (-15 -3315 ($ (-656 $))) (-15 -4242 ($)) (-15 -1622 ($)) (-15 -4008 ($ (-656 (-874)))) (-15 -3839 ($ (-1195) (-656 (-1195)))) (-15 -1471 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2059 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-968 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3321 (-112)) (|:| -3084 (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2055 (-1110 (-968 (-576)))) (|:| |span| (-968 (-576))) (|:| -2053 $))) (|:| |labelBranch| (-1138)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2053 $))) (|:| |commonBranch| (-2 (|:| -2041 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -3612 ((-1291) $)) (-15 -2566 ((-1122) $)) (-15 -4364 ((-1138) (-1138)))))
+((-2869 (((-112) $ $) NIL)) (-2686 (((-112) $) 13)) (-2238 (($ |#1|) 10)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2249 (($ |#1|) 12)) (-2956 (((-874) $) 19)) (-2617 (((-112) $ $) NIL)) (-3538 ((|#1| $) 14)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 21)))
+(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -2238 ($ |#1|)) (-15 -2249 ($ |#1|)) (-15 -2686 ((-112) $)) (-15 -3538 (|#1| $)))) (-862)) (T -341))
+((-2238 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-2249 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-3538 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))))
+(-13 (-862) (-10 -8 (-15 -2238 ($ |#1|)) (-15 -2249 ($ |#1|)) (-15 -2686 ((-112) $)) (-15 -3538 (|#1| $))))
+((-3085 (((-340) (-1195) (-968 (-576))) 23)) (-2602 (((-340) (-1195) (-968 (-576))) 27)) (-3260 (((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576)))) 26) (((-340) (-1195) (-968 (-576)) (-968 (-576))) 24)) (-2702 (((-340) (-1195) (-968 (-576))) 31)))
+(((-342) (-10 -7 (-15 -3085 ((-340) (-1195) (-968 (-576)))) (-15 -3260 ((-340) (-1195) (-968 (-576)) (-968 (-576)))) (-15 -3260 ((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576))))) (-15 -2602 ((-340) (-1195) (-968 (-576)))) (-15 -2702 ((-340) (-1195) (-968 (-576)))))) (T -342))
+((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3260 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1110 (-968 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3260 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))))
+(-10 -7 (-15 -3085 ((-340) (-1195) (-968 (-576)))) (-15 -3260 ((-340) (-1195) (-968 (-576)) (-968 (-576)))) (-15 -3260 ((-340) (-1195) (-1110 (-968 (-576))) (-1110 (-968 (-576))))) (-15 -2602 ((-340) (-1195) (-968 (-576)))) (-15 -2702 ((-340) (-1195) (-968 (-576)))))
+((-2869 (((-112) $ $) NIL)) (-4048 (((-518) $) 20)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3188 (((-974 (-783)) $) 18)) (-1682 (((-256) $) 7)) (-2956 (((-874) $) 26)) (-4282 (((-974 (-185 (-140))) $) 16)) (-2617 (((-112) $ $) NIL)) (-3430 (((-656 (-885 (-1200) (-783))) $) 12)) (-2991 (((-112) $ $) 22)))
+(((-343) (-13 (-1118) (-10 -8 (-15 -1682 ((-256) $)) (-15 -3430 ((-656 (-885 (-1200) (-783))) $)) (-15 -3188 ((-974 (-783)) $)) (-15 -4282 ((-974 (-185 (-140))) $)) (-15 -4048 ((-518) $))))) (T -343))
+((-1682 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-974 (-783))) (-5 *1 (-343)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-974 (-185 (-140)))) (-5 *1 (-343)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343)))))
+(-13 (-1118) (-10 -8 (-15 -1682 ((-256) $)) (-15 -3430 ((-656 (-885 (-1200) (-783))) $)) (-15 -3188 ((-974 (-783)) $)) (-15 -4282 ((-974 (-185 (-140))) $)) (-15 -4048 ((-518) $))))
+((-1787 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33)))
+(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11)))))
+(-10 -7 (-15 -1787 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|))))
+((-2734 (((-112) $) 14)))
+(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2734 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345))
+NIL
+(-10 -8 (-15 -2734 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2887 (($ $) 29)) (-2734 (((-112) $) 28)) (-2148 (((-1177) $) 10)) (-3434 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3945 (((-1138) $) 11)) (-2981 (((-3 |#4| "failed") $) 27)) (-3093 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-4090 (((-2 (|:| -2823 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24)))
+(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1262 |t#1|) (-1262 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346))
+((-3434 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-3093 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-3093 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-3093 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -2823 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2887 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-2981 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-3093 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3434 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -3093 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -3093 ($ |t#4|)) (-15 -3093 ($ |t#1| |t#1|)) (-15 -3093 ($ |t#1| |t#1| (-576))) (-15 -4090 ((-2 (|:| -2823 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2887 ($ $)) (-15 -2734 ((-112) $)) (-15 -2981 ((-3 |t#4| "failed") $)) (-15 -3093 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-2887 (($ $) 33)) (-2734 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-2496 (((-1286 |#4|) $) 134)) (-3434 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3945 (((-1138) $) NIL)) (-2981 (((-3 |#4| "failed") $) 36)) (-1869 (((-1286 |#4|) $) 126)) (-3093 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4090 (((-2 (|:| -2823 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2956 (((-874) $) 17)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 14 T CONST)) (-2991 (((-112) $ $) 20)) (-3096 (($ $) 27) (($ $ $) NIL)) (-3081 (($ $ $) 25)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23)))
+(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1869 ((-1286 |#4|) $)) (-15 -2496 ((-1286 |#4|) $)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347))
+((-1869 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-2496 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))))
+(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1869 ((-1286 |#4|) $)) (-15 -2496 ((-1286 |#4|) $))))
+((-2666 (($ $ (-1195) |#2|) NIL) (($ $ (-656 (-1195)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2209 (($ $ |#2|) 11)))
+(((-348 |#1| |#2|) (-10 -8 (-15 -2209 (|#1| |#1| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -2666 (|#1| |#1| (-1195) |#2|))) (-349 |#2|) (-1118)) (T -348))
+NIL
+(-10 -8 (-15 -2209 (|#1| |#1| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -2666 (|#1| |#1| (-1195) |#2|)))
+((-1787 (($ (-1 |#1| |#1|) $) 6)) (-2666 (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2209 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|)))))
+(((-349 |#1|) (-141) (-1118)) (T -349))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1118)))))
+(-13 (-10 -8 (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1195) |t#1|)) (-6 (-526 (-1195) |t#1|)) |%noBranch|)))
+(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1236) |has| |#1| (-296 |#1| |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1195)) $) NIL)) (-1505 (((-112)) 96) (((-112) (-112)) 97)) (-4071 (((-656 (-624 $)) $) NIL)) (-2384 (($ $) NIL)) (-2260 (($ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-4214 (($ $) NIL)) (-2363 (($ $) NIL)) (-2238 (($ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1195)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-419 (-968 (-576)))) 70 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-968 (-576))) 65 (|has| |#3| (-1056 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1056 (-390)))) (((-3 $ "failed") (-419 (-968 (-390)))) 88 (|has| |#3| (-1056 (-390)))) (((-3 $ "failed") (-968 (-390))) 83 (|has| |#3| (-1056 (-390))))) (-2216 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1195)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1056 (-576)))) (($ (-419 (-968 (-576)))) 71 (|has| |#3| (-1056 (-576)))) (($ (-968 (-576))) 67 (|has| |#3| (-1056 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1056 (-390)))) (($ (-419 (-968 (-390)))) 89 (|has| |#3| (-1056 (-390)))) (($ (-968 (-390))) 85 (|has| |#3| (-1056 (-390))))) (-4077 (((-3 $ "failed") $) NIL)) (-3009 (($) 101)) (-1492 (($ $) NIL) (($ (-656 $)) NIL)) (-3245 (((-656 (-115)) $) NIL)) (-4153 (((-115) (-115)) NIL)) (-4192 (((-112) $) NIL)) (-4314 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-3982 (((-1191 $) (-624 $)) NIL (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) NIL)) (-2161 (((-3 (-624 $) "failed") $) NIL)) (-1741 (($ $) 99)) (-3118 (($ $) NIL)) (-2148 (((-1177) $) NIL)) (-4142 (((-656 (-624 $)) $) NIL)) (-1784 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-2881 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-1850 (((-783) $) NIL)) (-3945 (((-1138) $) NIL)) (-1679 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-1619 (($ $) NIL)) (-2280 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1854 (($ $) NIL) (($ $ $) NIL)) (-3884 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2477 (($ $) NIL (|has| $ (-1067)))) (-2373 (($ $) NIL)) (-2249 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-3423 (((-783)) NIL T CONST)) (-2113 (($ $) NIL) (($ (-656 $)) NIL)) (-1483 (((-112) (-115)) NIL)) (-2617 (((-112) $ $) NIL)) (-2324 (($ $) NIL)) (-2304 (($ $) NIL)) (-2315 (($ $) NIL)) (-2130 (($ $) NIL)) (-2143 (($) 100 T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL)))
+(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1056 |#3|) (-914 (-1195)) (-10 -8 (-15 -2216 ($ (-326 |#3|))) (-15 -1706 ((-3 $ "failed") (-326 |#3|))) (-15 -2216 ($ (-1195))) (-15 -1706 ((-3 $ "failed") (-1195))) (-15 -2956 ((-326 |#3|) $)) (IF (|has| |#3| (-1056 (-576))) (PROGN (-15 -2216 ($ (-326 (-576)))) (-15 -1706 ((-3 $ "failed") (-326 (-576)))) (-15 -2216 ($ (-419 (-968 (-576))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-576))))) (-15 -2216 ($ (-968 (-576)))) (-15 -1706 ((-3 $ "failed") (-968 (-576))))) |%noBranch|) (IF (|has| |#3| (-1056 (-390))) (PROGN (-15 -2216 ($ (-326 (-390)))) (-15 -1706 ((-3 $ "failed") (-326 (-390)))) (-15 -2216 ($ (-419 (-968 (-390))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -2216 ($ (-968 (-390)))) (-15 -1706 ((-3 $ "failed") (-968 (-390))))) |%noBranch|) (-15 -2130 ($ $)) (-15 -4214 ($ $)) (-15 -1619 ($ $)) (-15 -3118 ($ $)) (-15 -1741 ($ $)) (-15 -2238 ($ $)) (-15 -2249 ($ $)) (-15 -2260 ($ $)) (-15 -2304 ($ $)) (-15 -2315 ($ $)) (-15 -2324 ($ $)) (-15 -2363 ($ $)) (-15 -2373 ($ $)) (-15 -2384 ($ $)) (-15 -3009 ($)) (-15 -4352 ((-656 (-1195)) $)) (-15 -1505 ((-112))) (-15 -1505 ((-112) (-112))))) (-656 (-1195)) (-656 (-1195)) (-399)) (T -350))
+((-2216 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2130 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1741 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2238 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2315 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3009 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-1505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))))
+(-13 (-312) (-38 |#3|) (-1056 |#3|) (-914 (-1195)) (-10 -8 (-15 -2216 ($ (-326 |#3|))) (-15 -1706 ((-3 $ "failed") (-326 |#3|))) (-15 -2216 ($ (-1195))) (-15 -1706 ((-3 $ "failed") (-1195))) (-15 -2956 ((-326 |#3|) $)) (IF (|has| |#3| (-1056 (-576))) (PROGN (-15 -2216 ($ (-326 (-576)))) (-15 -1706 ((-3 $ "failed") (-326 (-576)))) (-15 -2216 ($ (-419 (-968 (-576))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-576))))) (-15 -2216 ($ (-968 (-576)))) (-15 -1706 ((-3 $ "failed") (-968 (-576))))) |%noBranch|) (IF (|has| |#3| (-1056 (-390))) (PROGN (-15 -2216 ($ (-326 (-390)))) (-15 -1706 ((-3 $ "failed") (-326 (-390)))) (-15 -2216 ($ (-419 (-968 (-390))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -2216 ($ (-968 (-390)))) (-15 -1706 ((-3 $ "failed") (-968 (-390))))) |%noBranch|) (-15 -2130 ($ $)) (-15 -4214 ($ $)) (-15 -1619 ($ $)) (-15 -3118 ($ $)) (-15 -1741 ($ $)) (-15 -2238 ($ $)) (-15 -2249 ($ $)) (-15 -2260 ($ $)) (-15 -2304 ($ $)) (-15 -2315 ($ $)) (-15 -2324 ($ $)) (-15 -2363 ($ $)) (-15 -2373 ($ $)) (-15 -2384 ($ $)) (-15 -3009 ($)) (-15 -4352 ((-656 (-1195)) $)) (-15 -1505 ((-112))) (-15 -1505 ((-112) (-112)))))
+((-1787 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9))))))
+(-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|)))
+((-4009 (((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) $) 39)) (-2524 (($ (-1286 (-419 |#3|)) (-1286 $)) NIL) (($ (-1286 (-419 |#3|))) NIL) (($ (-1286 |#3|) |#3|) 173)) (-1860 (((-1286 $) (-1286 $)) 156)) (-2387 (((-656 (-656 |#2|))) 126)) (-2826 (((-112) |#2| |#2|) 76)) (-4290 (($ $) 148)) (-3464 (((-783)) 172)) (-4072 (((-1286 $) (-1286 $)) 218)) (-3340 (((-656 (-968 |#2|)) (-1195)) 115)) (-2118 (((-112) $) 169)) (-2642 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3334 (((-3 |#3| "failed")) 52)) (-3344 (((-783)) 184)) (-2209 ((|#2| $ |#2| |#2|) 140)) (-4409 (((-3 |#3| "failed")) 71)) (-3884 (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3058 (((-1286 $) (-1286 $)) 162)) (-1967 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2214 (((-112)) 34)))
+(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -2387 ((-656 (-656 |#2|)))) (-15 -3340 ((-656 (-968 |#2|)) (-1195))) (-15 -1967 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3334 ((-3 |#3| "failed"))) (-15 -4409 ((-3 |#3| "failed"))) (-15 -2209 (|#2| |#1| |#2| |#2|)) (-15 -4290 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2642 ((-112) |#1| |#3|)) (-15 -2642 ((-112) |#1| |#2|)) (-15 -2524 (|#1| (-1286 |#3|) |#3|)) (-15 -4009 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1860 ((-1286 |#1|) (-1286 |#1|))) (-15 -4072 ((-1286 |#1|) (-1286 |#1|))) (-15 -3058 ((-1286 |#1|) (-1286 |#1|))) (-15 -2642 ((-112) |#1|)) (-15 -2118 ((-112) |#1|)) (-15 -2826 ((-112) |#2| |#2|)) (-15 -2214 ((-112))) (-15 -3344 ((-783))) (-15 -3464 ((-783))) (-15 -3884 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3884 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2524 (|#1| (-1286 (-419 |#3|)))) (-15 -2524 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) (-353 |#2| |#3| |#4|) (-1240) (-1262 |#2|) (-1262 (-419 |#3|))) (T -352))
+((-3464 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3344 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2214 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2826 (*1 *2 *3 *3) (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-4409 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3334 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-968 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2387 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))))
+(-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -2387 ((-656 (-656 |#2|)))) (-15 -3340 ((-656 (-968 |#2|)) (-1195))) (-15 -1967 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3334 ((-3 |#3| "failed"))) (-15 -4409 ((-3 |#3| "failed"))) (-15 -2209 (|#2| |#1| |#2| |#2|)) (-15 -4290 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2642 ((-112) |#1| |#3|)) (-15 -2642 ((-112) |#1| |#2|)) (-15 -2524 (|#1| (-1286 |#3|) |#3|)) (-15 -4009 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1860 ((-1286 |#1|) (-1286 |#1|))) (-15 -4072 ((-1286 |#1|) (-1286 |#1|))) (-15 -3058 ((-1286 |#1|) (-1286 |#1|))) (-15 -2642 ((-112) |#1|)) (-15 -2118 ((-112) |#1|)) (-15 -2826 ((-112) |#2| |#2|)) (-15 -2214 ((-112))) (-15 -3344 ((-783))) (-15 -3464 ((-783))) (-15 -3884 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3884 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2524 (|#1| (-1286 (-419 |#3|)))) (-15 -2524 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4009 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 208)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (|has| (-419 |#2|) (-374)))) (-4334 (($ $) 105 (|has| (-419 |#2|) (-374)))) (-1428 (((-112) $) 107 (|has| (-419 |#2|) (-374)))) (-2674 (((-701 (-419 |#2|)) (-1286 $)) 53) (((-701 (-419 |#2|))) 68)) (-1646 (((-419 |#2|) $) 59)) (-4171 (((-1208 (-937) (-783)) (-576)) 157 (|has| (-419 |#2|) (-360)))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 124 (|has| (-419 |#2|) (-374)))) (-1870 (((-430 $) $) 125 (|has| (-419 |#2|) (-374)))) (-1323 (((-112) $ $) 115 (|has| (-419 |#2|) (-374)))) (-1499 (((-783)) 98 (|has| (-419 |#2|) (-379)))) (-1797 (((-112)) 225)) (-1939 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 182 (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 177)) (-2216 (((-576) $) 181 (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) 178)) (-2524 (($ (-1286 (-419 |#2|)) (-1286 $)) 55) (($ (-1286 (-419 |#2|))) 71) (($ (-1286 |#2|) |#2|) 207)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| (-419 |#2|) (-360)))) (-2806 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-1796 (((-701 (-419 |#2|)) $ (-1286 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-3928 (((-701 (-576)) (-1286 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) 173) (((-701 (-419 |#2|)) (-701 $)) 172) (((-701 (-419 |#2|)) (-1286 $)) 171)) (-1860 (((-1286 $) (-1286 $)) 213)) (-2887 (($ |#3|) 168) (((-3 $ "failed") (-419 |#3|)) 165 (|has| (-419 |#2|) (-374)))) (-4077 (((-3 $ "failed") $) 37)) (-2387 (((-656 (-656 |#1|))) 194 (|has| |#1| (-379)))) (-2826 (((-112) |#1| |#1|) 229)) (-3563 (((-937)) 61)) (-2840 (($) 101 (|has| (-419 |#2|) (-379)))) (-2809 (((-112)) 222)) (-3533 (((-112) |#1|) 221) (((-112) |#2|) 220)) (-2818 (($ $ $) 118 (|has| (-419 |#2|) (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 113 (|has| (-419 |#2|) (-374)))) (-4290 (($ $) 200)) (-3243 (($) 159 (|has| (-419 |#2|) (-360)))) (-4208 (((-112) $) 160 (|has| (-419 |#2|) (-360)))) (-3454 (($ $ (-783)) 151 (|has| (-419 |#2|) (-360))) (($ $) 150 (|has| (-419 |#2|) (-360)))) (-3124 (((-112) $) 126 (|has| (-419 |#2|) (-374)))) (-3540 (((-937) $) 162 (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) 148 (|has| (-419 |#2|) (-360)))) (-4192 (((-112) $) 35)) (-3464 (((-783)) 232)) (-4072 (((-1286 $) (-1286 $)) 214)) (-3404 (((-419 |#2|) $) 58)) (-3340 (((-656 (-968 |#1|)) (-1195)) 195 (|has| |#1| (-374)))) (-2211 (((-3 $ "failed") $) 152 (|has| (-419 |#2|) (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| (-419 |#2|) (-374)))) (-1733 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-4261 (((-937) $) 100 (|has| (-419 |#2|) (-379)))) (-2874 ((|#3| $) 166)) (-2850 (($ (-656 $)) 111 (|has| (-419 |#2|) (-374))) (($ $ $) 110 (|has| (-419 |#2|) (-374)))) (-2148 (((-1177) $) 10)) (-2757 (((-701 (-419 |#2|))) 209)) (-2980 (((-701 (-419 |#2|))) 211)) (-1330 (($ $) 127 (|has| (-419 |#2|) (-374)))) (-2824 (($ (-1286 |#2|) |#2|) 205)) (-2396 (((-701 (-419 |#2|))) 210)) (-2950 (((-701 (-419 |#2|))) 212)) (-1446 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 204)) (-2793 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 206)) (-1900 (((-1286 $)) 218)) (-3701 (((-1286 $)) 219)) (-2118 (((-112) $) 217)) (-2642 (((-112) $) 216) (((-112) $ |#1|) 203) (((-112) $ |#2|) 202)) (-3796 (($) 153 (|has| (-419 |#2|) (-360)) CONST)) (-2596 (($ (-937)) 99 (|has| (-419 |#2|) (-379)))) (-3334 (((-3 |#2| "failed")) 197)) (-3945 (((-1138) $) 11)) (-3344 (((-783)) 231)) (-2981 (($) 170)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 112 (|has| (-419 |#2|) (-374)))) (-2892 (($ (-656 $)) 109 (|has| (-419 |#2|) (-374))) (($ $ $) 108 (|has| (-419 |#2|) (-374)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 156 (|has| (-419 |#2|) (-360)))) (-4205 (((-430 $) $) 123 (|has| (-419 |#2|) (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 120 (|has| (-419 |#2|) (-374)))) (-2858 (((-3 $ "failed") $ $) 103 (|has| (-419 |#2|) (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| (-419 |#2|) (-374)))) (-3927 (((-783) $) 116 (|has| (-419 |#2|) (-374)))) (-2209 ((|#1| $ |#1| |#1|) 199)) (-4409 (((-3 |#2| "failed")) 198)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 117 (|has| (-419 |#2|) (-374)))) (-3206 (((-419 |#2|) (-1286 $)) 54) (((-419 |#2|)) 67)) (-3665 (((-783) $) 161 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 149 (|has| (-419 |#2|) (-360)))) (-3884 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) 132 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 201) (($ $ (-1195)) 136 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 138 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 139 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $) 144 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-2096 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) 146 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-2096 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3767 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) 164 (|has| (-419 |#2|) (-374)))) (-2477 ((|#3|) 169)) (-3087 (($) 158 (|has| (-419 |#2|) (-360)))) (-3458 (((-1286 (-419 |#2|)) $ (-1286 $)) 57) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) 56) (((-1286 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1286 $)) 72)) (-1846 (((-1286 (-419 |#2|)) $) 70) (($ (-1286 (-419 |#2|))) 69) ((|#3| $) 183) (($ |#3|) 167)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 155 (|has| (-419 |#2|) (-360)))) (-3058 (((-1286 $) (-1286 $)) 215)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 97 (-2838 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1056 (-419 (-576)))))) (($ $) 102 (|has| (-419 |#2|) (-374)))) (-1817 (($ $) 154 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-4343 ((|#3| $) 52)) (-3423 (((-783)) 32 T CONST)) (-2124 (((-112)) 228)) (-3328 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 74)) (-2946 (((-112) $ $) 106 (|has| (-419 |#2|) (-374)))) (-1967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 196)) (-2214 (((-112)) 230)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1195)) 137 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 141 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 142 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-2096 (|has| (-419 |#2|) (-914 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $) 145 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-2096 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) 147 (-2838 (-2096 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-239))) (-2096 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 131 (|has| (-419 |#2|) (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 128 (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 130 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 129 (|has| (-419 |#2|) (-374)))))
+(((-353 |#1| |#2| |#3|) (-141) (-1240) (-1262 |t#1|) (-1262 (-419 |t#2|))) (T -353))
+((-3464 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-3344 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-2214 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2826 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2124 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3328 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3328 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-1797 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-1939 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-1939 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2809 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3533 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3533 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-3701 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1900 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2950 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2980 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2396 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2757 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-2524 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-2824 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-2642 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2642 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-4290 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-2209 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-4409 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-3334 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-1967 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-968 *4))))) (-2387 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3))))))
+(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3464 ((-783))) (-15 -3344 ((-783))) (-15 -2214 ((-112))) (-15 -2826 ((-112) |t#1| |t#1|)) (-15 -2124 ((-112))) (-15 -3328 ((-112) |t#1|)) (-15 -3328 ((-112) |t#2|)) (-15 -1797 ((-112))) (-15 -1939 ((-112) |t#1|)) (-15 -1939 ((-112) |t#2|)) (-15 -2809 ((-112))) (-15 -3533 ((-112) |t#1|)) (-15 -3533 ((-112) |t#2|)) (-15 -3701 ((-1286 $))) (-15 -1900 ((-1286 $))) (-15 -2118 ((-112) $)) (-15 -2642 ((-112) $)) (-15 -3058 ((-1286 $) (-1286 $))) (-15 -4072 ((-1286 $) (-1286 $))) (-15 -1860 ((-1286 $) (-1286 $))) (-15 -2950 ((-701 (-419 |t#2|)))) (-15 -2980 ((-701 (-419 |t#2|)))) (-15 -2396 ((-701 (-419 |t#2|)))) (-15 -2757 ((-701 (-419 |t#2|)))) (-15 -4009 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2524 ($ (-1286 |t#2|) |t#2|)) (-15 -2793 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2824 ($ (-1286 |t#2|) |t#2|)) (-15 -1446 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2642 ((-112) $ |t#1|)) (-15 -2642 ((-112) $ |t#2|)) (-15 -3884 ($ $ (-1 |t#2| |t#2|))) (-15 -4290 ($ $)) (-15 -2209 (|t#1| $ |t#1| |t#1|)) (-15 -4409 ((-3 |t#2| "failed"))) (-15 -3334 ((-3 |t#2| "failed"))) (-15 -1967 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3340 ((-656 (-968 |t#1|)) (-1195))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2387 ((-656 (-656 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2838 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#3|) . T) ((-235 $) -2838 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-233 #1#) |has| (-419 |#2|) (-374)) ((-239) -2838 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-238) -2838 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-249) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2838 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-909 $ #3=(-1195)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-914 #3#) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-916 #3#) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) ((-936) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1056 (-419 (-576))) |has| (-419 |#2|) (-1056 (-419 (-576)))) ((-1056 #1#) . T) ((-1056 (-576)) |has| (-419 |#2|) (-1056 (-576))) ((-1069 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1069 #1#) . T) ((-1069 $) . T) ((-1074 #0#) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1074 #1#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| (-419 |#2|) (-360)) ((-1236) -2838 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195)))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374)))) ((-1240) -2838 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-926 |#1|) "failed") $) NIL)) (-2216 (((-926 |#1|) $) NIL)) (-2524 (($ (-1286 (-926 |#1|))) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-926 |#1|) (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| (-926 |#1|) (-379)))) (-4208 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| (-926 |#1|) (-379)))) (-3729 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3404 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4261 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-2146 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-4091 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-2156 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2880 (((-974 (-1138))) NIL)) (-2981 (($) NIL (|has| (-926 |#1|) (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 (-926 |#1|))) NIL)) (-3087 (($) NIL (|has| (-926 |#1|) (-379)))) (-1689 (($) NIL (|has| (-926 |#1|) (-379)))) (-3458 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-1817 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3590 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL)))
+(((-354 |#1| |#2|) (-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2880 ((-974 (-1138)))))) (-937) (-937)) (T -354))
+((-2880 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-354 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))))
+(-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2880 ((-974 (-1138))))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 58)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 142)) (-2216 ((|#1| $) 113)) (-2524 (($ (-1286 |#1|)) 130)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) 124 (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) 160 (|has| |#1| (-379)))) (-4208 (((-112) $) 66 (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) 60 (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) 62)) (-1962 (($) 162 (|has| |#1| (-379)))) (-3729 (((-112) $) NIL (|has| |#1| (-379)))) (-3404 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) 117) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) 171 (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 178)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) 96 (|has| |#1| (-379)))) (-2388 (((-112) $) 147)) (-3945 (((-1138) $) NIL)) (-2880 (((-974 (-1138))) 57)) (-2981 (($) 158 (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 119 (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) 90) (((-937)) 91)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 |#1|)) 122)) (-3087 (($) 159 (|has| |#1| (-379)))) (-1689 (($) 167 (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) 77) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) 155 T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 144) (((-1286 $) (-937)) 98)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) 67 T CONST)) (-2155 (($) 103 T CONST)) (-3898 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) 65)) (-3108 (($ $ $) 176) (($ $ |#1|) 177)) (-3096 (($ $) 157) (($ $ $) NIL)) (-3081 (($ $ $) 86)) (** (($ $ (-937)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2880 ((-974 (-1138)))))) (-360) (-1191 |#1|)) (T -355))
+((-2880 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1191 *3)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2880 ((-974 (-1138))))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2524 (($ (-1286 |#1|)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| |#1| (-379)))) (-4208 (((-112) $) NIL (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| |#1| (-379)))) (-3729 (((-112) $) NIL (|has| |#1| (-379)))) (-3404 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2880 (((-974 (-1138))) NIL)) (-2981 (($) NIL (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 |#1|)) NIL)) (-3087 (($) NIL (|has| |#1| (-379)))) (-1689 (($) NIL (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2880 ((-974 (-1138)))))) (-360) (-937)) (T -356))
+((-2880 (*1 *2) (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2880 ((-974 (-1138))))))
+((-1596 (((-783) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) 61)) (-2713 (((-974 (-1138)) (-1191 |#1|)) 112)) (-3996 (((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) (-1191 |#1|)) 103)) (-2722 (((-701 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) 113)) (-2520 (((-3 (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) "failed") (-937)) 13)) (-3514 (((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) (-937)) 18)))
+(((-357 |#1|) (-10 -7 (-15 -2713 ((-974 (-1138)) (-1191 |#1|))) (-15 -3996 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) (-1191 |#1|))) (-15 -2722 ((-701 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -1596 ((-783) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -2520 ((-3 (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) "failed") (-937))) (-15 -3514 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) (-937)))) (-360)) (T -357))
+((-3514 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-3 (-1191 *4) (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-5 *2 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))) (-5 *1 (-357 *4)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-974 (-1138))) (-5 *1 (-357 *4)))))
+(-10 -7 (-15 -2713 ((-974 (-1138)) (-1191 |#1|))) (-15 -3996 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) (-1191 |#1|))) (-15 -2722 ((-701 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -1596 ((-783) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -2520 ((-3 (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) "failed") (-937))) (-15 -3514 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) (-937))))
+((-2956 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
+(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2956 (|#3| |#1|)) (-15 -2956 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358))
+((-2956 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4)))))
+(-10 -7 (-15 -2956 (|#3| |#1|)) (-15 -2956 (|#1| |#3|)))
+((-4208 (((-112) $) 60)) (-3540 (((-845 (-937)) $) 23) (((-937) $) 64)) (-2211 (((-3 $ "failed") $) 18)) (-3796 (($) 9)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 114)) (-3665 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-3884 (($ $) 8) (($ $ (-783)) NIL)) (-3087 (($) 53)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 38)) (-1817 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-359 |#1|) (-10 -8 (-15 -3540 ((-937) |#1|)) (-15 -3665 ((-783) |#1|)) (-15 -4208 ((-112) |#1|)) (-15 -3087 (|#1|)) (-15 -3300 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -1817 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -3665 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3540 ((-845 (-937)) |#1|)) (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-360)) (T -359))
+NIL
+(-10 -8 (-15 -3540 ((-937) |#1|)) (-15 -3665 ((-783) |#1|)) (-15 -4208 ((-112) |#1|)) (-15 -3087 (|#1|)) (-15 -3300 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -1817 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -3665 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3540 ((-845 (-937)) |#1|)) (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-4171 (((-1208 (-937) (-783)) (-576)) 102)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-1323 (((-112) $ $) 65)) (-1499 (((-783)) 112)) (-4335 (($) 18 T CONST)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2840 (($) 115)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3243 (($) 100)) (-4208 (((-112) $) 99)) (-3454 (($ $) 87) (($ $ (-783)) 86)) (-3124 (((-112) $) 79)) (-3540 (((-845 (-937)) $) 89) (((-937) $) 97)) (-4192 (((-112) $) 35)) (-2211 (((-3 $ "failed") $) 111)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-4261 (((-937) $) 114)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3796 (($) 110 T CONST)) (-2596 (($ (-937)) 113)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 103)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-3665 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-3884 (($ $) 109) (($ $ (-783)) 107)) (-3087 (($) 101)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 104)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1817 (((-3 $ "failed") $) 90) (($ $) 105)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $) 108) (($ $ (-783)) 106)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-360) (-141)) (T -360))
+((-1817 (*1 *1 *1) (-4 *1 (-360))) (-3300 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1)))) (-3763 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))))) (-4171 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-937) (-783))))) (-3087 (*1 *1) (-4 *1 (-360))) (-3243 (*1 *1) (-4 *1 (-360))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-937)))) (-1642 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-414) (-379) (-1170) (-239) (-10 -8 (-15 -1817 ($ $)) (-15 -3300 ((-3 (-1286 $) "failed") (-701 $))) (-15 -3763 ((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576)))))) (-15 -4171 ((-1208 (-937) (-783)) (-576))) (-15 -3087 ($)) (-15 -3243 ($)) (-15 -4208 ((-112) $)) (-15 -3665 ((-783) $)) (-15 -3540 ((-937) $)) (-15 -1642 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) . T) ((-1236) . T) ((-1240) . T))
+((-2835 (((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-3701 (((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53)))
+(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -361))
+((-2835 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3701 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1596 (((-783)) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-926 |#1|) "failed") $) NIL)) (-2216 (((-926 |#1|) $) NIL)) (-2524 (($ (-1286 (-926 |#1|))) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-926 |#1|) (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| (-926 |#1|) (-379)))) (-4208 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| (-926 |#1|) (-379)))) (-3729 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3404 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4261 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-2146 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-4091 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-2156 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2746 (((-1286 (-656 (-2 (|:| -3084 (-926 |#1|)) (|:| -2596 (-1138)))))) NIL)) (-3799 (((-701 (-926 |#1|))) NIL)) (-2981 (($) NIL (|has| (-926 |#1|) (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 (-926 |#1|))) NIL)) (-3087 (($) NIL (|has| (-926 |#1|) (-379)))) (-1689 (($) NIL (|has| (-926 |#1|) (-379)))) (-3458 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-1817 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3590 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL)))
+(((-362 |#1| |#2|) (-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 (-926 |#1|)) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 (-926 |#1|)))) (-15 -1596 ((-783))))) (-937) (-937)) (T -362))
+((-2746 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3084 (-926 *3)) (|:| -2596 (-1138)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3799 (*1 *2) (-12 (-5 *2 (-701 (-926 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-1596 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))))
+(-13 (-339 (-926 |#1|)) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 (-926 |#1|)) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 (-926 |#1|)))) (-15 -1596 ((-783)))))
+((-2869 (((-112) $ $) 73)) (-3549 (((-112) $) 88)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) 106) (($ $ (-937)) 104 (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1596 (((-783)) 103)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) 187 (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 127)) (-2216 ((|#1| $) 105)) (-2524 (($ (-1286 |#1|)) 71)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) 182 (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) 171 (|has| |#1| (-379)))) (-4208 (((-112) $) NIL (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) 113 (|has| |#1| (-379)))) (-3729 (((-112) $) 200 (|has| |#1| (-379)))) (-3404 ((|#1| $) 108) (($ $ (-937)) 107 (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) 214) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) 148 (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) 87 (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) 83 (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 218)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) 150 (|has| |#1| (-379)))) (-2388 (((-112) $) 123)) (-3945 (((-1138) $) NIL)) (-2746 (((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) 97)) (-3799 (((-701 |#1|)) 101)) (-2981 (($) 110 (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 173 (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) 174)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) 75)) (-2477 (((-1191 |#1|)) 175)) (-3087 (($) 147 (|has| |#1| (-379)))) (-1689 (($) NIL (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) 121) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) 180 T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 197) (((-1286 $) (-937)) 116)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) 186 T CONST)) (-2155 (($) 161 T CONST)) (-3898 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) 208)) (-3108 (($ $ $) 119) (($ $ |#1|) 120)) (-3096 (($ $) 202) (($ $ $) 206)) (-3081 (($ $ $) 204)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
+(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 |#1|))) (-15 -1596 ((-783))))) (-360) (-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (T -363))
+((-2746 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2)))) (-3799 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138))))))))) (-1596 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138))))))))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 |#1|))) (-15 -1596 ((-783)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1596 (((-783)) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2524 (($ (-1286 |#1|)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| |#1| (-379)))) (-4208 (((-112) $) NIL (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| |#1| (-379)))) (-3729 (((-112) $) NIL (|has| |#1| (-379)))) (-3404 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2746 (((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138)))))) NIL)) (-3799 (((-701 |#1|)) NIL)) (-2981 (($) NIL (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 |#1|)) NIL)) (-3087 (($) NIL (|has| |#1| (-379)))) (-1689 (($) NIL (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 |#1|))) (-15 -1596 ((-783))))) (-360) (-937)) (T -364))
+((-2746 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))) (-3799 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))) (-1596 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2746 ((-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))))) (-15 -3799 ((-701 |#1|))) (-15 -1596 ((-783)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-926 |#1|) (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| (-926 |#1|) (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-926 |#1|) "failed") $) NIL)) (-2216 (((-926 |#1|) $) NIL)) (-2524 (($ (-1286 (-926 |#1|))) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-926 |#1|) (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-926 |#1|) (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| (-926 |#1|) (-379)))) (-4208 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379)))) (($ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| (-926 |#1|) (-379))) (((-845 (-937)) $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| (-926 |#1|) (-379)))) (-3729 (((-112) $) NIL (|has| (-926 |#1|) (-379)))) (-3404 (((-926 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-926 |#1|) (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 (-926 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-4261 (((-937) $) NIL (|has| (-926 |#1|) (-379)))) (-2146 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379)))) (-4091 (((-1191 (-926 |#1|)) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-1191 (-926 |#1|)) "failed") $ $) NIL (|has| (-926 |#1|) (-379)))) (-2156 (($ $ (-1191 (-926 |#1|))) NIL (|has| (-926 |#1|) (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-926 |#1|) (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| (-926 |#1|) (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL (|has| (-926 |#1|) (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-926 |#1|) (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| (-926 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 (-926 |#1|))) NIL)) (-3087 (($) NIL (|has| (-926 |#1|) (-379)))) (-1689 (($) NIL (|has| (-926 |#1|) (-379)))) (-3458 (((-1286 (-926 |#1|)) $) NIL) (((-701 (-926 |#1|)) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-926 |#1|) (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-926 |#1|)) NIL)) (-1817 (($ $) NIL (|has| (-926 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| (-926 |#1|) (-146)) (|has| (-926 |#1|) (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| (-926 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-926 |#1|) (-379)))) (-3590 (($ $ (-783)) NIL (|has| (-926 |#1|) (-379))) (($ $) NIL (|has| (-926 |#1|) (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-926 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-926 |#1|)) NIL) (($ (-926 |#1|) $) NIL)))
+(((-365 |#1| |#2|) (-339 (-926 |#1|)) (-937) (-937)) (T -365))
+NIL
+(-339 (-926 |#1|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) 155 (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 103)) (-2216 ((|#1| $) 100)) (-2524 (($ (-1286 |#1|)) 95)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) 92 (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) 51 (|has| |#1| (-379)))) (-4208 (((-112) $) NIL (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) 130 (|has| |#1| (-379)))) (-3729 (((-112) $) 84 (|has| |#1| (-379)))) (-3404 ((|#1| $) 47) (($ $ (-937)) 52 (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) 75) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) 107 (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) 105 (|has| |#1| (-379)))) (-2388 (((-112) $) 157)) (-3945 (((-1138) $) NIL)) (-2981 (($) 44 (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 124 (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) 154)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) 67)) (-2477 (((-1191 |#1|)) 98)) (-3087 (($) 135 (|has| |#1| (-379)))) (-1689 (($) NIL (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) 63) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) 159 T CONST)) (-2617 (((-112) $ $) 161)) (-4093 (((-1286 $)) 119) (((-1286 $) (-937)) 58)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) 121 T CONST)) (-2155 (($) 40 T CONST)) (-3898 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) 117)) (-3108 (($ $ $) 109) (($ $ |#1|) 110)) (-3096 (($ $) 90) (($ $ $) 115)) (-3081 (($ $ $) 113)) (** (($ $ (-937)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
+(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1191 |#1|)) (T -366))
+NIL
+(-339 |#1|)
+((-2670 ((|#1| (-1191 |#2|)) 59)))
+(((-367 |#1| |#2|) (-10 -7 (-15 -2670 (|#1| (-1191 |#2|)))) (-13 (-414) (-10 -7 (-15 -2956 (|#1| |#2|)) (-15 -4261 ((-937) |#1|)) (-15 -4093 ((-1286 |#1|) (-937))) (-15 -3898 (|#1| |#1|)))) (-360)) (T -367))
+((-2670 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -2956 (*2 *4)) (-15 -4261 ((-937) *2)) (-15 -4093 ((-1286 *2) (-937))) (-15 -3898 (*2 *2))))) (-5 *1 (-367 *2 *4)))))
+(-10 -7 (-15 -2670 (|#1| (-1191 |#2|))))
+((-3225 (((-974 (-1191 |#1|)) (-1191 |#1|)) 49)) (-2840 (((-1191 |#1|) (-937) (-937)) 154) (((-1191 |#1|) (-937)) 150)) (-4208 (((-112) (-1191 |#1|)) 107)) (-2533 (((-937) (-937)) 85)) (-1761 (((-937) (-937)) 92)) (-3849 (((-937) (-937)) 83)) (-3729 (((-112) (-1191 |#1|)) 111)) (-1407 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 135)) (-4301 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 140)) (-3346 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 139)) (-3326 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 138)) (-3646 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 131)) (-3636 (((-1191 |#1|) (-1191 |#1|)) 71)) (-2110 (((-1191 |#1|) (-937)) 145)) (-2294 (((-1191 |#1|) (-937)) 148)) (-1437 (((-1191 |#1|) (-937)) 147)) (-2276 (((-1191 |#1|) (-937)) 146)) (-3113 (((-1191 |#1|) (-937)) 143)))
+(((-368 |#1|) (-10 -7 (-15 -4208 ((-112) (-1191 |#1|))) (-15 -3729 ((-112) (-1191 |#1|))) (-15 -3849 ((-937) (-937))) (-15 -2533 ((-937) (-937))) (-15 -1761 ((-937) (-937))) (-15 -3113 ((-1191 |#1|) (-937))) (-15 -2110 ((-1191 |#1|) (-937))) (-15 -2276 ((-1191 |#1|) (-937))) (-15 -1437 ((-1191 |#1|) (-937))) (-15 -2294 ((-1191 |#1|) (-937))) (-15 -3646 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1407 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3326 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3346 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -4301 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2840 ((-1191 |#1|) (-937))) (-15 -2840 ((-1191 |#1|) (-937) (-937))) (-15 -3636 ((-1191 |#1|) (-1191 |#1|))) (-15 -3225 ((-974 (-1191 |#1|)) (-1191 |#1|)))) (-360)) (T -368))
+((-3225 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-974 (-1191 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1191 *4)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2840 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4301 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3346 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3326 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1407 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3646 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))))
+(-10 -7 (-15 -4208 ((-112) (-1191 |#1|))) (-15 -3729 ((-112) (-1191 |#1|))) (-15 -3849 ((-937) (-937))) (-15 -2533 ((-937) (-937))) (-15 -1761 ((-937) (-937))) (-15 -3113 ((-1191 |#1|) (-937))) (-15 -2110 ((-1191 |#1|) (-937))) (-15 -2276 ((-1191 |#1|) (-937))) (-15 -1437 ((-1191 |#1|) (-937))) (-15 -2294 ((-1191 |#1|) (-937))) (-15 -3646 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1407 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3326 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3346 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -4301 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2840 ((-1191 |#1|) (-937))) (-15 -2840 ((-1191 |#1|) (-937) (-937))) (-15 -3636 ((-1191 |#1|) (-1191 |#1|))) (-15 -3225 ((-974 (-1191 |#1|)) (-1191 |#1|))))
+((-3695 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38)))
+(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -3695 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -369))
+((-3695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))))
+(-10 -7 (-15 -3695 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2524 (($ (-1286 |#1|)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| |#1| (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| |#1| (-379)))) (-4208 (((-112) $) NIL (|has| |#1| (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| |#1| (-379))) (((-845 (-937)) $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| |#1| (-379)))) (-3729 (((-112) $) NIL (|has| |#1| (-379)))) (-3404 ((|#1| $) NIL) (($ $ (-937)) NIL (|has| |#1| (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-937)) NIL (|has| |#1| (-379)))) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2146 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-4091 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-2156 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| |#1| (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL (|has| |#1| (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| |#1| (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 |#1|)) NIL)) (-3087 (($) NIL (|has| |#1| (-379)))) (-1689 (($) NIL (|has| |#1| (-379)))) (-3458 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-1817 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-370 |#1| |#2|) (-339 |#1|) (-360) (-937)) (T -370))
+NIL
+(-339 |#1|)
+((-2236 (((-112) (-656 (-968 |#1|))) 41)) (-3219 (((-656 (-968 |#1|)) (-656 (-968 |#1|))) 53)) (-1552 (((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|))) 48)))
+(((-371 |#1| |#2|) (-10 -7 (-15 -2236 ((-112) (-656 (-968 |#1|)))) (-15 -1552 ((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|)))) (-15 -3219 ((-656 (-968 |#1|)) (-656 (-968 |#1|))))) (-464) (-656 (-1195))) (T -371))
+((-3219 (*1 *2 *2) (-12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-1552 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195))))))
+(-10 -7 (-15 -2236 ((-112) (-656 (-968 |#1|)))) (-15 -1552 ((-3 (-656 (-968 |#1|)) "failed") (-656 (-968 |#1|)))) (-15 -3219 ((-656 (-968 |#1|)) (-656 (-968 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783) $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) 17)) (-1762 ((|#1| $ (-576)) NIL)) (-3056 (((-576) $ (-576)) NIL)) (-2121 (($ (-1 |#1| |#1|) $) 34)) (-1945 (($ (-1 (-576) (-576)) $) 26)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 28)) (-3945 (((-1138) $) NIL)) (-3544 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-576)))) $) 30)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) 40) (($ |#1|) NIL)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 11 T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-372 |#1|) (-13 (-485) (-1056 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -1499 ((-783) $)) (-15 -3056 ((-576) $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -1945 ($ (-1 (-576) (-576)) $)) (-15 -2121 ($ (-1 |#1| |#1|) $)) (-15 -3544 ((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-576)))) $)))) (-1118)) (T -372))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-3056 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1118)))) (-2121 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-372 *3)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1118)))))
+(-13 (-485) (-1056 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -1499 ((-783) $)) (-15 -3056 ((-576) $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -1945 ($ (-1 (-576) (-576)) $)) (-15 -2121 ($ (-1 |#1| |#1|) $)) (-15 -3544 ((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-576)))) $))))
+((-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 13)) (-4334 (($ $) 14)) (-1870 (((-430 $) $) 34)) (-3124 (((-112) $) 30)) (-1330 (($ $) 19)) (-2892 (($ $ $) 25) (($ (-656 $)) NIL)) (-4205 (((-430 $) $) 35)) (-2858 (((-3 $ "failed") $ $) 24)) (-3927 (((-783) $) 28)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 39)) (-2946 (((-112) $ $) 16)) (-3108 (($ $ $) 37)))
+(((-373 |#1|) (-10 -8 (-15 -3108 (|#1| |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3927 ((-783) |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373))
+NIL
+(-10 -8 (-15 -3108 (|#1| |#1| |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3927 ((-783) |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-4192 (((-112) $) 35)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-374) (-141)) (T -374))
+((-3108 (*1 *1 *1 *1) (-4 *1 (-374))))
+(-13 (-317) (-1240) (-249) (-10 -8 (-15 -3108 ($ $ $)) (-6 -4459) (-6 -4453)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-2869 (((-112) $ $) 7)) (-4402 ((|#2| $ |#2|) 14)) (-4289 (($ $ (-1177)) 19)) (-1832 ((|#2| $) 15)) (-1685 (($ |#1|) 21) (($ |#1| (-1177)) 20)) (-2041 ((|#1| $) 17)) (-2148 (((-1177) $) 10)) (-3838 (((-1177) $) 16)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-3597 (($ $) 18)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-375 |#1| |#2|) (-141) (-1118) (-1118)) (T -375))
+((-1685 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-1685 (*1 *1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1118)) (-4 *4 (-1118)))) (-4289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-1177)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-4402 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -1685 ($ |t#1|)) (-15 -1685 ($ |t#1| (-1177))) (-15 -4289 ($ $ (-1177))) (-15 -3597 ($ $)) (-15 -2041 (|t#1| $)) (-15 -3838 ((-1177) $)) (-15 -1832 (|t#2| $)) (-15 -4402 (|t#2| $ |t#2|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-4402 ((|#1| $ |#1|) 31)) (-4289 (($ $ (-1177)) 23)) (-1749 (((-3 |#1| "failed") $) 30)) (-1832 ((|#1| $) 28)) (-1685 (($ (-400)) 22) (($ (-400) (-1177)) 21)) (-2041 (((-400) $) 25)) (-2148 (((-1177) $) NIL)) (-3838 (((-1177) $) 26)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 20)) (-3597 (($ $) 24)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 19)))
+(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -1749 ((-3 |#1| "failed") $)))) (-1118)) (T -376))
+((-1749 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1118)))))
+(-13 (-375 (-400) |#1|) (-10 -8 (-15 -1749 ((-3 |#1| "failed") $))))
+((-2264 (((-1286 (-701 |#2|)) (-1286 $)) 67)) (-4366 (((-701 |#2|) (-1286 $)) 139)) (-2655 ((|#2| $) 36)) (-3512 (((-701 |#2|) $ (-1286 $)) 142)) (-2710 (((-3 $ "failed") $) 89)) (-4316 ((|#2| $) 39)) (-3589 (((-1191 |#2|) $) 98)) (-3775 ((|#2| (-1286 $)) 122)) (-2495 (((-1191 |#2|) $) 32)) (-3498 (((-112)) 116)) (-2524 (($ (-1286 |#2|) (-1286 $)) 132)) (-4077 (((-3 $ "failed") $) 93)) (-3788 (((-112)) 111)) (-3059 (((-112)) 106)) (-4337 (((-112)) 58)) (-3774 (((-701 |#2|) (-1286 $)) 137)) (-3144 ((|#2| $) 35)) (-4120 (((-701 |#2|) $ (-1286 $)) 141)) (-1643 (((-3 $ "failed") $) 87)) (-3209 ((|#2| $) 38)) (-1564 (((-1191 |#2|) $) 97)) (-3640 ((|#2| (-1286 $)) 120)) (-4347 (((-1191 |#2|) $) 30)) (-2513 (((-112)) 115)) (-1358 (((-112)) 108)) (-4085 (((-112)) 56)) (-3045 (((-112)) 103)) (-4145 (((-112)) 117)) (-3458 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 128)) (-3184 (((-112)) 113)) (-2943 (((-656 (-1286 |#2|))) 102)) (-2763 (((-112)) 114)) (-2417 (((-112)) 112)) (-1431 (((-112)) 51)) (-3842 (((-112)) 118)))
+(((-377 |#1| |#2|) (-10 -8 (-15 -3589 ((-1191 |#2|) |#1|)) (-15 -1564 ((-1191 |#2|) |#1|)) (-15 -2943 ((-656 (-1286 |#2|)))) (-15 -2710 ((-3 |#1| "failed") |#1|)) (-15 -1643 ((-3 |#1| "failed") |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 -3059 ((-112))) (-15 -1358 ((-112))) (-15 -3788 ((-112))) (-15 -4085 ((-112))) (-15 -4337 ((-112))) (-15 -3045 ((-112))) (-15 -3842 ((-112))) (-15 -4145 ((-112))) (-15 -3498 ((-112))) (-15 -2513 ((-112))) (-15 -1431 ((-112))) (-15 -2763 ((-112))) (-15 -2417 ((-112))) (-15 -3184 ((-112))) (-15 -2495 ((-1191 |#2|) |#1|)) (-15 -4347 ((-1191 |#2|) |#1|)) (-15 -4366 ((-701 |#2|) (-1286 |#1|))) (-15 -3774 ((-701 |#2|) (-1286 |#1|))) (-15 -3775 (|#2| (-1286 |#1|))) (-15 -3640 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4316 (|#2| |#1|)) (-15 -3209 (|#2| |#1|)) (-15 -2655 (|#2| |#1|)) (-15 -3144 (|#2| |#1|)) (-15 -3512 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4120 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2264 ((-1286 (-701 |#2|)) (-1286 |#1|)))) (-378 |#2|) (-174)) (T -377))
+((-3184 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2417 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2763 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1431 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2513 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3498 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4145 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3842 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3045 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4337 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4085 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3788 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1358 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3059 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2943 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))))
+(-10 -8 (-15 -3589 ((-1191 |#2|) |#1|)) (-15 -1564 ((-1191 |#2|) |#1|)) (-15 -2943 ((-656 (-1286 |#2|)))) (-15 -2710 ((-3 |#1| "failed") |#1|)) (-15 -1643 ((-3 |#1| "failed") |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 -3059 ((-112))) (-15 -1358 ((-112))) (-15 -3788 ((-112))) (-15 -4085 ((-112))) (-15 -4337 ((-112))) (-15 -3045 ((-112))) (-15 -3842 ((-112))) (-15 -4145 ((-112))) (-15 -3498 ((-112))) (-15 -2513 ((-112))) (-15 -1431 ((-112))) (-15 -2763 ((-112))) (-15 -2417 ((-112))) (-15 -3184 ((-112))) (-15 -2495 ((-1191 |#2|) |#1|)) (-15 -4347 ((-1191 |#2|) |#1|)) (-15 -4366 ((-701 |#2|) (-1286 |#1|))) (-15 -3774 ((-701 |#2|) (-1286 |#1|))) (-15 -3775 (|#2| (-1286 |#1|))) (-15 -3640 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4316 (|#2| |#1|)) (-15 -3209 (|#2| |#1|)) (-15 -2655 (|#2| |#1|)) (-15 -3144 (|#2| |#1|)) (-15 -3512 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4120 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2264 ((-1286 (-701 |#2|)) (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1651 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) 20)) (-2264 (((-1286 (-701 |#1|)) (-1286 $)) 83)) (-2548 (((-1286 $)) 86)) (-4335 (($) 18 T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3197 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4366 (((-701 |#1|) (-1286 $)) 70)) (-2655 ((|#1| $) 79)) (-3512 (((-701 |#1|) $ (-1286 $)) 81)) (-2710 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3133 (($ $ (-937)) 31)) (-4316 ((|#1| $) 77)) (-3589 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-3775 ((|#1| (-1286 $)) 72)) (-2495 (((-1191 |#1|) $) 68)) (-3498 (((-112)) 62)) (-2524 (($ (-1286 |#1|) (-1286 $)) 74)) (-4077 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3563 (((-937)) 85)) (-3574 (((-112)) 59)) (-3728 (($ $ (-937)) 38)) (-3788 (((-112)) 55)) (-3059 (((-112)) 53)) (-4337 (((-112)) 57)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3471 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-3774 (((-701 |#1|) (-1286 $)) 71)) (-3144 ((|#1| $) 80)) (-4120 (((-701 |#1|) $ (-1286 $)) 82)) (-1643 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2128 (($ $ (-937)) 32)) (-3209 ((|#1| $) 78)) (-1564 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-3640 ((|#1| (-1286 $)) 73)) (-4347 (((-1191 |#1|) $) 69)) (-2513 (((-112)) 63)) (-2148 (((-1177) $) 10)) (-1358 (((-112)) 54)) (-4085 (((-112)) 56)) (-3045 (((-112)) 58)) (-3945 (((-1138) $) 11)) (-4145 (((-112)) 61)) (-3458 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75)) (-2292 (((-656 (-968 |#1|)) (-1286 $)) 84)) (-3516 (($ $ $) 28)) (-3184 (((-112)) 67)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2943 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-2927 (($ $ $ $) 29)) (-2763 (((-112)) 65)) (-1736 (($ $ $) 27)) (-2417 (((-112)) 66)) (-1431 (((-112)) 64)) (-3842 (((-112)) 60)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-378 |#1|) (-141) (-174)) (T -378))
+((-2548 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3)))) (-3563 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-937)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3458 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 *4)))) (-3458 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2524 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-3184 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2417 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2763 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1431 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2513 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3498 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4145 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3842 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3574 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3045 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4337 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4085 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3788 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1358 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3059 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4077 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1643 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2710 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2943 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1286 *3))))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-1714 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4093 (-656 *1)))) (-4 *1 (-378 *3)))) (-3749 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4093 (-656 *1)))) (-4 *1 (-378 *3)))) (-3471 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3197 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-1651 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
+(-13 (-756 |t#1|) (-10 -8 (-15 -2548 ((-1286 $))) (-15 -3563 ((-937))) (-15 -2292 ((-656 (-968 |t#1|)) (-1286 $))) (-15 -2264 ((-1286 (-701 |t#1|)) (-1286 $))) (-15 -4120 ((-701 |t#1|) $ (-1286 $))) (-15 -3512 ((-701 |t#1|) $ (-1286 $))) (-15 -3144 (|t#1| $)) (-15 -2655 (|t#1| $)) (-15 -3209 (|t#1| $)) (-15 -4316 (|t#1| $)) (-15 -3458 ((-1286 |t#1|) $ (-1286 $))) (-15 -3458 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -2524 ($ (-1286 |t#1|) (-1286 $))) (-15 -3640 (|t#1| (-1286 $))) (-15 -3775 (|t#1| (-1286 $))) (-15 -3774 ((-701 |t#1|) (-1286 $))) (-15 -4366 ((-701 |t#1|) (-1286 $))) (-15 -4347 ((-1191 |t#1|) $)) (-15 -2495 ((-1191 |t#1|) $)) (-15 -3184 ((-112))) (-15 -2417 ((-112))) (-15 -2763 ((-112))) (-15 -1431 ((-112))) (-15 -2513 ((-112))) (-15 -3498 ((-112))) (-15 -4145 ((-112))) (-15 -3842 ((-112))) (-15 -3574 ((-112))) (-15 -3045 ((-112))) (-15 -4337 ((-112))) (-15 -4085 ((-112))) (-15 -3788 ((-112))) (-15 -1358 ((-112))) (-15 -3059 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -4077 ((-3 $ "failed") $)) (-15 -1643 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $)) (-15 -2943 ((-656 (-1286 |t#1|)))) (-15 -1564 ((-1191 |t#1|) $)) (-15 -3589 ((-1191 |t#1|) $)) (-15 -1714 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -3749 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -3471 ((-3 $ "failed"))) (-15 -3197 ((-3 $ "failed"))) (-15 -1651 ((-3 $ "failed"))) (-6 -4458)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-1499 (((-783)) 17)) (-2840 (($) 14)) (-4261 (((-937) $) 15)) (-2148 (((-1177) $) 10)) (-2596 (($ (-937)) 16)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-379) (-141)) (T -379))
+((-1499 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-379)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-937)))) (-2840 (*1 *1) (-4 *1 (-379))))
+(-13 (-1118) (-10 -8 (-15 -1499 ((-783))) (-15 -2596 ($ (-937))) (-15 -4261 ((-937) $)) (-15 -2840 ($))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2674 (((-701 |#2|) (-1286 $)) 45)) (-2524 (($ (-1286 |#2|) (-1286 $)) 39)) (-1796 (((-701 |#2|) $ (-1286 $)) 47)) (-3206 ((|#2| (-1286 $)) 13)) (-3458 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 27)))
+(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -2674 ((-701 |#2|) (-1286 |#1|))) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1796 ((-701 |#2|) |#1| (-1286 |#1|)))) (-381 |#2| |#3|) (-174) (-1262 |#2|)) (T -380))
+NIL
+(-10 -8 (-15 -2674 ((-701 |#2|) (-1286 |#1|))) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1796 ((-701 |#2|) |#1| (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2674 (((-701 |#1|) (-1286 $)) 53)) (-1646 ((|#1| $) 59)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2524 (($ (-1286 |#1|) (-1286 $)) 55)) (-1796 (((-701 |#1|) $ (-1286 $)) 60)) (-4077 (((-3 $ "failed") $) 37)) (-3563 (((-937)) 61)) (-4192 (((-112) $) 35)) (-3404 ((|#1| $) 58)) (-1733 ((|#2| $) 51 (|has| |#1| (-374)))) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3206 ((|#1| (-1286 $)) 54)) (-3458 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1817 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4343 ((|#2| $) 52)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-381 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -381))
+((-3563 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-937)))) (-1796 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-3458 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) (-3458 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-2524 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2)) (-4 *2 (-174)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1262 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3563 ((-937))) (-15 -1796 ((-701 |t#1|) $ (-1286 $))) (-15 -1646 (|t#1| $)) (-15 -3404 (|t#1| $)) (-15 -3458 ((-1286 |t#1|) $ (-1286 $))) (-15 -3458 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -2524 ($ (-1286 |t#1|) (-1286 $))) (-15 -3206 (|t#1| (-1286 $))) (-15 -2674 ((-701 |t#1|) (-1286 $))) (-15 -4343 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -1733 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-3000 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2887 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1787 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2887 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3000 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1236) (-384 |#1|) (-1236) (-384 |#3|)) (T -382))
+((-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2887 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3000 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1375 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3330 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2791 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4427 (($ $) 25)) (-1454 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-1383 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-383 |#1| |#2|) (-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1375 ((-112) |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2791 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4427 (|#1| |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1236)) (T -383))
+NIL
+(-10 -8 (-15 -3330 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1375 ((-112) |#1|)) (-15 -2791 (|#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2791 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4427 (|#1| |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1454 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 72)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-384 |#1|) (-141) (-1236)) (T -384))
+((-1383 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-4427 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-2791 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-1375 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-1454 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-576)))) (-1454 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-576)))) (-1454 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-2791 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112)))) (-2647 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-2002 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-3330 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-3330 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))))
+(-13 (-663 |t#1|) (-10 -8 (-6 -4461) (-15 -1383 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4427 ($ $)) (-15 -2791 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1375 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1454 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -1454 ((-576) |t#1| $)) (-15 -1454 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -1383 ($ $ $)) (-15 -2791 ($ $)) (-15 -1375 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2647 ($ $ $ (-576))) (-15 -2002 ($ $)) (-15 -3330 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -3330 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1665 (((-656 |#1|) $) 37)) (-3405 (($ $ (-783)) 38)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3322 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 41)) (-1351 (($ $) 39)) (-2534 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 42)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2666 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-2782 (((-783) $) 43)) (-2968 (($ $ $) 34)) (-2956 (((-874) $) 12) (($ |#1|) 46) (((-1301 |#1| |#2|) $) 45) (((-1310 |#1| |#2|) $) 44)) (-1868 ((|#2| (-1310 |#1| |#2|) $) 47)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-1855 (($ (-684 |#1|)) 40)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385))
+((-1868 (*1 *2 *3 *1) (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-2956 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1301 *3 *4)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1310 *3 *4)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-783)))) (-2534 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3322 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3405 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-2666 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174)))))
+(-13 (-646 |t#2|) (-10 -8 (-15 -1868 (|t#2| (-1310 |t#1| |t#2|) $)) (-15 -2956 ($ |t#1|)) (-15 -2956 ((-1301 |t#1| |t#2|) $)) (-15 -2956 ((-1310 |t#1| |t#2|) $)) (-15 -2782 ((-783) $)) (-15 -2534 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -3322 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -1855 ($ (-684 |t#1|))) (-15 -1351 ($ $)) (-15 -3405 ($ $ (-783))) (-15 -1665 ((-656 |t#1|) $)) (-15 -2666 ($ $ |t#1| $)) (-15 -2666 ($ $ (-656 |t#1|) (-656 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1118) . T))
+((-3022 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1389 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1795 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
+(((-386 |#1| |#2|) (-10 -7 (-15 -1389 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1795 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3022 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1236) (-13 (-384 |#1|) (-10 -7 (-6 -4462)))) (T -386))
+((-3022 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-1795 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-1389 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))))
+(-10 -7 (-15 -1389 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1795 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3022 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-3928 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 22) (((-701 (-576)) (-701 $)) 14) (((-701 (-576)) (-1286 $)) NIL)))
+(((-387 |#1| |#2|) (-10 -8 (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-701 |#2|) (-1286 |#1|)))) (-388 |#2|) (-1067)) (T -387))
+NIL
+(-10 -8 (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-701 |#2|) (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3928 (((-701 |#1|) (-1286 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 38 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1286 $)) 37 (|has| |#1| (-651 (-576))))) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-388 |#1|) (-141) (-1067)) (T -388))
+NIL
+(-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1118) . T))
+((-3654 (((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|) 41)) (-1675 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|) 18)))
+(((-389 |#1|) (-10 -7 (-15 -3654 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -3654 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|)) (-15 -3654 ((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -3654 ((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -1675 ((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -1675 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|))) (-13 (-374) (-860))) (T -389))
+((-1675 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 (-171 (-576)))))) (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -3654 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -3654 ((-656 (-656 (-304 (-968 (-171 |#1|))))) (-656 (-304 (-419 (-968 (-171 (-576)))))) |#1|)) (-15 -3654 ((-656 (-304 (-968 (-171 |#1|)))) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -3654 ((-656 (-304 (-968 (-171 |#1|)))) (-304 (-419 (-968 (-171 (-576))))) |#1|)) (-15 -1675 ((-656 (-171 |#1|)) (-419 (-968 (-171 (-576)))) |#1|)) (-15 -1675 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-968 (-171 (-576))))) (-656 (-1195)) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 35)) (-2742 (((-576) $) 62)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-2725 (($ $) 136)) (-2384 (($ $) 98)) (-2260 (($ $) 90)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) 47)) (-1323 (((-112) $ $) NIL)) (-2363 (($ $) 96)) (-2238 (($ $) 85)) (-2627 (((-576) $) 78)) (-3938 (($ $ (-576)) 73)) (-2409 (($ $) NIL)) (-2282 (($ $) NIL)) (-4335 (($) NIL T CONST)) (-3629 (($ $) 138)) (-1706 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2216 (((-576) $) 229) (((-419 (-576)) $) 225)) (-2806 (($ $ $) NIL)) (-1789 (((-576) $ $) 125)) (-4077 (((-3 $ "failed") $) 141)) (-4119 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3765 (((-937)) 121) (((-937) (-937)) 122 (|has| $ (-6 -4452)))) (-3730 (((-112) $) 130)) (-3009 (($) 41)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2695 (((-1291) (-783)) 191)) (-2142 (((-1291)) 196) (((-1291) (-783)) 197)) (-1917 (((-1291)) 198) (((-1291) (-783)) 199)) (-3638 (((-1291)) 194) (((-1291) (-783)) 195)) (-3540 (((-576) $) 68)) (-4192 (((-112) $) 40)) (-2333 (($ $ (-576)) NIL)) (-2029 (($ $) 51)) (-3404 (($ $) NIL)) (-3327 (((-112) $) 37)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-2571 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-4292 (((-576) $) 17)) (-1837 (($) 106) (($ $) 113)) (-1741 (($) 112) (($ $) 114)) (-3118 (($ $) 101)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 143)) (-3847 (((-937) (-576)) 46 (|has| $ (-6 -4452)))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) 60)) (-4371 (($ $) 135)) (-2404 (($ (-576) (-576)) 131) (($ (-576) (-576) (-937)) 132)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2300 (((-576) $) 19)) (-3494 (($) 115)) (-1619 (($ $) 95)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-4176 (((-937)) 123) (((-937) (-937)) 124 (|has| $ (-6 -4452)))) (-3884 (($ $) 142) (($ $ (-783)) NIL)) (-2592 (((-937) (-576)) 50 (|has| $ (-6 -4452)))) (-2422 (($ $) NIL)) (-2291 (($ $) NIL)) (-2394 (($ $) NIL)) (-2270 (($ $) NIL)) (-2373 (($ $) 97)) (-2249 (($ $) 89)) (-1846 (((-390) $) 216) (((-227) $) 218) (((-905 (-390)) $) NIL) (((-1177) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-2956 (((-874) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-3423 (((-783)) NIL T CONST)) (-4175 (($ $) 137)) (-2054 (((-937)) 61) (((-937) (-937)) 80 (|has| $ (-6 -4452)))) (-2617 (((-112) $ $) NIL)) (-2650 (((-937)) 126)) (-2461 (($ $) 104)) (-2324 (($ $) 49) (($ $ $) 59)) (-2946 (((-112) $ $) NIL)) (-2434 (($ $) 102)) (-2304 (($ $) 39)) (-2485 (($ $) NIL)) (-2345 (($ $) NIL)) (-2541 (($ $) NIL)) (-2354 (($ $) NIL)) (-2473 (($ $) NIL)) (-2335 (($ $) NIL)) (-2447 (($ $) 103)) (-2315 (($ $) 52)) (-2130 (($ $) 58)) (-2143 (($) 36 T CONST)) (-2155 (($) 43 T CONST)) (-2616 (((-1177) $) 27) (((-1177) $ (-112)) 29) (((-1291) (-834) $) 30) (((-1291) (-834) $ (-112)) 31)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-3047 (((-112) $ $) 203)) (-3024 (((-112) $ $) 45)) (-2991 (((-112) $ $) 56)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 57)) (-3108 (($ $ $) 48) (($ $ (-576)) 42)) (-3096 (($ $) 38) (($ $ $) 53)) (-3081 (($ $ $) 72)) (** (($ $ (-937)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-937) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-390) (-13 (-416) (-239) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3108 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2029 ($ $)) (-15 -1789 ((-576) $ $)) (-15 -3938 ($ $ (-576))) (-15 -4119 ((-419 (-576)) $ (-783))) (-15 -4119 ((-419 (-576)) $ (-783) (-783))) (-15 -1837 ($)) (-15 -1741 ($)) (-15 -3494 ($)) (-15 -2324 ($ $ $)) (-15 -1837 ($ $)) (-15 -1741 ($ $)) (-15 -1917 ((-1291))) (-15 -1917 ((-1291) (-783))) (-15 -3638 ((-1291))) (-15 -3638 ((-1291) (-783))) (-15 -2142 ((-1291))) (-15 -2142 ((-1291) (-783))) (-15 -2695 ((-1291) (-783))) (-6 -4452) (-6 -4444)))) (T -390))
+((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2029 (*1 *1 *1) (-5 *1 (-390))) (-1789 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4119 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-1837 (*1 *1) (-5 *1 (-390))) (-1741 (*1 *1) (-5 *1 (-390))) (-3494 (*1 *1) (-5 *1 (-390))) (-2324 (*1 *1 *1 *1) (-5 *1 (-390))) (-1837 (*1 *1 *1) (-5 *1 (-390))) (-1741 (*1 *1 *1) (-5 *1 (-390))) (-1917 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-3638 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-2142 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))))
+(-13 (-416) (-239) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3108 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2029 ($ $)) (-15 -1789 ((-576) $ $)) (-15 -3938 ($ $ (-576))) (-15 -4119 ((-419 (-576)) $ (-783))) (-15 -4119 ((-419 (-576)) $ (-783) (-783))) (-15 -1837 ($)) (-15 -1741 ($)) (-15 -3494 ($)) (-15 -2324 ($ $ $)) (-15 -1837 ($ $)) (-15 -1741 ($ $)) (-15 -1917 ((-1291))) (-15 -1917 ((-1291) (-783))) (-15 -3638 ((-1291))) (-15 -3638 ((-1291) (-783))) (-15 -2142 ((-1291))) (-15 -2142 ((-1291) (-783))) (-15 -2695 ((-1291) (-783))) (-6 -4452) (-6 -4444)))
+((-2766 (((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|) 46) (((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|) 45) (((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|) 36)) (-2460 (((-656 |#1|) (-419 (-968 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|) 30)))
+(((-391 |#1|) (-10 -7 (-15 -2766 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|)) (-15 -2766 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|)) (-15 -2766 ((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|)) (-15 -2766 ((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|)) (-15 -2460 ((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|)) (-15 -2460 ((-656 |#1|) (-419 (-968 (-576))) |#1|))) (-13 (-860) (-374))) (T -391))
+((-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 (-576))))) (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 (-576)))))) (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))))
+(-10 -7 (-15 -2766 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-419 (-968 (-576)))) |#1|)) (-15 -2766 ((-656 (-656 (-304 (-968 |#1|)))) (-656 (-304 (-419 (-968 (-576))))) |#1|)) (-15 -2766 ((-656 (-304 (-968 |#1|))) (-419 (-968 (-576))) |#1|)) (-15 -2766 ((-656 (-304 (-968 |#1|))) (-304 (-419 (-968 (-576)))) |#1|)) (-15 -2460 ((-656 (-656 |#1|)) (-656 (-419 (-968 (-576)))) (-656 (-1195)) |#1|)) (-15 -2460 ((-656 |#1|) (-419 (-968 (-576))) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 30)) (-2216 ((|#2| $) 32)) (-1404 (($ $) NIL)) (-2747 (((-783) $) 11)) (-2397 (((-656 $) $) 23)) (-1614 (((-112) $) NIL)) (-3811 (($ |#2| |#1|) 21)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4143 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1368 ((|#2| $) 18)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 51) (($ |#2|) 31)) (-3532 (((-656 |#1|) $) 20)) (-4309 ((|#1| $ |#2|) 55)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 33 T CONST)) (-2960 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1067) (-862)) (T -392))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862)))))
+(-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 49)) (-2216 ((|#2| $) 50)) (-1404 (($ $) 35)) (-2747 (((-783) $) 39)) (-2397 (((-656 $) $) 40)) (-1614 (((-112) $) 43)) (-3811 (($ |#2| |#1|) 44)) (-1787 (($ (-1 |#1| |#1|) $) 45)) (-4143 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1368 ((|#2| $) 38)) (-1380 ((|#1| $) 37)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ |#2|) 48)) (-3532 (((-656 |#1|) $) 41)) (-4309 ((|#1| $ |#2|) 46)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2960 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-393 |#1| |#2|) (-141) (-1067) (-1118)) (T -393))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)))) (-3811 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-112)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-783)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1404 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118)))))
+(-13 (-111 |t#1| |t#1|) (-1056 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4309 (|t#1| $ |t#2|)) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -3811 ($ |t#2| |t#1|)) (-15 -1614 ((-112) $)) (-15 -2960 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3532 ((-656 |t#1|) $)) (-15 -2397 ((-656 $) $)) (-15 -2747 ((-783) $)) (-15 -1368 (|t#2| $)) (-15 -1380 (|t#1| $)) (-15 -4143 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1404 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1056 |#2|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 11)))
+(((-394) (-141)) (T -394))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-4 *1 (-394)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-701 (-711)))) (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-340))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1236) . T))
+((-1706 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-968 (-390)))) 17) (((-3 $ "failed") (-701 (-968 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-968 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-968 (-576))))) 11)) (-2216 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-968 (-390)))) 18) (($ (-701 (-968 (-576)))) 16) (($ (-701 (-419 (-968 (-390))))) 14) (($ (-701 (-419 (-968 (-576))))) 12)) (-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 23)))
+(((-395) (-141)) (T -395))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-340))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))) (-15 -2216 ($ (-701 (-326 (-390))))) (-15 -1706 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2216 ($ (-701 (-326 (-576))))) (-15 -1706 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2216 ($ (-701 (-968 (-390))))) (-15 -1706 ((-3 $ "failed") (-701 (-968 (-390))))) (-15 -2216 ($ (-701 (-968 (-576))))) (-15 -1706 ((-3 $ "failed") (-701 (-968 (-576))))) (-15 -2216 ($ (-701 (-419 (-968 (-390)))))) (-15 -1706 ((-3 $ "failed") (-701 (-419 (-968 (-390)))))) (-15 -2216 ($ (-701 (-419 (-968 (-576)))))) (-15 -1706 ((-3 $ "failed") (-701 (-419 (-968 (-576))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4330 (($ |#1| |#2|) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1830 ((|#2| $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 33)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1067) (-862)) (T -396))
+NIL
+(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-1499 (((-783) $) 34)) (-4335 (($) 19 T CONST)) (-3322 (((-3 $ "failed") $ $) 37)) (-1706 (((-3 |#1| "failed") $) 45)) (-2216 ((|#1| $) 46)) (-4077 (((-3 $ "failed") $) 16)) (-4203 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-4192 (((-112) $) 18)) (-1762 ((|#1| $ (-576)) 31)) (-3056 (((-783) $ (-576)) 32)) (-3639 (($ $ $) 28 (|has| |#1| (-862)))) (-2571 (($ $ $) 27 (|has| |#1| (-862)))) (-2121 (($ (-1 |#1| |#1|) $) 29)) (-1945 (($ (-1 (-783) (-783)) $) 30)) (-2534 (((-3 $ "failed") $ $) 38)) (-2148 (((-1177) $) 10)) (-3566 (($ $ $) 39)) (-2758 (($ $ $) 40)) (-3945 (((-1138) $) 11)) (-3544 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-783)))) $) 33)) (-1408 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2956 (((-874) $) 12) (($ |#1|) 44)) (-2617 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-3047 (((-112) $ $) 25 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 24 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 26 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 23 (|has| |#1| (-862)))) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-397 |#1|) (-141) (-1118)) (T -397))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-2758 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-3566 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-2534 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-3322 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-1408 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1118)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 (-783))))))) (-3056 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1118)) (-5 *2 (-783)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1118)))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1118)))) (-2121 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1118)))))
+(-13 (-738) (-1056 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -2758 ($ $ $)) (-15 -3566 ($ $ $)) (-15 -2534 ((-3 $ "failed") $ $)) (-15 -3322 ((-3 $ "failed") $ $)) (-15 -1408 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4203 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1499 ((-783) $)) (-15 -3544 ((-656 (-2 (|:| |gen| |t#1|) (|:| -1619 (-783)))) $)) (-15 -3056 ((-783) $ (-576))) (-15 -1762 (|t#1| $ (-576))) (-15 -1945 ($ (-1 (-783) (-783)) $)) (-15 -2121 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|)))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1056 |#1|) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783) $) 74)) (-4335 (($) NIL T CONST)) (-3322 (((-3 $ "failed") $ $) 77)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4203 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4192 (((-112) $) 17)) (-1762 ((|#1| $ (-576)) NIL)) (-3056 (((-783) $ (-576)) NIL)) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2121 (($ (-1 |#1| |#1|) $) 40)) (-1945 (($ (-1 (-783) (-783)) $) 37)) (-2534 (((-3 $ "failed") $ $) 60)) (-2148 (((-1177) $) NIL)) (-3566 (($ $ $) 28)) (-2758 (($ $ $) 26)) (-3945 (((-1138) $) NIL)) (-3544 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-783)))) $) 34)) (-1408 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2956 (((-874) $) 24) (($ |#1|) NIL)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 11 T CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-398 |#1|) (-397 |#1|) (-1118)) (T -398))
+NIL
+(-397 |#1|)
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 53)) (-2216 (((-576) $) 54)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-3639 (($ $ $) 60)) (-2571 (($ $ $) 59)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ $) 48)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 52)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 57)) (-3024 (((-112) $ $) 56)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 58)) (-3014 (((-112) $ $) 55)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-399) (-141)) (T -399))
-((-3687 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))) (-3764 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399)))))
-(-13 (-1116) (-500 (-1175)) (-10 -8 (-15 -3687 ($ (-1175) (-1175) (-1175))) (-15 -2582 ((-1175) $)) (-15 -2039 ((-1175) $)) (-15 -3681 ((-1175) $)) (-15 -2782 ((-112) $)) (-15 -3915 ((-112) $)) (-15 -4024 ((-112) $)) (-15 -3764 ($ (-1175) (-1175) (-1175)))))
-(((-102) . T) ((-626 #0=(-1175)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2879 (((-872) $) 63)) (-1430 (($) NIL T CONST)) (-3344 (($ $ (-935)) NIL)) (-1855 (($ $ (-935)) NIL)) (-3484 (($ $ (-935)) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($ (-781)) 38)) (-2732 (((-781)) 18)) (-1715 (((-872) $) 65)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2362 (($ $ $ $) NIL)) (-2030 (($ $ $) NIL)) (-2141 (($) 24 T CONST)) (-2986 (((-112) $ $) 41)) (-3090 (($ $) 48) (($ $ $) 50)) (-3074 (($ $ $) 51)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-400 |#1| |#2| |#3|) (-13 (-754 |#3|) (-10 -8 (-15 -2732 ((-781))) (-15 -1715 ((-872) $)) (-15 -2879 ((-872) $)) (-15 -2975 ($ (-781))))) (-781) (-781) (-174)) (T -400))
-((-2732 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)) (-4 *5 (-174)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
-(-13 (-754 |#3|) (-10 -8 (-15 -2732 ((-781))) (-15 -1715 ((-872) $)) (-15 -2879 ((-872) $)) (-15 -2975 ($ (-781)))))
-((-3623 (((-1175)) 12)) (-4187 (((-1163 (-1175))) 30)) (-3722 (((-1289) (-1175)) 27) (((-1289) (-398)) 26)) (-3732 (((-1289)) 28)) (-1453 (((-1163 (-1175))) 29)))
-(((-401) (-10 -7 (-15 -1453 ((-1163 (-1175)))) (-15 -4187 ((-1163 (-1175)))) (-15 -3732 ((-1289))) (-15 -3722 ((-1289) (-398))) (-15 -3722 ((-1289) (-1175))) (-15 -3623 ((-1175))))) (T -401))
-((-3623 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-401)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-401)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-401)))) (-3732 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-401)))) (-4187 (*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401)))) (-1453 (*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401)))))
-(-10 -7 (-15 -1453 ((-1163 (-1175)))) (-15 -4187 ((-1163 (-1175)))) (-15 -3732 ((-1289))) (-15 -3722 ((-1289) (-398))) (-15 -3722 ((-1289) (-1175))) (-15 -3623 ((-1175))))
-((-1518 (((-781) (-345 |#1| |#2| |#3| |#4|)) 16)))
-(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1518 ((-781) (-345 |#1| |#2| |#3| |#4|)))) (-13 (-377) (-372)) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -402))
-((-1518 (*1 *2 *3) (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372))) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *7 (-351 *4 *5 *6)) (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1518 ((-781) (-345 |#1| |#2| |#3| |#4|))))
-((-2951 (((-404) |#1|) 11)))
-(((-403 |#1|) (-10 -7 (-15 -2951 ((-404) |#1|))) (-1116)) (T -403))
-((-2951 (*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1116)))))
-(-10 -7 (-15 -2951 ((-404) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-2195 (((-654 (-1175)) $ (-654 (-1175))) 42)) (-3897 (((-654 (-1175)) $ (-654 (-1175))) 43)) (-2186 (((-654 (-1175)) $ (-654 (-1175))) 44)) (-4336 (((-654 (-1175)) $) 39)) (-3764 (($) 30)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3354 (((-654 (-1175)) $) 40)) (-1335 (((-654 (-1175)) $) 41)) (-1414 (((-1289) $ (-574)) 37) (((-1289) $) 38)) (-1844 (($ (-872) (-574)) 35)) (-2951 (((-872) $) 49) (($ (-872)) 32)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-404) (-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -1335 ((-654 (-1175)) $)) (-15 -3354 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -4336 ((-654 (-1175)) $)) (-15 -2186 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3897 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2195 ((-654 (-1175)) $ (-654 (-1175))))))) (T -404))
-((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-404)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-404)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3764 (*1 *1) (-5 *1 (-404))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-2186 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-3897 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))) (-2195 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))))
-(-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -1335 ((-654 (-1175)) $)) (-15 -3354 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -4336 ((-654 (-1175)) $)) (-15 -2186 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -3897 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2195 ((-654 (-1175)) $ (-654 (-1175))))))
-((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8)))
-(((-405) (-141)) (T -405))
-((-3742 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1289)))))
-(-13 (-1234) (-623 (-872)) (-10 -8 (-15 -3742 ((-1289) $))))
-(((-623 (-872)) . T) ((-1234) . T))
-((-1704 (((-3 $ "failed") (-324 (-388))) 21) (((-3 $ "failed") (-324 (-574))) 19) (((-3 $ "failed") (-966 (-388))) 17) (((-3 $ "failed") (-966 (-574))) 15) (((-3 $ "failed") (-417 (-966 (-388)))) 13) (((-3 $ "failed") (-417 (-966 (-574)))) 11)) (-2216 (($ (-324 (-388))) 22) (($ (-324 (-574))) 20) (($ (-966 (-388))) 18) (($ (-966 (-574))) 16) (($ (-417 (-966 (-388)))) 14) (($ (-417 (-966 (-574)))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23)))
-(((-406) (-141)) (T -406))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2216 ($ (-324 (-388)))) (-15 -1704 ((-3 $ "failed") (-324 (-388)))) (-15 -2216 ($ (-324 (-574)))) (-15 -1704 ((-3 $ "failed") (-324 (-574)))) (-15 -2216 ($ (-966 (-388)))) (-15 -1704 ((-3 $ "failed") (-966 (-388)))) (-15 -2216 ($ (-966 (-574)))) (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2216 ($ (-417 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-388))))) (-15 -2216 ($ (-417 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-417 (-966 (-574)))))))
-(((-623 (-872)) . T) ((-405) . T) ((-1234) . T))
-((-3140 (((-654 (-1175)) (-654 (-1175))) 9)) (-3742 (((-1289) (-398)) 26)) (-4403 (((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193))) 59) (((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193)) 34) (((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193))) 33)))
-(((-407) (-10 -7 (-15 -4403 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)))) (-15 -4403 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193))) (-15 -4403 ((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193)))) (-15 -3742 ((-1289) (-398))) (-15 -3140 ((-654 (-1175)) (-654 (-1175)))))) (T -407))
-((-3140 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-407)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-407)))) (-4403 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *5 (-1196)) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407)))) (-4403 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407)))) (-4403 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193))))) (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120)) (-5 *1 (-407)))))
-(-10 -7 (-15 -4403 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)))) (-15 -4403 ((-1120) (-1193) (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193)))) (-654 (-654 (-3 (|:| |array| (-654 (-1193))) (|:| |scalar| (-1193))))) (-654 (-1193)) (-1193))) (-15 -4403 ((-1120) (-1193) (-654 (-1193)) (-1196) (-654 (-1193)))) (-15 -3742 ((-1289) (-398))) (-15 -3140 ((-654 (-1175)) (-654 (-1175)))))
-((-3742 (((-1289) $) 35)) (-2951 (((-872) $) 97) (($ (-338)) 99) (($ (-654 (-338))) 98) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 96) (($ (-324 (-711))) 52) (($ (-324 (-709))) 72) (($ (-324 (-704))) 85) (($ (-302 (-324 (-711)))) 67) (($ (-302 (-324 (-709)))) 80) (($ (-302 (-324 (-704)))) 93) (($ (-324 (-574))) 104) (($ (-324 (-388))) 117) (($ (-324 (-171 (-388)))) 130) (($ (-302 (-324 (-574)))) 112) (($ (-302 (-324 (-388)))) 125) (($ (-302 (-324 (-171 (-388))))) 138)))
-(((-408 |#1| |#2| |#3| |#4|) (-13 (-405) (-10 -8 (-15 -2951 ($ (-338))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2951 ($ (-324 (-711)))) (-15 -2951 ($ (-324 (-709)))) (-15 -2951 ($ (-324 (-704)))) (-15 -2951 ($ (-302 (-324 (-711))))) (-15 -2951 ($ (-302 (-324 (-709))))) (-15 -2951 ($ (-302 (-324 (-704))))) (-15 -2951 ($ (-324 (-574)))) (-15 -2951 ($ (-324 (-388)))) (-15 -2951 ($ (-324 (-171 (-388))))) (-15 -2951 ($ (-302 (-324 (-574))))) (-15 -2951 ($ (-302 (-324 (-388))))) (-15 -2951 ($ (-302 (-324 (-171 (-388)))))))) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-1197)) (T -408))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-14 *5 (-654 (-1193))) (-14 *6 (-1197)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-338))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2951 ($ (-324 (-711)))) (-15 -2951 ($ (-324 (-709)))) (-15 -2951 ($ (-324 (-704)))) (-15 -2951 ($ (-302 (-324 (-711))))) (-15 -2951 ($ (-302 (-324 (-709))))) (-15 -2951 ($ (-302 (-324 (-704))))) (-15 -2951 ($ (-324 (-574)))) (-15 -2951 ($ (-324 (-388)))) (-15 -2951 ($ (-324 (-171 (-388))))) (-15 -2951 ($ (-302 (-324 (-574))))) (-15 -2951 ($ (-302 (-324 (-388))))) (-15 -2951 ($ (-302 (-324 (-171 (-388))))))))
-((-2864 (((-112) $ $) NIL)) (-3068 ((|#2| $) 38)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2059 (($ (-417 |#2|)) 93)) (-3569 (((-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $) 39)) (-3879 (($ $) 34) (($ $ (-781)) 36)) (-1844 (((-417 |#2|) $) 49)) (-2963 (($ (-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|)))) 33)) (-2951 (((-872) $) 131)) (-2981 (((-112) $ $) NIL)) (-3585 (($ $) 35) (($ $ (-781)) 37)) (-2986 (((-112) $ $) NIL)) (-3074 (($ |#2| $) 41)))
-(((-409 |#1| |#2|) (-13 (-1116) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -2059 ($ (-417 |#2|))) (-15 -3068 (|#2| $)) (-15 -3569 ((-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3879 ($ $)) (-15 -3585 ($ $)) (-15 -3879 ($ $ (-781))) (-15 -3585 ($ $ (-781))))) (-13 (-372) (-148)) (-1260 |#1|)) (T -409))
-((-3074 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2)) (-4 *2 (-1260 *3)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3068 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-409 *3 *2)) (-4 *3 (-13 (-372) (-148))))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-13 (-372) (-148))) (-5 *2 (-654 (-2 (|:| -2754 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -2754 (-781)) (|:| -3332 *4) (|:| |num| *4)))) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)))) (-3879 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1260 *2)))) (-3585 (*1 *1 *1) (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3)) (-4 *3 (-1260 *2)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))) (-3585 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))))
-(-13 (-1116) (-624 (-417 |#2|)) (-10 -8 (-15 -3074 ($ |#2| $)) (-15 -2059 ($ (-417 |#2|))) (-15 -3068 (|#2| $)) (-15 -3569 ((-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -2754 (-781)) (|:| -3332 |#2|) (|:| |num| |#2|))))) (-15 -3879 ($ $)) (-15 -3585 ($ $)) (-15 -3879 ($ $ (-781))) (-15 -3585 ($ $ (-781)))))
-((-2864 (((-112) $ $) 9 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 16 (|has| |#1| (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 15 (|has| |#1| (-897 (-574))))) (-4420 (((-1175) $) 13 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-3940 (((-1136) $) 12 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2951 (((-872) $) 11 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2981 (((-112) $ $) 14 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))) (-2986 (((-112) $ $) 10 (-2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))))))
-(((-410 |#1|) (-141) (-1234)) (T -410))
-NIL
-(-13 (-1234) (-10 -7 (IF (|has| |t#1| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|)))
-(((-102) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-623 (-872)) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-1116) -2833 (|has| |#1| (-897 (-574))) (|has| |#1| (-897 (-388)))) ((-1234) . T))
-((-2613 (($ $) 10) (($ $ (-781)) 12)))
-(((-411 |#1|) (-10 -8 (-15 -2613 (|#1| |#1| (-781))) (-15 -2613 (|#1| |#1|))) (-412)) (T -411))
-NIL
-(-10 -8 (-15 -2613 (|#1| |#1| (-781))) (-15 -2613 (|#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-2613 (($ $) 87) (($ $ (-781)) 86)) (-3342 (((-112) $) 79)) (-1518 (((-843 (-935)) $) 89)) (-3943 (((-112) $) 35)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1532 (((-3 (-781) "failed") $ $) 88)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74)) (-2705 (((-3 $ "failed") $) 90)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
-(((-412) (-141)) (T -412))
-((-1518 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-935))))) (-1532 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))) (-2613 (*1 *1 *1) (-4 *1 (-412))) (-2613 (*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781)))))
-(-13 (-372) (-146) (-10 -8 (-15 -1518 ((-843 (-935)) $)) (-15 -1532 ((-3 (-781) "failed") $ $)) (-15 -2613 ($ $)) (-15 -2613 ($ $ (-781)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2399 (($ (-574) (-574)) 11) (($ (-574) (-574) (-935)) NIL)) (-1773 (((-935)) 19) (((-935) (-935)) NIL)))
-(((-413 |#1|) (-10 -8 (-15 -1773 ((-935) (-935))) (-15 -1773 ((-935))) (-15 -2399 (|#1| (-574) (-574) (-935))) (-15 -2399 (|#1| (-574) (-574)))) (-414)) (T -413))
-((-1773 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414)))))
-(-10 -8 (-15 -1773 ((-935) (-935))) (-15 -1773 ((-935))) (-15 -2399 (|#1| (-574) (-574) (-935))) (-15 -2399 (|#1| (-574) (-574))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4356 (((-574) $) 97)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-2991 (($ $) 95)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-4212 (($ $) 105)) (-1374 (((-112) $ $) 65)) (-1370 (((-574) $) 122)) (-1430 (($) 18 T CONST)) (-3274 (($ $) 94)) (-1704 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-3760 (((-935)) 138) (((-935) (-935)) 135 (|has| $ (-6 -4450)))) (-2516 (((-112) $) 120)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-1518 (((-574) $) 144)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 104)) (-2608 (($ $) 100)) (-1935 (((-112) $) 121)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 119) (($) 132 (-12 (-2084 (|has| $ (-6 -4450))) (-2084 (|has| $ (-6 -4442)))))) (-2976 (($ $ $) 118) (($) 131 (-12 (-2084 (|has| $ (-6 -4450))) (-2084 (|has| $ (-6 -4442)))))) (-4290 (((-574) $) 141)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-2189 (((-935) (-574)) 134 (|has| $ (-6 -4450)))) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3577 (($ $) 96)) (-3229 (($ $) 98)) (-2399 (($ (-574) (-574)) 146) (($ (-574) (-574) (-935)) 145)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2754 (((-574) $) 142)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1773 (((-935)) 139) (((-935) (-935)) 136 (|has| $ (-6 -4450)))) (-2326 (((-935) (-574)) 133 (|has| $ (-6 -4450)))) (-1844 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-3070 (((-781)) 32 T CONST)) (-3941 (($ $) 99)) (-4098 (((-935)) 140) (((-935) (-935)) 137 (|has| $ (-6 -4450)))) (-2981 (((-112) $ $) 9)) (-2644 (((-935)) 143)) (-3750 (((-112) $ $) 45)) (-4107 (($ $) 123)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3020 (((-112) $ $) 115)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+NIL
+(-13 (-568) (-862) (-1056 (-576)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-2568 (((-112) $) 25)) (-3941 (((-112) $) 22)) (-3769 (($ (-1177) (-1177) (-1177)) 26)) (-2041 (((-1177) $) 16)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3692 (($ (-1177) (-1177) (-1177)) 14)) (-3547 (((-1177) $) 17)) (-1402 (((-112) $) 18)) (-2588 (((-1177) $) 15)) (-2956 (((-874) $) 12) (($ (-1177)) 13) (((-1177) $) 9)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 7)))
+(((-400) (-401)) (T -400))
+NIL
+(-401)
+((-2869 (((-112) $ $) 7)) (-2568 (((-112) $) 17)) (-3941 (((-112) $) 18)) (-3769 (($ (-1177) (-1177) (-1177)) 16)) (-2041 (((-1177) $) 21)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3692 (($ (-1177) (-1177) (-1177)) 23)) (-3547 (((-1177) $) 20)) (-1402 (((-112) $) 19)) (-2588 (((-1177) $) 22)) (-2956 (((-874) $) 12) (($ (-1177)) 25) (((-1177) $) 24)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-401) (-141)) (T -401))
+((-3692 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-3769 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))))
+(-13 (-1118) (-502 (-1177)) (-10 -8 (-15 -3692 ($ (-1177) (-1177) (-1177))) (-15 -2588 ((-1177) $)) (-15 -2041 ((-1177) $)) (-15 -3547 ((-1177) $)) (-15 -1402 ((-112) $)) (-15 -3941 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -3769 ($ (-1177) (-1177) (-1177)))))
+(((-102) . T) ((-628 #0=(-1177)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4133 (((-874) $) 63)) (-4335 (($) NIL T CONST)) (-3133 (($ $ (-937)) NIL)) (-3728 (($ $ (-937)) NIL)) (-2128 (($ $ (-937)) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($ (-783)) 38)) (-2068 (((-783)) 18)) (-1711 (((-874) $) 65)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2927 (($ $ $ $) NIL)) (-1736 (($ $ $) NIL)) (-2143 (($) 24 T CONST)) (-2991 (((-112) $ $) 41)) (-3096 (($ $) 48) (($ $ $) 50)) (-3081 (($ $ $) 51)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -2068 ((-783))) (-15 -1711 ((-874) $)) (-15 -4133 ((-874) $)) (-15 -2981 ($ (-783))))) (-783) (-783) (-174)) (T -402))
+((-2068 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
+(-13 (-756 |#3|) (-10 -8 (-15 -2068 ((-783))) (-15 -1711 ((-874) $)) (-15 -4133 ((-874) $)) (-15 -2981 ($ (-783)))))
+((-3001 (((-1177)) 12)) (-1686 (((-1165 (-1177))) 30)) (-3727 (((-1291) (-1177)) 27) (((-1291) (-400)) 26)) (-3737 (((-1291)) 28)) (-4118 (((-1165 (-1177))) 29)))
+(((-403) (-10 -7 (-15 -4118 ((-1165 (-1177)))) (-15 -1686 ((-1165 (-1177)))) (-15 -3737 ((-1291))) (-15 -3727 ((-1291) (-400))) (-15 -3727 ((-1291) (-1177))) (-15 -3001 ((-1177))))) (T -403))
+((-3001 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-3737 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403)))) (-1686 (*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403)))) (-4118 (*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403)))))
+(-10 -7 (-15 -4118 ((-1165 (-1177)))) (-15 -1686 ((-1165 (-1177)))) (-15 -3737 ((-1291))) (-15 -3727 ((-1291) (-400))) (-15 -3727 ((-1291) (-1177))) (-15 -3001 ((-1177))))
+((-3540 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16)))
+(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3540 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404))
+((-3540 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3540 ((-783) (-347 |#1| |#2| |#3| |#4|))))
+((-2956 (((-406) |#1|) 11)))
+(((-405 |#1|) (-10 -7 (-15 -2956 ((-406) |#1|))) (-1118)) (T -405))
+((-2956 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1118)))))
+(-10 -7 (-15 -2956 ((-406) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3912 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-3755 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-3819 (((-656 (-1177)) $ (-656 (-1177))) 44)) (-2542 (((-656 (-1177)) $) 39)) (-3769 (($) 30)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3359 (((-656 (-1177)) $) 40)) (-1655 (((-656 (-1177)) $) 41)) (-1416 (((-1291) $ (-576)) 37) (((-1291) $) 38)) (-1846 (($ (-874) (-576)) 35)) (-2956 (((-874) $) 49) (($ (-874)) 32)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-406) (-13 (-1118) (-628 (-874)) (-10 -8 (-15 -1846 ($ (-874) (-576))) (-15 -1416 ((-1291) $ (-576))) (-15 -1416 ((-1291) $)) (-15 -1655 ((-656 (-1177)) $)) (-15 -3359 ((-656 (-1177)) $)) (-15 -3769 ($)) (-15 -2542 ((-656 (-1177)) $)) (-15 -3819 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3755 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3912 ((-656 (-1177)) $ (-656 (-1177))))))) (T -406))
+((-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3769 (*1 *1) (-5 *1 (-406))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3755 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-3912 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))))
+(-13 (-1118) (-628 (-874)) (-10 -8 (-15 -1846 ($ (-874) (-576))) (-15 -1416 ((-1291) $ (-576))) (-15 -1416 ((-1291) $)) (-15 -1655 ((-656 (-1177)) $)) (-15 -3359 ((-656 (-1177)) $)) (-15 -3769 ($)) (-15 -2542 ((-656 (-1177)) $)) (-15 -3819 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3755 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3912 ((-656 (-1177)) $ (-656 (-1177))))))
+((-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8)))
+(((-407) (-141)) (T -407))
+((-3747 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291)))))
+(-13 (-1236) (-625 (-874)) (-10 -8 (-15 -3747 ((-1291) $))))
+(((-625 (-874)) . T) ((-1236) . T))
+((-1706 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-968 (-390))) 17) (((-3 $ "failed") (-968 (-576))) 15) (((-3 $ "failed") (-419 (-968 (-390)))) 13) (((-3 $ "failed") (-419 (-968 (-576)))) 11)) (-2216 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-968 (-390))) 18) (($ (-968 (-576))) 16) (($ (-419 (-968 (-390)))) 14) (($ (-419 (-968 (-576)))) 12)) (-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 23)))
+(((-408) (-141)) (T -408))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-340))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))) (-15 -2216 ($ (-326 (-390)))) (-15 -1706 ((-3 $ "failed") (-326 (-390)))) (-15 -2216 ($ (-326 (-576)))) (-15 -1706 ((-3 $ "failed") (-326 (-576)))) (-15 -2216 ($ (-968 (-390)))) (-15 -1706 ((-3 $ "failed") (-968 (-390)))) (-15 -2216 ($ (-968 (-576)))) (-15 -1706 ((-3 $ "failed") (-968 (-576)))) (-15 -2216 ($ (-419 (-968 (-390))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-390))))) (-15 -2216 ($ (-419 (-968 (-576))))) (-15 -1706 ((-3 $ "failed") (-419 (-968 (-576)))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1236) . T))
+((-2800 (((-656 (-1177)) (-656 (-1177))) 9)) (-3747 (((-1291) (-400)) 26)) (-1985 (((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195))) 59) (((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195)) 34) (((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195))) 33)))
+(((-409) (-10 -7 (-15 -1985 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -1985 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -1985 ((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -3747 ((-1291) (-400))) (-15 -2800 ((-656 (-1177)) (-656 (-1177)))))) (T -409))
+((-2800 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409)))) (-1985 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409)))) (-1985 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409)))) (-1985 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122)) (-5 *1 (-409)))))
+(-10 -7 (-15 -1985 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -1985 ((-1122) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -1985 ((-1122) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -3747 ((-1291) (-400))) (-15 -2800 ((-656 (-1177)) (-656 (-1177)))))
+((-3747 (((-1291) $) 35)) (-2956 (((-874) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138)))
+(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -2956 ($ (-340))) (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))) (-15 -2956 ($ (-326 (-713)))) (-15 -2956 ($ (-326 (-711)))) (-15 -2956 ($ (-326 (-706)))) (-15 -2956 ($ (-304 (-326 (-713))))) (-15 -2956 ($ (-304 (-326 (-711))))) (-15 -2956 ($ (-304 (-326 (-706))))) (-15 -2956 ($ (-326 (-576)))) (-15 -2956 ($ (-326 (-390)))) (-15 -2956 ($ (-326 (-171 (-390))))) (-15 -2956 ($ (-304 (-326 (-576))))) (-15 -2956 ($ (-304 (-326 (-390))))) (-15 -2956 ($ (-304 (-326 (-171 (-390)))))))) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-1195)) (-1199)) (T -410))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-340))) (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))) (-15 -2956 ($ (-326 (-713)))) (-15 -2956 ($ (-326 (-711)))) (-15 -2956 ($ (-326 (-706)))) (-15 -2956 ($ (-304 (-326 (-713))))) (-15 -2956 ($ (-304 (-326 (-711))))) (-15 -2956 ($ (-304 (-326 (-706))))) (-15 -2956 ($ (-326 (-576)))) (-15 -2956 ($ (-326 (-390)))) (-15 -2956 ($ (-326 (-171 (-390))))) (-15 -2956 ($ (-304 (-326 (-576))))) (-15 -2956 ($ (-304 (-326 (-390))))) (-15 -2956 ($ (-304 (-326 (-171 (-390))))))))
+((-2869 (((-112) $ $) NIL)) (-3402 ((|#2| $) 38)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1991 (($ (-419 |#2|)) 93)) (-3673 (((-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|))) $) 39)) (-3884 (($ $) 34) (($ $ (-783)) 36)) (-1846 (((-419 |#2|) $) 49)) (-2968 (($ (-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|)))) 33)) (-2956 (((-874) $) 131)) (-2617 (((-112) $ $) NIL)) (-3590 (($ $) 35) (($ $ (-783)) 37)) (-2991 (((-112) $ $) NIL)) (-3081 (($ |#2| $) 41)))
+(((-411 |#1| |#2|) (-13 (-1118) (-626 (-419 |#2|)) (-10 -8 (-15 -3081 ($ |#2| $)) (-15 -1991 ($ (-419 |#2|))) (-15 -3402 (|#2| $)) (-15 -3673 ((-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|))) $)) (-15 -2968 ($ (-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|))))) (-15 -3884 ($ $)) (-15 -3590 ($ $)) (-15 -3884 ($ $ (-783))) (-15 -3590 ($ $ (-783))))) (-13 (-374) (-148)) (-1262 |#1|)) (T -411))
+((-3081 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1262 *3)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3402 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-3673 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -2300 (-783)) (|:| -3337 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2300 (-783)) (|:| -3337 *4) (|:| |num| *4)))) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3884 (*1 *1 *1) (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) (-4 *3 (-1262 *2)))) (-3590 (*1 *1 *1) (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3)) (-4 *3 (-1262 *2)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))))
+(-13 (-1118) (-626 (-419 |#2|)) (-10 -8 (-15 -3081 ($ |#2| $)) (-15 -1991 ($ (-419 |#2|))) (-15 -3402 (|#2| $)) (-15 -3673 ((-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|))) $)) (-15 -2968 ($ (-656 (-2 (|:| -2300 (-783)) (|:| -3337 |#2|) (|:| |num| |#2|))))) (-15 -3884 ($ $)) (-15 -3590 ($ $)) (-15 -3884 ($ $ (-783))) (-15 -3590 ($ $ (-783)))))
+((-2869 (((-112) $ $) 9 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 16 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 15 (|has| |#1| (-899 (-576))))) (-2148 (((-1177) $) 13 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3945 (((-1138) $) 12 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2956 (((-874) $) 11 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2617 (((-112) $ $) 14 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2991 (((-112) $ $) 10 (-2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))))
+(((-412 |#1|) (-141) (-1236)) (T -412))
+NIL
+(-13 (-1236) (-10 -7 (IF (|has| |t#1| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|)))
+(((-102) -2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-625 (-874)) -2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-1118) -2838 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-1236) . T))
+((-3454 (($ $) 10) (($ $ (-783)) 12)))
+(((-413 |#1|) (-10 -8 (-15 -3454 (|#1| |#1| (-783))) (-15 -3454 (|#1| |#1|))) (-414)) (T -413))
+NIL
+(-10 -8 (-15 -3454 (|#1| |#1| (-783))) (-15 -3454 (|#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3454 (($ $) 87) (($ $ (-783)) 86)) (-3124 (((-112) $) 79)) (-3540 (((-845 (-937)) $) 89)) (-4192 (((-112) $) 35)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-3665 (((-3 (-783) "failed") $ $) 88)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1817 (((-3 $ "failed") $) 90)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
(((-414) (-141)) (T -414))
-((-2399 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414)))) (-2399 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-4 *1 (-414)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-2644 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574)))) (-4098 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-1773 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-3760 (*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) (-5 *2 (-935)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414)) (-5 *2 (-935)))) (-3634 (*1 *1) (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) (-2084 (|has| *1 (-6 -4442))))) (-2976 (*1 *1) (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450))) (-2084 (|has| *1 (-6 -4442))))))
-(-13 (-1076) (-10 -8 (-6 -3525) (-15 -2399 ($ (-574) (-574))) (-15 -2399 ($ (-574) (-574) (-935))) (-15 -1518 ((-574) $)) (-15 -2644 ((-935))) (-15 -2754 ((-574) $)) (-15 -4290 ((-574) $)) (-15 -4098 ((-935))) (-15 -1773 ((-935))) (-15 -3760 ((-935))) (IF (|has| $ (-6 -4450)) (PROGN (-15 -4098 ((-935) (-935))) (-15 -1773 ((-935) (-935))) (-15 -3760 ((-935) (-935))) (-15 -2189 ((-935) (-574))) (-15 -2326 ((-935) (-574)))) |%noBranch|) (IF (|has| $ (-6 -4442)) |%noBranch| (IF (|has| $ (-6 -4450)) |%noBranch| (PROGN (-15 -3634 ($)) (-15 -2976 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-934) . T) ((-1018) . T) ((-1038) . T) ((-1076) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-1785 (((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)) 20)))
-(((-415 |#1| |#2|) (-10 -7 (-15 -1785 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|)))) (-566) (-566)) (T -415))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6)))))
-(-10 -7 (-15 -1785 ((-428 |#2|) (-1 |#2| |#1|) (-428 |#1|))))
-((-1785 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 13)))
-(((-416 |#1| |#2|) (-10 -7 (-15 -1785 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-566) (-566)) (T -416))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6)))))
-(-10 -7 (-15 -1785 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 13)) (-4356 ((|#1| $) 21 (|has| |#1| (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| |#1| (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 17) (((-3 (-1193) "failed") $) NIL (|has| |#1| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 72 (|has| |#1| (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574))))) (-2216 ((|#1| $) 15) (((-1193) $) NIL (|has| |#1| (-1054 (-1193)))) (((-417 (-574)) $) 69 (|has| |#1| (-1054 (-574)))) (((-574) $) NIL (|has| |#1| (-1054 (-574))))) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) 51)) (-2835 (($) NIL (|has| |#1| (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| |#1| (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#1| (-897 (-388))))) (-3943 (((-112) $) 57)) (-2447 (($ $) NIL)) (-2970 ((|#1| $) 73)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-1935 (((-112) $) NIL (|has| |#1| (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 100)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| |#1| (-315)))) (-3229 ((|#1| $) 28 (|has| |#1| (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 145 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 138 (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-4220 (((-781) $) NIL)) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1611 (($ $) NIL)) (-2980 ((|#1| $) 75)) (-1844 (((-903 (-574)) $) NIL (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#1| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#1| (-624 (-546)))) (((-388) $) NIL (|has| |#1| (-1038))) (((-227) $) NIL (|has| |#1| (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 10) (($ (-1193)) NIL (|has| |#1| (-1054 (-1193))))) (-2705 (((-3 $ "failed") $) 102 (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 103 T CONST)) (-3941 ((|#1| $) 26 (|has| |#1| (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-830)))) (-2141 (($) 22 T CONST)) (-2153 (($) 8 T CONST)) (-4029 (((-1175) $) 44 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1175) $ (-112)) 45 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1289) (-832) $) 46 (-12 (|has| |#1| (-555)) (|has| |#1| (-838)))) (((-1289) (-832) $ (-112)) 47 (-12 (|has| |#1| (-555)) (|has| |#1| (-838))))) (-3585 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) 66)) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#1| (-860)))) (-3099 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3090 (($ $) 25) (($ $ $) 56)) (-3074 (($ $ $) 54)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 132)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 61) (($ $ $) 58) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-417 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4457)) (-6 -4446) |%noBranch|) |%noBranch|) |%noBranch|))) (-566)) (T -417))
-NIL
-(-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-555)) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (IF (|has| |#1| (-462)) (IF (|has| |#1| (-6 -4457)) (-6 -4446) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-4348 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 18)) (-3114 (($ (-1284 |#2|) (-1284 $)) NIL) (($ (-1284 |#2|)) 24)) (-2375 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 40)) (-3446 ((|#3| $) 69)) (-1924 ((|#2| (-1284 $)) NIL) ((|#2|) 20)) (-2282 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 22) (((-699 |#2|) (-1284 $)) 38)) (-1844 (((-1284 |#2|) $) 11) (($ (-1284 |#2|)) 13)) (-2451 ((|#3| $) 55)))
-(((-418 |#1| |#2| |#3|) (-10 -8 (-15 -2375 ((-699 |#2|) |#1|)) (-15 -1924 (|#2|)) (-15 -4348 ((-699 |#2|))) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -3446 (|#3| |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -4348 ((-699 |#2|) (-1284 |#1|))) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2375 ((-699 |#2|) |#1| (-1284 |#1|)))) (-419 |#2| |#3|) (-174) (-1260 |#2|)) (T -418))
-((-4348 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)) (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5)))) (-1924 (*1 *2) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4)) (-4 *3 (-419 *2 *4)))))
-(-10 -8 (-15 -2375 ((-699 |#2|) |#1|)) (-15 -1924 (|#2|)) (-15 -4348 ((-699 |#2|))) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -3446 (|#3| |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -4348 ((-699 |#2|) (-1284 |#1|))) (-15 -1924 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2375 ((-699 |#2|) |#1| (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4348 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3114 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-2375 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-3612 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-3943 (((-112) $) 35)) (-2608 ((|#1| $) 58)) (-3446 ((|#2| $) 51 (|has| |#1| (-372)))) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-1924 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-2282 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44)) (-2705 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2451 ((|#2| $) 52)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 74)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-419 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -419))
-((-1895 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *1)) (-4 *1 (-419 *3 *4)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *3)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1260 *3)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *3)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4)) (-4 *4 (-1260 *3)))) (-4348 (*1 *2) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-699 *3)))) (-1924 (*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-699 *3)))))
-(-13 (-379 |t#1| |t#2|) (-10 -8 (-15 -1895 ((-1284 $))) (-15 -2282 ((-1284 |t#1|) $)) (-15 -2282 ((-699 |t#1|) (-1284 $))) (-15 -3114 ($ (-1284 |t#1|))) (-15 -1844 ((-1284 |t#1|) $)) (-15 -1844 ($ (-1284 |t#1|))) (-15 -4348 ((-699 |t#1|))) (-15 -1924 (|t#1|)) (-15 -2375 ((-699 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-379 |#1| |#2|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) 27) (((-3 (-574) "failed") $) 19)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) 24) (((-574) $) 14)) (-2951 (($ |#2|) NIL) (($ (-417 (-574))) 22) (($ (-574)) 11)))
-(((-420 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|))) (-421 |#2|) (-1234)) (T -420))
-NIL
-(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)))
-((-1704 (((-3 |#1| "failed") $) 9) (((-3 (-417 (-574)) "failed") $) 16 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 13 (|has| |#1| (-1054 (-574))))) (-2216 ((|#1| $) 8) (((-417 (-574)) $) 17 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 14 (|has| |#1| (-1054 (-574))))) (-2951 (($ |#1|) 6) (($ (-417 (-574))) 15 (|has| |#1| (-1054 (-417 (-574))))) (($ (-574)) 12 (|has| |#1| (-1054 (-574))))))
-(((-421 |#1|) (-141) (-1234)) (T -421))
-NIL
-(-13 (-1054 |t#1|) (-10 -7 (IF (|has| |t#1| (-1054 (-574))) (-6 (-1054 (-574))) |%noBranch|) (IF (|has| |t#1| (-1054 (-417 (-574)))) (-6 (-1054 (-417 (-574)))) |%noBranch|)))
-(((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 #1=(-574)) |has| |#1| (-1054 (-574))) ((-626 |#1|) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 #1#) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T))
-((-1785 (((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)) 35)))
-(((-422 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|)))) (-315) (-1008 |#1|) (-1260 |#2|) (-13 (-419 |#2| |#3|) (-1054 |#2|)) (-315) (-1008 |#5|) (-1260 |#6|) (-13 (-419 |#6| |#7|) (-1054 |#6|))) (T -422))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315)) (-4 *6 (-1008 *5)) (-4 *7 (-1260 *6)) (-4 *8 (-13 (-419 *6 *7) (-1054 *6))) (-4 *9 (-315)) (-4 *10 (-1008 *9)) (-4 *11 (-1260 *10)) (-5 *2 (-423 *9 *10 *11 *12)) (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-419 *10 *11) (-1054 *10))))))
-(-10 -7 (-15 -1785 ((-423 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-423 |#1| |#2| |#3| |#4|))))
-((-2864 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-2402 ((|#4| (-781) (-1284 |#4|)) 55)) (-3943 (((-112) $) NIL)) (-2970 (((-1284 |#4|) $) 15)) (-2608 ((|#2| $) 53)) (-2770 (($ $) 157)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 103)) (-2611 (($ (-1284 |#4|)) 102)) (-3940 (((-1136) $) NIL)) (-2980 ((|#1| $) 16)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) 148)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 |#4|) $) 141)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) 39)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 134)) (* (($ $ $) 130)))
-(((-423 |#1| |#2| |#3| |#4|) (-13 (-483) (-10 -8 (-15 -2611 ($ (-1284 |#4|))) (-15 -1895 ((-1284 |#4|) $)) (-15 -2608 (|#2| $)) (-15 -2970 ((-1284 |#4|) $)) (-15 -2980 (|#1| $)) (-15 -2770 ($ $)) (-15 -2402 (|#4| (-781) (-1284 |#4|))))) (-315) (-1008 |#1|) (-1260 |#2|) (-13 (-419 |#2| |#3|) (-1054 |#2|))) (T -423))
-((-2611 (*1 *1 *2) (-12 (-5 *2 (-1284 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-423 *3 *4 *5 *6)))) (-1895 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) (-2608 (*1 *2 *1) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1054 *2))))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4))))) (-2980 (*1 *2 *1) (-12 (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-4 *2 (-315)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))) (-2770 (*1 *1 *1) (-12 (-4 *2 (-315)) (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1284 *2)) (-4 *5 (-315)) (-4 *6 (-1008 *5)) (-4 *2 (-13 (-419 *6 *7) (-1054 *6))) (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1260 *6)))))
-(-13 (-483) (-10 -8 (-15 -2611 ($ (-1284 |#4|))) (-15 -1895 ((-1284 |#4|) $)) (-15 -2608 (|#2| $)) (-15 -2970 ((-1284 |#4|) $)) (-15 -2980 (|#1| $)) (-15 -2770 ($ $)) (-15 -2402 (|#4| (-781) (-1284 |#4|)))))
-((-2864 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-2608 ((|#2| $) 71)) (-1533 (($ (-1284 |#4|)) 27) (($ (-423 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1054 |#2|)))) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 37)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 |#4|) $) 28)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ $ $) 82)))
-(((-424 |#1| |#2| |#3| |#4| |#5|) (-13 (-736) (-10 -8 (-15 -1895 ((-1284 |#4|) $)) (-15 -2608 (|#2| $)) (-15 -1533 ($ (-1284 |#4|))) (IF (|has| |#4| (-1054 |#2|)) (-15 -1533 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-315) (-1008 |#1|) (-1260 |#2|) (-419 |#2| |#3|) (-1284 |#4|)) (T -424))
-((-1895 (*1 *2 *1) (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-4 *6 (-419 *4 *5)) (-14 *7 *2))) (-2608 (*1 *2 *1) (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4)) (-14 *6 (-1284 *5)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-1284 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1054 *4)) (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *6 (-419 *4 *5)) (-14 *7 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7)))))
-(-13 (-736) (-10 -8 (-15 -1895 ((-1284 |#4|) $)) (-15 -2608 (|#2| $)) (-15 -1533 ($ (-1284 |#4|))) (IF (|has| |#4| (-1054 |#2|)) (-15 -1533 ($ (-423 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
-(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-427 |#2|) (-174) (-427 |#4|) (-174)) (T -425))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5)))))
-(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2020 (((-3 $ "failed")) 98)) (-1955 (((-1284 (-699 |#2|)) (-1284 $)) NIL) (((-1284 (-699 |#2|))) 103)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 96)) (-4272 (((-3 $ "failed")) 95)) (-3516 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 114)) (-2287 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 122)) (-2266 (((-1189 (-966 |#2|))) 63)) (-3288 ((|#2| (-1284 $)) NIL) ((|#2|) 118)) (-3114 (($ (-1284 |#2|) (-1284 $)) NIL) (($ (-1284 |#2|)) 124)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 94)) (-3988 (((-3 $ "failed")) 86)) (-1542 (((-699 |#2|) (-1284 $)) NIL) (((-699 |#2|)) 112)) (-3323 (((-699 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) $) 120)) (-3532 (((-1189 (-966 |#2|))) 62)) (-2816 ((|#2| (-1284 $)) NIL) ((|#2|) 116)) (-2282 (((-1284 |#2|) $ (-1284 $)) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $) 123) (((-699 |#2|) (-1284 $)) 132)) (-1844 (((-1284 |#2|) $) 108) (($ (-1284 |#2|)) 110)) (-3385 (((-654 (-966 |#2|)) (-1284 $)) NIL) (((-654 (-966 |#2|))) 106)) (-2912 (($ (-699 |#2|) $) 102)))
-(((-426 |#1| |#2|) (-10 -8 (-15 -2912 (|#1| (-699 |#2|) |#1|)) (-15 -2266 ((-1189 (-966 |#2|)))) (-15 -3532 ((-1189 (-966 |#2|)))) (-15 -2287 ((-699 |#2|) |#1|)) (-15 -3323 ((-699 |#2|) |#1|)) (-15 -3516 ((-699 |#2|))) (-15 -1542 ((-699 |#2|))) (-15 -3288 (|#2|)) (-15 -2816 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -3385 ((-654 (-966 |#2|)))) (-15 -1955 ((-1284 (-699 |#2|)))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -2020 ((-3 |#1| "failed"))) (-15 -4272 ((-3 |#1| "failed"))) (-15 -3988 ((-3 |#1| "failed"))) (-15 -3578 ((-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed"))) (-15 -4190 ((-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed"))) (-15 -3516 ((-699 |#2|) (-1284 |#1|))) (-15 -1542 ((-699 |#2|) (-1284 |#1|))) (-15 -3288 (|#2| (-1284 |#1|))) (-15 -2816 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2287 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3323 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1955 ((-1284 (-699 |#2|)) (-1284 |#1|))) (-15 -3385 ((-654 (-966 |#2|)) (-1284 |#1|)))) (-427 |#2|) (-174)) (T -426))
-((-1955 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3385 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2816 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-3288 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2)))) (-1542 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3516 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-3532 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) (-2266 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))))
-(-10 -8 (-15 -2912 (|#1| (-699 |#2|) |#1|)) (-15 -2266 ((-1189 (-966 |#2|)))) (-15 -3532 ((-1189 (-966 |#2|)))) (-15 -2287 ((-699 |#2|) |#1|)) (-15 -3323 ((-699 |#2|) |#1|)) (-15 -3516 ((-699 |#2|))) (-15 -1542 ((-699 |#2|))) (-15 -3288 (|#2|)) (-15 -2816 (|#2|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -3114 (|#1| (-1284 |#2|))) (-15 -3385 ((-654 (-966 |#2|)))) (-15 -1955 ((-1284 (-699 |#2|)))) (-15 -2282 ((-699 |#2|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1|)) (-15 -2020 ((-3 |#1| "failed"))) (-15 -4272 ((-3 |#1| "failed"))) (-15 -3988 ((-3 |#1| "failed"))) (-15 -3578 ((-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed"))) (-15 -4190 ((-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed"))) (-15 -3516 ((-699 |#2|) (-1284 |#1|))) (-15 -1542 ((-699 |#2|) (-1284 |#1|))) (-15 -3288 (|#2| (-1284 |#1|))) (-15 -2816 (|#2| (-1284 |#1|))) (-15 -3114 (|#1| (-1284 |#2|) (-1284 |#1|))) (-15 -2282 ((-699 |#2|) (-1284 |#1|) (-1284 |#1|))) (-15 -2282 ((-1284 |#2|) |#1| (-1284 |#1|))) (-15 -2287 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -3323 ((-699 |#2|) |#1| (-1284 |#1|))) (-15 -1955 ((-1284 (-699 |#2|)) (-1284 |#1|))) (-15 -3385 ((-654 (-966 |#2|)) (-1284 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2020 (((-3 $ "failed")) 42 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1955 (((-1284 (-699 |#1|)) (-1284 $)) 83) (((-1284 (-699 |#1|))) 106)) (-4022 (((-1284 $)) 86)) (-1430 (($) 18 T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 45 (|has| |#1| (-566)))) (-4272 (((-3 $ "failed")) 43 (|has| |#1| (-566)))) (-3516 (((-699 |#1|) (-1284 $)) 70) (((-699 |#1|)) 98)) (-2984 ((|#1| $) 79)) (-2287 (((-699 |#1|) $ (-1284 $)) 81) (((-699 |#1|) $) 96)) (-2339 (((-3 $ "failed") $) 50 (|has| |#1| (-566)))) (-2266 (((-1189 (-966 |#1|))) 94 (|has| |#1| (-372)))) (-3344 (($ $ (-935)) 31)) (-2104 ((|#1| $) 77)) (-4316 (((-1189 |#1|) $) 47 (|has| |#1| (-566)))) (-3288 ((|#1| (-1284 $)) 72) ((|#1|) 100)) (-1668 (((-1189 |#1|) $) 68)) (-4306 (((-112)) 62)) (-3114 (($ (-1284 |#1|) (-1284 $)) 74) (($ (-1284 |#1|)) 104)) (-3612 (((-3 $ "failed") $) 52 (|has| |#1| (-566)))) (-3558 (((-935)) 85)) (-1837 (((-112)) 59)) (-1855 (($ $ (-935)) 38)) (-2183 (((-112)) 55)) (-3630 (((-112)) 53)) (-3226 (((-112)) 57)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) 46 (|has| |#1| (-566)))) (-3988 (((-3 $ "failed")) 44 (|has| |#1| (-566)))) (-1542 (((-699 |#1|) (-1284 $)) 71) (((-699 |#1|)) 99)) (-1603 ((|#1| $) 80)) (-3323 (((-699 |#1|) $ (-1284 $)) 82) (((-699 |#1|) $) 97)) (-2808 (((-3 $ "failed") $) 51 (|has| |#1| (-566)))) (-3532 (((-1189 (-966 |#1|))) 95 (|has| |#1| (-372)))) (-3484 (($ $ (-935)) 32)) (-4273 ((|#1| $) 78)) (-1323 (((-1189 |#1|) $) 48 (|has| |#1| (-566)))) (-2816 ((|#1| (-1284 $)) 73) ((|#1|) 101)) (-1479 (((-1189 |#1|) $) 69)) (-2650 (((-112)) 63)) (-4420 (((-1175) $) 10)) (-1806 (((-112)) 54)) (-2556 (((-112)) 56)) (-3035 (((-112)) 58)) (-3940 (((-1136) $) 11)) (-1769 (((-112)) 61)) (-2207 ((|#1| $ (-574)) 110)) (-2282 (((-1284 |#1|) $ (-1284 $)) 76) (((-699 |#1|) (-1284 $) (-1284 $)) 75) (((-1284 |#1|) $) 108) (((-699 |#1|) (-1284 $)) 107)) (-1844 (((-1284 |#1|) $) 103) (($ (-1284 |#1|)) 102)) (-3385 (((-654 (-966 |#1|)) (-1284 $)) 84) (((-654 (-966 |#1|))) 105)) (-3082 (($ $ $) 28)) (-3642 (((-112)) 67)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 109)) (-1899 (((-654 (-1284 |#1|))) 49 (|has| |#1| (-566)))) (-2362 (($ $ $ $) 29)) (-4358 (((-112)) 65)) (-2912 (($ (-699 |#1|) $) 93)) (-2030 (($ $ $) 27)) (-2640 (((-112)) 66)) (-3247 (((-112)) 64)) (-2528 (((-112)) 60)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-427 |#1|) (-141) (-174)) (T -427))
-((-1895 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-427 *3)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174)) (-5 *2 (-699 *4)))) (-1955 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 (-699 *3))))) (-3385 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-966 *3))))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))) (-2816 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-3288 (*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))) (-1542 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3516 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))) (-3532 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1189 (-966 *3))))) (-2266 (*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372)) (-5 *2 (-1189 (-966 *3))))) (-2912 (*1 *1 *2 *1) (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174)))))
-(-13 (-376 |t#1|) (-294 (-574) |t#1|) (-10 -8 (-15 -1895 ((-1284 $))) (-15 -2282 ((-1284 |t#1|) $)) (-15 -2282 ((-699 |t#1|) (-1284 $))) (-15 -1955 ((-1284 (-699 |t#1|)))) (-15 -3385 ((-654 (-966 |t#1|)))) (-15 -3114 ($ (-1284 |t#1|))) (-15 -1844 ((-1284 |t#1|) $)) (-15 -1844 ($ (-1284 |t#1|))) (-15 -2816 (|t#1|)) (-15 -3288 (|t#1|)) (-15 -1542 ((-699 |t#1|))) (-15 -3516 ((-699 |t#1|))) (-15 -3323 ((-699 |t#1|) $)) (-15 -2287 ((-699 |t#1|) $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -3532 ((-1189 (-966 |t#1|)))) (-15 -2266 ((-1189 (-966 |t#1|))))) |%noBranch|) (-15 -2912 ($ (-699 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-294 (-574) |#1|) . T) ((-376 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-754 |#1|) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 60)) (-2203 (($ $) 78)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 192)) (-4141 (($ $) NIL)) (-2475 (((-112) $) 48)) (-2020 ((|#1| $) 16)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-1238)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-1238)))) (-2348 (($ |#1| (-574)) 42)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 149)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 74)) (-3612 (((-3 $ "failed") $) 165)) (-3701 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-4391 (((-112) $) 81 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 92 (|has| |#1| (-555)))) (-2344 (($ |#1| (-574)) 44)) (-3342 (((-112) $) 212 (|has| |#1| (-1238)))) (-3943 (((-112) $) 62)) (-3831 (((-781) $) 51)) (-3533 (((-3 "nil" "sqfr" "irred" "prime") $ (-574)) 176)) (-1720 ((|#1| $ (-574)) 175)) (-3052 (((-574) $ (-574)) 174)) (-3265 (($ |#1| (-574)) 41)) (-1785 (($ (-1 |#1| |#1|) $) 184)) (-4230 (($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574))))) 79)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-2315 (($ |#1| (-574)) 43)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 193 (|has| |#1| (-462)))) (-1649 (($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3996 (((-654 (-2 (|:| -4201 |#1|) (|:| -2754 (-574)))) $) 73)) (-2123 (((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $) 12)) (-4201 (((-428 $) $) NIL (|has| |#1| (-1238)))) (-2853 (((-3 $ "failed") $ $) 177)) (-2754 (((-574) $) 168)) (-2136 ((|#1| $) 75)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 101 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 107 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) $) NIL (|has| |#1| (-524 (-1193) $))) (($ $ (-654 (-1193)) (-654 $)) 108 (|has| |#1| (-524 (-1193) $))) (($ $ (-654 (-302 $))) 104 (|has| |#1| (-317 $))) (($ $ (-302 $)) NIL (|has| |#1| (-317 $))) (($ $ $ $) NIL (|has| |#1| (-317 $))) (($ $ (-654 $) (-654 $)) NIL (|has| |#1| (-317 $)))) (-2207 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-294 $ $)))) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1844 (((-546) $) 39 (|has| |#1| (-624 (-546)))) (((-388) $) 114 (|has| |#1| (-1038))) (((-227) $) 120 (|has| |#1| (-1038)))) (-2951 (((-872) $) 147) (($ (-574)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574)))))) (-3070 (((-781)) 67 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 53 T CONST)) (-2153 (($) 52 T CONST)) (-3585 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) 160)) (-3090 (($ $) 162) (($ $ $) NIL)) (-3074 (($ $ $) 181)) (** (($ $ (-935)) NIL) (($ $ (-781)) 126)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-428 |#1|) (-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2136 (|#1| $)) (-15 -2754 ((-574) $)) (-15 -4230 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -2123 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3265 ($ |#1| (-574))) (-15 -3996 ((-654 (-2 (|:| -4201 |#1|) (|:| -2754 (-574)))) $)) (-15 -2315 ($ |#1| (-574))) (-15 -3052 ((-574) $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -3533 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -3831 ((-781) $)) (-15 -2344 ($ |#1| (-574))) (-15 -2348 ($ |#1| (-574))) (-15 -1649 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2020 (|#1| $)) (-15 -2203 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |#1| (-1238)) (-6 (-1238)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1193) $)) (-6 (-524 (-1193) $)) |%noBranch|))) (-566)) (T -428))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-4230 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-574))))) (-4 *2 (-566)) (-5 *1 (-428 *2)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-3265 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -4201 *3) (|:| -2754 (-574))))) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2315 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3052 (*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-3533 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *4)) (-4 *4 (-566)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566)))) (-2344 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2348 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-1649 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2020 (*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))) (-3701 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566)))))
-(-13 (-566) (-233 |#1|) (-38 |#1|) (-347 |#1|) (-421 |#1|) (-10 -8 (-15 -2136 (|#1| $)) (-15 -2754 ((-574) $)) (-15 -4230 ($ |#1| (-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))))) (-15 -2123 ((-654 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-574)))) $)) (-15 -3265 ($ |#1| (-574))) (-15 -3996 ((-654 (-2 (|:| -4201 |#1|) (|:| -2754 (-574)))) $)) (-15 -2315 ($ |#1| (-574))) (-15 -3052 ((-574) $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -3533 ((-3 "nil" "sqfr" "irred" "prime") $ (-574))) (-15 -3831 ((-781) $)) (-15 -2344 ($ |#1| (-574))) (-15 -2348 ($ |#1| (-574))) (-15 -1649 ($ |#1| (-574) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2020 (|#1| $)) (-15 -2203 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-462)) (-6 (-462)) |%noBranch|) (IF (|has| |#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |#1| (-1238)) (-6 (-1238)) |%noBranch|) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-294 $ $)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |#1| (-317 $)) (-6 (-317 $)) |%noBranch|) (IF (|has| |#1| (-524 (-1193) $)) (-6 (-524 (-1193) $)) |%noBranch|)))
-((-1432 (((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|)) 28)) (-3023 (((-428 |#1|) (-428 |#1|) (-428 |#1|)) 17)))
-(((-429 |#1|) (-10 -7 (-15 -1432 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3023 ((-428 |#1|) (-428 |#1|) (-428 |#1|)))) (-566)) (T -429))
-((-3023 (*1 *2 *2 *2) (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))) (-1432 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4)) (-5 *1 (-429 *4)))))
-(-10 -7 (-15 -1432 ((-428 |#1|) (-428 |#1|) (-1 (-428 |#1|) |#1|))) (-15 -3023 ((-428 |#1|) (-428 |#1|) (-428 |#1|))))
-((-1893 ((|#2| |#2|) 183)) (-3541 (((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112)) 60)))
-(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3541 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112))) (-15 -1893 (|#2| |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -430))
-((-1893 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1219) (-440 *3))) (-14 *4 (-1193)) (-14 *5 *2))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (|:| |%expansion| (-321 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-14 *6 (-1193)) (-14 *7 *3))))
-(-10 -7 (-15 -3541 ((-3 (|:| |%expansion| (-321 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112))) (-15 -1893 (|#2| |#2|)))
-((-1785 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) (-1065) (-440 |#1|) (-1065) (-440 |#3|)) (T -431))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1893 ((|#2| |#2|) 106)) (-2798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175)) 52)) (-4094 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175)) 170)))
-(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -4094 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -1893 (|#2| |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|) (-10 -8 (-15 -2951 ($ |#3|)))) (-858) (-13 (-1262 |#2| |#3|) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $)))) (-999 |#4|) (-1193)) (T -432))
-((-1893 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *2 (-13 (-27) (-1219) (-440 *3) (-10 -8 (-15 -2951 ($ *4))))) (-4 *4 (-858)) (-4 *5 (-13 (-1262 *2 *4) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $))))) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-999 *5)) (-14 *7 (-1193)))) (-4094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1262 *3 *7) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) (-14 *10 (-1193)))) (-2798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7))))) (-4 *7 (-858)) (-4 *8 (-13 (-1262 *3 *7) (-372) (-1219) (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175)))))) (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8)) (-14 *10 (-1193)))))
-(-10 -7 (-15 -2798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -4094 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))) |#2| (-112) (-1175))) (-15 -1893 (|#2| |#2|)))
-((-1904 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2882 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1785 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1904 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1116) (-435 |#1|) (-1116) (-435 |#3|)) (T -433))
-((-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1116)) (-4 *5 (-1116)) (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1116)) (-4 *2 (-1116)) (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2882 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1904 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2791 (($) 51)) (-4353 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3421 (($ $ $) 46)) (-3089 (((-112) $ $) 35)) (-1496 (((-781)) 55)) (-1515 (($ (-654 |#2|)) 23) (($) NIL)) (-2835 (($) 66)) (-1870 (((-112) $ $) 15)) (-3634 ((|#2| $) 77)) (-2976 ((|#2| $) 75)) (-3507 (((-935) $) 70)) (-3655 (($ $ $) 42)) (-2591 (($ (-935)) 60)) (-3848 (($ $ |#2|) NIL) (($ $ $) 45)) (-3949 (((-781) (-1 (-112) |#2|) $) NIL) (((-781) |#2| $) 31)) (-2963 (($ (-654 |#2|)) 27)) (-2351 (($ $) 53)) (-2951 (((-872) $) 40)) (-1561 (((-781) $) 24)) (-4269 (($ (-654 |#2|)) 22) (($) NIL)) (-2986 (((-112) $ $) 19)))
-(((-434 |#1| |#2|) (-10 -8 (-15 -1496 ((-781))) (-15 -2591 (|#1| (-935))) (-15 -3507 ((-935) |#1|)) (-15 -2835 (|#1|)) (-15 -3634 (|#2| |#1|)) (-15 -2976 (|#2| |#1|)) (-15 -2791 (|#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1561 ((-781) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -4269 (|#1|)) (-15 -4269 (|#1| (-654 |#2|))) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-654 |#2|))) (-15 -3655 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -3089 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|))) (-435 |#2|) (-1116)) (T -434))
-((-1496 (*1 *2) (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
-(-10 -8 (-15 -1496 ((-781))) (-15 -2591 (|#1| (-935))) (-15 -3507 ((-935) |#1|)) (-15 -2835 (|#1|)) (-15 -3634 (|#2| |#1|)) (-15 -2976 (|#2| |#1|)) (-15 -2791 (|#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1561 ((-781) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -4269 (|#1|)) (-15 -4269 (|#1| (-654 |#2|))) (-15 -1515 (|#1|)) (-15 -1515 (|#1| (-654 |#2|))) (-15 -3655 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -3089 ((-112) |#1| |#1|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#2| |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -3949 ((-781) |#2| |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)))
-((-2864 (((-112) $ $) 19)) (-2791 (($) 68 (|has| |#1| (-377)))) (-4353 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3421 (($ $ $) 79)) (-3089 (((-112) $ $) 80)) (-2832 (((-112) $ (-781)) 8)) (-1496 (((-781)) 62 (|has| |#1| (-377)))) (-1515 (($ (-654 |#1|)) 75) (($) 74)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-2835 (($) 65 (|has| |#1| (-377)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) 71)) (-3814 (((-112) $ (-781)) 9)) (-3634 ((|#1| $) 66 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2976 ((|#1| $) 67 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-3507 (((-935) $) 64 (|has| |#1| (-377)))) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22)) (-3655 (($ $ $) 76)) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-2591 (($ (-935)) 63 (|has| |#1| (-377)))) (-3940 (((-1136) $) 21)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3848 (($ $ |#1|) 78) (($ $ $) 77)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2351 (($ $) 69 (|has| |#1| (-377)))) (-2951 (((-872) $) 18)) (-1561 (((-781) $) 70)) (-4269 (($ (-654 |#1|)) 73) (($) 72)) (-2981 (((-112) $ $) 23)) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-435 |#1|) (-141) (-1116)) (T -435))
-((-1561 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-377)))) (-2791 (*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1116)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860)))))
-(-13 (-231 |t#1|) (-1114 |t#1|) (-10 -8 (-6 -4459) (-15 -1561 ((-781) $)) (IF (|has| |t#1| (-377)) (PROGN (-6 (-377)) (-15 -2351 ($ $)) (-15 -2791 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2976 (|t#1| $)) (-15 -3634 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-377) |has| |#1| (-377)) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-1831 (((-596 |#2|) |#2| (-1193)) 36)) (-2049 (((-596 |#2|) |#2| (-1193)) 21)) (-3948 ((|#2| |#2| (-1193)) 26)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -2049 ((-596 |#2|) |#2| (-1193))) (-15 -1831 ((-596 |#2|) |#2| (-1193))) (-15 -3948 (|#2| |#2| (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-29 |#1|))) (T -436))
-((-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1219) (-29 *4))))) (-1831 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1219) (-29 *5))))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1219) (-29 *5))))))
-(-10 -7 (-15 -2049 ((-596 |#2|) |#2| (-1193))) (-15 -1831 ((-596 |#2|) |#2| (-1193))) (-15 -3948 (|#2| |#2| (-1193))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-4252 (($ |#2| |#1|) 37)) (-1967 (($ |#2| |#1|) 35)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-339 |#2|)) 25)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2153 (($) 16 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 36)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-437 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4446)) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|) |%noBranch|) (-15 -2951 ($ |#1|)) (-15 -2951 ($ (-339 |#2|))) (-15 -4252 ($ |#2| |#1|)) (-15 -1967 ($ |#2| |#1|)))) (-13 (-174) (-38 (-417 (-574)))) (-13 (-860) (-21))) (T -437))
-((-2951 (*1 *1 *2) (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574))))) (-4 *3 (-13 (-860) (-21))))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))))) (-4252 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574))))) (-4 *2 (-13 (-860) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4446)) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|) |%noBranch|) (-15 -2951 ($ |#1|)) (-15 -2951 ($ (-339 |#2|))) (-15 -4252 ($ |#2| |#1|)) (-15 -1967 ($ |#2| |#1|))))
-((-3083 (((-3 |#2| (-654 |#2|)) |#2| (-1193)) 115)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -3083 ((-3 |#2| (-654 |#2|)) |#2| (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -438))
-((-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1219) (-973) (-29 *5))))))
-(-10 -7 (-15 -3083 ((-3 |#2| (-654 |#2|)) |#2| (-1193))))
-((-4350 (((-654 (-1193)) $) 81)) (-4172 (((-417 (-1189 $)) $ (-622 $)) 313)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) 277)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-1193) "failed") $) 84) (((-3 (-574) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-417 (-966 |#2|)) "failed") $) 363) (((-3 (-966 |#2|) "failed") $) 275) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-1193) $) 28) (((-574) $) NIL) ((|#2| $) 271) (((-417 (-966 |#2|)) $) 345) (((-966 |#2|) $) 272) (((-417 (-574)) $) NIL)) (-4150 (((-115) (-115)) 47)) (-2447 (($ $) 99)) (-1761 (((-3 (-622 $) "failed") $) 268)) (-4140 (((-654 (-622 $)) $) 269)) (-1730 (((-3 (-654 $) "failed") $) 287)) (-3921 (((-3 (-2 (|:| |val| $) (|:| -2754 (-574))) "failed") $) 294)) (-4245 (((-3 (-654 $) "failed") $) 285)) (-2567 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 304)) (-4436 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $) 291) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-1193)) 257)) (-1343 (((-112) $) 17)) (-1355 ((|#2| $) 19)) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) 276) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 109) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1193)) 62) (($ $ (-654 (-1193))) 280) (($ $) 281) (($ $ (-115) $ (-1193)) 65) (($ $ (-654 (-115)) (-654 $) (-1193)) 72) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 120) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 282) (($ $ (-1193) (-781) (-1 $ (-654 $))) 105) (($ $ (-1193) (-781) (-1 $ $)) 104)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) 119)) (-3879 (($ $ (-1193)) 278) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-1611 (($ $) 324)) (-1844 (((-903 (-574)) $) 297) (((-903 (-388)) $) 301) (($ (-428 $)) 359) (((-546) $) NIL)) (-2951 (((-872) $) 279) (($ (-622 $)) 93) (($ (-1193)) 24) (($ |#2|) NIL) (($ (-1141 |#2| (-622 $))) NIL) (($ (-417 |#2|)) 329) (($ (-966 (-417 |#2|))) 368) (($ (-417 (-966 (-417 |#2|)))) 341) (($ (-417 (-966 |#2|))) 335) (($ $) NIL) (($ (-966 |#2|)) 216) (($ (-574)) NIL) (($ (-417 (-574))) 373)) (-3070 (((-781)) 88)) (-2138 (((-112) (-115)) 42)) (-2513 (($ (-1193) $) 31) (($ (-1193) $ $) 32) (($ (-1193) $ $ $) 33) (($ (-1193) $ $ $ $) 34) (($ (-1193) (-654 $)) 39)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL)))
-(((-439 |#1| |#2|) (-10 -8 (-15 * (|#1| (-935) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2951 (|#1| (-574))) (-15 -3070 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-966 |#2|))) (-15 -1704 ((-3 (-966 |#2|) "failed") |#1|)) (-15 -2216 ((-966 |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-966 |#2|)))) (-15 -1704 ((-3 (-417 (-966 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-966 |#2|)) |#1|)) (-15 -4172 ((-417 (-1189 |#1|)) |#1| (-622 |#1|))) (-15 -2951 (|#1| (-417 (-966 (-417 |#2|))))) (-15 -2951 (|#1| (-966 (-417 |#2|)))) (-15 -2951 (|#1| (-417 |#2|))) (-15 -1611 (|#1| |#1|)) (-15 -1844 (|#1| (-428 |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3921 ((-3 (-2 (|:| |val| |#1|) (|:| -2754 (-574))) "failed") |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1| (-1193))) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1| (-115))) (-15 -2447 (|#1| |#1|)) (-15 -2951 (|#1| (-1141 |#2| (-622 |#1|)))) (-15 -2567 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -4245 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1|)) (-15 -1730 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1193))) (-15 -2661 (|#1| |#1| (-115) |#1| (-1193))) (-15 -2661 (|#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1193)))) (-15 -2661 (|#1| |#1| (-1193))) (-15 -2513 (|#1| (-1193) (-654 |#1|))) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1|)) (-15 -4350 ((-654 (-1193)) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4140 ((-654 (-622 |#1|)) |#1|)) (-15 -1761 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2951 (|#1| (-622 |#1|))) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2951 ((-872) |#1|))) (-440 |#2|) (-1116)) (T -439))
-((-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1116)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5)))) (-3070 (*1 *2) (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))))
-(-10 -8 (-15 * (|#1| (-935) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2951 (|#1| (-574))) (-15 -3070 ((-781))) (-15 * (|#1| |#2| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-966 |#2|))) (-15 -1704 ((-3 (-966 |#2|) "failed") |#1|)) (-15 -2216 ((-966 |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -2951 (|#1| (-417 (-966 |#2|)))) (-15 -1704 ((-3 (-417 (-966 |#2|)) "failed") |#1|)) (-15 -2216 ((-417 (-966 |#2|)) |#1|)) (-15 -4172 ((-417 (-1189 |#1|)) |#1| (-622 |#1|))) (-15 -2951 (|#1| (-417 (-966 (-417 |#2|))))) (-15 -2951 (|#1| (-966 (-417 |#2|)))) (-15 -2951 (|#1| (-417 |#2|))) (-15 -1611 (|#1| |#1|)) (-15 -1844 (|#1| (-428 |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-781) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-781)) (-654 (-1 |#1| |#1|)))) (-15 -3921 ((-3 (-2 (|:| |val| |#1|) (|:| -2754 (-574))) "failed") |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1| (-1193))) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1| (-115))) (-15 -2447 (|#1| |#1|)) (-15 -2951 (|#1| (-1141 |#2| (-622 |#1|)))) (-15 -2567 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 |#1|))) "failed") |#1|)) (-15 -4245 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 |#1|)) (|:| -2754 (-574))) "failed") |#1|)) (-15 -1730 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 |#1|) (-1193))) (-15 -2661 (|#1| |#1| (-115) |#1| (-1193))) (-15 -2661 (|#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1193)))) (-15 -2661 (|#1| |#1| (-1193))) (-15 -2513 (|#1| (-1193) (-654 |#1|))) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1| |#1|)) (-15 -2513 (|#1| (-1193) |#1|)) (-15 -4350 ((-654 (-1193)) |#1|)) (-15 -1355 (|#2| |#1|)) (-15 -1343 ((-112) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-115) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-115)) (-654 (-1 |#1| |#1|)))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| |#1|))) (-15 -2661 (|#1| |#1| (-1193) (-1 |#1| (-654 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| (-654 |#1|))))) (-15 -2661 (|#1| |#1| (-654 (-1193)) (-654 (-1 |#1| |#1|)))) (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4140 ((-654 (-622 |#1|)) |#1|)) (-15 -1761 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2559 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2559 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2559 (|#1| |#1| (-302 |#1|))) (-15 -2207 (|#1| (-115) (-654 |#1|))) (-15 -2207 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1| |#1|)) (-15 -2207 (|#1| (-115) |#1|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -2661 (|#1| |#1| (-654 (-622 |#1|)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-622 |#1|) |#1|)) (-15 -2951 (|#1| (-622 |#1|))) (-15 -1704 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -2216 ((-622 |#1|) |#1|)) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 117 (|has| |#1| (-25)))) (-4350 (((-654 (-1193)) $) 206)) (-4172 (((-417 (-1189 $)) $ (-622 $)) 174 (|has| |#1| (-566)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 146 (|has| |#1| (-566)))) (-4141 (($ $) 147 (|has| |#1| (-566)))) (-2475 (((-112) $) 149 (|has| |#1| (-566)))) (-4068 (((-654 (-622 $)) $) 39)) (-3290 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-2559 (($ $ (-302 $)) 51) (($ $ (-654 (-302 $))) 50) (($ $ (-654 (-622 $)) (-654 $)) 49)) (-2684 (($ $) 166 (|has| |#1| (-566)))) (-3171 (((-428 $) $) 167 (|has| |#1| (-566)))) (-1374 (((-112) $ $) 157 (|has| |#1| (-566)))) (-1430 (($) 105 (-2833 (|has| |#1| (-1128)) (|has| |#1| (-25))) CONST)) (-1704 (((-3 (-622 $) "failed") $) 64) (((-3 (-1193) "failed") $) 219) (((-3 (-574) "failed") $) 213 (|has| |#1| (-1054 (-574)))) (((-3 |#1| "failed") $) 210) (((-3 (-417 (-966 |#1|)) "failed") $) 172 (|has| |#1| (-566))) (((-3 (-966 |#1|) "failed") $) 124 (|has| |#1| (-1065))) (((-3 (-417 (-574)) "failed") $) 99 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2216 (((-622 $) $) 65) (((-1193) $) 220) (((-574) $) 212 (|has| |#1| (-1054 (-574)))) ((|#1| $) 211) (((-417 (-966 |#1|)) $) 173 (|has| |#1| (-566))) (((-966 |#1|) $) 125 (|has| |#1| (-1065))) (((-417 (-574)) $) 100 (-2833 (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574))))))) (-2801 (($ $ $) 161 (|has| |#1| (-566)))) (-1557 (((-699 (-574)) (-1284 $)) 141 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-699 (-574)) (-699 $)) 140 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 139 (-2095 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 138 (|has| |#1| (-1065))) (((-699 |#1|) (-699 $)) 137 (|has| |#1| (-1065))) (((-699 |#1|) (-1284 $)) 136 (|has| |#1| (-1065)))) (-3612 (((-3 $ "failed") $) 107 (|has| |#1| (-1128)))) (-2812 (($ $ $) 160 (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 155 (|has| |#1| (-566)))) (-3342 (((-112) $) 168 (|has| |#1| (-566)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 215 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 214 (|has| |#1| (-897 (-388))))) (-3253 (($ $) 46) (($ (-654 $)) 45)) (-2256 (((-654 (-115)) $) 38)) (-4150 (((-115) (-115)) 37)) (-3943 (((-112) $) 106 (|has| |#1| (-1128)))) (-1476 (((-112) $) 17 (|has| $ (-1054 (-574))))) (-2447 (($ $) 189 (|has| |#1| (-1065)))) (-2970 (((-1141 |#1| (-622 $)) $) 190 (|has| |#1| (-1065)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 164 (|has| |#1| (-566)))) (-2860 (((-1189 $) (-622 $)) 20 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) 31)) (-1761 (((-3 (-622 $) "failed") $) 41)) (-2845 (($ (-654 $)) 153 (|has| |#1| (-566))) (($ $ $) 152 (|has| |#1| (-566)))) (-4420 (((-1175) $) 10)) (-4140 (((-654 (-622 $)) $) 40)) (-1782 (($ (-115) $) 33) (($ (-115) (-654 $)) 32)) (-1730 (((-3 (-654 $) "failed") $) 195 (|has| |#1| (-1128)))) (-3921 (((-3 (-2 (|:| |val| $) (|:| -2754 (-574))) "failed") $) 186 (|has| |#1| (-1065)))) (-4245 (((-3 (-654 $) "failed") $) 193 (|has| |#1| (-25)))) (-2567 (((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $) 192 (|has| |#1| (-25)))) (-4436 (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $) 194 (|has| |#1| (-1128))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-115)) 188 (|has| |#1| (-1065))) (((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-1193)) 187 (|has| |#1| (-1065)))) (-1575 (((-112) $ (-115)) 35) (((-112) $ (-1193)) 34)) (-1328 (($ $) 109 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-1846 (((-781) $) 42)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 208)) (-1355 ((|#1| $) 207)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 154 (|has| |#1| (-566)))) (-2887 (($ (-654 $)) 151 (|has| |#1| (-566))) (($ $ $) 150 (|has| |#1| (-566)))) (-3882 (((-112) $ $) 30) (((-112) $ (-1193)) 29)) (-4201 (((-428 $) $) 165 (|has| |#1| (-566)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-566))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 162 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ $) 145 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 156 (|has| |#1| (-566)))) (-4434 (((-112) $) 18 (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) 62) (($ $ (-654 (-622 $)) (-654 $)) 61) (($ $ (-654 (-302 $))) 60) (($ $ (-302 $)) 59) (($ $ $ $) 58) (($ $ (-654 $) (-654 $)) 57) (($ $ (-654 (-1193)) (-654 (-1 $ $))) 28) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) 27) (($ $ (-1193) (-1 $ (-654 $))) 26) (($ $ (-1193) (-1 $ $)) 25) (($ $ (-654 (-115)) (-654 (-1 $ $))) 24) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) 23) (($ $ (-115) (-1 $ (-654 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1193)) 200 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193))) 199 (|has| |#1| (-624 (-546)))) (($ $) 198 (|has| |#1| (-624 (-546)))) (($ $ (-115) $ (-1193)) 197 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-115)) (-654 $) (-1193)) 196 (|has| |#1| (-624 (-546)))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $))) 185 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $)))) 184 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ (-654 $))) 183 (|has| |#1| (-1065))) (($ $ (-1193) (-781) (-1 $ $)) 182 (|has| |#1| (-1065)))) (-4220 (((-781) $) 158 (|has| |#1| (-566)))) (-2207 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-654 $)) 52)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 159 (|has| |#1| (-566)))) (-3457 (($ $) 44) (($ $ $) 43)) (-3879 (($ $ (-1193)) 134 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 132 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 131 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) 130 (|has| |#1| (-1065)))) (-1611 (($ $) 179 (|has| |#1| (-566)))) (-2980 (((-1141 |#1| (-622 $)) $) 180 (|has| |#1| (-566)))) (-2966 (($ $) 19 (|has| $ (-1065)))) (-1844 (((-903 (-574)) $) 217 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 216 (|has| |#1| (-624 (-903 (-388))))) (($ (-428 $)) 181 (|has| |#1| (-566))) (((-546) $) 101 (|has| |#1| (-624 (-546))))) (-4090 (($ $ $) 112 (|has| |#1| (-483)))) (-3082 (($ $ $) 113 (|has| |#1| (-483)))) (-2951 (((-872) $) 12) (($ (-622 $)) 63) (($ (-1193)) 218) (($ |#1|) 209) (($ (-1141 |#1| (-622 $))) 191 (|has| |#1| (-1065))) (($ (-417 |#1|)) 177 (|has| |#1| (-566))) (($ (-966 (-417 |#1|))) 176 (|has| |#1| (-566))) (($ (-417 (-966 (-417 |#1|)))) 175 (|has| |#1| (-566))) (($ (-417 (-966 |#1|))) 171 (|has| |#1| (-566))) (($ $) 144 (|has| |#1| (-566))) (($ (-966 |#1|)) 123 (|has| |#1| (-1065))) (($ (-417 (-574))) 98 (-2833 (|has| |#1| (-566)) (-12 (|has| |#1| (-1054 (-574))) (|has| |#1| (-566))) (|has| |#1| (-1054 (-417 (-574)))))) (($ (-574)) 97 (-2833 (|has| |#1| (-1065)) (|has| |#1| (-1054 (-574)))))) (-2705 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-3070 (((-781)) 126 (|has| |#1| (-1065)) CONST)) (-2078 (($ $) 48) (($ (-654 $)) 47)) (-2138 (((-112) (-115)) 36)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 148 (|has| |#1| (-566)))) (-2513 (($ (-1193) $) 205) (($ (-1193) $ $) 204) (($ (-1193) $ $ $) 203) (($ (-1193) $ $ $ $) 202) (($ (-1193) (-654 $)) 201)) (-2141 (($) 116 (|has| |#1| (-25)) CONST)) (-2153 (($) 104 (|has| |#1| (-1128)) CONST)) (-3585 (($ $ (-1193)) 133 (|has| |#1| (-1065))) (($ $ (-654 (-1193))) 129 (|has| |#1| (-1065))) (($ $ (-1193) (-781)) 128 (|has| |#1| (-1065))) (($ $ (-654 (-1193)) (-654 (-781))) 127 (|has| |#1| (-1065)))) (-2986 (((-112) $ $) 6)) (-3099 (($ (-1141 |#1| (-622 $)) (-1141 |#1| (-622 $))) 178 (|has| |#1| (-566))) (($ $ $) 110 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566))))) (-3090 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3074 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-574)) 111 (-2833 (|has| |#1| (-483)) (|has| |#1| (-566)))) (($ $ (-781)) 108 (|has| |#1| (-1128))) (($ $ (-935)) 103 (|has| |#1| (-1128)))) (* (($ (-417 (-574)) $) 170 (|has| |#1| (-566))) (($ $ (-417 (-574))) 169 (|has| |#1| (-566))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1065))) (($ (-574) $) 120 (|has| |#1| (-21))) (($ (-781) $) 118 (|has| |#1| (-25))) (($ (-935) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1128)))))
-(((-440 |#1|) (-141) (-1116)) (T -440))
-((-1343 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-1193))))) (-2513 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))) (-2513 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116)))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) (-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-624 (-546))))) (-2661 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-624 (-546))))) (-2661 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1193)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) (-4 *4 (-624 (-546))))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1193)) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-624 (-546))))) (-1730 (*1 *2 *1) (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-4436 (*1 *2 *1) (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574)))) (-4 *1 (-440 *3)))) (-4245 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-440 *3)))) (-2567 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| -1866 (-574)) (|:| |var| (-622 *1)))) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-1065)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-1065)))) (-4436 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574)))) (-4 *1 (-440 *4)))) (-4436 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-1065)) (-4 *4 (-1116)) (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574)))) (-4 *1 (-440 *4)))) (-3921 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |val| *1) (|:| -2754 (-574)))) (-4 *1 (-440 *3)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781))) (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-2661 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1)) (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))) (-2980 (*1 *2 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1))) (-4 *1 (-440 *3)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-566)))) (-3099 (*1 *1 *2 *2) (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1116)) (-4 *1 (-440 *3)))) (-4172 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116)) (-4 *4 (-566)) (-5 *2 (-417 (-1189 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-4 *3 (-1128)))))
-(-13 (-310) (-1054 (-1193)) (-895 |t#1|) (-410 |t#1|) (-421 |t#1|) (-10 -8 (-15 -1343 ((-112) $)) (-15 -1355 (|t#1| $)) (-15 -4350 ((-654 (-1193)) $)) (-15 -2513 ($ (-1193) $)) (-15 -2513 ($ (-1193) $ $)) (-15 -2513 ($ (-1193) $ $ $)) (-15 -2513 ($ (-1193) $ $ $ $)) (-15 -2513 ($ (-1193) (-654 $))) (IF (|has| |t#1| (-624 (-546))) (PROGN (-6 (-624 (-546))) (-15 -2661 ($ $ (-1193))) (-15 -2661 ($ $ (-654 (-1193)))) (-15 -2661 ($ $)) (-15 -2661 ($ $ (-115) $ (-1193))) (-15 -2661 ($ $ (-654 (-115)) (-654 $) (-1193)))) |%noBranch|) (IF (|has| |t#1| (-1128)) (PROGN (-6 (-736)) (-15 ** ($ $ (-781))) (-15 -1730 ((-3 (-654 $) "failed") $)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-483)) (-6 (-483)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4245 ((-3 (-654 $) "failed") $)) (-15 -2567 ((-3 (-2 (|:| -1866 (-574)) (|:| |var| (-622 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1065)) (PROGN (-6 (-1065)) (-6 (-1054 (-966 |t#1|))) (-6 (-912 (-1193))) (-6 (-386 |t#1|)) (-15 -2951 ($ (-1141 |t#1| (-622 $)))) (-15 -2970 ((-1141 |t#1| (-622 $)) $)) (-15 -2447 ($ $)) (-15 -4436 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-115))) (-15 -4436 ((-3 (-2 (|:| |var| (-622 $)) (|:| -2754 (-574))) "failed") $ (-1193))) (-15 -3921 ((-3 (-2 (|:| |val| $) (|:| -2754 (-574))) "failed") $)) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ $)))) (-15 -2661 ($ $ (-654 (-1193)) (-654 (-781)) (-654 (-1 $ (-654 $))))) (-15 -2661 ($ $ (-1193) (-781) (-1 $ (-654 $)))) (-15 -2661 ($ $ (-1193) (-781) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-372)) (-6 (-1054 (-417 (-966 |t#1|)))) (-15 -1844 ($ (-428 $))) (-15 -2980 ((-1141 |t#1| (-622 $)) $)) (-15 -1611 ($ $)) (-15 -3099 ($ (-1141 |t#1| (-622 $)) (-1141 |t#1| (-622 $)))) (-15 -2951 ($ (-417 |t#1|))) (-15 -2951 ($ (-966 (-417 |t#1|)))) (-15 -2951 ($ (-417 (-966 (-417 |t#1|))))) (-15 -4172 ((-417 (-1189 $)) $ (-622 $))) (IF (|has| |t#1| (-1054 (-574))) (-6 (-1054 (-417 (-574)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-417 (-574))) |has| |#1| (-566)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-566)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-566)) ((-132) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-566))) ((-626 #1=(-417 (-966 |#1|))) |has| |#1| (-566)) ((-626 (-574)) -2833 (|has| |#1| (-1065)) (|has| |#1| (-1054 (-574))) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-626 #2=(-622 $)) . T) ((-626 #3=(-966 |#1|)) |has| |#1| (-1065)) ((-626 #4=(-1193)) . T) ((-626 |#1|) . T) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) |has| |#1| (-566)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-249) |has| |#1| (-566)) ((-298) |has| |#1| (-566)) ((-315) |has| |#1| (-566)) ((-317 $) . T) ((-310) . T) ((-372) |has| |#1| (-566)) ((-386 |#1|) |has| |#1| (-1065)) ((-410 |#1|) . T) ((-421 |#1|) . T) ((-462) |has| |#1| (-566)) ((-483) |has| |#1| (-483)) ((-524 (-622 $) $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-566)) ((-656 (-574)) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-656 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-656 $) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-658 #0#) |has| |#1| (-566)) ((-658 #5=(-574)) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-658 |#1|) -2833 (|has| |#1| (-1065)) (|has| |#1| (-174))) ((-658 $) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-650 #0#) |has| |#1| (-566)) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-649 #5#) -12 (|has| |#1| (-649 (-574))) (|has| |#1| (-1065))) ((-649 |#1|) |has| |#1| (-1065)) ((-727 #0#) |has| |#1| (-566)) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) -2833 (|has| |#1| (-1128)) (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-907 $ #6=(-1193)) |has| |#1| (-1065)) ((-912 #6#) |has| |#1| (-1065)) ((-914 #6#) |has| |#1| (-1065)) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-934) |has| |#1| (-566)) ((-1054 (-417 (-574))) -2833 (|has| |#1| (-1054 (-417 (-574)))) (-12 (|has| |#1| (-566)) (|has| |#1| (-1054 (-574))))) ((-1054 #1#) |has| |#1| (-566)) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 #3#) |has| |#1| (-1065)) ((-1054 #4#) . T) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-566)) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) |has| |#1| (-566)) ((-1072 #0#) |has| |#1| (-566)) ((-1072 |#1|) |has| |#1| (-174)) ((-1072 $) |has| |#1| (-566)) ((-1065) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1074) -2833 (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1128) -2833 (|has| |#1| (-1128)) (|has| |#1| (-1065)) (|has| |#1| (-566)) (|has| |#1| (-483)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-566)))
-((-1349 ((|#2| |#2| |#2|) 31)) (-4150 (((-115) (-115)) 43)) (-3338 ((|#2| |#2|) 63)) (-2532 ((|#2| |#2|) 66)) (-2467 ((|#2| |#2|) 30)) (-3119 ((|#2| |#2| |#2|) 33)) (-1861 ((|#2| |#2| |#2|) 35)) (-1489 ((|#2| |#2| |#2|) 32)) (-4315 ((|#2| |#2| |#2|) 34)) (-2138 (((-112) (-115)) 41)) (-4415 ((|#2| |#2|) 37)) (-4147 ((|#2| |#2|) 36)) (-4107 ((|#2| |#2|) 25)) (-2651 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2636 ((|#2| |#2| |#2|) 29)))
-(((-441 |#1| |#2|) (-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4107 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2651 (|#2| |#2| |#2|)) (-15 -2636 (|#2| |#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -1349 (|#2| |#2| |#2|)) (-15 -1489 (|#2| |#2| |#2|)) (-15 -3119 (|#2| |#2| |#2|)) (-15 -4315 (|#2| |#2| |#2|)) (-15 -1861 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4415 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -3338 (|#2| |#2|))) (-566) (-440 |#1|)) (T -441))
-((-3338 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4415 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1861 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4315 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-3119 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1489 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-1349 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2636 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2651 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4)) (-4 *4 (-440 *3)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4)))))
-(-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -4107 (|#2| |#2|)) (-15 -2651 (|#2| |#2|)) (-15 -2651 (|#2| |#2| |#2|)) (-15 -2636 (|#2| |#2| |#2|)) (-15 -2467 (|#2| |#2|)) (-15 -1349 (|#2| |#2| |#2|)) (-15 -1489 (|#2| |#2| |#2|)) (-15 -3119 (|#2| |#2| |#2|)) (-15 -4315 (|#2| |#2| |#2|)) (-15 -1861 (|#2| |#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4415 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)))
-((-1615 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|)) 65)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -1615 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -1615 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-566) (-148)) (-440 |#1|)) (T -442))
-((-1615 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1189 *3)) (|:| |pol2| (-1189 *3)) (|:| |prim| (-1189 *3)))) (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1189 *5))) (|:| |prim| (-1189 *5)))) (-5 *1 (-442 *4 *5)))))
-(-10 -7 (-15 -1615 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-654 (-1189 |#2|))) (|:| |prim| (-1189 |#2|))) (-654 |#2|))) (IF (|has| |#2| (-27)) (-15 -1615 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1189 |#2|)) (|:| |pol2| (-1189 |#2|)) (|:| |prim| (-1189 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3587 (((-1289)) 18)) (-1933 (((-1189 (-417 (-574))) |#2| (-622 |#2|)) 40) (((-417 (-574)) |#2|) 24)))
-(((-443 |#1| |#2|) (-10 -7 (-15 -1933 ((-417 (-574)) |#2|)) (-15 -1933 ((-1189 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3587 ((-1289)))) (-13 (-566) (-1054 (-574))) (-440 |#1|)) (T -443))
-((-3587 (*1 *2) (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1289)) (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-443 *5 *3)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-574))) (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4)))))
-(-10 -7 (-15 -1933 ((-417 (-574)) |#2|)) (-15 -1933 ((-1189 (-417 (-574))) |#2| (-622 |#2|))) (-15 -3587 ((-1289))))
-((-2463 (((-112) $) 32)) (-3496 (((-112) $) 34)) (-3085 (((-112) $) 35)) (-2736 (((-112) $) 38)) (-2458 (((-112) $) 33)) (-3980 (((-112) $) 37)) (-2951 (((-872) $) 20) (($ (-1175)) 31) (($ (-1193)) 26) (((-1193) $) 24) (((-1120) $) 23)) (-4083 (((-112) $) 36)) (-2986 (((-112) $ $) 17)))
-(((-444) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1175))) (-15 -2951 ($ (-1193))) (-15 -2951 ((-1193) $)) (-15 -2951 ((-1120) $)) (-15 -2463 ((-112) $)) (-15 -2458 ((-112) $)) (-15 -3085 ((-112) $)) (-15 -3980 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -4083 ((-112) $)) (-15 -3496 ((-112) $)) (-15 -2986 ((-112) $ $))))) (T -444))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-444)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-444)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-444)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))) (-2986 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1175))) (-15 -2951 ($ (-1193))) (-15 -2951 ((-1193) $)) (-15 -2951 ((-1120) $)) (-15 -2463 ((-112) $)) (-15 -2458 ((-112) $)) (-15 -3085 ((-112) $)) (-15 -3980 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -4083 ((-112) $)) (-15 -3496 ((-112) $)) (-15 -2986 ((-112) $ $))))
-((-3913 (((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|) 72)) (-4192 (((-428 |#3|) |#3|) 34)) (-3304 (((-3 (-428 (-1189 (-48))) "failed") |#3|) 46 (|has| |#2| (-1054 (-48))))) (-4188 (((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3574 (-112))) |#3|) 37)))
-(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -4192 ((-428 |#3|) |#3|)) (-15 -3913 ((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|)) (-15 -4188 ((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3574 (-112))) |#3|)) (IF (|has| |#2| (-1054 (-48))) (-15 -3304 ((-3 (-428 (-1189 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-566) (-1054 (-574))) (-440 |#1|) (-1260 |#2|)) (T -445))
-((-3304 (*1 *2 *3) (|partial| -12 (-4 *5 (-1054 (-48))) (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1189 (-48)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-4188 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3574 (-112)))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-3913 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 (-1189 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4)) (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))))
-(-10 -7 (-15 -4192 ((-428 |#3|) |#3|)) (-15 -3913 ((-3 (-428 (-1189 (-417 (-574)))) "failed") |#3|)) (-15 -4188 ((-3 (|:| |overq| (-1189 (-417 (-574)))) (|:| |overan| (-1189 (-48))) (|:| -3574 (-112))) |#3|)) (IF (|has| |#2| (-1054 (-48))) (-15 -3304 ((-3 (-428 (-1189 (-48))) "failed") |#3|)) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-2772 (((-1175) $ (-1175)) NIL)) (-1426 (($ $ (-1175)) NIL)) (-3455 (((-1175) $) NIL)) (-3337 (((-398) (-398) (-398)) 17) (((-398) (-398)) 15)) (-1683 (($ (-398)) NIL) (($ (-398) (-1175)) NIL)) (-2039 (((-398) $) NIL)) (-4420 (((-1175) $) NIL)) (-2188 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3467 (((-1289) (-1175)) 9)) (-1318 (((-1289) (-1175)) 10)) (-3284 (((-1289)) 11)) (-2951 (((-872) $) NIL)) (-1839 (($ $) 39)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-446) (-13 (-373 (-398) (-1175)) (-10 -7 (-15 -3337 ((-398) (-398) (-398))) (-15 -3337 ((-398) (-398))) (-15 -3467 ((-1289) (-1175))) (-15 -1318 ((-1289) (-1175))) (-15 -3284 ((-1289)))))) (T -446))
-((-3337 (*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))) (-3284 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-446)))))
-(-13 (-373 (-398) (-1175)) (-10 -7 (-15 -3337 ((-398) (-398) (-398))) (-15 -3337 ((-398) (-398))) (-15 -3467 ((-1289) (-1175))) (-15 -1318 ((-1289) (-1175))) (-15 -3284 ((-1289)))))
-((-2864 (((-112) $ $) NIL)) (-3111 (((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $) 11)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3723 (($) 35)) (-3063 (($) 41)) (-1716 (($) 37)) (-2512 (($) 39)) (-2193 (($) 36)) (-3178 (($) 38)) (-2205 (($) 40)) (-2574 (((-112) $) 8)) (-3383 (((-654 (-966 (-574))) $) 19)) (-2963 (($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112)) 29) (($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112)) 30)) (-2951 (((-872) $) 24) (($ (-444)) 32)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-447) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-444))) (-15 -3111 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3383 ((-654 (-966 (-574))) $)) (-15 -2574 ((-112) $)) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112))) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112))) (-15 -3723 ($)) (-15 -2193 ($)) (-15 -1716 ($)) (-15 -3063 ($)) (-15 -3178 ($)) (-15 -2512 ($)) (-15 -2205 ($))))) (T -447))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-447)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-654 (-966 (-574)))) (-5 *1 (-447)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *3 (-654 (-1193))) (-5 *4 (-112)) (-5 *1 (-447)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-112)) (-5 *1 (-447)))) (-3723 (*1 *1) (-5 *1 (-447))) (-2193 (*1 *1) (-5 *1 (-447))) (-1716 (*1 *1) (-5 *1 (-447))) (-3063 (*1 *1) (-5 *1 (-447))) (-3178 (*1 *1) (-5 *1 (-447))) (-2512 (*1 *1) (-5 *1 (-447))) (-2205 (*1 *1) (-5 *1 (-447))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-444))) (-15 -3111 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3383 ((-654 (-966 (-574))) $)) (-15 -2574 ((-112) $)) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-1193)) (-112))) (-15 -2963 ($ (-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-654 (-966 (-574))) (-112))) (-15 -3723 ($)) (-15 -2193 ($)) (-15 -1716 ($)) (-15 -3063 ($)) (-15 -3178 ($)) (-15 -2512 ($)) (-15 -2205 ($))))
-((-2864 (((-112) $ $) NIL)) (-2039 (((-1193) $) 8)) (-4420 (((-1175) $) 17)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 14)))
-(((-448 |#1|) (-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) (-1193)) (T -448))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-448 *3)) (-14 *3 *2))))
-(-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $))))
-((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 7)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 13)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)))
-(((-449) (-13 (-1116) (-10 -8 (-15 -3132 ((-1134) $))))) (T -449))
-((-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-449)))))
-(-13 (-1116) (-10 -8 (-15 -3132 ((-1134) $))))
-((-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-1284 (-709))) 14) (($ (-654 (-338))) 13) (($ (-338)) 12) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 11)))
-(((-450) (-141)) (T -450))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-709))) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-450)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-1284 (-709)))) (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))))))
-(((-623 (-872)) . T) ((-405) . T) ((-1234) . T))
-((-1704 (((-3 $ "failed") (-1284 (-324 (-388)))) 21) (((-3 $ "failed") (-1284 (-324 (-574)))) 19) (((-3 $ "failed") (-1284 (-966 (-388)))) 17) (((-3 $ "failed") (-1284 (-966 (-574)))) 15) (((-3 $ "failed") (-1284 (-417 (-966 (-388))))) 13) (((-3 $ "failed") (-1284 (-417 (-966 (-574))))) 11)) (-2216 (($ (-1284 (-324 (-388)))) 22) (($ (-1284 (-324 (-574)))) 20) (($ (-1284 (-966 (-388)))) 18) (($ (-1284 (-966 (-574)))) 16) (($ (-1284 (-417 (-966 (-388))))) 14) (($ (-1284 (-417 (-966 (-574))))) 12)) (-3742 (((-1289) $) 7)) (-2951 (((-872) $) 8) (($ (-654 (-338))) 25) (($ (-338)) 24) (($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) 23)))
-(((-451) (-141)) (T -451))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451)))))
-(-13 (-405) (-10 -8 (-15 -2951 ($ (-654 (-338)))) (-15 -2951 ($ (-338))) (-15 -2951 ($ (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))) (-15 -2216 ($ (-1284 (-324 (-388))))) (-15 -1704 ((-3 $ "failed") (-1284 (-324 (-388))))) (-15 -2216 ($ (-1284 (-324 (-574))))) (-15 -1704 ((-3 $ "failed") (-1284 (-324 (-574))))) (-15 -2216 ($ (-1284 (-966 (-388))))) (-15 -1704 ((-3 $ "failed") (-1284 (-966 (-388))))) (-15 -2216 ($ (-1284 (-966 (-574))))) (-15 -1704 ((-3 $ "failed") (-1284 (-966 (-574))))) (-15 -2216 ($ (-1284 (-417 (-966 (-388)))))) (-15 -1704 ((-3 $ "failed") (-1284 (-417 (-966 (-388)))))) (-15 -2216 ($ (-1284 (-417 (-966 (-574)))))) (-15 -1704 ((-3 $ "failed") (-1284 (-417 (-966 (-574))))))))
-(((-623 (-872)) . T) ((-405) . T) ((-1234) . T))
-((-2371 (((-112)) 18)) (-3402 (((-112) (-112)) 19)) (-3141 (((-112)) 14)) (-4119 (((-112) (-112)) 15)) (-2838 (((-112)) 16)) (-4395 (((-112) (-112)) 17)) (-2022 (((-935) (-935)) 22) (((-935)) 21)) (-3831 (((-781) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574))))) 52)) (-3607 (((-935) (-935)) 24) (((-935)) 23)) (-1461 (((-2 (|:| -3503 (-574)) (|:| -3996 (-654 |#1|))) |#1|) 94)) (-4230 (((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574))))))) 174)) (-2861 (((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112)) 207)) (-3037 (((-428 |#1|) |#1| (-781) (-781)) 222) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 219) (((-428 |#1|) |#1| (-654 (-781))) 221) (((-428 |#1|) |#1| (-781)) 220) (((-428 |#1|) |#1|) 218)) (-2290 (((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112)) 224) (((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781)) 225) (((-3 |#1| "failed") (-935) |#1| (-654 (-781))) 227) (((-3 |#1| "failed") (-935) |#1| (-781)) 226) (((-3 |#1| "failed") (-935) |#1|) 228)) (-4201 (((-428 |#1|) |#1| (-781) (-781)) 217) (((-428 |#1|) |#1| (-654 (-781)) (-781)) 213) (((-428 |#1|) |#1| (-654 (-781))) 215) (((-428 |#1|) |#1| (-781)) 214) (((-428 |#1|) |#1|) 212)) (-2482 (((-112) |#1|) 44)) (-1927 (((-747 (-781)) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574))))) 99)) (-2008 (((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112) (-1118 (-781)) (-781)) 211)))
-(((-452 |#1|) (-10 -7 (-15 -4230 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))))) (-15 -1927 ((-747 (-781)) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))))) (-15 -3607 ((-935))) (-15 -3607 ((-935) (-935))) (-15 -2022 ((-935))) (-15 -2022 ((-935) (-935))) (-15 -3831 ((-781) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))))) (-15 -1461 ((-2 (|:| -3503 (-574)) (|:| -3996 (-654 |#1|))) |#1|)) (-15 -2371 ((-112))) (-15 -3402 ((-112) (-112))) (-15 -3141 ((-112))) (-15 -4119 ((-112) (-112))) (-15 -2482 ((-112) |#1|)) (-15 -2838 ((-112))) (-15 -4395 ((-112) (-112))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -4201 ((-428 |#1|) |#1| (-781))) (-15 -4201 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4201 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4201 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3037 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1| (-781))) (-15 -3037 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3037 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3037 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1|)) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112))) (-15 -2861 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112))) (-15 -2008 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112) (-1118 (-781)) (-781)))) (-1260 (-574))) (T -452))
-((-2008 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1118 (-781))) (-5 *6 (-781)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574))))))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2290 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2290 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2290 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2290 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-935)) (-5 *4 (-781)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-2290 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-935)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574))))) (-3037 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3037 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3037 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3037 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3037 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4395 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2838 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2482 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3141 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2371 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-1461 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3503 (-574)) (|:| -3996 (-654 *3)))) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4201 *4) (|:| -3735 (-574))))) (-4 *4 (-1260 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-2022 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3607 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-3607 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4201 *4) (|:| -3735 (-574))))) (-4 *4 (-1260 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| *4) (|:| -1545 (-574))))))) (-4 *4 (-1260 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4)))))
-(-10 -7 (-15 -4230 ((-428 |#1|) (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))))) (-15 -1927 ((-747 (-781)) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))))) (-15 -3607 ((-935))) (-15 -3607 ((-935) (-935))) (-15 -2022 ((-935))) (-15 -2022 ((-935) (-935))) (-15 -3831 ((-781) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))))) (-15 -1461 ((-2 (|:| -3503 (-574)) (|:| -3996 (-654 |#1|))) |#1|)) (-15 -2371 ((-112))) (-15 -3402 ((-112) (-112))) (-15 -3141 ((-112))) (-15 -4119 ((-112) (-112))) (-15 -2482 ((-112) |#1|)) (-15 -2838 ((-112))) (-15 -4395 ((-112) (-112))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -4201 ((-428 |#1|) |#1| (-781))) (-15 -4201 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -4201 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -4201 ((-428 |#1|) |#1| (-781) (-781))) (-15 -3037 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1| (-781))) (-15 -3037 ((-428 |#1|) |#1| (-654 (-781)))) (-15 -3037 ((-428 |#1|) |#1| (-654 (-781)) (-781))) (-15 -3037 ((-428 |#1|) |#1| (-781) (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1|)) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781))) (-15 -2290 ((-3 |#1| "failed") (-935) |#1| (-654 (-781)) (-781) (-112))) (-15 -2861 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112))) (-15 -2008 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112) (-1118 (-781)) (-781))))
-((-2526 (((-574) |#2|) 52) (((-574) |#2| (-781)) 51)) (-3717 (((-574) |#2|) 64)) (-3198 ((|#3| |#2|) 26)) (-2608 ((|#3| |#2| (-935)) 15)) (-4109 ((|#3| |#2|) 16)) (-3769 ((|#3| |#2|) 9)) (-1846 ((|#3| |#2|) 10)) (-1519 ((|#3| |#2| (-935)) 71) ((|#3| |#2|) 34)) (-3553 (((-574) |#2|) 66)))
-(((-453 |#1| |#2| |#3|) (-10 -7 (-15 -3553 ((-574) |#2|)) (-15 -1519 (|#3| |#2|)) (-15 -1519 (|#3| |#2| (-935))) (-15 -3717 ((-574) |#2|)) (-15 -2526 ((-574) |#2| (-781))) (-15 -2526 ((-574) |#2|)) (-15 -2608 (|#3| |#2| (-935))) (-15 -3198 (|#3| |#2|)) (-15 -3769 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -4109 (|#3| |#2|))) (-1065) (-1260 |#1|) (-13 (-414) (-1054 |#1|) (-372) (-1219) (-292))) (T -453))
-((-4109 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-3198 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))) (-2526 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))) (-2526 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1260 *5)) (-4 *6 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))) (-1519 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292))) (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))) (-1519 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))) (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))) (-3553 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5)) (-4 *3 (-1260 *4)) (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))))
-(-10 -7 (-15 -3553 ((-574) |#2|)) (-15 -1519 (|#3| |#2|)) (-15 -1519 (|#3| |#2| (-935))) (-15 -3717 ((-574) |#2|)) (-15 -2526 ((-574) |#2| (-781))) (-15 -2526 ((-574) |#2|)) (-15 -2608 (|#3| |#2| (-935))) (-15 -3198 (|#3| |#2|)) (-15 -3769 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -4109 (|#3| |#2|)))
-((-2093 ((|#2| (-1284 |#1|)) 42)) (-2779 ((|#2| |#2| |#1|) 58)) (-3828 ((|#2| |#2| |#1|) 49)) (-4425 ((|#2| |#2|) 44)) (-2102 (((-112) |#2|) 32)) (-3685 (((-654 |#2|) (-935) (-428 |#2|)) 21)) (-2290 ((|#2| (-935) (-428 |#2|)) 25)) (-1927 (((-747 (-781)) (-428 |#2|)) 29)))
-(((-454 |#1| |#2|) (-10 -7 (-15 -2102 ((-112) |#2|)) (-15 -2093 (|#2| (-1284 |#1|))) (-15 -4425 (|#2| |#2|)) (-15 -3828 (|#2| |#2| |#1|)) (-15 -2779 (|#2| |#2| |#1|)) (-15 -1927 ((-747 (-781)) (-428 |#2|))) (-15 -2290 (|#2| (-935) (-428 |#2|))) (-15 -3685 ((-654 |#2|) (-935) (-428 |#2|)))) (-1065) (-1260 |#1|)) (T -454))
-((-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-428 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-1065)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-428 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-454 *5 *2)) (-4 *5 (-1065)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-428 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1065)) (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))) (-2779 (*1 *2 *2 *3) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-3828 (*1 *2 *2 *3) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-4425 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-1065)) (-4 *2 (-1260 *4)) (-5 *1 (-454 *4 *2)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -2102 ((-112) |#2|)) (-15 -2093 (|#2| (-1284 |#1|))) (-15 -4425 (|#2| |#2|)) (-15 -3828 (|#2| |#2| |#1|)) (-15 -2779 (|#2| |#2| |#1|)) (-15 -1927 ((-747 (-781)) (-428 |#2|))) (-15 -2290 (|#2| (-935) (-428 |#2|))) (-15 -3685 ((-654 |#2|) (-935) (-428 |#2|))))
-((-2071 (((-781)) 59)) (-1770 (((-781)) 29 (|has| |#1| (-414))) (((-781) (-781)) 28 (|has| |#1| (-414)))) (-3055 (((-574) |#1|) 25 (|has| |#1| (-414)))) (-1662 (((-574) |#1|) 27 (|has| |#1| (-414)))) (-2213 (((-781)) 58) (((-781) (-781)) 57)) (-2328 ((|#1| (-781) (-574)) 37)) (-1490 (((-1289)) 61)))
-(((-455 |#1|) (-10 -7 (-15 -2328 (|#1| (-781) (-574))) (-15 -2213 ((-781) (-781))) (-15 -2213 ((-781))) (-15 -2071 ((-781))) (-15 -1490 ((-1289))) (IF (|has| |#1| (-414)) (PROGN (-15 -1662 ((-574) |#1|)) (-15 -3055 ((-574) |#1|)) (-15 -1770 ((-781) (-781))) (-15 -1770 ((-781)))) |%noBranch|)) (-1065)) (T -455))
-((-1770 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-3055 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1662 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))) (-1490 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-2071 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-2213 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1065)))))
-(-10 -7 (-15 -2328 (|#1| (-781) (-574))) (-15 -2213 ((-781) (-781))) (-15 -2213 ((-781))) (-15 -2071 ((-781))) (-15 -1490 ((-1289))) (IF (|has| |#1| (-414)) (PROGN (-15 -1662 ((-574) |#1|)) (-15 -3055 ((-574) |#1|)) (-15 -1770 ((-781) (-781))) (-15 -1770 ((-781)))) |%noBranch|))
-((-3047 (((-654 (-574)) (-574)) 76)) (-3342 (((-112) (-171 (-574))) 82)) (-4201 (((-428 (-171 (-574))) (-171 (-574))) 75)))
-(((-456) (-10 -7 (-15 -4201 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3047 ((-654 (-574)) (-574))) (-15 -3342 ((-112) (-171 (-574)))))) (T -456))
-((-3342 (*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456)))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456)) (-5 *3 (-171 (-574))))))
-(-10 -7 (-15 -4201 ((-428 (-171 (-574))) (-171 (-574)))) (-15 -3047 ((-654 (-574)) (-574))) (-15 -3342 ((-112) (-171 (-574)))))
-((-4058 ((|#4| |#4| (-654 |#4|)) 82)) (-3643 (((-654 |#4|) (-654 |#4|) (-1175) (-1175)) 22) (((-654 |#4|) (-654 |#4|) (-1175)) 21) (((-654 |#4|) (-654 |#4|)) 13)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4058 (|#4| |#4| (-654 |#4|))) (-15 -3643 ((-654 |#4|) (-654 |#4|))) (-15 -3643 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -3643 ((-654 |#4|) (-654 |#4|) (-1175) (-1175)))) (-315) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -457))
-((-3643 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3643 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6)))) (-4058 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2)))))
-(-10 -7 (-15 -4058 (|#4| |#4| (-654 |#4|))) (-15 -3643 ((-654 |#4|) (-654 |#4|))) (-15 -3643 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -3643 ((-654 |#4|) (-654 |#4|) (-1175) (-1175))))
-((-2200 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 89) (((-654 (-654 |#4|)) (-654 |#4|)) 88) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112)) 82) (((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|)) 83)) (-3208 (((-654 (-654 |#4|)) (-654 |#4|) (-112)) 55) (((-654 (-654 |#4|)) (-654 |#4|)) 77)))
-(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3208 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3208 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-112)))) (-13 (-315) (-148)) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -458))
-((-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2200 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2200 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-2200 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8))) (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(-10 -7 (-15 -3208 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -3208 ((-654 (-654 |#4|)) (-654 |#4|) (-112))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|))) (-15 -2200 ((-654 (-654 |#4|)) (-654 |#4|) (-112))))
-((-1920 (((-781) |#4|) 12)) (-1811 (((-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|)))) 39)) (-4382 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1397 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4010 ((|#4| |#4| (-654 |#4|)) 54)) (-2743 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|)) 96)) (-2360 (((-1289) |#4|) 59)) (-1537 (((-1289) (-654 |#4|)) 69)) (-1499 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574)) 66)) (-3346 (((-1289) (-574)) 110)) (-2959 (((-654 |#4|) (-654 |#4|)) 104)) (-3139 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|)) |#4| (-781)) 31)) (-3468 (((-574) |#4|) 109)) (-3381 ((|#4| |#4|) 37)) (-2063 (((-654 |#4|) (-654 |#4|) (-574) (-574)) 74)) (-1894 (((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574)) 123)) (-3548 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2119 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3401 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3092 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2238 (((-112) |#2| |#2|) 75)) (-3526 (((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4085 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3458 ((|#4| |#4| (-654 |#4|)) 97)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3458 (|#4| |#4| (-654 |#4|))) (-15 -4010 (|#4| |#4| (-654 |#4|))) (-15 -2063 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2119 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2238 ((-112) |#2| |#2|)) (-15 -4085 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3526 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3092 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2743 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -3381 (|#4| |#4|)) (-15 -1811 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|))))) (-15 -1397 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4382 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2959 ((-654 |#4|) (-654 |#4|))) (-15 -3468 ((-574) |#4|)) (-15 -2360 ((-1289) |#4|)) (-15 -1499 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1894 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -1537 ((-1289) (-654 |#4|))) (-15 -3346 ((-1289) (-574))) (-15 -3548 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3139 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|)) |#4| (-781))) (-15 -1920 ((-781) |#4|))) (-462) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -459))
-((-1920 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-3139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3414 *4))) (-5 *5 (-781)) (-4 *4 (-963 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-459 *6 *7 *8 *4)))) (-3548 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1894 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-1499 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *4)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-4382 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-803)) (-4 *2 (-963 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2)) (-4 *4 (-462)) (-4 *6 (-860)))) (-1811 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 *3)))) (-5 *4 (-781)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-459 *5 *6 *7 *3)))) (-3401 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-803)) (-4 *6 (-963 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *4 *3 *5 *6)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-803)) (-4 *3 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *3)))) (-4085 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))) (-2238 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2063 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-4010 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-3458 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3458 (|#4| |#4| (-654 |#4|))) (-15 -4010 (|#4| |#4| (-654 |#4|))) (-15 -2063 ((-654 |#4|) (-654 |#4|) (-574) (-574))) (-15 -2119 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2238 ((-112) |#2| |#2|)) (-15 -4085 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3526 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3092 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3401 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2743 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-654 |#4|))) (-15 -3381 (|#4| |#4|)) (-15 -1811 ((-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|))) |#4| (-781) (-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|))))) (-15 -1397 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4382 ((-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-654 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2959 ((-654 |#4|) (-654 |#4|))) (-15 -3468 ((-574) |#4|)) (-15 -2360 ((-1289) |#4|)) (-15 -1499 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574))) (-15 -1894 ((-574) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-574) (-574) (-574) (-574))) (-15 -1537 ((-1289) (-654 |#4|))) (-15 -3346 ((-1289) (-574))) (-15 -3548 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3139 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-781)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-781)) (|:| -3414 |#4|)) |#4| (-781))) (-15 -1920 ((-781) |#4|)))
-((-1350 ((|#4| |#4| (-654 |#4|)) 20 (|has| |#1| (-372)))) (-4274 (((-654 |#4|) (-654 |#4|) (-1175) (-1175)) 46) (((-654 |#4|) (-654 |#4|) (-1175)) 45) (((-654 |#4|) (-654 |#4|)) 34)))
-(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4274 ((-654 |#4|) (-654 |#4|))) (-15 -4274 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -4274 ((-654 |#4|) (-654 |#4|) (-1175) (-1175))) (IF (|has| |#1| (-372)) (-15 -1350 (|#4| |#4| (-654 |#4|))) |%noBranch|)) (-462) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -460))
-((-1350 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-372)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2)))) (-4274 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-4274 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4274 ((-654 |#4|) (-654 |#4|))) (-15 -4274 ((-654 |#4|) (-654 |#4|) (-1175))) (-15 -4274 ((-654 |#4|) (-654 |#4|) (-1175) (-1175))) (IF (|has| |#1| (-372)) (-15 -1350 (|#4| |#4| (-654 |#4|))) |%noBranch|))
-((-2845 (($ $ $) 14) (($ (-654 $)) 21)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 46)) (-2887 (($ $ $) NIL) (($ (-654 $)) 22)))
-(((-461 |#1|) (-10 -8 (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -2845 (|#1| (-654 |#1|))) (-15 -2845 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|))) (-462)) (T -461))
-NIL
-(-10 -8 (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -2845 (|#1| (-654 |#1|))) (-15 -2845 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2887 (|#1| |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-462) (-141)) (T -462))
-((-2887 (*1 *1 *1 *1) (-4 *1 (-462))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2845 (*1 *1 *1 *1) (-4 *1 (-462))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-462)))))
-(-13 (-566) (-10 -8 (-15 -2887 ($ $ $)) (-15 -2887 ($ (-654 $))) (-15 -2845 ($ $ $)) (-15 -2845 ($ (-654 $))) (-15 -2064 ((-1189 $) (-1189 $) (-1189 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2020 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1955 (((-1284 (-699 (-417 (-966 |#1|)))) (-1284 $)) NIL) (((-1284 (-699 (-417 (-966 |#1|))))) NIL)) (-4022 (((-1284 $)) NIL)) (-1430 (($) NIL T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL)) (-4272 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-3516 (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL) (((-699 (-417 (-966 |#1|)))) NIL)) (-2984 (((-417 (-966 |#1|)) $) NIL)) (-2287 (((-699 (-417 (-966 |#1|))) $ (-1284 $)) NIL) (((-699 (-417 (-966 |#1|))) $) NIL)) (-2339 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-2266 (((-1189 (-966 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-372))) (((-1189 (-417 (-966 |#1|)))) 90 (|has| |#1| (-566)))) (-3344 (($ $ (-935)) NIL)) (-2104 (((-417 (-966 |#1|)) $) NIL)) (-4316 (((-1189 (-417 (-966 |#1|))) $) 88 (|has| (-417 (-966 |#1|)) (-566)))) (-3288 (((-417 (-966 |#1|)) (-1284 $)) NIL) (((-417 (-966 |#1|))) NIL)) (-1668 (((-1189 (-417 (-966 |#1|))) $) NIL)) (-4306 (((-112)) NIL)) (-3114 (($ (-1284 (-417 (-966 |#1|))) (-1284 $)) 114) (($ (-1284 (-417 (-966 |#1|)))) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-3558 (((-935)) NIL)) (-1837 (((-112)) NIL)) (-1855 (($ $ (-935)) NIL)) (-2183 (((-112)) NIL)) (-3630 (((-112)) NIL)) (-3226 (((-112)) NIL)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL)) (-3988 (((-3 $ "failed")) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-1542 (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL) (((-699 (-417 (-966 |#1|)))) NIL)) (-1603 (((-417 (-966 |#1|)) $) NIL)) (-3323 (((-699 (-417 (-966 |#1|))) $ (-1284 $)) NIL) (((-699 (-417 (-966 |#1|))) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-3532 (((-1189 (-966 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-372))) (((-1189 (-417 (-966 |#1|)))) 89 (|has| |#1| (-566)))) (-3484 (($ $ (-935)) NIL)) (-4273 (((-417 (-966 |#1|)) $) NIL)) (-1323 (((-1189 (-417 (-966 |#1|))) $) 85 (|has| (-417 (-966 |#1|)) (-566)))) (-2816 (((-417 (-966 |#1|)) (-1284 $)) NIL) (((-417 (-966 |#1|))) NIL)) (-1479 (((-1189 (-417 (-966 |#1|))) $) NIL)) (-2650 (((-112)) NIL)) (-4420 (((-1175) $) NIL)) (-1806 (((-112)) NIL)) (-2556 (((-112)) NIL)) (-3035 (((-112)) NIL)) (-3940 (((-1136) $) NIL)) (-2938 (((-417 (-966 |#1|)) $ $) 76 (|has| |#1| (-566)))) (-3106 (((-417 (-966 |#1|)) $) 100 (|has| |#1| (-566)))) (-2483 (((-417 (-966 |#1|)) $) 104 (|has| |#1| (-566)))) (-1339 (((-1189 (-417 (-966 |#1|))) $) 94 (|has| |#1| (-566)))) (-3944 (((-417 (-966 |#1|))) 77 (|has| |#1| (-566)))) (-1960 (((-417 (-966 |#1|)) $ $) 69 (|has| |#1| (-566)))) (-1325 (((-417 (-966 |#1|)) $) 99 (|has| |#1| (-566)))) (-2355 (((-417 (-966 |#1|)) $) 103 (|has| |#1| (-566)))) (-2174 (((-1189 (-417 (-966 |#1|))) $) 93 (|has| |#1| (-566)))) (-1520 (((-417 (-966 |#1|))) 73 (|has| |#1| (-566)))) (-1718 (($) 110) (($ (-1193)) 118) (($ (-1284 (-1193))) 117) (($ (-1284 $)) 105) (($ (-1193) (-1284 $)) 116) (($ (-1284 (-1193)) (-1284 $)) 115)) (-1769 (((-112)) NIL)) (-2207 (((-417 (-966 |#1|)) $ (-574)) NIL)) (-2282 (((-1284 (-417 (-966 |#1|))) $ (-1284 $)) 107) (((-699 (-417 (-966 |#1|))) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 (-966 |#1|))) $) 43) (((-699 (-417 (-966 |#1|))) (-1284 $)) NIL)) (-1844 (((-1284 (-417 (-966 |#1|))) $) NIL) (($ (-1284 (-417 (-966 |#1|)))) 40)) (-3385 (((-654 (-966 (-417 (-966 |#1|)))) (-1284 $)) NIL) (((-654 (-966 (-417 (-966 |#1|))))) NIL) (((-654 (-966 |#1|)) (-1284 $)) 108 (|has| |#1| (-566))) (((-654 (-966 |#1|))) 109 (|has| |#1| (-566)))) (-3082 (($ $ $) NIL)) (-3642 (((-112)) NIL)) (-2951 (((-872) $) NIL) (($ (-1284 (-417 (-966 |#1|)))) NIL)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 65)) (-1899 (((-654 (-1284 (-417 (-966 |#1|))))) NIL (|has| (-417 (-966 |#1|)) (-566)))) (-2362 (($ $ $ $) NIL)) (-4358 (((-112)) NIL)) (-2912 (($ (-699 (-417 (-966 |#1|))) $) NIL)) (-2030 (($ $ $) NIL)) (-2640 (((-112)) NIL)) (-3247 (((-112)) NIL)) (-2528 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) 106)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 61) (($ $ (-417 (-966 |#1|))) NIL) (($ (-417 (-966 |#1|)) $) NIL) (($ (-1158 |#2| (-417 (-966 |#1|))) $) NIL)))
-(((-463 |#1| |#2| |#3| |#4|) (-13 (-427 (-417 (-966 |#1|))) (-658 (-1158 |#2| (-417 (-966 |#1|)))) (-10 -8 (-15 -2951 ($ (-1284 (-417 (-966 |#1|))))) (-15 -4190 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -3578 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -1718 ($)) (-15 -1718 ($ (-1193))) (-15 -1718 ($ (-1284 (-1193)))) (-15 -1718 ($ (-1284 $))) (-15 -1718 ($ (-1193) (-1284 $))) (-15 -1718 ($ (-1284 (-1193)) (-1284 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -3532 ((-1189 (-417 (-966 |#1|))))) (-15 -2174 ((-1189 (-417 (-966 |#1|))) $)) (-15 -1325 ((-417 (-966 |#1|)) $)) (-15 -2355 ((-417 (-966 |#1|)) $)) (-15 -2266 ((-1189 (-417 (-966 |#1|))))) (-15 -1339 ((-1189 (-417 (-966 |#1|))) $)) (-15 -3106 ((-417 (-966 |#1|)) $)) (-15 -2483 ((-417 (-966 |#1|)) $)) (-15 -1960 ((-417 (-966 |#1|)) $ $)) (-15 -1520 ((-417 (-966 |#1|)))) (-15 -2938 ((-417 (-966 |#1|)) $ $)) (-15 -3944 ((-417 (-966 |#1|)))) (-15 -3385 ((-654 (-966 |#1|)) (-1284 $))) (-15 -3385 ((-654 (-966 |#1|))))) |%noBranch|))) (-174) (-935) (-654 (-1193)) (-1284 (-699 |#1|))) (T -463))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 *3)))) (-4 *3 (-174)) (-14 *6 (-1284 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))))) (-4190 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -1895 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3578 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-463 *3 *4 *5 *6)) (|:| -1895 (-654 (-463 *3 *4 *5 *6))))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1718 (*1 *1) (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-935)) (-14 *4 (-654 (-1193))) (-14 *5 (-1284 (-699 *2))))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 *2)) (-14 *6 (-1284 (-699 *3))))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-1284 (-1193))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-1284 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1718 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 *2)) (-14 *7 (-1284 (-699 *4))))) (-1718 (*1 *1 *2 *3) (-12 (-5 *2 (-1284 (-1193))) (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))) (-3532 (*1 *2) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2266 (*1 *2) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1960 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-1520 (*1 *2) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-2938 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3944 (*1 *2) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-966 *4))) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174)) (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))) (-3385 (*1 *2) (-12 (-5 *2 (-654 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(-13 (-427 (-417 (-966 |#1|))) (-658 (-1158 |#2| (-417 (-966 |#1|)))) (-10 -8 (-15 -2951 ($ (-1284 (-417 (-966 |#1|))))) (-15 -4190 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -3578 ((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed"))) (-15 -1718 ($)) (-15 -1718 ($ (-1193))) (-15 -1718 ($ (-1284 (-1193)))) (-15 -1718 ($ (-1284 $))) (-15 -1718 ($ (-1193) (-1284 $))) (-15 -1718 ($ (-1284 (-1193)) (-1284 $))) (IF (|has| |#1| (-566)) (PROGN (-15 -3532 ((-1189 (-417 (-966 |#1|))))) (-15 -2174 ((-1189 (-417 (-966 |#1|))) $)) (-15 -1325 ((-417 (-966 |#1|)) $)) (-15 -2355 ((-417 (-966 |#1|)) $)) (-15 -2266 ((-1189 (-417 (-966 |#1|))))) (-15 -1339 ((-1189 (-417 (-966 |#1|))) $)) (-15 -3106 ((-417 (-966 |#1|)) $)) (-15 -2483 ((-417 (-966 |#1|)) $)) (-15 -1960 ((-417 (-966 |#1|)) $ $)) (-15 -1520 ((-417 (-966 |#1|)))) (-15 -2938 ((-417 (-966 |#1|)) $ $)) (-15 -3944 ((-417 (-966 |#1|)))) (-15 -3385 ((-654 (-966 |#1|)) (-1284 $))) (-15 -3385 ((-654 (-966 |#1|))))) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 18)) (-4350 (((-654 (-874 |#1|)) $) 87)) (-4172 (((-1189 $) $ (-874 |#1|)) 52) (((-1189 |#2|) $) 138)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4141 (($ $) NIL (|has| |#2| (-566)))) (-2475 (((-112) $) NIL (|has| |#2| (-566)))) (-3654 (((-781) $) 27) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL (|has| |#2| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 50) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) 48) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-4047 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2156 (($ $ (-654 (-574))) 93)) (-1402 (($ $) 80)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#2| (-923)))) (-3637 (($ $ |#2| |#3| $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) 65)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) 143) (($ (-1189 $) (-874 |#1|)) 58)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) 68)) (-4328 (($ |#2| |#3|) 35) (($ $ (-874 |#1|) (-781)) 37) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-874 |#1|)) NIL)) (-2043 ((|#3| $) NIL) (((-781) $ (-874 |#1|)) 56) (((-654 (-781)) $ (-654 (-874 |#1|))) 63)) (-3431 (($ (-1 |#3| |#3|) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3444 (((-3 (-874 |#1|) "failed") $) 45)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) 47)) (-2845 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2754 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 46)) (-1355 ((|#2| $) 136)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) 149 (|has| |#2| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) 100) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) 106) (($ $ (-874 |#1|) $) 98) (($ $ (-654 (-874 |#1|)) (-654 $)) 124)) (-1924 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) 59)) (-3735 ((|#3| $) 79) (((-781) $ (-874 |#1|)) 42) (((-654 (-781)) $ (-654 (-874 |#1|))) 62)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#2| $) 145 (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) 173) (($ (-574)) NIL) (($ |#2|) 99) (($ (-874 |#1|)) 39) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ |#3|) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) 22 T CONST)) (-2153 (($) 31 T CONST)) (-3585 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) 76 (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 131)) (** (($ $ (-935)) NIL) (($ $ (-781)) 129)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 36) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
-(((-464 |#1| |#2| |#3|) (-13 (-963 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065) (-244 (-2877 |#1|) (-781))) (T -464))
-((-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1193))) (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-244 (-2877 *3) (-781))))))
-(-13 (-963 |#2| |#3| (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574))))))
-((-3666 (((-112) |#1| (-654 |#2|)) 91)) (-2905 (((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|)) 100)) (-4016 (((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|))) 102)) (-3992 ((|#2| |#2| |#1|) 35)) (-4349 (((-781) |#2| (-654 |#2|)) 26)))
-(((-465 |#1| |#2|) (-10 -7 (-15 -3992 (|#2| |#2| |#1|)) (-15 -4349 ((-781) |#2| (-654 |#2|))) (-15 -2905 ((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4016 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|)))) (-15 -3666 ((-112) |#1| (-654 |#2|)))) (-315) (-1260 |#1|)) (T -465))
-((-3666 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-1260 *3)) (-4 *3 (-315)) (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))) (-4016 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1284 (-654 *3))) (-4 *4 (-315)) (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1260 *4)))) (-2905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1260 *4)) (-5 *2 (-1284 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))) (-4349 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-315)) (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))) (-3992 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1260 *3)))))
-(-10 -7 (-15 -3992 (|#2| |#2| |#1|)) (-15 -4349 ((-781) |#2| (-654 |#2|))) (-15 -2905 ((-3 (-1284 (-654 |#2|)) "failed") (-781) |#1| (-654 |#2|))) (-15 -4016 ((-3 (-654 |#2|) "failed") |#2| |#1| (-1284 (-654 |#2|)))) (-15 -3666 ((-112) |#1| (-654 |#2|))))
-((-4201 (((-428 |#5|) |#5|) 24)))
-(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4201 ((-428 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-803) (-566) (-566) (-963 |#4| |#2| |#1|)) (T -466))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566)) (-4 *3 (-963 *7 *5 *4)))))
-(-10 -7 (-15 -4201 ((-428 |#5|) |#5|)))
-((-2637 ((|#3|) 38)) (-2064 (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 34)))
-(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2637 (|#3|))) (-803) (-860) (-923) (-963 |#3| |#1| |#2|)) (T -467))
-((-2637 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-923)) (-5 *1 (-467 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2064 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2637 (|#3|)))
-((-4201 (((-428 (-1189 |#1|)) (-1189 |#1|)) 43)))
-(((-468 |#1|) (-10 -7 (-15 -4201 ((-428 (-1189 |#1|)) (-1189 |#1|)))) (-315)) (T -468))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1189 *4))) (-5 *1 (-468 *4)) (-5 *3 (-1189 *4)))))
-(-10 -7 (-15 -4201 ((-428 (-1189 |#1|)) (-1189 |#1|))))
-((-4402 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781))) 44) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781))) 43) (((-52) |#2| (-1193) (-302 |#2|)) 36) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 29)) (-3597 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 88) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 87) (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574))) 86) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574))) 85) (((-52) |#2| (-1193) (-302 |#2|)) 80) (((-52) (-1 |#2| (-574)) (-302 |#2|)) 79)) (-4426 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 74) (((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))) 72)) (-4414 (((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574))) 51) (((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574))) 50)))
-(((-469 |#1| |#2|) (-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781)))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781)))) (-15 -4414 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -4414 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -4426 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -4426 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574))))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -469))
-((-3597 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-3597 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-3597 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))) (-4426 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574)))) (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8))) (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *8 *3)))) (-4426 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8)) (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574))) (-4 *8 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *8)))) (-4414 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-781))) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *7 *3)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-781))) (-4 *7 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *7)))) (-4402 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *6 *3)))) (-4402 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6)) (-4 *6 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52)) (-5 *1 (-469 *5 *6)))))
-(-10 -7 (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -4402 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-781)))) (-15 -4402 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-781)))) (-15 -4414 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -4414 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -4426 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -4426 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|))) (-15 -3597 ((-52) (-1 |#2| (-574)) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-574)))) (-15 -3597 ((-52) (-1 |#2| (-417 (-574))) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))) (-15 -3597 ((-52) |#2| (-1193) (-302 |#2|) (-1251 (-417 (-574))) (-417 (-574)))))
-((-3992 ((|#2| |#2| |#1|) 15)) (-3963 (((-654 |#2|) |#2| (-654 |#2|) |#1| (-935)) 82)) (-3289 (((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935)) 72)))
-(((-470 |#1| |#2|) (-10 -7 (-15 -3289 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935))) (-15 -3963 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-935))) (-15 -3992 (|#2| |#2| |#1|))) (-315) (-1260 |#1|)) (T -470))
-((-3992 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1260 *3)))) (-3963 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-654 *3)) (-5 *5 (-935)) (-4 *3 (-1260 *4)) (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))) (-3289 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-935)) (-4 *5 (-315)) (-4 *3 (-1260 *5)) (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5))) (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3)))))
-(-10 -7 (-15 -3289 ((-2 (|:| |plist| (-654 |#2|)) (|:| |modulo| |#1|)) |#2| (-654 |#2|) |#1| (-935))) (-15 -3963 ((-654 |#2|) |#2| (-654 |#2|) |#1| (-935))) (-15 -3992 (|#2| |#2| |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 28)) (-3472 (($ |#3|) 25)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) 32)) (-3894 (($ |#2| |#4| $) 33)) (-4328 (($ |#2| (-723 |#3| |#4| |#5|)) 24)) (-1366 (((-723 |#3| |#4| |#5|) $) 15)) (-3201 ((|#3| $) 19)) (-1778 ((|#4| $) 17)) (-1378 ((|#2| $) 29)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1574 (($ |#2| |#3| |#4|) 26)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 36 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-471 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1378 (|#2| $)) (-15 -1366 ((-723 |#3| |#4| |#5|) $)) (-15 -1778 (|#4| $)) (-15 -3201 (|#3| $)) (-15 -1402 ($ $)) (-15 -4328 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3472 ($ |#3|)) (-15 -1574 ($ |#2| |#3| |#4|)) (-15 -3894 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-654 (-1193)) (-174) (-860) (-244 (-2877 |#1|) (-781)) (-1 (-112) (-2 (|:| -2591 |#3|) (|:| -2754 |#4|)) (-2 (|:| -2591 |#3|) (|:| -2754 |#4|))) (-963 |#2| |#4| (-874 |#1|))) (T -471))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6)) (-2 (|:| -2591 *5) (|:| -2754 *6)))) (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-963 *4 *6 (-874 *3))))) (-1378 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *4) (|:| -2754 *5)) (-2 (|:| -2591 *4) (|:| -2754 *5)))) (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-963 *2 *5 (-874 *3))))) (-1366 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *6 (-244 (-2877 *3) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6)) (-2 (|:| -2591 *5) (|:| -2754 *6)))) (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-963 *4 *6 (-874 *3))))) (-1778 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *2)) (-2 (|:| -2591 *5) (|:| -2754 *2)))) (-4 *2 (-244 (-2877 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-963 *4 *2 (-874 *3))))) (-3201 (*1 *2 *1) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *5)) (-2 (|:| -2591 *2) (|:| -2754 *5)))) (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *7 (-963 *4 *5 (-874 *3))))) (-1402 (*1 *1 *1) (-12 (-14 *2 (-654 (-1193))) (-4 *3 (-174)) (-4 *5 (-244 (-2877 *2) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *4) (|:| -2754 *5)) (-2 (|:| -2591 *4) (|:| -2754 *5)))) (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-963 *3 *5 (-874 *2))))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-244 (-2877 *4) (-781))) (-14 *7 (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6)) (-2 (|:| -2591 *5) (|:| -2754 *6)))) (-14 *4 (-654 (-1193))) (-4 *2 (-174)) (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-963 *2 *6 (-874 *4))))) (-3472 (*1 *1 *2) (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174)) (-4 *5 (-244 (-2877 *3) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *5)) (-2 (|:| -2591 *2) (|:| -2754 *5)))) (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-963 *4 *5 (-874 *3))))) (-1574 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-654 (-1193))) (-4 *2 (-174)) (-4 *4 (-244 (-2877 *5) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *3) (|:| -2754 *4)) (-2 (|:| -2591 *3) (|:| -2754 *4)))) (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-963 *2 *4 (-874 *5))))) (-3894 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-654 (-1193))) (-4 *2 (-174)) (-4 *3 (-244 (-2877 *4) (-781))) (-14 *6 (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *3)) (-2 (|:| -2591 *5) (|:| -2754 *3)))) (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-963 *2 *3 (-874 *4))))))
-(-13 (-727 |#6|) (-727 |#2|) (-10 -8 (-15 -1378 (|#2| $)) (-15 -1366 ((-723 |#3| |#4| |#5|) $)) (-15 -1778 (|#4| $)) (-15 -3201 (|#3| $)) (-15 -1402 ($ $)) (-15 -4328 ($ |#2| (-723 |#3| |#4| |#5|))) (-15 -3472 ($ |#3|)) (-15 -1574 ($ |#2| |#3| |#4|)) (-15 -3894 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-4334 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-472 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4334 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|) (-13 (-1054 (-417 (-574))) (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2980 (|#4| $))))) (T -472))
-((-4334 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803)) (-4 *6 (-566)) (-4 *7 (-963 *6 *5 *3)) (-5 *1 (-472 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1054 (-417 (-574))) (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))))
-(-10 -7 (-15 -4334 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4350 (((-654 |#3|) $) 41)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) NIL (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-3688 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 49)) (-2216 (($ (-654 |#4|)) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-4063 ((|#3| $) 47)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#4|) $) 14 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 21)) (-2089 (((-654 |#3|) $) NIL)) (-1726 (((-112) |#3| $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3940 (((-1136) $) NIL)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 39)) (-3014 (($) 17)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 16)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546)))) (($ (-654 |#4|)) 51)) (-2963 (($ (-654 |#4|)) 13)) (-4216 (($ $ |#3|) NIL)) (-2490 (($ $ |#3|) NIL)) (-3476 (($ $ |#3|) NIL)) (-2951 (((-872) $) 38) (((-654 |#4|) $) 50)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 30)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-473 |#1| |#2| |#3| |#4|) (-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ($ (-654 |#4|))) (-6 -4459) (-6 -4460))) (-1065) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -473))
-((-1844 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6)))))
-(-13 (-992 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1844 ($ (-654 |#4|))) (-6 -4459) (-6 -4460)))
-((-2141 (($) 11)) (-2153 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -2153 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2141 (|#1|))) (-475 |#2| |#3|) (-174) (-23)) (T -474))
-NIL
-(-10 -8 (-15 -2153 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2141 (|#1|)))
-((-2864 (((-112) $ $) 7)) (-1704 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-4118 (($ $ $) 24)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3735 ((|#2| $) 20)) (-2951 (((-872) $) 12) (($ |#1|) 26)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-475 |#1| |#2|) (-141) (-174) (-23)) (T -475))
-((-2153 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-480 |t#1| |t#2|) (-1054 |t#1|) (-10 -8 (-15 (-2153) ($) -1714) (-15 -4118 ($ $ $))))
-(((-102) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-480 |#1| |#2|) . T) ((-1054 |#1|) . T) ((-1116) . T))
-((-2242 (((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935)) 26)) (-2903 (((-1284 (-1284 (-574))) (-935)) 21)))
-(((-476) (-10 -7 (-15 -2242 ((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935))) (-15 -2903 ((-1284 (-1284 (-574))) (-935))))) (T -476))
-((-2903 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 (-574)))) (-5 *1 (-476)))) (-2242 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 (-1284 (-574)))) (-5 *3 (-935)) (-5 *1 (-476)))))
-(-10 -7 (-15 -2242 ((-1284 (-1284 (-574))) (-1284 (-1284 (-574))) (-935))) (-15 -2903 ((-1284 (-1284 (-574))) (-935))))
-((-2630 (((-574) (-574)) 32) (((-574)) 24)) (-1698 (((-574) (-574)) 28) (((-574)) 20)) (-2585 (((-574) (-574)) 30) (((-574)) 22)) (-1598 (((-112) (-112)) 14) (((-112)) 12)) (-3376 (((-112) (-112)) 13) (((-112)) 11)) (-3270 (((-112) (-112)) 26) (((-112)) 17)))
-(((-477) (-10 -7 (-15 -3376 ((-112))) (-15 -1598 ((-112))) (-15 -3376 ((-112) (-112))) (-15 -1598 ((-112) (-112))) (-15 -3270 ((-112))) (-15 -2585 ((-574))) (-15 -1698 ((-574))) (-15 -2630 ((-574))) (-15 -3270 ((-112) (-112))) (-15 -2585 ((-574) (-574))) (-15 -1698 ((-574) (-574))) (-15 -2630 ((-574) (-574))))) (T -477))
-((-2630 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-2630 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-1698 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-2585 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477)))) (-3270 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1598 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-1598 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))) (-3376 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
-(-10 -7 (-15 -3376 ((-112))) (-15 -1598 ((-112))) (-15 -3376 ((-112) (-112))) (-15 -1598 ((-112) (-112))) (-15 -3270 ((-112))) (-15 -2585 ((-574))) (-15 -1698 ((-574))) (-15 -2630 ((-574))) (-15 -3270 ((-112) (-112))) (-15 -2585 ((-574) (-574))) (-15 -1698 ((-574) (-574))) (-15 -2630 ((-574) (-574))))
-((-2864 (((-112) $ $) NIL)) (-2005 (((-654 (-388)) $) 34) (((-654 (-388)) $ (-654 (-388))) 146)) (-3066 (((-654 (-1110 (-388))) $) 16) (((-654 (-1110 (-388))) $ (-654 (-1110 (-388)))) 142)) (-3590 (((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884))) 58)) (-1968 (((-654 (-654 (-957 (-227)))) $) 137)) (-3565 (((-1289) $ (-957 (-227)) (-884)) 163)) (-3581 (($ $) 136) (($ (-654 (-654 (-957 (-227))))) 149) (($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935))) 148) (($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270))) 150)) (-4420 (((-1175) $) NIL)) (-3667 (((-574) $) 110)) (-3940 (((-1136) $) NIL)) (-3676 (($) 147)) (-2286 (((-654 (-227)) (-654 (-654 (-957 (-227))))) 89)) (-2474 (((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935)) 155) (((-1289) $ (-957 (-227))) 157) (((-1289) $ (-957 (-227)) (-884) (-884) (-935)) 156)) (-2951 (((-872) $) 169) (($ (-654 (-654 (-957 (-227))))) 164)) (-2981 (((-112) $ $) NIL)) (-1928 (((-1289) $ (-957 (-227))) 162)) (-2986 (((-112) $ $) NIL)))
-(((-478) (-13 (-1116) (-10 -8 (-15 -3676 ($)) (-15 -3581 ($ $)) (-15 -3581 ($ (-654 (-654 (-957 (-227)))))) (-15 -3581 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)))) (-15 -3581 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270)))) (-15 -1968 ((-654 (-654 (-957 (-227)))) $)) (-15 -3667 ((-574) $)) (-15 -3066 ((-654 (-1110 (-388))) $)) (-15 -3066 ((-654 (-1110 (-388))) $ (-654 (-1110 (-388))))) (-15 -2005 ((-654 (-388)) $)) (-15 -2005 ((-654 (-388)) $ (-654 (-388)))) (-15 -2474 ((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935))) (-15 -2474 ((-1289) $ (-957 (-227)))) (-15 -2474 ((-1289) $ (-957 (-227)) (-884) (-884) (-935))) (-15 -1928 ((-1289) $ (-957 (-227)))) (-15 -3565 ((-1289) $ (-957 (-227)) (-884))) (-15 -2951 ($ (-654 (-654 (-957 (-227)))))) (-15 -2951 ((-872) $)) (-15 -3590 ((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884)))) (-15 -2286 ((-654 (-227)) (-654 (-654 (-957 (-227))))))))) (T -478))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478)))) (-3676 (*1 *1) (-5 *1 (-478))) (-3581 (*1 *1 *1) (-5 *1 (-478))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-3581 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-935))) (-5 *1 (-478)))) (-3581 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *4 (-654 (-935))) (-5 *5 (-654 (-270))) (-5 *1 (-478)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))) (-3066 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2005 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478)))) (-2474 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))) (-2474 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))) (-3565 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-478)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))) (-3590 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884))) (-5 *1 (-478)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-227))) (-5 *1 (-478)))))
-(-13 (-1116) (-10 -8 (-15 -3676 ($)) (-15 -3581 ($ $)) (-15 -3581 ($ (-654 (-654 (-957 (-227)))))) (-15 -3581 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)))) (-15 -3581 ($ (-654 (-654 (-957 (-227)))) (-654 (-884)) (-654 (-884)) (-654 (-935)) (-654 (-270)))) (-15 -1968 ((-654 (-654 (-957 (-227)))) $)) (-15 -3667 ((-574) $)) (-15 -3066 ((-654 (-1110 (-388))) $)) (-15 -3066 ((-654 (-1110 (-388))) $ (-654 (-1110 (-388))))) (-15 -2005 ((-654 (-388)) $)) (-15 -2005 ((-654 (-388)) $ (-654 (-388)))) (-15 -2474 ((-1289) $ (-654 (-957 (-227))) (-884) (-884) (-935))) (-15 -2474 ((-1289) $ (-957 (-227)))) (-15 -2474 ((-1289) $ (-957 (-227)) (-884) (-884) (-935))) (-15 -1928 ((-1289) $ (-957 (-227)))) (-15 -3565 ((-1289) $ (-957 (-227)) (-884))) (-15 -2951 ($ (-654 (-654 (-957 (-227)))))) (-15 -2951 ((-872) $)) (-15 -3590 ((-654 (-654 (-957 (-227)))) (-654 (-654 (-957 (-227)))) (-654 (-884)))) (-15 -2286 ((-654 (-227)) (-654 (-654 (-957 (-227))))))))
-((-3090 (($ $) NIL) (($ $ $) 11)))
-(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|))) (-480 |#2| |#3|) (-174) (-23)) (T -479))
-NIL
-(-10 -8 (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3735 ((|#2| $) 20)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 16) (($ $ $) 14)) (-3074 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-480 |#1| |#2|) (-141) (-174) (-23)) (T -480))
-((-3735 (*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2141 (*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-1116) (-10 -8 (-15 -3735 (|t#2| $)) (-15 (-2141) ($) -1714) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3090 ($ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-1640 (((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|))) 134)) (-3296 (((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 131)) (-2909 (((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))) 86)))
-(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -3296 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1640 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2909 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|))))) (-654 (-1193)) (-462) (-462)) (T -481))
-((-2909 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-2 (|:| |dpolys| (-654 (-253 *5 *6))) (|:| |coords| (-654 (-574))))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))) (-1640 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6)) (-4 *6 (-462)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
-(-10 -7 (-15 -3296 ((-654 (-654 (-253 |#1| |#2|))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -1640 ((-3 (-654 (-491 |#1| |#2|)) "failed") (-654 (-491 |#1| |#2|)) (-654 (-874 |#1|)))) (-15 -2909 ((-2 (|:| |dpolys| (-654 (-253 |#1| |#2|))) (|:| |coords| (-654 (-574)))) (-654 (-253 |#1| |#2|)) (-654 (-874 |#1|)))))
-((-3612 (((-3 $ "failed") $) 11)) (-4090 (($ $ $) 23)) (-3082 (($ $ $) 24)) (-3099 (($ $ $) 9)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 22)))
-(((-482 |#1|) (-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3099 (|#1| |#1| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) (-483)) (T -482))
-NIL
-(-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3099 (|#1| |#1| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-1430 (($) 19 T CONST)) (-3612 (((-3 $ "failed") $) 16)) (-3943 (((-112) $) 18)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 25)) (-3940 (((-1136) $) 11)) (-4090 (($ $ $) 22)) (-3082 (($ $ $) 21)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 24)) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15)))
-(((-483) (-141)) (T -483))
-((-1328 (*1 *1 *1) (-4 *1 (-483))) (-3099 (*1 *1 *1 *1) (-4 *1 (-483))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574)))) (-4090 (*1 *1 *1 *1) (-4 *1 (-483))) (-3082 (*1 *1 *1 *1) (-4 *1 (-483))))
-(-13 (-736) (-10 -8 (-15 -1328 ($ $)) (-15 -3099 ($ $ $)) (-15 ** ($ $ (-574))) (-6 -4456) (-15 -4090 ($ $ $)) (-15 -3082 ($ $ $))))
-(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 18)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) NIL) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 25)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) 29 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 35 (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 30 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 28 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 16)) (-3735 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1280 |#2|)) NIL) (($ (-1269 |#1| |#2| |#3|)) 9) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 21)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 27)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-484 |#1| |#2| |#3|) (-13 (-1265 |#1|) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -2951 ($ (-1269 |#1| |#2| |#3|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -484))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-484 *3 *4 *5)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1265 |#1|) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -2951 ($ (-1269 |#1| |#2| |#3|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) 18)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) 19)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 16)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) NIL)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-485 |#1| |#2| |#3| |#4|) (-1210 |#1| |#2|) (-1116) (-1116) (-1210 |#1| |#2|) |#2|) (T -485))
-NIL
-(-1210 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3291 (((-654 $) (-654 |#4|)) NIL)) (-4350 (((-654 |#3|) $) NIL)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) 29 (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3688 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2581 ((|#4| |#4| $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) NIL)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4063 ((|#3| $) 38)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2089 (((-654 |#3|) $) NIL)) (-1726 (((-112) |#3| $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3334 (((-3 |#4| "failed") $) 42)) (-2252 (((-654 |#4|) $) NIL)) (-2897 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3184 ((|#4| |#4| $) NIL)) (-1624 (((-112) $ $) NIL)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1857 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4014 (((-3 $ "failed") $ |#4|) 58)) (-2249 (($ $ |#4|) NIL)) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 14)) (-3735 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-4216 (($ $ |#3|) 52)) (-2490 (($ $ |#3|) 54)) (-3615 (($ $) NIL)) (-3476 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4292 (((-781) $) NIL (|has| |#3| (-377)))) (-2981 (((-112) $ $) NIL)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) NIL)) (-4194 (((-112) |#3| $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-486 |#1| |#2| |#3| |#4|) (-1227 |#1| |#2| |#3| |#4|) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -486))
-NIL
-(-1227 |#1| |#2| |#3| |#4|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3004 (($) 17)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1844 (((-388) $) 21) (((-227) $) 24) (((-417 (-1189 (-574))) $) 18) (((-546) $) 53)) (-2951 (((-872) $) 51) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (((-227) $) 23) (((-388) $) 20)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 8 T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-487) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))) (-1038) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1189 (-574)))) (-624 (-546)) (-10 -8 (-15 -3004 ($))))) (T -487))
-((-3004 (*1 *1) (-5 *1 (-487))))
-(-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))) (-1038) (-623 (-227)) (-623 (-388)) (-624 (-417 (-1189 (-574)))) (-624 (-546)) (-10 -8 (-15 -3004 ($))))
-((-2864 (((-112) $ $) NIL)) (-1816 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-488) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))) (T -488))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488)))))
-(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) 16)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) 20)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 18)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) 13)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 19)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 11 (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) 15 (|has| $ (-6 -4459)))))
-(((-489 |#1| |#2| |#3|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116) (-1175)) (T -489))
-NIL
-(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))
-((-1618 (((-574) (-574) (-574)) 19)) (-4242 (((-112) (-574) (-574) (-574) (-574)) 28)) (-2101 (((-1284 (-654 (-574))) (-781) (-781)) 41)))
-(((-490) (-10 -7 (-15 -1618 ((-574) (-574) (-574))) (-15 -4242 ((-112) (-574) (-574) (-574) (-574))) (-15 -2101 ((-1284 (-654 (-574))) (-781) (-781))))) (T -490))
-((-2101 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1284 (-654 (-574)))) (-5 *1 (-490)))) (-4242 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))) (-1618 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490)))))
-(-10 -7 (-15 -1618 ((-574) (-574) (-574))) (-15 -4242 ((-112) (-574) (-574) (-574) (-574))) (-15 -2101 ((-1284 (-654 (-574))) (-781) (-781))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4141 (($ $) NIL (|has| |#2| (-566)))) (-2475 (((-112) $) NIL (|has| |#2| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL (|has| |#2| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-4047 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-2156 (($ $ (-654 (-574))) NIL)) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#2| (-923)))) (-3637 (($ $ |#2| (-492 (-2877 |#1|) (-781)) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#2| (-492 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-874 |#1|)) NIL)) (-2043 (((-492 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3431 (($ (-1 (-492 (-2877 |#1|) (-781)) (-492 (-2877 |#1|) (-781))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3444 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2754 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1924 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3735 (((-492 (-2877 |#1|) (-781)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-492 (-2877 |#1|) (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-491 |#1| |#2|) (-13 (-963 |#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574)))))) (-654 (-1193)) (-1065)) (T -491))
-((-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4)) (-14 *3 (-654 (-1193))) (-4 *4 (-1065)))))
-(-13 (-963 |#2| (-492 (-2877 |#1|) (-781)) (-874 |#1|)) (-10 -8 (-15 -2156 ($ $ (-654 (-574))))))
-((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-4311 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3472 (($ (-935)) NIL (|has| |#2| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) NIL (|has| |#2| (-803)))) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1116)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) NIL (|has| |#2| (-1116)))) (-1557 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-3612 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) 11)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#2| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-1764 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#2| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3936 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) NIL)) (-2732 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) NIL (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3070 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2859 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) NIL (|has| |#2| (-1065)) CONST)) (-3585 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 17 (|has| |#2| (-860)))) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) NIL (|has| |#2| (-1065))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-492 |#1| |#2|) (-244 |#1| |#2|) (-781) (-803)) (T -492))
+((-3540 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-937))))) (-3665 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-3454 (*1 *1 *1) (-4 *1 (-414))) (-3454 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))))
+(-13 (-374) (-146) (-10 -8 (-15 -3540 ((-845 (-937)) $)) (-15 -3665 ((-3 (-783) "failed") $ $)) (-15 -3454 ($ $)) (-15 -3454 ($ $ (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-2404 (($ (-576) (-576)) 11) (($ (-576) (-576) (-937)) NIL)) (-4176 (((-937)) 19) (((-937) (-937)) NIL)))
+(((-415 |#1|) (-10 -8 (-15 -4176 ((-937) (-937))) (-15 -4176 ((-937))) (-15 -2404 (|#1| (-576) (-576) (-937))) (-15 -2404 (|#1| (-576) (-576)))) (-416)) (T -415))
+((-4176 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))))
+(-10 -8 (-15 -4176 ((-937) (-937))) (-15 -4176 ((-937))) (-15 -2404 (|#1| (-576) (-576) (-937))) (-15 -2404 (|#1| (-576) (-576))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2742 (((-576) $) 97)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-2725 (($ $) 95)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-4214 (($ $) 105)) (-1323 (((-112) $ $) 65)) (-2627 (((-576) $) 122)) (-4335 (($) 18 T CONST)) (-3629 (($ $) 94)) (-1706 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-2216 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-3765 (((-937)) 138) (((-937) (-937)) 135 (|has| $ (-6 -4452)))) (-3730 (((-112) $) 120)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-3540 (((-576) $) 144)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 104)) (-3404 (($ $) 100)) (-3327 (((-112) $) 121)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3639 (($ $ $) 119) (($) 132 (-12 (-2085 (|has| $ (-6 -4452))) (-2085 (|has| $ (-6 -4444)))))) (-2571 (($ $ $) 118) (($) 131 (-12 (-2085 (|has| $ (-6 -4452))) (-2085 (|has| $ (-6 -4444)))))) (-4292 (((-576) $) 141)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3847 (((-937) (-576)) 134 (|has| $ (-6 -4452)))) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-3739 (($ $) 96)) (-4371 (($ $) 98)) (-2404 (($ (-576) (-576)) 146) (($ (-576) (-576) (-937)) 145)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2300 (((-576) $) 142)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-4176 (((-937)) 139) (((-937) (-937)) 136 (|has| $ (-6 -4452)))) (-2592 (((-937) (-576)) 133 (|has| $ (-6 -4452)))) (-1846 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-3423 (((-783)) 32 T CONST)) (-4175 (($ $) 99)) (-2054 (((-937)) 140) (((-937) (-937)) 137 (|has| $ (-6 -4452)))) (-2617 (((-112) $ $) 9)) (-2650 (((-937)) 143)) (-2946 (((-112) $ $) 45)) (-2130 (($ $) 123)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 116)) (-3024 (((-112) $ $) 115)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 117)) (-3014 (((-112) $ $) 114)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-416) (-141)) (T -416))
+((-2404 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-2404 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-4 *1 (-416)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-2650 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-2054 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-4176 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-3765 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-937)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-937)))) (-3639 (*1 *1) (-12 (-4 *1 (-416)) (-2085 (|has| *1 (-6 -4452))) (-2085 (|has| *1 (-6 -4444))))) (-2571 (*1 *1) (-12 (-4 *1 (-416)) (-2085 (|has| *1 (-6 -4452))) (-2085 (|has| *1 (-6 -4444))))))
+(-13 (-1078) (-10 -8 (-6 -3530) (-15 -2404 ($ (-576) (-576))) (-15 -2404 ($ (-576) (-576) (-937))) (-15 -3540 ((-576) $)) (-15 -2650 ((-937))) (-15 -2300 ((-576) $)) (-15 -4292 ((-576) $)) (-15 -2054 ((-937))) (-15 -4176 ((-937))) (-15 -3765 ((-937))) (IF (|has| $ (-6 -4452)) (PROGN (-15 -2054 ((-937) (-937))) (-15 -4176 ((-937) (-937))) (-15 -3765 ((-937) (-937))) (-15 -3847 ((-937) (-576))) (-15 -2592 ((-937) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4444)) |%noBranch| (IF (|has| $ (-6 -4452)) |%noBranch| (PROGN (-15 -3639 ($)) (-15 -2571 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-936) . T) ((-1020) . T) ((-1040) . T) ((-1078) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-1787 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20)))
+(((-417 |#1| |#2|) (-10 -7 (-15 -1787 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))))
+(-10 -7 (-15 -1787 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|))))
+((-1787 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13)))
+(((-418 |#1| |#2|) (-10 -7 (-15 -1787 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))))
+(-10 -7 (-15 -1787 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 13)) (-2742 ((|#1| $) 21 (|has| |#1| (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| |#1| (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 17) (((-3 (-1195) "failed") $) NIL (|has| |#1| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576))))) (-2216 ((|#1| $) 15) (((-1195) $) NIL (|has| |#1| (-1056 (-1195)))) (((-419 (-576)) $) 69 (|has| |#1| (-1056 (-576)))) (((-576) $) NIL (|has| |#1| (-1056 (-576))))) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) 51)) (-2840 (($) NIL (|has| |#1| (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| |#1| (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-4192 (((-112) $) 57)) (-4299 (($ $) NIL)) (-2976 ((|#1| $) 73)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-3327 (((-112) $) NIL (|has| |#1| (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| |#1| (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 100)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| |#1| (-317)))) (-4371 ((|#1| $) 28 (|has| |#1| (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 145 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 138 (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-3927 (((-783) $) NIL)) (-2209 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3210 (($ $) NIL)) (-2987 ((|#1| $) 75)) (-1846 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1040))) (((-227) $) NIL (|has| |#1| (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1195)) NIL (|has| |#1| (-1056 (-1195))))) (-1817 (((-3 $ "failed") $) 102 (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 103 T CONST)) (-4175 ((|#1| $) 26 (|has| |#1| (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| |#1| (-832)))) (-2143 (($) 22 T CONST)) (-2155 (($) 8 T CONST)) (-2616 (((-1177) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1177) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-3590 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) 66)) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3108 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3096 (($ $) 25) (($ $ $) 56)) (-3081 (($ $ $) 54)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-419 |#1|) (-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419))
+NIL
+(-13 (-1010 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-2674 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 18)) (-2524 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 24)) (-1796 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 40)) (-1733 ((|#3| $) 69)) (-3206 ((|#2| (-1286 $)) NIL) ((|#2|) 20)) (-3458 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 22) (((-701 |#2|) (-1286 $)) 38)) (-1846 (((-1286 |#2|) $) 11) (($ (-1286 |#2|)) 13)) (-4343 ((|#3| $) 55)))
+(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -1796 ((-701 |#2|) |#1|)) (-15 -3206 (|#2|)) (-15 -2674 ((-701 |#2|))) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1733 (|#3| |#1|)) (-15 -4343 (|#3| |#1|)) (-15 -2674 ((-701 |#2|) (-1286 |#1|))) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1796 ((-701 |#2|) |#1| (-1286 |#1|)))) (-421 |#2| |#3|) (-174) (-1262 |#2|)) (T -420))
+((-2674 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-3206 (*1 *2) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4)))))
+(-10 -8 (-15 -1796 ((-701 |#2|) |#1|)) (-15 -3206 (|#2|)) (-15 -2674 ((-701 |#2|))) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1733 (|#3| |#1|)) (-15 -4343 (|#3| |#1|)) (-15 -2674 ((-701 |#2|) (-1286 |#1|))) (-15 -3206 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1796 ((-701 |#2|) |#1| (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2674 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2524 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-1796 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-4077 (((-3 $ "failed") $) 37)) (-3563 (((-937)) 61)) (-4192 (((-112) $) 35)) (-3404 ((|#1| $) 58)) (-1733 ((|#2| $) 51 (|has| |#1| (-374)))) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3206 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3458 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-1846 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1817 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4343 ((|#2| $) 52)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 74)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-421 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -421))
+((-4093 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) (-4 *1 (-421 *3 *4)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-2524 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-2674 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3)))) (-3206 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3)))))
+(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -4093 ((-1286 $))) (-15 -3458 ((-1286 |t#1|) $)) (-15 -3458 ((-701 |t#1|) (-1286 $))) (-15 -2524 ($ (-1286 |t#1|))) (-15 -1846 ((-1286 |t#1|) $)) (-15 -1846 ($ (-1286 |t#1|))) (-15 -2674 ((-701 |t#1|))) (-15 -3206 (|t#1|)) (-15 -1796 ((-701 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-2956 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11)))
+(((-422 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| (-576))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|))) (-423 |#2|) (-1236)) (T -422))
+NIL
+(-10 -8 (-15 -2956 (|#1| (-576))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)))
+((-1706 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1056 (-576))))) (-2216 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1056 (-576))))) (-2956 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1056 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1056 (-576))))))
+(((-423 |#1|) (-141) (-1236)) (T -423))
+NIL
+(-13 (-1056 |t#1|) (-10 -7 (IF (|has| |t#1| (-1056 (-576))) (-6 (-1056 (-576))) |%noBranch|) (IF (|has| |t#1| (-1056 (-419 (-576)))) (-6 (-1056 (-419 (-576)))) |%noBranch|)))
+(((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1056 (-576))) ((-628 |#1|) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 #1#) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T))
+((-1787 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35)))
+(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1010 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1056 |#2|)) (-317) (-1010 |#5|) (-1262 |#6|) (-13 (-421 |#6| |#7|) (-1056 |#6|))) (T -424))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-421 *6 *7) (-1056 *6))) (-4 *9 (-317)) (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1056 *10))))))
+(-10 -7 (-15 -1787 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|))))
+((-2869 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-2020 ((|#4| (-783) (-1286 |#4|)) 55)) (-4192 (((-112) $) NIL)) (-2976 (((-1286 |#4|) $) 15)) (-3404 ((|#2| $) 53)) (-4382 (($ $) 157)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 103)) (-3434 (($ (-1286 |#4|)) 102)) (-3945 (((-1138) $) NIL)) (-2987 ((|#1| $) 16)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) 148)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 |#4|) $) 141)) (-2155 (($) 11 T CONST)) (-2991 (((-112) $ $) 39)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130)))
+(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -3434 ($ (-1286 |#4|))) (-15 -4093 ((-1286 |#4|) $)) (-15 -3404 (|#2| $)) (-15 -2976 ((-1286 |#4|) $)) (-15 -2987 (|#1| $)) (-15 -4382 ($ $)) (-15 -2020 (|#4| (-783) (-1286 |#4|))))) (-317) (-1010 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1056 |#2|))) (T -425))
+((-3434 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-4093 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) (-3404 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1056 *2))))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4))))) (-2987 (*1 *2 *1) (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))) (-4382 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317)) (-4 *6 (-1010 *5)) (-4 *2 (-13 (-421 *6 *7) (-1056 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6)))))
+(-13 (-485) (-10 -8 (-15 -3434 ($ (-1286 |#4|))) (-15 -4093 ((-1286 |#4|) $)) (-15 -3404 (|#2| $)) (-15 -2976 ((-1286 |#4|) $)) (-15 -2987 (|#1| $)) (-15 -4382 ($ $)) (-15 -2020 (|#4| (-783) (-1286 |#4|)))))
+((-2869 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-3404 ((|#2| $) 71)) (-3676 (($ (-1286 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1056 |#2|)))) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 37)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 |#4|) $) 28)) (-2155 (($) 25 T CONST)) (-2991 (((-112) $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82)))
+(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -4093 ((-1286 |#4|) $)) (-15 -3404 (|#2| $)) (-15 -3676 ($ (-1286 |#4|))) (IF (|has| |#4| (-1056 |#2|)) (-15 -3676 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1010 |#1|) (-1262 |#2|) (-421 |#2| |#3|) (-1286 |#4|)) (T -426))
+((-4093 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-3404 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1286 *5)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1056 *4)) (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))))
+(-13 (-738) (-10 -8 (-15 -4093 ((-1286 |#4|) $)) (-15 -3404 (|#2| $)) (-15 -3676 ($ (-1286 |#4|))) (IF (|has| |#4| (-1056 |#2|)) (-15 -3676 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))))
+(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1651 (((-3 $ "failed")) 98)) (-2264 (((-1286 (-701 |#2|)) (-1286 $)) NIL) (((-1286 (-701 |#2|))) 103)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 96)) (-3197 (((-3 $ "failed")) 95)) (-4366 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 114)) (-3512 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 122)) (-3333 (((-1191 (-968 |#2|))) 63)) (-3775 ((|#2| (-1286 $)) NIL) ((|#2|) 118)) (-2524 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 124)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 94)) (-3471 (((-3 $ "failed")) 86)) (-3774 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 112)) (-4120 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 120)) (-1418 (((-1191 (-968 |#2|))) 62)) (-3640 ((|#2| (-1286 $)) NIL) ((|#2|) 116)) (-3458 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 123) (((-701 |#2|) (-1286 $)) 132)) (-1846 (((-1286 |#2|) $) 108) (($ (-1286 |#2|)) 110)) (-2292 (((-656 (-968 |#2|)) (-1286 $)) NIL) (((-656 (-968 |#2|))) 106)) (-2917 (($ (-701 |#2|) $) 102)))
+(((-428 |#1| |#2|) (-10 -8 (-15 -2917 (|#1| (-701 |#2|) |#1|)) (-15 -3333 ((-1191 (-968 |#2|)))) (-15 -1418 ((-1191 (-968 |#2|)))) (-15 -3512 ((-701 |#2|) |#1|)) (-15 -4120 ((-701 |#2|) |#1|)) (-15 -4366 ((-701 |#2|))) (-15 -3774 ((-701 |#2|))) (-15 -3775 (|#2|)) (-15 -3640 (|#2|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -2292 ((-656 (-968 |#2|)))) (-15 -2264 ((-1286 (-701 |#2|)))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1651 ((-3 |#1| "failed"))) (-15 -3197 ((-3 |#1| "failed"))) (-15 -3471 ((-3 |#1| "failed"))) (-15 -3749 ((-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed"))) (-15 -1714 ((-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed"))) (-15 -4366 ((-701 |#2|) (-1286 |#1|))) (-15 -3774 ((-701 |#2|) (-1286 |#1|))) (-15 -3775 (|#2| (-1286 |#1|))) (-15 -3640 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3512 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4120 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2264 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -2292 ((-656 (-968 |#2|)) (-1286 |#1|)))) (-429 |#2|) (-174)) (T -428))
+((-2264 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2292 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3640 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3775 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3774 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4366 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1418 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3333 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
+(-10 -8 (-15 -2917 (|#1| (-701 |#2|) |#1|)) (-15 -3333 ((-1191 (-968 |#2|)))) (-15 -1418 ((-1191 (-968 |#2|)))) (-15 -3512 ((-701 |#2|) |#1|)) (-15 -4120 ((-701 |#2|) |#1|)) (-15 -4366 ((-701 |#2|))) (-15 -3774 ((-701 |#2|))) (-15 -3775 (|#2|)) (-15 -3640 (|#2|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -2524 (|#1| (-1286 |#2|))) (-15 -2292 ((-656 (-968 |#2|)))) (-15 -2264 ((-1286 (-701 |#2|)))) (-15 -3458 ((-701 |#2|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1|)) (-15 -1651 ((-3 |#1| "failed"))) (-15 -3197 ((-3 |#1| "failed"))) (-15 -3471 ((-3 |#1| "failed"))) (-15 -3749 ((-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed"))) (-15 -1714 ((-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed"))) (-15 -4366 ((-701 |#2|) (-1286 |#1|))) (-15 -3774 ((-701 |#2|) (-1286 |#1|))) (-15 -3775 (|#2| (-1286 |#1|))) (-15 -3640 (|#2| (-1286 |#1|))) (-15 -2524 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -3458 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -3458 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3512 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -4120 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2264 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -2292 ((-656 (-968 |#2|)) (-1286 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1651 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) 20)) (-2264 (((-1286 (-701 |#1|)) (-1286 $)) 83) (((-1286 (-701 |#1|))) 106)) (-2548 (((-1286 $)) 86)) (-4335 (($) 18 T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-3197 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4366 (((-701 |#1|) (-1286 $)) 70) (((-701 |#1|)) 98)) (-2655 ((|#1| $) 79)) (-3512 (((-701 |#1|) $ (-1286 $)) 81) (((-701 |#1|) $) 96)) (-2710 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3333 (((-1191 (-968 |#1|))) 94 (|has| |#1| (-374)))) (-3133 (($ $ (-937)) 31)) (-4316 ((|#1| $) 77)) (-3589 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-3775 ((|#1| (-1286 $)) 72) ((|#1|) 100)) (-2495 (((-1191 |#1|) $) 68)) (-3498 (((-112)) 62)) (-2524 (($ (-1286 |#1|) (-1286 $)) 74) (($ (-1286 |#1|)) 104)) (-4077 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3563 (((-937)) 85)) (-3574 (((-112)) 59)) (-3728 (($ $ (-937)) 38)) (-3788 (((-112)) 55)) (-3059 (((-112)) 53)) (-4337 (((-112)) 57)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3471 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-3774 (((-701 |#1|) (-1286 $)) 71) (((-701 |#1|)) 99)) (-3144 ((|#1| $) 80)) (-4120 (((-701 |#1|) $ (-1286 $)) 82) (((-701 |#1|) $) 97)) (-1643 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1418 (((-1191 (-968 |#1|))) 95 (|has| |#1| (-374)))) (-2128 (($ $ (-937)) 32)) (-3209 ((|#1| $) 78)) (-1564 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-3640 ((|#1| (-1286 $)) 73) ((|#1|) 101)) (-4347 (((-1191 |#1|) $) 69)) (-2513 (((-112)) 63)) (-2148 (((-1177) $) 10)) (-1358 (((-112)) 54)) (-4085 (((-112)) 56)) (-3045 (((-112)) 58)) (-3945 (((-1138) $) 11)) (-4145 (((-112)) 61)) (-2209 ((|#1| $ (-576)) 110)) (-3458 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75) (((-1286 |#1|) $) 108) (((-701 |#1|) (-1286 $)) 107)) (-1846 (((-1286 |#1|) $) 103) (($ (-1286 |#1|)) 102)) (-2292 (((-656 (-968 |#1|)) (-1286 $)) 84) (((-656 (-968 |#1|))) 105)) (-3516 (($ $ $) 28)) (-3184 (((-112)) 67)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 109)) (-2943 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-2927 (($ $ $ $) 29)) (-2763 (((-112)) 65)) (-2917 (($ (-701 |#1|) $) 93)) (-1736 (($ $ $) 27)) (-2417 (((-112)) 66)) (-1431 (((-112)) 64)) (-3842 (((-112)) 60)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-429 |#1|) (-141) (-174)) (T -429))
+((-4093 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2264 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3))))) (-2292 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-968 *3))))) (-2524 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-3640 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3775 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3774 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4366 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-1418 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-968 *3))))) (-3333 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-968 *3))))) (-2917 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))))
+(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -4093 ((-1286 $))) (-15 -3458 ((-1286 |t#1|) $)) (-15 -3458 ((-701 |t#1|) (-1286 $))) (-15 -2264 ((-1286 (-701 |t#1|)))) (-15 -2292 ((-656 (-968 |t#1|)))) (-15 -2524 ($ (-1286 |t#1|))) (-15 -1846 ((-1286 |t#1|) $)) (-15 -1846 ($ (-1286 |t#1|))) (-15 -3640 (|t#1|)) (-15 -3775 (|t#1|)) (-15 -3774 ((-701 |t#1|))) (-15 -4366 ((-701 |t#1|))) (-15 -4120 ((-701 |t#1|) $)) (-15 -3512 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -1418 ((-1191 (-968 |t#1|)))) (-15 -3333 ((-1191 (-968 |t#1|))))) |%noBranch|) (-15 -2917 ($ (-701 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 60)) (-3978 (($ $) 78)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 192)) (-4334 (($ $) NIL)) (-1428 (((-112) $) 48)) (-1651 ((|#1| $) 16)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-1240)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-2796 (($ |#1| (-576)) 42)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 74)) (-4077 (((-3 $ "failed") $) 165)) (-2456 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-1874 (((-112) $) 81 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-2755 (($ |#1| (-576)) 44)) (-3124 (((-112) $) 212 (|has| |#1| (-1240)))) (-4192 (((-112) $) 62)) (-4350 (((-783) $) 51)) (-1427 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-1762 ((|#1| $ (-576)) 175)) (-3226 (((-576) $ (-576)) 174)) (-1610 (($ |#1| (-576)) 41)) (-1787 (($ (-1 |#1| |#1|) $) 184)) (-4019 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2486 (($ |#1| (-576)) 43)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-2290 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3544 (((-656 (-2 (|:| -4205 |#1|) (|:| -2300 (-576)))) $) 73)) (-1376 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-4205 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-2858 (((-3 $ "failed") $ $) 177)) (-2300 (((-576) $) 168)) (-2139 ((|#1| $) 75)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) $) NIL (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-1195)) (-656 $)) 108 (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2209 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-3884 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-1846 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1040))) (((-227) $) 120 (|has| |#1| (-1040)))) (-2956 (((-874) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576)))))) (-3423 (((-783)) 67 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 53 T CONST)) (-2155 (($) 52 T CONST)) (-3590 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) 160)) (-3096 (($ $) 162) (($ $ $) NIL)) (-3081 (($ $ $) 181)) (** (($ $ (-937)) NIL) (($ $ (-783)) 126)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-430 |#1|) (-13 (-568) (-233 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2139 (|#1| $)) (-15 -2300 ((-576) $)) (-15 -4019 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1376 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1610 ($ |#1| (-576))) (-15 -3544 ((-656 (-2 (|:| -4205 |#1|) (|:| -2300 (-576)))) $)) (-15 -2486 ($ |#1| (-576))) (-15 -3226 ((-576) $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -1427 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -4350 ((-783) $)) (-15 -2755 ($ |#1| (-576))) (-15 -2796 ($ |#1| (-576))) (-15 -2290 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1651 (|#1| $)) (-15 -3978 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|))) (-568)) (T -430))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-2139 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4019 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1610 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4205 *3) (|:| -2300 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2486 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3226 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1427 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2755 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2796 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2290 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1651 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2456 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))))
+(-13 (-568) (-233 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2139 (|#1| $)) (-15 -2300 ((-576) $)) (-15 -4019 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1376 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -1610 ($ |#1| (-576))) (-15 -3544 ((-656 (-2 (|:| -4205 |#1|) (|:| -2300 (-576)))) $)) (-15 -2486 ($ |#1| (-576))) (-15 -3226 ((-576) $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -1427 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -4350 ((-783) $)) (-15 -2755 ($ |#1| (-576))) (-15 -2796 ($ |#1| (-576))) (-15 -2290 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1651 (|#1| $)) (-15 -3978 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|)))
+((-4358 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2920 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17)))
+(((-431 |#1|) (-10 -7 (-15 -4358 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2920 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431))
+((-2920 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-4358 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4)))))
+(-10 -7 (-15 -4358 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2920 ((-430 |#1|) (-430 |#1|) (-430 |#1|))))
+((-4075 ((|#2| |#2|) 183)) (-1488 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112)) 60)))
+(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1488 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -4075 (|#2| |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -432))
+((-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3))) (-14 *4 (-1195)) (-14 *5 *2))) (-1488 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-14 *6 (-1195)) (-14 *7 *3))))
+(-10 -7 (-15 -1488 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -4075 (|#2| |#2|)))
+((-1787 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) (-1067) (-442 |#1|) (-1067) (-442 |#3|)) (T -433))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4075 ((|#2| |#2|) 106)) (-1553 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 52)) (-2022 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 170)))
+(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1553 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2022 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -4075 (|#2| |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|) (-10 -8 (-15 -2956 ($ |#3|)))) (-860) (-13 (-1264 |#2| |#3|) (-374) (-1221) (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $)))) (-1001 |#4|) (-1195)) (T -434))
+((-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -2956 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1264 *2 *4) (-374) (-1221) (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1001 *5)) (-14 *7 (-1195)))) (-2022 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2956 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) (-14 *10 (-1195)))) (-1553 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2956 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8)) (-14 *10 (-1195)))))
+(-10 -7 (-15 -1553 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2022 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -4075 (|#2| |#2|)))
+((-3000 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2887 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1787 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2887 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3000 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1118) (-437 |#1|) (-1118) (-437 |#3|)) (T -435))
+((-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2887 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3000 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1485 (($) 51)) (-4356 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2711 (($ $ $) 46)) (-2297 (((-112) $ $) 35)) (-1499 (((-783)) 55)) (-1517 (($ (-656 |#2|)) 23) (($) NIL)) (-2840 (($) 66)) (-3872 (((-112) $ $) 15)) (-3639 ((|#2| $) 77)) (-2571 ((|#2| $) 75)) (-4261 (((-937) $) 70)) (-3318 (($ $ $) 42)) (-2596 (($ (-937)) 60)) (-1403 (($ $ |#2|) NIL) (($ $ $) 45)) (-3954 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-2968 (($ (-656 |#2|)) 27)) (-2807 (($ $) 53)) (-2956 (((-874) $) 40)) (-3969 (((-783) $) 24)) (-4271 (($ (-656 |#2|)) 22) (($) NIL)) (-2991 (((-112) $ $) 19)))
+(((-436 |#1| |#2|) (-10 -8 (-15 -1499 ((-783))) (-15 -2596 (|#1| (-937))) (-15 -4261 ((-937) |#1|)) (-15 -2840 (|#1|)) (-15 -3639 (|#2| |#1|)) (-15 -2571 (|#2| |#1|)) (-15 -1485 (|#1|)) (-15 -2807 (|#1| |#1|)) (-15 -3969 ((-783) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -3872 ((-112) |#1| |#1|)) (-15 -4271 (|#1|)) (-15 -4271 (|#1| (-656 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-656 |#2|))) (-15 -3318 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#2|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -2297 ((-112) |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#2| |#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1118)) (T -436))
+((-1499 (*1 *2) (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4)))))
+(-10 -8 (-15 -1499 ((-783))) (-15 -2596 (|#1| (-937))) (-15 -4261 ((-937) |#1|)) (-15 -2840 (|#1|)) (-15 -3639 (|#2| |#1|)) (-15 -2571 (|#2| |#1|)) (-15 -1485 (|#1|)) (-15 -2807 (|#1| |#1|)) (-15 -3969 ((-783) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -3872 ((-112) |#1| |#1|)) (-15 -4271 (|#1|)) (-15 -4271 (|#1| (-656 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-656 |#2|))) (-15 -3318 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#2|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -2297 ((-112) |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#2| |#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -3954 ((-783) |#2| |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)))
+((-2869 (((-112) $ $) 19)) (-1485 (($) 68 (|has| |#1| (-379)))) (-4356 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2711 (($ $ $) 79)) (-2297 (((-112) $ $) 80)) (-3762 (((-112) $ (-783)) 8)) (-1499 (((-783)) 62 (|has| |#1| (-379)))) (-1517 (($ (-656 |#1|)) 75) (($) 74)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-2840 (($) 65 (|has| |#1| (-379)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) 71)) (-2266 (((-112) $ (-783)) 9)) (-3639 ((|#1| $) 66 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2571 ((|#1| $) 67 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-937) $) 64 (|has| |#1| (-379)))) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22)) (-3318 (($ $ $) 76)) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-2596 (($ (-937)) 63 (|has| |#1| (-379)))) (-3945 (((-1138) $) 21)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-1403 (($ $ |#1|) 78) (($ $ $) 77)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2807 (($ $) 69 (|has| |#1| (-379)))) (-2956 (((-874) $) 18)) (-3969 (((-783) $) 70)) (-4271 (($ (-656 |#1|)) 73) (($) 72)) (-2617 (((-112) $ $) 23)) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20)) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-437 |#1|) (-141) (-1118)) (T -437))
+((-3969 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-2807 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-379)))) (-1485 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1118)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862)))))
+(-13 (-231 |t#1|) (-1116 |t#1|) (-10 -8 (-6 -4461) (-15 -3969 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -2807 ($ $)) (-15 -1485 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -2571 (|t#1| $)) (-15 -3639 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-1593 (((-598 |#2|) |#2| (-1195)) 36)) (-1909 (((-598 |#2|) |#2| (-1195)) 21)) (-3063 ((|#2| |#2| (-1195)) 26)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -1909 ((-598 |#2|) |#2| (-1195))) (-15 -1593 ((-598 |#2|) |#2| (-1195))) (-15 -3063 (|#2| |#2| (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -438))
+((-3063 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4))))) (-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5))))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5))))))
+(-10 -7 (-15 -1909 ((-598 |#2|) |#2| (-1195))) (-15 -1593 ((-598 |#2|) |#2| (-1195))) (-15 -3063 (|#2| |#2| (-1195))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-4198 (($ |#2| |#1|) 37)) (-2378 (($ |#2| |#1|) 35)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2155 (($) 16 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 36)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -2956 ($ |#1|)) (-15 -2956 ($ (-341 |#2|))) (-15 -4198 ($ |#2| |#1|)) (-15 -2378 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439))
+((-2956 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-4198 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-2378 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -2956 ($ |#1|)) (-15 -2956 ($ (-341 |#2|))) (-15 -4198 ($ |#2| |#1|)) (-15 -2378 ($ |#2| |#1|))))
+((-2254 (((-3 |#2| (-656 |#2|)) |#2| (-1195)) 115)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -2254 ((-3 |#2| (-656 |#2|)) |#2| (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -440))
+((-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1221) (-975) (-29 *5))))))
+(-10 -7 (-15 -2254 ((-3 |#2| (-656 |#2|)) |#2| (-1195))))
+((-4352 (((-656 (-1195)) $) 81)) (-4174 (((-419 (-1191 $)) $ (-624 $)) 313)) (-2564 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-1706 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1195) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-968 |#2|)) "failed") $) 363) (((-3 (-968 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2216 (((-624 $) $) NIL) (((-1195) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-968 |#2|)) $) 345) (((-968 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-4153 (((-115) (-115)) 47)) (-4299 (($ $) 99)) (-2161 (((-3 (-624 $) "failed") $) 268)) (-4142 (((-656 (-624 $)) $) 269)) (-1864 (((-3 (-656 $) "failed") $) 287)) (-4004 (((-3 (-2 (|:| |val| $) (|:| -2300 (-576))) "failed") $) 294)) (-4139 (((-3 (-656 $) "failed") $) 285)) (-3002 (((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-2302 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-1195)) 257)) (-1345 (((-112) $) 17)) (-1357 ((|#2| $) 19)) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) 62) (($ $ (-656 (-1195))) 280) (($ $) 281) (($ $ (-115) $ (-1195)) 65) (($ $ (-656 (-115)) (-656 $) (-1195)) 72) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1195) (-783) (-1 $ (-656 $))) 105) (($ $ (-1195) (-783) (-1 $ $)) 104)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-3884 (($ $ (-1195)) 278) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-3210 (($ $) 324)) (-1846 (((-905 (-576)) $) 297) (((-905 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-2956 (((-874) $) 279) (($ (-624 $)) 93) (($ (-1195)) 24) (($ |#2|) NIL) (($ (-1143 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-968 (-419 |#2|))) 368) (($ (-419 (-968 (-419 |#2|)))) 341) (($ (-419 (-968 |#2|))) 335) (($ $) NIL) (($ (-968 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-3423 (((-783)) 88)) (-1483 (((-112) (-115)) 42)) (-2519 (($ (-1195) $) 31) (($ (-1195) $ $) 32) (($ (-1195) $ $ $) 33) (($ (-1195) $ $ $ $) 34) (($ (-1195) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL)))
+(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-937) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2956 (|#1| (-576))) (-15 -3423 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2956 (|#1| (-968 |#2|))) (-15 -1706 ((-3 (-968 |#2|) "failed") |#1|)) (-15 -2216 ((-968 |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -2956 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2956 (|#1| (-419 (-968 |#2|)))) (-15 -1706 ((-3 (-419 (-968 |#2|)) "failed") |#1|)) (-15 -2216 ((-419 (-968 |#2|)) |#1|)) (-15 -4174 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -2956 (|#1| (-419 (-968 (-419 |#2|))))) (-15 -2956 (|#1| (-968 (-419 |#2|)))) (-15 -2956 (|#1| (-419 |#2|))) (-15 -3210 (|#1| |#1|)) (-15 -1846 (|#1| (-430 |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -4004 ((-3 (-2 (|:| |val| |#1|) (|:| -2300 (-576))) "failed") |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1| (-1195))) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1| (-115))) (-15 -4299 (|#1| |#1|)) (-15 -2956 (|#1| (-1143 |#2| (-624 |#1|)))) (-15 -3002 ((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -4139 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1|)) (-15 -1864 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -2666 (|#1| |#1| (-115) |#1| (-1195))) (-15 -2666 (|#1| |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1195)))) (-15 -2666 (|#1| |#1| (-1195))) (-15 -2519 (|#1| (-1195) (-656 |#1|))) (-15 -2519 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1|)) (-15 -4352 ((-656 (-1195)) |#1|)) (-15 -1357 (|#2| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -2956 (|#1| (-1195))) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4142 ((-656 (-624 |#1|)) |#1|)) (-15 -2161 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2564 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2564 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2564 (|#1| |#1| (-304 |#1|))) (-15 -2209 (|#1| (-115) (-656 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2956 (|#1| (-624 |#1|))) (-15 -1706 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2216 ((-624 |#1|) |#1|)) (-15 -2956 ((-874) |#1|))) (-442 |#2|) (-1118)) (T -441))
+((-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1118)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-3423 (*1 *2) (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))))
+(-10 -8 (-15 * (|#1| (-937) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2956 (|#1| (-576))) (-15 -3423 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2956 (|#1| (-968 |#2|))) (-15 -1706 ((-3 (-968 |#2|) "failed") |#1|)) (-15 -2216 ((-968 |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -2956 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2956 (|#1| (-419 (-968 |#2|)))) (-15 -1706 ((-3 (-419 (-968 |#2|)) "failed") |#1|)) (-15 -2216 ((-419 (-968 |#2|)) |#1|)) (-15 -4174 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -2956 (|#1| (-419 (-968 (-419 |#2|))))) (-15 -2956 (|#1| (-968 (-419 |#2|)))) (-15 -2956 (|#1| (-419 |#2|))) (-15 -3210 (|#1| |#1|)) (-15 -1846 (|#1| (-430 |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -4004 ((-3 (-2 (|:| |val| |#1|) (|:| -2300 (-576))) "failed") |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1| (-1195))) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1| (-115))) (-15 -4299 (|#1| |#1|)) (-15 -2956 (|#1| (-1143 |#2| (-624 |#1|)))) (-15 -3002 ((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -4139 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2300 (-576))) "failed") |#1|)) (-15 -1864 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -2666 (|#1| |#1| (-115) |#1| (-1195))) (-15 -2666 (|#1| |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1195)))) (-15 -2666 (|#1| |#1| (-1195))) (-15 -2519 (|#1| (-1195) (-656 |#1|))) (-15 -2519 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1| |#1|)) (-15 -2519 (|#1| (-1195) |#1|)) (-15 -4352 ((-656 (-1195)) |#1|)) (-15 -1357 (|#2| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -2956 (|#1| (-1195))) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -2666 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2666 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4142 ((-656 (-624 |#1|)) |#1|)) (-15 -2161 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2564 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2564 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2564 (|#1| |#1| (-304 |#1|))) (-15 -2209 (|#1| (-115) (-656 |#1|))) (-15 -2209 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1| |#1|)) (-15 -2209 (|#1| (-115) |#1|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2666 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2956 (|#1| (-624 |#1|))) (-15 -1706 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2216 ((-624 |#1|) |#1|)) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 117 (|has| |#1| (-25)))) (-4352 (((-656 (-1195)) $) 206)) (-4174 (((-419 (-1191 $)) $ (-624 $)) 174 (|has| |#1| (-568)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 146 (|has| |#1| (-568)))) (-4334 (($ $) 147 (|has| |#1| (-568)))) (-1428 (((-112) $) 149 (|has| |#1| (-568)))) (-4071 (((-656 (-624 $)) $) 39)) (-3798 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-2564 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2879 (($ $) 166 (|has| |#1| (-568)))) (-1870 (((-430 $) $) 167 (|has| |#1| (-568)))) (-1323 (((-112) $ $) 157 (|has| |#1| (-568)))) (-4335 (($) 105 (-2838 (|has| |#1| (-1130)) (|has| |#1| (-25))) CONST)) (-1706 (((-3 (-624 $) "failed") $) 64) (((-3 (-1195) "failed") $) 219) (((-3 (-576) "failed") $) 213 (|has| |#1| (-1056 (-576)))) (((-3 |#1| "failed") $) 210) (((-3 (-419 (-968 |#1|)) "failed") $) 172 (|has| |#1| (-568))) (((-3 (-968 |#1|) "failed") $) 124 (|has| |#1| (-1067))) (((-3 (-419 (-576)) "failed") $) 99 (-2838 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2216 (((-624 $) $) 65) (((-1195) $) 220) (((-576) $) 212 (|has| |#1| (-1056 (-576)))) ((|#1| $) 211) (((-419 (-968 |#1|)) $) 173 (|has| |#1| (-568))) (((-968 |#1|) $) 125 (|has| |#1| (-1067))) (((-419 (-576)) $) 100 (-2838 (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576))))))) (-2806 (($ $ $) 161 (|has| |#1| (-568)))) (-3928 (((-701 (-576)) (-1286 $)) 141 (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-701 (-576)) (-701 $)) 140 (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 139 (-2096 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 138 (|has| |#1| (-1067))) (((-701 |#1|) (-701 $)) 137 (|has| |#1| (-1067))) (((-701 |#1|) (-1286 $)) 136 (|has| |#1| (-1067)))) (-4077 (((-3 $ "failed") $) 107 (|has| |#1| (-1130)))) (-2818 (($ $ $) 160 (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 155 (|has| |#1| (-568)))) (-3124 (((-112) $) 168 (|has| |#1| (-568)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 215 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 214 (|has| |#1| (-899 (-390))))) (-1492 (($ $) 46) (($ (-656 $)) 45)) (-3245 (((-656 (-115)) $) 38)) (-4153 (((-115) (-115)) 37)) (-4192 (((-112) $) 106 (|has| |#1| (-1130)))) (-4314 (((-112) $) 17 (|has| $ (-1056 (-576))))) (-4299 (($ $) 189 (|has| |#1| (-1067)))) (-2976 (((-1143 |#1| (-624 $)) $) 190 (|has| |#1| (-1067)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 164 (|has| |#1| (-568)))) (-3982 (((-1191 $) (-624 $)) 20 (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) 31)) (-2161 (((-3 (-624 $) "failed") $) 41)) (-2850 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-2148 (((-1177) $) 10)) (-4142 (((-656 (-624 $)) $) 40)) (-1784 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1864 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-1130)))) (-4004 (((-3 (-2 (|:| |val| $) (|:| -2300 (-576))) "failed") $) 186 (|has| |#1| (-1067)))) (-4139 (((-3 (-656 $) "failed") $) 193 (|has| |#1| (-25)))) (-3002 (((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 $))) "failed") $) 192 (|has| |#1| (-25)))) (-2302 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $) 194 (|has| |#1| (-1130))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-115)) 188 (|has| |#1| (-1067))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-1195)) 187 (|has| |#1| (-1067)))) (-2881 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-1330 (($ $) 109 (-2838 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-1850 (((-783) $) 42)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 208)) (-1357 ((|#1| $) 207)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 154 (|has| |#1| (-568)))) (-2892 (($ (-656 $)) 151 (|has| |#1| (-568))) (($ $ $) 150 (|has| |#1| (-568)))) (-1679 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-4205 (((-430 $) $) 165 (|has| |#1| (-568)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 162 (|has| |#1| (-568)))) (-2858 (((-3 $ "failed") $ $) 145 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 156 (|has| |#1| (-568)))) (-2280 (((-112) $) 18 (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1195)) 200 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 199 (|has| |#1| (-626 (-548)))) (($ $) 198 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 197 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 196 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 185 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 184 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 183 (|has| |#1| (-1067))) (($ $ (-1195) (-783) (-1 $ $)) 182 (|has| |#1| (-1067)))) (-3927 (((-783) $) 158 (|has| |#1| (-568)))) (-2209 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 159 (|has| |#1| (-568)))) (-1854 (($ $) 44) (($ $ $) 43)) (-3884 (($ $ (-1195)) 134 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 132 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 131 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) 130 (|has| |#1| (-1067)))) (-3210 (($ $) 179 (|has| |#1| (-568)))) (-2987 (((-1143 |#1| (-624 $)) $) 180 (|has| |#1| (-568)))) (-2477 (($ $) 19 (|has| $ (-1067)))) (-1846 (((-905 (-576)) $) 217 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 216 (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) 181 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-1979 (($ $ $) 112 (|has| |#1| (-485)))) (-3516 (($ $ $) 113 (|has| |#1| (-485)))) (-2956 (((-874) $) 12) (($ (-624 $)) 63) (($ (-1195)) 218) (($ |#1|) 209) (($ (-1143 |#1| (-624 $))) 191 (|has| |#1| (-1067))) (($ (-419 |#1|)) 177 (|has| |#1| (-568))) (($ (-968 (-419 |#1|))) 176 (|has| |#1| (-568))) (($ (-419 (-968 (-419 |#1|)))) 175 (|has| |#1| (-568))) (($ (-419 (-968 |#1|))) 171 (|has| |#1| (-568))) (($ $) 144 (|has| |#1| (-568))) (($ (-968 |#1|)) 123 (|has| |#1| (-1067))) (($ (-419 (-576))) 98 (-2838 (|has| |#1| (-568)) (-12 (|has| |#1| (-1056 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1056 (-419 (-576)))))) (($ (-576)) 97 (-2838 (|has| |#1| (-1067)) (|has| |#1| (-1056 (-576)))))) (-1817 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-3423 (((-783)) 126 (|has| |#1| (-1067)) CONST)) (-2113 (($ $) 48) (($ (-656 $)) 47)) (-1483 (((-112) (-115)) 36)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 148 (|has| |#1| (-568)))) (-2519 (($ (-1195) $) 205) (($ (-1195) $ $) 204) (($ (-1195) $ $ $) 203) (($ (-1195) $ $ $ $) 202) (($ (-1195) (-656 $)) 201)) (-2143 (($) 116 (|has| |#1| (-25)) CONST)) (-2155 (($) 104 (|has| |#1| (-1130)) CONST)) (-3590 (($ $ (-1195)) 133 (|has| |#1| (-1067))) (($ $ (-656 (-1195))) 129 (|has| |#1| (-1067))) (($ $ (-1195) (-783)) 128 (|has| |#1| (-1067))) (($ $ (-656 (-1195)) (-656 (-783))) 127 (|has| |#1| (-1067)))) (-2991 (((-112) $ $) 6)) (-3108 (($ (-1143 |#1| (-624 $)) (-1143 |#1| (-624 $))) 178 (|has| |#1| (-568))) (($ $ $) 110 (-2838 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3096 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3081 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2838 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1130))) (($ $ (-937)) 103 (|has| |#1| (-1130)))) (* (($ (-419 (-576)) $) 170 (|has| |#1| (-568))) (($ $ (-419 (-576))) 169 (|has| |#1| (-568))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1067))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-937) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1130)))))
+(((-442 |#1|) (-141) (-1118)) (T -442))
+((-1345 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-1195))))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-2519 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-2519 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-2519 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))) (-2519 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118)))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-626 (-548))))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-626 (-548))))) (-2666 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-626 (-548))))) (-2666 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) (-4 *4 (-626 (-548))))) (-2666 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195)) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-626 (-548))))) (-1864 (*1 *2 *1) (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2302 (*1 *2 *1) (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576)))) (-4 *1 (-442 *3)))) (-4139 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3002 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| -1868 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-1067)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-4299 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-1067)))) (-2302 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576)))) (-4 *1 (-442 *4)))) (-2302 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1067)) (-4 *4 (-1118)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576)))) (-4 *1 (-442 *4)))) (-4004 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-2 (|:| |val| *1) (|:| -2300 (-576)))) (-4 *1 (-442 *3)))) (-2666 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-2666 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-2666 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-2666 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))) (-2987 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3210 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-568)))) (-3108 (*1 *1 *2 *2) (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1118)) (-4 *1 (-442 *3)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118)) (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-4 *3 (-1130)))))
+(-13 (-312) (-1056 (-1195)) (-897 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -1345 ((-112) $)) (-15 -1357 (|t#1| $)) (-15 -4352 ((-656 (-1195)) $)) (-15 -2519 ($ (-1195) $)) (-15 -2519 ($ (-1195) $ $)) (-15 -2519 ($ (-1195) $ $ $)) (-15 -2519 ($ (-1195) $ $ $ $)) (-15 -2519 ($ (-1195) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -2666 ($ $ (-1195))) (-15 -2666 ($ $ (-656 (-1195)))) (-15 -2666 ($ $)) (-15 -2666 ($ $ (-115) $ (-1195))) (-15 -2666 ($ $ (-656 (-115)) (-656 $) (-1195)))) |%noBranch|) (IF (|has| |t#1| (-1130)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -1864 ((-3 (-656 $) "failed") $)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4139 ((-3 (-656 $) "failed") $)) (-15 -3002 ((-3 (-2 (|:| -1868 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1067)) (PROGN (-6 (-1067)) (-6 (-1056 (-968 |t#1|))) (-6 (-914 (-1195))) (-6 (-388 |t#1|)) (-15 -2956 ($ (-1143 |t#1| (-624 $)))) (-15 -2976 ((-1143 |t#1| (-624 $)) $)) (-15 -4299 ($ $)) (-15 -2302 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-115))) (-15 -2302 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2300 (-576))) "failed") $ (-1195))) (-15 -4004 ((-3 (-2 (|:| |val| $) (|:| -2300 (-576))) "failed") $)) (-15 -2666 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -2666 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -2666 ($ $ (-1195) (-783) (-1 $ (-656 $)))) (-15 -2666 ($ $ (-1195) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1056 (-419 (-968 |t#1|)))) (-15 -1846 ($ (-430 $))) (-15 -2987 ((-1143 |t#1| (-624 $)) $)) (-15 -3210 ($ $)) (-15 -3108 ($ (-1143 |t#1| (-624 $)) (-1143 |t#1| (-624 $)))) (-15 -2956 ($ (-419 |t#1|))) (-15 -2956 ($ (-968 (-419 |t#1|)))) (-15 -2956 ($ (-419 (-968 (-419 |t#1|))))) (-15 -4174 ((-419 (-1191 $)) $ (-624 $))) (IF (|has| |t#1| (-1056 (-576))) (-6 (-1056 (-419 (-576)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-968 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2838 (|has| |#1| (-1067)) (|has| |#1| (-1056 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-968 |#1|)) |has| |#1| (-1067)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-249) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1067)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -2838 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-658 $) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-660 |#1|) -2838 (|has| |#1| (-1067)) (|has| |#1| (-174))) ((-660 $) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1067))) ((-651 |#1|) |has| |#1| (-1067)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -2838 (|has| |#1| (-1130)) (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 $ #6=(-1195)) |has| |#1| (-1067)) ((-914 #6#) |has| |#1| (-1067)) ((-916 #6#) |has| |#1| (-1067)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-936) |has| |#1| (-568)) ((-1056 (-419 (-576))) -2838 (|has| |#1| (-1056 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1056 (-576))))) ((-1056 #1#) |has| |#1| (-568)) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 #3#) |has| |#1| (-1067)) ((-1056 #4#) . T) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-568)) ((-1069 |#1|) |has| |#1| (-174)) ((-1069 $) |has| |#1| (-568)) ((-1074 #0#) |has| |#1| (-568)) ((-1074 |#1|) |has| |#1| (-174)) ((-1074 $) |has| |#1| (-568)) ((-1067) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1076) -2838 (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1130) -2838 (|has| |#1| (-1130)) (|has| |#1| (-1067)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-568)))
+((-1760 ((|#2| |#2| |#2|) 31)) (-4153 (((-115) (-115)) 43)) (-3072 ((|#2| |#2|) 63)) (-3873 ((|#2| |#2|) 66)) (-1360 ((|#2| |#2|) 30)) (-2584 ((|#2| |#2| |#2|) 33)) (-3792 ((|#2| |#2| |#2|) 35)) (-1340 ((|#2| |#2| |#2|) 32)) (-3578 ((|#2| |#2| |#2|) 34)) (-1483 (((-112) (-115)) 41)) (-2091 ((|#2| |#2|) 37)) (-4398 ((|#2| |#2|) 36)) (-2130 ((|#2| |#2|) 25)) (-2527 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2381 ((|#2| |#2| |#2|) 29)))
+(((-443 |#1| |#2|) (-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -2130 (|#2| |#2|)) (-15 -2527 (|#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|)) (-15 -2381 (|#2| |#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -1760 (|#2| |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2|)) (-15 -3578 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3072 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443))
+((-3072 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4398 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3578 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2584 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1340 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1760 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2381 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2527 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))))
+(-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -2130 (|#2| |#2|)) (-15 -2527 (|#2| |#2|)) (-15 -2527 (|#2| |#2| |#2|)) (-15 -2381 (|#2| |#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -1760 (|#2| |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -2584 (|#2| |#2| |#2|)) (-15 -3578 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)))
+((-3243 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|)) 65)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -3243 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3243 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444))
+((-3243 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-444 *4 *5)))))
+(-10 -7 (-15 -3243 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3243 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3832 (((-1291)) 18)) (-3303 (((-1191 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24)))
+(((-445 |#1| |#2|) (-10 -7 (-15 -3303 ((-419 (-576)) |#2|)) (-15 -3303 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3832 ((-1291)))) (-13 (-568) (-1056 (-576))) (-442 |#1|)) (T -445))
+((-3832 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1291)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))))
+(-10 -7 (-15 -3303 ((-419 (-576)) |#2|)) (-15 -3303 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -3832 ((-1291))))
+((-4431 (((-112) $) 32)) (-2250 (((-112) $) 34)) (-2265 (((-112) $) 35)) (-2111 (((-112) $) 38)) (-4395 (((-112) $) 33)) (-3391 (((-112) $) 37)) (-2956 (((-874) $) 20) (($ (-1177)) 31) (($ (-1195)) 26) (((-1195) $) 24) (((-1122) $) 23)) (-1907 (((-112) $) 36)) (-2991 (((-112) $ $) 17)))
+(((-446) (-13 (-625 (-874)) (-10 -8 (-15 -2956 ($ (-1177))) (-15 -2956 ($ (-1195))) (-15 -2956 ((-1195) $)) (-15 -2956 ((-1122) $)) (-15 -4431 ((-112) $)) (-15 -4395 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -3391 ((-112) $)) (-15 -2111 ((-112) $)) (-15 -1907 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2991 ((-112) $ $))))) (T -446))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2991 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2956 ($ (-1177))) (-15 -2956 ($ (-1195))) (-15 -2956 ((-1195) $)) (-15 -2956 ((-1122) $)) (-15 -4431 ((-112) $)) (-15 -4395 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -3391 ((-112) $)) (-15 -2111 ((-112) $)) (-15 -1907 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2991 ((-112) $ $))))
+((-3923 (((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|) 72)) (-1735 (((-430 |#3|) |#3|) 34)) (-3939 (((-3 (-430 (-1191 (-48))) "failed") |#3|) 46 (|has| |#2| (-1056 (-48))))) (-1695 (((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3580 (-112))) |#3|) 37)))
+(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -1735 ((-430 |#3|) |#3|)) (-15 -3923 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -1695 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3580 (-112))) |#3|)) (IF (|has| |#2| (-1056 (-48))) (-15 -3939 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1056 (-576))) (-442 |#1|) (-1262 |#2|)) (T -447))
+((-3939 (*1 *2 *3) (|partial| -12 (-4 *5 (-1056 (-48))) (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3580 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3923 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-1735 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))))
+(-10 -7 (-15 -1735 ((-430 |#3|) |#3|)) (-15 -3923 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -1695 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -3580 (-112))) |#3|)) (IF (|has| |#2| (-1056 (-48))) (-15 -3939 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-4402 (((-1177) $ (-1177)) NIL)) (-4289 (($ $ (-1177)) NIL)) (-1832 (((-1177) $) NIL)) (-3061 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-1685 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-2041 (((-400) $) NIL)) (-2148 (((-1177) $) NIL)) (-3838 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1954 (((-1291) (-1177)) 9)) (-1522 (((-1291) (-1177)) 10)) (-3733 (((-1291)) 11)) (-2956 (((-874) $) NIL)) (-3597 (($ $) 39)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-448) (-13 (-375 (-400) (-1177)) (-10 -7 (-15 -3061 ((-400) (-400) (-400))) (-15 -3061 ((-400) (-400))) (-15 -1954 ((-1291) (-1177))) (-15 -1522 ((-1291) (-1177))) (-15 -3733 ((-1291)))))) (T -448))
+((-3061 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-3733 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448)))))
+(-13 (-375 (-400) (-1177)) (-10 -7 (-15 -3061 ((-400) (-400) (-400))) (-15 -3061 ((-400) (-400))) (-15 -1954 ((-1291) (-1177))) (-15 -1522 ((-1291) (-1177))) (-15 -3733 ((-1291)))))
+((-2869 (((-112) $ $) NIL)) (-2500 (((-3 (|:| |fst| (-446)) (|:| -2446 "void")) $) 11)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2661 (($) 35)) (-3350 (($) 41)) (-1722 (($) 37)) (-3694 (($) 39)) (-3892 (($) 36)) (-1928 (($) 38)) (-4001 (($) 40)) (-3078 (((-112) $) 8)) (-3543 (((-656 (-968 (-576))) $) 19)) (-2968 (($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-1195)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-968 (-576))) (-112)) 30)) (-2956 (((-874) $) 24) (($ (-446)) 32)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-449) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-446))) (-15 -2500 ((-3 (|:| |fst| (-446)) (|:| -2446 "void")) $)) (-15 -3543 ((-656 (-968 (-576))) $)) (-15 -3078 ((-112) $)) (-15 -2968 ($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-1195)) (-112))) (-15 -2968 ($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-968 (-576))) (-112))) (-15 -2661 ($)) (-15 -3892 ($)) (-15 -1722 ($)) (-15 -3350 ($)) (-15 -1928 ($)) (-15 -3694 ($)) (-15 -4001 ($))))) (T -449))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *1 (-449)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-656 (-968 (-576)))) (-5 *1 (-449)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-2968 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2968 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2661 (*1 *1) (-5 *1 (-449))) (-3892 (*1 *1) (-5 *1 (-449))) (-1722 (*1 *1) (-5 *1 (-449))) (-3350 (*1 *1) (-5 *1 (-449))) (-1928 (*1 *1) (-5 *1 (-449))) (-3694 (*1 *1) (-5 *1 (-449))) (-4001 (*1 *1) (-5 *1 (-449))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-446))) (-15 -2500 ((-3 (|:| |fst| (-446)) (|:| -2446 "void")) $)) (-15 -3543 ((-656 (-968 (-576))) $)) (-15 -3078 ((-112) $)) (-15 -2968 ($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-1195)) (-112))) (-15 -2968 ($ (-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-656 (-968 (-576))) (-112))) (-15 -2661 ($)) (-15 -3892 ($)) (-15 -1722 ($)) (-15 -3350 ($)) (-15 -1928 ($)) (-15 -3694 ($)) (-15 -4001 ($))))
+((-2869 (((-112) $ $) NIL)) (-2041 (((-1195) $) 8)) (-2148 (((-1177) $) 17)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 11)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 14)))
+(((-450 |#1|) (-13 (-1118) (-10 -8 (-15 -2041 ((-1195) $)))) (-1195)) (T -450))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2))))
+(-13 (-1118) (-10 -8 (-15 -2041 ((-1195) $))))
+((-2869 (((-112) $ $) NIL)) (-3137 (((-1136) $) 7)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 13)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)))
+(((-451) (-13 (-1118) (-10 -8 (-15 -3137 ((-1136) $))))) (T -451))
+((-3137 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451)))))
+(-13 (-1118) (-10 -8 (-15 -3137 ((-1136) $))))
+((-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8) (($ (-1286 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 11)))
+(((-452) (-141)) (T -452))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-4 *1 (-452)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-1286 (-711)))) (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-340))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1236) . T))
+((-1706 (((-3 $ "failed") (-1286 (-326 (-390)))) 21) (((-3 $ "failed") (-1286 (-326 (-576)))) 19) (((-3 $ "failed") (-1286 (-968 (-390)))) 17) (((-3 $ "failed") (-1286 (-968 (-576)))) 15) (((-3 $ "failed") (-1286 (-419 (-968 (-390))))) 13) (((-3 $ "failed") (-1286 (-419 (-968 (-576))))) 11)) (-2216 (($ (-1286 (-326 (-390)))) 22) (($ (-1286 (-326 (-576)))) 20) (($ (-1286 (-968 (-390)))) 18) (($ (-1286 (-968 (-576)))) 16) (($ (-1286 (-419 (-968 (-390))))) 14) (($ (-1286 (-419 (-968 (-576))))) 12)) (-3747 (((-1291) $) 7)) (-2956 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) 23)))
+(((-453) (-141)) (T -453))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340))))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453)))))
+(-13 (-407) (-10 -8 (-15 -2956 ($ (-656 (-340)))) (-15 -2956 ($ (-340))) (-15 -2956 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))) (-15 -2216 ($ (-1286 (-326 (-390))))) (-15 -1706 ((-3 $ "failed") (-1286 (-326 (-390))))) (-15 -2216 ($ (-1286 (-326 (-576))))) (-15 -1706 ((-3 $ "failed") (-1286 (-326 (-576))))) (-15 -2216 ($ (-1286 (-968 (-390))))) (-15 -1706 ((-3 $ "failed") (-1286 (-968 (-390))))) (-15 -2216 ($ (-1286 (-968 (-576))))) (-15 -1706 ((-3 $ "failed") (-1286 (-968 (-576))))) (-15 -2216 ($ (-1286 (-419 (-968 (-390)))))) (-15 -1706 ((-3 $ "failed") (-1286 (-419 (-968 (-390)))))) (-15 -2216 ($ (-1286 (-419 (-968 (-576)))))) (-15 -1706 ((-3 $ "failed") (-1286 (-419 (-968 (-576))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1236) . T))
+((-1750 (((-112)) 18)) (-2487 (((-112) (-112)) 19)) (-2812 (((-112)) 14)) (-2242 (((-112) (-112)) 15)) (-3806 (((-112)) 16)) (-1913 (((-112) (-112)) 17)) (-1660 (((-937) (-937)) 22) (((-937)) 21)) (-4350 (((-783) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576))))) 52)) (-4026 (((-937) (-937)) 24) (((-937)) 23)) (-4189 (((-2 (|:| -4217 (-576)) (|:| -3544 (-656 |#1|))) |#1|) 94)) (-4019 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576))))))) 174)) (-3994 (((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112)) 207)) (-3067 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-3531 (((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-937) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-937) |#1| (-783)) 226) (((-3 |#1| "failed") (-937) |#1|) 228)) (-4205 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-1489 (((-112) |#1|) 44)) (-3238 (((-749 (-783)) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576))))) 99)) (-2779 (((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112) (-1120 (-783)) (-783)) 211)))
+(((-454 |#1|) (-10 -7 (-15 -4019 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))))) (-15 -3238 ((-749 (-783)) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))))) (-15 -4026 ((-937))) (-15 -4026 ((-937) (-937))) (-15 -1660 ((-937))) (-15 -1660 ((-937) (-937))) (-15 -4350 ((-783) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))))) (-15 -4189 ((-2 (|:| -4217 (-576)) (|:| -3544 (-656 |#1|))) |#1|)) (-15 -1750 ((-112))) (-15 -2487 ((-112) (-112))) (-15 -2812 ((-112))) (-15 -2242 ((-112) (-112))) (-15 -1489 ((-112) |#1|)) (-15 -3806 ((-112))) (-15 -1913 ((-112) (-112))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -4205 ((-430 |#1|) |#1| (-783))) (-15 -4205 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4205 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4205 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3067 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1| (-783))) (-15 -3067 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3067 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3067 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1|)) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112))) (-15 -3994 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112))) (-15 -2779 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112) (-1120 (-783)) (-783)))) (-1262 (-576))) (T -454))
+((-2779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1120 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3994 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3531 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3531 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3531 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3531 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3531 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-3067 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3067 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3806 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2812 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2487 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1750 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4189 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4217 (-576)) (|:| -3544 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4205 *4) (|:| -2782 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1660 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4026 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4205 *4) (|:| -2782 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| *4) (|:| -3807 (-576))))))) (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4)))))
+(-10 -7 (-15 -4019 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))))) (-15 -3238 ((-749 (-783)) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))))) (-15 -4026 ((-937))) (-15 -4026 ((-937) (-937))) (-15 -1660 ((-937))) (-15 -1660 ((-937) (-937))) (-15 -4350 ((-783) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))))) (-15 -4189 ((-2 (|:| -4217 (-576)) (|:| -3544 (-656 |#1|))) |#1|)) (-15 -1750 ((-112))) (-15 -2487 ((-112) (-112))) (-15 -2812 ((-112))) (-15 -2242 ((-112) (-112))) (-15 -1489 ((-112) |#1|)) (-15 -3806 ((-112))) (-15 -1913 ((-112) (-112))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -4205 ((-430 |#1|) |#1| (-783))) (-15 -4205 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4205 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4205 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3067 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1| (-783))) (-15 -3067 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3067 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3067 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1|)) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783))) (-15 -3531 ((-3 |#1| "failed") (-937) |#1| (-656 (-783)) (-783) (-112))) (-15 -3994 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112))) (-15 -2779 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112) (-1120 (-783)) (-783))))
+((-3823 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-2609 (((-576) |#2|) 64)) (-2144 ((|#3| |#2|) 26)) (-3404 ((|#3| |#2| (-937)) 15)) (-4114 ((|#3| |#2|) 16)) (-1848 ((|#3| |#2|) 9)) (-1850 ((|#3| |#2|) 10)) (-3550 ((|#3| |#2| (-937)) 71) ((|#3| |#2|) 34)) (-1617 (((-576) |#2|) 66)))
+(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -1617 ((-576) |#2|)) (-15 -3550 (|#3| |#2|)) (-15 -3550 (|#3| |#2| (-937))) (-15 -2609 ((-576) |#2|)) (-15 -3823 ((-576) |#2| (-783))) (-15 -3823 ((-576) |#2|)) (-15 -3404 (|#3| |#2| (-937))) (-15 -2144 (|#3| |#2|)) (-15 -1848 (|#3| |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -4114 (|#3| |#2|))) (-1067) (-1262 |#1|) (-13 (-416) (-1056 |#1|) (-374) (-1221) (-294))) (T -455))
+((-4114 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-2144 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) (-4 *6 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-1617 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))))
+(-10 -7 (-15 -1617 ((-576) |#2|)) (-15 -3550 (|#3| |#2|)) (-15 -3550 (|#3| |#2| (-937))) (-15 -2609 ((-576) |#2|)) (-15 -3823 ((-576) |#2| (-783))) (-15 -3823 ((-576) |#2|)) (-15 -3404 (|#3| |#2| (-937))) (-15 -2144 (|#3| |#2|)) (-15 -1848 (|#3| |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -4114 (|#3| |#2|)))
+((-4213 ((|#2| (-1286 |#1|)) 42)) (-1366 ((|#2| |#2| |#1|) 58)) (-4319 ((|#2| |#2| |#1|) 49)) (-4427 ((|#2| |#2|) 44)) (-4294 (((-112) |#2|) 32)) (-3588 (((-656 |#2|) (-937) (-430 |#2|)) 21)) (-3531 ((|#2| (-937) (-430 |#2|)) 25)) (-3238 (((-749 (-783)) (-430 |#2|)) 29)))
+(((-456 |#1| |#2|) (-10 -7 (-15 -4294 ((-112) |#2|)) (-15 -4213 (|#2| (-1286 |#1|))) (-15 -4427 (|#2| |#2|)) (-15 -4319 (|#2| |#2| |#1|)) (-15 -1366 (|#2| |#2| |#1|)) (-15 -3238 ((-749 (-783)) (-430 |#2|))) (-15 -3531 (|#2| (-937) (-430 |#2|))) (-15 -3588 ((-656 |#2|) (-937) (-430 |#2|)))) (-1067) (-1262 |#1|)) (T -456))
+((-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-1067)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1067)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1067)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-1366 (*1 *2 *2 *3) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-4319 (*1 *2 *2 *3) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-4427 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1067)) (-4 *2 (-1262 *4)) (-5 *1 (-456 *4 *2)))) (-4294 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -4294 ((-112) |#2|)) (-15 -4213 (|#2| (-1286 |#1|))) (-15 -4427 (|#2| |#2|)) (-15 -4319 (|#2| |#2| |#1|)) (-15 -1366 (|#2| |#2| |#1|)) (-15 -3238 ((-749 (-783)) (-430 |#2|))) (-15 -3531 (|#2| (-937) (-430 |#2|))) (-15 -3588 ((-656 |#2|) (-937) (-430 |#2|))))
+((-2120 (((-783)) 59)) (-4155 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-3259 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-2433 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-4061 (((-783)) 58) (((-783) (-783)) 57)) (-2614 ((|#1| (-783) (-576)) 37)) (-1352 (((-1291)) 61)))
+(((-457 |#1|) (-10 -7 (-15 -2614 (|#1| (-783) (-576))) (-15 -4061 ((-783) (-783))) (-15 -4061 ((-783))) (-15 -2120 ((-783))) (-15 -1352 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -2433 ((-576) |#1|)) (-15 -3259 ((-576) |#1|)) (-15 -4155 ((-783) (-783))) (-15 -4155 ((-783)))) |%noBranch|)) (-1067)) (T -457))
+((-4155 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))) (-1352 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-2120 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-4061 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1067)))))
+(-10 -7 (-15 -2614 (|#1| (-783) (-576))) (-15 -4061 ((-783) (-783))) (-15 -4061 ((-783))) (-15 -2120 ((-783))) (-15 -1352 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -2433 ((-576) |#1|)) (-15 -3259 ((-576) |#1|)) (-15 -4155 ((-783) (-783))) (-15 -4155 ((-783)))) |%noBranch|))
+((-3171 (((-656 (-576)) (-576)) 76)) (-3124 (((-112) (-171 (-576))) 82)) (-4205 (((-430 (-171 (-576))) (-171 (-576))) 75)))
+(((-458) (-10 -7 (-15 -4205 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3171 ((-656 (-576)) (-576))) (-15 -3124 ((-112) (-171 (-576)))))) (T -458))
+((-3124 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-3171 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576))))))
+(-10 -7 (-15 -4205 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3171 ((-656 (-576)) (-576))) (-15 -3124 ((-112) (-171 (-576)))))
+((-2919 ((|#4| |#4| (-656 |#4|)) 82)) (-3195 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 22) (((-656 |#4|) (-656 |#4|) (-1177)) 21) (((-656 |#4|) (-656 |#4|)) 13)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2919 (|#4| |#4| (-656 |#4|))) (-15 -3195 ((-656 |#4|) (-656 |#4|))) (-15 -3195 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -3195 ((-656 |#4|) (-656 |#4|) (-1177) (-1177)))) (-317) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -459))
+((-3195 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2919 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2919 (|#4| |#4| (-656 |#4|))) (-15 -3195 ((-656 |#4|) (-656 |#4|))) (-15 -3195 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -3195 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))))
+((-3950 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-4151 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4151 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4151 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -460))
+((-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3950 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3950 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(-10 -7 (-15 -4151 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -4151 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3950 ((-656 (-656 |#4|)) (-656 |#4|) (-112))))
+((-3161 (((-783) |#4|) 12)) (-1406 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|)))) 39)) (-3037 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3381 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2398 ((|#4| |#4| (-656 |#4|)) 54)) (-2192 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-2905 (((-1291) |#4|) 59)) (-3721 (((-1291) (-656 |#4|)) 69)) (-1430 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3156 (((-1291) (-576)) 110)) (-2399 (((-656 |#4|) (-656 |#4|)) 104)) (-2789 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|)) |#4| (-783)) 31)) (-1966 (((-576) |#4|) 109)) (-3522 ((|#4| |#4|) 37)) (-2034 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-4084 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-1560 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1341 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2474 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2319 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3073 (((-112) |#2| |#2|) 75)) (-1349 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1927 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1865 ((|#4| |#4| (-656 |#4|)) 97)))
+(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 (|#4| |#4| (-656 |#4|))) (-15 -2398 (|#4| |#4| (-656 |#4|))) (-15 -2034 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -1341 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3073 ((-112) |#2| |#2|)) (-15 -1927 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1349 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2319 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2474 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2192 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3522 (|#4| |#4|)) (-15 -1406 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|))))) (-15 -3381 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3037 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2399 ((-656 |#4|) (-656 |#4|))) (-15 -1966 ((-576) |#4|)) (-15 -2905 ((-1291) |#4|)) (-15 -1430 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4084 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3721 ((-1291) (-656 |#4|))) (-15 -3156 ((-1291) (-576))) (-15 -1560 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2789 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|)) |#4| (-783))) (-15 -3161 ((-783) |#4|))) (-464) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -461))
+((-3161 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-2789 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2625 *4))) (-5 *5 (-783)) (-4 *4 (-965 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-1560 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4084 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1430 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-2399 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-965 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-1406 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 *3)))) (-5 *4 (-783)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-3522 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2474 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-965 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-1927 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))) (-3073 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2034 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2398 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1865 (|#4| |#4| (-656 |#4|))) (-15 -2398 (|#4| |#4| (-656 |#4|))) (-15 -2034 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -1341 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3073 ((-112) |#2| |#2|)) (-15 -1927 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1349 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2319 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2474 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2192 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3522 (|#4| |#4|)) (-15 -1406 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|))))) (-15 -3381 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3037 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2399 ((-656 |#4|) (-656 |#4|))) (-15 -1966 ((-576) |#4|)) (-15 -2905 ((-1291) |#4|)) (-15 -1430 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4084 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3721 ((-1291) (-656 |#4|))) (-15 -3156 ((-1291) (-576))) (-15 -1560 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2789 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2625 |#4|)) |#4| (-783))) (-15 -3161 ((-783) |#4|)))
+((-1770 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-3219 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 46) (((-656 |#4|) (-656 |#4|) (-1177)) 45) (((-656 |#4|) (-656 |#4|)) 34)))
+(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3219 ((-656 |#4|) (-656 |#4|))) (-15 -3219 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -3219 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -1770 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -462))
+((-1770 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-3219 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3219 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3219 ((-656 |#4|) (-656 |#4|))) (-15 -3219 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -3219 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -1770 (|#4| |#4| (-656 |#4|))) |%noBranch|))
+((-2850 (($ $ $) 14) (($ (-656 $)) 21)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 46)) (-2892 (($ $ $) NIL) (($ (-656 $)) 22)))
+(((-463 |#1|) (-10 -8 (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2850 (|#1| (-656 |#1|))) (-15 -2850 (|#1| |#1| |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|))) (-464)) (T -463))
+NIL
+(-10 -8 (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2850 (|#1| (-656 |#1|))) (-15 -2850 (|#1| |#1| |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2892 (|#1| |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-2858 (((-3 $ "failed") $ $) 48)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-464) (-141)) (T -464))
+((-2892 (*1 *1 *1 *1) (-4 *1 (-464))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-2850 (*1 *1 *1 *1) (-4 *1 (-464))) (-2850 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-2045 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464)))))
+(-13 (-568) (-10 -8 (-15 -2892 ($ $ $)) (-15 -2892 ($ (-656 $))) (-15 -2850 ($ $ $)) (-15 -2850 ($ (-656 $))) (-15 -2045 ((-1191 $) (-1191 $) (-1191 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1651 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2264 (((-1286 (-701 (-419 (-968 |#1|)))) (-1286 $)) NIL) (((-1286 (-701 (-419 (-968 |#1|))))) NIL)) (-2548 (((-1286 $)) NIL)) (-4335 (($) NIL T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL)) (-3197 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-4366 (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-968 |#1|)))) NIL)) (-2655 (((-419 (-968 |#1|)) $) NIL)) (-3512 (((-701 (-419 (-968 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-968 |#1|))) $) NIL)) (-2710 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3333 (((-1191 (-968 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-374))) (((-1191 (-419 (-968 |#1|)))) 90 (|has| |#1| (-568)))) (-3133 (($ $ (-937)) NIL)) (-4316 (((-419 (-968 |#1|)) $) NIL)) (-3589 (((-1191 (-419 (-968 |#1|))) $) 88 (|has| (-419 (-968 |#1|)) (-568)))) (-3775 (((-419 (-968 |#1|)) (-1286 $)) NIL) (((-419 (-968 |#1|))) NIL)) (-2495 (((-1191 (-419 (-968 |#1|))) $) NIL)) (-3498 (((-112)) NIL)) (-2524 (($ (-1286 (-419 (-968 |#1|))) (-1286 $)) 114) (($ (-1286 (-419 (-968 |#1|)))) NIL)) (-4077 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3563 (((-937)) NIL)) (-3574 (((-112)) NIL)) (-3728 (($ $ (-937)) NIL)) (-3788 (((-112)) NIL)) (-3059 (((-112)) NIL)) (-4337 (((-112)) NIL)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL)) (-3471 (((-3 $ "failed")) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-3774 (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-968 |#1|)))) NIL)) (-3144 (((-419 (-968 |#1|)) $) NIL)) (-4120 (((-701 (-419 (-968 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-968 |#1|))) $) NIL)) (-1643 (((-3 $ "failed") $) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-1418 (((-1191 (-968 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-374))) (((-1191 (-419 (-968 |#1|)))) 89 (|has| |#1| (-568)))) (-2128 (($ $ (-937)) NIL)) (-3209 (((-419 (-968 |#1|)) $) NIL)) (-1564 (((-1191 (-419 (-968 |#1|))) $) 85 (|has| (-419 (-968 |#1|)) (-568)))) (-3640 (((-419 (-968 |#1|)) (-1286 $)) NIL) (((-419 (-968 |#1|))) NIL)) (-4347 (((-1191 (-419 (-968 |#1|))) $) NIL)) (-2513 (((-112)) NIL)) (-2148 (((-1177) $) NIL)) (-1358 (((-112)) NIL)) (-4085 (((-112)) NIL)) (-3045 (((-112)) NIL)) (-3945 (((-1138) $) NIL)) (-3482 (((-419 (-968 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-2439 (((-419 (-968 |#1|)) $) 100 (|has| |#1| (-568)))) (-1496 (((-419 (-968 |#1|)) $) 104 (|has| |#1| (-568)))) (-1680 (((-1191 (-419 (-968 |#1|))) $) 94 (|has| |#1| (-568)))) (-4204 (((-419 (-968 |#1|))) 77 (|has| |#1| (-568)))) (-2320 (((-419 (-968 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-1586 (((-419 (-968 |#1|)) $) 99 (|has| |#1| (-568)))) (-2859 (((-419 (-968 |#1|)) $) 103 (|has| |#1| (-568)))) (-3698 (((-1191 (-419 (-968 |#1|))) $) 93 (|has| |#1| (-568)))) (-3559 (((-419 (-968 |#1|))) 73 (|has| |#1| (-568)))) (-1742 (($) 110) (($ (-1195)) 118) (($ (-1286 (-1195))) 117) (($ (-1286 $)) 105) (($ (-1195) (-1286 $)) 116) (($ (-1286 (-1195)) (-1286 $)) 115)) (-4145 (((-112)) NIL)) (-2209 (((-419 (-968 |#1|)) $ (-576)) NIL)) (-3458 (((-1286 (-419 (-968 |#1|))) $ (-1286 $)) 107) (((-701 (-419 (-968 |#1|))) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 (-968 |#1|))) $) 43) (((-701 (-419 (-968 |#1|))) (-1286 $)) NIL)) (-1846 (((-1286 (-419 (-968 |#1|))) $) NIL) (($ (-1286 (-419 (-968 |#1|)))) 40)) (-2292 (((-656 (-968 (-419 (-968 |#1|)))) (-1286 $)) NIL) (((-656 (-968 (-419 (-968 |#1|))))) NIL) (((-656 (-968 |#1|)) (-1286 $)) 108 (|has| |#1| (-568))) (((-656 (-968 |#1|))) 109 (|has| |#1| (-568)))) (-3516 (($ $ $) NIL)) (-3184 (((-112)) NIL)) (-2956 (((-874) $) NIL) (($ (-1286 (-419 (-968 |#1|)))) NIL)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 65)) (-2943 (((-656 (-1286 (-419 (-968 |#1|))))) NIL (|has| (-419 (-968 |#1|)) (-568)))) (-2927 (($ $ $ $) NIL)) (-2763 (((-112)) NIL)) (-2917 (($ (-701 (-419 (-968 |#1|))) $) NIL)) (-1736 (($ $ $) NIL)) (-2417 (((-112)) NIL)) (-1431 (((-112)) NIL)) (-3842 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) 106)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-968 |#1|))) NIL) (($ (-419 (-968 |#1|)) $) NIL) (($ (-1160 |#2| (-419 (-968 |#1|))) $) NIL)))
+(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-968 |#1|))) (-660 (-1160 |#2| (-419 (-968 |#1|)))) (-10 -8 (-15 -2956 ($ (-1286 (-419 (-968 |#1|))))) (-15 -1714 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -3749 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -1742 ($)) (-15 -1742 ($ (-1195))) (-15 -1742 ($ (-1286 (-1195)))) (-15 -1742 ($ (-1286 $))) (-15 -1742 ($ (-1195) (-1286 $))) (-15 -1742 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1418 ((-1191 (-419 (-968 |#1|))))) (-15 -3698 ((-1191 (-419 (-968 |#1|))) $)) (-15 -1586 ((-419 (-968 |#1|)) $)) (-15 -2859 ((-419 (-968 |#1|)) $)) (-15 -3333 ((-1191 (-419 (-968 |#1|))))) (-15 -1680 ((-1191 (-419 (-968 |#1|))) $)) (-15 -2439 ((-419 (-968 |#1|)) $)) (-15 -1496 ((-419 (-968 |#1|)) $)) (-15 -2320 ((-419 (-968 |#1|)) $ $)) (-15 -3559 ((-419 (-968 |#1|)))) (-15 -3482 ((-419 (-968 |#1|)) $ $)) (-15 -4204 ((-419 (-968 |#1|)))) (-15 -2292 ((-656 (-968 |#1|)) (-1286 $))) (-15 -2292 ((-656 (-968 |#1|))))) |%noBranch|))) (-174) (-937) (-656 (-1195)) (-1286 (-701 |#1|))) (T -465))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 *3)))) (-4 *3 (-174)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))))) (-1714 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -4093 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3749 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -4093 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1742 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-937)) (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2))))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3))))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1742 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4))))) (-1742 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-1418 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3333 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2320 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3559 (*1 *2) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-4204 (*1 *2) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-968 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-2292 (*1 *2) (-12 (-5 *2 (-656 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(-13 (-429 (-419 (-968 |#1|))) (-660 (-1160 |#2| (-419 (-968 |#1|)))) (-10 -8 (-15 -2956 ($ (-1286 (-419 (-968 |#1|))))) (-15 -1714 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -3749 ((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed"))) (-15 -1742 ($)) (-15 -1742 ($ (-1195))) (-15 -1742 ($ (-1286 (-1195)))) (-15 -1742 ($ (-1286 $))) (-15 -1742 ($ (-1195) (-1286 $))) (-15 -1742 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -1418 ((-1191 (-419 (-968 |#1|))))) (-15 -3698 ((-1191 (-419 (-968 |#1|))) $)) (-15 -1586 ((-419 (-968 |#1|)) $)) (-15 -2859 ((-419 (-968 |#1|)) $)) (-15 -3333 ((-1191 (-419 (-968 |#1|))))) (-15 -1680 ((-1191 (-419 (-968 |#1|))) $)) (-15 -2439 ((-419 (-968 |#1|)) $)) (-15 -1496 ((-419 (-968 |#1|)) $)) (-15 -2320 ((-419 (-968 |#1|)) $ $)) (-15 -3559 ((-419 (-968 |#1|)))) (-15 -3482 ((-419 (-968 |#1|)) $ $)) (-15 -4204 ((-419 (-968 |#1|)))) (-15 -2292 ((-656 (-968 |#1|)) (-1286 $))) (-15 -2292 ((-656 (-968 |#1|))))) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 18)) (-4352 (((-656 (-876 |#1|)) $) 87)) (-4174 (((-1191 $) $ (-876 |#1|)) 52) (((-1191 |#2|) $) 138)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4334 (($ $) NIL (|has| |#2| (-568)))) (-1428 (((-112) $) NIL (|has| |#2| (-568)))) (-3306 (((-783) $) 27) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL (|has| |#2| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2799 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1634 (($ $ (-656 (-576))) 93)) (-1404 (($ $) 80)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#2| (-925)))) (-3130 (($ $ |#2| |#3| $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) 65)) (-4341 (($ (-1191 |#2|) (-876 |#1|)) 143) (($ (-1191 $) (-876 |#1|)) 58)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) 68)) (-4330 (($ |#2| |#3|) 35) (($ $ (-876 |#1|) (-783)) 37) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-876 |#1|)) NIL)) (-1859 ((|#3| $) NIL) (((-783) $ (-876 |#1|)) 56) (((-656 (-783)) $ (-656 (-876 |#1|))) 63)) (-2819 (($ (-1 |#3| |#3|) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1712 (((-3 (-876 |#1|) "failed") $) 45)) (-1368 (($ $) NIL)) (-1380 ((|#2| $) 47)) (-2850 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2300 (-783))) "failed") $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) 46)) (-1357 ((|#2| $) 136)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) 100) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) 106) (($ $ (-876 |#1|) $) 98) (($ $ (-656 (-876 |#1|)) (-656 $)) 124)) (-3206 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3884 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) 59)) (-2782 ((|#3| $) 79) (((-783) $ (-876 |#1|)) 42) (((-656 (-783)) $ (-656 (-876 |#1|))) 62)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2956 (((-874) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-876 |#1|)) 39) (($ (-419 (-576))) NIL (-2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ |#3|) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2143 (($) 22 T CONST)) (-2155 (($) 31 T CONST)) (-3590 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 131)) (** (($ $ (-937)) NIL) (($ $ (-783)) 129)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
+(((-466 |#1| |#2| |#3|) (-13 (-965 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067) (-244 (-2882 |#1|) (-783))) (T -466))
+((-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-244 (-2882 *3) (-783))))))
+(-13 (-965 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576))))))
+((-3414 (((-112) |#1| (-656 |#2|)) 91)) (-3191 (((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-2476 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|))) 102)) (-3504 ((|#2| |#2| |#1|) 35)) (-2684 (((-783) |#2| (-656 |#2|)) 26)))
+(((-467 |#1| |#2|) (-10 -7 (-15 -3504 (|#2| |#2| |#1|)) (-15 -2684 ((-783) |#2| (-656 |#2|))) (-15 -3191 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2476 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -3414 ((-112) |#1| (-656 |#2|)))) (-317) (-1262 |#1|)) (T -467))
+((-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-2476 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4)))) (-3191 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4)) (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3)))))
+(-10 -7 (-15 -3504 (|#2| |#2| |#1|)) (-15 -2684 ((-783) |#2| (-656 |#2|))) (-15 -3191 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2476 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -3414 ((-112) |#1| (-656 |#2|))))
+((-4205 (((-430 |#5|) |#5|) 24)))
+(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4205 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195))))) (-805) (-568) (-568) (-965 |#4| |#2| |#1|)) (T -468))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-965 *7 *5 *4)))))
+(-10 -7 (-15 -4205 ((-430 |#5|) |#5|)))
+((-2393 ((|#3|) 38)) (-2045 (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 34)))
+(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2045 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2393 (|#3|))) (-805) (-862) (-925) (-965 |#3| |#1| |#2|)) (T -469))
+((-2393 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-965 *2 *3 *4)))) (-2045 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-925)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2045 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2393 (|#3|)))
+((-4205 (((-430 (-1191 |#1|)) (-1191 |#1|)) 43)))
+(((-470 |#1|) (-10 -7 (-15 -4205 ((-430 (-1191 |#1|)) (-1191 |#1|)))) (-317)) (T -470))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1191 *4)))))
+(-10 -7 (-15 -4205 ((-430 (-1191 |#1|)) (-1191 |#1|))))
+((-4404 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783))) 43) (((-52) |#2| (-1195) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3602 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 85) (((-52) |#2| (-1195) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-4428 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 72)) (-4416 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 50)))
+(((-471 |#1| |#2|) (-10 -7 (-15 -4404 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4404 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -4404 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -4404 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -4416 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -4416 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -4428 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -4428 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -3602 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -3602 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -3602 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -471))
+((-3602 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3602 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3602 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3602 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-4428 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-4428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-4416 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4404 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-4404 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))))
+(-10 -7 (-15 -4404 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4404 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -4404 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -4404 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -4416 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -4416 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -4428 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -4428 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -3602 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -3602 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -3602 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -3602 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))))
+((-3504 ((|#2| |#2| |#1|) 15)) (-3213 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-937)) 82)) (-3789 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937)) 72)))
+(((-472 |#1| |#2|) (-10 -7 (-15 -3789 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937))) (-15 -3213 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-937))) (-15 -3504 (|#2| |#2| |#1|))) (-317) (-1262 |#1|)) (T -472))
+((-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) (-3213 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-937)) (-4 *3 (-1262 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-937)) (-4 *5 (-317)) (-4 *3 (-1262 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3)))))
+(-10 -7 (-15 -3789 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-937))) (-15 -3213 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-937))) (-15 -3504 (|#2| |#2| |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 28)) (-2010 (($ |#3|) 25)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) 32)) (-3722 (($ |#2| |#4| $) 33)) (-4330 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-1368 (((-725 |#3| |#4| |#5|) $) 15)) (-2167 ((|#3| $) 19)) (-4226 ((|#4| $) 17)) (-1380 ((|#2| $) 29)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2868 (($ |#2| |#3| |#4|) 26)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 36 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 34)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1380 (|#2| $)) (-15 -1368 ((-725 |#3| |#4| |#5|) $)) (-15 -4226 (|#4| $)) (-15 -2167 (|#3| $)) (-15 -1404 ($ $)) (-15 -4330 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2010 ($ |#3|)) (-15 -2868 ($ |#2| |#3| |#4|)) (-15 -3722 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1195)) (-174) (-862) (-244 (-2882 |#1|) (-783)) (-1 (-112) (-2 (|:| -2596 |#3|) (|:| -2300 |#4|)) (-2 (|:| -2596 |#3|) (|:| -2300 |#4|))) (-965 |#2| |#4| (-876 |#1|))) (T -473))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-244 (-2882 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6)) (-2 (|:| -2596 *5) (|:| -2300 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-965 *4 *6 (-876 *3))))) (-1380 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-244 (-2882 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *4) (|:| -2300 *5)) (-2 (|:| -2596 *4) (|:| -2300 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-965 *2 *5 (-876 *3))))) (-1368 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-244 (-2882 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6)) (-2 (|:| -2596 *5) (|:| -2300 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-965 *4 *6 (-876 *3))))) (-4226 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *2)) (-2 (|:| -2596 *5) (|:| -2300 *2)))) (-4 *2 (-244 (-2882 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-965 *4 *2 (-876 *3))))) (-2167 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-244 (-2882 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *5)) (-2 (|:| -2596 *2) (|:| -2300 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-965 *4 *5 (-876 *3))))) (-1404 (*1 *1 *1) (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174)) (-4 *5 (-244 (-2882 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *4) (|:| -2300 *5)) (-2 (|:| -2596 *4) (|:| -2300 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-965 *3 *5 (-876 *2))))) (-4330 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-244 (-2882 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6)) (-2 (|:| -2596 *5) (|:| -2300 *6)))) (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-965 *2 *6 (-876 *4))))) (-2010 (*1 *1 *2) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-244 (-2882 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *5)) (-2 (|:| -2596 *2) (|:| -2300 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-965 *4 *5 (-876 *3))))) (-2868 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174)) (-4 *4 (-244 (-2882 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *3) (|:| -2300 *4)) (-2 (|:| -2596 *3) (|:| -2300 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-965 *2 *4 (-876 *5))))) (-3722 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-4 *3 (-244 (-2882 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *3)) (-2 (|:| -2596 *5) (|:| -2300 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-965 *2 *3 (-876 *4))))))
+(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1380 (|#2| $)) (-15 -1368 ((-725 |#3| |#4| |#5|) $)) (-15 -4226 (|#4| $)) (-15 -2167 (|#3| $)) (-15 -1404 ($ $)) (-15 -4330 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2010 ($ |#3|)) (-15 -2868 ($ |#2| |#3| |#4|)) (-15 -3722 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2517 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2517 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|) (-13 (-1056 (-419 (-576))) (-374) (-10 -8 (-15 -2956 ($ |#4|)) (-15 -2976 (|#4| $)) (-15 -2987 (|#4| $))))) (T -474))
+((-2517 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-965 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1056 (-419 (-576))) (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))))
+(-10 -7 (-15 -2517 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-4352 (((-656 |#3|) $) 41)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) NIL (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-2331 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 49)) (-2216 (($ (-656 |#4|)) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3316 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-1873 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-2977 ((|#3| $) 47)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#4|) $) 14 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2466 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 21)) (-4172 (((-656 |#3|) $) NIL)) (-1820 (((-112) |#3| $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3945 (((-1138) $) NIL)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 39)) (-2953 (($) 17)) (-3954 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) 16)) (-1846 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-2968 (($ (-656 |#4|)) 13)) (-3888 (($ $ |#3|) NIL)) (-1572 (($ $ |#3|) NIL)) (-2051 (($ $ |#3|) NIL)) (-2956 (((-874) $) 38) (((-656 |#4|) $) 50)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 30)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-475 |#1| |#2| |#3| |#4|) (-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1846 ($ (-656 |#4|))) (-6 -4461) (-6 -4462))) (-1067) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -475))
+((-1846 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))))
+(-13 (-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1846 ($ (-656 |#4|))) (-6 -4461) (-6 -4462)))
+((-2143 (($) 11)) (-2155 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2155 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2143 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476))
+NIL
+(-10 -8 (-15 -2155 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2143 (|#1|)))
+((-2869 (((-112) $ $) 7)) (-1706 (((-3 |#1| "failed") $) 27)) (-2216 ((|#1| $) 28)) (-2230 (($ $ $) 24)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2782 ((|#2| $) 20)) (-2956 (((-874) $) 12) (($ |#1|) 26)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 25 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 16) (($ $ $) 14)) (-3081 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477))
+((-2155 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2230 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-482 |t#1| |t#2|) (-1056 |t#1|) (-10 -8 (-15 (-2155) ($) -1716) (-15 -2230 ($ $ $))))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-482 |#1| |#2|) . T) ((-1056 |#1|) . T) ((-1118) . T))
+((-3123 (((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937)) 26)) (-3169 (((-1286 (-1286 (-576))) (-937)) 21)))
+(((-478) (-10 -7 (-15 -3123 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937))) (-15 -3169 ((-1286 (-1286 (-576))) (-937))))) (T -478))
+((-3169 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478)))) (-3123 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-937)) (-5 *1 (-478)))))
+(-10 -7 (-15 -3123 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-937))) (-15 -3169 ((-1286 (-1286 (-576))) (-937))))
+((-2343 (((-576) (-576)) 32) (((-576)) 24)) (-2831 (((-576) (-576)) 28) (((-576)) 20)) (-3196 (((-576) (-576)) 30) (((-576)) 22)) (-3098 (((-112) (-112)) 14) (((-112)) 12)) (-3469 (((-112) (-112)) 13) (((-112)) 11)) (-3592 (((-112) (-112)) 26) (((-112)) 17)))
+(((-479) (-10 -7 (-15 -3469 ((-112))) (-15 -3098 ((-112))) (-15 -3469 ((-112) (-112))) (-15 -3098 ((-112) (-112))) (-15 -3592 ((-112))) (-15 -3196 ((-576))) (-15 -2831 ((-576))) (-15 -2343 ((-576))) (-15 -3592 ((-112) (-112))) (-15 -3196 ((-576) (-576))) (-15 -2831 ((-576) (-576))) (-15 -2343 ((-576) (-576))))) (T -479))
+((-2343 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2343 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2831 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3196 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3592 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3098 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3469 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(-10 -7 (-15 -3469 ((-112))) (-15 -3098 ((-112))) (-15 -3469 ((-112) (-112))) (-15 -3098 ((-112) (-112))) (-15 -3592 ((-112))) (-15 -3196 ((-576))) (-15 -2831 ((-576))) (-15 -2343 ((-576))) (-15 -3592 ((-112) (-112))) (-15 -3196 ((-576) (-576))) (-15 -2831 ((-576) (-576))) (-15 -2343 ((-576) (-576))))
+((-2869 (((-112) $ $) NIL)) (-2007 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-3382 (((-656 (-1112 (-390))) $) 16) (((-656 (-1112 (-390))) $ (-656 (-1112 (-390)))) 142)) (-3863 (((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886))) 58)) (-2390 (((-656 (-656 (-959 (-227)))) $) 137)) (-3569 (((-1291) $ (-959 (-227)) (-886)) 163)) (-3782 (($ $) 136) (($ (-656 (-656 (-959 (-227))))) 149) (($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937))) 148) (($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270))) 150)) (-2148 (((-1177) $) NIL)) (-3672 (((-576) $) 110)) (-3945 (((-1138) $) NIL)) (-3508 (($) 147)) (-3501 (((-656 (-227)) (-656 (-656 (-959 (-227))))) 89)) (-1419 (((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937)) 155) (((-1291) $ (-959 (-227))) 157) (((-1291) $ (-959 (-227)) (-886) (-886) (-937)) 156)) (-2956 (((-874) $) 169) (($ (-656 (-656 (-959 (-227))))) 164)) (-2617 (((-112) $ $) NIL)) (-3248 (((-1291) $ (-959 (-227))) 162)) (-2991 (((-112) $ $) NIL)))
+(((-480) (-13 (-1118) (-10 -8 (-15 -3508 ($)) (-15 -3782 ($ $)) (-15 -3782 ($ (-656 (-656 (-959 (-227)))))) (-15 -3782 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)))) (-15 -3782 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270)))) (-15 -2390 ((-656 (-656 (-959 (-227)))) $)) (-15 -3672 ((-576) $)) (-15 -3382 ((-656 (-1112 (-390))) $)) (-15 -3382 ((-656 (-1112 (-390))) $ (-656 (-1112 (-390))))) (-15 -2007 ((-656 (-390)) $)) (-15 -2007 ((-656 (-390)) $ (-656 (-390)))) (-15 -1419 ((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937))) (-15 -1419 ((-1291) $ (-959 (-227)))) (-15 -1419 ((-1291) $ (-959 (-227)) (-886) (-886) (-937))) (-15 -3248 ((-1291) $ (-959 (-227)))) (-15 -3569 ((-1291) $ (-959 (-227)) (-886))) (-15 -2956 ($ (-656 (-656 (-959 (-227)))))) (-15 -2956 ((-874) $)) (-15 -3863 ((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886)))) (-15 -3501 ((-656 (-227)) (-656 (-656 (-959 (-227))))))))) (T -480))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) (-3508 (*1 *1) (-5 *1 (-480))) (-3782 (*1 *1 *1) (-5 *1 (-480))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-3782 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-937))) (-5 *1 (-480)))) (-3782 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-937))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))) (-3382 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2007 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-1419 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-1419 (*1 *2 *1 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-1419 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-3248 (*1 *2 *1 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-3569 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))) (-3863 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886))) (-5 *1 (-480)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480)))))
+(-13 (-1118) (-10 -8 (-15 -3508 ($)) (-15 -3782 ($ $)) (-15 -3782 ($ (-656 (-656 (-959 (-227)))))) (-15 -3782 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)))) (-15 -3782 ($ (-656 (-656 (-959 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-937)) (-656 (-270)))) (-15 -2390 ((-656 (-656 (-959 (-227)))) $)) (-15 -3672 ((-576) $)) (-15 -3382 ((-656 (-1112 (-390))) $)) (-15 -3382 ((-656 (-1112 (-390))) $ (-656 (-1112 (-390))))) (-15 -2007 ((-656 (-390)) $)) (-15 -2007 ((-656 (-390)) $ (-656 (-390)))) (-15 -1419 ((-1291) $ (-656 (-959 (-227))) (-886) (-886) (-937))) (-15 -1419 ((-1291) $ (-959 (-227)))) (-15 -1419 ((-1291) $ (-959 (-227)) (-886) (-886) (-937))) (-15 -3248 ((-1291) $ (-959 (-227)))) (-15 -3569 ((-1291) $ (-959 (-227)) (-886))) (-15 -2956 ($ (-656 (-656 (-959 (-227)))))) (-15 -2956 ((-874) $)) (-15 -3863 ((-656 (-656 (-959 (-227)))) (-656 (-656 (-959 (-227)))) (-656 (-886)))) (-15 -3501 ((-656 (-227)) (-656 (-656 (-959 (-227))))))))
+((-3096 (($ $) NIL) (($ $ $) 11)))
+(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481))
+NIL
+(-10 -8 (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2782 ((|#2| $) 20)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 16) (($ $ $) 14)) (-3081 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482))
+((-2782 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2143 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3096 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-1118) (-10 -8 (-15 -2782 (|t#2| $)) (-15 (-2143) ($) -1716) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3096 ($ $)) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3479 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|))) 134)) (-3857 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 131)) (-3233 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 86)))
+(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -3857 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3479 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3233 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) (-656 (-1195)) (-464) (-464)) (T -483))
+((-3233 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-3479 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-3857 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
+(-10 -7 (-15 -3857 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3479 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3233 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))))
+((-4077 (((-3 $ "failed") $) 11)) (-1979 (($ $ $) 23)) (-3516 (($ $ $) 24)) (-3108 (($ $ $) 9)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22)))
+(((-484 |#1|) (-10 -8 (-15 -3516 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3108 (|#1| |#1| |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) (-485)) (T -484))
+NIL
+(-10 -8 (-15 -3516 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3108 (|#1| |#1| |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-4335 (($) 19 T CONST)) (-4077 (((-3 $ "failed") $) 16)) (-4192 (((-112) $) 18)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 25)) (-3945 (((-1138) $) 11)) (-1979 (($ $ $) 22)) (-3516 (($ $ $) 21)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 24)) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15)))
+(((-485) (-141)) (T -485))
+((-1330 (*1 *1 *1) (-4 *1 (-485))) (-3108 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-1979 (*1 *1 *1 *1) (-4 *1 (-485))) (-3516 (*1 *1 *1 *1) (-4 *1 (-485))))
+(-13 (-738) (-10 -8 (-15 -1330 ($ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4458) (-15 -1979 ($ $ $)) (-15 -3516 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 18)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-419 (-576))) NIL) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 25)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 35 (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 16)) (-2782 (((-419 (-576)) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1282 |#2|)) NIL) (($ (-1271 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 21)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) 27)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-486 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -2956 ($ (-1271 |#1| |#2| |#3|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -486))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1267 |#1|) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -2956 ($ (-1271 |#1| |#2| |#3|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) 18)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) 19)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 16)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) NIL)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-487 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2|) (-1118) (-1118) (-1212 |#1| |#2|) |#2|) (T -487))
+NIL
+(-1212 |#1| |#2|)
+((-2869 (((-112) $ $) NIL)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3809 (((-656 $) (-656 |#4|)) NIL)) (-4352 (((-656 |#3|) $) NIL)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3276 ((|#4| |#4| $) NIL)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) 29 (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2331 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2216 (($ (-656 |#4|)) NIL)) (-2940 (((-3 $ "failed") $) 45)) (-3164 ((|#4| |#4| $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3316 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2705 ((|#4| |#4| $) NIL)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) NIL)) (-1873 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2977 ((|#3| $) 38)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2466 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-4172 (((-656 |#3|) $) NIL)) (-1820 (((-112) |#3| $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3338 (((-3 |#4| "failed") $) 42)) (-3200 (((-656 |#4|) $) NIL)) (-3103 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1992 ((|#4| |#4| $) NIL)) (-3320 (((-112) $ $) NIL)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-3 |#4| "failed") $) 40)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2452 (((-3 $ "failed") $ |#4|) 58)) (-3167 (($ $ |#4|) NIL)) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 14)) (-2782 (((-783) $) NIL)) (-3954 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) 13)) (-1846 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 22)) (-3888 (($ $ |#3|) 52)) (-1572 (($ $ |#3|) 54)) (-4104 (($ $) NIL)) (-2051 (($ $ |#3|) NIL)) (-2956 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3364 (((-783) $) NIL (|has| |#3| (-379)))) (-2617 (((-112) $ $) NIL)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) NIL)) (-3684 (((-112) |#3| $) NIL)) (-2991 (((-112) $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-488 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -488))
+NIL
+(-1229 |#1| |#2| |#3| |#4|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3009 (($) 17)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1846 (((-390) $) 21) (((-227) $) 24) (((-419 (-1191 (-576))) $) 18) (((-548) $) 53)) (-2956 (((-874) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 8 T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-489) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))) (-1040) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -3009 ($))))) (T -489))
+((-3009 (*1 *1) (-5 *1 (-489))))
+(-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))) (-1040) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -3009 ($))))
+((-2869 (((-112) $ $) NIL)) (-1818 (((-1153) $) 11)) (-1806 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-490) (-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))) (T -490))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490)))))
+(-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) 16)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) 20)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 18)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) 13)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 19)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 11 (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) 15 (|has| $ (-6 -4461)))))
+(((-491 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118) (-1177)) (T -491))
+NIL
+(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))
+((-3265 (((-576) (-576) (-576)) 19)) (-4105 (((-112) (-576) (-576) (-576) (-576)) 28)) (-2102 (((-1286 (-656 (-576))) (-783) (-783)) 41)))
+(((-492) (-10 -7 (-15 -3265 ((-576) (-576) (-576))) (-15 -4105 ((-112) (-576) (-576) (-576) (-576))) (-15 -2102 ((-1286 (-656 (-576))) (-783) (-783))))) (T -492))
+((-2102 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492)))) (-4105 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-3265 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492)))))
+(-10 -7 (-15 -3265 ((-576) (-576) (-576))) (-15 -4105 ((-112) (-576) (-576) (-576) (-576))) (-15 -2102 ((-1286 (-656 (-576))) (-783) (-783))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-876 |#1|)) $) NIL)) (-4174 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4334 (($ $) NIL (|has| |#2| (-568)))) (-1428 (((-112) $) NIL (|has| |#2| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL (|has| |#2| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2799 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1634 (($ $ (-656 (-576))) NIL)) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#2| (-925)))) (-3130 (($ $ |#2| (-494 (-2882 |#1|) (-783)) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#2| (-494 (-2882 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-876 |#1|)) NIL)) (-1859 (((-494 (-2882 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2819 (($ (-1 (-494 (-2882 |#1|) (-783)) (-494 (-2882 |#1|) (-783))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1712 (((-3 (-876 |#1|) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#2| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2300 (-783))) "failed") $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#2| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3206 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3884 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2782 (((-494 (-2882 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-494 (-2882 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-493 |#1| |#2|) (-13 (-965 |#2| (-494 (-2882 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1067)) (T -493))
+((-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1067)))))
+(-13 (-965 |#2| (-494 (-2882 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1634 ($ $ (-656 (-576))))))
+((-2869 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3549 (((-112) $) NIL (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2010 (($ (-937)) NIL (|has| |#2| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) NIL (|has| |#2| (-805)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#2| (-379)))) (-3140 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1118)))) (-2216 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) NIL (|has| |#2| (-1118)))) (-3928 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-4077 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-2840 (($) NIL (|has| |#2| (-379)))) (-2481 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ (-576)) 11)) (-1873 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#2| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#2| (-862)))) (-2186 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#2| (-862)))) (-2466 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#2| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#2| (-1118)))) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#2| (-379)))) (-3945 (((-1138) $) NIL (|has| |#2| (-1118)))) (-2930 ((|#2| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4144 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-4249 (($ (-1286 |#2|)) NIL)) (-2068 (((-135)) NIL (|has| |#2| (-374)))) (-3884 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3954 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) NIL (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-3423 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-2617 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3972 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) NIL (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2155 (($) NIL (|has| |#2| (-1067)) CONST)) (-3590 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3047 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3014 (((-112) $ $) 17 (|has| |#2| (-862)))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3081 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) NIL (|has| |#2| (-1067))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-494 |#1| |#2|) (-244 |#1| |#2|) (-783) (-805)) (T -494))
NIL
(-244 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-2639 (((-654 (-886)) $) 15)) (-2039 (((-516) $) 13)) (-4420 (((-1175) $) NIL)) (-4432 (($ (-516) (-654 (-886))) 11)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 22) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-493) (-13 (-1099) (-10 -8 (-15 -4432 ($ (-516) (-654 (-886)))) (-15 -2039 ((-516) $)) (-15 -2639 ((-654 (-886)) $))))) (T -493))
-((-4432 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493)))))
-(-13 (-1099) (-10 -8 (-15 -4432 ($ (-516) (-654 (-886)))) (-15 -2039 ((-516) $)) (-15 -2639 ((-654 (-886)) $))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2645 (($ $ $) 48)) (-2470 (($ $ $) 47)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2976 ((|#1| $) 40)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) 41)) (-3705 (($ |#1| $) 18)) (-1780 (($ (-654 |#1|)) 19)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2098 ((|#1| $) 34)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 11)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 45)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) 29 (|has| $ (-6 -4459)))))
-(((-494 |#1|) (-13 (-984 |#1|) (-10 -8 (-15 -1780 ($ (-654 |#1|))))) (-860)) (T -494))
-((-1780 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3)))))
-(-13 (-984 |#1|) (-10 -8 (-15 -1780 ($ (-654 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-2882 (($ $) 71)) (-3423 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-2611 (((-423 |#2| (-417 |#2|) |#3| |#4|) $) 45)) (-3940 (((-1136) $) NIL)) (-2975 (((-3 |#4| "failed") $) 117)) (-1913 (($ (-423 |#2| (-417 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-574)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3320 (((-2 (|:| -2818 (-423 |#2| (-417 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2951 (((-872) $) 110)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 32 T CONST)) (-2986 (((-112) $ $) 121)) (-3090 (($ $) 77) (($ $ $) NIL)) (-3074 (($ $ $) 72)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 78)))
-(((-495 |#1| |#2| |#3| |#4|) (-344 |#1| |#2| |#3| |#4|) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -495))
-NIL
-(-344 |#1| |#2| |#3| |#4|)
-((-3112 (((-574) (-654 (-574))) 53)) (-2875 ((|#1| (-654 |#1|)) 94)) (-4159 (((-654 |#1|) (-654 |#1|)) 95)) (-3437 (((-654 |#1|) (-654 |#1|)) 97)) (-2887 ((|#1| (-654 |#1|)) 96)) (-1732 (((-654 (-574)) (-654 |#1|)) 56)))
-(((-496 |#1|) (-10 -7 (-15 -2887 (|#1| (-654 |#1|))) (-15 -2875 (|#1| (-654 |#1|))) (-15 -3437 ((-654 |#1|) (-654 |#1|))) (-15 -4159 ((-654 |#1|) (-654 |#1|))) (-15 -1732 ((-654 (-574)) (-654 |#1|))) (-15 -3112 ((-574) (-654 (-574))))) (-1260 (-574))) (T -496))
-((-3112 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4)) (-4 *4 (-1260 *2)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1260 (-574))) (-5 *2 (-654 (-574))) (-5 *1 (-496 *4)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574))))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574))))))
-(-10 -7 (-15 -2887 (|#1| (-654 |#1|))) (-15 -2875 (|#1| (-654 |#1|))) (-15 -3437 ((-654 |#1|) (-654 |#1|))) (-15 -4159 ((-654 |#1|) (-654 |#1|))) (-15 -1732 ((-654 (-574)) (-654 |#1|))) (-15 -3112 ((-574) (-654 (-574)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-574) $) NIL (|has| (-574) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-574) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-574) (-1054 (-574))))) (-2216 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-574) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-574) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-1935 (((-112) $) NIL (|has| (-574) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-574) (-1168)) CONST)) (-3691 (($ (-417 (-574))) 9)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) NIL)) (-3229 (((-574) $) NIL (|has| (-574) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-574) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 8) (($ (-574)) NIL) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL) (((-1020 16) $) 10)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-574) $) NIL (|has| (-574) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3099 (($ $ $) NIL) (($ (-574) (-574)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) NIL) (($ $ (-574)) NIL)))
-(((-497) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 16)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -3691 ($ (-417 (-574))))))) (T -497))
-((-3577 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))))
-(-13 (-1008 (-574)) (-623 (-417 (-574))) (-623 (-1020 16)) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -3691 ($ (-417 (-574))))))
-((-1764 (((-654 |#2|) $) 31)) (-2333 (((-112) |#2| $) 36)) (-1731 (((-112) (-1 (-112) |#2|) $) 26)) (-2661 (($ $ (-654 (-302 |#2|))) 13) (($ $ (-302 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-654 |#2|) (-654 |#2|)) NIL)) (-3949 (((-781) (-1 (-112) |#2|) $) 30) (((-781) |#2| $) 34)) (-2951 (((-872) $) 45)) (-2859 (((-112) (-1 (-112) |#2|) $) 23)) (-2986 (((-112) $ $) 39)) (-2877 (((-781) $) 18)))
-(((-498 |#1| |#2|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2333 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1764 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|))) (-499 |#2|) (-1234)) (T -498))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#2| |#2|)) (-15 -2661 (|#1| |#1| (-302 |#2|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#2|)))) (-15 -2333 ((-112) |#2| |#1|)) (-15 -3949 ((-781) |#2| |#1|)) (-15 -1764 ((-654 |#2|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#2|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-499 |#1|) (-141) (-1234)) (T -499))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1234)))) (-2462 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-499 *3)) (-4 *3 (-1234)))) (-2859 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-3949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4)) (-4 *4 (-1234)) (-5 *2 (-781)))) (-1871 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-1764 (*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-3949 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-781)))) (-2333 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |t#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-317 |t#1|)) (-6 (-317 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4460)) (-15 -2462 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4459)) (PROGN (-15 -2859 ((-112) (-1 (-112) |t#1|) $)) (-15 -1731 ((-112) (-1 (-112) |t#1|) $)) (-15 -3949 ((-781) (-1 (-112) |t#1|) $)) (-15 -1871 ((-654 |t#1|) $)) (-15 -1764 ((-654 |t#1|) $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -3949 ((-781) |t#1| $)) (-15 -2333 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2951 ((|#1| $) 6) (($ |#1|) 9)))
-(((-500 |#1|) (-141) (-1234)) (T -500))
-NIL
-(-13 (-623 |t#1|) (-626 |t#1|))
-(((-626 |#1|) . T) ((-623 |#1|) . T))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3588 (($ (-1175)) 8)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (((-1175) $) 12)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11)))
-(((-501) (-13 (-1116) (-623 (-1175)) (-10 -8 (-15 -3588 ($ (-1175)))))) (T -501))
-((-3588 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-501)))))
-(-13 (-1116) (-623 (-1175)) (-10 -8 (-15 -3588 ($ (-1175)))))
-((-2379 (($ $) 15)) (-2358 (($ $) 24)) (-2404 (($ $) 12)) (-2417 (($ $) 10)) (-2390 (($ $) 17)) (-2368 (($ $) 22)))
-(((-502 |#1|) (-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|))) (-503)) (T -502))
-NIL
-(-10 -8 (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)))
-((-2379 (($ $) 11)) (-2358 (($ $) 10)) (-2404 (($ $) 9)) (-2417 (($ $) 8)) (-2390 (($ $) 7)) (-2368 (($ $) 6)))
-(((-503) (-141)) (T -503))
-((-2379 (*1 *1 *1) (-4 *1 (-503))) (-2358 (*1 *1 *1) (-4 *1 (-503))) (-2404 (*1 *1 *1) (-4 *1 (-503))) (-2417 (*1 *1 *1) (-4 *1 (-503))) (-2390 (*1 *1 *1) (-4 *1 (-503))) (-2368 (*1 *1 *1) (-4 *1 (-503))))
-(-13 (-10 -8 (-15 -2368 ($ $)) (-15 -2390 ($ $)) (-15 -2417 ($ $)) (-15 -2404 ($ $)) (-15 -2358 ($ $)) (-15 -2379 ($ $))))
-((-4201 (((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)) 54)))
-(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|)))) (-372) (-1260 |#1|) (-13 (-372) (-148) (-734 |#1| |#2|)) (-1260 |#3|)) (T -504))
-((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3)) (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1260 *7)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4| (-1 (-428 |#2|) |#2|))))
-((-2864 (((-112) $ $) NIL)) (-2910 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-2432 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-4311 (((-112) $) 39)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-2520 (((-112) $ $) 73)) (-4068 (((-654 (-622 $)) $) 50)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2559 (($ $ (-302 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3961 (((-654 $) (-1189 $) (-1193)) NIL) (((-654 $) (-1189 $)) NIL) (((-654 $) (-966 $)) NIL)) (-2231 (($ (-1189 $) (-1193)) NIL) (($ (-1189 $)) NIL) (($ (-966 $)) NIL)) (-1704 (((-3 (-622 $) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL)) (-2216 (((-622 $) $) NIL) (((-574) $) NIL) (((-417 (-574)) $) 55)) (-2801 (($ $ $) NIL)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 (-417 (-574)))) (|:| |vec| (-1284 (-417 (-574))))) (-699 $) (-1284 $)) NIL) (((-699 (-417 (-574))) (-699 $)) NIL) (((-699 (-417 (-574))) (-1284 $)) NIL)) (-2882 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3253 (($ $) NIL) (($ (-654 $)) NIL)) (-2256 (((-654 (-115)) $) NIL)) (-4150 (((-115) (-115)) NIL)) (-3943 (((-112) $) 42)) (-1476 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2970 (((-1141 (-574) (-622 $)) $) 37)) (-4439 (($ $ (-574)) NIL)) (-2608 (((-1189 $) (-1189 $) (-622 $)) 87) (((-1189 $) (-1189 $) (-654 (-622 $))) 62) (($ $ (-622 $)) 76) (($ $ (-654 (-622 $))) 77)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2860 (((-1189 $) (-622 $)) 74 (|has| $ (-1065)))) (-1785 (($ (-1 $ $) (-622 $)) NIL)) (-1761 (((-3 (-622 $) "failed") $) NIL)) (-2845 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-4140 (((-654 (-622 $)) $) NIL)) (-1782 (($ (-115) $) NIL) (($ (-115) (-654 $)) NIL)) (-1575 (((-112) $ (-115)) NIL) (((-112) $ (-1193)) NIL)) (-1328 (($ $) NIL)) (-1846 (((-781) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-3882 (((-112) $ $) NIL) (((-112) $ (-1193)) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL (|has| $ (-1054 (-574))))) (-2661 (($ $ (-622 $) $) NIL) (($ $ (-654 (-622 $)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-1193)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-1193) (-1 $ (-654 $))) NIL) (($ $ (-1193) (-1 $ $)) NIL) (($ $ (-654 (-115)) (-654 (-1 $ $))) NIL) (($ $ (-654 (-115)) (-654 (-1 $ (-654 $)))) NIL) (($ $ (-115) (-1 $ (-654 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4220 (((-781) $) NIL)) (-2207 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-654 $)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3457 (($ $) NIL) (($ $ $) NIL)) (-3879 (($ $) 36) (($ $ (-781)) NIL)) (-2980 (((-1141 (-574) (-622 $)) $) 20)) (-2966 (($ $) NIL (|has| $ (-1065)))) (-1844 (((-388) $) 101) (((-227) $) 109) (((-171 (-388)) $) 117)) (-2951 (((-872) $) NIL) (($ (-622 $)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-1141 (-574) (-622 $))) 21)) (-3070 (((-781)) NIL T CONST)) (-2078 (($ $) NIL) (($ (-654 $)) NIL)) (-2138 (((-112) (-115)) 93)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2153 (($) 22 T CONST)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) 24)) (-3099 (($ $ $) 44)) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-417 (-574))) NIL) (($ $ (-574)) 48) (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ $ $) 27) (($ (-574) $) NIL) (($ (-781) $) NIL) (($ (-935) $) NIL)))
-(((-505) (-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2970 ((-1141 (-574) (-622 $)) $)) (-15 -2980 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2520 ((-112) $ $)) (-15 -2608 ((-1189 $) (-1189 $) (-622 $))) (-15 -2608 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -2608 ($ $ (-622 $))) (-15 -2608 ($ $ (-654 (-622 $))))))) (T -505))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505)))) (-2882 (*1 *1 *1) (-5 *1 (-505))) (-2520 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-654 (-622 (-505)))) (-5 *1 (-505)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505)))))
-(-13 (-310) (-27) (-1054 (-574)) (-1054 (-417 (-574))) (-649 (-574)) (-1038) (-649 (-417 (-574))) (-148) (-624 (-171 (-388))) (-239) (-10 -8 (-15 -2951 ($ (-1141 (-574) (-622 $)))) (-15 -2970 ((-1141 (-574) (-622 $)) $)) (-15 -2980 ((-1141 (-574) (-622 $)) $)) (-15 -2882 ($ $)) (-15 -2520 ((-112) $ $)) (-15 -2608 ((-1189 $) (-1189 $) (-622 $))) (-15 -2608 ((-1189 $) (-1189 $) (-654 (-622 $)))) (-15 -2608 ($ $ (-622 $))) (-15 -2608 ($ $ (-654 (-622 $))))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) 44 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 39 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 38)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 21)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 17 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) 41 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) 15 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 19)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 43) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 24)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 11 (|has| $ (-6 -4459)))))
-(((-506 |#1| |#2|) (-19 |#1|) (-1234) (-574)) (T -506))
+((-2869 (((-112) $ $) NIL)) (-2644 (((-656 (-888)) $) 15)) (-2041 (((-518) $) 13)) (-2148 (((-1177) $) NIL)) (-2257 (($ (-518) (-656 (-888))) 11)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 22) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-495) (-13 (-1101) (-10 -8 (-15 -2257 ($ (-518) (-656 (-888)))) (-15 -2041 ((-518) $)) (-15 -2644 ((-656 (-888)) $))))) (T -495))
+((-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495)))))
+(-13 (-1101) (-10 -8 (-15 -2257 ($ (-518) (-656 (-888)))) (-15 -2041 ((-518) $)) (-15 -2644 ((-656 (-888)) $))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2470 (($ $ $) 48)) (-1383 (($ $ $) 47)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2571 ((|#1| $) 40)) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) 41)) (-2504 (($ |#1| $) 18)) (-4250 (($ (-656 |#1|)) 19)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4256 ((|#1| $) 34)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 11)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 45)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) 29 (|has| $ (-6 -4461)))))
+(((-496 |#1|) (-13 (-986 |#1|) (-10 -8 (-15 -4250 ($ (-656 |#1|))))) (-862)) (T -496))
+((-4250 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3)))))
+(-13 (-986 |#1|) (-10 -8 (-15 -4250 ($ (-656 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-2887 (($ $) 71)) (-2734 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-3434 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3945 (((-1138) $) NIL)) (-2981 (((-3 |#4| "failed") $) 117)) (-3093 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-4090 (((-2 (|:| -2823 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2956 (((-874) $) 110)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 32 T CONST)) (-2991 (((-112) $ $) 121)) (-3096 (($ $) 77) (($ $ $) NIL)) (-3081 (($ $ $) 72)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78)))
+(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497))
+NIL
+(-346 |#1| |#2| |#3| |#4|)
+((-2514 (((-576) (-656 (-576))) 53)) (-4101 ((|#1| (-656 |#1|)) 94)) (-1409 (((-656 |#1|) (-656 |#1|)) 95)) (-2897 (((-656 |#1|) (-656 |#1|)) 97)) (-2892 ((|#1| (-656 |#1|)) 96)) (-1885 (((-656 (-576)) (-656 |#1|)) 56)))
+(((-498 |#1|) (-10 -7 (-15 -2892 (|#1| (-656 |#1|))) (-15 -4101 (|#1| (-656 |#1|))) (-15 -2897 ((-656 |#1|) (-656 |#1|))) (-15 -1409 ((-656 |#1|) (-656 |#1|))) (-15 -1885 ((-656 (-576)) (-656 |#1|))) (-15 -2514 ((-576) (-656 (-576))))) (-1262 (-576))) (T -498))
+((-2514 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1262 *2)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))))
+(-10 -7 (-15 -2892 (|#1| (-656 |#1|))) (-15 -4101 (|#1| (-656 |#1|))) (-15 -2897 ((-656 |#1|) (-656 |#1|))) (-15 -1409 ((-656 |#1|) (-656 |#1|))) (-15 -1885 ((-656 (-576)) (-656 |#1|))) (-15 -2514 ((-576) (-656 (-576)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-576) $) NIL (|has| (-576) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-576) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1056 (-576))))) (-2216 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-576) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-576) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-576) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-3327 (((-112) $) NIL (|has| (-576) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-576) (-862)))) (-1787 (($ (-1 (-576) (-576)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-576) (-1170)) CONST)) (-2360 (($ (-419 (-576))) 9)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-4371 (((-576) $) NIL (|has| (-576) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-576) $) NIL)) (-1846 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL) (((-1022 16) $) 10)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-576) $) NIL (|has| (-576) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| (-576) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3108 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-499) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 16)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2360 ($ (-419 (-576))))))) (T -499))
+((-3739 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-2360 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))))
+(-13 (-1010 (-576)) (-625 (-419 (-576))) (-625 (-1022 16)) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2360 ($ (-419 (-576))))))
+((-2186 (((-656 |#2|) $) 31)) (-2653 (((-112) |#2| $) 36)) (-1875 (((-112) (-1 (-112) |#2|) $) 26)) (-2666 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3954 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 34)) (-2956 (((-874) $) 45)) (-3972 (((-112) (-1 (-112) |#2|) $) 23)) (-2991 (((-112) $ $) 39)) (-2882 (((-783) $) 18)))
+(((-500 |#1| |#2|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2653 ((-112) |#2| |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -2186 ((-656 |#2|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|))) (-501 |#2|) (-1236)) (T -500))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#2| |#2|)) (-15 -2666 (|#1| |#1| (-304 |#2|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2653 ((-112) |#2| |#1|)) (-15 -3954 ((-783) |#2| |#1|)) (-15 -2186 ((-656 |#2|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-501 |#1|) (-141) (-1236)) (T -501))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-3972 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-1875 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-783)))) (-1873 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-2186 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-3954 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-783)))) (-2653 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |t#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |t#1| (-1118)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4462)) (-15 -2466 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3972 ((-112) (-1 (-112) |t#1|) $)) (-15 -1875 ((-112) (-1 (-112) |t#1|) $)) (-15 -3954 ((-783) (-1 (-112) |t#1|) $)) (-15 -1873 ((-656 |t#1|) $)) (-15 -2186 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -3954 ((-783) |t#1| $)) (-15 -2653 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2956 ((|#1| $) 6) (($ |#1|) 9)))
+(((-502 |#1|) (-141) (-1236)) (T -502))
+NIL
+(-13 (-625 |t#1|) (-628 |t#1|))
+(((-628 |#1|) . T) ((-625 |#1|) . T))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3843 (($ (-1177)) 8)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15) (((-1177) $) 12)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 11)))
+(((-503) (-13 (-1118) (-625 (-1177)) (-10 -8 (-15 -3843 ($ (-1177)))))) (T -503))
+((-3843 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503)))))
+(-13 (-1118) (-625 (-1177)) (-10 -8 (-15 -3843 ($ (-1177)))))
+((-2384 (($ $) 15)) (-2363 (($ $) 24)) (-2409 (($ $) 12)) (-2422 (($ $) 10)) (-2394 (($ $) 17)) (-2373 (($ $) 22)))
+(((-504 |#1|) (-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2394 (|#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|))) (-505)) (T -504))
+NIL
+(-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2394 (|#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)))
+((-2384 (($ $) 11)) (-2363 (($ $) 10)) (-2409 (($ $) 9)) (-2422 (($ $) 8)) (-2394 (($ $) 7)) (-2373 (($ $) 6)))
+(((-505) (-141)) (T -505))
+((-2384 (*1 *1 *1) (-4 *1 (-505))) (-2363 (*1 *1 *1) (-4 *1 (-505))) (-2409 (*1 *1 *1) (-4 *1 (-505))) (-2422 (*1 *1 *1) (-4 *1 (-505))) (-2394 (*1 *1 *1) (-4 *1 (-505))) (-2373 (*1 *1 *1) (-4 *1 (-505))))
+(-13 (-10 -8 (-15 -2373 ($ $)) (-15 -2394 ($ $)) (-15 -2422 ($ $)) (-15 -2409 ($ $)) (-15 -2363 ($ $)) (-15 -2384 ($ $))))
+((-4205 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1262 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1262 |#3|)) (T -506))
+((-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3246 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-2272 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-3549 (((-112) $) 39)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3771 (((-112) $ $) 73)) (-4071 (((-656 (-624 $)) $) 50)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2564 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-3190 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-968 $)) NIL)) (-3028 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-968 $)) NIL)) (-1706 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2216 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-2806 (($ $ $) NIL)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2887 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-1492 (($ $) NIL) (($ (-656 $)) NIL)) (-3245 (((-656 (-115)) $) NIL)) (-4153 (((-115) (-115)) NIL)) (-4192 (((-112) $) 42)) (-4314 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2976 (((-1143 (-576) (-624 $)) $) 37)) (-2333 (($ $ (-576)) NIL)) (-3404 (((-1191 $) (-1191 $) (-624 $)) 87) (((-1191 $) (-1191 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3982 (((-1191 $) (-624 $)) 74 (|has| $ (-1067)))) (-1787 (($ (-1 $ $) (-624 $)) NIL)) (-2161 (((-3 (-624 $) "failed") $) NIL)) (-2850 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-4142 (((-656 (-624 $)) $) NIL)) (-1784 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2881 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-1330 (($ $) NIL)) (-1850 (((-783) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1679 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL (|has| $ (-1056 (-576))))) (-2666 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3927 (((-783) $) NIL)) (-2209 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1854 (($ $) NIL) (($ $ $) NIL)) (-3884 (($ $) 36) (($ $ (-783)) NIL)) (-2987 (((-1143 (-576) (-624 $)) $) 20)) (-2477 (($ $) NIL (|has| $ (-1067)))) (-1846 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-2956 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1143 (-576) (-624 $))) 21)) (-3423 (((-783)) NIL T CONST)) (-2113 (($ $) NIL) (($ (-656 $)) NIL)) (-1483 (((-112) (-115)) 93)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2155 (($) 22 T CONST)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) 24)) (-3108 (($ $ $) 44)) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-937) $) NIL)))
+(((-507) (-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2956 ($ (-1143 (-576) (-624 $)))) (-15 -2976 ((-1143 (-576) (-624 $)) $)) (-15 -2987 ((-1143 (-576) (-624 $)) $)) (-15 -2887 ($ $)) (-15 -3771 ((-112) $ $)) (-15 -3404 ((-1191 $) (-1191 $) (-624 $))) (-15 -3404 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -3404 ($ $ (-624 $))) (-15 -3404 ($ $ (-656 (-624 $))))))) (T -507))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2887 (*1 *1 *1) (-5 *1 (-507))) (-3771 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))))
+(-13 (-312) (-27) (-1056 (-576)) (-1056 (-419 (-576))) (-651 (-576)) (-1040) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-239) (-10 -8 (-15 -2956 ($ (-1143 (-576) (-624 $)))) (-15 -2976 ((-1143 (-576) (-624 $)) $)) (-15 -2987 ((-1143 (-576) (-624 $)) $)) (-15 -2887 ($ $)) (-15 -3771 ((-112) $ $)) (-15 -3404 ((-1191 $) (-1191 $) (-624 $))) (-15 -3404 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -3404 ($ $ (-624 $))) (-15 -3404 ($ $ (-656 (-624 $))))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 38)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 21)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 17 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) 41 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) 15 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 19)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1253 (-576))) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 24)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) 11 (|has| $ (-6 -4461)))))
+(((-508 |#1| |#2|) (-19 |#1|) (-1236) (-576)) (T -508))
NIL
(-19 |#1|)
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2334 (($ $ (-574) (-506 |#1| |#3|)) NIL)) (-3269 (($ $ (-574) (-506 |#1| |#2|)) NIL)) (-1430 (($) NIL T CONST)) (-2273 (((-506 |#1| |#3|) $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-4239 (((-506 |#1| |#2|) $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-507 |#1| |#2| |#3|) (-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|)) (-1234) (-574) (-574)) (T -507))
-NIL
-(-57 |#1| (-506 |#1| |#3|) (-506 |#1| |#2|))
-((-3150 (((-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781)) 32)) (-2123 (((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781)) 43)) (-1883 (((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)) 107)))
-(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -2123 ((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781))) (-15 -3150 ((-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -1883 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781)))) (-358) (-1260 |#1|) (-1260 |#2|)) (T -508))
-((-1883 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-2 (|:| -1895 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7))))) (-5 *5 (-781)) (-4 *8 (-1260 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -1895 (-699 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-699 *7)))) (-5 *1 (-508 *6 *7 *8)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -1895 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6))))) (-5 *1 (-508 *5 *6 *7)) (-5 *3 (-2 (|:| -1895 (-699 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-699 *6)))) (-4 *7 (-1260 *6)))) (-2123 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1260 *3)) (-5 *2 (-654 (-1189 *3))) (-5 *1 (-508 *3 *5 *6)) (-4 *6 (-1260 *5)))))
-(-10 -7 (-15 -2123 ((-654 (-1189 |#1|)) |#1| (-781) (-781) (-781))) (-15 -3150 ((-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-781) (-781))) (-15 -1883 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) (-654 |#3|) (-654 (-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) (-781))))
-((-2345 (((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))) 70)) (-3807 ((|#1| (-699 |#1|) |#1| (-781)) 24)) (-2827 (((-781) (-781) (-781)) 34)) (-3151 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 50)) (-3116 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 58) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 55)) (-1319 ((|#1| (-699 |#1|) (-699 |#1|) |#1| (-574)) 28)) (-1681 ((|#1| (-699 |#1|)) 18)))
-(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -1681 (|#1| (-699 |#1|))) (-15 -3807 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1319 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -2827 ((-781) (-781) (-781))) (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3151 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2345 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|)))))) (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))) (-1260 |#1|) (-419 |#1| |#2|)) (T -509))
-((-2345 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3151 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3116 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2827 (*1 *2 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))) (-1319 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-574)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-3807 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-699 *2)) (-5 *4 (-781)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-699 *2)) (-4 *4 (-1260 *2)) (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $))))) (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4)))))
-(-10 -7 (-15 -1681 (|#1| (-699 |#1|))) (-15 -3807 (|#1| (-699 |#1|) |#1| (-781))) (-15 -1319 (|#1| (-699 |#1|) (-699 |#1|) |#1| (-574))) (-15 -2827 ((-781) (-781) (-781))) (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3116 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -3151 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2345 ((-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))) (-2 (|:| -1895 (-699 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-699 |#1|))))))
-((-2864 (((-112) $ $) NIL)) (-2890 (($ $) NIL)) (-2117 (($ $ $) 40)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) $) NIL (|has| (-112) (-860))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4287 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-860)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-112) $ (-1251 (-574)) (-112)) NIL (|has| $ (-6 -4460))) (((-112) $ (-574) (-112)) 42 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-3311 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2882 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2473 (((-112) $ (-574) (-112)) NIL (|has| $ (-6 -4460)))) (-2400 (((-112) $ (-574)) NIL)) (-1452 (((-574) (-112) $ (-574)) NIL (|has| (-112) (-1116))) (((-574) (-112) $) NIL (|has| (-112) (-1116))) (((-574) (-1 (-112) (-112)) $) NIL)) (-1871 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2106 (($ $ $) 38)) (-2084 (($ $) NIL)) (-3216 (($ $ $) NIL)) (-3764 (($ (-781) (-112)) 27)) (-3594 (($ $ $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 8 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL)) (-2470 (($ $ $) NIL (|has| (-112) (-860))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1764 (((-654 (-112)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL)) (-2462 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ (-112) $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-112) $) NIL (|has| (-574) (-860)))) (-3748 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1465 (($ $ (-112)) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-112)) (-654 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-302 (-112))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116)))) (($ $ (-654 (-302 (-112)))) NIL (-12 (|has| (-112) (-317 (-112))) (|has| (-112) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116))))) (-2445 (((-654 (-112)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 28)) (-2207 (($ $ (-1251 (-574))) NIL) (((-112) $ (-574)) 22) (((-112) $ (-574) (-112)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3949 (((-781) (-112) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-112) (-1116)))) (((-781) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 29)) (-1844 (((-546) $) NIL (|has| (-112) (-624 (-546))))) (-2963 (($ (-654 (-112))) NIL)) (-4132 (($ (-654 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2951 (((-872) $) 26)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4459)))) (-2095 (($ $ $) 36)) (-2934 (($ $ $) NIL)) (-2257 (($ $ $) 45)) (-2267 (($ $) 43)) (-2244 (($ $ $) 44)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 30)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 31)) (-2923 (($ $ $) NIL)) (-2877 (((-781) $) 13 (|has| $ (-6 -4459)))))
-(((-510 |#1|) (-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2244 ($ $ $)))) (-574)) (T -510))
-((-2267 (*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2257 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))) (-2244 (*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574)))))
-(-13 (-124) (-10 -8 (-15 -2267 ($ $)) (-15 -2257 ($ $ $)) (-15 -2244 ($ $ $))))
-((-3491 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|)) 35)) (-2327 (((-1189 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1189 |#4|)) 22)) (-3981 (((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|))) 46)) (-3160 (((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2327 (|#2| (-1 |#1| |#4|) (-1189 |#4|))) (-15 -2327 ((-1189 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3491 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|))) (-15 -3981 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|)))) (-15 -3160 ((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|))) (-1065) (-1260 |#1|) (-1260 |#2|) (-1065)) (T -511))
-((-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *7))) (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1260 *6)))) (-3981 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-699 (-1189 *8))) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-1260 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8)) (-4 *7 (-1260 *6)))) (-3491 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *4 (-1260 *5)) (-5 *2 (-1189 *7)) (-5 *1 (-511 *5 *4 *6 *7)) (-4 *6 (-1260 *4)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2)))))
-(-10 -7 (-15 -2327 (|#2| (-1 |#1| |#4|) (-1189 |#4|))) (-15 -2327 ((-1189 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3491 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1189 |#4|))) (-15 -3981 ((-3 (-699 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-699 (-1189 |#4|)))) (-15 -3160 ((-1189 (-1189 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3220 (((-1289) $) 25)) (-2207 (((-1175) $ (-1193)) 30)) (-1414 (((-1289) $) 17)) (-2951 (((-872) $) 27) (($ (-1175)) 26)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9)))
-(((-512) (-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $)) (-15 -2951 ($ (-1175)))))) (T -512))
-((-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1175)) (-5 *1 (-512)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-512)))))
-(-13 (-860) (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $)) (-15 -3220 ((-1289) $)) (-15 -2951 ($ (-1175)))))
-((-2212 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3994 ((|#1| |#4|) 10)) (-2191 ((|#3| |#4|) 17)))
-(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3994 (|#1| |#4|)) (-15 -2191 (|#3| |#4|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-566) (-1008 |#1|) (-382 |#1|) (-382 |#2|)) (T -513))
-((-2212 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5)))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-4 *2 (-382 *4)) (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5)))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-382 *4)))))
-(-10 -7 (-15 -3994 (|#1| |#4|)) (-15 -2191 (|#3| |#4|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2864 (((-112) $ $) NIL)) (-1522 (((-112) $ (-654 |#3|)) 126) (((-112) $) 127)) (-4311 (((-112) $) 178)) (-3991 (($ $ |#4|) 117) (($ $ |#4| (-654 |#3|)) 121)) (-4155 (((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|)) 171 (|has| |#3| (-624 (-1193))))) (-3758 (($ $ $) 107) (($ $ |#4|) 105)) (-3943 (((-112) $) 177)) (-1685 (($ $) 131)) (-4420 (((-1175) $) NIL)) (-3655 (($ $ $) 99) (($ (-654 $)) 101)) (-1651 (((-112) |#4| $) 129)) (-1341 (((-112) $ $) 82)) (-2611 (($ (-654 |#4|)) 106)) (-3940 (((-1136) $) NIL)) (-3730 (($ (-654 |#4|)) 175)) (-1382 (((-112) $) 176)) (-4274 (($ $) 85)) (-2837 (((-654 |#4|) $) 73)) (-2898 (((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|)) NIL)) (-2381 (((-112) |#4| $) 89)) (-2732 (((-574) $ (-654 |#3|)) 133) (((-574) $) 134)) (-2951 (((-872) $) 174) (($ (-654 |#4|)) 102)) (-2981 (((-112) $ $) NIL)) (-4002 (($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $))) NIL)) (-2986 (((-112) $ $) 84)) (-3074 (($ $ $) 109)) (** (($ $ (-781)) 115)) (* (($ $ $) 113)))
-(((-514 |#1| |#2| |#3| |#4|) (-13 (-1116) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -3943 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -2381 ((-112) |#4| $)) (-15 -1341 ((-112) $ $)) (-15 -1651 ((-112) |#4| $)) (-15 -1522 ((-112) $ (-654 |#3|))) (-15 -1522 ((-112) $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ (-654 $))) (-15 -3758 ($ $ $)) (-15 -3758 ($ $ |#4|)) (-15 -4274 ($ $)) (-15 -2898 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -4002 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2732 ((-574) $ (-654 |#3|))) (-15 -2732 ((-574) $)) (-15 -1685 ($ $)) (-15 -2611 ($ (-654 |#4|))) (-15 -3730 ($ (-654 |#4|))) (-15 -1382 ((-112) $)) (-15 -2837 ((-654 |#4|) $)) (-15 -2951 ($ (-654 |#4|))) (-15 -3991 ($ $ |#4|)) (-15 -3991 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1193))) (-15 -4155 ((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|))) |%noBranch|))) (-372) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -514))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-4311 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2381 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-1341 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-1651 (*1 *2 *3 *1) (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))) (-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-1522 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-4274 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2732 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))) (-2732 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-1685 (*1 *1 *1) (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-2611 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-3730 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1382 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2837 (*1 *2 *1) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))) (-3991 (*1 *1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))) (-3991 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-963 *4 *5 *6)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *6 (-624 (-1193))) (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1182 (-654 (-966 *4)) (-654 (-302 (-966 *4))))) (-5 *1 (-514 *4 *5 *6 *7)))))
-(-13 (-1116) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 -3074 ($ $ $)) (-15 -3943 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -2381 ((-112) |#4| $)) (-15 -1341 ((-112) $ $)) (-15 -1651 ((-112) |#4| $)) (-15 -1522 ((-112) $ (-654 |#3|))) (-15 -1522 ((-112) $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ (-654 $))) (-15 -3758 ($ $ $)) (-15 -3758 ($ $ |#4|)) (-15 -4274 ($ $)) (-15 -2898 ((-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)) $ (-654 |#3|))) (-15 -4002 ($ (-2 (|:| |mval| (-699 |#1|)) (|:| |invmval| (-699 |#1|)) (|:| |genIdeal| $)))) (-15 -2732 ((-574) $ (-654 |#3|))) (-15 -2732 ((-574) $)) (-15 -1685 ($ $)) (-15 -2611 ($ (-654 |#4|))) (-15 -3730 ($ (-654 |#4|))) (-15 -1382 ((-112) $)) (-15 -2837 ((-654 |#4|) $)) (-15 -2951 ($ (-654 |#4|))) (-15 -3991 ($ $ |#4|)) (-15 -3991 ($ $ |#4| (-654 |#3|))) (IF (|has| |#3| (-624 (-1193))) (-15 -4155 ((-1182 (-654 (-966 |#1|)) (-654 (-302 (-966 |#1|)))) (-654 |#4|))) |%noBranch|)))
-((-2023 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 176)) (-3477 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 177)) (-3095 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 129)) (-3342 (((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) NIL)) (-2760 (((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) 179)) (-2066 (((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))) 195)))
-(((-515 |#1| |#2|) (-10 -7 (-15 -2023 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3477 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3342 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3095 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2760 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2066 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|))))) (-654 (-1193)) (-781)) (T -515))
-((-2066 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *1 (-515 *4 *5)))) (-2760 (*1 *2 *3) (-12 (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-654 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4) (-253 *4 (-417 (-574))))) (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5)))))
-(-10 -7 (-15 -2023 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3477 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3342 ((-112) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -3095 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2760 ((-654 (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574))))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))))) (-15 -2066 ((-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-514 (-417 (-574)) (-246 |#2| (-781)) (-874 |#1|) (-253 |#1| (-417 (-574)))) (-654 (-874 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2626 (($) 6)) (-2951 (((-872) $) 12) (((-1193) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 8)))
-(((-516) (-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2626 ($))))) (T -516))
-((-2626 (*1 *1) (-5 *1 (-516))))
-(-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2626 ($))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1727 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 11) (($ $ $) 35)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21)))
-(((-517 |#1| |#2|) (-13 (-21) (-519 |#1| |#2|)) (-21) (-860)) (T -517))
-NIL
-(-13 (-21) (-519 |#1| |#2|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 13)) (-1430 (($) NIL T CONST)) (-1402 (($ $) 41)) (-4328 (($ |#1| |#2|) 38)) (-1785 (($ (-1 |#1| |#1|) $) 40)) (-1727 ((|#2| $) NIL)) (-1378 ((|#1| $) 42)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 10 T CONST)) (-2986 (((-112) $ $) NIL)) (-3074 (($ $ $) 26)) (* (($ (-935) $) NIL) (($ (-781) $) 36)))
-(((-518 |#1| |#2|) (-13 (-23) (-519 |#1| |#2|)) (-23) (-860)) (T -518))
-NIL
-(-13 (-23) (-519 |#1| |#2|))
-((-2864 (((-112) $ $) 7)) (-1402 (($ $) 14)) (-4328 (($ |#1| |#2|) 17)) (-1785 (($ (-1 |#1| |#1|) $) 18)) (-1727 ((|#2| $) 15)) (-1378 ((|#1| $) 16)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-519 |#1| |#2|) (-141) (-1116) (-860)) (T -519))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-860)))) (-4328 (*1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1116)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-860)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860)))))
-(-13 (-1116) (-10 -8 (-15 -1785 ($ (-1 |t#1| |t#1|) $)) (-15 -4328 ($ |t#1| |t#2|)) (-15 -1378 (|t#1| $)) (-15 -1727 (|t#2| $)) (-15 -1402 ($ $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1727 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 22)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL)))
-(((-520 |#1| |#2|) (-13 (-802) (-519 |#1| |#2|)) (-802) (-860)) (T -520))
-NIL
-(-13 (-802) (-519 |#1| |#2|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2354 (($ $ $) 23)) (-3290 (((-3 $ "failed") $ $) 19)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1727 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL)))
-(((-521 |#1| |#2|) (-13 (-803) (-519 |#1| |#2|)) (-803) (-860)) (T -521))
-NIL
-(-13 (-803) (-519 |#1| |#2|))
-((-2864 (((-112) $ $) NIL)) (-1402 (($ $) 32)) (-4328 (($ |#1| |#2|) 28)) (-1785 (($ (-1 |#1| |#1|) $) 30)) (-1727 ((|#2| $) 34)) (-1378 ((|#1| $) 33)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 20)))
-(((-522 |#1| |#2|) (-519 |#1| |#2|) (-1116) (-860)) (T -522))
-NIL
-(-519 |#1| |#2|)
-((-2661 (($ $ (-654 |#2|) (-654 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-523 |#1| |#2| |#3|) (-10 -8 (-15 -2661 (|#1| |#1| |#2| |#3|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#3|)))) (-524 |#2| |#3|) (-1116) (-1234)) (T -523))
-NIL
-(-10 -8 (-15 -2661 (|#1| |#1| |#2| |#3|)) (-15 -2661 (|#1| |#1| (-654 |#2|) (-654 |#3|))))
-((-2661 (($ $ (-654 |#1|) (-654 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-524 |#1| |#2|) (-141) (-1116) (-1234)) (T -524))
-((-2661 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1234)))) (-2661 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1234)))))
-(-13 (-10 -8 (-15 -2661 ($ $ |t#1| |t#2|)) (-15 -2661 ($ $ (-654 |t#1|) (-654 |t#2|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 17)) (-2424 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 19)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781) $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1720 ((|#1| $ (-574)) 24)) (-2387 ((|#2| $ (-574)) 22)) (-2737 (($ (-1 |#1| |#1|) $) 48)) (-2148 (($ (-1 |#2| |#2|) $) 45)) (-4420 (((-1175) $) NIL)) (-4130 (($ $ $) 55 (|has| |#2| (-802)))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 44) (($ |#1|) NIL)) (-1788 ((|#2| |#1| $) 51)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 11 T CONST)) (-2986 (((-112) $ $) 30)) (-3074 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-935) $) NIL) (($ (-781) $) 37) (($ |#2| |#1|) 32)))
-(((-525 |#1| |#2| |#3|) (-331 |#1| |#2|) (-1116) (-132) |#2|) (T -525))
-NIL
-(-331 |#1| |#2|)
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-1549 (((-112) (-112)) 32)) (-3135 ((|#1| $ (-574) |#1|) 42 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) 77)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2218 (($ $) 81 (|has| |#1| (-1116)))) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) 64)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-2989 (($ $ (-574)) 19)) (-3413 (((-781) $) 13)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 31)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 29 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2645 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) 28 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3705 (($ $ $ (-574)) 73) (($ |#1| $ (-574)) 57)) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1336 (($ (-654 |#1|)) 43)) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) 24 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 60)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 21)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 53) (($ $ (-1251 (-574))) NIL)) (-3032 (($ $ (-1251 (-574))) 71) (($ $ (-574)) 65)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) 61 (|has| $ (-6 -4460)))) (-3157 (($ $) 51)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2589 (($ $ $) 62) (($ $ |#1|) 59)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 22 (|has| $ (-6 -4459)))))
-(((-526 |#1| |#2|) (-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1336 ($ (-654 |#1|))) (-15 -3413 ((-781) $)) (-15 -2989 ($ $ (-574))) (-15 -1549 ((-112) (-112))))) (-1234) (-574)) (T -526))
-((-1336 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-526 *3 *4)) (-14 *4 (-574)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 (-574)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 *2))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 (-574)))))
-(-13 (-19 |#1|) (-290 |#1|) (-10 -8 (-15 -1336 ($ (-654 |#1|))) (-15 -3413 ((-781) $)) (-15 -2989 ($ $ (-574))) (-15 -1549 ((-112) (-112)))))
-((-2864 (((-112) $ $) NIL)) (-2405 (((-1151) $) 11)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2655 (((-1151) $) 13)) (-2277 (((-1151) $) 9)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-527) (-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $)) (-15 -2405 ((-1151) $)) (-15 -2655 ((-1151) $))))) (T -527))
-((-2277 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))))
-(-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $)) (-15 -2405 ((-1151) $)) (-15 -2655 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (((-591 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-591 |#1|) (-377)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL (|has| (-591 |#1|) (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-591 |#1|) "failed") $) NIL)) (-2216 (((-591 |#1|) $) NIL)) (-3114 (($ (-1284 (-591 |#1|))) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-591 |#1|) (-377)))) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-591 |#1|) (-377)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL (|has| (-591 |#1|) (-377)))) (-3502 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-2613 (($ $ (-781)) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377)))) (($ $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3342 (((-112) $) NIL)) (-1518 (((-935) $) NIL (|has| (-591 |#1|) (-377))) (((-843 (-935)) $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| (-591 |#1|) (-377)))) (-3576 (((-112) $) NIL (|has| (-591 |#1|) (-377)))) (-2608 (((-591 |#1|) $) NIL) (($ $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-591 |#1|) (-377)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 (-591 |#1|)) $) NIL) (((-1189 $) $ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-3507 (((-935) $) NIL (|has| (-591 |#1|) (-377)))) (-2739 (((-1189 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377)))) (-2873 (((-1189 (-591 |#1|)) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-1189 (-591 |#1|)) "failed") $ $) NIL (|has| (-591 |#1|) (-377)))) (-3200 (($ $ (-1189 (-591 |#1|))) NIL (|has| (-591 |#1|) (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-591 |#1|) (-377)) CONST)) (-2591 (($ (-935)) NIL (|has| (-591 |#1|) (-377)))) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| (-591 |#1|) (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-591 |#1|) (-377)))) (-4201 (((-428 $) $) NIL)) (-1676 (((-843 (-935))) NIL) (((-935)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-781) $) NIL (|has| (-591 |#1|) (-377))) (((-3 (-781) "failed") $ $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-2732 (((-135)) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-3735 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-2966 (((-1189 (-591 |#1|))) NIL)) (-3951 (($) NIL (|has| (-591 |#1|) (-377)))) (-3883 (($) NIL (|has| (-591 |#1|) (-377)))) (-2282 (((-1284 (-591 |#1|)) $) NIL) (((-699 (-591 |#1|)) (-1284 $)) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-591 |#1|) (-377)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-591 |#1|)) NIL)) (-2705 (($ $) NIL (|has| (-591 |#1|) (-377))) (((-3 $ "failed") $) NIL (-2833 (|has| (-591 |#1|) (-146)) (|has| (-591 |#1|) (-377))))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL) (((-1284 $) (-935)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $) NIL (|has| (-591 |#1|) (-377))) (($ $ (-781)) NIL (|has| (-591 |#1|) (-377)))) (-3585 (($ $ (-781)) NIL (|has| (-591 |#1|) (-377))) (($ $) NIL (|has| (-591 |#1|) (-377)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL) (($ $ (-591 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-591 |#1|)) NIL) (($ (-591 |#1|) $) NIL)))
-(((-528 |#1| |#2|) (-337 (-591 |#1|)) (-935) (-935)) (T -528))
-NIL
-(-337 (-591 |#1|))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) 51)) (-2334 (($ $ (-574) |#4|) NIL)) (-3269 (($ $ (-574) |#5|) NIL)) (-1430 (($) NIL T CONST)) (-2273 ((|#4| $ (-574)) NIL)) (-2473 ((|#1| $ (-574) (-574) |#1|) 50)) (-2400 ((|#1| $ (-574) (-574)) 45)) (-1871 (((-654 |#1|) $) NIL)) (-2197 (((-781) $) 33)) (-3764 (($ (-781) (-781) |#1|) 30)) (-2206 (((-781) $) 38)) (-3814 (((-112) $ (-781)) NIL)) (-4075 (((-574) $) 31)) (-1351 (((-574) $) 32)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) 37)) (-2759 (((-574) $) 39)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) 55 (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 14)) (-3014 (($) 16)) (-2207 ((|#1| $ (-574) (-574)) 48) ((|#1| $ (-574) (-574) |#1|) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-4239 ((|#5| $ (-574)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-529 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1234) (-574) (-574) (-382 |#1|) (-382 |#1|)) (T -529))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2663 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-3581 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-4335 (($) NIL T CONST)) (-3389 (((-508 |#1| |#3|) $ (-576)) NIL)) (-2481 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2405 ((|#1| $ (-576) (-576)) NIL)) (-1873 (((-656 |#1|) $) NIL)) (-2199 (((-783) $) NIL)) (-3769 (($ (-783) (-783) |#1|) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-4087 (((-508 |#1| |#2|) $ (-576)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1236) (-576) (-576)) (T -509))
+NIL
+(-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|))
+((-1661 (((-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-1376 (((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-3985 (((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107)))
+(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -1376 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1661 ((-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3985 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -510))
+((-3985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -4093 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -4093 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -4093 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -4093 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1262 *6)))) (-1376 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3)) (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1262 *5)))))
+(-10 -7 (-15 -1376 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1661 ((-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3985 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783))))
+((-2765 (((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-2193 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-3725 (((-783) (-783) (-783)) 34)) (-1670 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-2549 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-1533 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2652 ((|#1| (-701 |#1|)) 18)))
+(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2652 (|#1| (-701 |#1|))) (-15 -2193 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1533 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3725 ((-783) (-783) (-783))) (-15 -2549 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2549 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1670 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2765 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -511))
+((-2765 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1670 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2549 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2549 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3725 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1533 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2193 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))))
+(-10 -7 (-15 -2652 (|#1| (-701 |#1|))) (-15 -2193 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1533 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -3725 ((-783) (-783) (-783))) (-15 -2549 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2549 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1670 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2765 ((-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4093 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))))
+((-2869 (((-112) $ $) NIL)) (-2895 (($ $) NIL)) (-2119 (($ $ $) 40)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3330 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2791 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-3316 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2887 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-2481 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2405 (((-112) $ (-576)) NIL)) (-1454 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1118))) (((-576) (-112) $) NIL (|has| (-112) (-1118))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1873 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2107 (($ $ $) 38)) (-2085 (($ $) NIL)) (-4232 (($ $ $) NIL)) (-3769 (($ (-783) (-112)) 27)) (-3907 (($ $ $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 8 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL)) (-1383 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2186 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL)) (-2466 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-112) $) NIL (|has| (-576) (-862)))) (-2922 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4211 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118))))) (-4274 (((-656 (-112)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 28)) (-2209 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3954 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1118)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) 29)) (-1846 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2968 (($ (-656 (-112))) NIL)) (-4136 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2956 (((-874) $) 26)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2096 (($ $ $) 36)) (-2939 (($ $ $) NIL)) (-2258 (($ $ $) 45)) (-2268 (($ $) 43)) (-2248 (($ $ $) 44)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 30)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 31)) (-2926 (($ $ $) NIL)) (-2882 (((-783) $) 13 (|has| $ (-6 -4461)))))
+(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -2268 ($ $)) (-15 -2258 ($ $ $)) (-15 -2248 ($ $ $)))) (-576)) (T -512))
+((-2268 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2258 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2248 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))))
+(-13 (-124) (-10 -8 (-15 -2268 ($ $)) (-15 -2258 ($ $ $)) (-15 -2248 ($ $ $))))
+((-2205 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|)) 35)) (-2603 (((-1191 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1191 |#4|)) 22)) (-3401 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|))) 46)) (-1745 (((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2603 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -2603 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2205 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -3401 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -1745 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) (-1067) (-1262 |#1|) (-1262 |#2|) (-1067)) (T -513))
+((-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6)))) (-3401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1262 *6)))) (-2205 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1262 *4)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))))
+(-10 -7 (-15 -2603 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -2603 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2205 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -3401 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -1745 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4278 (((-1291) $) 25)) (-2209 (((-1177) $ (-1195)) 30)) (-1416 (((-1291) $) 17)) (-2956 (((-874) $) 27) (($ (-1177)) 26)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 11)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 9)))
+(((-514) (-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $)) (-15 -2956 ($ (-1177)))))) (T -514))
+((-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514)))))
+(-13 (-862) (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $)) (-15 -4278 ((-1291) $)) (-15 -2956 ($ (-1177)))))
+((-4052 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3525 ((|#1| |#4|) 10)) (-3867 ((|#3| |#4|) 17)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3525 (|#1| |#4|)) (-15 -3867 (|#3| |#4|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1010 |#1|) (-384 |#1|) (-384 |#2|)) (T -515))
+((-4052 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))))
+(-10 -7 (-15 -3525 (|#1| |#4|)) (-15 -3867 (|#3| |#4|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2869 (((-112) $ $) NIL)) (-3579 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-3549 (((-112) $) 178)) (-3492 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-1362 (((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1195))))) (-1758 (($ $ $) 107) (($ $ |#4|) 105)) (-4192 (((-112) $) 177)) (-2685 (($ $) 131)) (-2148 (((-1177) $) NIL)) (-3318 (($ $ $) 99) (($ (-656 $)) 101)) (-2313 (((-112) |#4| $) 129)) (-1698 (((-112) $ $) 82)) (-3434 (($ (-656 |#4|)) 106)) (-3945 (((-1138) $) NIL)) (-2740 (($ (-656 |#4|)) 175)) (-3594 (((-112) $) 176)) (-3219 (($ $) 85)) (-3800 (((-656 |#4|) $) 73)) (-3114 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-1842 (((-112) |#4| $) 89)) (-2068 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-2956 (((-874) $) 174) (($ (-656 |#4|)) 102)) (-2617 (((-112) $ $) NIL)) (-3595 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-2991 (((-112) $ $) 84)) (-3081 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113)))
+(((-516 |#1| |#2| |#3| |#4|) (-13 (-1118) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3081 ($ $ $)) (-15 -4192 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1842 ((-112) |#4| $)) (-15 -1698 ((-112) $ $)) (-15 -2313 ((-112) |#4| $)) (-15 -3579 ((-112) $ (-656 |#3|))) (-15 -3579 ((-112) $)) (-15 -3318 ($ $ $)) (-15 -3318 ($ (-656 $))) (-15 -1758 ($ $ $)) (-15 -1758 ($ $ |#4|)) (-15 -3219 ($ $)) (-15 -3114 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3595 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2068 ((-576) $ (-656 |#3|))) (-15 -2068 ((-576) $)) (-15 -2685 ($ $)) (-15 -3434 ($ (-656 |#4|))) (-15 -2740 ($ (-656 |#4|))) (-15 -3594 ((-112) $)) (-15 -3800 ((-656 |#4|) $)) (-15 -2956 ($ (-656 |#4|))) (-15 -3492 ($ $ |#4|)) (-15 -3492 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -1362 ((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -516))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-4192 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3549 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-1842 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-1698 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2313 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))) (-3579 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-3579 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3318 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-1758 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-1758 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-3219 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2068 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))) (-2068 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2685 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3594 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-3800 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3492 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))) (-3492 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-965 *4 *5 *6)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *6 (-626 (-1195))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1184 (-656 (-968 *4)) (-656 (-304 (-968 *4))))) (-5 *1 (-516 *4 *5 *6 *7)))))
+(-13 (-1118) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3081 ($ $ $)) (-15 -4192 ((-112) $)) (-15 -3549 ((-112) $)) (-15 -1842 ((-112) |#4| $)) (-15 -1698 ((-112) $ $)) (-15 -2313 ((-112) |#4| $)) (-15 -3579 ((-112) $ (-656 |#3|))) (-15 -3579 ((-112) $)) (-15 -3318 ($ $ $)) (-15 -3318 ($ (-656 $))) (-15 -1758 ($ $ $)) (-15 -1758 ($ $ |#4|)) (-15 -3219 ($ $)) (-15 -3114 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -3595 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2068 ((-576) $ (-656 |#3|))) (-15 -2068 ((-576) $)) (-15 -2685 ($ $)) (-15 -3434 ($ (-656 |#4|))) (-15 -2740 ($ (-656 |#4|))) (-15 -3594 ((-112) $)) (-15 -3800 ((-656 |#4|) $)) (-15 -2956 ($ (-656 |#4|))) (-15 -3492 ($ $ |#4|)) (-15 -3492 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -1362 ((-1184 (-656 (-968 |#1|)) (-656 (-304 (-968 |#1|)))) (-656 |#4|))) |%noBranch|)))
+((-1671 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2062 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-3099 (((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-3124 (((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-4269 (((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2065 (((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))) 195)))
+(((-517 |#1| |#2|) (-10 -7 (-15 -1671 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2062 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3124 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3099 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4269 ((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2065 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) (-656 (-1195)) (-783)) (T -517))
+((-2065 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-4269 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-246 *4 (-783)) (-876 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))))
+(-10 -7 (-15 -1671 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2062 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3124 ((-112) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3099 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4269 ((-656 (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2065 ((-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-246 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3575 (($) 6)) (-2956 (((-874) $) 12) (((-1195) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 8)))
+(((-518) (-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -3575 ($))))) (T -518))
+((-3575 (*1 *1) (-5 *1 (-518))))
+(-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -3575 ($))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4330 (($ |#1| |#2|) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1830 ((|#2| $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) 11) (($ $ $) 35)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21)))
+(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-862)) (T -519))
+NIL
+(-13 (-21) (-521 |#1| |#2|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 13)) (-4335 (($) NIL T CONST)) (-1404 (($ $) 41)) (-4330 (($ |#1| |#2|) 38)) (-1787 (($ (-1 |#1| |#1|) $) 40)) (-1830 ((|#2| $) NIL)) (-1380 ((|#1| $) 42)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 10 T CONST)) (-2991 (((-112) $ $) NIL)) (-3081 (($ $ $) 26)) (* (($ (-937) $) NIL) (($ (-783) $) 36)))
+(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-862)) (T -520))
+NIL
+(-13 (-23) (-521 |#1| |#2|))
+((-2869 (((-112) $ $) 7)) (-1404 (($ $) 14)) (-4330 (($ |#1| |#2|) 17)) (-1787 (($ (-1 |#1| |#1|) $) 18)) (-1830 ((|#2| $) 15)) (-1380 ((|#1| $) 16)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-521 |#1| |#2|) (-141) (-1118) (-862)) (T -521))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-862)))) (-4330 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1118)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-862)))) (-1404 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862)))))
+(-13 (-1118) (-10 -8 (-15 -1787 ($ (-1 |t#1| |t#1|) $)) (-15 -4330 ($ |t#1| |t#2|)) (-15 -1380 (|t#1| $)) (-15 -1830 (|t#2| $)) (-15 -1404 ($ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4330 (($ |#1| |#2|) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1830 ((|#2| $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 22)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL)))
+(((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-862)) (T -522))
+NIL
+(-13 (-804) (-521 |#1| |#2|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2847 (($ $ $) 23)) (-3798 (((-3 $ "failed") $ $) 19)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4330 (($ |#1| |#2|) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1830 ((|#2| $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL)))
+(((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-862)) (T -523))
+NIL
+(-13 (-805) (-521 |#1| |#2|))
+((-2869 (((-112) $ $) NIL)) (-1404 (($ $) 32)) (-4330 (($ |#1| |#2|) 28)) (-1787 (($ (-1 |#1| |#1|) $) 30)) (-1830 ((|#2| $) 34)) (-1380 ((|#1| $) 33)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 27)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 20)))
+(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1118) (-862)) (T -524))
+NIL
+(-521 |#1| |#2|)
+((-2666 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -2666 (|#1| |#1| |#2| |#3|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1118) (-1236)) (T -525))
+NIL
+(-10 -8 (-15 -2666 (|#1| |#1| |#2| |#3|)) (-15 -2666 (|#1| |#1| (-656 |#2|) (-656 |#3|))))
+((-2666 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-526 |#1| |#2|) (-141) (-1118) (-1236)) (T -526))
+((-2666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1236)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1236)))))
+(-13 (-10 -8 (-15 -2666 ($ $ |t#1| |t#2|)) (-15 -2666 ($ $ (-656 |t#1|) (-656 |t#2|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 17)) (-2206 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 19)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783) $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1762 ((|#1| $ (-576)) 24)) (-1896 ((|#2| $ (-576)) 22)) (-2121 (($ (-1 |#1| |#1|) $) 48)) (-1576 (($ (-1 |#2| |#2|) $) 45)) (-2148 (((-1177) $) NIL)) (-2338 (($ $ $) 55 (|has| |#2| (-804)))) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 44) (($ |#1|) NIL)) (-4309 ((|#2| |#1| $) 51)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 11 T CONST)) (-2991 (((-112) $ $) 30)) (-3081 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-937) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32)))
+(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1118) (-132) |#2|) (T -527))
+NIL
+(-333 |#1| |#2|)
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3846 (((-112) (-112)) 32)) (-3140 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) 77)) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4099 (($ $) 81 (|has| |#1| (-1118)))) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) 64)) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-2700 (($ $ (-576)) 19)) (-2615 (((-783) $) 13)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 31)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 29 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2470 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) 28 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2504 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1662 (($ (-656 |#1|)) 43)) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) 24 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 60)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 21)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1253 (-576))) NIL)) (-3012 (($ $ (-1253 (-576))) 71) (($ $ (-576)) 65)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) 61 (|has| $ (-6 -4462)))) (-3162 (($ $) 51)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-3228 (($ $ $) 62) (($ $ |#1|) 59)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) 22 (|has| $ (-6 -4461)))))
+(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1662 ($ (-656 |#1|))) (-15 -2615 ((-783) $)) (-15 -2700 ($ $ (-576))) (-15 -3846 ((-112) (-112))))) (-1236) (-576)) (T -528))
+((-1662 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576)))) (-2700 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576)))))
+(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1662 ($ (-656 |#1|))) (-15 -2615 ((-783) $)) (-15 -2700 ($ $ (-576))) (-15 -3846 ((-112) (-112)))))
+((-2869 (((-112) $ $) NIL)) (-2038 (((-1153) $) 11)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2562 (((-1153) $) 13)) (-2279 (((-1153) $) 9)) (-2956 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-529) (-13 (-1101) (-10 -8 (-15 -2279 ((-1153) $)) (-15 -2038 ((-1153) $)) (-15 -2562 ((-1153) $))))) (T -529))
+((-2279 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))))
+(-13 (-1101) (-10 -8 (-15 -2279 ((-1153) $)) (-15 -2038 ((-1153) $)) (-15 -2562 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (((-593 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-593 |#1|) "failed") $) NIL)) (-2216 (((-593 |#1|) $) NIL)) (-2524 (($ (-1286 (-593 |#1|))) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-593 |#1|) (-379)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL (|has| (-593 |#1|) (-379)))) (-4208 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3454 (($ $ (-783)) NIL (-2838 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2838 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3124 (((-112) $) NIL)) (-3540 (((-937) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-937)) $) NIL (-2838 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| (-593 |#1|) (-379)))) (-3729 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3404 (((-593 |#1|) $) NIL) (($ $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 (-593 |#1|)) $) NIL) (((-1191 $) $ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-4261 (((-937) $) NIL (|has| (-593 |#1|) (-379)))) (-2146 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-4091 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1191 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-2156 (($ $ (-1191 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-2596 (($ (-937)) NIL (|has| (-593 |#1|) (-379)))) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL (|has| (-593 |#1|) (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-4205 (((-430 $) $) NIL)) (-2591 (((-845 (-937))) NIL) (((-937)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2838 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2068 (((-135)) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2782 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-2477 (((-1191 (-593 |#1|))) NIL)) (-3087 (($) NIL (|has| (-593 |#1|) (-379)))) (-1689 (($) NIL (|has| (-593 |#1|) (-379)))) (-3458 (((-1286 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1286 $)) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-1817 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2838 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL) (((-1286 $) (-937)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-3590 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL)))
+(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-937) (-937)) (T -530))
+NIL
+(-339 (-593 |#1|))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) 51)) (-2663 (($ $ (-576) |#4|) NIL)) (-3581 (($ $ (-576) |#5|) NIL)) (-4335 (($) NIL T CONST)) (-3389 ((|#4| $ (-576)) NIL)) (-2481 ((|#1| $ (-576) (-576) |#1|) 50)) (-2405 ((|#1| $ (-576) (-576)) 45)) (-1873 (((-656 |#1|) $) NIL)) (-2199 (((-783) $) 33)) (-3769 (($ (-783) (-783) |#1|) 30)) (-2208 (((-783) $) 38)) (-2266 (((-112) $ (-783)) NIL)) (-1823 (((-576) $) 31)) (-1780 (((-576) $) 32)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) 37)) (-4259 (((-576) $) 39)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) 55 (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 14)) (-2953 (($) 16)) (-2209 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-4087 ((|#5| $ (-576)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1236) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531))
NIL
(-57 |#1| |#4| |#5|)
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 70 (|has| $ (-6 -4460)))) (-1492 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4287 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3373 (($ $ $) 23 (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 21 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4460))) (($ $ "rest" $) 24 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-1430 (($) NIL T CONST)) (-2060 (($ $) 28 (|has| $ (-6 -4460)))) (-4425 (($ $) 29)) (-2935 (($ $) 18) (($ $ (-781)) 32)) (-2218 (($ $) 62 (|has| |#1| (-1116)))) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1648 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) 27 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 31 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2645 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-2470 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) 58 (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3705 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) 13) (($ $ (-781)) NIL)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3388 (((-112) $) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 12)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 16)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) NIL) ((|#1| $ (-574) |#1|) NIL)) (-4072 (((-574) $ $) NIL)) (-3032 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3864 (((-112) $) 35)) (-3333 (($ $) NIL)) (-1823 (($ $) NIL (|has| $ (-6 -4460)))) (-1984 (((-781) $) NIL)) (-1852 (($ $) 40)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 36)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 26)) (-2589 (($ $ $) 61) (($ $ |#1|) NIL)) (-4132 (($ $ $) NIL) (($ |#1| $) 10) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (((-872) $) 50 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) 54 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 9 (|has| $ (-6 -4459)))))
-(((-530 |#1| |#2|) (-676 |#1|) (-1234) (-574)) (T -530))
-NIL
-(-676 |#1|)
-((-4300 ((|#4| |#4|) 38)) (-3558 (((-781) |#4|) 44)) (-3026 (((-781) |#4|) 45)) (-3580 (((-654 |#3|) |#4|) 55 (|has| |#3| (-6 -4460)))) (-3858 (((-3 |#4| "failed") |#4|) 67)) (-1562 ((|#4| |#4|) 59)) (-2293 ((|#1| |#4|) 58)))
-(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4300 (|#4| |#4|)) (-15 -3558 ((-781) |#4|)) (-15 -3026 ((-781) |#4|)) (IF (|has| |#3| (-6 -4460)) (-15 -3580 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -2293 (|#1| |#4|)) (-15 -1562 (|#4| |#4|)) (-15 -3858 ((-3 |#4| "failed") |#4|))) (-372) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -531))
-((-3858 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372)) (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-3580 (*1 *2 *3) (-12 (|has| *6 (-6 -4460)) (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-4300 (*1 *2 *2) (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(-10 -7 (-15 -4300 (|#4| |#4|)) (-15 -3558 ((-781) |#4|)) (-15 -3026 ((-781) |#4|)) (IF (|has| |#3| (-6 -4460)) (-15 -3580 ((-654 |#3|) |#4|)) |%noBranch|) (-15 -2293 (|#1| |#4|)) (-15 -1562 (|#4| |#4|)) (-15 -3858 ((-3 |#4| "failed") |#4|)))
-((-4300 ((|#8| |#4|) 20)) (-3580 (((-654 |#3|) |#4|) 29 (|has| |#7| (-6 -4460)))) (-3858 (((-3 |#8| "failed") |#4|) 23)))
-(((-532 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4300 (|#8| |#4|)) (-15 -3858 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4460)) (-15 -3580 ((-654 |#3|) |#4|)) |%noBranch|)) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1008 |#1|) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -532))
-((-3580 (*1 *2 *3) (-12 (|has| *9 (-6 -4460)) (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)) (-5 *2 (-654 *6)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6)) (-4 *10 (-697 *7 *8 *9)))) (-3858 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))) (-4300 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9)) (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6)) (-4 *8 (-382 *7)) (-4 *9 (-382 *7)))))
-(-10 -7 (-15 -4300 (|#8| |#4|)) (-15 -3858 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4460)) (-15 -3580 ((-654 |#3|) |#4|)) |%noBranch|))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781) (-781)) NIL)) (-2283 (($ $ $) NIL)) (-2622 (($ (-612 |#1| |#3|)) NIL) (($ $) NIL)) (-2406 (((-112) $) NIL)) (-4378 (($ $ (-574) (-574)) 21)) (-3144 (($ $ (-574) (-574)) NIL)) (-1827 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3965 (($ $) NIL)) (-1836 (((-112) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2331 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2334 (($ $ (-574) (-612 |#1| |#3|)) NIL)) (-3269 (($ $ (-574) (-612 |#1| |#2|)) NIL)) (-2469 (($ (-781) |#1|) NIL)) (-1430 (($) NIL T CONST)) (-4300 (($ $) 30 (|has| |#1| (-315)))) (-2273 (((-612 |#1| |#3|) $ (-574)) NIL)) (-3558 (((-781) $) 33 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) NIL)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-3026 (((-781) $) 35 (|has| |#1| (-566)))) (-3580 (((-654 (-612 |#1| |#2|)) $) 38 (|has| |#1| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ (-781) (-781) |#1|) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1625 ((|#1| $) 28 (|has| |#1| (-6 (-4461 "*"))))) (-4075 (((-574) $) 10)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) 13)) (-2759 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#1|))) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2796 (((-654 (-654 |#1|)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3858 (((-3 $ "failed") $) 42 (|has| |#1| (-372)))) (-4256 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2125 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL)) (-2783 (((-112) $) NIL)) (-2293 ((|#1| $) 26 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-4239 (((-612 |#1| |#2|) $ (-574)) NIL)) (-2951 (($ (-612 |#1| |#2|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-612 |#1| |#2|) $ (-612 |#1| |#2|)) NIL) (((-612 |#1| |#3|) (-612 |#1| |#3|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-533 |#1| |#2| |#3|) (-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|)) (-1065) (-574) (-574)) (T -533))
-NIL
-(-697 |#1| (-612 |#1| |#3|) (-612 |#1| |#2|))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3261 (((-654 (-1233)) $) 13)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL) (($ (-654 (-1233))) 11)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-534) (-13 (-1099) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -3261 ((-654 (-1233)) $))))) (T -534))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534)))))
-(-13 (-1099) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -3261 ((-654 (-1233)) $))))
-((-2864 (((-112) $ $) NIL)) (-1969 (((-1151) $) 14)) (-4420 (((-1175) $) NIL)) (-1412 (((-516) $) 11)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-535) (-13 (-1099) (-10 -8 (-15 -1412 ((-516) $)) (-15 -1969 ((-1151) $))))) (T -535))
-((-1412 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))))
-(-13 (-1099) (-10 -8 (-15 -1412 ((-516) $)) (-15 -1969 ((-1151) $))))
-((-3962 (((-701 (-1242)) $) 15)) (-2695 (((-701 (-1240)) $) 38)) (-3451 (((-701 (-1239)) $) 29)) (-2383 (((-701 (-559)) $) 12)) (-4039 (((-701 (-557)) $) 42)) (-3682 (((-701 (-556)) $) 33)) (-2584 (((-781) $ (-129)) 54)))
-(((-536 |#1|) (-10 -8 (-15 -2584 ((-781) |#1| (-129))) (-15 -2695 ((-701 (-1240)) |#1|)) (-15 -4039 ((-701 (-557)) |#1|)) (-15 -3451 ((-701 (-1239)) |#1|)) (-15 -3682 ((-701 (-556)) |#1|)) (-15 -3962 ((-701 (-1242)) |#1|)) (-15 -2383 ((-701 (-559)) |#1|))) (-537)) (T -536))
-NIL
-(-10 -8 (-15 -2584 ((-781) |#1| (-129))) (-15 -2695 ((-701 (-1240)) |#1|)) (-15 -4039 ((-701 (-557)) |#1|)) (-15 -3451 ((-701 (-1239)) |#1|)) (-15 -3682 ((-701 (-556)) |#1|)) (-15 -3962 ((-701 (-1242)) |#1|)) (-15 -2383 ((-701 (-559)) |#1|)))
-((-3962 (((-701 (-1242)) $) 12)) (-2695 (((-701 (-1240)) $) 8)) (-3451 (((-701 (-1239)) $) 10)) (-2383 (((-701 (-559)) $) 13)) (-4039 (((-701 (-557)) $) 9)) (-3682 (((-701 (-556)) $) 11)) (-2584 (((-781) $ (-129)) 7)) (-2220 (((-701 (-130)) $) 14)) (-1839 (($ $) 6)))
-(((-537) (-141)) (T -537))
-((-2220 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1242))))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1240))))) (-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781)))))
-(-13 (-175) (-10 -8 (-15 -2220 ((-701 (-130)) $)) (-15 -2383 ((-701 (-559)) $)) (-15 -3962 ((-701 (-1242)) $)) (-15 -3682 ((-701 (-556)) $)) (-15 -3451 ((-701 (-1239)) $)) (-15 -4039 ((-701 (-557)) $)) (-15 -2695 ((-701 (-1240)) $)) (-15 -2584 ((-781) $ (-129)))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) NIL)) (-2426 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 70 (|has| $ (-6 -4462)))) (-1375 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3330 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4462)))) (-2791 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3439 (($ $ $) 23 (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 21 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4462))) (($ $ "rest" $) 24 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) NIL)) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2413 ((|#1| $) NIL)) (-4335 (($) NIL T CONST)) (-2002 (($ $) 28 (|has| $ (-6 -4462)))) (-4427 (($ $) 29)) (-2940 (($ $) 18) (($ $ (-783)) 32)) (-4099 (($ $) 62 (|has| |#1| (-1118)))) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-2281 (((-112) $) NIL)) (-1454 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1873 (((-656 |#1|) $) 27 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 31 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2470 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1383 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1798 (($ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) 58 (|has| |#1| (-1118)))) (-3338 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2504 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) 13) (($ $ (-783)) NIL)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2326 (((-112) $) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 12)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 16)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-1785 (((-576) $ $) NIL)) (-3012 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1558 (((-112) $) 35)) (-3029 (($ $) NIL)) (-1508 (($ $) NIL (|has| $ (-6 -4462)))) (-2550 (((-783) $) NIL)) (-3704 (($ $) 40)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) 36)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 26)) (-3228 (($ $ $) 61) (($ $ |#1|) NIL)) (-4136 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2956 (((-874) $) 50 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) 54 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) 9 (|has| $ (-6 -4461)))))
+(((-532 |#1| |#2|) (-678 |#1|) (-1236) (-576)) (T -532))
+NIL
+(-678 |#1|)
+((-3446 ((|#4| |#4|) 38)) (-3563 (((-783) |#4|) 44)) (-2954 (((-783) |#4|) 45)) (-3772 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4462)))) (-1495 (((-3 |#4| "failed") |#4|) 67)) (-3979 ((|#4| |#4|) 59)) (-2293 ((|#1| |#4|) 58)))
+(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3446 (|#4| |#4|)) (-15 -3563 ((-783) |#4|)) (-15 -2954 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -3772 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2293 (|#1| |#4|)) (-15 -3979 (|#4| |#4|)) (-15 -1495 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533))
+((-1495 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3772 (*1 *2 *3) (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2954 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -3446 (|#4| |#4|)) (-15 -3563 ((-783) |#4|)) (-15 -2954 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -3772 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2293 (|#1| |#4|)) (-15 -3979 (|#4| |#4|)) (-15 -1495 ((-3 |#4| "failed") |#4|)))
+((-3446 ((|#8| |#4|) 20)) (-3772 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4462)))) (-1495 (((-3 |#8| "failed") |#4|) 23)))
+(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3446 (|#8| |#4|)) (-15 -1495 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -3772 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1010 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534))
+((-3772 (*1 *2 *3) (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-1495 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-3446 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))))
+(-10 -7 (-15 -3446 (|#8| |#4|)) (-15 -1495 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -3772 ((-656 |#3|) |#4|)) |%noBranch|))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783) (-783)) NIL)) (-3470 (($ $ $) NIL)) (-3548 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-2052 (((-112) $) NIL)) (-2993 (($ $ (-576) (-576)) 21)) (-2852 (($ $ (-576) (-576)) NIL)) (-1549 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3235 (($ $) NIL)) (-3562 (((-112) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2640 (($ $ (-576) (-576) $) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2663 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-3581 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-1372 (($ (-783) |#1|) NIL)) (-4335 (($) NIL T CONST)) (-3446 (($ $) 30 (|has| |#1| (-317)))) (-3389 (((-614 |#1| |#3|) $ (-576)) NIL)) (-3563 (((-783) $) 33 (|has| |#1| (-568)))) (-2481 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2405 ((|#1| $ (-576) (-576)) NIL)) (-1873 (((-656 |#1|) $) NIL)) (-2954 (((-783) $) 35 (|has| |#1| (-568)))) (-3772 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2199 (((-783) $) NIL)) (-3769 (($ (-783) (-783) |#1|) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3331 ((|#1| $) 28 (|has| |#1| (-6 (-4463 "*"))))) (-1823 (((-576) $) 10)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) 13)) (-4259 (((-576) $) NIL)) (-2929 (($ (-656 (-656 |#1|))) NIL)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1538 (((-656 (-656 |#1|)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1495 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-4230 (($ $ $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1388 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1415 (((-112) $) NIL)) (-2293 ((|#1| $) 26 (|has| |#1| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-4087 (((-614 |#1| |#2|) $ (-576)) NIL)) (-2956 (($ (-614 |#1| |#2|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1067) (-576) (-576)) (T -535))
+NIL
+(-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1565 (((-656 (-1235)) $) 13)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL) (($ (-656 (-1235))) 11)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-536) (-13 (-1101) (-10 -8 (-15 -2956 ($ (-656 (-1235)))) (-15 -1565 ((-656 (-1235)) $))))) (T -536))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))))
+(-13 (-1101) (-10 -8 (-15 -2956 ($ (-656 (-1235)))) (-15 -1565 ((-656 (-1235)) $))))
+((-2869 (((-112) $ $) NIL)) (-2400 (((-1153) $) 14)) (-2148 (((-1177) $) NIL)) (-3080 (((-518) $) 11)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 21) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-537) (-13 (-1101) (-10 -8 (-15 -3080 ((-518) $)) (-15 -2400 ((-1153) $))))) (T -537))
+((-3080 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-537)))))
+(-13 (-1101) (-10 -8 (-15 -3080 ((-518) $)) (-15 -2400 ((-1153) $))))
+((-3202 (((-703 (-1244)) $) 15)) (-1720 (((-703 (-1242)) $) 38)) (-1782 (((-703 (-1241)) $) 29)) (-1866 (((-703 (-561)) $) 12)) (-2736 (((-703 (-559)) $) 42)) (-3556 (((-703 (-558)) $) 33)) (-3185 (((-783) $ (-129)) 54)))
+(((-538 |#1|) (-10 -8 (-15 -3185 ((-783) |#1| (-129))) (-15 -1720 ((-703 (-1242)) |#1|)) (-15 -2736 ((-703 (-559)) |#1|)) (-15 -1782 ((-703 (-1241)) |#1|)) (-15 -3556 ((-703 (-558)) |#1|)) (-15 -3202 ((-703 (-1244)) |#1|)) (-15 -1866 ((-703 (-561)) |#1|))) (-539)) (T -538))
+NIL
+(-10 -8 (-15 -3185 ((-783) |#1| (-129))) (-15 -1720 ((-703 (-1242)) |#1|)) (-15 -2736 ((-703 (-559)) |#1|)) (-15 -1782 ((-703 (-1241)) |#1|)) (-15 -3556 ((-703 (-558)) |#1|)) (-15 -3202 ((-703 (-1244)) |#1|)) (-15 -1866 ((-703 (-561)) |#1|)))
+((-3202 (((-703 (-1244)) $) 12)) (-1720 (((-703 (-1242)) $) 8)) (-1782 (((-703 (-1241)) $) 10)) (-1866 (((-703 (-561)) $) 13)) (-2736 (((-703 (-559)) $) 9)) (-3556 (((-703 (-558)) $) 11)) (-3185 (((-783) $ (-129)) 7)) (-4121 (((-703 (-130)) $) 14)) (-3597 (($ $) 6)))
+(((-539) (-141)) (T -539))
+((-4121 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241))))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(-13 (-175) (-10 -8 (-15 -4121 ((-703 (-130)) $)) (-15 -1866 ((-703 (-561)) $)) (-15 -3202 ((-703 (-1244)) $)) (-15 -3556 ((-703 (-558)) $)) (-15 -1782 ((-703 (-1241)) $)) (-15 -2736 ((-703 (-559)) $)) (-15 -1720 ((-703 (-1242)) $)) (-15 -3185 ((-783) $ (-129)))))
(((-175) . T))
-((-2493 (((-1189 |#1|) (-781)) 115)) (-1644 (((-1284 |#1|) (-1284 |#1|) (-935)) 108)) (-3435 (((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|) 123)) (-4120 (((-1284 |#1|) (-1284 |#1|) (-781)) 53)) (-2835 (((-1284 |#1|) (-935)) 110)) (-4407 (((-1284 |#1|) (-1284 |#1|) (-574)) 30)) (-3414 (((-1189 |#1|) (-1284 |#1|)) 116)) (-4400 (((-1284 |#1|) (-935)) 137)) (-3576 (((-112) (-1284 |#1|)) 120)) (-2608 (((-1284 |#1|) (-1284 |#1|) (-935)) 100)) (-3446 (((-1189 |#1|) (-1284 |#1|)) 131)) (-3507 (((-935) (-1284 |#1|)) 96)) (-1328 (((-1284 |#1|) (-1284 |#1|)) 38)) (-2591 (((-1284 |#1|) (-935) (-935)) 140)) (-1623 (((-1284 |#1|) (-1284 |#1|) (-1136) (-1136)) 29)) (-3889 (((-1284 |#1|) (-1284 |#1|) (-781) (-1136)) 54)) (-1895 (((-1284 (-1284 |#1|)) (-935)) 136)) (-3099 (((-1284 |#1|) (-1284 |#1|) (-1284 |#1|)) 121)) (** (((-1284 |#1|) (-1284 |#1|) (-574)) 67)) (* (((-1284 |#1|) (-1284 |#1|) (-1284 |#1|)) 31)))
-(((-538 |#1|) (-10 -7 (-15 -3435 ((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|)) (-15 -2835 ((-1284 |#1|) (-935))) (-15 -2591 ((-1284 |#1|) (-935) (-935))) (-15 -3414 ((-1189 |#1|) (-1284 |#1|))) (-15 -2493 ((-1189 |#1|) (-781))) (-15 -3889 ((-1284 |#1|) (-1284 |#1|) (-781) (-1136))) (-15 -4120 ((-1284 |#1|) (-1284 |#1|) (-781))) (-15 -1623 ((-1284 |#1|) (-1284 |#1|) (-1136) (-1136))) (-15 -4407 ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 ** ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 * ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -3099 ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -2608 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1644 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1328 ((-1284 |#1|) (-1284 |#1|))) (-15 -3507 ((-935) (-1284 |#1|))) (-15 -3576 ((-112) (-1284 |#1|))) (-15 -1895 ((-1284 (-1284 |#1|)) (-935))) (-15 -4400 ((-1284 |#1|) (-935))) (-15 -3446 ((-1189 |#1|) (-1284 |#1|)))) (-358)) (T -538))
-((-3446 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 *4))) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-538 *4)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-935)) (-5 *1 (-538 *4)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (-1644 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-4407 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-1623 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1136)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-4120 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-538 *4)))) (-3889 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1284 *5)) (-5 *3 (-781)) (-5 *4 (-1136)) (-4 *5 (-358)) (-5 *1 (-538 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4)))) (-2591 (*1 *2 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4)) (-4 *4 (-358)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))) (-4 *4 (-358)) (-5 *2 (-1289)) (-5 *1 (-538 *4)))))
-(-10 -7 (-15 -3435 ((-1289) (-1284 (-654 (-2 (|:| -3079 |#1|) (|:| -2591 (-1136))))) |#1|)) (-15 -2835 ((-1284 |#1|) (-935))) (-15 -2591 ((-1284 |#1|) (-935) (-935))) (-15 -3414 ((-1189 |#1|) (-1284 |#1|))) (-15 -2493 ((-1189 |#1|) (-781))) (-15 -3889 ((-1284 |#1|) (-1284 |#1|) (-781) (-1136))) (-15 -4120 ((-1284 |#1|) (-1284 |#1|) (-781))) (-15 -1623 ((-1284 |#1|) (-1284 |#1|) (-1136) (-1136))) (-15 -4407 ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 ** ((-1284 |#1|) (-1284 |#1|) (-574))) (-15 * ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -3099 ((-1284 |#1|) (-1284 |#1|) (-1284 |#1|))) (-15 -2608 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1644 ((-1284 |#1|) (-1284 |#1|) (-935))) (-15 -1328 ((-1284 |#1|) (-1284 |#1|))) (-15 -3507 ((-935) (-1284 |#1|))) (-15 -3576 ((-112) (-1284 |#1|))) (-15 -1895 ((-1284 (-1284 |#1|)) (-935))) (-15 -4400 ((-1284 |#1|) (-935))) (-15 -3446 ((-1189 |#1|) (-1284 |#1|))))
-((-3962 (((-701 (-1242)) $) NIL)) (-2695 (((-701 (-1240)) $) NIL)) (-3451 (((-701 (-1239)) $) NIL)) (-2383 (((-701 (-559)) $) NIL)) (-4039 (((-701 (-557)) $) NIL)) (-3682 (((-701 (-556)) $) NIL)) (-2584 (((-781) $ (-129)) NIL)) (-2220 (((-701 (-130)) $) 26)) (-4280 (((-1136) $ (-1136)) 31)) (-1452 (((-1136) $) 30)) (-2634 (((-112) $) 20)) (-1680 (($ (-398)) 14) (($ (-1175)) 16)) (-2036 (((-112) $) 27)) (-2951 (((-872) $) 34)) (-1839 (($ $) 28)))
-(((-539) (-13 (-537) (-623 (-872)) (-10 -8 (-15 -1680 ($ (-398))) (-15 -1680 ($ (-1175))) (-15 -2036 ((-112) $)) (-15 -2634 ((-112) $)) (-15 -1452 ((-1136) $)) (-15 -4280 ((-1136) $ (-1136)))))) (T -539))
-((-1680 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))) (-1680 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-539)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-539)))) (-4280 (*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-539)))))
-(-13 (-537) (-623 (-872)) (-10 -8 (-15 -1680 ($ (-398))) (-15 -1680 ($ (-1175))) (-15 -2036 ((-112) $)) (-15 -2634 ((-112) $)) (-15 -1452 ((-1136) $)) (-15 -4280 ((-1136) $ (-1136)))))
-((-2124 (((-1 |#1| |#1|) |#1|) 11)) (-2181 (((-1 |#1| |#1|)) 10)))
-(((-540 |#1|) (-10 -7 (-15 -2181 ((-1 |#1| |#1|))) (-15 -2124 ((-1 |#1| |#1|) |#1|))) (-13 (-736) (-25))) (T -540))
-((-2124 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))) (-2181 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
-(-10 -7 (-15 -2181 ((-1 |#1| |#1|))) (-15 -2124 ((-1 |#1| |#1|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2354 (($ $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-4328 (($ (-781) |#1|) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1785 (($ (-1 (-781) (-781)) $) NIL)) (-1727 ((|#1| $) NIL)) (-1378 (((-781) $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL)))
-(((-541 |#1|) (-13 (-803) (-519 (-781) |#1|)) (-860)) (T -541))
-NIL
-(-13 (-803) (-519 (-781) |#1|))
-((-4321 (((-654 |#2|) (-1189 |#1|) |#3|) 98)) (-2996 (((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|))) 114)) (-4289 (((-1189 |#1|) (-699 |#1|)) 110)))
-(((-542 |#1| |#2| |#3|) (-10 -7 (-15 -4289 ((-1189 |#1|) (-699 |#1|))) (-15 -4321 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -2996 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|))))) (-372) (-372) (-13 (-372) (-858))) (T -542))
-((-2996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1189 *6)) (-1189 *6))) (-4 *6 (-372)) (-5 *2 (-654 (-2 (|:| |outval| *7) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *7)))))) (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6)) (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-4289 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1189 *4)) (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858))))))
-(-10 -7 (-15 -4289 ((-1189 |#1|) (-699 |#1|))) (-15 -4321 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -2996 ((-654 (-2 (|:| |outval| |#2|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#2|))))) (-699 |#1|) |#3| (-1 (-428 (-1189 |#1|)) (-1189 |#1|)))))
-((-2169 (((-701 (-1242)) $ (-1242)) NIL)) (-1712 (((-701 (-559)) $ (-559)) NIL)) (-3976 (((-781) $ (-129)) 39)) (-1365 (((-701 (-130)) $ (-130)) 40)) (-3962 (((-701 (-1242)) $) NIL)) (-2695 (((-701 (-1240)) $) NIL)) (-3451 (((-701 (-1239)) $) NIL)) (-2383 (((-701 (-559)) $) NIL)) (-4039 (((-701 (-557)) $) NIL)) (-3682 (((-701 (-556)) $) NIL)) (-2584 (((-781) $ (-129)) 35)) (-2220 (((-701 (-130)) $) 37)) (-2778 (((-112) $) 27)) (-3007 (((-701 $) (-589) (-968)) 18) (((-701 $) (-501) (-968)) 24)) (-2951 (((-872) $) 48)) (-1839 (($ $) 42)))
-(((-543) (-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3007 ((-701 $) (-501) (-968)))))) (T -543))
-((-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-968)) (-5 *2 (-701 (-543))) (-5 *1 (-543)))))
-(-13 (-777 (-589)) (-623 (-872)) (-10 -8 (-15 -3007 ((-701 $) (-501) (-968)))))
-((-2319 (((-853 (-574))) 12)) (-2332 (((-853 (-574))) 14)) (-1752 (((-843 (-574))) 9)))
-(((-544) (-10 -7 (-15 -1752 ((-843 (-574)))) (-15 -2319 ((-853 (-574)))) (-15 -2332 ((-853 (-574)))))) (T -544))
-((-2332 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-2319 (*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544)))) (-1752 (*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544)))))
-(-10 -7 (-15 -1752 ((-843 (-574)))) (-15 -2319 ((-853 (-574)))) (-15 -2332 ((-853 (-574)))))
-((-3450 (((-546) (-1193)) 15)) (-2296 ((|#1| (-546)) 20)))
-(((-545 |#1|) (-10 -7 (-15 -3450 ((-546) (-1193))) (-15 -2296 (|#1| (-546)))) (-1234)) (T -545))
-((-2296 (*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1234)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-546)) (-5 *1 (-545 *4)) (-4 *4 (-1234)))))
-(-10 -7 (-15 -3450 ((-546) (-1193))) (-15 -2296 (|#1| (-546))))
-((-2864 (((-112) $ $) NIL)) (-2524 (((-1175) $) 55)) (-3331 (((-112) $) 51)) (-3979 (((-1193) $) 52)) (-2100 (((-112) $) 49)) (-3232 (((-1175) $) 50)) (-3668 (($ (-1175)) 56)) (-2995 (((-112) $) NIL)) (-4354 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-2164 (($ $ (-654 (-1193))) 21)) (-2296 (((-52) $) 23)) (-3085 (((-112) $) NIL)) (-4000 (((-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2722 (($ $ (-654 (-1193)) (-1193)) 73)) (-1650 (((-112) $) NIL)) (-2399 (((-227) $) NIL)) (-3780 (($ $) 44)) (-1456 (((-872) $) NIL)) (-4097 (((-112) $ $) NIL)) (-2207 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4282 (((-654 $) $) 30)) (-4235 (((-1193) (-654 $)) 57)) (-1844 (($ (-1175)) NIL) (($ (-1193)) 19) (($ (-574)) 8) (($ (-227)) 28) (($ (-872)) NIL) (($ (-654 $)) 65) (((-1120) $) 12) (($ (-1120)) 13)) (-2440 (((-1193) (-1193) (-654 $)) 60)) (-2951 (((-872) $) 54)) (-3608 (($ $) 59)) (-1408 (($ $) 58)) (-2964 (($ $ (-654 $)) 66)) (-2981 (((-112) $ $) NIL)) (-2370 (((-112) $) 29)) (-2141 (($) 9 T CONST)) (-2153 (($) 11 T CONST)) (-2986 (((-112) $ $) 74)) (-3099 (($ $ $) 82)) (-3074 (($ $ $) 75)) (** (($ $ (-781)) 81) (($ $ (-574)) 80)) (* (($ $ $) 76)) (-2877 (((-574) $) NIL)))
-(((-546) (-13 (-1119 (-1175) (-1193) (-574) (-227) (-872)) (-624 (-1120)) (-10 -8 (-15 -2296 ((-52) $)) (-15 -1844 ($ (-1120))) (-15 -2964 ($ $ (-654 $))) (-15 -2722 ($ $ (-654 (-1193)) (-1193))) (-15 -2164 ($ $ (-654 (-1193)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3099 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 0 ($) -1714) (-15 1 ($) -1714) (-15 -3780 ($ $)) (-15 -2524 ((-1175) $)) (-15 -3668 ($ (-1175))) (-15 -4235 ((-1193) (-654 $))) (-15 -2440 ((-1193) (-1193) (-654 $)))))) (T -546))
-((-2296 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-546)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))) (-2722 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1193)) (-5 *1 (-546)))) (-2164 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-546)))) (-3074 (*1 *1 *1 *1) (-5 *1 (-546))) (* (*1 *1 *1 *1) (-5 *1 (-546))) (-3099 (*1 *1 *1 *1) (-5 *1 (-546))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546)))) (-2141 (*1 *1) (-5 *1 (-546))) (-2153 (*1 *1) (-5 *1 (-546))) (-3780 (*1 *1 *1) (-5 *1 (-546))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1193)) (-5 *1 (-546)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-546))) (-5 *1 (-546)))))
-(-13 (-1119 (-1175) (-1193) (-574) (-227) (-872)) (-624 (-1120)) (-10 -8 (-15 -2296 ((-52) $)) (-15 -1844 ($ (-1120))) (-15 -2964 ($ $ (-654 $))) (-15 -2722 ($ $ (-654 (-1193)) (-1193))) (-15 -2164 ($ $ (-654 (-1193)))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 -3099 ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ (-574))) (-15 (-2141) ($) -1714) (-15 (-2153) ($) -1714) (-15 -3780 ($ $)) (-15 -2524 ((-1175) $)) (-15 -3668 ($ (-1175))) (-15 -4235 ((-1193) (-654 $))) (-15 -2440 ((-1193) (-1193) (-654 $)))))
-((-3299 ((|#2| |#2|) 17)) (-3179 ((|#2| |#2|) 13)) (-4204 ((|#2| |#2| (-574) (-574)) 20)) (-3459 ((|#2| |#2|) 15)))
-(((-547 |#1| |#2|) (-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -4204 (|#2| |#2| (-574) (-574)))) (-13 (-566) (-148)) (-1275 |#1|)) (T -547))
-((-4204 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1275 *4)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1275 *3)))))
-(-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -4204 (|#2| |#2| (-574) (-574))))
-((-3791 (((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193))) 32)) (-3348 (((-654 |#2|) (-966 |#1|) |#3|) 54) (((-654 |#2|) (-1189 |#1|) |#3|) 53)) (-3648 (((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|) 106)))
-(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3348 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -3348 ((-654 |#2|) (-966 |#1|) |#3|)) (-15 -3648 ((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|)) (-15 -3791 ((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193))))) (-462) (-372) (-13 (-372) (-858))) (T -548))
-((-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1193))) (-4 *6 (-372)) (-5 *2 (-654 (-302 (-966 *6)))) (-5 *1 (-548 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))) (-3648 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372)) (-4 *5 (-13 (-372) (-858))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6)) (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
-(-10 -7 (-15 -3348 ((-654 |#2|) (-1189 |#1|) |#3|)) (-15 -3348 ((-654 |#2|) (-966 |#1|) |#3|)) (-15 -3648 ((-654 (-654 |#2|)) (-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)) |#3|)) (-15 -3791 ((-654 (-302 (-966 |#2|))) (-654 |#2|) (-654 (-1193)))))
-((-3992 ((|#2| |#2| |#1|) 17)) (-2756 ((|#2| (-654 |#2|)) 31)) (-3982 ((|#2| (-654 |#2|)) 52)))
-(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2756 (|#2| (-654 |#2|))) (-15 -3982 (|#2| (-654 |#2|))) (-15 -3992 (|#2| |#2| |#1|))) (-315) (-1260 |#1|) |#1| (-1 |#1| |#1| (-781))) (T -549))
-((-3992 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781))) (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1260 *3)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6)) (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
-(-10 -7 (-15 -2756 (|#2| (-654 |#2|))) (-15 -3982 (|#2| (-654 |#2|))) (-15 -3992 (|#2| |#2| |#1|)))
-((-4201 (((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|))) 89) (((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|))) 210)))
-(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|)))) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|))))) (-860) (-803) (-13 (-315) (-148)) (-963 |#3| |#2| |#1|)) (T -550))
-((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-963 *7 *6 *5)) (-5 *2 (-428 (-1189 *8))) (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1189 *8)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7))) (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-963 *7 *6 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4| (-1 (-428 (-1189 |#3|)) (-1189 |#3|)))) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|) (-1 (-428 (-1189 |#3|)) (-1189 |#3|)))))
-((-3299 ((|#4| |#4|) 74)) (-3179 ((|#4| |#4|) 70)) (-4204 ((|#4| |#4| (-574) (-574)) 76)) (-3459 ((|#4| |#4|) 72)))
-(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3179 (|#4| |#4|)) (-15 -3459 (|#4| |#4|)) (-15 -3299 (|#4| |#4|)) (-15 -4204 (|#4| |#4| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1260 |#1|) (-734 |#1| |#2|) (-1275 |#3|)) (T -551))
-((-4204 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-4 *5 (-1260 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2)) (-4 *2 (-1275 *6)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3)) (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5)))))
-(-10 -7 (-15 -3179 (|#4| |#4|)) (-15 -3459 (|#4| |#4|)) (-15 -3299 (|#4| |#4|)) (-15 -4204 (|#4| |#4| (-574) (-574))))
-((-3299 ((|#2| |#2|) 27)) (-3179 ((|#2| |#2|) 23)) (-4204 ((|#2| |#2| (-574) (-574)) 29)) (-3459 ((|#2| |#2|) 25)))
-(((-552 |#1| |#2|) (-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -4204 (|#2| |#2| (-574) (-574)))) (-13 (-372) (-377) (-624 (-574))) (-1275 |#1|)) (T -552))
-((-4204 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3))) (-5 *1 (-552 *4 *2)) (-4 *2 (-1275 *4)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2)) (-4 *2 (-1275 *3)))))
-(-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -4204 (|#2| |#2| (-574) (-574))))
-((-1576 (((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)) 18) (((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|)) 14) (((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|)) 32)))
-(((-553 |#1| |#2|) (-10 -7 (-15 -1576 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1576 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1576 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|)))) (-1065) (-1260 |#1|)) (T -553))
-((-1576 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))) (-1576 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))) (-1576 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1065)) (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1260 *5)))))
-(-10 -7 (-15 -1576 ((-3 (-574) "failed") |#2| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1576 ((-3 (-574) "failed") |#2| |#1| (-574) (-1 (-3 (-574) "failed") |#1|))) (-15 -1576 ((-3 (-574) "failed") |#2| |#1| (-1 (-3 (-574) "failed") |#1|))))
-((-3954 (($ $ $) 84)) (-3171 (((-428 $) $) 52)) (-1704 (((-3 (-574) "failed") $) 64)) (-2216 (((-574) $) 42)) (-3701 (((-3 (-417 (-574)) "failed") $) 79)) (-4391 (((-112) $) 26)) (-3805 (((-417 (-574)) $) 77)) (-3342 (((-112) $) 55)) (-4050 (($ $ $ $) 92)) (-2516 (((-112) $) 17)) (-1371 (($ $ $) 62)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 74)) (-2081 (((-3 $ "failed") $) 69)) (-3781 (($ $) 24)) (-2397 (($ $ $) 90)) (-3792 (($) 65)) (-2035 (($ $) 58)) (-4201 (((-428 $) $) 50)) (-4434 (((-112) $) 15)) (-4220 (((-781) $) 32)) (-3879 (($ $) 11) (($ $ (-781)) NIL)) (-3157 (($ $) 18)) (-1844 (((-574) $) NIL) (((-546) $) 41) (((-903 (-574)) $) 45) (((-388) $) 35) (((-227) $) 38)) (-3070 (((-781)) 9)) (-2539 (((-112) $ $) 21)) (-3751 (($ $ $) 60)))
-(((-554 |#1|) (-10 -8 (-15 -2397 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1844 ((-574) |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2516 ((-112) |#1|)) (-15 -4220 ((-781) |#1|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3070 ((-781)))) (-555)) (T -554))
-((-3070 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555)))))
-(-10 -8 (-15 -2397 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -4434 ((-112) |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -2035 (|#1| |#1|)) (-15 -3751 (|#1| |#1| |#1|)) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1844 ((-574) |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2516 ((-112) |#1|)) (-15 -4220 ((-781) |#1|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -3342 ((-112) |#1|)) (-15 -3070 ((-781))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3954 (($ $ $) 92)) (-3290 (((-3 $ "failed") $ $) 20)) (-2998 (($ $ $ $) 81)) (-2684 (($ $) 57)) (-3171 (((-428 $) $) 58)) (-1374 (((-112) $ $) 134)) (-1370 (((-574) $) 123)) (-3933 (($ $ $) 95)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 115)) (-2216 (((-574) $) 116)) (-2801 (($ $ $) 138)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 113) (((-699 (-574)) (-699 $)) 112) (((-699 (-574)) (-1284 $)) 111)) (-3612 (((-3 $ "failed") $) 37)) (-3701 (((-3 (-417 (-574)) "failed") $) 89)) (-4391 (((-112) $) 91)) (-3805 (((-417 (-574)) $) 90)) (-2835 (($) 88) (($ $) 87)) (-2812 (($ $ $) 137)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 132)) (-3342 (((-112) $) 59)) (-4050 (($ $ $ $) 79)) (-2303 (($ $ $) 93)) (-2516 (((-112) $) 125)) (-1371 (($ $ $) 104)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 107)) (-3943 (((-112) $) 35)) (-1476 (((-112) $) 99)) (-2081 (((-3 $ "failed") $) 101)) (-1935 (((-112) $) 124)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 141)) (-2391 (($ $ $ $) 80)) (-3634 (($ $ $) 126)) (-2976 (($ $ $) 127)) (-3781 (($ $) 83)) (-4109 (($ $) 96)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-2397 (($ $ $) 78)) (-3792 (($) 100 T CONST)) (-1613 (($ $) 85)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2035 (($ $) 105)) (-4201 (((-428 $) $) 56)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 139)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 133)) (-4434 (((-112) $) 98)) (-4220 (((-781) $) 135)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 136)) (-3879 (($ $) 121) (($ $ (-781)) 119)) (-2310 (($ $) 84)) (-3157 (($ $) 86)) (-1844 (((-574) $) 117) (((-546) $) 109) (((-903 (-574)) $) 108) (((-388) $) 103) (((-227) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 114)) (-3070 (((-781)) 32 T CONST)) (-2539 (((-112) $ $) 94)) (-3751 (($ $ $) 106)) (-2981 (((-112) $ $) 9)) (-2644 (($) 97)) (-3750 (((-112) $ $) 45)) (-4412 (($ $ $ $) 82)) (-4107 (($ $) 122)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $) 120) (($ $ (-781)) 118)) (-3042 (((-112) $ $) 129)) (-3020 (((-112) $ $) 130)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 128)) (-3009 (((-112) $ $) 131)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-574) $) 110)))
-(((-555) (-141)) (T -555))
-((-1476 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2644 (*1 *1) (-4 *1 (-555))) (-4109 (*1 *1 *1) (-4 *1 (-555))) (-3933 (*1 *1 *1 *1) (-4 *1 (-555))) (-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2303 (*1 *1 *1 *1) (-4 *1 (-555))) (-3954 (*1 *1 *1 *1) (-4 *1 (-555))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-3701 (*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574))))) (-2835 (*1 *1) (-4 *1 (-555))) (-2835 (*1 *1 *1) (-4 *1 (-555))) (-3157 (*1 *1 *1) (-4 *1 (-555))) (-1613 (*1 *1 *1) (-4 *1 (-555))) (-2310 (*1 *1 *1) (-4 *1 (-555))) (-3781 (*1 *1 *1) (-4 *1 (-555))) (-4412 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2998 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2391 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-4050 (*1 *1 *1 *1 *1) (-4 *1 (-555))) (-2397 (*1 *1 *1 *1) (-4 *1 (-555))))
-(-13 (-1238) (-315) (-830) (-239) (-624 (-574)) (-1054 (-574)) (-649 (-574)) (-624 (-546)) (-624 (-903 (-574))) (-897 (-574)) (-144) (-1038) (-148) (-1168) (-10 -8 (-15 -1476 ((-112) $)) (-15 -4434 ((-112) $)) (-6 -4458) (-15 -2644 ($)) (-15 -4109 ($ $)) (-15 -3933 ($ $ $)) (-15 -2539 ((-112) $ $)) (-15 -2303 ($ $ $)) (-15 -3954 ($ $ $)) (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $)) (-15 -2835 ($)) (-15 -2835 ($ $)) (-15 -3157 ($ $)) (-15 -1613 ($ $)) (-15 -2310 ($ $)) (-15 -3781 ($ $)) (-15 -4412 ($ $ $ $)) (-15 -2998 ($ $ $ $)) (-15 -2391 ($ $ $ $)) (-15 -4050 ($ $ $ $)) (-15 -2397 ($ $ $)) (-6 -4457)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-144) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-546)) . T) ((-624 (-574)) . T) ((-624 (-903 (-574))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0=(-574)) . T) ((-658 $) . T) ((-650 $) . T) ((-649 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-830) . T) ((-858) . T) ((-860) . T) ((-897 (-574)) . T) ((-934) . T) ((-1038) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) . T) ((-1234) . T) ((-1238) . T))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-556) (-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))) (T -556))
-((-1430 (*1 *1) (-5 *1 (-556))))
-(-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))
+((-1605 (((-1191 |#1|) (-783)) 115)) (-1646 (((-1286 |#1|) (-1286 |#1|) (-937)) 108)) (-2870 (((-1291) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) |#1|) 123)) (-2252 (((-1286 |#1|) (-1286 |#1|) (-783)) 53)) (-2840 (((-1286 |#1|) (-937)) 110)) (-2017 (((-1286 |#1|) (-1286 |#1|) (-576)) 30)) (-2625 (((-1191 |#1|) (-1286 |#1|)) 116)) (-1962 (((-1286 |#1|) (-937)) 137)) (-3729 (((-112) (-1286 |#1|)) 120)) (-3404 (((-1286 |#1|) (-1286 |#1|) (-937)) 100)) (-1733 (((-1191 |#1|) (-1286 |#1|)) 131)) (-4261 (((-937) (-1286 |#1|)) 96)) (-1330 (((-1286 |#1|) (-1286 |#1|)) 38)) (-2596 (((-1286 |#1|) (-937) (-937)) 140)) (-3308 (((-1286 |#1|) (-1286 |#1|) (-1138) (-1138)) 29)) (-3667 (((-1286 |#1|) (-1286 |#1|) (-783) (-1138)) 54)) (-4093 (((-1286 (-1286 |#1|)) (-937)) 136)) (-3108 (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 121)) (** (((-1286 |#1|) (-1286 |#1|) (-576)) 67)) (* (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 31)))
+(((-540 |#1|) (-10 -7 (-15 -2870 ((-1291) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) |#1|)) (-15 -2840 ((-1286 |#1|) (-937))) (-15 -2596 ((-1286 |#1|) (-937) (-937))) (-15 -2625 ((-1191 |#1|) (-1286 |#1|))) (-15 -1605 ((-1191 |#1|) (-783))) (-15 -3667 ((-1286 |#1|) (-1286 |#1|) (-783) (-1138))) (-15 -2252 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -3308 ((-1286 |#1|) (-1286 |#1|) (-1138) (-1138))) (-15 -2017 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3108 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3404 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1646 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1330 ((-1286 |#1|) (-1286 |#1|))) (-15 -4261 ((-937) (-1286 |#1|))) (-15 -3729 ((-112) (-1286 |#1|))) (-15 -4093 ((-1286 (-1286 |#1|)) (-937))) (-15 -1962 ((-1286 |#1|) (-937))) (-15 -1733 ((-1191 |#1|) (-1286 |#1|)))) (-360)) (T -540))
+((-1733 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-937)) (-5 *1 (-540 *4)))) (-1330 (*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-1646 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3404 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2017 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3308 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1138)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3667 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1138)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-2596 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))) (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4)))))
+(-10 -7 (-15 -2870 ((-1291) (-1286 (-656 (-2 (|:| -3084 |#1|) (|:| -2596 (-1138))))) |#1|)) (-15 -2840 ((-1286 |#1|) (-937))) (-15 -2596 ((-1286 |#1|) (-937) (-937))) (-15 -2625 ((-1191 |#1|) (-1286 |#1|))) (-15 -1605 ((-1191 |#1|) (-783))) (-15 -3667 ((-1286 |#1|) (-1286 |#1|) (-783) (-1138))) (-15 -2252 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -3308 ((-1286 |#1|) (-1286 |#1|) (-1138) (-1138))) (-15 -2017 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3108 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3404 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1646 ((-1286 |#1|) (-1286 |#1|) (-937))) (-15 -1330 ((-1286 |#1|) (-1286 |#1|))) (-15 -4261 ((-937) (-1286 |#1|))) (-15 -3729 ((-112) (-1286 |#1|))) (-15 -4093 ((-1286 (-1286 |#1|)) (-937))) (-15 -1962 ((-1286 |#1|) (-937))) (-15 -1733 ((-1191 |#1|) (-1286 |#1|))))
+((-3202 (((-703 (-1244)) $) NIL)) (-1720 (((-703 (-1242)) $) NIL)) (-1782 (((-703 (-1241)) $) NIL)) (-1866 (((-703 (-561)) $) NIL)) (-2736 (((-703 (-559)) $) NIL)) (-3556 (((-703 (-558)) $) NIL)) (-3185 (((-783) $ (-129)) NIL)) (-4121 (((-703 (-130)) $) 26)) (-3287 (((-1138) $ (-1138)) 31)) (-1454 (((-1138) $) 30)) (-2370 (((-112) $) 20)) (-2638 (($ (-400)) 14) (($ (-1177)) 16)) (-1800 (((-112) $) 27)) (-2956 (((-874) $) 34)) (-3597 (($ $) 28)))
+(((-541) (-13 (-539) (-625 (-874)) (-10 -8 (-15 -2638 ($ (-400))) (-15 -2638 ($ (-1177))) (-15 -1800 ((-112) $)) (-15 -2370 ((-112) $)) (-15 -1454 ((-1138) $)) (-15 -3287 ((-1138) $ (-1138)))))) (T -541))
+((-2638 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-541)))) (-3287 (*1 *2 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-541)))))
+(-13 (-539) (-625 (-874)) (-10 -8 (-15 -2638 ($ (-400))) (-15 -2638 ($ (-1177))) (-15 -1800 ((-112) $)) (-15 -2370 ((-112) $)) (-15 -1454 ((-1138) $)) (-15 -3287 ((-1138) $ (-1138)))))
+((-2126 (((-1 |#1| |#1|) |#1|) 11)) (-3764 (((-1 |#1| |#1|)) 10)))
+(((-542 |#1|) (-10 -7 (-15 -3764 ((-1 |#1| |#1|))) (-15 -2126 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542))
+((-2126 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-3764 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
+(-10 -7 (-15 -3764 ((-1 |#1| |#1|))) (-15 -2126 ((-1 |#1| |#1|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2847 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4330 (($ (-783) |#1|) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1787 (($ (-1 (-783) (-783)) $) NIL)) (-1830 ((|#1| $) NIL)) (-1380 (((-783) $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 27)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL)))
+(((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-862)) (T -543))
+NIL
+(-13 (-805) (-521 (-783) |#1|))
+((-3635 (((-656 |#2|) (-1191 |#1|) |#3|) 98)) (-2777 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))) 114)) (-3353 (((-1191 |#1|) (-701 |#1|)) 110)))
+(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3353 ((-1191 |#1|) (-701 |#1|))) (-15 -3635 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2777 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544))
+((-2777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860))))))
+(-10 -7 (-15 -3353 ((-1191 |#1|) (-701 |#1|))) (-15 -3635 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2777 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|)))))
+((-3668 (((-703 (-1244)) $ (-1244)) NIL)) (-1701 (((-703 (-561)) $ (-561)) NIL)) (-3358 (((-783) $ (-129)) 39)) (-3901 (((-703 (-130)) $ (-130)) 40)) (-3202 (((-703 (-1244)) $) NIL)) (-1720 (((-703 (-1242)) $) NIL)) (-1782 (((-703 (-1241)) $) NIL)) (-1866 (((-703 (-561)) $) NIL)) (-2736 (((-703 (-559)) $) NIL)) (-3556 (((-703 (-558)) $) NIL)) (-3185 (((-783) $ (-129)) 35)) (-4121 (((-703 (-130)) $) 37)) (-1355 (((-112) $) 27)) (-2886 (((-703 $) (-591) (-970)) 18) (((-703 $) (-503) (-970)) 24)) (-2956 (((-874) $) 48)) (-3597 (($ $) 42)))
+(((-545) (-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -2886 ((-703 $) (-503) (-970)))))) (T -545))
+((-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-970)) (-5 *2 (-703 (-545))) (-5 *1 (-545)))))
+(-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -2886 ((-703 $) (-503) (-970)))))
+((-2323 (((-855 (-576))) 12)) (-2336 (((-855 (-576))) 14)) (-1754 (((-845 (-576))) 9)))
+(((-546) (-10 -7 (-15 -1754 ((-845 (-576)))) (-15 -2323 ((-855 (-576)))) (-15 -2336 ((-855 (-576)))))) (T -546))
+((-2336 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2323 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1754 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))))
+(-10 -7 (-15 -1754 ((-845 (-576)))) (-15 -2323 ((-855 (-576)))) (-15 -2336 ((-855 (-576)))))
+((-1772 (((-548) (-1195)) 15)) (-2299 ((|#1| (-548)) 20)))
+(((-547 |#1|) (-10 -7 (-15 -1772 ((-548) (-1195))) (-15 -2299 (|#1| (-548)))) (-1236)) (T -547))
+((-2299 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1236)))))
+(-10 -7 (-15 -1772 ((-548) (-1195))) (-15 -2299 (|#1| (-548))))
+((-2869 (((-112) $ $) NIL)) (-3803 (((-1177) $) 55)) (-3018 (((-112) $) 51)) (-3984 (((-1195) $) 52)) (-4281 (((-112) $) 49)) (-3237 (((-1177) $) 50)) (-3424 (($ (-1177)) 56)) (-2768 (((-112) $) NIL)) (-2720 (((-112) $) NIL)) (-3899 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-2166 (($ $ (-656 (-1195))) 21)) (-2299 (((-52) $) 23)) (-2265 (((-112) $) NIL)) (-4005 (((-576) $) NIL)) (-3945 (((-1138) $) NIL)) (-2726 (($ $ (-656 (-1195)) (-1195)) 73)) (-2303 (((-112) $) NIL)) (-2404 (((-227) $) NIL)) (-3786 (($ $) 44)) (-1458 (((-874) $) NIL)) (-4102 (((-112) $ $) NIL)) (-2209 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-4284 (((-656 $) $) 30)) (-4237 (((-1195) (-656 $)) 57)) (-1846 (($ (-1177)) NIL) (($ (-1195)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-874)) NIL) (($ (-656 $)) 65) (((-1122) $) 12) (($ (-1122)) 13)) (-2440 (((-1195) (-1195) (-656 $)) 60)) (-2956 (((-874) $) 54)) (-4037 (($ $) 59)) (-1435 (($ $) 58)) (-2451 (($ $ (-656 $)) 66)) (-2617 (((-112) $ $) NIL)) (-1744 (((-112) $) 29)) (-2143 (($) 9 T CONST)) (-2155 (($) 11 T CONST)) (-2991 (((-112) $ $) 74)) (-3108 (($ $ $) 82)) (-3081 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-2882 (((-576) $) NIL)))
+(((-548) (-13 (-1121 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1122)) (-10 -8 (-15 -2299 ((-52) $)) (-15 -1846 ($ (-1122))) (-15 -2451 ($ $ (-656 $))) (-15 -2726 ($ $ (-656 (-1195)) (-1195))) (-15 -2166 ($ $ (-656 (-1195)))) (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -1716) (-15 1 ($) -1716) (-15 -3786 ($ $)) (-15 -3803 ((-1177) $)) (-15 -3424 ($ (-1177))) (-15 -4237 ((-1195) (-656 $))) (-15 -2440 ((-1195) (-1195) (-656 $)))))) (T -548))
+((-2299 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-548)))) (-2451 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-2726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548)))) (-3081 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3108 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2143 (*1 *1) (-5 *1 (-548))) (-2155 (*1 *1) (-5 *1 (-548))) (-3786 (*1 *1 *1) (-5 *1 (-548))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548)))) (-2440 (*1 *2 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548)))))
+(-13 (-1121 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1122)) (-10 -8 (-15 -2299 ((-52) $)) (-15 -1846 ($ (-1122))) (-15 -2451 ($ $ (-656 $))) (-15 -2726 ($ $ (-656 (-1195)) (-1195))) (-15 -2166 ($ $ (-656 (-1195)))) (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2143) ($) -1716) (-15 (-2155) ($) -1716) (-15 -3786 ($ $)) (-15 -3803 ((-1177) $)) (-15 -3424 ($ (-1177))) (-15 -4237 ((-1195) (-656 $))) (-15 -2440 ((-1195) (-1195) (-656 $)))))
+((-3893 ((|#2| |#2|) 17)) (-1938 ((|#2| |#2|) 13)) (-3773 ((|#2| |#2| (-576) (-576)) 20)) (-1877 ((|#2| |#2|) 15)))
+(((-549 |#1| |#2|) (-10 -7 (-15 -1938 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3773 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1277 |#1|)) (T -549))
+((-3773 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1277 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-1938 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))))
+(-10 -7 (-15 -1938 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3773 (|#2| |#2| (-576) (-576))))
+((-2035 (((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195))) 32)) (-3177 (((-656 |#2|) (-968 |#1|) |#3|) 54) (((-656 |#2|) (-1191 |#1|) |#3|) 53)) (-3240 (((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|) 106)))
+(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -3177 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -3177 ((-656 |#2|) (-968 |#1|) |#3|)) (-15 -3240 ((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|)) (-15 -2035 ((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195))))) (-464) (-374) (-13 (-374) (-860))) (T -550))
+((-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-968 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-3240 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -3177 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -3177 ((-656 |#2|) (-968 |#1|) |#3|)) (-15 -3240 ((-656 (-656 |#2|)) (-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)) |#3|)) (-15 -2035 ((-656 (-304 (-968 |#2|))) (-656 |#2|) (-656 (-1195)))))
+((-3504 ((|#2| |#2| |#1|) 17)) (-4224 ((|#2| (-656 |#2|)) 31)) (-3410 ((|#2| (-656 |#2|)) 52)))
+(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4224 (|#2| (-656 |#2|))) (-15 -3410 (|#2| (-656 |#2|))) (-15 -3504 (|#2| |#2| |#1|))) (-317) (-1262 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551))
+((-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(-10 -7 (-15 -4224 (|#2| (-656 |#2|))) (-15 -3410 (|#2| (-656 |#2|))) (-15 -3504 (|#2| |#2| |#1|)))
+((-4205 (((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 210)))
+(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))))) (-862) (-805) (-13 (-317) (-148)) (-965 |#3| |#2| |#1|)) (T -552))
+((-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-965 *7 *6 *5)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-965 *7 *6 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))))
+((-3893 ((|#4| |#4|) 74)) (-1938 ((|#4| |#4|) 70)) (-3773 ((|#4| |#4| (-576) (-576)) 76)) (-1877 ((|#4| |#4|) 72)))
+(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1938 (|#4| |#4|)) (-15 -1877 (|#4| |#4|)) (-15 -3893 (|#4| |#4|)) (-15 -3773 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1262 |#1|) (-736 |#1| |#2|) (-1277 |#3|)) (T -553))
+((-3773 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1277 *6)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-1938 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))))
+(-10 -7 (-15 -1938 (|#4| |#4|)) (-15 -1877 (|#4| |#4|)) (-15 -3893 (|#4| |#4|)) (-15 -3773 (|#4| |#4| (-576) (-576))))
+((-3893 ((|#2| |#2|) 27)) (-1938 ((|#2| |#2|) 23)) (-3773 ((|#2| |#2| (-576) (-576)) 29)) (-1877 ((|#2| |#2|) 25)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -1938 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3773 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1277 |#1|)) (T -554))
+((-3773 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-1938 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))))
+(-10 -7 (-15 -1938 (|#2| |#2|)) (-15 -1877 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3773 (|#2| |#2| (-576) (-576))))
+((-2894 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2894 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2894 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2894 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1067) (-1262 |#1|)) (T -555))
+((-2894 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2894 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2894 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1067)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5)))))
+(-10 -7 (-15 -2894 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2894 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2894 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|))))
+((-3115 (($ $ $) 84)) (-1870 (((-430 $) $) 52)) (-1706 (((-3 (-576) "failed") $) 64)) (-2216 (((-576) $) 42)) (-2456 (((-3 (-419 (-576)) "failed") $) 79)) (-1874 (((-112) $) 26)) (-2183 (((-419 (-576)) $) 77)) (-3124 (((-112) $) 55)) (-2834 (($ $ $ $) 92)) (-3730 (((-112) $) 17)) (-2636 (($ $ $) 62)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 74)) (-2211 (((-3 $ "failed") $) 69)) (-3790 (($ $) 24)) (-1987 (($ $ $) 90)) (-3796 (($) 65)) (-1786 (($ $) 58)) (-4205 (((-430 $) $) 50)) (-2280 (((-112) $) 15)) (-3927 (((-783) $) 32)) (-3884 (($ $) 11) (($ $ (-783)) NIL)) (-3162 (($ $) 18)) (-1846 (((-576) $) NIL) (((-548) $) 41) (((-905 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-3423 (((-783)) 9)) (-3925 (((-112) $ $) 21)) (-2959 (($ $ $) 60)))
+(((-556 |#1|) (-10 -8 (-15 -1987 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1| |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3925 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -2636 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -2959 (|#1| |#1| |#1|)) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1846 ((-576) |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3730 ((-112) |#1|)) (-15 -3927 ((-783) |#1|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -3423 ((-783)))) (-557)) (T -556))
+((-3423 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))))
+(-10 -8 (-15 -1987 (|#1| |#1| |#1|)) (-15 -2834 (|#1| |#1| |#1| |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3925 ((-112) |#1| |#1|)) (-15 -2280 ((-112) |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -2636 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -2959 (|#1| |#1| |#1|)) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1846 ((-576) |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3730 ((-112) |#1|)) (-15 -3927 ((-783) |#1|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -3124 ((-112) |#1|)) (-15 -3423 ((-783))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3115 (($ $ $) 92)) (-3798 (((-3 $ "failed") $ $) 20)) (-2798 (($ $ $ $) 81)) (-2879 (($ $) 57)) (-1870 (((-430 $) $) 58)) (-1323 (((-112) $ $) 134)) (-2627 (((-576) $) 123)) (-3938 (($ $ $) 95)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 115)) (-2216 (((-576) $) 116)) (-2806 (($ $ $) 138)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 113) (((-701 (-576)) (-701 $)) 112) (((-701 (-576)) (-1286 $)) 111)) (-4077 (((-3 $ "failed") $) 37)) (-2456 (((-3 (-419 (-576)) "failed") $) 89)) (-1874 (((-112) $) 91)) (-2183 (((-419 (-576)) $) 90)) (-2840 (($) 88) (($ $) 87)) (-2818 (($ $ $) 137)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 132)) (-3124 (((-112) $) 59)) (-2834 (($ $ $ $) 79)) (-2364 (($ $ $) 93)) (-3730 (((-112) $) 125)) (-2636 (($ $ $) 104)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 107)) (-4192 (((-112) $) 35)) (-4314 (((-112) $) 99)) (-2211 (((-3 $ "failed") $) 101)) (-3327 (((-112) $) 124)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 141)) (-1925 (($ $ $ $) 80)) (-3639 (($ $ $) 126)) (-2571 (($ $ $) 127)) (-3790 (($ $) 83)) (-4114 (($ $) 96)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1987 (($ $ $) 78)) (-3796 (($) 100 T CONST)) (-1615 (($ $) 85)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-1786 (($ $) 105)) (-4205 (((-430 $) $) 56)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 139)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 133)) (-2280 (((-112) $) 98)) (-3927 (((-783) $) 135)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 136)) (-3884 (($ $) 121) (($ $ (-783)) 119)) (-2314 (($ $) 84)) (-3162 (($ $) 86)) (-1846 (((-576) $) 117) (((-548) $) 109) (((-905 (-576)) $) 108) (((-390) $) 103) (((-227) $) 102)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 114)) (-3423 (((-783)) 32 T CONST)) (-3925 (((-112) $ $) 94)) (-2959 (($ $ $) 106)) (-2617 (((-112) $ $) 9)) (-2650 (($) 97)) (-2946 (((-112) $ $) 45)) (-2069 (($ $ $ $) 82)) (-2130 (($ $) 122)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $) 120) (($ $ (-783)) 118)) (-3047 (((-112) $ $) 129)) (-3024 (((-112) $ $) 130)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 128)) (-3014 (((-112) $ $) 131)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 110)))
+(((-557) (-141)) (T -557))
+((-4314 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2650 (*1 *1) (-4 *1 (-557))) (-4114 (*1 *1 *1) (-4 *1 (-557))) (-3938 (*1 *1 *1 *1) (-4 *1 (-557))) (-3925 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2364 (*1 *1 *1 *1) (-4 *1 (-557))) (-3115 (*1 *1 *1 *1) (-4 *1 (-557))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2456 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2840 (*1 *1) (-4 *1 (-557))) (-2840 (*1 *1 *1) (-4 *1 (-557))) (-3162 (*1 *1 *1) (-4 *1 (-557))) (-1615 (*1 *1 *1) (-4 *1 (-557))) (-2314 (*1 *1 *1) (-4 *1 (-557))) (-3790 (*1 *1 *1) (-4 *1 (-557))) (-2069 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2798 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1925 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2834 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1987 (*1 *1 *1 *1) (-4 *1 (-557))))
+(-13 (-1240) (-317) (-832) (-239) (-626 (-576)) (-1056 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-905 (-576))) (-899 (-576)) (-144) (-1040) (-148) (-1170) (-10 -8 (-15 -4314 ((-112) $)) (-15 -2280 ((-112) $)) (-6 -4460) (-15 -2650 ($)) (-15 -4114 ($ $)) (-15 -3938 ($ $ $)) (-15 -3925 ((-112) $ $)) (-15 -2364 ($ $ $)) (-15 -3115 ($ $ $)) (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $)) (-15 -2840 ($)) (-15 -2840 ($ $)) (-15 -3162 ($ $)) (-15 -1615 ($ $)) (-15 -2314 ($ $)) (-15 -3790 ($ $)) (-15 -2069 ($ $ $ $)) (-15 -2798 ($ $ $ $)) (-15 -1925 ($ $ $ $)) (-15 -2834 ($ $ $ $)) (-15 -1987 ($ $ $)) (-6 -4459)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-905 (-576))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-862) . T) ((-899 (-576)) . T) ((-936) . T) ((-1040) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) . T) ((-1236) . T) ((-1240) . T))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-558) (-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))) (T -558))
+((-4335 (*1 *1) (-5 *1 (-558))))
+(-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-557) (-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))) (T -557))
-((-1430 (*1 *1) (-5 *1 (-557))))
-(-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-559) (-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))) (T -559))
+((-4335 (*1 *1) (-5 *1 (-559))))
+(-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-558) (-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))) (T -558))
-((-1430 (*1 *1) (-5 *1 (-558))))
-(-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-560) (-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))) (T -560))
+((-4335 (*1 *1) (-5 *1 (-560))))
+(-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-559) (-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))) (T -559))
-((-1430 (*1 *1) (-5 *1 (-559))))
-(-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-561) (-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))) (T -561))
+((-4335 (*1 *1) (-5 *1 (-561))))
+(-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) NIL)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-560 |#1| |#2| |#3|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))) (T -560))
-NIL
-(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))
-((-2647 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|))) 50)))
-(((-561 |#1| |#2|) (-10 -7 (-15 -2647 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|))))) (-566) (-13 (-27) (-440 |#1|))) (T -561))
-((-2647 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1189 *3) (-1189 *3))) (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3)) (-5 *1 (-561 *6 *3)))))
-(-10 -7 (-15 -2647 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-1 (-1189 |#2|) (-1189 |#2|)))))
-((-3624 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3485 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2709 (((-596 |#5|) |#5| (-1 |#3| |#3|)) 220)))
-(((-562 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2709 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3624 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3485 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-566) (-1054 (-574))) (-13 (-27) (-440 |#1|)) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -562))
-((-3485 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *7 (-1260 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2)) (-4 *2 (-351 *5 *6 *7)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3)) (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
-(-10 -7 (-15 -2709 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3624 ((-596 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3485 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1820 (((-112) (-574) (-574)) 12)) (-4359 (((-574) (-574)) 7)) (-4035 (((-574) (-574) (-574)) 10)))
-(((-563) (-10 -7 (-15 -4359 ((-574) (-574))) (-15 -4035 ((-574) (-574) (-574))) (-15 -1820 ((-112) (-574) (-574))))) (T -563))
-((-1820 (*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))) (-4035 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))) (-4359 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
-(-10 -7 (-15 -4359 ((-574) (-574))) (-15 -4035 ((-574) (-574) (-574))) (-15 -1820 ((-112) (-574) (-574))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3016 ((|#1| $) 67)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-2379 (($ $) 97)) (-2258 (($ $) 80)) (-2354 ((|#1| $) 68)) (-3290 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 79)) (-2358 (($ $) 96)) (-2236 (($ $) 81)) (-2404 (($ $) 95)) (-2280 (($ $) 82)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 75)) (-2216 (((-574) $) 76)) (-3612 (((-3 $ "failed") $) 37)) (-4111 (($ |#1| |#1|) 72)) (-2516 (((-112) $) 66)) (-3004 (($) 107)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 78)) (-1935 (((-112) $) 65)) (-3634 (($ $ $) 113)) (-2976 (($ $ $) 112)) (-3113 (($ $) 104)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3528 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-417 (-574))) 70)) (-2955 ((|#1| $) 69)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-1617 (($ $) 105)) (-2417 (($ $) 94)) (-2288 (($ $) 83)) (-2390 (($ $) 93)) (-2269 (($ $) 84)) (-2368 (($ $) 92)) (-2247 (($ $) 85)) (-2930 (((-112) $ |#1|) 64)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-574)) 74)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 103)) (-2320 (($ $) 91)) (-3750 (((-112) $ $) 45)) (-2429 (($ $) 102)) (-2301 (($ $) 90)) (-2480 (($ $) 101)) (-2340 (($ $) 89)) (-2536 (($ $) 100)) (-2349 (($ $) 88)) (-2468 (($ $) 99)) (-2330 (($ $) 87)) (-2443 (($ $) 98)) (-2312 (($ $) 86)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 110)) (-3020 (((-112) $ $) 109)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 111)) (-3009 (((-112) $ $) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ $) 106) (($ $ (-417 (-574))) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-564 |#1|) (-141) (-13 (-414) (-1219))) (T -564))
-((-3528 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-4111 (*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3528 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))) (-2930 (*1 *2 *1 *3) (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))))
-(-13 (-462) (-860) (-1219) (-1018) (-1054 (-574)) (-10 -8 (-6 -3525) (-15 -3528 ($ |t#1| |t#1|)) (-15 -4111 ($ |t#1| |t#1|)) (-15 -3528 ($ |t#1|)) (-15 -3528 ($ (-417 (-574)))) (-15 -2955 (|t#1| $)) (-15 -2354 (|t#1| $)) (-15 -3016 (|t#1| $)) (-15 -2516 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -2930 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-292) . T) ((-298) . T) ((-462) . T) ((-503) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-860) . T) ((-1018) . T) ((-1054 (-574)) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) . T) ((-1222) . T))
-((-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 9)) (-4141 (($ $) 11)) (-2475 (((-112) $) 20)) (-3612 (((-3 $ "failed") $) 16)) (-3750 (((-112) $ $) 22)))
-(((-565 |#1|) (-10 -8 (-15 -2475 ((-112) |#1|)) (-15 -3750 ((-112) |#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|))) (-566)) (T -565))
-NIL
-(-10 -8 (-15 -2475 ((-112) |#1|)) (-15 -3750 ((-112) |#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2416 ((-2 (|:| -2020 |#1|) (|:| -4446 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-566) (-141)) (T -566))
-((-2853 (*1 *1 *1 *1) (|partial| -4 *1 (-566))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2020 *1) (|:| -4446 *1) (|:| |associate| *1))) (-4 *1 (-566)))) (-4141 (*1 *1 *1) (-4 *1 (-566))) (-3750 (*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
-(-13 (-174) (-38 $) (-298) (-10 -8 (-15 -2853 ((-3 $ "failed") $ $)) (-15 -2416 ((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $)) (-15 -4141 ($ $)) (-15 -3750 ((-112) $ $)) (-15 -2475 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1435 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|)) 38)) (-1774 (((-596 |#2|) |#2| (-1193)) 63)) (-2921 (((-3 |#2| "failed") |#2| (-1193)) 156)) (-2398 (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|))) 159)) (-2485 (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|) 41)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2485 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|)) (-15 -1435 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|))) (-15 -2921 ((-3 |#2| "failed") |#2| (-1193))) (-15 -1774 ((-596 |#2|) |#2| (-1193))) (-15 -2398 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|))))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -567))
-((-2398 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1193)) (-5 *6 (-654 (-622 *3))) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *7))) (-4 *7 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-567 *7 *3)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-2921 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1435 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *6 *3)))) (-2485 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(-10 -7 (-15 -2485 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) |#2|)) (-15 -1435 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1193) (-654 |#2|))) (-15 -2921 ((-3 |#2| "failed") |#2| (-1193))) (-15 -1774 ((-596 |#2|) |#2| (-1193))) (-15 -2398 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1193) (-622 |#2|) (-654 (-622 |#2|)))))
-((-3171 (((-428 |#1|) |#1|) 19)) (-4201 (((-428 |#1|) |#1|) 34)) (-2841 (((-3 |#1| "failed") |#1|) 49)) (-2757 (((-428 |#1|) |#1|) 60)))
-(((-568 |#1|) (-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2757 ((-428 |#1|) |#1|)) (-15 -2841 ((-3 |#1| "failed") |#1|))) (-555)) (T -568))
-((-2841 (*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))) (-2757 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-3171 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))))
-(-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2757 ((-428 |#1|) |#1|)) (-15 -2841 ((-3 |#1| "failed") |#1|)))
-((-3804 (($) 9)) (-2015 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1772 (((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3705 (($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2881 (($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1916 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2445 (((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4294 (((-1289)) 11)))
-(((-569) (-10 -8 (-15 -3804 ($)) (-15 -4294 ((-1289))) (-15 -1772 ((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2881 ($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3705 ($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2015 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2445 ((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1916 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -569))
-((-1916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-2015 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-569)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-569)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-569)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-569)))) (-4294 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-569)))) (-3804 (*1 *1) (-5 *1 (-569))))
-(-10 -8 (-15 -3804 ($)) (-15 -4294 ((-1289))) (-15 -1772 ((-654 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2881 ($ (-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3705 ($ (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2015 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2445 ((-654 (-2 (|:| -3667 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1916 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1173 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2065 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-4172 (((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|)) 35)) (-4332 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|)) 115)) (-3677 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 85) (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|)) 55)) (-1914 (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|))) 92) (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|)) 114)) (-2943 (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|)) 116)) (-2128 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))) 133 (|has| |#3| (-666 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|)) 132 (|has| |#3| (-666 |#2|)))) (-4339 ((|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|) 53)) (-2869 (((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|)) 34)))
-(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -3677 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -3677 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -1914 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|))) (-15 -1914 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4332 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|))) (-15 -4332 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -2943 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|))) (-15 -2943 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4172 ((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|))) (-15 -4339 (|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|)) (-15 -2869 ((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2128 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -2128 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1219)) (-1116)) (T -570))
-((-2128 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1189 *4))) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-2128 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1189 *4)) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1189 (-417 (-1189 *6)))) (-5 *1 (-570 *5 *6 *7)) (-5 *3 (-1189 *6)) (-4 *7 (-1116)))) (-4339 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1189 (-417 (-1189 *2)))) (-5 *4 (-622 *2)) (-4 *2 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1116)))) (-4172 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-1189 (-417 (-1189 *3)))) (-5 *1 (-570 *6 *3 *7)) (-5 *5 (-1189 *3)) (-4 *7 (-1116)))) (-2943 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-417 (-1189 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))) (-2943 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-1189 *2)) (-4 *2 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))) (-4332 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))) (-4332 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1189 *3)) (-4 *3 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))) (-1914 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-1914 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-3677 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))) (-3677 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))))
-(-10 -7 (-15 -3677 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -3677 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -1914 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| |#2| (-1189 |#2|))) (-15 -1914 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2| (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4332 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) |#2| (-1189 |#2|))) (-15 -4332 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -2943 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) |#2| (-1189 |#2|))) (-15 -2943 ((-3 |#2| "failed") |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)) (-622 |#2|) |#2| (-417 (-1189 |#2|)))) (-15 -4172 ((-1189 (-417 (-1189 |#2|))) |#2| (-622 |#2|) (-622 |#2|) (-1189 |#2|))) (-15 -4339 (|#2| (-1189 (-417 (-1189 |#2|))) (-622 |#2|) |#2|)) (-15 -2869 ((-1189 (-417 (-1189 |#2|))) (-1189 |#2|) (-622 |#2|))) (IF (|has| |#3| (-666 |#2|)) (PROGN (-15 -2128 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) |#2| (-1189 |#2|))) (-15 -2128 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-622 |#2|) |#2| (-417 (-1189 |#2|))))) |%noBranch|))
-((-1965 (((-574) (-574) (-781)) 85)) (-2999 (((-574) (-574)) 83)) (-2699 (((-574) (-574)) 81)) (-2444 (((-574) (-574)) 87)) (-1722 (((-574) (-574) (-574)) 65)) (-3071 (((-574) (-574) (-574)) 62)) (-4210 (((-417 (-574)) (-574)) 30)) (-4025 (((-574) (-574)) 34)) (-3768 (((-574) (-574)) 74)) (-1324 (((-574) (-574)) 46)) (-2598 (((-654 (-574)) (-574)) 80)) (-1883 (((-574) (-574) (-574) (-574) (-574)) 58)) (-4033 (((-417 (-574)) (-574)) 55)))
-(((-571) (-10 -7 (-15 -4033 ((-417 (-574)) (-574))) (-15 -1883 ((-574) (-574) (-574) (-574) (-574))) (-15 -2598 ((-654 (-574)) (-574))) (-15 -1324 ((-574) (-574))) (-15 -3768 ((-574) (-574))) (-15 -4025 ((-574) (-574))) (-15 -4210 ((-417 (-574)) (-574))) (-15 -3071 ((-574) (-574) (-574))) (-15 -1722 ((-574) (-574) (-574))) (-15 -2444 ((-574) (-574))) (-15 -2699 ((-574) (-574))) (-15 -2999 ((-574) (-574))) (-15 -1965 ((-574) (-574) (-781))))) (T -571))
-((-1965 (*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1722 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3071 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))) (-1883 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))) (-4033 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
-(-10 -7 (-15 -4033 ((-417 (-574)) (-574))) (-15 -1883 ((-574) (-574) (-574) (-574) (-574))) (-15 -2598 ((-654 (-574)) (-574))) (-15 -1324 ((-574) (-574))) (-15 -3768 ((-574) (-574))) (-15 -4025 ((-574) (-574))) (-15 -4210 ((-417 (-574)) (-574))) (-15 -3071 ((-574) (-574) (-574))) (-15 -1722 ((-574) (-574) (-574))) (-15 -2444 ((-574) (-574))) (-15 -2699 ((-574) (-574))) (-15 -2999 ((-574) (-574))) (-15 -1965 ((-574) (-574) (-781))))
-((-2018 (((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-572 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2018 ((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -572))
-((-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2505 *3))) (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7)))))
-(-10 -7 (-15 -2018 ((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2018 (((-2 (|:| |answer| (-417 |#2|)) (|:| -2505 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 18)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -2018 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2505 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -573))
-((-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| (-417 *6)) (|:| -2505 (-417 *6)) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6)))))
-(-10 -7 (-15 -2018 ((-2 (|:| |answer| (-417 |#2|)) (|:| -2505 (-417 |#2|)) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 30)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 96)) (-4141 (($ $) 97)) (-2475 (((-112) $) NIL)) (-3954 (($ $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2998 (($ $ $ $) 52)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL)) (-3933 (($ $ $) 91)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2801 (($ $ $) 54)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 77) (((-699 (-574)) (-699 $)) 73) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) 93)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL)) (-4391 (((-112) $) NIL)) (-3805 (((-417 (-574)) $) NIL)) (-2835 (($) 79) (($ $) 80)) (-2812 (($ $ $) 90)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-4050 (($ $ $ $) NIL)) (-2303 (($ $ $) 70)) (-2516 (((-112) $) NIL)) (-1371 (($ $ $) NIL)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3943 (((-112) $) 34)) (-1476 (((-112) $) 85)) (-2081 (((-3 $ "failed") $) NIL)) (-1935 (((-112) $) 43)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2391 (($ $ $ $) 55)) (-3634 (($ $ $) 87)) (-2976 (($ $ $) 86)) (-3781 (($ $) NIL)) (-4109 (($ $) 49)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) 69)) (-2397 (($ $ $) NIL)) (-3792 (($) NIL T CONST)) (-1613 (($ $) 38)) (-3940 (((-1136) $) 42)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 128)) (-2887 (($ $ $) 94) (($ (-654 $)) NIL)) (-2035 (($ $) NIL)) (-4201 (((-428 $) $) 114)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 112)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 89)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) 40)) (-3157 (($ $) 36)) (-1844 (((-574) $) 48) (((-546) $) 64) (((-903 (-574)) $) NIL) (((-388) $) 58) (((-227) $) 61) (((-1175) $) 66)) (-2951 (((-872) $) 46) (($ (-574)) 47) (($ $) NIL) (($ (-574)) 47)) (-3070 (((-781)) NIL T CONST)) (-2539 (((-112) $ $) NIL)) (-3751 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2644 (($) 35)) (-3750 (((-112) $ $) NIL)) (-4412 (($ $ $ $) 51)) (-4107 (($ $) 78)) (-2141 (($) 6 T CONST)) (-2153 (($) 31 T CONST)) (-4029 (((-1175) $) 26) (((-1175) $ (-112)) 27) (((-1289) (-832) $) 28) (((-1289) (-832) $ (-112)) 29)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) 50)) (-3020 (((-112) $ $) 81)) (-2986 (((-112) $ $) 33)) (-3031 (((-112) $ $) 82)) (-3009 (((-112) $ $) 10)) (-3090 (($ $) 16) (($ $ $) 39)) (-3074 (($ $ $) 37)) (** (($ $ (-935)) NIL) (($ $ (-781)) 84)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 83) (($ $ $) 53) (($ (-574) $) 83)))
-(((-574) (-13 (-555) (-624 (-1175)) (-838) (-10 -7 (-6 -4446) (-6 -4451) (-6 -4447) (-6 -4441)))) (T -574))
-NIL
-(-13 (-555) (-624 (-1175)) (-838) (-10 -7 (-6 -4446) (-6 -4451) (-6 -4447) (-6 -4441)))
-((-1879 (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079)) 116) (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779)) 118)) (-3083 (((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193)) 195) (((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175)) 194) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079)) 199) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388)) 200) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388)) 201) (((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388))))) 202) (((-1051) (-324 (-388)) (-1110 (-853 (-388)))) 190) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388)) 189) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388)) 185) (((-1051) (-779)) 177) (((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079)) 184)))
-(((-575) (-10 -7 (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079))) (-15 -3083 ((-1051) (-779))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079))) (-15 -3083 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175))) (-15 -3083 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193))))) (T -575))
-((-3083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) (-5 *5 (-1193)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388)))) (-5 *5 (-1175)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *1 (-575)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051)))) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388))))) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1051)) (-5 *1 (-575)))) (-3083 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388)))) (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575)))))
-(-10 -7 (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388) (-1079))) (-15 -3083 ((-1051) (-779))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-1110 (-853 (-388))))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388))) (-15 -3083 ((-1051) (-324 (-388)) (-654 (-1110 (-853 (-388)))) (-388) (-388) (-1079))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))) (-779) (-1079))) (-15 -3083 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1175))) (-15 -3083 ((-3 (-1051) "failed") (-324 (-388)) (-1108 (-853 (-388))) (-1193))))
-((-3527 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|)) 196)) (-3549 (((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|)) 99)) (-3546 (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|) 192)) (-2741 (((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193))) 201)) (-3920 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193)) 210 (|has| |#3| (-666 |#2|)))))
-(((-576 |#1| |#2| |#3|) (-10 -7 (-15 -3549 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -3546 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -3527 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -2741 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3920 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))) (-13 (-440 |#1|) (-27) (-1219)) (-1116)) (T -576))
-((-3920 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-622 *4)) (-5 *6 (-1193)) (-4 *4 (-13 (-440 *7) (-27) (-1219))) (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))) (-2741 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-4 *2 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1116)))) (-3527 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219))) (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1116)))) (-3546 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116)))) (-3549 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219))) (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574)))) (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116)))))
-(-10 -7 (-15 -3549 ((-596 |#2|) |#2| (-622 |#2|) (-622 |#2|))) (-15 -3546 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-622 |#2|) (-622 |#2|) |#2|)) (-15 -3527 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|) (-622 |#2|) (-654 |#2|))) (-15 -2741 ((-3 |#2| "failed") |#2| |#2| |#2| (-622 |#2|) (-622 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1193)))) (IF (|has| |#3| (-666 |#2|)) (-15 -3920 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1895 (-654 |#2|))) |#3| |#2| (-622 |#2|) (-622 |#2|) (-1193))) |%noBranch|))
-((-1591 (((-2 (|:| -2642 |#2|) (|:| |nconst| |#2|)) |#2| (-1193)) 64)) (-2907 (((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|)) 175 (-12 (|has| |#2| (-1155)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)) 154 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))) (-1882 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)) 156 (-12 (|has| |#2| (-639)) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-897 (-574)))))))
-(((-577 |#1| |#2|) (-10 -7 (-15 -1591 ((-2 (|:| -2642 |#2|) (|:| |nconst| |#2|)) |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -1882 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) (-15 -2907 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) (IF (|has| |#2| (-1155)) (-15 -2907 ((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1054 (-574)) (-462) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -577))
-((-2907 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1193)) (-5 *4 (-853 *2)) (-4 *2 (-1155)) (-4 *2 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *1 (-577 *5 *2)))) (-2907 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1882 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574))) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-639)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-1591 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574)))) (-5 *2 (-2 (|:| -2642 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(-10 -7 (-15 -1591 ((-2 (|:| -2642 |#2|) (|:| |nconst| |#2|)) |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (PROGN (IF (|has| |#2| (-639)) (PROGN (-15 -1882 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) (-15 -2907 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) (IF (|has| |#2| (-1155)) (-15 -2907 ((-3 |#2| "failed") |#2| (-1193) (-853 |#2|) (-853 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4102 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))) 41)) (-3083 (((-596 (-417 |#2|)) (-417 |#2|)) 28)) (-4144 (((-3 (-417 |#2|) "failed") (-417 |#2|)) 17)) (-2670 (((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|)) 48)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -3083 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -4144 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -2670 ((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -4102 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -578))
-((-4102 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *5 *6)))) (-2670 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -1401 (-417 *5)) (|:| |coeff| (-417 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))) (-4144 (*1 *2 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148) (-1054 (-574)))) (-5 *1 (-578 *3 *4)))) (-3083 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))))
-(-10 -7 (-15 -3083 ((-596 (-417 |#2|)) (-417 |#2|))) (-15 -4144 ((-3 (-417 |#2|) "failed") (-417 |#2|))) (-15 -2670 ((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-417 |#2|))) (-15 -4102 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-654 (-417 |#2|)))))
-((-3934 (((-3 (-574) "failed") |#1|) 14)) (-3085 (((-112) |#1|) 13)) (-4000 (((-574) |#1|) 9)))
-(((-579 |#1|) (-10 -7 (-15 -4000 ((-574) |#1|)) (-15 -3085 ((-112) |#1|)) (-15 -3934 ((-3 (-574) "failed") |#1|))) (-1054 (-574))) (T -579))
-((-3934 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2)))) (-3085 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1054 (-574))))) (-4000 (*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2)))))
-(-10 -7 (-15 -4000 ((-574) |#1|)) (-15 -3085 ((-112) |#1|)) (-15 -3934 ((-3 (-574) "failed") |#1|)))
-((-4384 (((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|)))) 48)) (-2049 (((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193)) 28)) (-3019 (((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193)) 23)) (-1842 (((-3 (-2 (|:| -1401 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))) 35)))
-(((-580 |#1|) (-10 -7 (-15 -2049 ((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3019 ((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193))) (-15 -4384 ((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|))))) (-15 -1842 ((-3 (-2 (|:| -1401 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))))) (-13 (-566) (-1054 (-574)) (-148))) (T -580))
-((-1842 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-2 (|:| -1401 (-417 (-966 *5))) (|:| |coeff| (-417 (-966 *5))))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5))))) (-4384 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 (-417 (-966 *6)))) (-5 *3 (-417 (-966 *6))) (-4 *6 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6)))) (-3019 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-148))) (-5 *1 (-580 *4)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148))) (-5 *2 (-596 (-417 (-966 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5))))))
-(-10 -7 (-15 -2049 ((-596 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3019 ((-3 (-417 (-966 |#1|)) "failed") (-417 (-966 |#1|)) (-1193))) (-15 -4384 ((-3 (-2 (|:| |mainpart| (-417 (-966 |#1|))) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 (-966 |#1|))) (|:| |logand| (-417 (-966 |#1|))))))) "failed") (-417 (-966 |#1|)) (-1193) (-654 (-417 (-966 |#1|))))) (-15 -1842 ((-3 (-2 (|:| -1401 (-417 (-966 |#1|))) (|:| |coeff| (-417 (-966 |#1|)))) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)))))
-((-2864 (((-112) $ $) 75)) (-4311 (((-112) $) 48)) (-3016 ((|#1| $) 39)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) 79)) (-2379 (($ $) 139)) (-2258 (($ $) 118)) (-2354 ((|#1| $) 37)) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL)) (-2358 (($ $) 141)) (-2236 (($ $) 114)) (-2404 (($ $) 143)) (-2280 (($ $) 122)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 93)) (-2216 (((-574) $) 95)) (-3612 (((-3 $ "failed") $) 78)) (-4111 (($ |#1| |#1|) 35)) (-2516 (((-112) $) 44)) (-3004 (($) 104)) (-3943 (((-112) $) 55)) (-4439 (($ $ (-574)) NIL)) (-1935 (((-112) $) 45)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-3113 (($ $) 106)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-3528 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-417 (-574))) 92)) (-2955 ((|#1| $) 36)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) 81) (($ (-654 $)) NIL)) (-2853 (((-3 $ "failed") $ $) 80)) (-1617 (($ $) 108)) (-2417 (($ $) 147)) (-2288 (($ $) 120)) (-2390 (($ $) 149)) (-2269 (($ $) 124)) (-2368 (($ $) 145)) (-2247 (($ $) 116)) (-2930 (((-112) $ |#1|) 42)) (-2951 (((-872) $) 100) (($ (-574)) 83) (($ $) NIL) (($ (-574)) 83)) (-3070 (((-781)) 102 T CONST)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 161)) (-2320 (($ $) 130)) (-3750 (((-112) $ $) NIL)) (-2429 (($ $) 159)) (-2301 (($ $) 126)) (-2480 (($ $) 157)) (-2340 (($ $) 137)) (-2536 (($ $) 155)) (-2349 (($ $) 135)) (-2468 (($ $) 153)) (-2330 (($ $) 132)) (-2443 (($ $) 151)) (-2312 (($ $) 128)) (-2141 (($) 30 T CONST)) (-2153 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 49)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 47)) (-3090 (($ $) 53) (($ $ $) 54)) (-3074 (($ $ $) 52)) (** (($ $ (-935)) 71) (($ $ (-781)) NIL) (($ $ $) 110) (($ $ (-417 (-574))) 163)) (* (($ (-935) $) 66) (($ (-781) $) NIL) (($ (-574) $) 65) (($ $ $) 61)))
-(((-581 |#1|) (-564 |#1|) (-13 (-414) (-1219))) (T -581))
-NIL
-(-564 |#1|)
-((-3571 (((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574))) 27)))
-(((-582) (-10 -7 (-15 -3571 ((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574)))))) (T -582))
-((-3571 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 (-574)))) (-5 *3 (-1189 (-574))) (-5 *1 (-582)))))
-(-10 -7 (-15 -3571 ((-3 (-654 (-1189 (-574))) "failed") (-654 (-1189 (-574))) (-1189 (-574)))))
-((-2618 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193)) 19)) (-3425 (((-654 (-622 |#2|)) (-654 |#2|) (-1193)) 23)) (-4353 (((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|))) 11)) (-3030 ((|#2| |#2| (-1193)) 59 (|has| |#1| (-566)))) (-1911 ((|#2| |#2| (-1193)) 87 (-12 (|has| |#2| (-292)) (|has| |#1| (-462))))) (-2729 (((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193)) 25)) (-1639 (((-622 |#2|) (-654 (-622 |#2|))) 24)) (-3415 (((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193))) 115 (-12 (|has| |#2| (-292)) (|has| |#2| (-639)) (|has| |#2| (-1054 (-1193))) (|has| |#1| (-624 (-903 (-574)))) (|has| |#1| (-462)) (|has| |#1| (-897 (-574)))))))
-(((-583 |#1| |#2|) (-10 -7 (-15 -2618 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193))) (-15 -1639 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2729 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3425 ((-654 (-622 |#2|)) (-654 |#2|) (-1193))) (IF (|has| |#1| (-566)) (-15 -3030 (|#2| |#2| (-1193))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -1911 (|#2| |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1054 (-1193))) (-15 -3415 ((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1116) (-440 |#1|)) (T -583))
-((-3415 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-596 *3) *3 (-1193))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1193))) (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1054 *4)) (-4 *3 (-440 *7)) (-5 *4 (-1193)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462)) (-4 *7 (-897 (-574))) (-4 *7 (-1116)) (-5 *2 (-596 *3)) (-5 *1 (-583 *7 *3)))) (-1911 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-462)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))) (-3030 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-1193)) (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))) (-4353 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1116)) (-5 *1 (-583 *3 *4)))) (-2729 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1193)) (-5 *2 (-622 *6)) (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *1 (-583 *5 *6)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1116)) (-5 *2 (-622 *5)) (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))) (-2618 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1193)) (-4 *5 (-440 *4)) (-4 *4 (-1116)) (-5 *1 (-583 *4 *5)))))
-(-10 -7 (-15 -2618 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-1193))) (-15 -1639 ((-622 |#2|) (-654 (-622 |#2|)))) (-15 -2729 ((-622 |#2|) (-622 |#2|) (-654 (-622 |#2|)) (-1193))) (-15 -4353 ((-654 (-622 |#2|)) (-654 (-622 |#2|)) (-654 (-622 |#2|)))) (-15 -3425 ((-654 (-622 |#2|)) (-654 |#2|) (-1193))) (IF (|has| |#1| (-566)) (-15 -3030 (|#2| |#2| (-1193))) |%noBranch|) (IF (|has| |#1| (-462)) (IF (|has| |#2| (-292)) (PROGN (-15 -1911 (|#2| |#2| (-1193))) (IF (|has| |#1| (-624 (-903 (-574)))) (IF (|has| |#1| (-897 (-574))) (IF (|has| |#2| (-639)) (IF (|has| |#2| (-1054 (-1193))) (-15 -3415 ((-596 |#2|) |#2| (-1193) (-1 (-596 |#2|) |#2| (-1193)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1193)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1822 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|)) 199)) (-4392 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|))) 174)) (-3013 (((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|))) 171)) (-1843 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2992 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3570 (((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|)) 202)) (-1505 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|)) 205)) (-1687 (((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|)) 88)) (-3152 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3935 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|))) 178)) (-1353 (((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 166)) (-4034 (((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|)) 189)) (-2279 (((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|)) 210)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -2992 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4034 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1822 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -1505 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -2279 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -4392 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3935 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3570 ((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -3013 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1843 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1353 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1687 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3152 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -584))
-((-3152 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-584 *5 *3)))) (-1687 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6)) (|:| |polypart| *6))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-1353 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-633 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112))) (-574) *4)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *1 (-584 *4 *5)))) (-1843 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1260 *4)))) (-3013 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7))) (-4 *7 (-1260 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6 *7)))) (-3570 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1401 (-417 *6)) (|:| |coeff| (-417 *6)))) (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))) (-3935 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3878 *7) (|:| |sol?| (-112))) (-574) *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-4392 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1401 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7)) (-5 *3 (-417 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-584 *7 *8)))) (-2279 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -1401 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1505 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1401 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6)) (-2 (|:| -1401 (-417 *7)) (|:| |coeff| (-417 *7))) "failed")) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-1822 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-4034 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574) *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))) (-2992 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1401 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6))) (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(-10 -7 (-15 -2992 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4034 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1822 ((-2 (|:| |answer| (-596 (-417 |#2|))) (|:| |a0| |#1|)) (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-654 |#1|) "failed") (-574) |#1| |#1|))) (-15 -1505 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-417 |#2|))) (-15 -2279 ((-3 (-2 (|:| |answer| (-417 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-417 |#2|))) (-15 -4392 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-654 (-417 |#2|)))) (-15 -3935 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|))))))) (|:| |a0| |#1|)) "failed") (-417 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|) (-654 (-417 |#2|)))) (-15 -3570 ((-3 (-2 (|:| -1401 (-417 |#2|)) (|:| |coeff| (-417 |#2|))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-417 |#2|))) (-15 -3013 ((-3 (-2 (|:| |mainpart| (-417 |#2|)) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| (-417 |#2|)) (|:| |logand| (-417 |#2|)))))) "failed") (-417 |#2|) (-1 |#2| |#2|) (-654 (-417 |#2|)))) (-15 -1843 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1353 ((-3 (-633 |#1| |#2|) "failed") (-633 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3878 |#1|) (|:| |sol?| (-112))) (-574) |#1|))) (-15 -1687 ((-2 (|:| |ir| (-596 (-417 |#2|))) (|:| |specpart| (-417 |#2|)) (|:| |polypart| |#2|)) (-417 |#2|) (-1 |#2| |#2|))) (-15 -3152 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1792 (((-3 |#2| "failed") |#2| (-1193) (-1193)) 10)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -1792 ((-3 |#2| "failed") |#2| (-1193) (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-1155) (-29 |#1|))) (T -585))
-((-1792 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-1155) (-29 *4))))))
-(-10 -7 (-15 -1792 ((-3 |#2| "failed") |#2| (-1193) (-1193))))
-((-2169 (((-701 (-1242)) $ (-1242)) 26)) (-1712 (((-701 (-559)) $ (-559)) 25)) (-3976 (((-781) $ (-129)) 27)) (-1365 (((-701 (-130)) $ (-130)) 24)) (-3962 (((-701 (-1242)) $) 12)) (-2695 (((-701 (-1240)) $) 8)) (-3451 (((-701 (-1239)) $) 10)) (-2383 (((-701 (-559)) $) 13)) (-4039 (((-701 (-557)) $) 9)) (-3682 (((-701 (-556)) $) 11)) (-2584 (((-781) $ (-129)) 7)) (-2220 (((-701 (-130)) $) 14)) (-1839 (($ $) 6)))
-(((-586) (-141)) (T -586))
-NIL
-(-13 (-537) (-870))
-(((-175) . T) ((-537) . T) ((-870) . T))
-((-2169 (((-701 (-1242)) $ (-1242)) NIL)) (-1712 (((-701 (-559)) $ (-559)) NIL)) (-3976 (((-781) $ (-129)) NIL)) (-1365 (((-701 (-130)) $ (-130)) NIL)) (-3962 (((-701 (-1242)) $) NIL)) (-2695 (((-701 (-1240)) $) NIL)) (-3451 (((-701 (-1239)) $) NIL)) (-2383 (((-701 (-559)) $) NIL)) (-4039 (((-701 (-557)) $) NIL)) (-3682 (((-701 (-556)) $) NIL)) (-2584 (((-781) $ (-129)) NIL)) (-2220 (((-701 (-130)) $) NIL)) (-2634 (((-112) $) NIL)) (-2260 (($ (-398)) 14) (($ (-1175)) 16)) (-2951 (((-872) $) NIL)) (-1839 (($ $) NIL)))
-(((-587) (-13 (-586) (-623 (-872)) (-10 -8 (-15 -2260 ($ (-398))) (-15 -2260 ($ (-1175))) (-15 -2634 ((-112) $))))) (T -587))
-((-2260 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-587)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587)))))
-(-13 (-586) (-623 (-872)) (-10 -8 (-15 -2260 ($ (-398))) (-15 -2260 ($ (-1175))) (-15 -2634 ((-112) $))))
-((-2864 (((-112) $ $) NIL)) (-3231 (($) 7 T CONST)) (-4420 (((-1175) $) NIL)) (-1463 (($) 6 T CONST)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15)) (-1558 (($) 9 T CONST)) (-2776 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11)))
-(((-588) (-13 (-1116) (-10 -8 (-15 -1463 ($) -1714) (-15 -3231 ($) -1714) (-15 -2776 ($) -1714) (-15 -1558 ($) -1714)))) (T -588))
-((-1463 (*1 *1) (-5 *1 (-588))) (-3231 (*1 *1) (-5 *1 (-588))) (-2776 (*1 *1) (-5 *1 (-588))) (-1558 (*1 *1) (-5 *1 (-588))))
-(-13 (-1116) (-10 -8 (-15 -1463 ($) -1714) (-15 -3231 ($) -1714) (-15 -2776 ($) -1714) (-15 -1558 ($) -1714)))
-((-2864 (((-112) $ $) NIL)) (-1814 (((-701 $) (-501)) 21)) (-4420 (((-1175) $) NIL)) (-1507 (($ (-1175)) 14)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 33)) (-3189 (((-215 4 (-130)) $) 24)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 26)))
-(((-589) (-13 (-1116) (-10 -8 (-15 -1507 ($ (-1175))) (-15 -3189 ((-215 4 (-130)) $)) (-15 -1814 ((-701 $) (-501)))))) (T -589))
-((-1507 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-589)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589)))))
-(-13 (-1116) (-10 -8 (-15 -1507 ($ (-1175))) (-15 -3189 ((-215 4 (-130)) $)) (-15 -1814 ((-701 $) (-501)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) 75)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3843 (($ (-1189 (-574)) (-574)) 81)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) 66)) (-1809 (($ $) 43)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1518 (((-781) $) 16)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1500 (((-574)) 37)) (-1673 (((-574) $) 41)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2249 (($ $ (-574)) 24)) (-2853 (((-3 $ "failed") $ $) 71)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) 17)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 72)) (-1773 (((-1173 (-574)) $) 19)) (-3263 (($ $) 26)) (-2951 (((-872) $) 102) (($ (-574)) 61) (($ $) NIL)) (-3070 (((-781)) 15 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) 46)) (-2141 (($) 44 T CONST)) (-2153 (($) 21 T CONST)) (-2986 (((-112) $ $) 52)) (-3090 (($ $) 60) (($ $ $) 48)) (-3074 (($ $ $) 59)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 62) (($ $ $) 63)))
-(((-590 |#1| |#2|) (-879 |#1|) (-574) (-112)) (T -590))
-NIL
-(-879 |#1|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 30)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-3210 (((-1206 (-935) (-781)) (-574)) 59)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 $ "failed") $) 95)) (-2216 (($ $) 94)) (-3114 (($ (-1284 $)) 93)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) 44)) (-2835 (($) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) 61)) (-3502 (((-112) $) NIL)) (-2613 (($ $) NIL) (($ $ (-781)) NIL)) (-3342 (((-112) $) NIL)) (-1518 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-3943 (((-112) $) NIL)) (-4400 (($) 49 (|has| $ (-377)))) (-3576 (((-112) $) NIL (|has| $ (-377)))) (-2608 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-2081 (((-3 $ "failed") $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 $) $ (-935)) NIL (|has| $ (-377))) (((-1189 $) $) 104)) (-3507 (((-935) $) 67)) (-2739 (((-1189 $) $) NIL (|has| $ (-377)))) (-2873 (((-3 (-1189 $) "failed") $ $) NIL (|has| $ (-377))) (((-1189 $) $) NIL (|has| $ (-377)))) (-3200 (($ $ (-1189 $)) NIL (|has| $ (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL T CONST)) (-2591 (($ (-935)) 60)) (-2958 (((-112) $) 87)) (-3940 (((-1136) $) NIL)) (-2975 (($) 28 (|has| $ (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 54)) (-4201 (((-428 $) $) NIL)) (-1676 (((-935)) 86) (((-843 (-935))) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2732 (((-135)) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-3735 (((-935) $) 85) (((-843 (-935)) $) NIL)) (-2966 (((-1189 $)) 102)) (-3951 (($) 66)) (-3883 (($) 50 (|has| $ (-377)))) (-2282 (((-699 $) (-1284 $)) NIL) (((-1284 $) $) 91)) (-1844 (((-574) $) 40)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) 42) (($ $) NIL) (($ (-417 (-574))) NIL)) (-2705 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3070 (((-781)) 51 T CONST)) (-2981 (((-112) $ $) 107)) (-1895 (((-1284 $) (-935)) 97) (((-1284 $)) 96)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) 31 T CONST)) (-2153 (($) 27 T CONST)) (-2535 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 34)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 81) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-591 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-935)) (T -591))
-NIL
-(-13 (-358) (-337 $) (-624 (-574)))
-((-1534 (((-1289) (-1175)) 10)))
-(((-592) (-10 -7 (-15 -1534 ((-1289) (-1175))))) (T -592))
-((-1534 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-592)))))
-(-10 -7 (-15 -1534 ((-1289) (-1175))))
-((-1433 (((-596 |#2|) (-596 |#2|)) 42)) (-2136 (((-654 |#2|) (-596 |#2|)) 44)) (-1849 ((|#2| (-596 |#2|)) 50)))
-(((-593 |#1| |#2|) (-10 -7 (-15 -1433 ((-596 |#2|) (-596 |#2|))) (-15 -2136 ((-654 |#2|) (-596 |#2|))) (-15 -1849 (|#2| (-596 |#2|)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-29 |#1|) (-1219))) (T -593))
-((-1849 (*1 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1219))) (-5 *1 (-593 *4 *2)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1219))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 *5)) (-5 *1 (-593 *4 *5)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1219))) (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-593 *3 *4)))))
-(-10 -7 (-15 -1433 ((-596 |#2|) (-596 |#2|))) (-15 -2136 ((-654 |#2|) (-596 |#2|))) (-15 -1849 (|#2| (-596 |#2|))))
-((-1785 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|)) 30)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -1785 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1785 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1785 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1785 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-372) (-372)) (T -594))
-((-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-594 *5 *6)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1401 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-2 (|:| -1401 *6) (|:| |coeff| *6))) (-5 *1 (-594 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372)) (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6)))))
-(-10 -7 (-15 -1785 ((-596 |#2|) (-1 |#2| |#1|) (-596 |#1|))) (-15 -1785 ((-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1401 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1785 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1785 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3891 (($ (-516) (-607)) 14)) (-3175 (($ (-516) (-607) $) 16)) (-1543 (($ (-516) (-607)) 15)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) 7) (((-1198) $) 6)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-595) (-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -3891 ($ (-516) (-607))) (-15 -1543 ($ (-516) (-607))) (-15 -3175 ($ (-516) (-607) $))))) (T -595))
-((-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-1543 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))) (-3175 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
-(-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -3891 ($ (-516) (-607))) (-15 -1543 ($ (-516) (-607))) (-15 -3175 ($ (-516) (-607) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 76)) (-2216 ((|#1| $) NIL)) (-1401 ((|#1| $) 30)) (-1748 (((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1359 (($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2505 (((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $) 31)) (-4420 (((-1175) $) NIL)) (-2961 (($ |#1| |#1|) 38) (($ |#1| (-1193)) 49 (|has| |#1| (-1054 (-1193))))) (-3940 (((-1136) $) NIL)) (-3251 (((-112) $) 35)) (-3879 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1193)) 89 (|has| |#1| (-912 (-1193))))) (-2951 (((-872) $) 110) (($ |#1|) 29)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 18 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 85)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 16) (($ (-417 (-574)) $) 41) (($ $ (-417 (-574))) NIL)))
-(((-596 |#1|) (-13 (-727 (-417 (-574))) (-1054 |#1|) (-10 -8 (-15 -1359 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1401 (|#1| $)) (-15 -2505 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $)) (-15 -1748 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3251 ((-112) $)) (-15 -2961 ($ |#1| |#1|)) (-15 -3879 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-912 (-1193))) (-15 -3879 (|#1| $ (-1193))) |%noBranch|) (IF (|has| |#1| (-1054 (-1193))) (-15 -2961 ($ |#1| (-1193))) |%noBranch|))) (-372)) (T -596))
-((-1359 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *2)) (|:| |logand| (-1189 *2))))) (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-372)) (-5 *1 (-596 *2)))) (-1401 (*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *3)) (|:| |logand| (-1189 *3))))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))) (-2961 (*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372)))) (-3879 (*1 *2 *1 *3) (-12 (-4 *2 (-372)) (-4 *2 (-912 *3)) (-5 *1 (-596 *2)) (-5 *3 (-1193)))) (-2961 (*1 *1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *1 (-596 *2)) (-4 *2 (-1054 *3)) (-4 *2 (-372)))))
-(-13 (-727 (-417 (-574))) (-1054 |#1|) (-10 -8 (-15 -1359 ($ |#1| (-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) (-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1401 (|#1| $)) (-15 -2505 ((-654 (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 |#1|)) (|:| |logand| (-1189 |#1|)))) $)) (-15 -1748 ((-654 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3251 ((-112) $)) (-15 -2961 ($ |#1| |#1|)) (-15 -3879 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-912 (-1193))) (-15 -3879 (|#1| $ (-1193))) |%noBranch|) (IF (|has| |#1| (-1054 (-1193))) (-15 -2961 ($ |#1| (-1193))) |%noBranch|)))
-((-3405 (((-112) |#1|) 16)) (-2792 (((-3 |#1| "failed") |#1|) 14)) (-2575 (((-2 (|:| -2644 |#1|) (|:| -2754 (-781))) |#1|) 38) (((-3 |#1| "failed") |#1| (-781)) 18)) (-1509 (((-112) |#1| (-781)) 19)) (-3539 ((|#1| |#1|) 42)) (-4296 ((|#1| |#1| (-781)) 45)))
-(((-597 |#1|) (-10 -7 (-15 -1509 ((-112) |#1| (-781))) (-15 -2575 ((-3 |#1| "failed") |#1| (-781))) (-15 -2575 ((-2 (|:| -2644 |#1|) (|:| -2754 (-781))) |#1|)) (-15 -4296 (|#1| |#1| (-781))) (-15 -3405 ((-112) |#1|)) (-15 -2792 ((-3 |#1| "failed") |#1|)) (-15 -3539 (|#1| |#1|))) (-555)) (T -597))
-((-3539 (*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-2792 (*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-3405 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-4296 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-2575 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -2754 (-781)))) (-5 *1 (-597 *3)) (-4 *3 (-555)))) (-2575 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
-(-10 -7 (-15 -1509 ((-112) |#1| (-781))) (-15 -2575 ((-3 |#1| "failed") |#1| (-781))) (-15 -2575 ((-2 (|:| -2644 |#1|) (|:| -2754 (-781))) |#1|)) (-15 -4296 (|#1| |#1| (-781))) (-15 -3405 ((-112) |#1|)) (-15 -2792 ((-3 |#1| "failed") |#1|)) (-15 -3539 (|#1| |#1|)))
-((-3453 (((-1189 |#1|) (-935)) 44)))
-(((-598 |#1|) (-10 -7 (-15 -3453 ((-1189 |#1|) (-935)))) (-358)) (T -598))
-((-3453 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-598 *4)) (-4 *4 (-358)))))
-(-10 -7 (-15 -3453 ((-1189 |#1|) (-935))))
-((-1433 (((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|)))) 27)) (-3083 (((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193)) 34 (|has| |#1| (-148)))) (-2136 (((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|)))) 19)) (-3948 (((-324 |#1|) (-417 (-966 |#1|)) (-1193)) 32 (|has| |#1| (-148)))) (-1849 (((-324 |#1|) (-596 (-417 (-966 |#1|)))) 21)))
-(((-599 |#1|) (-10 -7 (-15 -1433 ((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|))))) (-15 -2136 ((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|))))) (-15 -1849 ((-324 |#1|) (-596 (-417 (-966 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3083 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3948 ((-324 |#1|) (-417 (-966 |#1|)) (-1193)))) |%noBranch|)) (-13 (-462) (-1054 (-574)) (-649 (-574)))) (T -599))
-((-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *5)) (-5 *1 (-599 *5)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-966 *4)))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *4)) (-5 *1 (-599 *4)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-596 (-417 (-966 *4)))) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-596 (-417 (-966 *3)))) (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-599 *3)))))
-(-10 -7 (-15 -1433 ((-596 (-417 (-966 |#1|))) (-596 (-417 (-966 |#1|))))) (-15 -2136 ((-654 (-324 |#1|)) (-596 (-417 (-966 |#1|))))) (-15 -1849 ((-324 |#1|) (-596 (-417 (-966 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3083 ((-3 (-324 |#1|) (-654 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -3948 ((-324 |#1|) (-417 (-966 |#1|)) (-1193)))) |%noBranch|))
-((-2601 (((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574)))) 78) (((-654 (-699 (-574))) (-654 (-935))) 79) (((-699 (-574)) (-654 (-935)) (-919 (-574))) 72)) (-1388 (((-781) (-654 (-935))) 69)))
-(((-600) (-10 -7 (-15 -1388 ((-781) (-654 (-935)))) (-15 -2601 ((-699 (-574)) (-654 (-935)) (-919 (-574)))) (-15 -2601 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -2601 ((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574))))))) (T -600))
-((-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-919 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-919 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-600)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-781)) (-5 *1 (-600)))))
-(-10 -7 (-15 -1388 ((-781) (-654 (-935)))) (-15 -2601 ((-699 (-574)) (-654 (-935)) (-919 (-574)))) (-15 -2601 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -2601 ((-654 (-699 (-574))) (-654 (-935)) (-654 (-919 (-574))))))
-((-1342 (((-654 |#5|) |#5| (-112)) 100)) (-2688 (((-112) |#5| (-654 |#5|)) 34)))
-(((-601 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1342 ((-654 |#5|) |#5| (-112))) (-15 -2688 ((-112) |#5| (-654 |#5|)))) (-13 (-315) (-148)) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1125 |#1| |#2| |#3| |#4|)) (T -601))
-((-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1125 *5 *6 *7 *8)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-601 *5 *6 *7 *8 *3)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-654 *3)) (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1125 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1342 ((-654 |#5|) |#5| (-112))) (-15 -2688 ((-112) |#5| (-654 |#5|))))
-((-2864 (((-112) $ $) NIL)) (-1816 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-602) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))) (T -602))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602)))))
-(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))
-((-2864 (((-112) $ $) NIL (|has| (-145) (-1116)))) (-4286 (($ $) 38)) (-4385 (($ $) NIL)) (-3763 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3686 (((-112) $ $) 67)) (-3664 (((-112) $ $ (-574)) 62)) (-1433 (((-654 $) $ (-145)) 75) (((-654 $) $ (-142)) 76)) (-1492 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4287 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-860))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-145) $ (-574) (-145)) 59 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2632 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1354 (($ $ (-1251 (-574)) $) 57)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-3311 (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) NIL)) (-3707 (((-112) $ $) 88)) (-1452 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 64 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 63) (((-574) (-142) $ (-574)) 66)) (-1871 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 9)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 32 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-145) (-860)))) (-2470 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1764 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2790 (((-574) $) 47 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 89)) (-2698 (((-781) $ $ (-145)) 86)) (-2462 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2017 (($ $) 41)) (-2230 (($ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-2646 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-4420 (((-1175) $) 43 (|has| (-145) (-1116)))) (-1602 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) 27)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) 85 (|has| (-145) (-1116)))) (-2925 (((-145) $) NIL (|has| (-574) (-860)))) (-3748 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1465 (($ $ (-145)) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2445 (((-654 (-145)) $) NIL)) (-2265 (((-112) $) 15)) (-3014 (($) 10)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) 68) (($ $ (-1251 (-574))) 25) (($ $ $) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2663 (($ $ $ (-574)) 81 (|has| $ (-6 -4460)))) (-3157 (($ $) 20)) (-1844 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) NIL)) (-4132 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-654 $)) 82)) (-2951 (($ (-145)) NIL) (((-872) $) 31 (|has| (-145) (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| (-145) (-1116)))) (-2859 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2986 (((-112) $ $) 17 (|has| (-145) (-1116)))) (-3031 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) 18 (|has| (-145) (-860)))) (-2877 (((-781) $) 16 (|has| $ (-6 -4459)))))
-(((-603 |#1|) (-1160) (-574)) (T -603))
-NIL
-(-1160)
-((-3535 (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|)) 32)))
-(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|)) (T -604))
-((-3535 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) (-3535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1110 *3)) (-4 *3 (-963 *7 *6 *4)) (-4 *6 (-803)) (-4 *4 (-860)) (-4 *7 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574)))) (-5 *1 (-604 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2| (-1110 |#4|))) (-15 -3535 ((-2 (|:| |num| |#4|) (|:| |den| (-574))) |#4| |#2|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 71)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-574)) 58) (($ $ (-574) (-574)) 59)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 65)) (-3193 (($ $) 109)) (-3290 (((-3 $ "failed") $ $) NIL)) (-3227 (((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574))) 241)) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 36)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-1674 (((-112) $) NIL)) (-1518 (((-574) $) 63) (((-574) $ (-574)) 64)) (-3943 (((-112) $) NIL)) (-3209 (($ $ (-935)) 83)) (-4408 (($ (-1 |#1| (-574)) $) 80)) (-3873 (((-112) $) 26)) (-4328 (($ |#1| (-574)) 22) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-4304 (($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 13)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3083 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-3899 (((-3 $ "failed") $ $ (-112)) 108)) (-3733 (($ $ $) 116)) (-3940 (((-1136) $) NIL)) (-1655 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 15)) (-3329 (((-1042 (-853 (-574))) $) 14)) (-2249 (($ $ (-574)) 47)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-2207 ((|#1| $ (-574)) 62) (($ $ $) NIL (|has| (-574) (-1128)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3735 (((-574) $) NIL)) (-3263 (($ $) 48)) (-2951 (((-872) $) NIL) (($ (-574)) 29) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 28 (|has| |#1| (-174)))) (-1788 ((|#1| $ (-574)) 61)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) 39 T CONST)) (-3332 ((|#1| $) NIL)) (-3319 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2607 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-3403 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-3636 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-4070 (($ $) 201 (|has| |#1| (-38 (-417 (-574)))))) (-3885 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-1457 (($ $ (-417 (-574))) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2713 (($ $ |#1|) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2678 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-4232 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2809 (($ $) 203 (|has| |#1| (-38 (-417 (-574)))))) (-1799 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-1635 (($ $) 199 (|has| |#1| (-38 (-417 (-574)))))) (-1406 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-4200 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-4387 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-3545 (($ $) 209 (|has| |#1| (-38 (-417 (-574)))))) (-4308 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-4370 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2253 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-1380 (($ $) 213 (|has| |#1| (-38 (-417 (-574)))))) (-2353 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-3211 (($ $) 215 (|has| |#1| (-38 (-417 (-574)))))) (-1971 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-1887 (($ $) 211 (|has| |#1| (-38 (-417 (-574)))))) (-3512 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-3610 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-3902 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2141 (($) 30 T CONST)) (-2153 (($) 40 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2986 (((-112) $ $) 73)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 91) (($ $ $) 72)) (-3074 (($ $ $) 88)) (** (($ $ (-935)) NIL) (($ $ (-781)) 111)) (* (($ (-935) $) 98) (($ (-781) $) 96) (($ (-574) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-605 |#1|) (-13 (-1262 |#1| (-574)) (-10 -8 (-15 -4304 ($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3329 ((-1042 (-853 (-574))) $)) (-15 -1655 ((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3873 ((-112) $)) (-15 -4408 ($ (-1 |#1| (-574)) $)) (-15 -3899 ((-3 $ "failed") $ $ (-112))) (-15 -3193 ($ $)) (-15 -3733 ($ $ $)) (-15 -3227 ((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $)) (-15 -2713 ($ $ |#1|)) (-15 -1457 ($ $ (-417 (-574)))) (-15 -4232 ($ $)) (-15 -2678 ($ $)) (-15 -3636 ($ $)) (-15 -4387 ($ $)) (-15 -2607 ($ $)) (-15 -1406 ($ $)) (-15 -3885 ($ $)) (-15 -1799 ($ $)) (-15 -2253 ($ $)) (-15 -3902 ($ $)) (-15 -4308 ($ $)) (-15 -3512 ($ $)) (-15 -2353 ($ $)) (-15 -1971 ($ $)) (-15 -3403 ($ $)) (-15 -4200 ($ $)) (-15 -3319 ($ $)) (-15 -1635 ($ $)) (-15 -4070 ($ $)) (-15 -2809 ($ $)) (-15 -4370 ($ $)) (-15 -3610 ($ $)) (-15 -3545 ($ $)) (-15 -1887 ($ $)) (-15 -1380 ($ $)) (-15 -3211 ($ $))) |%noBranch|))) (-1065)) (T -605))
-((-3873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-4304 (*1 *1 *2 *3) (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1065)) (-5 *1 (-605 *4)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1065)) (-5 *1 (-605 *3)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-605 *3)))) (-3899 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))) (-3193 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))) (-3733 (*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))) (-3227 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *6)))) (-5 *4 (-1042 (-853 (-574)))) (-5 *5 (-1193)) (-5 *7 (-417 (-574))) (-4 *6 (-1065)) (-5 *2 (-872)) (-5 *1 (-605 *6)))) (-3083 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1065)))) (-4232 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2678 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3636 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4387 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2607 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1406 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3885 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1799 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2253 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4308 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3512 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1971 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4200 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3319 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-2809 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-4370 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3610 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3545 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1887 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-1380 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))) (-3211 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(-13 (-1262 |#1| (-574)) (-10 -8 (-15 -4304 ($ (-1042 (-853 (-574))) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3329 ((-1042 (-853 (-574))) $)) (-15 -1655 ((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $)) (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))))) (-15 -3873 ((-112) $)) (-15 -4408 ($ (-1 |#1| (-574)) $)) (-15 -3899 ((-3 $ "failed") $ $ (-112))) (-15 -3193 ($ $)) (-15 -3733 ($ $ $)) (-15 -3227 ((-872) (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) (-1042 (-853 (-574))) (-1193) |#1| (-417 (-574)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $)) (-15 -2713 ($ $ |#1|)) (-15 -1457 ($ $ (-417 (-574)))) (-15 -4232 ($ $)) (-15 -2678 ($ $)) (-15 -3636 ($ $)) (-15 -4387 ($ $)) (-15 -2607 ($ $)) (-15 -1406 ($ $)) (-15 -3885 ($ $)) (-15 -1799 ($ $)) (-15 -2253 ($ $)) (-15 -3902 ($ $)) (-15 -4308 ($ $)) (-15 -3512 ($ $)) (-15 -2353 ($ $)) (-15 -1971 ($ $)) (-15 -3403 ($ $)) (-15 -4200 ($ $)) (-15 -3319 ($ $)) (-15 -1635 ($ $)) (-15 -4070 ($ $)) (-15 -2809 ($ $)) (-15 -4370 ($ $)) (-15 -3610 ($ $)) (-15 -3545 ($ $)) (-15 -1887 ($ $)) (-15 -1380 ($ $)) (-15 -3211 ($ $))) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 63)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-3597 (($ (-1173 |#1|)) 9)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) 44)) (-1674 (((-112) $) 56)) (-1518 (((-781) $) 61) (((-781) $ (-781)) 60)) (-3943 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ $) 46 (|has| |#1| (-566)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-1173 |#1|) $) 25)) (-3070 (((-781)) 55 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 10 T CONST)) (-2153 (($) 14 T CONST)) (-2986 (((-112) $ $) 24)) (-3090 (($ $) 32) (($ $ $) 16)) (-3074 (($ $ $) 27)) (** (($ $ (-935)) NIL) (($ $ (-781)) 53)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-574)) 38)))
-(((-606 |#1|) (-13 (-1065) (-111 |#1| |#1|) (-10 -8 (-15 -3382 ((-1173 |#1|) $)) (-15 -3597 ($ (-1173 |#1|))) (-15 -1674 ((-112) $)) (-15 -1518 ((-781) $)) (-15 -1518 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|))) (-1065)) (T -606))
-((-3382 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-606 *3)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (-1518 (*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1065)))))
-(-13 (-1065) (-111 |#1| |#1|) (-10 -8 (-15 -3382 ((-1173 |#1|) $)) (-15 -3597 ($ (-1173 |#1|))) (-15 -1674 ((-112) $)) (-15 -1518 ((-781) $)) (-15 -1518 ((-781) $ (-781))) (-15 * ($ $ (-574))) (IF (|has| |#1| (-566)) (-6 (-566)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4380 (($) 8 T CONST)) (-4183 (($) 7 T CONST)) (-2800 (($ $ (-654 $)) 16)) (-4420 (((-1175) $) NIL)) (-3486 (($) 6 T CONST)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) 15) (((-1198) $) 10)) (-2960 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-607) (-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -3486 ($) -1714) (-15 -4183 ($) -1714) (-15 -4380 ($) -1714) (-15 -2960 ($) -1714) (-15 -2800 ($ $ (-654 $)))))) (T -607))
-((-3486 (*1 *1) (-5 *1 (-607))) (-4183 (*1 *1) (-5 *1 (-607))) (-4380 (*1 *1) (-5 *1 (-607))) (-2960 (*1 *1) (-5 *1 (-607))) (-2800 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607)))))
-(-13 (-1116) (-500 (-1198)) (-10 -8 (-15 -3486 ($) -1714) (-15 -4183 ($) -1714) (-15 -4380 ($) -1714) (-15 -2960 ($) -1714) (-15 -2800 ($ $ (-654 $)))))
-((-1785 (((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)) 15)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -1785 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|)))) (-1234) (-1234)) (T -608))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6)))))
-(-10 -7 (-15 -1785 ((-611 |#2|) (-1 |#2| |#1|) (-611 |#1|))))
-((-1785 (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|)) 20) (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|)) 19) (((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|)) 18)))
-(((-609 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|)))) (-1234) (-1234) (-1234)) (T -609))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1173 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-609 *6 *7 *8)))) (-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-611 *8)) (-5 *1 (-609 *6 *7 *8)))))
-(-10 -7 (-15 -1785 ((-611 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-611 |#2|))) (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-611 |#1|) (-1173 |#2|))))
-((-2378 ((|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193))) 57)) (-2278 (((-171 |#2|) |#3|) 122)) (-3124 ((|#3| (-171 |#2|)) 46)) (-1607 ((|#2| |#3|) 21)) (-2922 ((|#3| |#2|) 35)))
-(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -3124 (|#3| (-171 |#2|))) (-15 -1607 (|#2| |#3|)) (-15 -2922 (|#3| |#2|)) (-15 -2278 ((-171 |#2|) |#3|)) (-15 -2378 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193))))) (-566) (-13 (-440 |#1|) (-1018) (-1219)) (-13 (-440 (-171 |#1|)) (-1018) (-1219))) (T -610))
-((-2378 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1193))) (-4 *2 (-13 (-440 (-171 *5)) (-1018) (-1219))) (-4 *5 (-566)) (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1018) (-1219))))) (-2278 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))) (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1018) (-1219))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) (-5 *1 (-610 *4 *2 *3)) (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))) (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219))) (-5 *1 (-610 *4 *5 *2)))))
-(-10 -7 (-15 -3124 (|#3| (-171 |#2|))) (-15 -1607 (|#2| |#3|)) (-15 -2922 (|#3| |#2|)) (-15 -2278 ((-171 |#2|) |#3|)) (-15 -2378 (|#3| |#3| (-654 (-622 |#3|)) (-654 (-1193)))))
-((-2173 (($ (-1 (-112) |#1|) $) 17)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) |#1|) 9)) (-2149 (($ (-1 (-112) |#1|) $) 13)) (-2159 (($ (-1 (-112) |#1|) $) 15)) (-2963 (((-1173 |#1|) $) 18)) (-2951 (((-872) $) NIL)))
-(((-611 |#1|) (-13 (-623 (-872)) (-10 -8 (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2159 ($ (-1 (-112) |#1|) $)) (-15 -2173 ($ (-1 (-112) |#1|) $)) (-15 -2101 ($ (-1 |#1| |#1|) |#1|)) (-15 -2963 ((-1173 |#1|) $)))) (-1234)) (T -611))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2159 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2101 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1234)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2159 ($ (-1 (-112) |#1|) $)) (-15 -2173 ($ (-1 (-112) |#1|) $)) (-15 -2101 ($ (-1 |#1| |#1|) |#1|)) (-15 -2963 ((-1173 |#1|) $))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781)) NIL (|has| |#1| (-23)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1901 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-2302 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3936 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2523 (($ $ $) NIL (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-612 |#1| |#2|) (-1282 |#1|) (-1234) (-574)) (T -612))
-NIL
-(-1282 |#1|)
-((-2620 (((-1289) $ |#2| |#2|) 35)) (-2761 ((|#2| $) 23)) (-2790 ((|#2| $) 21)) (-2462 (($ (-1 |#3| |#3|) $) 32)) (-1785 (($ (-1 |#3| |#3|) $) 30)) (-2925 ((|#3| $) 26)) (-1465 (($ $ |#3|) 33)) (-3542 (((-112) |#3| $) 17)) (-2445 (((-654 |#3|) $) 15)) (-2207 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-613 |#1| |#2| |#3|) (-10 -8 (-15 -2620 ((-1289) |#1| |#2| |#2|)) (-15 -1465 (|#1| |#1| |#3|)) (-15 -2925 (|#3| |#1|)) (-15 -2761 (|#2| |#1|)) (-15 -2790 (|#2| |#1|)) (-15 -3542 ((-112) |#3| |#1|)) (-15 -2445 ((-654 |#3|) |#1|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|))) (-614 |#2| |#3|) (-1116) (-1234)) (T -613))
-NIL
-(-10 -8 (-15 -2620 ((-1289) |#1| |#2| |#2|)) (-15 -1465 (|#1| |#1| |#3|)) (-15 -2925 (|#3| |#1|)) (-15 -2761 (|#2| |#1|)) (-15 -2790 (|#2| |#1|)) (-15 -3542 ((-112) |#3| |#1|)) (-15 -2445 ((-654 |#3|) |#1|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#2| (-1116)))) (-2620 (((-1289) $ |#1| |#1|) 41 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-2473 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 52)) (-1871 (((-654 |#2|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-2761 ((|#1| $) 44 (|has| |#1| (-860)))) (-1764 (((-654 |#2|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-2790 ((|#1| $) 45 (|has| |#1| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#2| (-1116)))) (-1583 (((-654 |#1|) $) 47)) (-1470 (((-112) |#1| $) 48)) (-3940 (((-1136) $) 21 (|has| |#2| (-1116)))) (-2925 ((|#2| $) 43 (|has| |#1| (-860)))) (-1465 (($ $ |#2|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 27 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 26 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 24 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3949 (((-781) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4459))) (((-781) |#2| $) 29 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#2| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#2| (-1116)))) (-2859 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#2| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-614 |#1| |#2|) (-141) (-1116) (-1234)) (T -614))
-((-2445 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-654 *4)))) (-1470 (*1 *2 *3 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-654 *3)))) (-3542 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1116)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116)) (-4 *2 (-860)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *3 (-860)) (-4 *2 (-1234)))) (-1465 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234)))) (-2620 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234)) (-5 *2 (-1289)))))
-(-13 (-499 |t#2|) (-296 |t#1| |t#2|) (-10 -8 (-15 -2445 ((-654 |t#2|) $)) (-15 -1470 ((-112) |t#1| $)) (-15 -1583 ((-654 |t#1|) $)) (IF (|has| |t#2| (-1116)) (IF (|has| $ (-6 -4459)) (-15 -3542 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2790 (|t#1| $)) (-15 -2761 (|t#1| $)) (-15 -2925 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -1465 ($ $ |t#2|)) (-15 -2620 ((-1289) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1116)) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872)))) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-1116) |has| |#2| (-1116)) ((-1234) . T))
-((-2951 (((-872) $) 19) (($ (-130)) 13) (((-130) $) 14)))
-(((-615) (-13 (-623 (-872)) (-500 (-130)))) (T -615))
-NIL
-(-13 (-623 (-872)) (-500 (-130)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) NIL) (((-1198) $) NIL) (((-1233) $) 14) (($ (-654 (-1233))) 13)) (-4281 (((-654 (-1233)) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-616) (-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -4281 ((-654 (-1233)) $))))) (T -616))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616)))))
-(-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-654 (-1233)))) (-15 -4281 ((-654 (-1233)) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2020 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1955 (((-1284 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1284 (-699 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4022 (((-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1430 (($) NIL T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4272 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3516 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2984 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2287 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2339 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2266 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3344 (($ $ (-935)) NIL)) (-2104 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4316 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3288 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1668 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4306 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3114 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1284 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3612 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3558 (((-935)) NIL (|has| |#2| (-376 |#1|)))) (-1837 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1855 (($ $ (-935)) NIL)) (-2183 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3630 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3226 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3988 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1542 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1603 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3323 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2808 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3532 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3484 (($ $ (-935)) NIL)) (-4273 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1323 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2816 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1479 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2650 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4420 (((-1175) $) NIL)) (-1806 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2556 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3035 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3940 (((-1136) $) NIL)) (-1769 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2207 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-2282 (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $) (-1284 $)) NIL (|has| |#2| (-376 |#1|))) (((-1284 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1844 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3385 (((-654 (-966 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-966 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3082 (($ $ $) NIL)) (-3642 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2951 (((-872) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL (|has| |#2| (-427 |#1|)))) (-1899 (((-654 (-1284 |#1|))) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2362 (($ $ $ $) NIL)) (-4358 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2912 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2030 (($ $ $) NIL)) (-2640 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3247 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2528 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 24)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-617 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -617))
-((-2951 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3)))))
-(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-2772 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) 39)) (-3752 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL) (($) NIL)) (-2620 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-1175) |#1|) 49)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#1| "failed") (-1175) $) 52)) (-1430 (($) NIL T CONST)) (-1426 (($ $ (-1175)) 25)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2175 (((-3 |#1| "failed") (-1175) $) 53) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (|has| $ (-6 -4459)))) (-3311 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-3455 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) 38)) (-2473 ((|#1| $ (-1175) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-1175)) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-3724 (($ $) 54)) (-1683 (($ (-398)) 23) (($ (-398) (-1175)) 22)) (-2039 (((-398) $) 40)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-1175) $) NIL (|has| (-1175) (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459))) (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2790 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-1772 (((-654 (-1175)) $) 45)) (-2968 (((-112) (-1175) $) NIL)) (-2188 (((-1175) $) 41)) (-1759 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1583 (((-654 (-1175)) $) NIL)) (-1470 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) NIL (|has| (-1175) (-860)))) (-3748 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 43)) (-2207 ((|#1| $ (-1175) |#1|) NIL) ((|#1| $ (-1175)) 48)) (-1734 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL) (($) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2951 (((-872) $) 21)) (-1839 (($ $) 26)) (-2981 (((-112) $ $) NIL)) (-3703 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-618 |#1|) (-13 (-373 (-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-1210 (-1175) |#1|) (-10 -8 (-6 -4459) (-15 -3724 ($ $)))) (-1116)) (T -618))
-((-3724 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1116)))))
-(-13 (-373 (-398) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-1210 (-1175) |#1|) (-10 -8 (-6 -4459) (-15 -3724 ($ $))))
-((-2333 (((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 16)) (-1772 (((-654 |#2|) $) 20)) (-2968 (((-112) |#2| $) 12)))
-(((-619 |#1| |#2| |#3|) (-10 -8 (-15 -1772 ((-654 |#2|) |#1|)) (-15 -2968 ((-112) |#2| |#1|)) (-15 -2333 ((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|))) (-620 |#2| |#3|) (-1116) (-1116)) (T -619))
-NIL
-(-10 -8 (-15 -1772 ((-654 |#2|) |#1|)) (-15 -2968 ((-112) |#2| |#1|)) (-15 -2333 ((-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) 62)) (-1430 (($) 7 T CONST)) (-1573 (($ $) 59 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-1772 (((-654 |#1|) $) 64)) (-2968 (((-112) |#1| $) 65)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41)) (-3940 (((-1136) $) 21 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52)) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-1734 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51)) (-2951 (((-872) $) 18 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-620 |#1| |#2|) (-141) (-1116) (-1116)) (T -620))
-((-2968 (*1 *2 *3 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-112)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-5 *2 (-654 *3)))) (-2175 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2170 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(-13 (-231 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))) (-10 -8 (-15 -2968 ((-112) |t#1| $)) (-15 -1772 ((-654 |t#1|) $)) (-15 -2175 ((-3 |t#2| "failed") |t#1| $)) (-15 -2170 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) ((-623 (-872)) -2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-499 #0#) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-1116) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) ((-1234) . T))
-((-3202 (((-622 |#2|) |#1|) 17)) (-3389 (((-3 |#1| "failed") (-622 |#2|)) 21)))
-(((-621 |#1| |#2|) (-10 -7 (-15 -3202 ((-622 |#2|) |#1|)) (-15 -3389 ((-3 |#1| "failed") (-622 |#2|)))) (-1116) (-1116)) (T -621))
-((-3389 (*1 *2 *3) (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) (-5 *1 (-621 *2 *4)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))))
-(-10 -7 (-15 -3202 ((-622 |#2|) |#1|)) (-15 -3389 ((-3 |#1| "failed") (-622 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-3557 (((-3 (-1193) "failed") $) 46)) (-2625 (((-1289) $ (-781)) 22)) (-1452 (((-781) $) 20)) (-4150 (((-115) $) 9)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1782 (($ (-115) (-654 |#1|) (-781)) 32) (($ (-1193)) 33)) (-1575 (((-112) $ (-115)) 15) (((-112) $ (-1193)) 13)) (-1846 (((-781) $) 17)) (-3940 (((-1136) $) NIL)) (-1844 (((-903 (-574)) $) 95 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 102 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 88 (|has| |#1| (-624 (-546))))) (-2951 (((-872) $) 72)) (-2981 (((-112) $ $) NIL)) (-4310 (((-654 |#1|) $) 19)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 51)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53)))
-(((-622 |#1|) (-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -4310 ((-654 |#1|) $)) (-15 -1846 ((-781) $)) (-15 -1782 ($ (-115) (-654 |#1|) (-781))) (-15 -1782 ($ (-1193))) (-15 -3557 ((-3 (-1193) "failed") $)) (-15 -1575 ((-112) $ (-115))) (-15 -1575 ((-112) $ (-1193))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-1116)) (T -622))
-((-4150 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1782 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1116)) (-5 *1 (-622 *5)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-3557 (*1 *2 *1) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116)))))
-(-13 (-133) (-860) (-895 |#1|) (-10 -8 (-15 -4150 ((-115) $)) (-15 -4310 ((-654 |#1|) $)) (-15 -1846 ((-781) $)) (-15 -1782 ($ (-115) (-654 |#1|) (-781))) (-15 -1782 ($ (-1193))) (-15 -3557 ((-3 (-1193) "failed") $)) (-15 -1575 ((-112) $ (-115))) (-15 -1575 ((-112) $ (-1193))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
-((-2951 ((|#1| $) 6)))
-(((-623 |#1|) (-141) (-1234)) (T -623))
-((-2951 (*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1234)))))
-(-13 (-10 -8 (-15 -2951 (|t#1| $))))
-((-1844 ((|#1| $) 6)))
-(((-624 |#1|) (-141) (-1234)) (T -624))
-((-1844 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1234)))))
-(-13 (-10 -8 (-15 -1844 (|t#1| $))))
-((-2011 (((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)) 15) (((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 16)))
-(((-625 |#1| |#2|) (-10 -7 (-15 -2011 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -2011 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|)))) (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -625))
-((-2011 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-1189 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))) (-2011 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-1189 (-417 *5))) (-5 *1 (-625 *4 *5)) (-5 *3 (-417 *5)))))
-(-10 -7 (-15 -2011 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))) (-15 -2011 ((-3 (-1189 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 (-428 |#2|) |#2|))))
-((-2951 (($ |#1|) 6)))
-(((-626 |#1|) (-141) (-1234)) (T -626))
-((-2951 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1234)))))
-(-13 (-10 -8 (-15 -2951 ($ |t#1|))))
-((-2864 (((-112) $ $) NIL)) (-2040 (($) 14 T CONST)) (-1569 (($) 15 T CONST)) (-2106 (($ $ $) 29)) (-2084 (($ $) 27)) (-4420 (((-1175) $) NIL)) (-3335 (($ $ $) 30)) (-3940 (((-1136) $) NIL)) (-2896 (($) 11 T CONST)) (-2728 (($ $ $) 31)) (-2951 (((-872) $) 35)) (-2130 (((-112) $ (|[\|\|]| -2896)) 24) (((-112) $ (|[\|\|]| -2040)) 26) (((-112) $ (|[\|\|]| -1569)) 21)) (-2981 (((-112) $ $) NIL)) (-2095 (($ $ $) 28)) (-2986 (((-112) $ $) 18)))
-(((-627) (-13 (-983) (-10 -8 (-15 -2040 ($) -1714) (-15 -2130 ((-112) $ (|[\|\|]| -2896))) (-15 -2130 ((-112) $ (|[\|\|]| -2040))) (-15 -2130 ((-112) $ (|[\|\|]| -1569)))))) (T -627))
-((-2040 (*1 *1) (-5 *1 (-627))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2040)) (-5 *2 (-112)) (-5 *1 (-627)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1569)) (-5 *2 (-112)) (-5 *1 (-627)))))
-(-13 (-983) (-10 -8 (-15 -2040 ($) -1714) (-15 -2130 ((-112) $ (|[\|\|]| -2896))) (-15 -2130 ((-112) $ (|[\|\|]| -2040))) (-15 -2130 ((-112) $ (|[\|\|]| -1569)))))
-((-1844 (($ |#1|) 6)))
-(((-628 |#1|) (-141) (-1234)) (T -628))
-((-1844 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1234)))))
-(-13 (-10 -8 (-15 -1844 ($ |t#1|))))
-((-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10)))
-(((-629 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-630 |#2|) (-1065)) (T -629))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 41)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-630 |#1|) (-141) (-1065)) (T -630))
-((-2951 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1065)))))
-(-13 (-1065) (-658 |t#1|) (-10 -8 (-15 -2951 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-736) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1370 (((-574) $) NIL (|has| |#1| (-858)))) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-2516 (((-112) $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $) NIL)) (-2970 ((|#1| $) 13)) (-1935 (((-112) $) NIL (|has| |#1| (-858)))) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-2976 (($ $ $) NIL (|has| |#1| (-858)))) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2980 ((|#3| $) 15)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL)) (-3070 (((-781)) 20 T CONST)) (-2981 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) NIL T CONST)) (-2153 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3099 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-631 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3099 ($ $ |#3|)) (-15 -3099 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2980 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -631))
-((-3099 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3099 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2980 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (-15 -3099 ($ $ |#3|)) (-15 -3099 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2980 (|#3| $))))
-((-1564 ((|#2| |#2| (-1193) (-1193)) 16)))
-(((-632 |#1| |#2|) (-10 -7 (-15 -1564 (|#2| |#2| (-1193) (-1193)))) (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-973) (-29 |#1|))) (T -632))
-((-1564 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-29 *4))))))
-(-10 -7 (-15 -1564 (|#2| |#2| (-1193) (-1193))))
-((-2864 (((-112) $ $) 64)) (-4311 (((-112) $) 58)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1874 ((|#1| $) 55)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2822 (((-2 (|:| -3068 $) (|:| -3569 (-417 |#2|))) (-417 |#2|)) 111 (|has| |#1| (-372)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 27)) (-3612 (((-3 $ "failed") $) 88)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1518 (((-574) $) 22)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) 40)) (-4328 (($ |#1| (-574)) 24)) (-1378 ((|#1| $) 57)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) 101 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) 93)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-4220 (((-781) $) 115 (|has| |#1| (-372)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 114 (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-3735 (((-574) $) 38)) (-1844 (((-417 |#2|) $) 47)) (-2951 (((-872) $) 69) (($ (-574)) 35) (($ $) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 34) (($ |#2|) 25)) (-1788 ((|#1| $ (-574)) 72)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 9 T CONST)) (-2153 (($) 14 T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) 21)) (-3090 (($ $) 51) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 29) (($ $ $) 49)))
-(((-633 |#1| |#2|) (-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1054 |#2|) (-10 -8 (-15 -3873 ((-112) $)) (-15 -3735 ((-574) $)) (-15 -1518 ((-574) $)) (-15 -1402 ($ $)) (-15 -1378 (|#1| $)) (-15 -1874 (|#1| $)) (-15 -1788 (|#1| $ (-574))) (-15 -4328 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2822 ((-2 (|:| -3068 $) (|:| -3569 (-417 |#2|))) (-417 |#2|)))) |%noBranch|))) (-566) (-1260 |#1|)) (T -633))
-((-3873 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-3735 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-1518 (*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4)) (-4 *4 (-1260 *3)))) (-1402 (*1 *1 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-1378 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-1874 (*1 *2 *1) (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1260 *2)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4)) (-4 *4 (-1260 *2)))) (-2822 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -3068 (-633 *4 *5)) (|:| -3569 (-417 *5)))) (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5)))))
-(-13 (-233 |#2|) (-566) (-624 (-417 |#2|)) (-421 |#1|) (-1054 |#2|) (-10 -8 (-15 -3873 ((-112) $)) (-15 -3735 ((-574) $)) (-15 -1518 ((-574) $)) (-15 -1402 ($ $)) (-15 -1378 (|#1| $)) (-15 -1874 (|#1| $)) (-15 -1788 (|#1| $ (-574))) (-15 -4328 ($ |#1| (-574))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-6 (-315)) (-15 -2822 ((-2 (|:| -3068 $) (|:| -3569 (-417 |#2|))) (-417 |#2|)))) |%noBranch|)))
-((-3291 (((-654 |#6|) (-654 |#4|) (-112)) 54)) (-1579 ((|#6| |#6|) 48)))
-(((-634 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1579 (|#6| |#6|)) (-15 -3291 ((-654 |#6|) (-654 |#4|) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|)) (T -634))
-((-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10)) (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *10 (-1125 *5 *6 *7 *8)))) (-1579 (*1 *2 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *2 (-1125 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1579 (|#6| |#6|)) (-15 -3291 ((-654 |#6|) (-654 |#4|) (-112))))
-((-1422 (((-112) |#3| (-781) (-654 |#3|)) 29)) (-2719 (((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3996 (-654 (-2 (|:| |irr| |#4|) (|:| -1545 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)) 69)))
-(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1422 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2719 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3996 (-654 (-2 (|:| |irr| |#4|) (|:| -1545 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|)))) (-860) (-803) (-315) (-963 |#3| |#2| |#1|)) (T -635))
-((-2719 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3996 (-654 (-2 (|:| |irr| *10) (|:| -1545 (-574))))))) (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315)) (-4 *10 (-963 *3 *9 *8)) (-4 *9 (-803)) (-5 *2 (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3) (|:| |corrfact| (-654 (-1189 *3))))) (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1189 *3))))) (-1422 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860)) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8)) (-4 *8 (-963 *3 *7 *6)))))
-(-10 -7 (-15 -1422 ((-112) |#3| (-781) (-654 |#3|))) (-15 -2719 ((-3 (-2 (|:| |polfac| (-654 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-654 (-1189 |#3|)))) "failed") |#3| (-654 (-1189 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3996 (-654 (-2 (|:| |irr| |#4|) (|:| -1545 (-574)))))) (-654 |#3|) (-654 |#1|) (-654 |#3|))))
-((-2864 (((-112) $ $) NIL)) (-1816 (((-1151) $) 11)) (-1804 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-636) (-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))) (T -636))
-((-1804 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636)))))
-(-13 (-1099) (-10 -8 (-15 -1804 ((-1151) $)) (-15 -1816 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-1442 (($ $) 77)) (-3113 (((-674 |#1| |#2|) $) 60)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 81)) (-4312 (((-654 (-302 |#2|)) $ $) 42)) (-3940 (((-1136) $) NIL)) (-1617 (($ (-674 |#1| |#2|)) 56)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) 66) (((-1299 |#1| |#2|) $) NIL) (((-1304 |#1| |#2|) $) 74)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 61 T CONST)) (-3222 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) 41)) (-4225 (((-654 (-674 |#1| |#2|)) (-654 |#1|)) 73)) (-4375 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) 46)) (-2986 (((-112) $ $) 62)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 52)))
-(((-637 |#1| |#2| |#3|) (-13 (-483) (-10 -8 (-15 -1617 ($ (-674 |#1| |#2|))) (-15 -3113 ((-674 |#1| |#2|) $)) (-15 -4375 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1304 |#1| |#2|) $)) (-15 -1442 ($ $)) (-15 -1663 ((-654 |#1|) $)) (-15 -4225 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -3222 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-654 (-302 |#2|)) $ $)))) (-860) (-13 (-174) (-727 (-417 (-574)))) (-935)) (T -637))
-((-1617 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5)) (-14 *5 (-935)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-935)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5))) (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574))))) (-14 *6 (-935)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4)))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))) (-4312 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))))
-(-13 (-483) (-10 -8 (-15 -1617 ($ (-674 |#1| |#2|))) (-15 -3113 ((-674 |#1| |#2|) $)) (-15 -4375 ((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $)) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1304 |#1| |#2|) $)) (-15 -1442 ($ $)) (-15 -1663 ((-654 |#1|) $)) (-15 -4225 ((-654 (-674 |#1| |#2|)) (-654 |#1|))) (-15 -3222 ((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-654 (-302 |#2|)) $ $))))
-((-3291 (((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 103) (((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 77)) (-1643 (((-112) (-654 (-790 |#1| (-874 |#2|)))) 26)) (-3136 (((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)) 102)) (-3487 (((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112)) 76)) (-4274 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) 30)) (-4174 (((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|)))) 29)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -1643 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4174 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -4274 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -3487 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3136 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3291 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3291 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112)))) (-462) (-654 (-1193))) (T -638))
-((-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-638 *5 *6)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6))))) (-5 *1 (-638 *5 *6)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-638 *5 *6)))) (-4274 (*1 *2 *2) (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))) (-4174 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462)) (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462)) (-14 *5 (-654 (-1193))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
-(-10 -7 (-15 -1643 ((-112) (-654 (-790 |#1| (-874 |#2|))))) (-15 -4174 ((-3 (-654 (-790 |#1| (-874 |#2|))) "failed") (-654 (-790 |#1| (-874 |#2|))))) (-15 -4274 ((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))))) (-15 -3487 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3136 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3291 ((-654 (-1062 |#1| |#2|)) (-654 (-790 |#1| (-874 |#2|))) (-112))) (-15 -3291 ((-654 (-1162 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|)))) (-654 (-790 |#1| (-874 |#2|))) (-112))))
-((-2379 (($ $) 38)) (-2258 (($ $) 21)) (-2358 (($ $) 37)) (-2236 (($ $) 22)) (-2404 (($ $) 36)) (-2280 (($ $) 23)) (-3004 (($) 48)) (-3113 (($ $) 45)) (-4053 (($ $) 17)) (-2961 (($ $ (-1108 $)) 7) (($ $ (-1193)) 6)) (-1617 (($ $) 46)) (-4043 (($ $) 15)) (-2223 (($ $) 16)) (-2417 (($ $) 35)) (-2288 (($ $) 24)) (-2390 (($ $) 34)) (-2269 (($ $) 25)) (-2368 (($ $) 33)) (-2247 (($ $) 26)) (-2456 (($ $) 44)) (-2320 (($ $) 32)) (-2429 (($ $) 43)) (-2301 (($ $) 31)) (-2480 (($ $) 42)) (-2340 (($ $) 30)) (-2536 (($ $) 41)) (-2349 (($ $) 29)) (-2468 (($ $) 40)) (-2330 (($ $) 28)) (-2443 (($ $) 39)) (-2312 (($ $) 27)) (-3596 (($ $) 19)) (-3606 (($ $) 20)) (-1858 (($ $) 18)) (** (($ $ $) 47)))
-(((-639) (-141)) (T -639))
-((-3606 (*1 *1 *1) (-4 *1 (-639))) (-3596 (*1 *1 *1) (-4 *1 (-639))) (-1858 (*1 *1 *1) (-4 *1 (-639))) (-4053 (*1 *1 *1) (-4 *1 (-639))) (-2223 (*1 *1 *1) (-4 *1 (-639))) (-4043 (*1 *1 *1) (-4 *1 (-639))))
-(-13 (-973) (-1219) (-10 -8 (-15 -3606 ($ $)) (-15 -3596 ($ $)) (-15 -1858 ($ $)) (-15 -4053 ($ $)) (-15 -2223 ($ $)) (-15 -4043 ($ $))))
-(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-973) . T) ((-1219) . T) ((-1222) . T))
-((-4150 (((-115) (-115)) 88)) (-4053 ((|#2| |#2|) 28)) (-2961 ((|#2| |#2| (-1108 |#2|)) 84) ((|#2| |#2| (-1193)) 50)) (-4043 ((|#2| |#2|) 27)) (-2223 ((|#2| |#2|) 29)) (-2138 (((-112) (-115)) 33)) (-3596 ((|#2| |#2|) 24)) (-3606 ((|#2| |#2|) 26)) (-1858 ((|#2| |#2|) 25)))
-(((-640 |#1| |#2|) (-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3606 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2961 (|#2| |#2| (-1193))) (-15 -2961 (|#2| |#2| (-1108 |#2|)))) (-566) (-13 (-440 |#1|) (-1018) (-1219))) (T -640))
-((-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)))) (-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-3596 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-3606 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2)) (-4 *2 (-13 (-440 *3) (-1018) (-1219))))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4)) (-4 *4 (-13 (-440 *3) (-1018) (-1219))))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))))))
-(-10 -7 (-15 -2138 ((-112) (-115))) (-15 -4150 ((-115) (-115))) (-15 -3606 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2961 (|#2| |#2| (-1193))) (-15 -2961 (|#2| |#2| (-1108 |#2|))))
-((-1768 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-4398 (((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 89)) (-4012 (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 91) (((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|)) 90)) (-2088 (((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|))) 134)) (-3619 (((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 104)) (-1501 (((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|))) 145)) (-4435 (((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|))) 68)) (-3399 (((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|))) 47)) (-3366 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 60)) (-2766 (((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|))) 112)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1501 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -4398 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4012 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -4012 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3399 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4435 ((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2766 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3619 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3366 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -1768 ((-491 |#1| |#2|) (-253 |#1| |#2|)))) (-654 (-1193)) (-462)) (T -641))
-((-1768 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-3619 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4)) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))) (-2766 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462)) (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1193))) (-5 *1 (-641 *5 *6)))) (-4435 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6)) (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-1284 *6)) (-5 *1 (-641 *5 *6)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-4012 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5)) (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6)) (-4 *6 (-462)))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))) (-1501 (*1 *2 *3) (-12 (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574))))) (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *2 (-2 (|:| |gblist| (-654 (-253 *4 *5))) (|:| |gvlist| (-654 (-574))))) (-5 *1 (-641 *4 *5)))))
-(-10 -7 (-15 -2088 ((-2 (|:| |gblist| (-654 (-253 |#1| |#2|))) (|:| |gvlist| (-654 (-574)))) (-654 (-491 |#1| |#2|)))) (-15 -1501 ((-2 (|:| |glbase| (-654 (-253 |#1| |#2|))) (|:| |glval| (-654 (-574)))) (-654 (-253 |#1| |#2|)))) (-15 -4398 ((-654 (-253 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4012 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -4012 ((-491 |#1| |#2|) (-654 (-491 |#1| |#2|)) (-874 |#1|))) (-15 -3399 ((-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -4435 ((-1284 |#2|) (-491 |#1| |#2|) (-654 (-491 |#1| |#2|)))) (-15 -2766 ((-253 |#1| |#2|) (-654 |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -3619 ((-654 (-491 |#1| |#2|)) (-874 |#1|) (-654 (-491 |#1| |#2|)) (-654 (-491 |#1| |#2|)))) (-15 -3366 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-654 (-253 |#1| |#2|)))) (-15 -1768 ((-491 |#1| |#2|) (-253 |#1| |#2|))))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2620 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-52) $ (-1175) (-52)) 16) (((-52) $ (-1193) (-52)) 17)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 (-52) "failed") (-1175) $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2175 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1175) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1175)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-3724 (($ $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-1175) $) NIL (|has| (-1175) (-860)))) (-1764 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2790 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1475 (($ (-398)) 9)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-1772 (((-654 (-1175)) $) NIL)) (-2968 (((-112) (-1175) $) NIL)) (-1759 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-3705 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-1583 (((-654 (-1175)) $) NIL)) (-1470 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2925 (((-52) $) NIL (|has| (-1175) (-860)))) (-3748 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL)) (-1465 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2445 (((-654 (-52)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 (((-52) $ (-1175)) 14) (((-52) $ (-1175) (-52)) NIL) (((-52) $ (-1193)) 15)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-642) (-13 (-1210 (-1175) (-52)) (-294 (-1193) (-52)) (-10 -8 (-15 -1475 ($ (-398))) (-15 -3724 ($ $)) (-15 -3135 ((-52) $ (-1193) (-52)))))) (T -642))
-((-1475 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))) (-3724 (*1 *1 *1) (-5 *1 (-642))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1193)) (-5 *1 (-642)))))
-(-13 (-1210 (-1175) (-52)) (-294 (-1193) (-52)) (-10 -8 (-15 -1475 ($ (-398))) (-15 -3724 ($ $)) (-15 -3135 ((-52) $ (-1193) (-52)))))
-((-3099 (($ $ |#2|) 10)))
-(((-643 |#1| |#2|) (-10 -8 (-15 -3099 (|#1| |#1| |#2|))) (-644 |#2|) (-174)) (T -643))
-NIL
-(-10 -8 (-15 -3099 (|#1| |#1| |#2|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2963 (($ $ $) 34)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 33 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-644 |#1|) (-141) (-174)) (T -644))
-((-2963 (*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
-(-13 (-727 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2963 ($ $ $)) (IF (|has| |t#1| (-372)) (-15 -3099 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2020 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1955 (((-1284 (-699 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-1284 (-699 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-4022 (((-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1430 (($) NIL T CONST)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-4272 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3516 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2984 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-2287 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2339 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2266 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3344 (($ $ (-935)) NIL)) (-2104 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-4316 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3288 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1668 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-4306 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3114 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (($ (-1284 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3612 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3558 (((-935)) NIL (|has| |#2| (-376 |#1|)))) (-1837 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-1855 (($ $ (-935)) NIL)) (-2183 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3630 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3226 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3988 (((-3 $ "failed")) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-1542 (((-699 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1603 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-3323 (((-699 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-2808 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-3532 (((-1189 (-966 |#1|))) NIL (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-372))))) (-3484 (($ $ (-935)) NIL)) (-4273 ((|#1| $) NIL (|has| |#2| (-376 |#1|)))) (-1323 (((-1189 |#1|) $) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2816 ((|#1|) NIL (|has| |#2| (-427 |#1|))) ((|#1| (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1479 (((-1189 |#1|) $) NIL (|has| |#2| (-376 |#1|)))) (-2650 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-4420 (((-1175) $) NIL)) (-1806 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2556 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3035 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3940 (((-1136) $) NIL)) (-1769 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2207 ((|#1| $ (-574)) NIL (|has| |#2| (-427 |#1|)))) (-2282 (((-699 |#1|) (-1284 $)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|))) (((-699 |#1|) (-1284 $) (-1284 $)) NIL (|has| |#2| (-376 |#1|))) (((-1284 |#1|) $ (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-1844 (($ (-1284 |#1|)) NIL (|has| |#2| (-427 |#1|))) (((-1284 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-3385 (((-654 (-966 |#1|))) NIL (|has| |#2| (-427 |#1|))) (((-654 (-966 |#1|)) (-1284 $)) NIL (|has| |#2| (-376 |#1|)))) (-3082 (($ $ $) NIL)) (-3642 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2951 (((-872) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL (|has| |#2| (-427 |#1|)))) (-1899 (((-654 (-1284 |#1|))) NIL (-2833 (-12 (|has| |#2| (-376 |#1|)) (|has| |#1| (-566))) (-12 (|has| |#2| (-427 |#1|)) (|has| |#1| (-566)))))) (-2362 (($ $ $ $) NIL)) (-4358 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2912 (($ (-699 |#1|) $) NIL (|has| |#2| (-427 |#1|)))) (-2030 (($ $ $) NIL)) (-2640 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-3247 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2528 (((-112)) NIL (|has| |#2| (-376 |#1|)))) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 20)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-645 |#1| |#2|) (-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|))) (-174) (-754 |#1|)) (T -645))
-((-2951 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3)))))
-(-13 (-754 |#1|) (-623 |#2|) (-10 -8 (-15 -2951 ($ |#2|)) (IF (|has| |#2| (-427 |#1|)) (-6 (-427 |#1|)) |%noBranch|) (IF (|has| |#2| (-376 |#1|)) (-6 (-376 |#1|)) |%noBranch|)))
-((-3154 (((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175)) 106) (((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|))) 131)) (-2209 (((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|))) 136)))
-(((-646 |#1| |#2|) (-10 -7 (-15 -3154 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -2209 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -3154 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175)))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -646))
-((-3154 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1175)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3)))) (-2209 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-302 (-843 *3))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1219) (-440 *5))) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-646 *5 *3)))))
-(-10 -7 (-15 -3154 ((-3 (-853 |#2|) (-2 (|:| |leftHandLimit| (-3 (-853 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-853 |#2|) "failed"))) "failed") |#2| (-302 (-853 |#2|)))) (-15 -2209 ((-3 (-843 |#2|) "failed") |#2| (-302 (-843 |#2|)))) (-15 -3154 ((-3 (-853 |#2|) "failed") |#2| (-302 |#2|) (-1175))))
-((-3154 (((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175)) 86) (((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 20) (((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|)))) 35)) (-2209 (((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 23) (((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|)))) 43)))
-(((-647 |#1|) (-10 -7 (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|))))) (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2209 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|))))) (-15 -2209 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175)))) (-462)) (T -647))
-((-3154 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-302 (-417 (-966 *6)))) (-5 *5 (-1175)) (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3)) (-5 *1 (-647 *6)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-843 (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-843 (-417 (-966 *5)))) (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5))))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-462)) (-5 *2 (-3 (-853 *3) (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed")) (|:| |rightHandLimit| (-3 (-853 *3) "failed"))) "failed")) (-5 *1 (-647 *5)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-302 (-853 (-966 *5)))) (-4 *5 (-462)) (-5 *2 (-3 (-853 (-417 (-966 *5))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 *5))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 *5))) "failed"))) "failed")) (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5))))))
-(-10 -7 (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-853 (-966 |#1|))))) (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-853 (-417 (-966 |#1|))) "failed"))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2209 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-843 (-966 |#1|))))) (-15 -2209 ((-843 (-417 (-966 |#1|))) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -3154 ((-3 (-853 (-417 (-966 |#1|))) "failed") (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))) (-1175))))
-((-1584 (((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|) 64 (-2084 (|has| |#1| (-372)))) (((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|) 49 (|has| |#1| (-372)))) (-3212 (((-112) (-1284 |#2|)) 33)) (-3658 (((-3 (-1284 |#1|) "failed") (-1284 |#2|)) 40)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -3212 ((-112) (-1284 |#2|))) (-15 -3658 ((-3 (-1284 |#1|) "failed") (-1284 |#2|))) (IF (|has| |#1| (-372)) (-15 -1584 ((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|)) (-15 -1584 ((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|)))) (-566) (-13 (-1065) (-649 |#1|))) (T -648))
-((-1584 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) (-2084 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1284 (-417 *5))) (-5 *1 (-648 *5 *4)))) (-1584 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5))) (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1284 *5)) (-5 *1 (-648 *5 *4)))) (-3658 (*1 *2 *3) (|partial| -12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-1284 *4)) (-5 *1 (-648 *4 *5)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4))) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)))))
-(-10 -7 (-15 -3212 ((-112) (-1284 |#2|))) (-15 -3658 ((-3 (-1284 |#1|) "failed") (-1284 |#2|))) (IF (|has| |#1| (-372)) (-15 -1584 ((-3 (-1284 |#1|) "failed") (-1284 |#2|) |#2|)) (-15 -1584 ((-3 (-1284 (-417 |#1|)) "failed") (-1284 |#2|) |#2|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1557 (((-699 |#1|) (-1284 $)) 31) (((-699 |#1|) (-699 $)) 30) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 29)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
-(((-649 |#1|) (-141) (-1065)) (T -649))
-((-1557 (*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) (-5 *2 (-699 *4)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065)) (-5 *2 (-699 *4)))) (-1557 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *1)) (-5 *4 (-1284 *1)) (-4 *1 (-649 *5)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3479 (-699 *5)) (|:| |vec| (-1284 *5)))))))
-(-13 (-658 |t#1|) (-10 -8 (-15 -1557 ((-699 |t#1|) (-1284 $))) (-15 -1557 ((-699 |t#1|) (-699 $))) (-15 -1557 ((-2 (|:| -3479 (-699 |t#1|)) (|:| |vec| (-1284 |t#1|))) (-699 $) (-1284 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-650 |#1|) (-141) (-1128)) (T -650))
-NIL
-(-13 (-656 |t#1|) (-1067 |t#1|))
-(((-102) . T) ((-623 (-872)) . T) ((-656 |#1|) . T) ((-1067 |#1|) . T) ((-1116) . T))
-((-2698 ((|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|) 17) ((|#2| (-654 |#1|) (-654 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|)) 12)))
-(((-651 |#1| |#2|) (-10 -7 (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|)))) (-1116) (-1234)) (T -651))
-((-2698 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-651 *5 *6)))) (-2698 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1116)) (-4 *5 (-1234)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5)))) (-2698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6)))))
-(-10 -7 (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) |#2|)) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| |#2|)) (-15 -2698 ((-1 |#2| |#1|) (-654 |#1|) (-654 |#2|) (-1 |#2| |#1|))) (-15 -2698 (|#2| (-654 |#1|) (-654 |#2|) |#1| (-1 |#2| |#1|))))
-((-1904 (((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|) 18)) (-1785 (((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)) 13)))
-(((-652 |#1| |#2|) (-10 -7 (-15 -1904 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|)))) (-1234) (-1234)) (T -652))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-652 *5 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5)))))
-(-10 -7 (-15 -1904 ((-654 |#2|) (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-654 |#1|) |#2|)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-654 |#1|))))
-((-1785 (((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)) 21)))
-(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|)))) (-1234) (-1234) (-1234)) (T -653))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-654 *8)) (-5 *1 (-653 *6 *7 *8)))))
-(-10 -7 (-15 -1785 ((-654 |#3|) (-1 |#3| |#1| |#2|) (-654 |#1|) (-654 |#2|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) $) NIL (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4287 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2786 (($ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3373 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "rest" $) NIL (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-3746 (($ $ $) 37 (|has| |#1| (-1116)))) (-2865 (($ $ $) 41 (|has| |#1| (-1116)))) (-4127 (($ $ $) 44 (|has| |#1| (-1116)))) (-3155 (($ (-1 (-112) |#1|) $) NIL)) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2408 ((|#1| $) NIL)) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-2935 (($ $) 23) (($ $ (-781)) NIL)) (-2218 (($ $) NIL (|has| |#1| (-1116)))) (-1573 (($ $) 36 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) NIL (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) NIL)) (-3311 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1648 (((-112) $) NIL)) (-1452 (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116))) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2072 (((-112) $) 11)) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3495 (($) 9 T CONST)) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2645 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2470 (($ $ $) NIL (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1795 (($ |#1|) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-3705 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) 20) (($ $ (-781)) NIL)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-3388 (((-112) $) NIL)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) 39)) (-3014 (($) 38)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) 42) ((|#1| $ (-574) |#1|) NIL)) (-4072 (((-574) $ $) NIL)) (-3032 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-3864 (((-112) $) NIL)) (-3333 (($ $) NIL)) (-1823 (($ $) NIL (|has| $ (-6 -4460)))) (-1984 (((-781) $) NIL)) (-1852 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 53 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2233 (($ |#1| $) 12)) (-2589 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4132 (($ $ $) 35) (($ |#1| $) 43) (($ (-654 $)) NIL) (($ $ |#1|) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2874 (($ $ $) 13)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-4029 (((-1175) $) 31 (|has| |#1| (-838))) (((-1175) $ (-112)) 32 (|has| |#1| (-838))) (((-1289) (-832) $) 33 (|has| |#1| (-838))) (((-1289) (-832) $ (-112)) 34 (|has| |#1| (-838)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-654 |#1|) (-13 (-676 |#1|) (-10 -8 (-15 -3495 ($) -1714) (-15 -2072 ((-112) $)) (-15 -2233 ($ |#1| $)) (-15 -2874 ($ $ $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3746 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -4127 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|))) (-1234)) (T -654))
-((-3495 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1234)))) (-2233 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-2874 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))) (-3746 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))) (-2865 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))) (-4127 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))))
-(-13 (-676 |#1|) (-10 -8 (-15 -3495 ($) -1714) (-15 -2072 ((-112) $)) (-15 -2233 ($ |#1| $)) (-15 -2874 ($ $ $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3746 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -4127 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-838)) (-6 (-838)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11) (($ (-1198)) NIL) (((-1198) $) NIL) ((|#1| $) 8)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-655 |#1|) (-13 (-1099) (-623 |#1|)) (-1116)) (T -655))
-NIL
-(-13 (-1099) (-623 |#1|))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-656 |#1|) (-141) (-1128)) (T -656))
-((-2141 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128)))))
-(-13 (-1116) (-10 -8 (-15 (-2141) ($) -1714) (-15 -4311 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4181 (($ |#1| |#1| $) 43)) (-2832 (((-112) $ (-781)) NIL)) (-3155 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2218 (($ $) 45)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) 56 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 9 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 37)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) 47)) (-3705 (($ |#1| $) 29) (($ |#1| $ (-781)) 42)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2098 ((|#1| $) 50)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 23)) (-3014 (($) 28)) (-4060 (((-112) $) 54)) (-4249 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 67)) (-1734 (($) 26) (($ (-654 |#1|)) 19)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) 63 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 20)) (-1844 (((-546) $) 34 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) NIL)) (-2951 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 24)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 69 (|has| |#1| (-1116)))) (-2877 (((-781) $) 17 (|has| $ (-6 -4459)))))
-(((-657 |#1|) (-13 (-705 |#1|) (-10 -8 (-6 -4459) (-15 -4060 ((-112) $)) (-15 -4181 ($ |#1| |#1| $)))) (-1116)) (T -657))
-((-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1116)))) (-4181 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1116)))))
-(-13 (-705 |#1|) (-10 -8 (-6 -4459) (-15 -4060 ((-112) $)) (-15 -4181 ($ |#1| |#1| $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27)))
-(((-658 |#1|) (-141) (-1074)) (T -658))
-NIL
-(-13 (-21) (-656 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781) $) 17)) (-3547 (($ $ |#1|) 69)) (-2060 (($ $) 39)) (-4425 (($ $) 37)) (-1704 (((-3 |#1| "failed") $) 61)) (-2216 ((|#1| $) NIL)) (-3718 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2573 (((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574)) 56)) (-1720 ((|#1| $ (-574)) 35)) (-1910 ((|#2| $ (-574)) 34)) (-2737 (($ (-1 |#1| |#1|) $) 41)) (-2393 (($ (-1 |#2| |#2|) $) 47)) (-3190 (($) 11)) (-4318 (($ |#1| |#2|) 24)) (-4307 (($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|)))) 25)) (-3420 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $) 14)) (-4319 (($ |#1| $) 71)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1749 (((-112) $ $) 76)) (-2951 (((-872) $) 21) (($ |#1|) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 27)))
-(((-659 |#1| |#2| |#3|) (-13 (-1116) (-1054 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -3420 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $)) (-15 -4318 ($ |#1| |#2|)) (-15 -4307 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))))) (-15 -1910 (|#2| $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -4425 ($ $)) (-15 -2060 ($ $)) (-15 -1496 ((-781) $)) (-15 -3190 ($)) (-15 -3547 ($ $ |#1|)) (-15 -4319 ($ |#1| $)) (-15 -3718 ($ |#1| |#2| $)) (-15 -3718 ($ $ $)) (-15 -1749 ((-112) $ $)) (-15 -2393 ($ (-1 |#2| |#2|) $)) (-15 -2737 ($ (-1 |#1| |#1|) $)))) (-1116) (-23) |#2|) (T -659))
-((-2573 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872)) (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1116)) (-4 *6 (-23)) (-14 *7 *6))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-4318 (*1 *1 *2 *3) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4)))) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5)) (-4 *4 (-1116)) (-14 *5 *2))) (-1720 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *2 (-1116)) (-5 *1 (-659 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4425 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-2060 (*1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-3190 (*1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3547 (*1 *1 *1 *2) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-4319 (*1 *1 *2 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3718 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-3718 (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23)) (-14 *4 *3))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))) (-2393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-659 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1116) (-1054 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-1 (-872) (-872) (-872)) (-1 (-872) (-872) (-872)) (-574))) (-15 -3420 ((-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))) $)) (-15 -4318 ($ |#1| |#2|)) (-15 -4307 ($ (-654 (-2 (|:| |gen| |#1|) (|:| -1617 |#2|))))) (-15 -1910 (|#2| $ (-574))) (-15 -1720 (|#1| $ (-574))) (-15 -4425 ($ $)) (-15 -2060 ($ $)) (-15 -1496 ((-781) $)) (-15 -3190 ($)) (-15 -3547 ($ $ |#1|)) (-15 -4319 ($ |#1| $)) (-15 -3718 ($ |#1| |#2| $)) (-15 -3718 ($ $ $)) (-15 -1749 ((-112) $ $)) (-15 -2393 ($ (-1 |#2| |#2|) $)) (-15 -2737 ($ (-1 |#1| |#1|) $))))
-((-2790 (((-574) $) 31)) (-1602 (($ |#2| $ (-574)) 27) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) 12)) (-1470 (((-112) (-574) $) 18)) (-4132 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-654 $)) NIL)))
-(((-660 |#1| |#2|) (-10 -8 (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2790 ((-574) |#1|)) (-15 -1583 ((-654 (-574)) |#1|)) (-15 -1470 ((-112) (-574) |#1|))) (-661 |#2|) (-1234)) (T -660))
-NIL
-(-10 -8 (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -4132 (|#1| (-654 |#1|))) (-15 -4132 (|#1| |#1| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#2|)) (-15 -2790 ((-574) |#1|)) (-15 -1583 ((-654 (-574)) |#1|)) (-15 -1470 ((-112) (-574) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-661 |#1|) (-141) (-1234)) (T -661))
-((-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-4132 (*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-2855 (*1 *1 *1 *2) (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-1602 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1234)))) (-1602 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1251 (-574))) (|has| *1 (-6 -4460)) (-4 *1 (-661 *2)) (-4 *2 (-1234)))))
-(-13 (-614 (-574) |t#1|) (-152 |t#1|) (-294 (-1251 (-574)) $) (-10 -8 (-15 -3764 ($ (-781) |t#1|)) (-15 -4132 ($ $ |t#1|)) (-15 -4132 ($ |t#1| $)) (-15 -4132 ($ $ $)) (-15 -4132 ($ (-654 $))) (-15 -1785 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2855 ($ $ (-574))) (-15 -2855 ($ $ (-1251 (-574)))) (-15 -1602 ($ |t#1| $ (-574))) (-15 -1602 ($ $ $ (-574))) (IF (|has| $ (-6 -4460)) (-15 -3135 (|t#1| $ (-1251 (-574)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-3426 (((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) "failed") |#3| |#2| (-1193)) 44)))
-(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) "failed") |#3| |#2| (-1193))) (-15 -3426 ((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973)) (-666 |#2|)) (T -662))
-((-3426 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1219) (-973))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1895 (-654 *4)))) (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4)))))
-(-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) "failed") |#3| |#2| (-1193))) (-15 -3426 ((-3 |#2| "failed") |#3| |#2| (-1193) |#2| (-654 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4026 (($ $) NIL (|has| |#1| (-372)))) (-3489 (($ $ $) NIL (|has| |#1| (-372)))) (-3543 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3911 (($ $ $) NIL (|has| |#1| (-372)))) (-3096 (($ $ $) NIL (|has| |#1| (-372)))) (-2738 (($ $ $) NIL (|has| |#1| (-372)))) (-3205 (($ $ $) NIL (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-3943 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2043 (((-781) $) NIL)) (-2228 (($ $ $) NIL (|has| |#1| (-372)))) (-2588 (($ $ $) NIL (|has| |#1| (-372)))) (-4317 (($ $ $) NIL (|has| |#1| (-372)))) (-3218 (($ $ $) NIL (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) NIL)) (-2537 (($ $ $) NIL (|has| |#1| (-372)))) (-3735 (((-781) $) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) NIL)) (-3728 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-663 |#1|) (-666 |#1|) (-239)) (T -663))
-NIL
-(-666 |#1|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4026 (($ $) NIL (|has| |#1| (-372)))) (-3489 (($ $ $) NIL (|has| |#1| (-372)))) (-3543 (($ $ (-781)) NIL (|has| |#1| (-372)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3911 (($ $ $) NIL (|has| |#1| (-372)))) (-3096 (($ $ $) NIL (|has| |#1| (-372)))) (-2738 (($ $ $) NIL (|has| |#1| (-372)))) (-3205 (($ $ $) NIL (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-3943 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2043 (((-781) $) NIL)) (-2228 (($ $ $) NIL (|has| |#1| (-372)))) (-2588 (($ $ $) NIL (|has| |#1| (-372)))) (-4317 (($ $ $) NIL (|has| |#1| (-372)))) (-3218 (($ $ $) NIL (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2537 (($ $ $) NIL (|has| |#1| (-372)))) (-3735 (((-781) $) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) NIL)) (-3728 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-664 |#1| |#2|) (-13 (-666 |#1|) (-294 |#2| |#2|)) (-239) (-13 (-658 |#1|) (-10 -8 (-15 -3879 ($ $))))) (T -664))
-NIL
-(-13 (-666 |#1|) (-294 |#2| |#2|))
-((-4026 (($ $) 29)) (-3728 (($ $) 27)) (-3585 (($) 13)))
-(((-665 |#1| |#2|) (-10 -8 (-15 -4026 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3585 (|#1|))) (-666 |#2|) (-1065)) (T -665))
-NIL
-(-10 -8 (-15 -4026 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3585 (|#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4026 (($ $) 87 (|has| |#1| (-372)))) (-3489 (($ $ $) 89 (|has| |#1| (-372)))) (-3543 (($ $ (-781)) 88 (|has| |#1| (-372)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3911 (($ $ $) 50 (|has| |#1| (-372)))) (-3096 (($ $ $) 51 (|has| |#1| (-372)))) (-2738 (($ $ $) 53 (|has| |#1| (-372)))) (-3205 (($ $ $) 48 (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 52 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 75)) (-1402 (($ $) 69)) (-3612 (((-3 $ "failed") $) 37)) (-4135 (($ $) 60 (|has| |#1| (-462)))) (-3943 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 67)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 62 (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63 (|has| |#1| (-566)))) (-2043 (((-781) $) 71)) (-2228 (($ $ $) 57 (|has| |#1| (-372)))) (-2588 (($ $ $) 58 (|has| |#1| (-372)))) (-4317 (($ $ $) 46 (|has| |#1| (-372)))) (-3218 (($ $ $) 55 (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 59 (|has| |#1| (-372)))) (-1378 ((|#1| $) 70)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) 92)) (-2537 (($ $ $) 86 (|has| |#1| (-372)))) (-3735 (((-781) $) 72)) (-1732 ((|#1| $) 61 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 73)) (-3382 (((-654 |#1|) $) 66)) (-1788 ((|#1| $ (-781)) 68)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2912 ((|#1| $ |#1| |#1|) 65)) (-3728 (($ $) 90)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($) 91)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-666 |#1|) (-141) (-1065)) (T -666))
-((-3585 (*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) (-3728 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)))) (-3489 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1065)) (-4 *3 (-372)))) (-4026 (*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(-13 (-862 |t#1|) (-294 |t#1| |t#1|) (-10 -8 (-15 -3585 ($)) (-15 -3728 ($ $)) (IF (|has| |t#1| (-372)) (PROGN (-15 -3489 ($ $ $)) (-15 -3543 ($ $ (-781))) (-15 -4026 ($ $)) (-15 -2537 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-862 |#1|) . T))
-((-4182 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 85 (|has| |#1| (-27)))) (-4201 (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))) 84 (|has| |#1| (-27))) (((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 19)))
-(((-667 |#1| |#2|) (-10 -7 (-15 -4201 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4201 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -4182 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|)) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -667))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5)))) (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-663 (-417 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6))))))
-(-10 -7 (-15 -4201 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4201 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|)))) (-15 -4182 ((-654 (-663 (-417 |#2|))) (-663 (-417 |#2|))))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4026 (($ $) NIL (|has| |#1| (-372)))) (-3489 (($ $ $) 28 (|has| |#1| (-372)))) (-3543 (($ $ (-781)) 31 (|has| |#1| (-372)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3911 (($ $ $) NIL (|has| |#1| (-372)))) (-3096 (($ $ $) NIL (|has| |#1| (-372)))) (-2738 (($ $ $) NIL (|has| |#1| (-372)))) (-3205 (($ $ $) NIL (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-3943 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2043 (((-781) $) NIL)) (-2228 (($ $ $) NIL (|has| |#1| (-372)))) (-2588 (($ $ $) NIL (|has| |#1| (-372)))) (-4317 (($ $ $) NIL (|has| |#1| (-372)))) (-3218 (($ $ $) NIL (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-2207 ((|#1| $ |#1|) 24)) (-2537 (($ $ $) 33 (|has| |#1| (-372)))) (-3735 (((-781) $) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) 20) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) 23)) (-3728 (($ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 8 T CONST)) (-3585 (($) NIL)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-668 |#1| |#2|) (-666 |#1|) (-1065) (-1 |#1| |#1|)) (T -668))
-NIL
-(-666 |#1|)
-((-3489 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3543 ((|#2| |#2| (-781) (-1 |#1| |#1|)) 45)) (-2537 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
-(((-669 |#1| |#2|) (-10 -7 (-15 -3489 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3543 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -2537 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -669))
-((-2537 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))) (-3543 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))) (-3489 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2)) (-4 *2 (-666 *4)))))
-(-10 -7 (-15 -3489 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3543 (|#2| |#2| (-781) (-1 |#1| |#1|))) (-15 -2537 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2934 (($ $ $) 9)))
-(((-670 |#1|) (-10 -8 (-15 -2934 (|#1| |#1| |#1|))) (-671)) (T -670))
-NIL
-(-10 -8 (-15 -2934 (|#1| |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-2890 (($ $) 10)) (-2934 (($ $ $) 8)) (-2986 (((-112) $ $) 6)) (-2923 (($ $ $) 9)))
-(((-671) (-141)) (T -671))
-((-2890 (*1 *1 *1) (-4 *1 (-671))) (-2923 (*1 *1 *1 *1) (-4 *1 (-671))) (-2934 (*1 *1 *1 *1) (-4 *1 (-671))))
-(-13 (-102) (-10 -8 (-15 -2890 ($ $)) (-15 -2923 ($ $ $)) (-15 -2934 ($ $ $))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) NIL)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-562 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))) (T -562))
+NIL
+(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))
+((-2482 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))) 50)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -2482 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563))
+((-2482 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3)))))
+(-10 -7 (-15 -2482 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|)))))
+((-3013 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2140 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1849 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220)))
+(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1849 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3013 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1056 (-576))) (-13 (-27) (-442 |#1|)) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564))
+((-2140 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(-10 -7 (-15 -1849 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3013 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2140 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1478 (((-112) (-576) (-576)) 12)) (-2773 (((-576) (-576)) 7)) (-2688 (((-576) (-576) (-576)) 10)))
+(((-565) (-10 -7 (-15 -2773 ((-576) (-576))) (-15 -2688 ((-576) (-576) (-576))) (-15 -1478 ((-112) (-576) (-576))))) (T -565))
+((-1478 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-2688 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
+(-10 -7 (-15 -2773 ((-576) (-576))) (-15 -2688 ((-576) (-576) (-576))) (-15 -1478 ((-112) (-576) (-576))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3021 ((|#1| $) 67)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-2384 (($ $) 97)) (-2260 (($ $) 80)) (-2847 ((|#1| $) 68)) (-3798 (((-3 $ "failed") $ $) 20)) (-4214 (($ $) 79)) (-2363 (($ $) 96)) (-2238 (($ $) 81)) (-2409 (($ $) 95)) (-2282 (($ $) 82)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 75)) (-2216 (((-576) $) 76)) (-4077 (((-3 $ "failed") $) 37)) (-2165 (($ |#1| |#1|) 72)) (-3730 (((-112) $) 66)) (-3009 (($) 107)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 78)) (-3327 (((-112) $) 65)) (-3639 (($ $ $) 113)) (-2571 (($ $ $) 112)) (-3118 (($ $) 104)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1371 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-419 (-576))) 70)) (-3621 ((|#1| $) 69)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-2858 (((-3 $ "failed") $ $) 48)) (-1619 (($ $) 105)) (-2422 (($ $) 94)) (-2291 (($ $) 83)) (-2394 (($ $) 93)) (-2270 (($ $) 84)) (-2373 (($ $) 92)) (-2249 (($ $) 85)) (-3420 (((-112) $ |#1|) 64)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 74)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 103)) (-2324 (($ $) 91)) (-2946 (((-112) $ $) 45)) (-2434 (($ $) 102)) (-2304 (($ $) 90)) (-2485 (($ $) 101)) (-2345 (($ $) 89)) (-2541 (($ $) 100)) (-2354 (($ $) 88)) (-2473 (($ $) 99)) (-2335 (($ $) 87)) (-2447 (($ $) 98)) (-2315 (($ $) 86)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 110)) (-3024 (((-112) $ $) 109)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 111)) (-3014 (((-112) $ $) 108)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ $) 106) (($ $ (-419 (-576))) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-566 |#1|) (-141) (-13 (-416) (-1221))) (T -566))
+((-1371 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-2165 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1371 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1371 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-3420 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))))
+(-13 (-464) (-862) (-1221) (-1020) (-1056 (-576)) (-10 -8 (-6 -3530) (-15 -1371 ($ |t#1| |t#1|)) (-15 -2165 ($ |t#1| |t#1|)) (-15 -1371 ($ |t#1|)) (-15 -1371 ($ (-419 (-576)))) (-15 -3621 (|t#1| $)) (-15 -2847 (|t#1| $)) (-15 -3021 (|t#1| $)) (-15 -3730 ((-112) $)) (-15 -3327 ((-112) $)) (-15 -3420 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1020) . T) ((-1056 (-576)) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) . T) ((-1224) . T))
+((-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 9)) (-4334 (($ $) 11)) (-1428 (((-112) $) 20)) (-4077 (((-3 $ "failed") $) 16)) (-2946 (((-112) $ $) 22)))
+(((-567 |#1|) (-10 -8 (-15 -1428 ((-112) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|))) (-568)) (T -567))
+NIL
+(-10 -8 (-15 -1428 ((-112) |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -4334 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -1651 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ $) 48)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-568) (-141)) (T -568))
+((-2858 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1651 *1) (|:| -4448 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-4334 (*1 *1 *1) (-4 *1 (-568))) (-2946 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
+(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -2858 ((-3 $ "failed") $ $)) (-15 -2141 ((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $)) (-15 -4334 ($ $)) (-15 -2946 ((-112) $ $)) (-15 -1428 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-4387 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|)) 38)) (-4184 (((-598 |#2|) |#2| (-1195)) 63)) (-3357 (((-3 |#2| "failed") |#2| (-1195)) 156)) (-1998 (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-1519 (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|) 41)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -1519 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -4387 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -3357 ((-3 |#2| "failed") |#2| (-1195))) (-15 -4184 ((-598 |#2|) |#2| (-1195))) (-15 -1998 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -569))
+((-1998 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3357 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4387 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-1519 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(-10 -7 (-15 -1519 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -4387 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -3357 ((-3 |#2| "failed") |#2| (-1195))) (-15 -4184 ((-598 |#2|) |#2| (-1195))) (-15 -1998 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|)))))
+((-1870 (((-430 |#1|) |#1|) 19)) (-4205 (((-430 |#1|) |#1|) 34)) (-3830 (((-3 |#1| "failed") |#1|) 49)) (-4234 (((-430 |#1|) |#1|) 60)))
+(((-570 |#1|) (-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -4234 ((-430 |#1|) |#1|)) (-15 -3830 ((-3 |#1| "failed") |#1|))) (-557)) (T -570))
+((-3830 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-4234 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1870 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -4234 ((-430 |#1|) |#1|)) (-15 -3830 ((-3 |#1| "failed") |#1|)))
+((-2170 (($) 9)) (-2018 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1773 (((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2504 (($ (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4152 (($ (-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-1918 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-4274 (((-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3386 (((-1291)) 11)))
+(((-571) (-10 -8 (-15 -2170 ($)) (-15 -3386 ((-1291))) (-15 -1773 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4152 ($ (-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2504 ($ (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2018 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4274 ((-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1918 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571))
+((-1918 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2018 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3386 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571)))) (-2170 (*1 *1) (-5 *1 (-571))))
+(-10 -8 (-15 -2170 ($)) (-15 -3386 ((-1291))) (-15 -1773 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4152 ($ (-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2504 ($ (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2018 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4274 ((-656 (-2 (|:| -3672 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1918 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2055 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-4174 (((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|)) 35)) (-2494 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|)) 115)) (-3518 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 55)) (-3107 (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|))) 92) (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|)) 114)) (-3524 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|)) 116)) (-1413 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-4341 ((|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|) 53)) (-2874 (((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|)) 34)))
+(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -3518 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -3518 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3107 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -3107 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -2494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3524 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -3524 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4174 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -4341 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2874 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -1413 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -1413 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1118)) (T -572))
+((-1413 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-1413 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-2874 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1191 *6)) (-4 *7 (-1118)))) (-4341 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1118)))) (-4174 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1191 *3)) (-4 *7 (-1118)))) (-3524 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))) (-3524 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))) (-2494 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))) (-2494 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))) (-3107 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-3107 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-3518 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))) (-3518 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))))
+(-10 -7 (-15 -3518 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -3518 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3107 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -3107 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -2494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3524 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -3524 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4174 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -4341 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2874 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -1413 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -1413 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|))
+((-2358 (((-576) (-576) (-783)) 85)) (-2810 (((-576) (-576)) 83)) (-1748 (((-576) (-576)) 81)) (-4262 (((-576) (-576)) 87)) (-1781 (((-576) (-576) (-576)) 65)) (-3433 (((-576) (-576) (-576)) 62)) (-3834 (((-419 (-576)) (-576)) 30)) (-2577 (((-576) (-576)) 34)) (-1838 (((-576) (-576)) 74)) (-1579 (((-576) (-576)) 46)) (-3305 (((-656 (-576)) (-576)) 80)) (-3985 (((-576) (-576) (-576) (-576) (-576)) 58)) (-2667 (((-419 (-576)) (-576)) 55)))
+(((-573) (-10 -7 (-15 -2667 ((-419 (-576)) (-576))) (-15 -3985 ((-576) (-576) (-576) (-576) (-576))) (-15 -3305 ((-656 (-576)) (-576))) (-15 -1579 ((-576) (-576))) (-15 -1838 ((-576) (-576))) (-15 -2577 ((-576) (-576))) (-15 -3834 ((-419 (-576)) (-576))) (-15 -3433 ((-576) (-576) (-576))) (-15 -1781 ((-576) (-576) (-576))) (-15 -4262 ((-576) (-576))) (-15 -1748 ((-576) (-576))) (-15 -2810 ((-576) (-576))) (-15 -2358 ((-576) (-576) (-783))))) (T -573))
+((-2358 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1781 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3433 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3834 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2577 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3305 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3985 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2667 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
+(-10 -7 (-15 -2667 ((-419 (-576)) (-576))) (-15 -3985 ((-576) (-576) (-576) (-576) (-576))) (-15 -3305 ((-656 (-576)) (-576))) (-15 -1579 ((-576) (-576))) (-15 -1838 ((-576) (-576))) (-15 -2577 ((-576) (-576))) (-15 -3834 ((-419 (-576)) (-576))) (-15 -3433 ((-576) (-576) (-576))) (-15 -1781 ((-576) (-576) (-576))) (-15 -4262 ((-576) (-576))) (-15 -1748 ((-576) (-576))) (-15 -2810 ((-576) (-576))) (-15 -2358 ((-576) (-576) (-783))))
+((-2876 (((-2 (|:| |answer| |#4|) (|:| -3633 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2876 ((-2 (|:| |answer| |#4|) (|:| -3633 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574))
+((-2876 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3633 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))))
+(-10 -7 (-15 -2876 ((-2 (|:| |answer| |#4|) (|:| -3633 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2876 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3633 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -2876 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3633 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -575))
+((-2876 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3633 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -2876 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3633 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 30)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 96)) (-4334 (($ $) 97)) (-1428 (((-112) $) NIL)) (-3115 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $ $ $) 52)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL)) (-3938 (($ $ $) 91)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL)) (-2216 (((-576) $) NIL)) (-2806 (($ $ $) 54)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 77) (((-701 (-576)) (-701 $)) 73) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) 93)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL)) (-1874 (((-112) $) NIL)) (-2183 (((-419 (-576)) $) NIL)) (-2840 (($) 79) (($ $) 80)) (-2818 (($ $ $) 90)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-2834 (($ $ $ $) NIL)) (-2364 (($ $ $) 70)) (-3730 (((-112) $) NIL)) (-2636 (($ $ $) NIL)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-4192 (((-112) $) 34)) (-4314 (((-112) $) 85)) (-2211 (((-3 $ "failed") $) NIL)) (-3327 (((-112) $) 43)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1925 (($ $ $ $) 55)) (-3639 (($ $ $) 87)) (-2571 (($ $ $) 86)) (-3790 (($ $) NIL)) (-4114 (($ $) 49)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) 69)) (-1987 (($ $ $) NIL)) (-3796 (($) NIL T CONST)) (-1615 (($ $) 38)) (-3945 (((-1138) $) 42)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 128)) (-2892 (($ $ $) 94) (($ (-656 $)) NIL)) (-1786 (($ $) NIL)) (-4205 (((-430 $) $) 114)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) 112)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 89)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2314 (($ $) 40)) (-3162 (($ $) 36)) (-1846 (((-576) $) 48) (((-548) $) 64) (((-905 (-576)) $) NIL) (((-390) $) 58) (((-227) $) 61) (((-1177) $) 66)) (-2956 (((-874) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-3423 (((-783)) NIL T CONST)) (-3925 (((-112) $ $) NIL)) (-2959 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-2650 (($) 35)) (-2946 (((-112) $ $) NIL)) (-2069 (($ $ $ $) 51)) (-2130 (($ $) 78)) (-2143 (($) 6 T CONST)) (-2155 (($) 31 T CONST)) (-2616 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-3047 (((-112) $ $) 50)) (-3024 (((-112) $ $) 81)) (-2991 (((-112) $ $) 33)) (-3034 (((-112) $ $) 82)) (-3014 (((-112) $ $) 10)) (-3096 (($ $) 16) (($ $ $) 39)) (-3081 (($ $ $) 37)) (** (($ $ (-937)) NIL) (($ $ (-783)) 84)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 53) (($ (-576) $) 83)))
+(((-576) (-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443)))) (T -576))
+NIL
+(-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443)))
+((-3944 (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081)) 116) (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781)) 118)) (-2254 (((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195)) 195) (((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177)) 194) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081)) 199) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390)) 200) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390)) 201) (((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390))))) 202) (((-1053) (-326 (-390)) (-1112 (-855 (-390)))) 190) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390)) 189) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390)) 185) (((-1053) (-781)) 177) (((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081)) 184)))
+(((-577) (-10 -7 (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081))) (-15 -2254 ((-1053) (-781))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081))) (-15 -2254 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177))) (-15 -2254 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195))))) (T -577))
+((-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) (-5 *5 (-1195)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390)))) (-5 *5 (-1177)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *1 (-577)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053)))) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390))))) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1053)) (-5 *1 (-577)))) (-2254 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577)))))
+(-10 -7 (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390) (-1081))) (-15 -2254 ((-1053) (-781))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-1112 (-855 (-390))))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390))) (-15 -2254 ((-1053) (-326 (-390)) (-656 (-1112 (-855 (-390)))) (-390) (-390) (-1081))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))) (-781) (-1081))) (-15 -2254 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1177))) (-15 -2254 ((-3 (-1053) "failed") (-326 (-390)) (-1110 (-855 (-390))) (-1195))))
+((-1359 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 196)) (-1570 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 99)) (-1540 (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 192)) (-2171 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195))) 201)) (-3993 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195)) 210 (|has| |#3| (-668 |#2|)))))
+(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -1570 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1540 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1359 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2171 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3993 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1118)) (T -578))
+((-3993 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))) (-2171 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1118)))) (-1359 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1118)))) (-1540 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118)))) (-1570 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118)))))
+(-10 -7 (-15 -1570 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -1540 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -1359 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -2171 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3993 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4093 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|))
+((-3027 (((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1195)) 64)) (-3214 (((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1157)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))) (-3974 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))))
+(((-579 |#1| |#2|) (-10 -7 (-15 -3027 ((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3974 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -3214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1157)) (-15 -3214 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1056 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -579))
+((-3214 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1157)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-3214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3974 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -2441 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(-10 -7 (-15 -3027 ((-2 (|:| -2441 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3974 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -3214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1157)) (-15 -3214 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2095 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-2254 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-4367 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-2718 (((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2254 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -4367 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2718 ((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2095 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -580))
+((-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2718 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -2570 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-4367 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148) (-1056 (-576)))) (-5 *1 (-580 *3 *4)))) (-2254 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))))
+(-10 -7 (-15 -2254 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -4367 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2718 ((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2095 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|)))))
+((-4122 (((-3 (-576) "failed") |#1|) 14)) (-2265 (((-112) |#1|) 13)) (-4005 (((-576) |#1|) 9)))
+(((-581 |#1|) (-10 -7 (-15 -4005 ((-576) |#1|)) (-15 -2265 ((-112) |#1|)) (-15 -4122 ((-3 (-576) "failed") |#1|))) (-1056 (-576))) (T -581))
+((-4122 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1056 (-576))))) (-4005 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2)))))
+(-10 -7 (-15 -4005 ((-576) |#1|)) (-15 -2265 ((-112) |#1|)) (-15 -4122 ((-3 (-576) "failed") |#1|)))
+((-1792 (((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|)))) 48)) (-1909 (((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195)) 28)) (-2997 (((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195)) 23)) (-3623 (((-3 (-2 (|:| -2570 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))) 35)))
+(((-582 |#1|) (-10 -7 (-15 -1909 ((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -2997 ((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195))) (-15 -1792 ((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|))))) (-15 -3623 ((-3 (-2 (|:| -2570 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))))) (-13 (-568) (-1056 (-576)) (-148))) (T -582))
+((-3623 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-2 (|:| -2570 (-419 (-968 *5))) (|:| |coeff| (-419 (-968 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5))))) (-1792 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-968 *6)))) (-5 *3 (-419 (-968 *6))) (-4 *6 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2997 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148))) (-5 *2 (-598 (-419 (-968 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5))))))
+(-10 -7 (-15 -1909 ((-598 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -2997 ((-3 (-419 (-968 |#1|)) "failed") (-419 (-968 |#1|)) (-1195))) (-15 -1792 ((-3 (-2 (|:| |mainpart| (-419 (-968 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-968 |#1|))) (|:| |logand| (-419 (-968 |#1|))))))) "failed") (-419 (-968 |#1|)) (-1195) (-656 (-419 (-968 |#1|))))) (-15 -3623 ((-3 (-2 (|:| -2570 (-419 (-968 |#1|))) (|:| |coeff| (-419 (-968 |#1|)))) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)))))
+((-2869 (((-112) $ $) 75)) (-3549 (((-112) $) 48)) (-3021 ((|#1| $) 39)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) 79)) (-2384 (($ $) 139)) (-2260 (($ $) 118)) (-2847 ((|#1| $) 37)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $) NIL)) (-2363 (($ $) 141)) (-2238 (($ $) 114)) (-2409 (($ $) 143)) (-2282 (($ $) 122)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) 93)) (-2216 (((-576) $) 95)) (-4077 (((-3 $ "failed") $) 78)) (-2165 (($ |#1| |#1|) 35)) (-3730 (((-112) $) 44)) (-3009 (($) 104)) (-4192 (((-112) $) 55)) (-2333 (($ $ (-576)) NIL)) (-3327 (((-112) $) 45)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-3118 (($ $) 106)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1371 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-3621 ((|#1| $) 36)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) 81) (($ (-656 $)) NIL)) (-2858 (((-3 $ "failed") $ $) 80)) (-1619 (($ $) 108)) (-2422 (($ $) 147)) (-2291 (($ $) 120)) (-2394 (($ $) 149)) (-2270 (($ $) 124)) (-2373 (($ $) 145)) (-2249 (($ $) 116)) (-3420 (((-112) $ |#1|) 42)) (-2956 (((-874) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-3423 (((-783)) 102 T CONST)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 161)) (-2324 (($ $) 130)) (-2946 (((-112) $ $) NIL)) (-2434 (($ $) 159)) (-2304 (($ $) 126)) (-2485 (($ $) 157)) (-2345 (($ $) 137)) (-2541 (($ $) 155)) (-2354 (($ $) 135)) (-2473 (($ $) 153)) (-2335 (($ $) 132)) (-2447 (($ $) 151)) (-2315 (($ $) 128)) (-2143 (($) 30 T CONST)) (-2155 (($) 10 T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 49)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 47)) (-3096 (($ $) 53) (($ $ $) 54)) (-3081 (($ $ $) 52)) (** (($ $ (-937)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-937) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61)))
+(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1221))) (T -583))
+NIL
+(-566 |#1|)
+((-3695 (((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576))) 27)))
+(((-584) (-10 -7 (-15 -3695 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576)))))) (T -584))
+((-3695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576))) (-5 *1 (-584)))))
+(-10 -7 (-15 -3695 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576)))))
+((-3509 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195)) 19)) (-2756 (((-656 (-624 |#2|)) (-656 |#2|) (-1195)) 23)) (-4356 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-2999 ((|#2| |#2| (-1195)) 59 (|has| |#1| (-568)))) (-3066 ((|#2| |#2| (-1195)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-2036 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195)) 25)) (-3468 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2639 (((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1056 (-1195))) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-576)))))))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3509 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -3468 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2036 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -4356 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2756 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -2999 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3066 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1056 (-1195))) (-15 -2639 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1118) (-442 |#1|)) (T -585))
+((-2639 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1195))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1195))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1056 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) (-4 *7 (-899 (-576))) (-4 *7 (-1118)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-2999 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-4356 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1118)) (-5 *1 (-585 *3 *4)))) (-2036 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *1 (-585 *5 *6)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1118)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3509 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4)) (-4 *4 (-1118)) (-5 *1 (-585 *4 *5)))))
+(-10 -7 (-15 -3509 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -3468 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2036 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -4356 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2756 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -2999 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3066 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1056 (-1195))) (-15 -2639 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1497 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-1884 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-2941 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-3631 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2737 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3682 (((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-1491 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-2709 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-1677 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-4134 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-1801 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-2678 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-3438 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -2737 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2678 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1497 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -1491 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3438 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1884 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -4134 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3682 ((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2941 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3631 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1801 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2709 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1677 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -586))
+((-1677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-1801 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3883 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5)))) (-3631 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4)))) (-2941 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-3682 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2570 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-4134 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3883 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-1884 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2570 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3438 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3883 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2570 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-1491 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2570 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2570 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2678 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3883 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2737 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2570 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(-10 -7 (-15 -2737 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2678 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1497 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -1491 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3438 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -1884 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -4134 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3682 ((-3 (-2 (|:| -2570 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2941 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -3631 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1801 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3883 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2709 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1677 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-4354 (((-3 |#2| "failed") |#2| (-1195) (-1195)) 10)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -4354 ((-3 |#2| "failed") |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-1157) (-29 |#1|))) (T -587))
+((-4354 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-1157) (-29 *4))))))
+(-10 -7 (-15 -4354 ((-3 |#2| "failed") |#2| (-1195) (-1195))))
+((-3668 (((-703 (-1244)) $ (-1244)) 26)) (-1701 (((-703 (-561)) $ (-561)) 25)) (-3358 (((-783) $ (-129)) 27)) (-3901 (((-703 (-130)) $ (-130)) 24)) (-3202 (((-703 (-1244)) $) 12)) (-1720 (((-703 (-1242)) $) 8)) (-1782 (((-703 (-1241)) $) 10)) (-1866 (((-703 (-561)) $) 13)) (-2736 (((-703 (-559)) $) 9)) (-3556 (((-703 (-558)) $) 11)) (-3185 (((-783) $ (-129)) 7)) (-4121 (((-703 (-130)) $) 14)) (-3597 (($ $) 6)))
+(((-588) (-141)) (T -588))
+NIL
+(-13 (-539) (-872))
+(((-175) . T) ((-539) . T) ((-872) . T))
+((-3668 (((-703 (-1244)) $ (-1244)) NIL)) (-1701 (((-703 (-561)) $ (-561)) NIL)) (-3358 (((-783) $ (-129)) NIL)) (-3901 (((-703 (-130)) $ (-130)) NIL)) (-3202 (((-703 (-1244)) $) NIL)) (-1720 (((-703 (-1242)) $) NIL)) (-1782 (((-703 (-1241)) $) NIL)) (-1866 (((-703 (-561)) $) NIL)) (-2736 (((-703 (-559)) $) NIL)) (-3556 (((-703 (-558)) $) NIL)) (-3185 (((-783) $ (-129)) NIL)) (-4121 (((-703 (-130)) $) NIL)) (-2370 (((-112) $) NIL)) (-3266 (($ (-400)) 14) (($ (-1177)) 16)) (-2956 (((-874) $) NIL)) (-3597 (($ $) NIL)))
+(((-589) (-13 (-588) (-625 (-874)) (-10 -8 (-15 -3266 ($ (-400))) (-15 -3266 ($ (-1177))) (-15 -2370 ((-112) $))))) (T -589))
+((-3266 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))))
+(-13 (-588) (-625 (-874)) (-10 -8 (-15 -3266 ($ (-400))) (-15 -3266 ($ (-1177))) (-15 -2370 ((-112) $))))
+((-2869 (((-112) $ $) NIL)) (-3236 (($) 7 T CONST)) (-2148 (((-1177) $) NIL)) (-1465 (($) 6 T CONST)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15)) (-3937 (($) 9 T CONST)) (-1328 (($) 8 T CONST)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 11)))
+(((-590) (-13 (-1118) (-10 -8 (-15 -1465 ($) -1716) (-15 -3236 ($) -1716) (-15 -1328 ($) -1716) (-15 -3937 ($) -1716)))) (T -590))
+((-1465 (*1 *1) (-5 *1 (-590))) (-3236 (*1 *1) (-5 *1 (-590))) (-1328 (*1 *1) (-5 *1 (-590))) (-3937 (*1 *1) (-5 *1 (-590))))
+(-13 (-1118) (-10 -8 (-15 -1465 ($) -1716) (-15 -3236 ($) -1716) (-15 -1328 ($) -1716) (-15 -3937 ($) -1716)))
+((-2869 (((-112) $ $) NIL)) (-1813 (((-703 $) (-503)) 21)) (-2148 (((-1177) $) NIL)) (-1512 (($ (-1177)) 14)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 33)) (-2044 (((-215 4 (-130)) $) 24)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 26)))
+(((-591) (-13 (-1118) (-10 -8 (-15 -1512 ($ (-1177))) (-15 -2044 ((-215 4 (-130)) $)) (-15 -1813 ((-703 $) (-503)))))) (T -591))
+((-1512 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591)))))
+(-13 (-1118) (-10 -8 (-15 -1512 ($ (-1177))) (-15 -2044 ((-215 4 (-130)) $)) (-15 -1813 ((-703 $) (-503)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $ (-576)) 75)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-1343 (($ (-1191 (-576)) (-576)) 81)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) 66)) (-1381 (($ $) 43)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3540 (((-783) $) 16)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1440 (((-576)) 37)) (-2554 (((-576) $) 41)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3167 (($ $ (-576)) 24)) (-2858 (((-3 $ "failed") $ $) 71)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) 17)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 72)) (-4176 (((-1175 (-576)) $) 19)) (-1588 (($ $) 26)) (-2956 (((-874) $) 102) (($ (-576)) 61) (($ $) NIL)) (-3423 (((-783)) 15 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-576) $ (-576)) 46)) (-2143 (($) 44 T CONST)) (-2155 (($) 21 T CONST)) (-2991 (((-112) $ $) 52)) (-3096 (($ $) 60) (($ $ $) 48)) (-3081 (($ $ $) 59)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63)))
+(((-592 |#1| |#2|) (-881 |#1|) (-576) (-112)) (T -592))
+NIL
+(-881 |#1|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 30)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-4171 (((-1208 (-937) (-783)) (-576)) 59)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 $ "failed") $) 95)) (-2216 (($ $) 94)) (-2524 (($ (-1286 $)) 93)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) 44)) (-2840 (($) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) 61)) (-4208 (((-112) $) NIL)) (-3454 (($ $) NIL) (($ $ (-783)) NIL)) (-3124 (((-112) $) NIL)) (-3540 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-4192 (((-112) $) NIL)) (-1962 (($) 49 (|has| $ (-379)))) (-3729 (((-112) $) NIL (|has| $ (-379)))) (-3404 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-2211 (((-3 $ "failed") $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 $) $ (-937)) NIL (|has| $ (-379))) (((-1191 $) $) 104)) (-4261 (((-937) $) 67)) (-2146 (((-1191 $) $) NIL (|has| $ (-379)))) (-4091 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-2156 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL T CONST)) (-2596 (($ (-937)) 60)) (-2388 (((-112) $) 87)) (-3945 (((-1138) $) NIL)) (-2981 (($) 28 (|has| $ (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 54)) (-4205 (((-430 $) $) NIL)) (-2591 (((-937)) 86) (((-845 (-937))) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2068 (((-135)) NIL)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2782 (((-937) $) 85) (((-845 (-937)) $) NIL)) (-2477 (((-1191 $)) 102)) (-3087 (($) 66)) (-1689 (($) 50 (|has| $ (-379)))) (-3458 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) 91)) (-1846 (((-576) $) 40)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-1817 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3423 (((-783)) 51 T CONST)) (-2617 (((-112) $ $) 107)) (-4093 (((-1286 $) (-937)) 97) (((-1286 $)) 96)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) 31 T CONST)) (-2155 (($) 27 T CONST)) (-3898 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-937)) (T -593))
+NIL
+(-13 (-360) (-339 $) (-626 (-576)))
+((-3687 (((-1291) (-1177)) 10)))
+(((-594) (-10 -7 (-15 -3687 ((-1291) (-1177))))) (T -594))
+((-3687 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594)))))
+(-10 -7 (-15 -3687 ((-1291) (-1177))))
+((-4368 (((-598 |#2|) (-598 |#2|)) 42)) (-2139 (((-656 |#2|) (-598 |#2|)) 44)) (-3671 ((|#2| (-598 |#2|)) 50)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -4368 ((-598 |#2|) (-598 |#2|))) (-15 -2139 ((-656 |#2|) (-598 |#2|))) (-15 -3671 (|#2| (-598 |#2|)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1221))) (T -595))
+((-3671 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-4368 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221))) (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4)))))
+(-10 -7 (-15 -4368 ((-598 |#2|) (-598 |#2|))) (-15 -2139 ((-656 |#2|) (-598 |#2|))) (-15 -3671 (|#2| (-598 |#2|))))
+((-1787 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -1787 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -1787 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1787 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596))
+((-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2570 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -2570 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))))
+(-10 -7 (-15 -1787 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -1787 ((-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2570 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1787 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1787 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3689 (($ (-518) (-609)) 14)) (-1910 (($ (-518) (-609) $) 16)) (-3787 (($ (-518) (-609)) 15)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-1200)) 7) (((-1200) $) 6)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-597) (-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3689 ($ (-518) (-609))) (-15 -3787 ($ (-518) (-609))) (-15 -1910 ($ (-518) (-609) $))))) (T -597))
+((-3689 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-1910 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -3689 ($ (-518) (-609))) (-15 -3787 ($ (-518) (-609))) (-15 -1910 ($ (-518) (-609) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 76)) (-2216 ((|#1| $) NIL)) (-2570 ((|#1| $) 30)) (-2039 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1862 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3633 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $) 31)) (-2148 (((-1177) $) NIL)) (-2425 (($ |#1| |#1|) 38) (($ |#1| (-1195)) 49 (|has| |#1| (-1056 (-1195))))) (-3945 (((-1138) $) NIL)) (-1473 (((-112) $) 35)) (-3884 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1195)) 89 (|has| |#1| (-914 (-1195))))) (-2956 (((-874) $) 110) (($ |#1|) 29)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 18 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) 17) (($ $ $) NIL)) (-3081 (($ $ $) 85)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL)))
+(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1056 |#1|) (-10 -8 (-15 -1862 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2570 (|#1| $)) (-15 -3633 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -2039 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1473 ((-112) $)) (-15 -2425 ($ |#1| |#1|)) (-15 -3884 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-914 (-1195))) (-15 -3884 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1056 (-1195))) (-15 -2425 ($ |#1| (-1195))) |%noBranch|))) (-374)) (T -598))
+((-1862 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2)) (|:| |logand| (-1191 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-2570 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3)) (|:| |logand| (-1191 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2425 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3884 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-914 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1195)))) (-2425 (*1 *1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1056 *3)) (-4 *2 (-374)))))
+(-13 (-729 (-419 (-576))) (-1056 |#1|) (-10 -8 (-15 -1862 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2570 (|#1| $)) (-15 -3633 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -2039 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1473 ((-112) $)) (-15 -2425 ($ |#1| |#1|)) (-15 -3884 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-914 (-1195))) (-15 -3884 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1056 (-1195))) (-15 -2425 ($ |#1| (-1195))) |%noBranch|)))
+((-2521 (((-112) |#1|) 16)) (-1494 (((-3 |#1| "failed") |#1|) 14)) (-3094 (((-2 (|:| -2650 |#1|) (|:| -2300 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-1523 (((-112) |#1| (-783)) 19)) (-1469 ((|#1| |#1|) 42)) (-3406 ((|#1| |#1| (-783)) 45)))
+(((-599 |#1|) (-10 -7 (-15 -1523 ((-112) |#1| (-783))) (-15 -3094 ((-3 |#1| "failed") |#1| (-783))) (-15 -3094 ((-2 (|:| -2650 |#1|) (|:| -2300 (-783))) |#1|)) (-15 -3406 (|#1| |#1| (-783))) (-15 -2521 ((-112) |#1|)) (-15 -1494 ((-3 |#1| "failed") |#1|)) (-15 -1469 (|#1| |#1|))) (-557)) (T -599))
+((-1469 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1494 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2521 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3406 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3094 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2650 *3) (|:| -2300 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3094 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -1523 ((-112) |#1| (-783))) (-15 -3094 ((-3 |#1| "failed") |#1| (-783))) (-15 -3094 ((-2 (|:| -2650 |#1|) (|:| -2300 (-783))) |#1|)) (-15 -3406 (|#1| |#1| (-783))) (-15 -2521 ((-112) |#1|)) (-15 -1494 ((-3 |#1| "failed") |#1|)) (-15 -1469 (|#1| |#1|)))
+((-1808 (((-1191 |#1|) (-937)) 44)))
+(((-600 |#1|) (-10 -7 (-15 -1808 ((-1191 |#1|) (-937)))) (-360)) (T -600))
+((-1808 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360)))))
+(-10 -7 (-15 -1808 ((-1191 |#1|) (-937))))
+((-4368 (((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|)))) 27)) (-2254 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195)) 34 (|has| |#1| (-148)))) (-2139 (((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|)))) 19)) (-3063 (((-326 |#1|) (-419 (-968 |#1|)) (-1195)) 32 (|has| |#1| (-148)))) (-3671 (((-326 |#1|) (-598 (-419 (-968 |#1|)))) 21)))
+(((-601 |#1|) (-10 -7 (-15 -4368 ((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|))))) (-15 -2139 ((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|))))) (-15 -3671 ((-326 |#1|) (-598 (-419 (-968 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2254 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -3063 ((-326 |#1|) (-419 (-968 |#1|)) (-1195)))) |%noBranch|)) (-13 (-464) (-1056 (-576)) (-651 (-576)))) (T -601))
+((-3063 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-968 *4)))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-968 *4)))) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-4368 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-968 *3)))) (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))))
+(-10 -7 (-15 -4368 ((-598 (-419 (-968 |#1|))) (-598 (-419 (-968 |#1|))))) (-15 -2139 ((-656 (-326 |#1|)) (-598 (-419 (-968 |#1|))))) (-15 -3671 ((-326 |#1|) (-598 (-419 (-968 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2254 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -3063 ((-326 |#1|) (-419 (-968 |#1|)) (-1195)))) |%noBranch|))
+((-3341 (((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-937))) 79) (((-701 (-576)) (-656 (-937)) (-921 (-576))) 72)) (-3203 (((-783) (-656 (-937))) 69)))
+(((-602) (-10 -7 (-15 -3203 ((-783) (-656 (-937)))) (-15 -3341 ((-701 (-576)) (-656 (-937)) (-921 (-576)))) (-15 -3341 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -3341 ((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576))))))) (T -602))
+((-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-921 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-921 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-783)) (-5 *1 (-602)))))
+(-10 -7 (-15 -3203 ((-783) (-656 (-937)))) (-15 -3341 ((-701 (-576)) (-656 (-937)) (-921 (-576)))) (-15 -3341 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -3341 ((-656 (-701 (-576))) (-656 (-937)) (-656 (-921 (-576))))))
+((-1709 (((-656 |#5|) |#5| (-112)) 100)) (-2911 (((-112) |#5| (-656 |#5|)) 34)))
+(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1709 ((-656 |#5|) |#5| (-112))) (-15 -2911 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1127 |#1| |#2| |#3| |#4|)) (T -603))
+((-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1127 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1127 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1709 ((-656 |#5|) |#5| (-112))) (-15 -2911 ((-112) |#5| (-656 |#5|))))
+((-2869 (((-112) $ $) NIL)) (-1818 (((-1153) $) 11)) (-1806 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-604) (-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))) (T -604))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604)))))
+(-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))
+((-2869 (((-112) $ $) NIL (|has| (-145) (-1118)))) (-3319 (($ $) 38)) (-1805 (($ $) NIL)) (-1791 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3690 (((-112) $ $) 67)) (-3669 (((-112) $ $ (-576)) 62)) (-4368 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-1375 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3330 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-2791 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2637 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-1819 (($ $ (-1253 (-576)) $) 57)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3316 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2481 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-2405 (((-145) $ (-576)) NIL)) (-3708 (((-112) $ $) 88)) (-1454 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-1873 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) (-145)) 9)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 32 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| (-145) (-862)))) (-1383 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2186 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-1475 (((-576) $) 47 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-145) (-862)))) (-1332 (((-112) $ $ (-145)) 89)) (-2703 (((-783) $ $ (-145)) 86)) (-2466 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2864 (($ $) 41)) (-3019 (($ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2651 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2148 (((-1177) $) 43 (|has| (-145) (-1118)))) (-1604 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) 85 (|has| (-145) (-1118)))) (-2930 (((-145) $) NIL (|has| (-576) (-862)))) (-2922 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4211 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-4274 (((-656 (-145)) $) NIL)) (-3321 (((-112) $) 15)) (-2953 (($) 10)) (-2209 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1253 (-576))) 25) (($ $ $) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2647 (($ $ $ (-576)) 81 (|has| $ (-6 -4462)))) (-3162 (($ $) 20)) (-1846 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2968 (($ (-656 (-145))) NIL)) (-4136 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-2956 (($ (-145)) NIL) (((-874) $) 31 (|has| (-145) (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| (-145) (-1118)))) (-3972 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2991 (((-112) $ $) 17 (|has| (-145) (-1118)))) (-3034 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3014 (((-112) $ $) 18 (|has| (-145) (-862)))) (-2882 (((-783) $) 16 (|has| $ (-6 -4461)))))
+(((-605 |#1|) (-1162) (-576)) (T -605))
+NIL
+(-1162)
+((-3539 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|)) 32)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|)) (T -606))
+((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) (-3539 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1112 *3)) (-4 *3 (-965 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1112 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 71)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2087 (($ $) 109)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4348 (((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576))) 241)) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2567 (((-112) $) NIL)) (-3540 (((-576) $) 63) (((-576) $ (-576)) 64)) (-4192 (((-112) $) NIL)) (-4162 (($ $ (-937)) 83)) (-2028 (($ (-1 |#1| (-576)) $) 80)) (-1614 (((-112) $) 26)) (-4330 (($ |#1| (-576)) 22) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3478 (($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-2254 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3776 (((-3 $ "failed") $ $ (-112)) 108)) (-2761 (($ $ $) 116)) (-3945 (((-1138) $) NIL)) (-2353 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2995 (((-1044 (-855 (-576))) $) 14)) (-3167 (($ $ (-576)) 47)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2209 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1130)))) (-3884 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2782 (((-576) $) NIL)) (-1588 (($ $) 48)) (-2956 (((-874) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4309 ((|#1| $ (-576)) 61)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) 39 T CONST)) (-3337 ((|#1| $) NIL)) (-4080 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3394 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2497 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3119 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1765 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-1699 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-4149 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-1892 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2803 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-4038 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1653 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-4417 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3427 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-2715 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3741 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-1829 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-1529 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-3520 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2903 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3211 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-1968 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2833 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-4181 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2427 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-4025 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-4321 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-4057 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3810 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3530 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2143 (($) 30 T CONST)) (-2155 (($) 40 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2991 (((-112) $ $) 73)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) 91) (($ $ $) 72)) (-3081 (($ $ $) 88)) (** (($ $ (-937)) NIL) (($ $ (-783)) 111)) (* (($ (-937) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-607 |#1|) (-13 (-1264 |#1| (-576)) (-10 -8 (-15 -3478 ($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2995 ((-1044 (-855 (-576))) $)) (-15 -2353 ((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3602 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1614 ((-112) $)) (-15 -2028 ($ (-1 |#1| (-576)) $)) (-15 -3776 ((-3 $ "failed") $ $ (-112))) (-15 -2087 ($ $)) (-15 -2761 ($ $ $)) (-15 -4348 ((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $)) (-15 -1892 ($ $ |#1|)) (-15 -4149 ($ $ (-419 (-576)))) (-15 -4038 ($ $)) (-15 -2803 ($ $)) (-15 -3119 ($ $)) (-15 -1829 ($ $)) (-15 -3394 ($ $)) (-15 -2715 ($ $)) (-15 -1699 ($ $)) (-15 -4417 ($ $)) (-15 -3211 ($ $)) (-15 -3810 ($ $)) (-15 -3520 ($ $)) (-15 -4321 ($ $)) (-15 -2833 ($ $)) (-15 -2427 ($ $)) (-15 -2497 ($ $)) (-15 -3741 ($ $)) (-15 -4080 ($ $)) (-15 -3427 ($ $)) (-15 -1765 ($ $)) (-15 -1653 ($ $)) (-15 -2903 ($ $)) (-15 -4057 ($ $)) (-15 -1529 ($ $)) (-15 -4025 ($ $)) (-15 -1968 ($ $)) (-15 -4181 ($ $))) |%noBranch|))) (-1067)) (T -607))
+((-1614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-3478 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1067)) (-5 *1 (-607 *4)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1067)) (-5 *1 (-607 *3)))) (-2028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-607 *3)))) (-3776 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))) (-2087 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))) (-2761 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))) (-4348 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1044 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576))) (-4 *6 (-1067)) (-5 *2 (-874)) (-5 *1 (-607 *6)))) (-2254 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1892 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4149 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1067)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2803 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1829 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1699 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4417 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3211 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4321 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3741 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4080 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-3427 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1765 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1653 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-2903 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1529 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4025 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))) (-4181 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(-13 (-1264 |#1| (-576)) (-10 -8 (-15 -3478 ($ (-1044 (-855 (-576))) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2995 ((-1044 (-855 (-576))) $)) (-15 -2353 ((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3602 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1614 ((-112) $)) (-15 -2028 ($ (-1 |#1| (-576)) $)) (-15 -3776 ((-3 $ "failed") $ $ (-112))) (-15 -2087 ($ $)) (-15 -2761 ($ $ $)) (-15 -4348 ((-874) (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1044 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $)) (-15 -1892 ($ $ |#1|)) (-15 -4149 ($ $ (-419 (-576)))) (-15 -4038 ($ $)) (-15 -2803 ($ $)) (-15 -3119 ($ $)) (-15 -1829 ($ $)) (-15 -3394 ($ $)) (-15 -2715 ($ $)) (-15 -1699 ($ $)) (-15 -4417 ($ $)) (-15 -3211 ($ $)) (-15 -3810 ($ $)) (-15 -3520 ($ $)) (-15 -4321 ($ $)) (-15 -2833 ($ $)) (-15 -2427 ($ $)) (-15 -2497 ($ $)) (-15 -3741 ($ $)) (-15 -4080 ($ $)) (-15 -3427 ($ $)) (-15 -1765 ($ $)) (-15 -1653 ($ $)) (-15 -2903 ($ $)) (-15 -4057 ($ $)) (-15 -1529 ($ $)) (-15 -4025 ($ $)) (-15 -1968 ($ $)) (-15 -4181 ($ $))) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 63)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3602 (($ (-1175 |#1|)) 9)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) 44)) (-2567 (((-112) $) 56)) (-3540 (((-783) $) 61) (((-783) $ (-783)) 60)) (-4192 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-1175 |#1|) $) 25)) (-3423 (((-783)) 55 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 10 T CONST)) (-2155 (($) 14 T CONST)) (-2991 (((-112) $ $) 24)) (-3096 (($ $) 32) (($ $ $) 16)) (-3081 (($ $ $) 27)) (** (($ $ (-937)) NIL) (($ $ (-783)) 53)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38)))
+(((-608 |#1|) (-13 (-1067) (-111 |#1| |#1|) (-10 -8 (-15 -3532 ((-1175 |#1|) $)) (-15 -3602 ($ (-1175 |#1|))) (-15 -2567 ((-112) $)) (-15 -3540 ((-783) $)) (-15 -3540 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1067)) (T -608))
+((-3532 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-608 *3)))) (-2567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (-3540 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1067)))))
+(-13 (-1067) (-111 |#1| |#1|) (-10 -8 (-15 -3532 ((-1175 |#1|) $)) (-15 -3602 ($ (-1175 |#1|))) (-15 -2567 ((-112) $)) (-15 -3540 ((-783) $)) (-15 -3540 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3016 (($) 8 T CONST)) (-1650 (($) 7 T CONST)) (-1578 (($ $ (-656 $)) 16)) (-2148 (((-1177) $) NIL)) (-2149 (($) 6 T CONST)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-1200)) 15) (((-1200) $) 10)) (-2408 (($) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-609) (-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -2149 ($) -1716) (-15 -1650 ($) -1716) (-15 -3016 ($) -1716) (-15 -2408 ($) -1716) (-15 -1578 ($ $ (-656 $)))))) (T -609))
+((-2149 (*1 *1) (-5 *1 (-609))) (-1650 (*1 *1) (-5 *1 (-609))) (-3016 (*1 *1) (-5 *1 (-609))) (-2408 (*1 *1) (-5 *1 (-609))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609)))))
+(-13 (-1118) (-502 (-1200)) (-10 -8 (-15 -2149 ($) -1716) (-15 -1650 ($) -1716) (-15 -3016 ($) -1716) (-15 -2408 ($) -1716) (-15 -1578 ($ $ (-656 $)))))
+((-1787 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -1787 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1236) (-1236)) (T -610))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))))
+(-10 -7 (-15 -1787 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|))))
+((-1787 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|)) 20) (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18)))
+(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|))) (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|)))) (-1236) (-1236) (-1236)) (T -611))
+((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-611 *6 *7 *8)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-611 *6 *7 *8)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8)))))
+(-10 -7 (-15 -1787 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-613 |#2|))) (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1175 |#2|))))
+((-1821 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))) 57)) (-3428 (((-171 |#2|) |#3|) 122)) (-2645 ((|#3| (-171 |#2|)) 46)) (-3176 ((|#2| |#3|) 21)) (-3368 ((|#3| |#2|) 35)))
+(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2645 (|#3| (-171 |#2|))) (-15 -3176 (|#2| |#3|)) (-15 -3368 (|#3| |#2|)) (-15 -3428 ((-171 |#2|) |#3|)) (-15 -1821 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))))) (-568) (-13 (-442 |#1|) (-1020) (-1221)) (-13 (-442 (-171 |#1|)) (-1020) (-1221))) (T -612))
+((-1821 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195))) (-4 *2 (-13 (-442 (-171 *5)) (-1020) (-1221))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1020) (-1221))))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))) (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1020) (-1221))))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221))) (-5 *1 (-612 *4 *5 *2)))))
+(-10 -7 (-15 -2645 (|#3| (-171 |#2|))) (-15 -3176 (|#2| |#3|)) (-15 -3368 (|#3| |#2|)) (-15 -3428 ((-171 |#2|) |#3|)) (-15 -1821 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195)))))
+((-2174 (($ (-1 (-112) |#1|) $) 17)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (($ (-1 |#1| |#1|) |#1|) 9)) (-2150 (($ (-1 (-112) |#1|) $) 13)) (-2162 (($ (-1 (-112) |#1|) $) 15)) (-2968 (((-1175 |#1|) $) 18)) (-2956 (((-874) $) NIL)))
+(((-613 |#1|) (-13 (-625 (-874)) (-10 -8 (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2174 ($ (-1 (-112) |#1|) $)) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2968 ((-1175 |#1|) $)))) (-1236)) (T -613))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2174 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2102 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)) (-15 -2174 ($ (-1 (-112) |#1|) $)) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2968 ((-1175 |#1|) $))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783)) NIL (|has| |#1| (-23)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3878 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2356 (((-112) $ (-783)) NIL)) (-4114 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-4144 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3794 (($ $ $) NIL (|has| |#1| (-1067)))) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3096 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3081 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-614 |#1| |#2|) (-1284 |#1|) (-1236) (-576)) (T -614))
+NIL
+(-1284 |#1|)
+((-3526 (((-1291) $ |#2| |#2|) 35)) (-4280 ((|#2| $) 23)) (-1475 ((|#2| $) 21)) (-2466 (($ (-1 |#3| |#3|) $) 32)) (-1787 (($ (-1 |#3| |#3|) $) 30)) (-2930 ((|#3| $) 26)) (-4211 (($ $ |#3|) 33)) (-1498 (((-112) |#3| $) 17)) (-4274 (((-656 |#3|) $) 15)) (-2209 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -3526 ((-1291) |#1| |#2| |#2|)) (-15 -4211 (|#1| |#1| |#3|)) (-15 -2930 (|#3| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -1475 (|#2| |#1|)) (-15 -1498 ((-112) |#3| |#1|)) (-15 -4274 ((-656 |#3|) |#1|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2466 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1118) (-1236)) (T -615))
+NIL
+(-10 -8 (-15 -3526 ((-1291) |#1| |#2| |#2|)) (-15 -4211 (|#1| |#1| |#3|)) (-15 -2930 (|#3| |#1|)) (-15 -4280 (|#2| |#1|)) (-15 -1475 (|#2| |#1|)) (-15 -1498 ((-112) |#3| |#1|)) (-15 -4274 ((-656 |#3|) |#1|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2466 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#2| (-1118)))) (-3526 (((-1291) $ |#1| |#1|) 41 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-2481 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) 52)) (-1873 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-4280 ((|#1| $) 44 (|has| |#1| (-862)))) (-2186 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-1475 ((|#1| $) 45 (|has| |#1| (-862)))) (-2466 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#2| (-1118)))) (-2961 (((-656 |#1|) $) 47)) (-4254 (((-112) |#1| $) 48)) (-3945 (((-1138) $) 21 (|has| |#2| (-1118)))) (-2930 ((|#2| $) 43 (|has| |#1| (-862)))) (-4211 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3954 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#2| (-1118)))) (-3972 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#2| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-616 |#1| |#2|) (-141) (-1118) (-1236)) (T -616))
+((-4274 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-656 *4)))) (-4254 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-656 *3)))) (-1498 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1118)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118)) (-4 *2 (-862)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *3 (-862)) (-4 *2 (-1236)))) (-4211 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236)))) (-3526 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236)) (-5 *2 (-1291)))))
+(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -4274 ((-656 |t#2|) $)) (-15 -4254 ((-112) |t#1| $)) (-15 -2961 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1118)) (IF (|has| $ (-6 -4461)) (-15 -1498 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -1475 (|t#1| $)) (-15 -4280 (|t#1| $)) (-15 -2930 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -4211 ($ $ |t#2|)) (-15 -3526 ((-1291) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1118)) ((-625 (-874)) -2838 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-1118) |has| |#2| (-1118)) ((-1236) . T))
+((-2956 (((-874) $) 19) (($ (-130)) 13) (((-130) $) 14)))
+(((-617) (-13 (-625 (-874)) (-502 (-130)))) (T -617))
+NIL
+(-13 (-625 (-874)) (-502 (-130)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 14) (($ (-656 (-1235))) 13)) (-4282 (((-656 (-1235)) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-618) (-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2956 ($ (-656 (-1235)))) (-15 -4282 ((-656 (-1235)) $))))) (T -618))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))))
+(-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2956 ($ (-656 (-1235)))) (-15 -4282 ((-656 (-1235)) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1651 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2264 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2548 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4335 (($) NIL T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3197 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4366 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2655 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3512 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2710 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3333 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3133 (($ $ (-937)) NIL)) (-4316 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3589 (((-1191 |#1|) $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3775 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2495 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3498 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2524 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4077 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3563 (((-937)) NIL (|has| |#2| (-378 |#1|)))) (-3574 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3728 (($ $ (-937)) NIL)) (-3788 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3059 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4337 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3471 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3774 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3144 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4120 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1643 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1418 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2128 (($ $ (-937)) NIL)) (-3209 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1564 (((-1191 |#1|) $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3640 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4347 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2513 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2148 (((-1177) $) NIL)) (-1358 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4085 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3045 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3945 (((-1138) $) NIL)) (-4145 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2209 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3458 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1846 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2292 (((-656 (-968 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-968 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3516 (($ $ $) NIL)) (-3184 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2956 (((-874) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-2943 (((-656 (-1286 |#1|))) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2927 (($ $ $ $) NIL)) (-2763 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2917 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-1736 (($ $ $) NIL)) (-2417 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1431 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3842 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2143 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) 24)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2956 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619))
+((-2956 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))))
+(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2956 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-4402 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) 39)) (-3757 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL) (($) NIL)) (-3526 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-1177) |#1|) 49)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#1| "failed") (-1177) $) 52)) (-4335 (($) NIL T CONST)) (-4289 (($ $ (-1177)) 25)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-3710 (((-3 |#1| "failed") (-1177) $) 53) (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (|has| $ (-6 -4461)))) (-3316 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-2887 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-1832 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) 38)) (-2481 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-1177)) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2672 (($ $) 54)) (-1685 (($ (-400)) 23) (($ (-400) (-1177)) 22)) (-2041 (((-400) $) 40)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-1475 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-1773 (((-656 (-1177)) $) 45)) (-2499 (((-112) (-1177) $) NIL)) (-3838 (((-1177) $) 41)) (-2138 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-2961 (((-656 (-1177)) $) NIL)) (-4254 (((-112) (-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 ((|#1| $) NIL (|has| (-1177) (-862)))) (-2922 (((-3 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) "failed") (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-656 (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 43)) (-2209 ((|#1| $ (-1177) |#1|) NIL) ((|#1| $ (-1177)) 48)) (-1904 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL) (($) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-783) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (((-783) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-2956 (((-874) $) 21)) (-3597 (($ $) 26)) (-2617 (((-112) $ $) NIL)) (-2478 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -2672 ($ $)))) (-1118)) (T -620))
+((-2672 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1118)))))
+(-13 (-375 (-400) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -2672 ($ $))))
+((-2653 (((-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) 16)) (-1773 (((-656 |#2|) $) 20)) (-2499 (((-112) |#2| $) 12)))
+(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -1773 ((-656 |#2|) |#1|)) (-15 -2499 ((-112) |#2| |#1|)) (-15 -2653 ((-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|))) (-622 |#2| |#3|) (-1118) (-1118)) (T -621))
+NIL
+(-10 -8 (-15 -1773 ((-656 |#2|) |#1|)) (-15 -2499 ((-112) |#2| |#1|)) (-15 -2653 ((-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-4335 (($) 7 T CONST)) (-4060 (($ $) 59 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-1773 (((-656 |#1|) $) 64)) (-2499 (((-112) |#1| $) 65)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 40)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 41)) (-3945 (((-1138) $) 21 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 52)) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 42)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-1904 (($) 50) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 49)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 51)) (-2956 (((-874) $) 18 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 43)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-622 |#1| |#2|) (-141) (-1118) (-1118)) (T -622))
+((-2499 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-112)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-5 *2 (-656 *3)))) (-3710 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2172 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
+(-13 (-231 (-2 (|:| -3672 |t#1|) (|:| -1918 |t#2|))) (-10 -8 (-15 -2499 ((-112) |t#1| $)) (-15 -1773 ((-656 |t#1|) $)) (-15 -3710 ((-3 |t#2| "failed") |t#1| $)) (-15 -2172 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((-102) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) ((-625 (-874)) -2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-1118) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) ((-1236) . T))
+((-2180 (((-624 |#2|) |#1|) 17)) (-2332 (((-3 |#1| "failed") (-624 |#2|)) 21)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -2180 ((-624 |#2|) |#1|)) (-15 -2332 ((-3 |#1| "failed") (-624 |#2|)))) (-1118) (-1118)) (T -623))
+((-2332 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) (-5 *1 (-623 *2 *4)))) (-2180 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))))
+(-10 -7 (-15 -2180 ((-624 |#2|) |#1|)) (-15 -2332 ((-3 |#1| "failed") (-624 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-1657 (((-3 (-1195) "failed") $) 46)) (-3564 (((-1291) $ (-783)) 22)) (-1454 (((-783) $) 20)) (-4153 (((-115) $) 9)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1784 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1195)) 33)) (-2881 (((-112) $ (-115)) 15) (((-112) $ (-1195)) 13)) (-1850 (((-783) $) 17)) (-3945 (((-1138) $) NIL)) (-1846 (((-905 (-576)) $) 95 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 102 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-2956 (((-874) $) 72)) (-2617 (((-112) $ $) NIL)) (-3538 (((-656 |#1|) $) 19)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 51)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 53)))
+(((-624 |#1|) (-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -4153 ((-115) $)) (-15 -3538 ((-656 |#1|) $)) (-15 -1850 ((-783) $)) (-15 -1784 ($ (-115) (-656 |#1|) (-783))) (-15 -1784 ($ (-1195))) (-15 -1657 ((-3 (-1195) "failed") $)) (-15 -2881 ((-112) $ (-115))) (-15 -2881 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1118)) (T -624))
+((-4153 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-1784 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1118)) (-5 *1 (-624 *5)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))) (-2881 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118)))) (-2881 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118)))))
+(-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -4153 ((-115) $)) (-15 -3538 ((-656 |#1|) $)) (-15 -1850 ((-783) $)) (-15 -1784 ($ (-115) (-656 |#1|) (-783))) (-15 -1784 ($ (-1195))) (-15 -1657 ((-3 (-1195) "failed") $)) (-15 -2881 ((-112) $ (-115))) (-15 -2881 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+((-2956 ((|#1| $) 6)))
+(((-625 |#1|) (-141) (-1236)) (T -625))
+((-2956 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236)))))
+(-13 (-10 -8 (-15 -2956 (|t#1| $))))
+((-1846 ((|#1| $) 6)))
+(((-626 |#1|) (-141) (-1236)) (T -626))
+((-1846 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236)))))
+(-13 (-10 -8 (-15 -1846 (|t#1| $))))
+((-2801 (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16)))
+(((-627 |#1| |#2|) (-10 -7 (-15 -2801 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2801 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -627))
+((-2801 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-2801 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5)))))
+(-10 -7 (-15 -2801 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2801 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|))))
+((-2956 (($ |#1|) 6)))
+(((-628 |#1|) (-141) (-1236)) (T -628))
+((-2956 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236)))))
+(-13 (-10 -8 (-15 -2956 ($ |t#1|))))
+((-2869 (((-112) $ $) NIL)) (-2042 (($) 14 T CONST)) (-1571 (($) 15 T CONST)) (-2107 (($ $ $) 29)) (-2085 (($ $) 27)) (-2148 (((-1177) $) NIL)) (-3039 (($ $ $) 30)) (-3945 (((-1138) $) NIL)) (-2901 (($) 11 T CONST)) (-2027 (($ $ $) 31)) (-2956 (((-874) $) 35)) (-2132 (((-112) $ (|[\|\|]| -2901)) 24) (((-112) $ (|[\|\|]| -2042)) 26) (((-112) $ (|[\|\|]| -1571)) 21)) (-2617 (((-112) $ $) NIL)) (-2096 (($ $ $) 28)) (-2991 (((-112) $ $) 18)))
+(((-629) (-13 (-985) (-10 -8 (-15 -2042 ($) -1716) (-15 -2132 ((-112) $ (|[\|\|]| -2901))) (-15 -2132 ((-112) $ (|[\|\|]| -2042))) (-15 -2132 ((-112) $ (|[\|\|]| -1571)))))) (T -629))
+((-2042 (*1 *1) (-5 *1 (-629))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2901)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1571)) (-5 *2 (-112)) (-5 *1 (-629)))))
+(-13 (-985) (-10 -8 (-15 -2042 ($) -1716) (-15 -2132 ((-112) $ (|[\|\|]| -2901))) (-15 -2132 ((-112) $ (|[\|\|]| -2042))) (-15 -2132 ((-112) $ (|[\|\|]| -1571)))))
+((-1846 (($ |#1|) 6)))
+(((-630 |#1|) (-141) (-1236)) (T -630))
+((-1846 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236)))))
+(-13 (-10 -8 (-15 -1846 ($ |t#1|))))
+((-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-632 |#2|) (-1067)) (T -631))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-632 |#1|) (-141) (-1067)) (T -632))
+((-2956 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1067)))))
+(-13 (-1067) (-660 |t#1|) (-10 -8 (-15 -2956 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2627 (((-576) $) NIL (|has| |#1| (-860)))) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-3730 (((-112) $) NIL (|has| |#1| (-860)))) (-4192 (((-112) $) NIL)) (-2976 ((|#1| $) 13)) (-3327 (((-112) $) NIL (|has| |#1| (-860)))) (-3639 (($ $ $) NIL (|has| |#1| (-860)))) (-2571 (($ $ $) NIL (|has| |#1| (-860)))) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2987 ((|#3| $) 15)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-3423 (((-783)) 20 T CONST)) (-2617 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| |#1| (-860)))) (-2143 (($) NIL T CONST)) (-2155 (($) 12 T CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3108 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2976 (|#1| $)) (-15 -2987 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633))
+((-3108 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3108 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2987 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2976 (|#1| $)) (-15 -2987 (|#3| $))))
+((-4000 ((|#2| |#2| (-1195) (-1195)) 16)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -4000 (|#2| |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-975) (-29 |#1|))) (T -634))
+((-4000 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-29 *4))))))
+(-10 -7 (-15 -4000 (|#2| |#2| (-1195) (-1195))))
+((-2869 (((-112) $ $) 64)) (-3549 (((-112) $) 58)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3906 ((|#1| $) 55)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3680 (((-2 (|:| -3402 $) (|:| -3673 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) 27)) (-4077 (((-3 $ "failed") $) 88)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3540 (((-576) $) 22)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) 40)) (-4330 (($ |#1| (-576)) 24)) (-1380 ((|#1| $) 57)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ $) 93)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3927 (((-783) $) 115 (|has| |#1| (-374)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 114 (|has| |#1| (-374)))) (-3884 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2782 (((-576) $) 38)) (-1846 (((-419 |#2|) $) 47)) (-2956 (((-874) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-4309 ((|#1| $ (-576)) 72)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 9 T CONST)) (-2155 (($) 14 T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2991 (((-112) $ $) 21)) (-3096 (($ $) 51) (($ $ $) NIL)) (-3081 (($ $ $) 90)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49)))
+(((-635 |#1| |#2|) (-13 (-233 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1056 |#2|) (-10 -8 (-15 -1614 ((-112) $)) (-15 -2782 ((-576) $)) (-15 -3540 ((-576) $)) (-15 -1404 ($ $)) (-15 -1380 (|#1| $)) (-15 -3906 (|#1| $)) (-15 -4309 (|#1| $ (-576))) (-15 -4330 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3680 ((-2 (|:| -3402 $) (|:| -3673 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1262 |#1|)) (T -635))
+((-1614 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-2782 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-3540 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-1404 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-1380 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-3906 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -3402 (-635 *4 *5)) (|:| -3673 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))))
+(-13 (-233 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1056 |#2|) (-10 -8 (-15 -1614 ((-112) $)) (-15 -2782 ((-576) $)) (-15 -3540 ((-576) $)) (-15 -1404 ($ $)) (-15 -1380 (|#1| $)) (-15 -3906 (|#1| $)) (-15 -4309 (|#1| $ (-576))) (-15 -4330 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3680 ((-2 (|:| -3402 $) (|:| -3673 (-419 |#2|))) (-419 |#2|)))) |%noBranch|)))
+((-3809 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-2925 ((|#6| |#6|) 48)))
+(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2925 (|#6| |#6|)) (-15 -3809 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|) (-1127 |#1| |#2| |#3| |#4|)) (T -636))
+((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *10 (-1127 *5 *6 *7 *8)))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *2 (-1127 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2925 (|#6| |#6|)) (-15 -3809 ((-656 |#6|) (-656 |#4|) (-112))))
+((-4241 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-1949 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3544 (-656 (-2 (|:| |irr| |#4|) (|:| -3807 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69)))
+(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4241 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1949 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3544 (-656 (-2 (|:| |irr| |#4|) (|:| -3807 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-862) (-805) (-317) (-965 |#3| |#2| |#1|)) (T -637))
+((-1949 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3544 (-656 (-2 (|:| |irr| *10) (|:| -3807 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-965 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1191 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3))))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-965 *3 *7 *6)))))
+(-10 -7 (-15 -4241 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1949 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3544 (-656 (-2 (|:| |irr| |#4|) (|:| -3807 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|))))
+((-2869 (((-112) $ $) NIL)) (-1818 (((-1153) $) 11)) (-1806 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-638) (-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))) (T -638))
+((-1806 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638)))))
+(-13 (-1101) (-10 -8 (-15 -1806 ((-1153) $)) (-15 -1818 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-1665 (((-656 |#1|) $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-1351 (($ $) 77)) (-3118 (((-676 |#1| |#2|) $) 60)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 81)) (-3558 (((-656 (-304 |#2|)) $ $) 42)) (-3945 (((-1138) $) NIL)) (-1619 (($ (-676 |#1| |#2|)) 56)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) 66) (((-1301 |#1| |#2|) $) NIL) (((-1306 |#1| |#2|) $) 74)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 61 T CONST)) (-4306 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-3968 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2960 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46)) (-2991 (((-112) $ $) 62)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52)))
+(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -1619 ($ (-676 |#1| |#2|))) (-15 -3118 ((-676 |#1| |#2|) $)) (-15 -2960 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2956 ((-1301 |#1| |#2|) $)) (-15 -2956 ((-1306 |#1| |#2|) $)) (-15 -1351 ($ $)) (-15 -1665 ((-656 |#1|) $)) (-15 -3968 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4306 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3558 ((-656 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-729 (-419 (-576)))) (-937)) (T -639))
+((-1619 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-937)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-1351 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-937)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-937)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))) (-3558 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))))
+(-13 (-485) (-10 -8 (-15 -1619 ($ (-676 |#1| |#2|))) (-15 -3118 ((-676 |#1| |#2|) $)) (-15 -2960 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2956 ((-1301 |#1| |#2|) $)) (-15 -2956 ((-1306 |#1| |#2|) $)) (-15 -1351 ($ $)) (-15 -1665 ((-656 |#1|) $)) (-15 -3968 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4306 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3558 ((-656 (-304 |#2|)) $ $))))
+((-3809 (((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 103) (((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 77)) (-2236 (((-112) (-656 (-792 |#1| (-876 |#2|)))) 26)) (-2759 (((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 102)) (-2163 (((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 76)) (-3219 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) 30)) (-1552 (((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|)))) 29)))
+(((-640 |#1| |#2|) (-10 -7 (-15 -2236 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -1552 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -3219 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2163 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2759 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3809 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3809 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) (-464) (-656 (-1195))) (T -640))
+((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-1552 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)))))
+(-10 -7 (-15 -2236 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -1552 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -3219 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2163 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2759 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3809 ((-656 (-1064 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -3809 ((-656 (-1164 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))))
+((-2384 (($ $) 38)) (-2260 (($ $) 21)) (-2363 (($ $) 37)) (-2238 (($ $) 22)) (-2409 (($ $) 36)) (-2282 (($ $) 23)) (-3009 (($) 48)) (-3118 (($ $) 45)) (-4058 (($ $) 17)) (-2425 (($ $ (-1110 $)) 7) (($ $ (-1195)) 6)) (-1619 (($ $) 46)) (-4049 (($ $) 15)) (-2224 (($ $) 16)) (-2422 (($ $) 35)) (-2291 (($ $) 24)) (-2394 (($ $) 34)) (-2270 (($ $) 25)) (-2373 (($ $) 33)) (-2249 (($ $) 26)) (-2461 (($ $) 44)) (-2324 (($ $) 32)) (-2434 (($ $) 43)) (-2304 (($ $) 31)) (-2485 (($ $) 42)) (-2345 (($ $) 30)) (-2541 (($ $) 41)) (-2354 (($ $) 29)) (-2473 (($ $) 40)) (-2335 (($ $) 28)) (-2447 (($ $) 39)) (-2315 (($ $) 27)) (-3926 (($ $) 19)) (-4017 (($ $) 20)) (-3758 (($ $) 18)) (** (($ $ $) 47)))
+(((-641) (-141)) (T -641))
+((-4017 (*1 *1 *1) (-4 *1 (-641))) (-3926 (*1 *1 *1) (-4 *1 (-641))) (-3758 (*1 *1 *1) (-4 *1 (-641))) (-4058 (*1 *1 *1) (-4 *1 (-641))) (-2224 (*1 *1 *1) (-4 *1 (-641))) (-4049 (*1 *1 *1) (-4 *1 (-641))))
+(-13 (-975) (-1221) (-10 -8 (-15 -4017 ($ $)) (-15 -3926 ($ $)) (-15 -3758 ($ $)) (-15 -4058 ($ $)) (-15 -2224 ($ $)) (-15 -4049 ($ $))))
+(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-975) . T) ((-1221) . T) ((-1224) . T))
+((-4153 (((-115) (-115)) 88)) (-4058 ((|#2| |#2|) 28)) (-2425 ((|#2| |#2| (-1110 |#2|)) 84) ((|#2| |#2| (-1195)) 50)) (-4049 ((|#2| |#2|) 27)) (-2224 ((|#2| |#2|) 29)) (-1483 (((-112) (-115)) 33)) (-3926 ((|#2| |#2|) 24)) (-4017 ((|#2| |#2|) 26)) (-3758 ((|#2| |#2|) 25)))
+(((-642 |#1| |#2|) (-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4017 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2425 (|#2| |#2| (-1195))) (-15 -2425 (|#2| |#2| (-1110 |#2|)))) (-568) (-13 (-442 |#1|) (-1020) (-1221))) (T -642))
+((-2425 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-2425 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1020) (-1221))))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1020) (-1221))))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))))))
+(-10 -7 (-15 -1483 ((-112) (-115))) (-15 -4153 ((-115) (-115))) (-15 -4017 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2425 (|#2| |#2| (-1195))) (-15 -2425 (|#2| |#2| (-1110 |#2|))))
+((-4135 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-1941 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-2423 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 90)) (-4161 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-4146 (((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-1449 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-2289 (((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-2449 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-3366 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-4340 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -4161 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -1449 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -1941 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2423 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2423 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2449 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2289 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -4340 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4146 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3366 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4135 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1195)) (-464)) (T -643))
+((-4135 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-4146 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-4340 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6)))) (-2289 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) (-5 *1 (-643 *5 *6)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2423 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-1449 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5)))))
+(-10 -7 (-15 -4161 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -1449 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -1941 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2423 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2423 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2449 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -2289 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -4340 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4146 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3366 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4135 ((-493 |#1| |#2|) (-253 |#1| |#2|))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL)) (-3526 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-52) $ (-1177) (-52)) 16) (((-52) $ (-1195) (-52)) 17)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 (-52) "failed") (-1177) $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-3710 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1177) $) NIL)) (-3316 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (((-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2481 (((-52) $ (-1177) (-52)) NIL (|has| $ (-6 -4462)))) (-2405 (((-52) $ (-1177)) NIL)) (-1873 (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2672 (($ $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2186 (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-1475 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1477 (($ (-400)) 9)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-1773 (((-656 (-1177)) $) NIL)) (-2499 (((-112) (-1177) $) NIL)) (-2138 (((-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL)) (-2504 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL)) (-2961 (((-656 (-1177)) $) NIL)) (-4254 (((-112) (-1177) $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-2930 (((-52) $) NIL (|has| (-1177) (-862)))) (-2922 (((-3 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL)) (-4211 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (($ $ (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-4274 (((-656 (-52)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 (((-52) $ (-1177)) 14) (((-52) $ (-1177) (-52)) NIL) (((-52) $ (-1195)) 15)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 (-52))) (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-644) (-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -1477 ($ (-400))) (-15 -2672 ($ $)) (-15 -3140 ((-52) $ (-1195) (-52)))))) (T -644))
+((-1477 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-2672 (*1 *1 *1) (-5 *1 (-644))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644)))))
+(-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -1477 ($ (-400))) (-15 -2672 ($ $)) (-15 -3140 ((-52) $ (-1195) (-52)))))
+((-3108 (($ $ |#2|) 10)))
+(((-645 |#1| |#2|) (-10 -8 (-15 -3108 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645))
+NIL
+(-10 -8 (-15 -3108 (|#1| |#1| |#2|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2968 (($ $ $) 34)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-646 |#1|) (-141) (-174)) (T -646))
+((-2968 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2968 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3108 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1651 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2264 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2548 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4335 (($) NIL T CONST)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3197 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4366 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2655 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3512 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2710 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3333 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3133 (($ $ (-937)) NIL)) (-4316 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3589 (((-1191 |#1|) $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3775 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2495 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3498 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2524 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4077 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3563 (((-937)) NIL (|has| |#2| (-378 |#1|)))) (-3574 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3728 (($ $ (-937)) NIL)) (-3788 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3059 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4337 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3471 (((-3 $ "failed")) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3774 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3144 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4120 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1643 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1418 (((-1191 (-968 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2128 (($ $ (-937)) NIL)) (-3209 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1564 (((-1191 |#1|) $) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3640 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4347 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2513 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2148 (((-1177) $) NIL)) (-1358 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4085 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3045 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3945 (((-1138) $) NIL)) (-4145 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2209 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3458 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1846 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2292 (((-656 (-968 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-968 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3516 (($ $ $) NIL)) (-3184 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2956 (((-874) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-2943 (((-656 (-1286 |#1|))) NIL (-2838 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2927 (($ $ $ $) NIL)) (-2763 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2917 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-1736 (($ $ $) NIL)) (-2417 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1431 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3842 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) 20)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2956 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647))
+((-2956 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))))
+(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2956 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|)))
+((-1696 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-4021 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -4021 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -1696 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -648))
+((-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-4021 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3)))))
+(-10 -7 (-15 -1696 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -4021 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -1696 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177))))
+((-1696 (((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177)) 86) (((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 20) (((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|)))) 35)) (-4021 (((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 23) (((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|)))) 43)))
+(((-649 |#1|) (-10 -7 (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|))))) (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -4021 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|))))) (-15 -4021 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177)))) (-464)) (T -649))
+((-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-968 *6)))) (-5 *5 (-1177)) (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-968 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-968 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-968 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5))))))
+(-10 -7 (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-855 (-968 |#1|))))) (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-968 |#1|))) "failed"))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -4021 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-845 (-968 |#1|))))) (-15 -4021 ((-845 (-419 (-968 |#1|))) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -1696 ((-3 (-855 (-419 (-968 |#1|))) "failed") (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))) (-1177))))
+((-2972 (((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|) 64 (-2085 (|has| |#1| (-374)))) (((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-4190 (((-112) (-1286 |#2|)) 33)) (-3351 (((-3 (-1286 |#1|) "failed") (-1286 |#2|)) 40)))
+(((-650 |#1| |#2|) (-10 -7 (-15 -4190 ((-112) (-1286 |#2|))) (-15 -3351 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -2972 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -2972 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|)))) (-568) (-13 (-1067) (-651 |#1|))) (T -650))
+((-2972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) (-2085 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-2972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) (-5 *1 (-650 *5 *4)))) (-3351 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5)))))
+(-10 -7 (-15 -4190 ((-112) (-1286 |#2|))) (-15 -3351 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -2972 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -2972 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3928 (((-701 |#1|) (-1286 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-651 |#1|) (-141) (-1067)) (T -651))
+((-3928 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) (-5 *2 (-701 *4)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067)) (-5 *2 (-701 *4)))) (-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -2081 (-701 *5)) (|:| |vec| (-1286 *5)))))))
+(-13 (-660 |t#1|) (-10 -8 (-15 -3928 ((-701 |t#1|) (-1286 $))) (-15 -3928 ((-701 |t#1|) (-701 $))) (-15 -3928 ((-2 (|:| -2081 (-701 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-701 $) (-1286 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2991 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-652 |#1|) (-141) (-1130)) (T -652))
+NIL
+(-13 (-658 |t#1|) (-1069 |t#1|))
+(((-102) . T) ((-625 (-874)) . T) ((-658 |#1|) . T) ((-1069 |#1|) . T) ((-1118) . T))
+((-2703 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12)))
+(((-653 |#1| |#2|) (-10 -7 (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1118) (-1236)) (T -653))
+((-2703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-2703 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6)))) (-2703 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-2703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1118)) (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-2703 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))))
+(-10 -7 (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -2703 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -2703 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|))))
+((-3000 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2887 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-1787 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13)))
+(((-654 |#1| |#2|) (-10 -7 (-15 -3000 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -1787 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1236) (-1236)) (T -654))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-654 *5 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))))
+(-10 -7 (-15 -3000 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -1787 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|))))
+((-1787 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21)))
+(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1236) (-1236) (-1236)) (T -655))
+((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8)))))
+(-10 -7 (-15 -1787 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) NIL)) (-2426 ((|#1| $) NIL)) (-1980 (($ $) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3330 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2791 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3439 (($ $ $) NIL (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2900 (($ $ $) 37 (|has| |#1| (-1118)))) (-4024 (($ $ $) 41 (|has| |#1| (-1118)))) (-2307 (($ $ $) 44 (|has| |#1| (-1118)))) (-1707 (($ (-1 (-112) |#1|) $) NIL)) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2413 ((|#1| $) NIL)) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-2940 (($ $) 23) (($ $ (-783)) NIL)) (-4099 (($ $) NIL (|has| |#1| (-1118)))) (-4060 (($ $) 36 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) NIL (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) NIL)) (-3316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-2281 (((-112) $) NIL)) (-1454 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118))) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2074 (((-112) $) 11)) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3500 (($) 9 T CONST)) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2470 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1383 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1798 (($ |#1|) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3338 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2504 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) 20) (($ $ (-783)) NIL)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-2326 (((-112) $) NIL)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) 39)) (-2953 (($) 38)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-1785 (((-576) $ $) NIL)) (-3012 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1558 (((-112) $) NIL)) (-3029 (($ $) NIL)) (-1508 (($ $) NIL (|has| $ (-6 -4462)))) (-2550 (((-783) $) NIL)) (-3704 (($ $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-2237 (($ |#1| $) 12)) (-3228 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4136 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2877 (($ $ $) 13)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2616 (((-1177) $) 31 (|has| |#1| (-840))) (((-1177) $ (-112)) 32 (|has| |#1| (-840))) (((-1291) (-834) $) 33 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -3500 ($) -1716) (-15 -2074 ((-112) $)) (-15 -2237 ($ |#1| $)) (-15 -2877 ($ $ $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -2900 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -2307 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1236)) (T -656))
+((-3500 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-2877 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-2900 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))) (-4024 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))) (-2307 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))))
+(-13 (-678 |#1|) (-10 -8 (-15 -3500 ($) -1716) (-15 -2074 ((-112) $)) (-15 -2237 ($ |#1| $)) (-15 -2877 ($ $ $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -2900 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -2307 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 11) (($ (-1200)) NIL) (((-1200) $) NIL) ((|#1| $) 8)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-657 |#1|) (-13 (-1101) (-625 |#1|)) (-1118)) (T -657))
+NIL
+(-13 (-1101) (-625 |#1|))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2991 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-658 |#1|) (-141) (-1130)) (T -658))
+((-2143 (*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130)))))
+(-13 (-1118) (-10 -8 (-15 (-2143) ($) -1716) (-15 -3549 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1631 (($ |#1| |#1| $) 43)) (-3762 (((-112) $ (-783)) NIL)) (-1707 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-4099 (($ $) 45)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 9 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 37)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) 47)) (-2504 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4256 ((|#1| $) 50)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 23)) (-2953 (($) 28)) (-2942 (((-112) $) 54)) (-4169 (((-656 (-2 (|:| -1918 |#1|) (|:| -3954 (-783)))) $) 67)) (-1904 (($) 26) (($ (-656 |#1|)) 19)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 20)) (-1846 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) NIL)) (-2956 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 24)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 69 (|has| |#1| (-1118)))) (-2882 (((-783) $) 17 (|has| $ (-6 -4461)))))
+(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -2942 ((-112) $)) (-15 -1631 ($ |#1| |#1| $)))) (-1118)) (T -659))
+((-2942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1118)))) (-1631 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1118)))))
+(-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -2942 ((-112) $)) (-15 -1631 ($ |#1| |#1| $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-660 |#1|) (-141) (-1076)) (T -660))
+NIL
+(-13 (-21) (-658 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783) $) 17)) (-1550 (($ $ |#1|) 69)) (-2002 (($ $) 39)) (-4427 (($ $) 37)) (-1706 (((-3 |#1| "failed") $) 61)) (-2216 ((|#1| $) NIL)) (-3726 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3069 (((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576)) 56)) (-1762 ((|#1| $ (-576)) 35)) (-3056 ((|#2| $ (-576)) 34)) (-2121 (($ (-1 |#1| |#1|) $) 41)) (-1945 (($ (-1 |#2| |#2|) $) 47)) (-2056 (($) 11)) (-3608 (($ |#1| |#2|) 24)) (-3510 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|)))) 25)) (-2698 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $) 14)) (-3617 (($ |#1| $) 71)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2050 (((-112) $ $) 76)) (-2956 (((-874) $) 21) (($ |#1|) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 27)))
+(((-661 |#1| |#2| |#3|) (-13 (-1118) (-1056 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -2698 ((-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $)) (-15 -3608 ($ |#1| |#2|)) (-15 -3510 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))))) (-15 -3056 (|#2| $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -4427 ($ $)) (-15 -2002 ($ $)) (-15 -1499 ((-783) $)) (-15 -2056 ($)) (-15 -1550 ($ $ |#1|)) (-15 -3617 ($ |#1| $)) (-15 -3726 ($ |#1| |#2| $)) (-15 -3726 ($ $ $)) (-15 -2050 ((-112) $ $)) (-15 -1945 ($ (-1 |#2| |#2|) $)) (-15 -2121 ($ (-1 |#1| |#1|) $)))) (-1118) (-23) |#2|) (T -661))
+((-3069 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1118)) (-4 *6 (-23)) (-14 *7 *6))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-3608 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4)))) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-3056 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1118)) (-14 *5 *2))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1118)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4427 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-2056 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-1550 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3617 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3726 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23)) (-14 *4 *3))) (-2050 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))) (-1945 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)))) (-2121 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1118) (-1056 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -2698 ((-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))) $)) (-15 -3608 ($ |#1| |#2|)) (-15 -3510 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -1619 |#2|))))) (-15 -3056 (|#2| $ (-576))) (-15 -1762 (|#1| $ (-576))) (-15 -4427 ($ $)) (-15 -2002 ($ $)) (-15 -1499 ((-783) $)) (-15 -2056 ($)) (-15 -1550 ($ $ |#1|)) (-15 -3617 ($ |#1| $)) (-15 -3726 ($ |#1| |#2| $)) (-15 -3726 ($ $ $)) (-15 -2050 ((-112) $ $)) (-15 -1945 ($ (-1 |#2| |#2|) $)) (-15 -2121 ($ (-1 |#1| |#1|) $))))
+((-1475 (((-576) $) 31)) (-1604 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) 12)) (-4254 (((-112) (-576) $) 18)) (-4136 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL)))
+(((-662 |#1| |#2|) (-10 -8 (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -1475 ((-576) |#1|)) (-15 -2961 ((-656 (-576)) |#1|)) (-15 -4254 ((-112) (-576) |#1|))) (-663 |#2|) (-1236)) (T -662))
+NIL
+(-10 -8 (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -4136 (|#1| (-656 |#1|))) (-15 -4136 (|#1| |#1| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#2|)) (-15 -1475 ((-576) |#1|)) (-15 -2961 ((-656 (-576)) |#1|)) (-15 -4254 ((-112) (-576) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 72)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-663 |#1|) (-141) (-1236)) (T -663))
+((-3769 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-4136 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-4136 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-4136 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-1604 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1604 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2)) (-4 *2 (-1236)))))
+(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1253 (-576)) $) (-10 -8 (-15 -3769 ($ (-783) |t#1|)) (-15 -4136 ($ $ |t#1|)) (-15 -4136 ($ |t#1| $)) (-15 -4136 ($ $ $)) (-15 -4136 ($ (-656 $))) (-15 -1787 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2860 ($ $ (-576))) (-15 -2860 ($ $ (-1253 (-576)))) (-15 -1604 ($ |t#1| $ (-576))) (-15 -1604 ($ $ $ (-576))) (IF (|has| $ (-6 -4462)) (-15 -3140 (|t#1| $ (-1253 (-576)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-2766 (((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) "failed") |#3| |#2| (-1195)) 44)))
+(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -2766 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975)) (-668 |#2|)) (T -664))
+((-2766 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-975))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4093 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -2766 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2594 (($ $) NIL (|has| |#1| (-374)))) (-2187 (($ $ $) NIL (|has| |#1| (-374)))) (-1507 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3904 (($ $ $) NIL (|has| |#1| (-374)))) (-2349 (($ $ $) NIL (|has| |#1| (-374)))) (-2136 (($ $ $) NIL (|has| |#1| (-374)))) (-2210 (($ $ $) NIL (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-4192 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) NIL)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1859 (((-783) $) NIL)) (-2996 (($ $ $) NIL (|has| |#1| (-374)))) (-3217 (($ $ $) NIL (|has| |#1| (-374)))) (-3598 (($ $ $) NIL (|has| |#1| (-374)))) (-4257 (($ $ $) NIL (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2209 ((|#1| $ |#1|) NIL)) (-3908 (($ $ $) NIL (|has| |#1| (-374)))) (-2782 (((-783) $) NIL)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2917 ((|#1| $ |#1| |#1|) NIL)) (-2719 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($) NIL)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-665 |#1|) (-668 |#1|) (-239)) (T -665))
+NIL
+(-668 |#1|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2594 (($ $) NIL (|has| |#1| (-374)))) (-2187 (($ $ $) NIL (|has| |#1| (-374)))) (-1507 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3904 (($ $ $) NIL (|has| |#1| (-374)))) (-2349 (($ $ $) NIL (|has| |#1| (-374)))) (-2136 (($ $ $) NIL (|has| |#1| (-374)))) (-2210 (($ $ $) NIL (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-4192 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) NIL)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1859 (((-783) $) NIL)) (-2996 (($ $ $) NIL (|has| |#1| (-374)))) (-3217 (($ $ $) NIL (|has| |#1| (-374)))) (-3598 (($ $ $) NIL (|has| |#1| (-374)))) (-4257 (($ $ $) NIL (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2209 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3908 (($ $ $) NIL (|has| |#1| (-374)))) (-2782 (((-783) $) NIL)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2917 ((|#1| $ |#1| |#1|) NIL)) (-2719 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($) NIL)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-239) (-13 (-660 |#1|) (-10 -8 (-15 -3884 ($ $))))) (T -666))
+NIL
+(-13 (-668 |#1|) (-296 |#2| |#2|))
+((-2594 (($ $) 29)) (-2719 (($ $) 27)) (-3590 (($) 13)))
+(((-667 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -3590 (|#1|))) (-668 |#2|) (-1067)) (T -667))
+NIL
+(-10 -8 (-15 -2594 (|#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -3590 (|#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2594 (($ $) 87 (|has| |#1| (-374)))) (-2187 (($ $ $) 89 (|has| |#1| (-374)))) (-1507 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3904 (($ $ $) 50 (|has| |#1| (-374)))) (-2349 (($ $ $) 51 (|has| |#1| (-374)))) (-2136 (($ $ $) 53 (|has| |#1| (-374)))) (-2210 (($ $ $) 48 (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 47 (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 52 (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-576) $) 79 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 75)) (-1404 (($ $) 69)) (-4077 (((-3 $ "failed") $) 37)) (-4290 (($ $) 60 (|has| |#1| (-464)))) (-4192 (((-112) $) 35)) (-4330 (($ |#1| (-783)) 67)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 62 (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63 (|has| |#1| (-568)))) (-1859 (((-783) $) 71)) (-2996 (($ $ $) 57 (|has| |#1| (-374)))) (-3217 (($ $ $) 58 (|has| |#1| (-374)))) (-3598 (($ $ $) 46 (|has| |#1| (-374)))) (-4257 (($ $ $) 55 (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 54 (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 59 (|has| |#1| (-374)))) (-1380 ((|#1| $) 70)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2209 ((|#1| $ |#1|) 92)) (-3908 (($ $ $) 86 (|has| |#1| (-374)))) (-2782 (((-783) $) 72)) (-1885 ((|#1| $) 61 (|has| |#1| (-464)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 73)) (-3532 (((-656 |#1|) $) 66)) (-4309 ((|#1| $ (-783)) 68)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2917 ((|#1| $ |#1| |#1|) 65)) (-2719 (($ $) 90)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($) 91)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-668 |#1|) (-141) (-1067)) (T -668))
+((-3590 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) (-2719 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1067)) (-4 *3 (-374)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-3908 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(-13 (-864 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -3590 ($)) (-15 -2719 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2187 ($ $ $)) (-15 -1507 ($ $ (-783))) (-15 -2594 ($ $)) (-15 -3908 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-864 |#1|) . T))
+((-1641 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-4205 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -4205 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4205 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -1641 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -669))
+((-1641 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))))
+(-10 -7 (-15 -4205 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4205 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -1641 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2594 (($ $) NIL (|has| |#1| (-374)))) (-2187 (($ $ $) 28 (|has| |#1| (-374)))) (-1507 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3904 (($ $ $) NIL (|has| |#1| (-374)))) (-2349 (($ $ $) NIL (|has| |#1| (-374)))) (-2136 (($ $ $) NIL (|has| |#1| (-374)))) (-2210 (($ $ $) NIL (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-4192 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) NIL)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1859 (((-783) $) NIL)) (-2996 (($ $ $) NIL (|has| |#1| (-374)))) (-3217 (($ $ $) NIL (|has| |#1| (-374)))) (-3598 (($ $ $) NIL (|has| |#1| (-374)))) (-4257 (($ $ $) NIL (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2209 ((|#1| $ |#1|) 24)) (-3908 (($ $ $) 33 (|has| |#1| (-374)))) (-2782 (((-783) $) NIL)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2917 ((|#1| $ |#1| |#1|) 23)) (-2719 (($ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 8 T CONST)) (-3590 (($) NIL)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-670 |#1| |#2|) (-668 |#1|) (-1067) (-1 |#1| |#1|)) (T -670))
+NIL
+(-668 |#1|)
+((-2187 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-1507 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-3908 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
+(((-671 |#1| |#2|) (-10 -7 (-15 -2187 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1507 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3908 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671))
+((-3908 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-1507 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-2187 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))))
+(-10 -7 (-15 -2187 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1507 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -3908 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2939 (($ $ $) 9)))
+(((-672 |#1|) (-10 -8 (-15 -2939 (|#1| |#1| |#1|))) (-673)) (T -672))
+NIL
+(-10 -8 (-15 -2939 (|#1| |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2895 (($ $) 10)) (-2939 (($ $ $) 8)) (-2991 (((-112) $ $) 6)) (-2926 (($ $ $) 9)))
+(((-673) (-141)) (T -673))
+((-2895 (*1 *1 *1) (-4 *1 (-673))) (-2926 (*1 *1 *1 *1) (-4 *1 (-673))) (-2939 (*1 *1 *1 *1) (-4 *1 (-673))))
+(-13 (-102) (-10 -8 (-15 -2895 ($ $)) (-15 -2926 ($ $ $)) (-15 -2939 ($ $ $))))
(((-102) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 15)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-2970 ((|#1| $) 23)) (-3634 (($ $ $) NIL (|has| |#1| (-801)))) (-2976 (($ $ $) NIL (|has| |#1| (-801)))) (-4420 (((-1175) $) 48)) (-3940 (((-1136) $) NIL)) (-2980 ((|#3| $) 24)) (-2951 (((-872) $) 43)) (-2981 (((-112) $ $) 22)) (-2141 (($) 10 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-801)))) (-2986 (((-112) $ $) 20)) (-3031 (((-112) $ $) NIL (|has| |#1| (-801)))) (-3009 (((-112) $ $) 26 (|has| |#1| (-801)))) (-3099 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3090 (($ $) 17) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-672 |#1| |#2| |#3|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3099 ($ $ |#3|)) (-15 -3099 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2980 (|#3| $)))) (-727 |#2|) (-174) (|SubsetCategory| (-736) |#2|)) (T -672))
-((-3099 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)) (-4 *2 (|SubsetCategory| (-736) *4)))) (-3099 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4)) (-4 *3 (|SubsetCategory| (-736) *4)))) (-2970 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-736) *3)))) (-2980 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4)))))
-(-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) (-15 -3099 ($ $ |#3|)) (-15 -3099 ($ |#1| |#3|)) (-15 -2970 (|#1| $)) (-15 -2980 (|#3| $))))
-((-1880 (((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|)) 33)))
-(((-673 |#1|) (-10 -7 (-15 -1880 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|)))) (-923)) (T -673))
-((-1880 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *4))) (-5 *3 (-1189 *4)) (-4 *4 (-923)) (-5 *1 (-673 *4)))))
-(-10 -7 (-15 -1880 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 84)) (-3665 (($ $ (-781)) 94)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3362 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 50)) (-1704 (((-3 (-682 |#1|) "failed") $) NIL)) (-2216 (((-682 |#1|) $) NIL)) (-1402 (($ $) 93)) (-2993 (((-781) $) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ (-682 |#1|) |#2|) 70)) (-1442 (($ $) 89)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2972 (((-1308 |#1| |#2|) (-1308 |#1| |#2|) $) 49)) (-2880 (((-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-682 |#1|) $) NIL)) (-1378 ((|#2| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ |#1| $) 32) (($ $ (-654 |#1|) (-654 $)) 34)) (-3735 (((-781) $) 91)) (-2963 (($ $ $) 20) (($ (-682 |#1|) (-682 |#1|)) 79) (($ (-682 |#1|) $) 77) (($ $ (-682 |#1|)) 78)) (-2951 (((-872) $) NIL) (($ |#1|) 76) (((-1299 |#1| |#2|) $) 60) (((-1308 |#1| |#2|) $) 43) (($ (-682 |#1|)) 27)) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-682 |#1|)) NIL)) (-1866 ((|#2| (-1308 |#1| |#2|) $) 45)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 23 T CONST)) (-4375 (((-654 (-2 (|:| |k| (-682 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1386 (((-3 $ "failed") (-1299 |#1| |#2|)) 62)) (-2382 (($ (-682 |#1|)) 14)) (-2986 (((-112) $ $) 46)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) 68) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-682 |#1|)) NIL)))
-(((-674 |#1| |#2|) (-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1386 ((-3 $ "failed") (-1299 |#1| |#2|))) (-15 -2963 ($ (-682 |#1|) (-682 |#1|))) (-15 -2963 ($ (-682 |#1|) $)) (-15 -2963 ($ $ (-682 |#1|))))) (-860) (-174)) (T -674))
-((-1386 (*1 *1 *2) (|partial| -12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-674 *3 *4)))) (-2963 (*1 *1 *2 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))) (-2963 (*1 *1 *1 *2) (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4)) (-4 *4 (-174)))))
-(-13 (-383 |#1| |#2|) (-391 |#2| (-682 |#1|)) (-10 -8 (-15 -1386 ((-3 $ "failed") (-1299 |#1| |#2|))) (-15 -2963 ($ (-682 |#1|) (-682 |#1|))) (-15 -2963 ($ (-682 |#1|) $)) (-15 -2963 ($ $ (-682 |#1|)))))
-((-1492 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-4287 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3155 (($ (-1 (-112) |#2|) $) 29)) (-2060 (($ $) 65)) (-2218 (($ $) 74)) (-2175 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2882 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1452 (((-574) |#2| $ (-574)) 71) (((-574) |#2| $) NIL) (((-574) (-1 (-112) |#2|) $) 54)) (-3764 (($ (-781) |#2|) 63)) (-2645 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2470 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1785 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1795 (($ |#2|) 15)) (-3705 (($ $ $ (-574)) 42) (($ |#2| $ (-574)) 40)) (-3748 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3032 (($ $ (-1251 (-574))) 51) (($ $ (-574)) 44)) (-2663 (($ $ $ (-574)) 70)) (-3157 (($ $) 68)) (-3009 (((-112) $ $) 76)))
-(((-675 |#1| |#2|) (-10 -8 (-15 -1795 (|#1| |#2|)) (-15 -3032 (|#1| |#1| (-574))) (-15 -3032 (|#1| |#1| (-1251 (-574)))) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3705 (|#1| |#2| |#1| (-574))) (-15 -3705 (|#1| |#1| |#1| (-574))) (-15 -2645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3155 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2645 (|#1| |#1| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2663 (|#1| |#1| |#1| (-574))) (-15 -2060 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-781) |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|))) (-676 |#2|) (-1234)) (T -675))
-NIL
-(-10 -8 (-15 -1795 (|#1| |#2|)) (-15 -3032 (|#1| |#1| (-574))) (-15 -3032 (|#1| |#1| (-1251 (-574)))) (-15 -2175 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3705 (|#1| |#2| |#1| (-574))) (-15 -3705 (|#1| |#1| |#1| (-574))) (-15 -2645 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3155 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2175 (|#1| |#2| |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2645 (|#1| |#1| |#1|)) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1492 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1452 ((-574) (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-574) |#2| |#1|)) (-15 -1452 ((-574) |#2| |#1| (-574))) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1492 ((-112) |#1|)) (-15 -2663 (|#1| |#1| |#1| (-574))) (-15 -2060 (|#1| |#1|)) (-15 -4287 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2882 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3748 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-781) |#2|)) (-15 -1785 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 (|#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2620 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-1492 (((-112) $) 144 (|has| |#1| (-860))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-4287 (($ $) 148 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4460)))) (-2786 (($ $) 143 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3373 (($ $ $) 57 (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-3155 (($ (-1 (-112) |#1|) $) 131)) (-2173 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4459)))) (-2408 ((|#1| $) 67)) (-1430 (($) 7 T CONST)) (-2060 (($ $) 146 (|has| $ (-6 -4460)))) (-4425 (($ $) 136)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-2218 (($ $) 133 (|has| |#1| (-1116)))) (-1573 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 132 (|has| |#1| (-1116))) (($ (-1 (-112) |#1|) $) 127)) (-3311 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4459))) (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-1648 (((-112) $) 85)) (-1452 (((-574) |#1| $ (-574)) 141 (|has| |#1| (-1116))) (((-574) |#1| $) 140 (|has| |#1| (-1116))) (((-574) (-1 (-112) |#1|) $) 139)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 97 (|has| (-574) (-860)))) (-3634 (($ $ $) 149 (|has| |#1| (-860)))) (-2645 (($ $ $) 134 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-2470 (($ $ $) 142 (|has| |#1| (-860))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 96 (|has| (-574) (-860)))) (-2976 (($ $ $) 150 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1795 (($ |#1|) 124)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-3705 (($ $ $ (-574)) 129) (($ |#1| $ (-574)) 128)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1583 (((-654 (-574)) $) 94)) (-1470 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1465 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-3388 (((-112) $) 86)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 92)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4072 (((-574) $ $) 45)) (-3032 (($ $ (-1251 (-574))) 126) (($ $ (-574)) 125)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3864 (((-112) $) 47)) (-3333 (($ $) 63)) (-1823 (($ $) 60 (|has| $ (-6 -4460)))) (-1984 (((-781) $) 64)) (-1852 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 145 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2589 (($ $ $) 62) (($ $ |#1|) 61)) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 152 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 153 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) 151 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 154 (|has| |#1| (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-676 |#1|) (-141) (-1234)) (T -676))
-((-1795 (*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1234)))))
-(-13 (-1165 |t#1|) (-382 |t#1|) (-290 |t#1|) (-10 -8 (-15 -1795 ($ |t#1|))))
-(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-290 |#1|) . T) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1026 |#1|) . T) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1165 |#1|) . T) ((-1234) . T) ((-1272 |#1|) . T))
-((-3426 (((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|))) 22) (((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)) 14)) (-3558 (((-781) (-699 |#1|) (-1284 |#1|)) 30)) (-1954 (((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|)) 24)) (-3317 (((-112) (-699 |#1|) (-1284 |#1|)) 27)))
-(((-677 |#1|) (-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|))) (-15 -3426 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|))) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|)))) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|)))) (-15 -1954 ((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|))) (-15 -3317 ((-112) (-699 |#1|) (-1284 |#1|))) (-15 -3558 ((-781) (-699 |#1|) (-1284 |#1|)))) (-372)) (T -677))
-((-3558 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-677 *5)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-5 *2 (-112)) (-5 *1 (-677 *5)))) (-1954 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1284 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *1 (-677 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -1895 (-654 (-1284 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -1895 (-654 (-1284 *5)))))) (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -1895 (-654 (-1284 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1284 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *5) "failed")) (|:| -1895 (-654 (-1284 *5))))) (-5 *1 (-677 *5)) (-5 *4 (-1284 *5)))))
-(-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|))) (-15 -3426 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-654 (-654 |#1|)) (-1284 |#1|))) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-699 |#1|) (-654 (-1284 |#1|)))) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|))))) (-654 (-654 |#1|)) (-654 (-1284 |#1|)))) (-15 -1954 ((-3 (-1284 |#1|) "failed") (-699 |#1|) (-1284 |#1|))) (-15 -3317 ((-112) (-699 |#1|) (-1284 |#1|))) (-15 -3558 ((-781) (-699 |#1|) (-1284 |#1|))))
-((-3426 (((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|)))) |#4| (-654 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|) 60)) (-3558 (((-781) |#4| |#3|) 18)) (-1954 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3317 (((-112) |#4| |#3|) 14)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|)) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -1954 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3317 ((-112) |#4| |#3|)) (-15 -3558 ((-781) |#4| |#3|))) (-372) (-13 (-382 |#1|) (-10 -7 (-6 -4460))) (-13 (-382 |#1|) (-10 -7 (-6 -4460))) (-697 |#1| |#2| |#3|)) (T -678))
-((-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-781)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-3317 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-112)) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-1954 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-372)) (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4460)))) (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))) (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-654 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1895 (-654 *7))))) (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7)) (-4 *3 (-697 *5 *6 *7)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
-(-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|)) (-15 -3426 ((-654 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|)))) |#4| (-654 |#3|))) (-15 -1954 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3317 ((-112) |#4| |#3|)) (-15 -3558 ((-781) |#4| |#3|)))
-((-1436 (((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -1895 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)) 51)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1436 ((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -1895 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|)))) (-566) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -679))
-((-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 (-417 *8)) "failed")) (|:| -1895 (-654 (-1284 (-417 *8)))))) (-5 *1 (-679 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1436 ((-2 (|:| |particular| (-3 (-1284 (-417 |#4|)) "failed")) (|:| -1895 (-654 (-1284 (-417 |#4|))))) (-654 |#4|) (-654 |#3|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2020 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1644 ((|#2| $) NIL)) (-2406 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1955 (((-1284 (-699 |#2|))) NIL) (((-1284 (-699 |#2|)) (-1284 $)) NIL)) (-1836 (((-112) $) NIL)) (-4022 (((-1284 $)) 42)) (-2832 (((-112) $ (-781)) NIL)) (-2469 (($ |#2|) NIL)) (-1430 (($) NIL T CONST)) (-4300 (($ $) NIL (|has| |#2| (-315)))) (-2273 (((-246 |#1| |#2|) $ (-574)) NIL)) (-3578 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-4272 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-3516 (((-699 |#2|)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-2984 ((|#2| $) NIL)) (-2287 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1284 $)) NIL)) (-2339 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-2266 (((-1189 (-966 |#2|))) NIL (|has| |#2| (-372)))) (-3344 (($ $ (-935)) NIL)) (-2104 ((|#2| $) NIL)) (-4316 (((-1189 |#2|) $) NIL (|has| |#2| (-566)))) (-3288 ((|#2|) NIL) ((|#2| (-1284 $)) NIL)) (-1668 (((-1189 |#2|) $) NIL)) (-4306 (((-112)) NIL)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-3114 (($ (-1284 |#2|)) NIL) (($ (-1284 |#2|) (-1284 $)) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3558 (((-781) $) NIL (|has| |#2| (-566))) (((-935)) 43)) (-2400 ((|#2| $ (-574) (-574)) NIL)) (-1837 (((-112)) NIL)) (-1855 (($ $ (-935)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL)) (-3026 (((-781) $) NIL (|has| |#2| (-566)))) (-3580 (((-654 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-566)))) (-2197 (((-781) $) NIL)) (-2183 (((-112)) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1625 ((|#2| $) NIL (|has| |#2| (-6 (-4461 "*"))))) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#2|))) NIL)) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2796 (((-654 (-654 |#2|)) $) NIL)) (-3630 (((-112)) NIL)) (-3226 (((-112)) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4190 (((-3 (-2 (|:| |particular| $) (|:| -1895 (-654 $))) "failed")) NIL (|has| |#2| (-566)))) (-3988 (((-3 $ "failed")) NIL (|has| |#2| (-566)))) (-1542 (((-699 |#2|)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-1603 ((|#2| $) NIL)) (-3323 (((-699 |#2|) $) NIL) (((-699 |#2|) $ (-1284 $)) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#2| (-566)))) (-3532 (((-1189 (-966 |#2|))) NIL (|has| |#2| (-372)))) (-3484 (($ $ (-935)) NIL)) (-4273 ((|#2| $) NIL)) (-1323 (((-1189 |#2|) $) NIL (|has| |#2| (-566)))) (-2816 ((|#2|) NIL) ((|#2| (-1284 $)) NIL)) (-1479 (((-1189 |#2|) $) NIL)) (-2650 (((-112)) NIL)) (-4420 (((-1175) $) NIL)) (-1806 (((-112)) NIL)) (-2556 (((-112)) NIL)) (-3035 (((-112)) NIL)) (-3858 (((-3 $ "failed") $) NIL (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-1769 (((-112)) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-1731 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) 28) ((|#2| $ (-574)) NIL)) (-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-1681 ((|#2| $) NIL)) (-2125 (($ (-654 |#2|)) NIL)) (-2783 (((-112) $) NIL)) (-1939 (((-246 |#1| |#2|) $) NIL)) (-2293 ((|#2| $) NIL (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2282 (((-699 |#2|) (-1284 $)) NIL) (((-1284 |#2|) $) NIL) (((-699 |#2|) (-1284 $) (-1284 $)) NIL) (((-1284 |#2|) $ (-1284 $)) 31)) (-1844 (($ (-1284 |#2|)) NIL) (((-1284 |#2|) $) NIL)) (-3385 (((-654 (-966 |#2|))) NIL) (((-654 (-966 |#2|)) (-1284 $)) NIL)) (-3082 (($ $ $) NIL)) (-3642 (((-112)) NIL)) (-4239 (((-246 |#1| |#2|) $ (-574)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 41)) (-1899 (((-654 (-1284 |#2|))) NIL (|has| |#2| (-566)))) (-2362 (($ $ $ $) NIL)) (-4358 (((-112)) NIL)) (-2912 (($ (-699 |#2|) $) NIL)) (-2859 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2030 (($ $ $) NIL)) (-2640 (((-112)) NIL)) (-3247 (((-112)) NIL)) (-2528 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-680 |#1| |#2|) (-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|)) (-935) (-174)) (T -680))
-NIL
-(-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-427 |#2|))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2593 (((-654 (-1151)) $) 10)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-681) (-13 (-1099) (-10 -8 (-15 -2593 ((-654 (-1151)) $))))) (T -681))
-((-2593 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-681)))))
-(-13 (-1099) (-10 -8 (-15 -2593 ((-654 (-1151)) $))))
-((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) NIL)) (-3878 (($ $) 62)) (-3620 (((-112) $) NIL)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-3276 (((-3 $ "failed") (-829 |#1|)) 27)) (-4206 (((-112) (-829 |#1|)) 17)) (-2484 (($ (-829 |#1|)) 28)) (-2643 (((-112) $ $) 36)) (-4109 (((-935) $) 43)) (-3865 (($ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4201 (((-654 $) (-829 |#1|)) 19)) (-2951 (((-872) $) 51) (($ |#1|) 40) (((-829 |#1|) $) 47) (((-687 |#1|) $) 52)) (-2981 (((-112) $ $) NIL)) (-4133 (((-59 (-654 $)) (-654 |#1|) (-935)) 67)) (-3122 (((-654 $) (-654 |#1|) (-935)) 70)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 63)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 46)))
-(((-682 |#1|) (-13 (-860) (-1054 |#1|) (-10 -8 (-15 -3620 ((-112) $)) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -4109 ((-935) $)) (-15 -2643 ((-112) $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ((-687 |#1|) $)) (-15 -4201 ((-654 $) (-829 |#1|))) (-15 -4206 ((-112) (-829 |#1|))) (-15 -2484 ($ (-829 |#1|))) (-15 -3276 ((-3 $ "failed") (-829 |#1|))) (-15 -1663 ((-654 |#1|) $)) (-15 -4133 ((-59 (-654 $)) (-654 |#1|) (-935))) (-15 -3122 ((-654 $) (-654 |#1|) (-935))))) (-860)) (T -682))
-((-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2643 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4))) (-5 *1 (-682 *4)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112)) (-5 *1 (-682 *4)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-3276 (*1 *1 *2) (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860)) (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5)))))
-(-13 (-860) (-1054 |#1|) (-10 -8 (-15 -3620 ((-112) $)) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -4109 ((-935) $)) (-15 -2643 ((-112) $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ((-687 |#1|) $)) (-15 -4201 ((-654 $) (-829 |#1|))) (-15 -4206 ((-112) (-829 |#1|))) (-15 -2484 ($ (-829 |#1|))) (-15 -3276 ((-3 $ "failed") (-829 |#1|))) (-15 -1663 ((-654 |#1|) $)) (-15 -4133 ((-59 (-654 $)) (-654 |#1|) (-935))) (-15 -3122 ((-654 $) (-654 |#1|) (-935)))))
-((-3079 ((|#2| $) 100)) (-1978 (($ $) 121)) (-2832 (((-112) $ (-781)) 35)) (-2935 (($ $) 109) (($ $ (-781)) 112)) (-1648 (((-112) $) 122)) (-4345 (((-654 $) $) 96)) (-3514 (((-112) $ $) 92)) (-3814 (((-112) $ (-781)) 33)) (-2761 (((-574) $) 66)) (-2790 (((-574) $) 65)) (-2302 (((-112) $ (-781)) 31)) (-2899 (((-112) $) 98)) (-3334 ((|#2| $) 113) (($ $ (-781)) 117)) (-1602 (($ $ $ (-574)) 83) (($ |#2| $ (-574)) 82)) (-1583 (((-654 (-574)) $) 64)) (-1470 (((-112) (-574) $) 59)) (-2925 ((|#2| $) NIL) (($ $ (-781)) 108)) (-2249 (($ $ (-574)) 125)) (-3388 (((-112) $) 124)) (-1731 (((-112) (-1 (-112) |#2|) $) 42)) (-2445 (((-654 |#2|) $) 46)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1251 (-574))) 79) ((|#2| $ (-574)) 57) ((|#2| $ (-574) |#2|) 58)) (-4072 (((-574) $ $) 91)) (-2855 (($ $ (-1251 (-574))) 78) (($ $ (-574)) 72)) (-3864 (((-112) $) 87)) (-3333 (($ $) 105)) (-1984 (((-781) $) 104)) (-1852 (($ $) 103)) (-2963 (($ (-654 |#2|)) 53)) (-3263 (($ $) 126)) (-1418 (((-654 $) $) 90)) (-3779 (((-112) $ $) 89)) (-2859 (((-112) (-1 (-112) |#2|) $) 41)) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 39)))
-(((-683 |#1| |#2|) (-10 -8 (-15 -3263 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-574))) (-15 -1648 ((-112) |#1|)) (-15 -3388 ((-112) |#1|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2445 ((-654 |#2|) |#1|)) (-15 -1470 ((-112) (-574) |#1|)) (-15 -1583 ((-654 (-574)) |#1|)) (-15 -2790 ((-574) |#1|)) (-15 -2761 ((-574) |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -3333 (|#1| |#1|)) (-15 -1984 ((-781) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3779 ((-112) |#1| |#1|)) (-15 -4072 ((-574) |#1| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781)))) (-684 |#2|) (-1234)) (T -683))
-NIL
-(-10 -8 (-15 -3263 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-574))) (-15 -1648 ((-112) |#1|)) (-15 -3388 ((-112) |#1|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -2445 ((-654 |#2|) |#1|)) (-15 -1470 ((-112) (-574) |#1|)) (-15 -1583 ((-654 (-574)) |#1|)) (-15 -2790 ((-574) |#1|)) (-15 -2761 ((-574) |#1|)) (-15 -2963 (|#1| (-654 |#2|))) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2855 (|#1| |#1| (-574))) (-15 -2855 (|#1| |#1| (-1251 (-574)))) (-15 -1602 (|#1| |#2| |#1| (-574))) (-15 -1602 (|#1| |#1| |#1| (-574))) (-15 -3333 (|#1| |#1|)) (-15 -1984 ((-781) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3779 ((-112) |#1| |#1|)) (-15 -4072 ((-574) |#1| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -1731 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2620 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3373 (($ $ $) 57 (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 104)) (-2408 ((|#1| $) 67)) (-1430 (($) 7 T CONST)) (-2621 (($ $) 126)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-1573 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 105)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-1648 (((-112) $) 85)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4299 (((-781) $) 125)) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 97 (|has| (-574) (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 96 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-2514 (($ $) 128)) (-3367 (((-112) $) 129)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1583 (((-654 (-574)) $) 94)) (-1470 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2305 ((|#1| $) 127)) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1465 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-2249 (($ $ (-574)) 124)) (-3388 (((-112) $) 86)) (-2412 (((-112) $) 130)) (-2933 (((-112) $) 131)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 92)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4072 (((-574) $ $) 45)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3864 (((-112) $) 47)) (-3333 (($ $) 63)) (-1823 (($ $) 60 (|has| $ (-6 -4460)))) (-1984 (((-781) $) 64)) (-1852 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2589 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-3263 (($ $) 123)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-684 |#1|) (-141) (-1234)) (T -684))
-((-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-2173 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-2514 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-2621 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1234)))) (-3263 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))))
-(-13 (-1165 |t#1|) (-10 -8 (-15 -3311 ($ (-1 (-112) |t#1|) $)) (-15 -2173 ($ (-1 (-112) |t#1|) $)) (-15 -2933 ((-112) $)) (-15 -2412 ((-112) $)) (-15 -3367 ((-112) $)) (-15 -2514 ($ $)) (-15 -2305 (|t#1| $)) (-15 -2621 ($ $)) (-15 -4299 ((-781) $)) (-15 -2249 ($ $ (-574))) (-15 -3263 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1165 |#1|) . T) ((-1234) . T) ((-1272 |#1|) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1929 (($ (-781) (-781) (-781)) 53 (|has| |#1| (-1065)))) (-2832 (((-112) $ (-781)) NIL)) (-3147 ((|#1| $ (-781) (-781) (-781) |#1|) 47)) (-1430 (($) NIL T CONST)) (-3718 (($ $ $) 57 (|has| |#1| (-1065)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-1441 (((-1284 (-781)) $) 12)) (-2110 (($ (-1193) $ $) 34)) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-2932 (($ (-781)) 55 (|has| |#1| (-1065)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-781) (-781) (-781)) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2963 (($ (-654 (-654 (-654 |#1|)))) 67)) (-2951 (($ (-972 (-972 (-972 |#1|)))) 23) (((-972 (-972 (-972 |#1|))) $) 19) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-685 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1065)) (PROGN (-15 -1929 ($ (-781) (-781) (-781))) (-15 -2932 ($ (-781))) (-15 -3718 ($ $ $))) |%noBranch|) (-15 -2963 ($ (-654 (-654 (-654 |#1|))))) (-15 -2207 (|#1| $ (-781) (-781) (-781))) (-15 -3147 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2951 ($ (-972 (-972 (-972 |#1|))))) (-15 -2951 ((-972 (-972 (-972 |#1|))) $)) (-15 -2110 ($ (-1193) $ $)) (-15 -1441 ((-1284 (-781)) $)))) (-1116)) (T -685))
-((-1929 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) (-4 *3 (-1116)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065)) (-4 *3 (-1116)))) (-3718 (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1065)) (-4 *2 (-1116)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) (-2207 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))) (-3147 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-4 *3 (-1116)) (-5 *1 (-685 *3)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-5 *1 (-685 *3)) (-4 *3 (-1116)))) (-2110 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-685 *3)) (-4 *3 (-1116)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1284 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1116)))))
-(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1065)) (PROGN (-15 -1929 ($ (-781) (-781) (-781))) (-15 -2932 ($ (-781))) (-15 -3718 ($ $ $))) |%noBranch|) (-15 -2963 ($ (-654 (-654 (-654 |#1|))))) (-15 -2207 (|#1| $ (-781) (-781) (-781))) (-15 -3147 (|#1| $ (-781) (-781) (-781) |#1|)) (-15 -2951 ($ (-972 (-972 (-972 |#1|))))) (-15 -2951 ((-972 (-972 (-972 |#1|))) $)) (-15 -2110 ($ (-1193) $ $)) (-15 -1441 ((-1284 (-781)) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-4046 (((-493) $) 10)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 19) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 12)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-686) (-13 (-1099) (-10 -8 (-15 -4046 ((-493) $)) (-15 -2051 ((-1151) $))))) (T -686))
-((-4046 (*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-686)))))
-(-13 (-1099) (-10 -8 (-15 -4046 ((-493) $)) (-15 -2051 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 15)) (-3878 (($ $) 19)) (-3620 (((-112) $) 20)) (-1704 (((-3 |#1| "failed") $) 23)) (-2216 ((|#1| $) 21)) (-2935 (($ $) 37)) (-1442 (($ $) 25)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-2643 (((-112) $ $) 47)) (-4109 (((-935) $) 40)) (-3865 (($ $) 18)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) 36)) (-2951 (((-872) $) 32) (($ |#1|) 24) (((-829 |#1|) $) 28)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 13)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-687 |#1|) (-13 (-860) (-1054 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2925 (|#1| $)) (-15 -3865 ($ $)) (-15 -4109 ((-935) $)) (-15 -2643 ((-112) $ $)) (-15 -1442 ($ $)) (-15 -2935 ($ $)) (-15 -3620 ((-112) $)) (-15 -3878 ($ $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -687))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2925 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-2643 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860)))))
-(-13 (-860) (-1054 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2951 ((-829 |#1|) $)) (-15 -2925 (|#1| $)) (-15 -3865 ($ $)) (-15 -4109 ((-935) $)) (-15 -2643 ((-112) $ $)) (-15 -1442 ($ $)) (-15 -2935 ($ $)) (-15 -3620 ((-112) $)) (-15 -3878 ($ $)) (-15 -1663 ((-654 |#1|) $))))
-((-1702 ((|#1| (-1 |#1| (-781) |#1|) (-781) |#1|) 11)) (-4103 ((|#1| (-1 |#1| |#1|) (-781) |#1|) 9)))
-(((-688 |#1|) (-10 -7 (-15 -4103 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -1702 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|))) (-1116)) (T -688))
-((-1702 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1116)) (-5 *1 (-688 *2)))) (-4103 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1116)) (-5 *1 (-688 *2)))))
-(-10 -7 (-15 -4103 (|#1| (-1 |#1| |#1|) (-781) |#1|)) (-15 -1702 (|#1| (-1 |#1| (-781) |#1|) (-781) |#1|)))
-((-2664 ((|#2| |#1| |#2|) 9)) (-2652 ((|#1| |#1| |#2|) 8)))
-(((-689 |#1| |#2|) (-10 -7 (-15 -2652 (|#1| |#1| |#2|)) (-15 -2664 (|#2| |#1| |#2|))) (-1116) (-1116)) (T -689))
-((-2664 (*1 *2 *3 *2) (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-2652 (*1 *2 *2 *3) (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(-10 -7 (-15 -2652 (|#1| |#1| |#2|)) (-15 -2664 (|#2| |#1| |#2|)))
-((-4405 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1116) (-1116) (-1116)) (T -690))
-((-4405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)) (-5 *1 (-690 *5 *6 *2)))))
-(-10 -7 (-15 -4405 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 21)) (-2299 (((-654 (-1233)) $) 19)) (-1511 (($ (-654 (-1233)) (-1233)) 14)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 29) (($ (-1198)) NIL) (((-1198) $) NIL) (((-1233) $) 22) (($ (-1134)) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-691) (-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-1134))) (-15 -1511 ($ (-654 (-1233)) (-1233))) (-15 -2299 ((-654 (-1233)) $)) (-15 -2350 ((-1233) $))))) (T -691))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-691)))) (-1511 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1233))) (-5 *3 (-1233)) (-5 *1 (-691)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-691)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-691)))))
-(-13 (-1099) (-623 (-1233)) (-10 -8 (-15 -2951 ($ (-1134))) (-15 -1511 ($ (-654 (-1233)) (-1233))) (-15 -2299 ((-654 (-1233)) $)) (-15 -2350 ((-1233) $))))
-((-1702 (((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)) 26)) (-1535 (((-1 |#1|) |#1|) 8)) (-2818 ((|#1| |#1|) 19)) (-1942 (((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2951 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-781)) 23)))
-(((-692 |#1|) (-10 -7 (-15 -1535 ((-1 |#1|) |#1|)) (-15 -2951 ((-1 |#1|) |#1|)) (-15 -1942 (|#1| (-1 |#1| |#1|))) (-15 -1942 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2818 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -1702 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|)))) (-1116)) (T -692))
-((-1702 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1116)) (-5 *1 (-692 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1116)) (-5 *1 (-692 *4)))) (-2818 (*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1116)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574)) (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1116)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1116)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116)))) (-1535 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116)))))
-(-10 -7 (-15 -1535 ((-1 |#1|) |#1|)) (-15 -2951 ((-1 |#1|) |#1|)) (-15 -1942 (|#1| (-1 |#1| |#1|))) (-15 -1942 ((-654 |#1|) (-1 (-654 |#1|) (-654 |#1|)) (-574))) (-15 -2818 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-781))) (-15 -1702 ((-1 |#1| (-781) |#1|) (-1 |#1| (-781) |#1|))))
-((-2075 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3022 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1714 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2642 (((-1 |#2| |#1|) |#2|) 11)))
-(((-693 |#1| |#2|) (-10 -7 (-15 -2642 ((-1 |#2| |#1|) |#2|)) (-15 -3022 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1714 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2075 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1116) (-1116)) (T -693))
-((-2075 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)) (-4 *4 (-1116)))) (-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))) (-2642 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1116)) (-4 *3 (-1116)))))
-(-10 -7 (-15 -2642 ((-1 |#2| |#1|) |#2|)) (-15 -3022 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1714 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2075 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2199 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3720 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4211 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3308 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2291 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-694 |#1| |#2| |#3|) (-10 -7 (-15 -3720 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4211 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3308 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2291 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2199 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1116) (-1116) (-1116)) (T -694))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-1 *7 *5)) (-5 *1 (-694 *5 *6 *7)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1116)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1116)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1116)) (-4 *4 (-1116)) (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6)))))
-(-10 -7 (-15 -3720 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4211 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3308 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2291 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2199 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2882 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1785 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-695 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1785 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2882 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1065) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|) (-1065) (-382 |#5|) (-382 |#5|) (-697 |#5| |#6| |#7|)) (T -695))
-((-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1065)) (-4 *2 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2)) (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9)))) (-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1065)) (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8)))))
-(-10 -7 (-15 -1785 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1785 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2882 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2224 (($ (-781) (-781)) 42)) (-2283 (($ $ $) 71)) (-2622 (($ |#3|) 66) (($ $) 67)) (-2406 (((-112) $) 36)) (-4378 (($ $ (-574) (-574)) 82)) (-3144 (($ $ (-574) (-574)) 83)) (-1827 (($ $ (-574) (-574) (-574) (-574)) 88)) (-3965 (($ $) 69)) (-1836 (((-112) $) 15)) (-2331 (($ $ (-574) (-574) $) 89)) (-3135 ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) 87)) (-2469 (($ (-781) |#2|) 53)) (-2924 (($ (-654 (-654 |#2|))) 51)) (-2796 (((-654 (-654 |#2|)) $) 78)) (-4256 (($ $ $) 70)) (-2853 (((-3 $ "failed") $ |#2|) 120)) (-2207 ((|#2| $ (-574) (-574)) NIL) ((|#2| $ (-574) (-574) |#2|) NIL) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-2125 (($ (-654 |#2|)) 54) (($ (-654 $)) 56)) (-2783 (((-112) $) 28)) (-2951 (($ |#4|) 61) (((-872) $) NIL)) (-2465 (((-112) $) 38)) (-3099 (($ $ |#2|) 122)) (-3090 (($ $ $) 93) (($ $) 96)) (-3074 (($ $ $) 91)) (** (($ $ (-781)) 109) (($ $ (-574)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-574) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-696 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2331 (|#1| |#1| (-574) (-574) |#1|)) (-15 -1827 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -3144 (|#1| |#1| (-574) (-574))) (-15 -4378 (|#1| |#1| (-574) (-574))) (-15 -3135 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2207 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -2796 ((-654 (-654 |#2|)) |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -3965 (|#1| |#1|)) (-15 -2622 (|#1| |#1|)) (-15 -2622 (|#1| |#3|)) (-15 -2951 (|#1| |#4|)) (-15 -2125 (|#1| (-654 |#1|))) (-15 -2125 (|#1| (-654 |#2|))) (-15 -2469 (|#1| (-781) |#2|)) (-15 -2924 (|#1| (-654 (-654 |#2|)))) (-15 -2224 (|#1| (-781) (-781))) (-15 -2465 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -1836 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574)))) (-697 |#2| |#3| |#4|) (-1065) (-382 |#2|) (-382 |#2|)) (T -696))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-781))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2331 (|#1| |#1| (-574) (-574) |#1|)) (-15 -1827 (|#1| |#1| (-574) (-574) (-574) (-574))) (-15 -3144 (|#1| |#1| (-574) (-574))) (-15 -4378 (|#1| |#1| (-574) (-574))) (-15 -3135 (|#1| |#1| (-654 (-574)) (-654 (-574)) |#1|)) (-15 -2207 (|#1| |#1| (-654 (-574)) (-654 (-574)))) (-15 -2796 ((-654 (-654 |#2|)) |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -3965 (|#1| |#1|)) (-15 -2622 (|#1| |#1|)) (-15 -2622 (|#1| |#3|)) (-15 -2951 (|#1| |#4|)) (-15 -2125 (|#1| (-654 |#1|))) (-15 -2125 (|#1| (-654 |#2|))) (-15 -2469 (|#1| (-781) |#2|)) (-15 -2924 (|#1| (-654 (-654 |#2|)))) (-15 -2224 (|#1| (-781) (-781))) (-15 -2465 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -1836 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) (-574))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2224 (($ (-781) (-781)) 98)) (-2283 (($ $ $) 88)) (-2622 (($ |#2|) 92) (($ $) 91)) (-2406 (((-112) $) 100)) (-4378 (($ $ (-574) (-574)) 84)) (-3144 (($ $ (-574) (-574)) 83)) (-1827 (($ $ (-574) (-574) (-574) (-574)) 82)) (-3965 (($ $) 90)) (-1836 (((-112) $) 102)) (-2832 (((-112) $ (-781)) 8)) (-2331 (($ $ (-574) (-574) $) 81)) (-3135 ((|#1| $ (-574) (-574) |#1|) 45) (($ $ (-654 (-574)) (-654 (-574)) $) 85)) (-2334 (($ $ (-574) |#2|) 43)) (-3269 (($ $ (-574) |#3|) 42)) (-2469 (($ (-781) |#1|) 96)) (-1430 (($) 7 T CONST)) (-4300 (($ $) 68 (|has| |#1| (-315)))) (-2273 ((|#2| $ (-574)) 47)) (-3558 (((-781) $) 67 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 44)) (-2400 ((|#1| $ (-574) (-574)) 49)) (-1871 (((-654 |#1|) $) 31)) (-3026 (((-781) $) 66 (|has| |#1| (-566)))) (-3580 (((-654 |#3|) $) 65 (|has| |#1| (-566)))) (-2197 (((-781) $) 52)) (-3764 (($ (-781) (-781) |#1|) 58)) (-2206 (((-781) $) 51)) (-3814 (((-112) $ (-781)) 9)) (-1625 ((|#1| $) 63 (|has| |#1| (-6 (-4461 "*"))))) (-4075 (((-574) $) 56)) (-1351 (((-574) $) 54)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3183 (((-574) $) 55)) (-2759 (((-574) $) 53)) (-2924 (($ (-654 (-654 |#1|))) 97)) (-2462 (($ (-1 |#1| |#1|) $) 35)) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2796 (((-654 (-654 |#1|)) $) 87)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3858 (((-3 $ "failed") $) 62 (|has| |#1| (-372)))) (-4256 (($ $ $) 89)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) 57)) (-2853 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-566)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) (-574)) 50) ((|#1| $ (-574) (-574) |#1|) 48) (($ $ (-654 (-574)) (-654 (-574))) 86)) (-2125 (($ (-654 |#1|)) 95) (($ (-654 $)) 94)) (-2783 (((-112) $) 101)) (-2293 ((|#1| $) 64 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-4239 ((|#3| $ (-574)) 46)) (-2951 (($ |#3|) 93) (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2465 (((-112) $) 99)) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3099 (($ $ |#1|) 69 (|has| |#1| (-372)))) (-3090 (($ $ $) 79) (($ $) 78)) (-3074 (($ $ $) 80)) (** (($ $ (-781)) 71) (($ $ (-574)) 61 (|has| |#1| (-372)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-574) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-697 |#1| |#2| |#3|) (-141) (-1065) (-382 |t#1|) (-382 |t#1|)) (T -697))
-((-1836 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-112)))) (-2224 (*1 *1 *2 *2) (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2469 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (-2622 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (-2622 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-4256 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2283 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3))))) (-2207 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3135 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-4378 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3144 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-1827 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2331 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *2 (-382 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1065)) (-4 *2 (-382 *3)) (-4 *4 (-382 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (-4300 (*1 *1 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-315)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-3858 (*1 *1 *1) (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4460) (-6 -4459) (-15 -1836 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -2465 ((-112) $)) (-15 -2224 ($ (-781) (-781))) (-15 -2924 ($ (-654 (-654 |t#1|)))) (-15 -2469 ($ (-781) |t#1|)) (-15 -2125 ($ (-654 |t#1|))) (-15 -2125 ($ (-654 $))) (-15 -2951 ($ |t#3|)) (-15 -2622 ($ |t#2|)) (-15 -2622 ($ $)) (-15 -3965 ($ $)) (-15 -4256 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2796 ((-654 (-654 |t#1|)) $)) (-15 -2207 ($ $ (-654 (-574)) (-654 (-574)))) (-15 -3135 ($ $ (-654 (-574)) (-654 (-574)) $)) (-15 -4378 ($ $ (-574) (-574))) (-15 -3144 ($ $ (-574) (-574))) (-15 -1827 ($ $ (-574) (-574) (-574) (-574))) (-15 -2331 ($ $ (-574) (-574) $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-574) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-781))) (IF (|has| |t#1| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -3099 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-315)) (-15 -4300 ($ $)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -3558 ((-781) $)) (-15 -3026 ((-781) $)) (-15 -3580 ((-654 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4461 "*"))) (PROGN (-15 -2293 (|t#1| $)) (-15 -1625 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -3858 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-57 |#1| |#2| |#3|) . T) ((-1234) . T))
-((-4300 ((|#4| |#4|) 92 (|has| |#1| (-315)))) (-3558 (((-781) |#4|) 120 (|has| |#1| (-566)))) (-3026 (((-781) |#4|) 96 (|has| |#1| (-566)))) (-3580 (((-654 |#3|) |#4|) 103 (|has| |#1| (-566)))) (-2844 (((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|) 135 (|has| |#1| (-315)))) (-1625 ((|#1| |#4|) 52)) (-1973 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-566)))) (-3858 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-372)))) (-1729 ((|#4| |#4|) 88 (|has| |#1| (-566)))) (-3478 ((|#4| |#4| |#1| (-574) (-574)) 60)) (-2773 ((|#4| |#4| (-574) (-574)) 55)) (-3617 ((|#4| |#4| |#1| (-574) (-574)) 65)) (-2293 ((|#1| |#4|) 98)) (-3728 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-566)))))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2293 (|#1| |#4|)) (-15 -1625 (|#1| |#4|)) (-15 -2773 (|#4| |#4| (-574) (-574))) (-15 -3478 (|#4| |#4| |#1| (-574) (-574))) (-15 -3617 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3558 ((-781) |#4|)) (-15 -3026 ((-781) |#4|)) (-15 -3580 ((-654 |#3|) |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -1973 ((-3 |#4| "failed") |#4|)) (-15 -3728 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -4300 (|#4| |#4|)) (-15 -2844 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3858 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -698))
-((-3858 (*1 *2 *2) (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-2844 (*1 *2 *3 *3) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5)))) (-4300 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-1973 (*1 *2 *2) (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3617 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-3478 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3)) (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2)) (-4 *2 (-697 *3 *5 *6)))) (-2773 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2)) (-4 *2 (-697 *4 *5 *6)))) (-1625 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174)) (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5)))))
-(-10 -7 (-15 -2293 (|#1| |#4|)) (-15 -1625 (|#1| |#4|)) (-15 -2773 (|#4| |#4| (-574) (-574))) (-15 -3478 (|#4| |#4| |#1| (-574) (-574))) (-15 -3617 (|#4| |#4| |#1| (-574) (-574))) (IF (|has| |#1| (-566)) (PROGN (-15 -3558 ((-781) |#4|)) (-15 -3026 ((-781) |#4|)) (-15 -3580 ((-654 |#3|) |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -1973 ((-3 |#4| "failed") |#4|)) (-15 -3728 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-315)) (PROGN (-15 -4300 (|#4| |#4|)) (-15 -2844 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3858 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781) (-781)) 64)) (-2283 (($ $ $) NIL)) (-2622 (($ (-1284 |#1|)) NIL) (($ $) NIL)) (-2406 (((-112) $) NIL)) (-4378 (($ $ (-574) (-574)) 22)) (-3144 (($ $ (-574) (-574)) NIL)) (-1827 (($ $ (-574) (-574) (-574) (-574)) NIL)) (-3965 (($ $) NIL)) (-1836 (((-112) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2331 (($ $ (-574) (-574) $) NIL)) (-3135 ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574)) $) NIL)) (-2334 (($ $ (-574) (-1284 |#1|)) NIL)) (-3269 (($ $ (-574) (-1284 |#1|)) NIL)) (-2469 (($ (-781) |#1|) 37)) (-1430 (($) NIL T CONST)) (-4300 (($ $) 46 (|has| |#1| (-315)))) (-2273 (((-1284 |#1|) $ (-574)) NIL)) (-3558 (((-781) $) 48 (|has| |#1| (-566)))) (-2473 ((|#1| $ (-574) (-574) |#1|) 69)) (-2400 ((|#1| $ (-574) (-574)) NIL)) (-1871 (((-654 |#1|) $) NIL)) (-3026 (((-781) $) 50 (|has| |#1| (-566)))) (-3580 (((-654 (-1284 |#1|)) $) 53 (|has| |#1| (-566)))) (-2197 (((-781) $) 32)) (-3764 (($ (-781) (-781) |#1|) 28)) (-2206 (((-781) $) 33)) (-3814 (((-112) $ (-781)) NIL)) (-1625 ((|#1| $) 44 (|has| |#1| (-6 (-4461 "*"))))) (-4075 (((-574) $) 10)) (-1351 (((-574) $) 11)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3183 (((-574) $) 14)) (-2759 (((-574) $) 65)) (-2924 (($ (-654 (-654 |#1|))) NIL)) (-2462 (($ (-1 |#1| |#1|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2796 (((-654 (-654 |#1|)) $) 76)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3858 (((-3 $ "failed") $) 60 (|has| |#1| (-372)))) (-4256 (($ $ $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1465 (($ $ |#1|) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) (-574)) NIL) ((|#1| $ (-574) (-574) |#1|) NIL) (($ $ (-654 (-574)) (-654 (-574))) NIL)) (-2125 (($ (-654 |#1|)) NIL) (($ (-654 $)) NIL) (($ (-1284 |#1|)) 70)) (-2783 (((-112) $) NIL)) (-2293 ((|#1| $) 42 (|has| |#1| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 80 (|has| |#1| (-624 (-546))))) (-4239 (((-1284 |#1|) $ (-574)) NIL)) (-2951 (($ (-1284 |#1|)) NIL) (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $ $) NIL) (($ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) 38) (($ $ (-574)) 62 (|has| |#1| (-372)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-574) $) NIL) (((-1284 |#1|) $ (-1284 |#1|)) NIL) (((-1284 |#1|) (-1284 |#1|) $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-699 |#1|) (-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 -2125 ($ (-1284 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3858 ((-3 $ "failed") $)) |%noBranch|))) (-1065)) (T -699))
-((-3858 (*1 *1 *1) (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1065)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-699 *3)))))
-(-13 (-697 |#1| (-1284 |#1|) (-1284 |#1|)) (-10 -8 (-15 -2125 ($ (-1284 |#1|))) (IF (|has| |#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3858 ((-3 $ "failed") $)) |%noBranch|)))
-((-4079 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 37)) (-2597 (((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|) 32)) (-2050 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781)) 43)) (-1578 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 25)) (-3252 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|)) 29) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 27)) (-2799 (((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|)) 31)) (-2689 (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 23)) (** (((-699 |#1|) (-699 |#1|) (-781)) 46)))
-(((-700 |#1|) (-10 -7 (-15 -2689 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1578 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3252 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3252 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2799 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2597 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -4079 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2050 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781)))) (-1065)) (T -700))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-700 *4)))) (-2050 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-700 *4)))) (-4079 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-2597 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-2799 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-3252 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-1578 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))) (-2689 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(-10 -7 (-15 -2689 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -1578 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3252 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3252 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2799 ((-699 |#1|) (-699 |#1|) |#1| (-699 |#1|))) (-15 -2597 ((-699 |#1|) (-699 |#1|) (-699 |#1|) |#1|)) (-15 -4079 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -2050 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-699 |#1|) (-781))) (-15 ** ((-699 |#1|) (-699 |#1|) (-781))))
-((-1704 (((-3 |#1| "failed") $) 18)) (-2216 ((|#1| $) NIL)) (-2243 (($) 7 T CONST)) (-3243 (($ |#1|) 8)) (-2951 (($ |#1|) 16) (((-872) $) 23)) (-2130 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2243)) 11)) (-1337 ((|#1| $) 15)))
-(((-701 |#1|) (-13 (-1279) (-1054 |#1|) (-623 (-872)) (-10 -8 (-15 -3243 ($ |#1|)) (-15 -2130 ((-112) $ (|[\|\|]| |#1|))) (-15 -2130 ((-112) $ (|[\|\|]| -2243))) (-15 -1337 (|#1| $)) (-15 -2243 ($) -1714))) (-623 (-872))) (T -701))
-((-3243 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112)) (-5 *1 (-701 *4)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-701 *4)) (-4 *4 (-623 (-872))))) (-1337 (*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))) (-2243 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
-(-13 (-1279) (-1054 |#1|) (-623 (-872)) (-10 -8 (-15 -3243 ($ |#1|)) (-15 -2130 ((-112) $ (|[\|\|]| |#1|))) (-15 -2130 ((-112) $ (|[\|\|]| -2243))) (-15 -1337 (|#1| $)) (-15 -2243 ($) -1714)))
-((-2673 ((|#2| |#2| |#4|) 29)) (-1982 (((-699 |#2|) |#3| |#4|) 35)) (-3295 (((-699 |#2|) |#2| |#4|) 34)) (-3117 (((-1284 |#2|) |#2| |#4|) 16)) (-2884 ((|#2| |#3| |#4|) 28)) (-1669 (((-699 |#2|) |#3| |#4| (-781) (-781)) 47)) (-2843 (((-699 |#2|) |#2| |#4| (-781)) 46)))
-(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3117 ((-1284 |#2|) |#2| |#4|)) (-15 -2884 (|#2| |#3| |#4|)) (-15 -2673 (|#2| |#2| |#4|)) (-15 -3295 ((-699 |#2|) |#2| |#4|)) (-15 -2843 ((-699 |#2|) |#2| |#4| (-781))) (-15 -1982 ((-699 |#2|) |#3| |#4|)) (-15 -1669 ((-699 |#2|) |#3| |#4| (-781) (-781)))) (-1116) (-912 |#1|) (-382 |#2|) (-13 (-382 |#1|) (-10 -7 (-6 -4459)))) (T -702))
-((-1669 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *7 (-912 *6)) (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))) (-1982 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *6 (-912 *5)) (-5 *2 (-699 *6)) (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-2843 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *3 (-912 *6)) (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3)) (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-699 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-2673 (*1 *2 *2 *3) (-12 (-4 *4 (-1116)) (-4 *2 (-912 *4)) (-5 *1 (-702 *4 *2 *5 *3)) (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4459)))))) (-2884 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *2 (-912 *5)) (-5 *1 (-702 *5 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))) (-3117 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-1284 *3)) (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))))
-(-10 -7 (-15 -3117 ((-1284 |#2|) |#2| |#4|)) (-15 -2884 (|#2| |#3| |#4|)) (-15 -2673 (|#2| |#2| |#4|)) (-15 -3295 ((-699 |#2|) |#2| |#4|)) (-15 -2843 ((-699 |#2|) |#2| |#4| (-781))) (-15 -1982 ((-699 |#2|) |#3| |#4|)) (-15 -1669 ((-699 |#2|) |#3| |#4| (-781) (-781))))
-((-2212 (((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)) 20)) (-3994 ((|#1| (-699 |#2|)) 9)) (-2191 (((-699 |#1|) (-699 |#2|)) 18)))
-(((-703 |#1| |#2|) (-10 -7 (-15 -3994 (|#1| (-699 |#2|))) (-15 -2191 ((-699 |#1|) (-699 |#2|))) (-15 -2212 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|)))) (-566) (-1008 |#1|)) (T -703))
-((-2212 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4))) (-5 *1 (-703 *4 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566)) (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-699 *4)) (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-703 *2 *4)))))
-(-10 -7 (-15 -3994 (|#1| (-699 |#2|))) (-15 -2191 ((-699 |#1|) (-699 |#2|))) (-15 -2212 ((-2 (|:| |num| (-699 |#1|)) (|:| |den| |#1|)) (-699 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-4348 (((-699 (-709))) NIL) (((-699 (-709)) (-1284 $)) NIL)) (-1644 (((-709) $) NIL)) (-2379 (($ $) NIL (|has| (-709) (-1219)))) (-2258 (($ $) NIL (|has| (-709) (-1219)))) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-709) (-358)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-2684 (($ $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-3171 (((-428 $) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-4212 (($ $) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-1374 (((-112) $ $) NIL (|has| (-709) (-315)))) (-1496 (((-781)) NIL (|has| (-709) (-377)))) (-2358 (($ $) NIL (|has| (-709) (-1219)))) (-2236 (($ $) NIL (|has| (-709) (-1219)))) (-2404 (($ $) NIL (|has| (-709) (-1219)))) (-2280 (($ $) NIL (|has| (-709) (-1219)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-709) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-1054 (-417 (-574)))))) (-2216 (((-574) $) NIL) (((-709) $) NIL) (((-417 (-574)) $) NIL (|has| (-709) (-1054 (-417 (-574)))))) (-3114 (($ (-1284 (-709))) NIL) (($ (-1284 (-709)) (-1284 $)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-709) (-358)))) (-2801 (($ $ $) NIL (|has| (-709) (-315)))) (-2375 (((-699 (-709)) $) NIL) (((-699 (-709)) $ (-1284 $)) NIL)) (-1557 (((-699 (-709)) (-1284 $)) NIL) (((-699 (-709)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-709))) (|:| |vec| (-1284 (-709)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-709) (-649 (-574)))) (((-699 (-574)) (-1284 $)) NIL (|has| (-709) (-649 (-574))))) (-2882 (((-3 $ "failed") (-417 (-1189 (-709)))) NIL (|has| (-709) (-372))) (($ (-1189 (-709))) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4223 (((-709) $) 29)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-709) (-555)))) (-4391 (((-112) $) NIL (|has| (-709) (-555)))) (-3805 (((-417 (-574)) $) NIL (|has| (-709) (-555)))) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-709) (-377)))) (-2812 (($ $ $) NIL (|has| (-709) (-315)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-709) (-315)))) (-1615 (($) NIL (|has| (-709) (-358)))) (-3502 (((-112) $) NIL (|has| (-709) (-358)))) (-2613 (($ $) NIL (|has| (-709) (-358))) (($ $ (-781)) NIL (|has| (-709) (-358)))) (-3342 (((-112) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-4129 (((-2 (|:| |r| (-709)) (|:| |phi| (-709))) $) NIL (-12 (|has| (-709) (-1076)) (|has| (-709) (-1219))))) (-3004 (($) NIL (|has| (-709) (-1219)))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-709) (-897 (-388)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-709) (-897 (-574))))) (-1518 (((-843 (-935)) $) NIL (|has| (-709) (-358))) (((-935) $) NIL (|has| (-709) (-358)))) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219))))) (-2608 (((-709) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-709) (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-3446 (((-1189 (-709)) $) NIL (|has| (-709) (-372)))) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1785 (($ (-1 (-709) (-709)) $) NIL)) (-3507 (((-935) $) NIL (|has| (-709) (-377)))) (-3113 (($ $) NIL (|has| (-709) (-1219)))) (-2869 (((-1189 (-709)) $) NIL)) (-2845 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| (-709) (-372)))) (-3792 (($) NIL (|has| (-709) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-709) (-377)))) (-2262 (($) NIL)) (-4234 (((-709) $) 31)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-709) (-315)))) (-2887 (($ (-654 $)) NIL (|has| (-709) (-315))) (($ $ $) NIL (|has| (-709) (-315)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-709) (-358)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-709) (-315)) (|has| (-709) (-923))))) (-4201 (((-428 $) $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| (-709) (-923))) (|has| (-709) (-372))))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-709) (-315))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-709) (-315)))) (-2853 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-709)) NIL (|has| (-709) (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-709) (-315)))) (-1617 (($ $) NIL (|has| (-709) (-1219)))) (-2661 (($ $ (-1193) (-709)) NIL (|has| (-709) (-524 (-1193) (-709)))) (($ $ (-654 (-1193)) (-654 (-709))) NIL (|has| (-709) (-524 (-1193) (-709)))) (($ $ (-654 (-302 (-709)))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-302 (-709))) NIL (|has| (-709) (-317 (-709)))) (($ $ (-709) (-709)) NIL (|has| (-709) (-317 (-709)))) (($ $ (-654 (-709)) (-654 (-709))) NIL (|has| (-709) (-317 (-709))))) (-4220 (((-781) $) NIL (|has| (-709) (-315)))) (-2207 (($ $ (-709)) NIL (|has| (-709) (-294 (-709) (-709))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| (-709) (-315)))) (-1924 (((-709)) NIL) (((-709) (-1284 $)) NIL)) (-1532 (((-3 (-781) "failed") $ $) NIL (|has| (-709) (-358))) (((-781) $) NIL (|has| (-709) (-358)))) (-3879 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-1193)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-709) (-912 (-1193)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3898 (((-699 (-709)) (-1284 $) (-1 (-709) (-709))) NIL (|has| (-709) (-372)))) (-2966 (((-1189 (-709))) NIL)) (-2417 (($ $) NIL (|has| (-709) (-1219)))) (-2288 (($ $) NIL (|has| (-709) (-1219)))) (-3951 (($) NIL (|has| (-709) (-358)))) (-2390 (($ $) NIL (|has| (-709) (-1219)))) (-2269 (($ $) NIL (|has| (-709) (-1219)))) (-2368 (($ $) NIL (|has| (-709) (-1219)))) (-2247 (($ $) NIL (|has| (-709) (-1219)))) (-2282 (((-699 (-709)) (-1284 $)) NIL) (((-1284 (-709)) $) NIL) (((-699 (-709)) (-1284 $) (-1284 $)) NIL) (((-1284 (-709)) $ (-1284 $)) NIL)) (-1844 (((-546) $) NIL (|has| (-709) (-624 (-546)))) (((-171 (-227)) $) NIL (|has| (-709) (-1038))) (((-171 (-388)) $) NIL (|has| (-709) (-1038))) (((-903 (-388)) $) NIL (|has| (-709) (-624 (-903 (-388))))) (((-903 (-574)) $) NIL (|has| (-709) (-624 (-903 (-574))))) (($ (-1189 (-709))) NIL) (((-1189 (-709)) $) NIL) (($ (-1284 (-709))) NIL) (((-1284 (-709)) $) NIL)) (-4090 (($ $) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-923))) (|has| (-709) (-358))))) (-3536 (($ (-709) (-709)) 12)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-574)) NIL) (($ (-709)) NIL) (($ (-171 (-388))) 13) (($ (-171 (-574))) 19) (($ (-171 (-709))) 28) (($ (-171 (-711))) 25) (((-171 (-388)) $) 33) (($ (-417 (-574))) NIL (-2833 (|has| (-709) (-1054 (-417 (-574)))) (|has| (-709) (-372))))) (-2705 (($ $) NIL (|has| (-709) (-358))) (((-3 $ "failed") $) NIL (-2833 (-12 (|has| (-709) (-315)) (|has| $ (-146)) (|has| (-709) (-923))) (|has| (-709) (-146))))) (-2451 (((-1189 (-709)) $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL)) (-2456 (($ $) NIL (|has| (-709) (-1219)))) (-2320 (($ $) NIL (|has| (-709) (-1219)))) (-3750 (((-112) $ $) NIL)) (-2429 (($ $) NIL (|has| (-709) (-1219)))) (-2301 (($ $) NIL (|has| (-709) (-1219)))) (-2480 (($ $) NIL (|has| (-709) (-1219)))) (-2340 (($ $) NIL (|has| (-709) (-1219)))) (-4310 (((-709) $) NIL (|has| (-709) (-1219)))) (-2536 (($ $) NIL (|has| (-709) (-1219)))) (-2349 (($ $) NIL (|has| (-709) (-1219)))) (-2468 (($ $) NIL (|has| (-709) (-1219)))) (-2330 (($ $) NIL (|has| (-709) (-1219)))) (-2443 (($ $) NIL (|has| (-709) (-1219)))) (-2312 (($ $) NIL (|has| (-709) (-1219)))) (-4107 (($ $) NIL (|has| (-709) (-1076)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1 (-709) (-709))) NIL) (($ $ (-1 (-709) (-709)) (-781)) NIL) (($ $ (-1193)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-709) (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-709) (-912 (-1193)))) (($ $) NIL (|has| (-709) (-239))) (($ $ (-781)) NIL (|has| (-709) (-239)))) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL (|has| (-709) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| (-709) (-1219))) (($ $ (-417 (-574))) NIL (-12 (|has| (-709) (-1018)) (|has| (-709) (-1219)))) (($ $ (-574)) NIL (|has| (-709) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-709) $) NIL) (($ $ (-709)) NIL) (($ (-417 (-574)) $) NIL (|has| (-709) (-372))) (($ $ (-417 (-574))) NIL (|has| (-709) (-372)))))
-(((-704) (-13 (-397) (-167 (-709)) (-10 -8 (-15 -2951 ($ (-171 (-388)))) (-15 -2951 ($ (-171 (-574)))) (-15 -2951 ($ (-171 (-709)))) (-15 -2951 ($ (-171 (-711)))) (-15 -2951 ((-171 (-388)) $))))) (T -704))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704)))))
-(-13 (-397) (-167 (-709)) (-10 -8 (-15 -2951 ($ (-171 (-388)))) (-15 -2951 ($ (-171 (-574)))) (-15 -2951 ($ (-171 (-709)))) (-15 -2951 ($ (-171 (-711)))) (-15 -2951 ((-171 (-388)) $))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2218 (($ $) 63)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-4249 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-705 |#1|) (-141) (-1116)) (T -705))
-((-3705 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1116)))) (-2218 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1116)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-2 (|:| -1916 *3) (|:| -3949 (-781))))))))
-(-13 (-241 |t#1|) (-10 -8 (-15 -3705 ($ |t#1| $ (-781))) (-15 -2218 ($ $)) (-15 -4249 ((-654 (-2 (|:| -1916 |t#1|) (|:| -3949 (-781)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-2028 (((-654 |#1|) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) (-574)) 65)) (-2944 ((|#1| |#1| (-574)) 62)) (-2887 ((|#1| |#1| |#1| (-574)) 46)) (-4201 (((-654 |#1|) |#1| (-574)) 49)) (-3228 ((|#1| |#1| (-574) |#1| (-574)) 40)) (-4080 (((-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) |#1| (-574)) 61)))
-(((-706 |#1|) (-10 -7 (-15 -2887 (|#1| |#1| |#1| (-574))) (-15 -2944 (|#1| |#1| (-574))) (-15 -4201 ((-654 |#1|) |#1| (-574))) (-15 -4080 ((-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) |#1| (-574))) (-15 -2028 ((-654 |#1|) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) (-574))) (-15 -3228 (|#1| |#1| (-574) |#1| (-574)))) (-1260 (-574))) (T -706))
-((-3228 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| -4201 *5) (|:| -3735 (-574))))) (-5 *4 (-574)) (-4 *5 (-1260 *4)) (-5 *2 (-654 *5)) (-5 *1 (-706 *5)))) (-4080 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4201 *3) (|:| -3735 *4)))) (-5 *1 (-706 *3)) (-4 *3 (-1260 *4)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3)) (-4 *3 (-1260 *4)))) (-2944 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))) (-2887 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))))
-(-10 -7 (-15 -2887 (|#1| |#1| |#1| (-574))) (-15 -2944 (|#1| |#1| (-574))) (-15 -4201 ((-654 |#1|) |#1| (-574))) (-15 -4080 ((-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) |#1| (-574))) (-15 -2028 ((-654 |#1|) (-654 (-2 (|:| -4201 |#1|) (|:| -3735 (-574)))) (-574))) (-15 -3228 (|#1| |#1| (-574) |#1| (-574))))
-((-1379 (((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-3693 (((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 53) (((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 55) (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 57)) (-2953 (((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270))) NIL)) (-2329 (((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270))) 58)))
-(((-707) (-10 -7 (-15 -3693 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -3693 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -3693 ((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2329 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2953 ((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1379 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -707))
-((-1379 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *1 (-707)))) (-2953 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-2329 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-3693 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))) (-3693 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))) (-3693 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707)))))
-(-10 -7 (-15 -3693 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -3693 ((-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -3693 ((-1149 (-227)) (-1149 (-227)) (-1 (-957 (-227)) (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2329 ((-1149 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1110 (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -2953 ((-1149 (-227)) (-324 (-574)) (-324 (-574)) (-324 (-574)) (-1 (-227) (-227)) (-1110 (-227)) (-654 (-270)))) (-15 -1379 ((-1 (-957 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-4201 (((-428 (-1189 |#4|)) (-1189 |#4|)) 86) (((-428 |#4|) |#4|) 266)))
-(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4|)) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|)))) (-860) (-803) (-358) (-963 |#3| |#2| |#1|)) (T -708))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4|)) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 97)) (-4356 (((-574) $) 34)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-2991 (($ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) NIL)) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL)) (-1430 (($) NIL T CONST)) (-3274 (($ $) NIL)) (-1704 (((-3 (-574) "failed") $) 85) (((-3 (-417 (-574)) "failed") $) 28) (((-3 (-388) "failed") $) 82)) (-2216 (((-574) $) 87) (((-417 (-574)) $) 79) (((-388) $) 80)) (-2801 (($ $ $) 109)) (-3612 (((-3 $ "failed") $) 100)) (-2812 (($ $ $) 108)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3760 (((-935)) 89) (((-935) (-935)) 88)) (-2516 (((-112) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL)) (-1518 (((-574) $) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL)) (-2608 (($ $) NIL)) (-1935 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3207 (((-574) (-574)) 94) (((-574)) 95)) (-3634 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4421 (((-574) (-574)) 92) (((-574)) 93)) (-2976 (($ $ $) NIL) (($) NIL (-12 (-2084 (|has| $ (-6 -4442))) (-2084 (|has| $ (-6 -4450)))))) (-4290 (((-574) $) 17)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 104)) (-2189 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL)) (-3229 (($ $) NIL)) (-2399 (($ (-574) (-574)) NIL) (($ (-574) (-574) (-935)) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 105)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2754 (((-574) $) 24)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 107)) (-1773 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-2326 (((-935) (-574)) NIL (|has| $ (-6 -4450)))) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) NIL)) (-2951 (((-872) $) 63) (($ (-574)) 75) (($ $) NIL) (($ (-417 (-574))) 78) (($ (-574)) 75) (($ (-417 (-574))) 78) (($ (-388)) 72) (((-388) $) 61) (($ (-711)) 66)) (-3070 (((-781)) 119 T CONST)) (-2311 (($ (-574) (-574) (-935)) 54)) (-3941 (($ $) NIL)) (-4098 (((-935)) NIL) (((-935) (-935)) NIL (|has| $ (-6 -4450)))) (-2981 (((-112) $ $) NIL)) (-2644 (((-935)) 91) (((-935) (-935)) 90)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 18 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 96)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 118)) (-3099 (($ $ $) 77)) (-3090 (($ $) 115) (($ $ $) 116)) (-3074 (($ $ $) 114)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 101) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-709) (-13 (-414) (-397) (-372) (-1054 (-388)) (-1054 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-935) (-935))) (-15 -3760 ((-935))) (-15 -2644 ((-935) (-935))) (-15 -4421 ((-574) (-574))) (-15 -4421 ((-574))) (-15 -3207 ((-574) (-574))) (-15 -3207 ((-574))) (-15 -2951 ((-388) $)) (-15 -2951 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -2754 ((-574) $)) (-15 -2311 ($ (-574) (-574) (-935)))))) (T -709))
-((-2754 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3760 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-2644 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))) (-4421 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-4421 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-3207 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709)))) (-2311 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-5 *1 (-709)))))
-(-13 (-414) (-397) (-372) (-1054 (-388)) (-1054 (-417 (-574))) (-148) (-10 -8 (-15 -3760 ((-935) (-935))) (-15 -3760 ((-935))) (-15 -2644 ((-935) (-935))) (-15 -4421 ((-574) (-574))) (-15 -4421 ((-574))) (-15 -3207 ((-574) (-574))) (-15 -3207 ((-574))) (-15 -2951 ((-388) $)) (-15 -2951 ($ (-711))) (-15 -4290 ((-574) $)) (-15 -2754 ((-574) $)) (-15 -2311 ($ (-574) (-574) (-935)))))
-((-3239 (((-699 |#1|) (-699 |#1|) |#1| |#1|) 85)) (-4300 (((-699 |#1|) (-699 |#1|) |#1|) 66)) (-1840 (((-699 |#1|) (-699 |#1|) |#1|) 86)) (-3519 (((-699 |#1|) (-699 |#1|)) 67)) (-2844 (((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|) 84)))
-(((-710 |#1|) (-10 -7 (-15 -3519 ((-699 |#1|) (-699 |#1|))) (-15 -4300 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1840 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3239 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -2844 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|))) (-315)) (T -710))
-((-2844 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-710 *3)) (-4 *3 (-315)))) (-3239 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-1840 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-4300 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
-(-10 -7 (-15 -3519 ((-699 |#1|) (-699 |#1|))) (-15 -4300 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -1840 ((-699 |#1|) (-699 |#1|) |#1|)) (-15 -3239 ((-699 |#1|) (-699 |#1|) |#1| |#1|)) (-15 -2844 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3954 (($ $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2998 (($ $ $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL)) (-3933 (($ $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 31)) (-2216 (((-574) $) 29)) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL)) (-4391 (((-112) $) NIL)) (-3805 (((-417 (-574)) $) NIL)) (-2835 (($ $) NIL) (($) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-4050 (($ $ $ $) NIL)) (-2303 (($ $ $) NIL)) (-2516 (((-112) $) NIL)) (-1371 (($ $ $) NIL)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3943 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-2081 (((-3 $ "failed") $) NIL)) (-1935 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2391 (($ $ $ $) NIL)) (-3634 (($ $ $) NIL)) (-4167 (((-935) (-935)) 10) (((-935)) 9)) (-2976 (($ $ $) NIL)) (-3781 (($ $) NIL)) (-4109 (($ $) NIL)) (-2845 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-2397 (($ $ $) NIL)) (-3792 (($) NIL T CONST)) (-1613 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-2035 (($ $) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2310 (($ $) NIL)) (-3157 (($ $) NIL)) (-1844 (((-227) $) NIL) (((-388) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (((-574) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) 28) (($ $) NIL) (($ (-574)) 28) (((-324 $) (-324 (-574))) 18)) (-3070 (((-781)) NIL T CONST)) (-2539 (((-112) $ $) NIL)) (-3751 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-3750 (((-112) $ $) NIL)) (-4412 (($ $ $ $) NIL)) (-4107 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
-(((-711) (-13 (-397) (-555) (-10 -8 (-15 -4167 ((-935) (-935))) (-15 -4167 ((-935))) (-15 -2951 ((-324 $) (-324 (-574))))))) (T -711))
-((-4167 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))) (-4167 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711)))))
-(-13 (-397) (-555) (-10 -8 (-15 -4167 ((-935) (-935))) (-15 -4167 ((-935))) (-15 -2951 ((-324 $) (-324 (-574))))))
-((-1915 (((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193)) 19)) (-1565 (((-1 |#4| |#2| |#3|) (-1193)) 12)))
-(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-1 |#4| |#2| |#3|) (-1193))) (-15 -1915 ((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193)))) (-624 (-546)) (-1234) (-1234) (-1234)) (T -712))
-((-1915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7)) (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *7 (-1234)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7)) (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)) (-4 *7 (-1234)))))
-(-10 -7 (-15 -1565 ((-1 |#4| |#2| |#3|) (-1193))) (-15 -1915 ((-1 |#4| |#2| |#3|) |#1| (-1193) (-1193))))
-((-3097 (((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193)) 43) (((-1 (-227) (-227)) |#1| (-1193)) 48)))
-(((-713 |#1|) (-10 -7 (-15 -3097 ((-1 (-227) (-227)) |#1| (-1193))) (-15 -3097 ((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193)))) (-624 (-546))) (T -713))
-((-3097 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))) (-3097 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))))
-(-10 -7 (-15 -3097 ((-1 (-227) (-227)) |#1| (-1193))) (-15 -3097 ((-1 (-227) (-227) (-227)) |#1| (-1193) (-1193))))
-((-2722 (((-1193) |#1| (-1193) (-654 (-1193))) 10) (((-1193) |#1| (-1193) (-1193) (-1193)) 13) (((-1193) |#1| (-1193) (-1193)) 12) (((-1193) |#1| (-1193)) 11)))
-(((-714 |#1|) (-10 -7 (-15 -2722 ((-1193) |#1| (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-654 (-1193))))) (-624 (-546))) (T -714))
-((-2722 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))) (-2722 (*1 *2 *3 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546))))))
-(-10 -7 (-15 -2722 ((-1193) |#1| (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-1193) (-1193))) (-15 -2722 ((-1193) |#1| (-1193) (-654 (-1193)))))
-((-2237 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-715 |#1| |#2|) (-10 -7 (-15 -2237 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1234) (-1234)) (T -715))
-((-2237 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-715 *3 *4)) (-4 *3 (-1234)) (-4 *4 (-1234)))))
-(-10 -7 (-15 -2237 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-4342 (((-1 |#3| |#2|) (-1193)) 11)) (-1915 (((-1 |#3| |#2|) |#1| (-1193)) 21)))
-(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -4342 ((-1 |#3| |#2|) (-1193))) (-15 -1915 ((-1 |#3| |#2|) |#1| (-1193)))) (-624 (-546)) (-1234) (-1234)) (T -716))
-((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6)) (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6)) (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)))))
-(-10 -7 (-15 -4342 ((-1 |#3| |#2|) (-1193))) (-15 -1915 ((-1 |#3| |#2|) |#1| (-1193))))
-((-4136 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|) 92)) (-2436 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|) 110)) (-3411 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|) 47)))
-(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3411 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|)) (-15 -2436 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4136 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -717))
-((-4136 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-654 (-1189 *13))) (-5 *3 (-1189 *13)) (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13)) (-5 *7 (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| *13))))) (-5 *8 (-654 (-781))) (-5 *9 (-1284 (-654 (-1189 *10)))) (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-963 *10 *11 *12)) (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))) (-2436 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1189 *9))) (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781))) (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-963 *9 *10 *11)) (-4 *10 (-803)) (-5 *2 (-654 (-1189 *12))) (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1189 *12)))) (-3411 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-654 (-1189 *11))) (-5 *3 (-1189 *11)) (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781))) (-5 *7 (-1284 (-654 (-1189 *8)))) (-4 *10 (-860)) (-4 *8 (-315)) (-4 *11 (-963 *8 *9 *10)) (-4 *9 (-803)) (-5 *1 (-717 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3411 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 |#3|) (-654 (-781)) (-654 (-1189 |#4|)) (-1284 (-654 (-1189 |#3|))) |#3|)) (-15 -2436 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#3|)) (-654 |#3|) (-654 |#4|) (-654 (-781)) |#3|)) (-15 -4136 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-654 |#2|) (-654 (-1189 |#4|)) (-654 |#3|) (-654 |#4|) (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#4|)))) (-654 (-781)) (-1284 (-654 (-1189 |#3|))) |#3|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1402 (($ $) 48)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 46)) (-2043 (((-781) $) 50)) (-1378 ((|#1| $) 49)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3735 (((-781) $) 51)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-1788 ((|#1| $ (-781)) 47)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-718 |#1|) (-141) (-1065)) (T -718))
-((-3735 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065)))))
-(-13 (-1065) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3735 ((-781) $)) (-15 -2043 ((-781) $)) (-15 -1378 (|t#1| $)) (-15 -1402 ($ $)) (-15 -1788 (|t#1| $ (-781))) (-15 -4328 ($ |t#1| (-781)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1785 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-719 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 (|#6| (-1 |#4| |#1|) |#3|))) (-566) (-1260 |#1|) (-1260 (-417 |#2|)) (-566) (-1260 |#4|) (-1260 (-417 |#5|))) (T -719))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566)) (-4 *6 (-1260 *5)) (-4 *2 (-1260 (-417 *8))) (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1260 (-417 *6))) (-4 *8 (-1260 *7)))))
-(-10 -7 (-15 -1785 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1800 (((-1175) (-872)) 38)) (-1414 (((-1289) (-1175)) 31)) (-3185 (((-1175) (-872)) 28)) (-3678 (((-1175) (-872)) 29)) (-2951 (((-872) $) NIL) (((-1175) (-872)) 27)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-720) (-13 (-1116) (-10 -7 (-15 -2951 ((-1175) (-872))) (-15 -3185 ((-1175) (-872))) (-15 -3678 ((-1175) (-872))) (-15 -1800 ((-1175) (-872))) (-15 -1414 ((-1289) (-1175)))))) (T -720))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-720)))))
-(-13 (-1116) (-10 -7 (-15 -2951 ((-1175) (-872))) (-15 -3185 ((-1175) (-872))) (-15 -3678 ((-1175) (-872))) (-15 -1800 ((-1175) (-872))) (-15 -1414 ((-1289) (-1175)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL)) (-2882 (($ |#1| |#2|) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1500 ((|#2| $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3738 (((-3 $ "failed") $ $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) ((|#1| $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-372) (-10 -8 (-15 -1500 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3738 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721))
-((-1500 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2882 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3738 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-372) (-10 -8 (-15 -1500 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3738 ((-3 $ "failed") $ $))))
-((-2864 (((-112) $ $) 87)) (-4311 (((-112) $) 36)) (-4052 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-3391 (($ (-1189 |#1|)) NIL)) (-4172 (((-1189 $) $ (-1098)) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ $) NIL (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 54 (|has| |#1| (-377)))) (-2027 (($ $ (-781)) NIL)) (-2145 (($ $ (-781)) NIL)) (-3694 ((|#2| |#2|) 50)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL)) (-4047 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 40)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ |#2|) 48)) (-3612 (((-3 $ "failed") $) 97)) (-2835 (($) 58 (|has| |#1| (-377)))) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2617 (($ $ $) NIL)) (-1891 (($ $ $) NIL (|has| |#1| (-566)))) (-3959 (((-2 (|:| -1866 |#1|) (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-1545 (((-972 $)) 89)) (-3637 (($ $ |#1| (-781) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3209 (($ $ (-781)) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 85) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1098)) NIL) (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1500 ((|#2|) 51)) (-2043 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-3431 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2143 (((-1189 |#1|) $) NIL)) (-3444 (((-3 (-1098) "failed") $) NIL)) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-2869 ((|#2| $) 47)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) 34)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1098)) (|:| -2754 (-781))) "failed") $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) NIL (|has| |#1| (-1168)) CONST)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-1691 (($ $) 88 (|has| |#1| (-358)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4293 (((-3 $ "failed") $ (-781)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 98 (|has| |#1| (-372)))) (-1924 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3735 (((-781) $) 38) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-3048 (((-972 $)) 42)) (-2908 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) 68) (($ (-574)) NIL) (($ |#1|) 65) (($ (-1098)) NIL) (($ |#2|) 75) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) 70) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 25 T CONST)) (-3078 (((-1284 |#1|) $) 83)) (-4325 (($ (-1284 |#1|)) 57)) (-2153 (($) 8 T CONST)) (-3585 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3312 (((-1284 |#1|) $) NIL)) (-2986 (((-112) $ $) 76)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 79) (($ $ $) NIL)) (-3074 (($ $ $) 39)) (** (($ $ (-935)) NIL) (($ $ (-781)) 92)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 64) (($ $ $) 82) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
-(((-722 |#1| |#2|) (-13 (-1260 |#1|) (-626 |#2|) (-10 -8 (-15 -3694 (|#2| |#2|)) (-15 -1500 (|#2|)) (-15 -2882 ($ |#2|)) (-15 -2869 (|#2| $)) (-15 -3078 ((-1284 |#1|) $)) (-15 -4325 ($ (-1284 |#1|))) (-15 -3312 ((-1284 |#1|) $)) (-15 -1545 ((-972 $))) (-15 -3048 ((-972 $))) (IF (|has| |#1| (-358)) (-15 -1691 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|))) (-1065) (-1260 |#1|)) (T -722))
-((-3694 (*1 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))) (-1500 (*1 *2) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065)))) (-3078 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-3312 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-1545 (*1 *2) (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-3048 (*1 *2) (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4)) (-4 *4 (-1260 *3)))) (-1691 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *2 (-1065)) (-5 *1 (-722 *2 *3)) (-4 *3 (-1260 *2)))))
-(-13 (-1260 |#1|) (-626 |#2|) (-10 -8 (-15 -3694 (|#2| |#2|)) (-15 -1500 (|#2|)) (-15 -2882 ($ |#2|)) (-15 -2869 (|#2| $)) (-15 -3078 ((-1284 |#1|) $)) (-15 -4325 ($ (-1284 |#1|))) (-15 -3312 ((-1284 |#1|) $)) (-15 -1545 ((-972 $))) (-15 -3048 ((-972 $))) (IF (|has| |#1| (-358)) (-15 -1691 ($ $)) |%noBranch|) (IF (|has| |#1| (-377)) (-6 (-377)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 ((|#1| $) 13)) (-3940 (((-1136) $) NIL)) (-2754 ((|#2| $) 12)) (-2963 (($ |#1| |#2|) 16)) (-2951 (((-872) $) NIL) (($ (-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) 15) (((-2 (|:| -2591 |#1|) (|:| -2754 |#2|)) $) 14)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11)))
-(((-723 |#1| |#2| |#3|) (-13 (-860) (-500 (-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) (-10 -8 (-15 -2754 (|#2| $)) (-15 -2591 (|#1| $)) (-15 -2963 ($ |#1| |#2|)))) (-860) (-1116) (-1 (-112) (-2 (|:| -2591 |#1|) (|:| -2754 |#2|)) (-2 (|:| -2591 |#1|) (|:| -2754 |#2|)))) (T -723))
-((-2754 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *3) (|:| -2754 *2)) (-2 (|:| -2591 *3) (|:| -2754 *2)))))) (-2591 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1116)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *3)) (-2 (|:| -2591 *2) (|:| -2754 *3)))))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1116)) (-14 *4 (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *3)) (-2 (|:| -2591 *2) (|:| -2754 *3)))))))
-(-13 (-860) (-500 (-2 (|:| -2591 |#1|) (|:| -2754 |#2|))) (-10 -8 (-15 -2754 (|#2| $)) (-15 -2591 (|#1| $)) (-15 -2963 ($ |#1| |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 66)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2216 ((|#1| $) NIL) (((-115) $) 39)) (-3612 (((-3 $ "failed") $) 103)) (-3530 ((|#2| (-115) |#2|) 93)) (-3943 (((-112) $) NIL)) (-4195 (($ |#1| (-370 (-115))) 14)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4228 (($ $ (-1 |#2| |#2|)) 65)) (-3672 (($ $ (-1 |#2| |#2|)) 44)) (-2207 ((|#2| $ |#2|) 33)) (-1907 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2951 (((-872) $) 73) (($ (-574)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) 37 T CONST)) (-2981 (((-112) $ $) NIL)) (-3728 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2141 (($) 21 T CONST)) (-2153 (($) 9 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) 48) (($ $ $) NIL)) (-3074 (($ $ $) 83)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) 64)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
-(((-724 |#1| |#2|) (-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3728 ($ $)) (-15 -3728 ($ $ $)) (-15 -1907 (|#1| |#1|))) |%noBranch|) (-15 -3672 ($ $ (-1 |#2| |#2|))) (-15 -4228 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3530 (|#2| (-115) |#2|)) (-15 -4195 ($ |#1| (-370 (-115)))))) (-1065) (-658 |#1|)) (T -724))
-((-3728 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3728 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-1907 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3)) (-4 *3 (-658 *2)))) (-3672 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4)) (-4 *4 (-658 *3)))) (-3530 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *2)) (-4 *2 (-658 *4)))) (-4195 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1065)) (-5 *1 (-724 *2 *4)) (-4 *4 (-658 *2)))))
-(-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3728 ($ $)) (-15 -3728 ($ $ $)) (-15 -1907 (|#1| |#1|))) |%noBranch|) (-15 -3672 ($ $ (-1 |#2| |#2|))) (-15 -4228 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3530 (|#2| (-115) |#2|)) (-15 -4195 ($ |#1| (-370 (-115))))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 33)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-2882 (($ |#1| |#2|) 25)) (-3612 (((-3 $ "failed") $) 51)) (-3943 (((-112) $) 35)) (-1500 ((|#2| $) 12)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 52)) (-3940 (((-1136) $) NIL)) (-3738 (((-3 $ "failed") $ $) 50)) (-2951 (((-872) $) 24) (($ (-574)) 19) ((|#1| $) 13)) (-3070 (((-781)) 28 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 16 T CONST)) (-2153 (($) 30 T CONST)) (-2986 (((-112) $ $) 41)) (-3090 (($ $) 46) (($ $ $) 40)) (-3074 (($ $ $) 43)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 21) (($ $ $) 20)))
-(((-725 |#1| |#2| |#3| |#4| |#5|) (-13 (-1065) (-10 -8 (-15 -1500 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3738 ((-3 $ "failed") $ $)) (-15 -3612 ((-3 $ "failed") $)) (-15 -1328 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -725))
-((-3612 (*1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1500 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2882 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3738 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1065) (-10 -8 (-15 -1500 (|#2| $)) (-15 -2951 (|#1| $)) (-15 -2882 ($ |#1| |#2|)) (-15 -3738 ((-3 $ "failed") $ $)) (-15 -3612 ((-3 $ "failed") $)) (-15 -1328 ($ $))))
-((* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-726 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-727 |#2|) (-174)) (T -726))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-727 |#1|) (-141) (-174)) (T -727))
-NIL
-(-13 (-111 |t#1| |t#1|) (-650 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-3933 (($ |#1|) 17) (($ $ |#1|) 20)) (-4157 (($ |#1|) 18) (($ $ |#1|) 21)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3943 (((-112) $) NIL)) (-2765 (($ |#1| |#1| |#1| |#1|) 8)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 16)) (-3940 (((-1136) $) NIL)) (-2661 ((|#1| $ |#1|) 24) (((-843 |#1|) $ (-843 |#1|)) 32)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-2951 (((-872) $) 39)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 9 T CONST)) (-2986 (((-112) $ $) 48)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 14)))
-(((-728 |#1|) (-13 (-483) (-10 -8 (-15 -2765 ($ |#1| |#1| |#1| |#1|)) (-15 -3933 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -3612 ($)) (-15 -3933 ($ $ |#1|)) (-15 -4157 ($ $ |#1|)) (-15 -3612 ($ $)) (-15 -2661 (|#1| $ |#1|)) (-15 -2661 ((-843 |#1|) $ (-843 |#1|))))) (-372)) (T -728))
-((-2765 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3933 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4157 (*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3612 (*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-3612 (*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2661 (*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))) (-2661 (*1 *2 *1 *2) (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3)))))
-(-13 (-483) (-10 -8 (-15 -2765 ($ |#1| |#1| |#1| |#1|)) (-15 -3933 ($ |#1|)) (-15 -4157 ($ |#1|)) (-15 -3612 ($)) (-15 -3933 ($ $ |#1|)) (-15 -4157 ($ $ |#1|)) (-15 -3612 ($ $)) (-15 -2661 (|#1| $ |#1|)) (-15 -2661 ((-843 |#1|) $ (-843 |#1|)))))
-((-3344 (($ $ (-935)) 19)) (-3484 (($ $ (-935)) 20)) (** (($ $ (-935)) 10)))
-(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-935))) (-15 -3484 (|#1| |#1| (-935))) (-15 -3344 (|#1| |#1| (-935)))) (-730)) (T -729))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-935))) (-15 -3484 (|#1| |#1| (-935))) (-15 -3344 (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-3344 (($ $ (-935)) 16)) (-3484 (($ $ (-935)) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14)) (* (($ $ $) 17)))
-(((-730) (-141)) (T -730))
-((* (*1 *1 *1 *1) (-4 *1 (-730))) (-3344 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) (-3484 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935)))))
-(-13 (-1116) (-10 -8 (-15 * ($ $ $)) (-15 -3344 ($ $ (-935))) (-15 -3484 ($ $ (-935))) (-15 ** ($ $ (-935)))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-3344 (($ $ (-935)) NIL) (($ $ (-781)) 18)) (-3943 (((-112) $) 10)) (-3484 (($ $ (-935)) NIL) (($ $ (-781)) 19)) (** (($ $ (-935)) NIL) (($ $ (-781)) 16)))
-(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -3484 (|#1| |#1| (-781))) (-15 -3344 (|#1| |#1| (-781))) (-15 -3943 ((-112) |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3484 (|#1| |#1| (-935))) (-15 -3344 (|#1| |#1| (-935)))) (-732)) (T -731))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-781))) (-15 -3484 (|#1| |#1| (-781))) (-15 -3344 (|#1| |#1| (-781))) (-15 -3943 ((-112) |#1|)) (-15 ** (|#1| |#1| (-935))) (-15 -3484 (|#1| |#1| (-935))) (-15 -3344 (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-2339 (((-3 $ "failed") $) 18)) (-3344 (($ $ (-935)) 16) (($ $ (-781)) 23)) (-3612 (((-3 $ "failed") $) 20)) (-3943 (((-112) $) 24)) (-2808 (((-3 $ "failed") $) 19)) (-3484 (($ $ (-935)) 15) (($ $ (-781)) 22)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2153 (($) 25 T CONST)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14) (($ $ (-781)) 21)) (* (($ $ $) 17)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 15)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-2976 ((|#1| $) 23)) (-3639 (($ $ $) NIL (|has| |#1| (-803)))) (-2571 (($ $ $) NIL (|has| |#1| (-803)))) (-2148 (((-1177) $) 48)) (-3945 (((-1138) $) NIL)) (-2987 ((|#3| $) 24)) (-2956 (((-874) $) 43)) (-2617 (((-112) $ $) 22)) (-2143 (($) 10 T CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2991 (((-112) $ $) 20)) (-3034 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3014 (((-112) $ $) 26 (|has| |#1| (-803)))) (-3108 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3096 (($ $) 17) (($ $ $) NIL)) (-3081 (($ $ $) 29)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2976 (|#1| $)) (-15 -2987 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674))
+((-3108 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3108 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-2987 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))))
+(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3108 ($ $ |#3|)) (-15 -3108 ($ |#1| |#3|)) (-15 -2976 (|#1| $)) (-15 -2987 (|#3| $))))
+((-3955 (((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)) 33)))
+(((-675 |#1|) (-10 -7 (-15 -3955 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)))) (-925)) (T -675))
+((-3955 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4)) (-4 *4 (-925)) (-5 *1 (-675 *4)))))
+(-10 -7 (-15 -3955 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1665 (((-656 |#1|) $) 84)) (-3405 (($ $ (-783)) 94)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3322 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 50)) (-1706 (((-3 (-684 |#1|) "failed") $) NIL)) (-2216 (((-684 |#1|) $) NIL)) (-1404 (($ $) 93)) (-2747 (((-783) $) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ (-684 |#1|) |#2|) 70)) (-1351 (($ $) 89)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2534 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 49)) (-4143 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1368 (((-684 |#1|) $) NIL)) (-1380 ((|#2| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2666 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-2782 (((-783) $) 91)) (-2968 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-2956 (((-874) $) NIL) (($ |#1|) 76) (((-1301 |#1| |#2|) $) 60) (((-1310 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-684 |#1|)) NIL)) (-1868 ((|#2| (-1310 |#1| |#2|) $) 45)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 23 T CONST)) (-2960 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2295 (((-3 $ "failed") (-1301 |#1| |#2|)) 62)) (-1855 (($ (-684 |#1|)) 14)) (-2991 (((-112) $ $) 46)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) 68) (($ $ $) NIL)) (-3081 (($ $ $) 31)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL)))
+(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2295 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -2968 ($ (-684 |#1|) (-684 |#1|))) (-15 -2968 ($ (-684 |#1|) $)) (-15 -2968 ($ $ (-684 |#1|))))) (-862) (-174)) (T -676))
+((-2295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-2968 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2968 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2968 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))))
+(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2295 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -2968 ($ (-684 |#1|) (-684 |#1|))) (-15 -2968 ($ (-684 |#1|) $)) (-15 -2968 ($ $ (-684 |#1|)))))
+((-1375 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3330 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1707 (($ (-1 (-112) |#2|) $) 29)) (-2002 (($ $) 65)) (-4099 (($ $) 74)) (-3710 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2887 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-1454 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-3769 (($ (-783) |#2|) 63)) (-2470 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1383 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1787 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1798 (($ |#2|) 15)) (-2504 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-2922 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3012 (($ $ (-1253 (-576))) 51) (($ $ (-576)) 44)) (-2647 (($ $ $ (-576)) 70)) (-3162 (($ $) 68)) (-3014 (((-112) $ $) 76)))
+(((-677 |#1| |#2|) (-10 -8 (-15 -1798 (|#1| |#2|)) (-15 -3012 (|#1| |#1| (-576))) (-15 -3012 (|#1| |#1| (-1253 (-576)))) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2504 (|#1| |#2| |#1| (-576))) (-15 -2504 (|#1| |#1| |#1| (-576))) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1707 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1375 ((-112) |#1|)) (-15 -2647 (|#1| |#1| |#1| (-576))) (-15 -2002 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3769 (|#1| (-783) |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3162 (|#1| |#1|))) (-678 |#2|) (-1236)) (T -677))
+NIL
+(-10 -8 (-15 -1798 (|#1| |#2|)) (-15 -3012 (|#1| |#1| (-576))) (-15 -3012 (|#1| |#1| (-1253 (-576)))) (-15 -3710 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2504 (|#1| |#2| |#1| (-576))) (-15 -2504 (|#1| |#1| |#1| (-576))) (-15 -2470 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1707 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3710 (|#1| |#2| |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -1383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1375 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1454 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1454 ((-576) |#2| |#1|)) (-15 -1454 ((-576) |#2| |#1| (-576))) (-15 -1383 (|#1| |#1| |#1|)) (-15 -1375 ((-112) |#1|)) (-15 -2647 (|#1| |#1| |#1| (-576))) (-15 -2002 (|#1| |#1|)) (-15 -3330 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3330 (|#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2887 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2922 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3769 (|#1| (-783) |#2|)) (-15 -1787 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3162 (|#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-2426 ((|#1| $) 66)) (-1980 (($ $) 68)) (-3526 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-1375 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3330 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4462)))) (-2791 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3439 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-1707 (($ (-1 (-112) |#1|) $) 131)) (-2174 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2413 ((|#1| $) 67)) (-4335 (($) 7 T CONST)) (-2002 (($ $) 146 (|has| $ (-6 -4462)))) (-4427 (($ $) 136)) (-2940 (($ $) 74) (($ $ (-783)) 72)) (-4099 (($ $) 133 (|has| |#1| (-1118)))) (-4060 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 132 (|has| |#1| (-1118))) (($ (-1 (-112) |#1|) $) 127)) (-3316 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2481 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 89)) (-2281 (((-112) $) 85)) (-1454 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1118))) (((-576) |#1| $) 140 (|has| |#1| (-1118))) (((-576) (-1 (-112) |#1|) $) 139)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) 111)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 97 (|has| (-576) (-862)))) (-3639 (($ $ $) 149 (|has| |#1| (-862)))) (-2470 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1383 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 96 (|has| (-576) (-862)))) (-2571 (($ $ $) 150 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1798 (($ |#1|) 124)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3338 ((|#1| $) 71) (($ $ (-783)) 69)) (-2504 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-1604 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2961 (((-656 (-576)) $) 94)) (-4254 (((-112) (-576) $) 93)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 77) (($ $ (-783)) 75)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4211 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-2326 (((-112) $) 86)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 92)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1785 (((-576) $ $) 45)) (-3012 (($ $ (-1253 (-576))) 126) (($ $ (-576)) 125)) (-2860 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-1558 (((-112) $) 47)) (-3029 (($ $) 63)) (-1508 (($ $) 60 (|has| $ (-6 -4462)))) (-2550 (((-783) $) 64)) (-3704 (($ $) 65)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 145 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 109)) (-3228 (($ $ $) 62) (($ $ |#1|) 61)) (-4136 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 152 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 153 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) 151 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 154 (|has| |#1| (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-678 |#1|) (-141) (-1236)) (T -678))
+((-1798 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236)))))
+(-13 (-1167 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1798 ($ |t#1|))))
+(((-34) . T) ((-102) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1028 |#1|) . T) ((-1118) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1167 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T))
+((-2766 (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 14)) (-3563 (((-783) (-701 |#1|) (-1286 |#1|)) 30)) (-2253 (((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|)) 24)) (-4062 (((-112) (-701 |#1|) (-1286 |#1|)) 27)))
+(((-679 |#1|) (-10 -7 (-15 -2766 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -2766 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -2253 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -4062 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -3563 ((-783) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -679))
+((-3563 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-4062 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-2253 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -4093 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -4093 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -4093 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -4093 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))))
+(-10 -7 (-15 -2766 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -2766 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -2253 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -4062 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -3563 ((-783) (-701 |#1|) (-1286 |#1|))))
+((-2766 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|) 60)) (-3563 (((-783) |#4| |#3|) 18)) (-2253 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4062 (((-112) |#4| |#3|) 14)))
+(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|)) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2253 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4062 ((-112) |#4| |#3|)) (-15 -3563 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-699 |#1| |#2| |#3|)) (T -680))
+((-3563 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4062 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2253 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-2766 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4093 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-2766 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(-10 -7 (-15 -2766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|)) (-15 -2766 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2253 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4062 ((-112) |#4| |#3|)) (-15 -3563 ((-783) |#4| |#3|)))
+((-4397 (((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -4093 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4397 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -4093 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -681))
+((-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) (|:| -4093 (-656 (-1286 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4397 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -4093 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1651 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1646 ((|#2| $) NIL)) (-2052 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2264 (((-1286 (-701 |#2|))) NIL) (((-1286 (-701 |#2|)) (-1286 $)) NIL)) (-3562 (((-112) $) NIL)) (-2548 (((-1286 $)) 42)) (-3762 (((-112) $ (-783)) NIL)) (-1372 (($ |#2|) NIL)) (-4335 (($) NIL T CONST)) (-3446 (($ $) NIL (|has| |#2| (-317)))) (-3389 (((-246 |#1| |#2|) $ (-576)) NIL)) (-3749 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3197 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-4366 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-2655 ((|#2| $) NIL)) (-3512 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-2710 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3333 (((-1191 (-968 |#2|))) NIL (|has| |#2| (-374)))) (-3133 (($ $ (-937)) NIL)) (-4316 ((|#2| $) NIL)) (-3589 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-3775 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-2495 (((-1191 |#2|) $) NIL)) (-3498 (((-112)) NIL)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-2524 (($ (-1286 |#2|)) NIL) (($ (-1286 |#2|) (-1286 $)) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-3563 (((-783) $) NIL (|has| |#2| (-568))) (((-937)) 43)) (-2405 ((|#2| $ (-576) (-576)) NIL)) (-3574 (((-112)) NIL)) (-3728 (($ $ (-937)) NIL)) (-1873 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL)) (-2954 (((-783) $) NIL (|has| |#2| (-568)))) (-3772 (((-656 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2199 (((-783) $) NIL)) (-3788 (((-112)) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3331 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2929 (($ (-656 (-656 |#2|))) NIL)) (-2466 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1538 (((-656 (-656 |#2|)) $) NIL)) (-3059 (((-112)) NIL)) (-4337 (((-112)) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-1714 (((-3 (-2 (|:| |particular| $) (|:| -4093 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3471 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3774 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-3144 ((|#2| $) NIL)) (-4120 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-1643 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-1418 (((-1191 (-968 |#2|))) NIL (|has| |#2| (-374)))) (-2128 (($ $ (-937)) NIL)) (-3209 ((|#2| $) NIL)) (-1564 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-3640 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-4347 (((-1191 |#2|) $) NIL)) (-2513 (((-112)) NIL)) (-2148 (((-1177) $) NIL)) (-1358 (((-112)) NIL)) (-4085 (((-112)) NIL)) (-3045 (((-112)) NIL)) (-1495 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3945 (((-1138) $) NIL)) (-4145 (((-112)) NIL)) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1875 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-3884 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2652 ((|#2| $) NIL)) (-1388 (($ (-656 |#2|)) NIL)) (-1415 (((-112) $) NIL)) (-3371 (((-246 |#1| |#2|) $) NIL)) (-2293 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3162 (($ $) NIL)) (-3458 (((-701 |#2|) (-1286 $)) NIL) (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $ (-1286 $)) 31)) (-1846 (($ (-1286 |#2|)) NIL) (((-1286 |#2|) $) NIL)) (-2292 (((-656 (-968 |#2|))) NIL) (((-656 (-968 |#2|)) (-1286 $)) NIL)) (-3516 (($ $ $) NIL)) (-3184 (((-112)) NIL)) (-4087 (((-246 |#1| |#2|) $ (-576)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 41)) (-2943 (((-656 (-1286 |#2|))) NIL (|has| |#2| (-568)))) (-2927 (($ $ $ $) NIL)) (-2763 (((-112)) NIL)) (-2917 (($ (-701 |#2|) $) NIL)) (-3972 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-1736 (($ $ $) NIL)) (-2417 (((-112)) NIL)) (-1431 (((-112)) NIL)) (-3842 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-682 |#1| |#2|) (-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-937) (-174)) (T -682))
+NIL
+(-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3251 (((-656 (-1153)) $) 10)) (-2956 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-683) (-13 (-1101) (-10 -8 (-15 -3251 ((-656 (-1153)) $))))) (T -683))
+((-3251 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-683)))))
+(-13 (-1101) (-10 -8 (-15 -3251 ((-656 (-1153)) $))))
+((-2869 (((-112) $ $) NIL)) (-1665 (((-656 |#1|) $) NIL)) (-3883 (($ $) 62)) (-4158 (((-112) $) NIL)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-3647 (((-3 $ "failed") (-831 |#1|)) 27)) (-3795 (((-112) (-831 |#1|)) 17)) (-1509 (($ (-831 |#1|)) 28)) (-2453 (((-112) $ $) 36)) (-4114 (((-937) $) 43)) (-3870 (($ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4205 (((-656 $) (-831 |#1|)) 19)) (-2956 (((-874) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-2617 (((-112) $ $) NIL)) (-4263 (((-59 (-656 $)) (-656 |#1|) (-937)) 67)) (-2619 (((-656 $) (-656 |#1|) (-937)) 70)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 63)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 46)))
+(((-684 |#1|) (-13 (-862) (-1056 |#1|) (-10 -8 (-15 -4158 ((-112) $)) (-15 -3870 ($ $)) (-15 -3883 ($ $)) (-15 -4114 ((-937) $)) (-15 -2453 ((-112) $ $)) (-15 -2956 ((-831 |#1|) $)) (-15 -2956 ((-689 |#1|) $)) (-15 -4205 ((-656 $) (-831 |#1|))) (-15 -3795 ((-112) (-831 |#1|))) (-15 -1509 ($ (-831 |#1|))) (-15 -3647 ((-3 $ "failed") (-831 |#1|))) (-15 -1665 ((-656 |#1|) $)) (-15 -4263 ((-59 (-656 $)) (-656 |#1|) (-937))) (-15 -2619 ((-656 $) (-656 |#1|) (-937))))) (-862)) (T -684))
+((-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-3647 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5)))))
+(-13 (-862) (-1056 |#1|) (-10 -8 (-15 -4158 ((-112) $)) (-15 -3870 ($ $)) (-15 -3883 ($ $)) (-15 -4114 ((-937) $)) (-15 -2453 ((-112) $ $)) (-15 -2956 ((-831 |#1|) $)) (-15 -2956 ((-689 |#1|) $)) (-15 -4205 ((-656 $) (-831 |#1|))) (-15 -3795 ((-112) (-831 |#1|))) (-15 -1509 ($ (-831 |#1|))) (-15 -3647 ((-3 $ "failed") (-831 |#1|))) (-15 -1665 ((-656 |#1|) $)) (-15 -4263 ((-59 (-656 $)) (-656 |#1|) (-937))) (-15 -2619 ((-656 $) (-656 |#1|) (-937)))))
+((-3084 ((|#2| $) 100)) (-1980 (($ $) 121)) (-3762 (((-112) $ (-783)) 35)) (-2940 (($ $) 109) (($ $ (-783)) 112)) (-2281 (((-112) $) 122)) (-2635 (((-656 $) $) 96)) (-4344 (((-112) $ $) 92)) (-2266 (((-112) $ (-783)) 33)) (-4280 (((-576) $) 66)) (-1475 (((-576) $) 65)) (-2356 (((-112) $ (-783)) 31)) (-3126 (((-112) $) 98)) (-3338 ((|#2| $) 113) (($ $ (-783)) 117)) (-1604 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-2961 (((-656 (-576)) $) 64)) (-4254 (((-112) (-576) $) 59)) (-2930 ((|#2| $) NIL) (($ $ (-783)) 108)) (-3167 (($ $ (-576)) 125)) (-2326 (((-112) $) 124)) (-1875 (((-112) (-1 (-112) |#2|) $) 42)) (-4274 (((-656 |#2|) $) 46)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1253 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-1785 (((-576) $ $) 91)) (-2860 (($ $ (-1253 (-576))) 78) (($ $ (-576)) 72)) (-1558 (((-112) $) 87)) (-3029 (($ $) 105)) (-2550 (((-783) $) 104)) (-3704 (($ $) 103)) (-2968 (($ (-656 |#2|)) 53)) (-1588 (($ $) 126)) (-4197 (((-656 $) $) 90)) (-1931 (((-112) $ $) 89)) (-3972 (((-112) (-1 (-112) |#2|) $) 41)) (-2991 (((-112) $ $) 20)) (-2882 (((-783) $) 39)))
+(((-685 |#1| |#2|) (-10 -8 (-15 -1588 (|#1| |#1|)) (-15 -3167 (|#1| |#1| (-576))) (-15 -2281 ((-112) |#1|)) (-15 -2326 ((-112) |#1|)) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -4274 ((-656 |#2|) |#1|)) (-15 -4254 ((-112) (-576) |#1|)) (-15 -2961 ((-656 (-576)) |#1|)) (-15 -1475 ((-576) |#1|)) (-15 -4280 ((-576) |#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -3029 (|#1| |#1|)) (-15 -2550 ((-783) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3338 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "last")) (-15 -3338 (|#2| |#1|)) (-15 -2940 (|#1| |#1| (-783))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2940 (|#1| |#1|)) (-15 -2930 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "first")) (-15 -2930 (|#2| |#1|)) (-15 -4344 ((-112) |#1| |#1|)) (-15 -1931 ((-112) |#1| |#1|)) (-15 -1785 ((-576) |#1| |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3084 (|#2| |#1|)) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783)))) (-686 |#2|) (-1236)) (T -685))
+NIL
+(-10 -8 (-15 -1588 (|#1| |#1|)) (-15 -3167 (|#1| |#1| (-576))) (-15 -2281 ((-112) |#1|)) (-15 -2326 ((-112) |#1|)) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -4274 ((-656 |#2|) |#1|)) (-15 -4254 ((-112) (-576) |#1|)) (-15 -2961 ((-656 (-576)) |#1|)) (-15 -1475 ((-576) |#1|)) (-15 -4280 ((-576) |#1|)) (-15 -2968 (|#1| (-656 |#2|))) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2860 (|#1| |#1| (-576))) (-15 -2860 (|#1| |#1| (-1253 (-576)))) (-15 -1604 (|#1| |#2| |#1| (-576))) (-15 -1604 (|#1| |#1| |#1| (-576))) (-15 -3029 (|#1| |#1|)) (-15 -2550 ((-783) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3338 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "last")) (-15 -3338 (|#2| |#1|)) (-15 -2940 (|#1| |#1| (-783))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2940 (|#1| |#1|)) (-15 -2930 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "first")) (-15 -2930 (|#2| |#1|)) (-15 -4344 ((-112) |#1| |#1|)) (-15 -1931 ((-112) |#1| |#1|)) (-15 -1785 ((-576) |#1| |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3084 (|#2| |#1|)) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -1875 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-2426 ((|#1| $) 66)) (-1980 (($ $) 68)) (-3526 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3439 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 104)) (-2413 ((|#1| $) 67)) (-4335 (($) 7 T CONST)) (-3536 (($ $) 126)) (-2940 (($ $) 74) (($ $ (-783)) 72)) (-4060 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 105)) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2481 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 89)) (-2281 (((-112) $) 85)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3436 (((-783) $) 125)) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) 111)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 97 (|has| (-576) (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 96 (|has| (-576) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-3705 (($ $) 128)) (-3378 (((-112) $) 129)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3338 ((|#1| $) 71) (($ $ (-783)) 69)) (-1604 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2961 (((-656 (-576)) $) 94)) (-4254 (((-112) (-576) $) 93)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2385 ((|#1| $) 127)) (-2930 ((|#1| $) 77) (($ $ (-783)) 75)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4211 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-3167 (($ $ (-576)) 124)) (-2326 (((-112) $) 86)) (-2093 (((-112) $) 130)) (-3450 (((-112) $) 131)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 92)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1785 (((-576) $ $) 45)) (-2860 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-1558 (((-112) $) 47)) (-3029 (($ $) 63)) (-1508 (($ $) 60 (|has| $ (-6 -4462)))) (-2550 (((-783) $) 64)) (-3704 (($ $) 65)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 109)) (-3228 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-4136 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-1588 (($ $) 123)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-686 |#1|) (-141) (-1236)) (T -686))
+((-3316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-2174 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3705 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))))
+(-13 (-1167 |t#1|) (-10 -8 (-15 -3316 ($ (-1 (-112) |t#1|) $)) (-15 -2174 ($ (-1 (-112) |t#1|) $)) (-15 -3450 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -3378 ((-112) $)) (-15 -3705 ($ $)) (-15 -2385 (|t#1| $)) (-15 -3536 ($ $)) (-15 -3436 ((-783) $)) (-15 -3167 ($ $ (-576))) (-15 -1588 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1167 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3260 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1067)))) (-3762 (((-112) $ (-783)) NIL)) (-2888 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-4335 (($) NIL T CONST)) (-3726 (($ $ $) 57 (|has| |#1| (-1067)))) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1337 (((-1286 (-783)) $) 12)) (-4370 (($ (-1195) $ $) 34)) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3440 (($ (-783)) 55 (|has| |#1| (-1067)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-783) (-783) (-783)) 44)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2968 (($ (-656 (-656 (-656 |#1|)))) 67)) (-2956 (($ (-974 (-974 (-974 |#1|)))) 23) (((-974 (-974 (-974 |#1|))) $) 19) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1067)) (PROGN (-15 -3260 ($ (-783) (-783) (-783))) (-15 -3440 ($ (-783))) (-15 -3726 ($ $ $))) |%noBranch|) (-15 -2968 ($ (-656 (-656 (-656 |#1|))))) (-15 -2209 (|#1| $ (-783) (-783) (-783))) (-15 -2888 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2956 ($ (-974 (-974 (-974 |#1|))))) (-15 -2956 ((-974 (-974 (-974 |#1|))) $)) (-15 -4370 ($ (-1195) $ $)) (-15 -1337 ((-1286 (-783)) $)))) (-1118)) (T -687))
+((-3260 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) (-4 *3 (-1118)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067)) (-4 *3 (-1118)))) (-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1067)) (-4 *2 (-1118)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1118)) (-5 *1 (-687 *3)))) (-2209 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))) (-2888 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-4 *3 (-1118)) (-5 *1 (-687 *3)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1118)))) (-4370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1118)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1118)))))
+(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1067)) (PROGN (-15 -3260 ($ (-783) (-783) (-783))) (-15 -3440 ($ (-783))) (-15 -3726 ($ $ $))) |%noBranch|) (-15 -2968 ($ (-656 (-656 (-656 |#1|))))) (-15 -2209 (|#1| $ (-783) (-783) (-783))) (-15 -2888 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2956 ($ (-974 (-974 (-974 |#1|))))) (-15 -2956 ((-974 (-974 (-974 |#1|))) $)) (-15 -4370 ($ (-1195) $ $)) (-15 -1337 ((-1286 (-783)) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-2788 (((-495) $) 10)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 12)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-688) (-13 (-1101) (-10 -8 (-15 -2788 ((-495) $)) (-15 -2053 ((-1153) $))))) (T -688))
+((-2788 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-688)))))
+(-13 (-1101) (-10 -8 (-15 -2788 ((-495) $)) (-15 -2053 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-1665 (((-656 |#1|) $) 15)) (-3883 (($ $) 19)) (-4158 (((-112) $) 20)) (-1706 (((-3 |#1| "failed") $) 23)) (-2216 ((|#1| $) 21)) (-2940 (($ $) 37)) (-1351 (($ $) 25)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2453 (((-112) $ $) 47)) (-4114 (((-937) $) 40)) (-3870 (($ $) 18)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 ((|#1| $) 36)) (-2956 (((-874) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 13)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-689 |#1|) (-13 (-862) (-1056 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2956 ((-831 |#1|) $)) (-15 -2930 (|#1| $)) (-15 -3870 ($ $)) (-15 -4114 ((-937) $)) (-15 -2453 ((-112) $ $)) (-15 -1351 ($ $)) (-15 -2940 ($ $)) (-15 -4158 ((-112) $)) (-15 -3883 ($ $)) (-15 -1665 ((-656 |#1|) $)))) (-862)) (T -689))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2930 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3870 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-1351 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2940 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))))
+(-13 (-862) (-1056 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2956 ((-831 |#1|) $)) (-15 -2930 (|#1| $)) (-15 -3870 ($ $)) (-15 -4114 ((-937) $)) (-15 -2453 ((-112) $ $)) (-15 -1351 ($ $)) (-15 -2940 ($ $)) (-15 -4158 ((-112) $)) (-15 -3883 ($ $)) (-15 -1665 ((-656 |#1|) $))))
+((-1637 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-4108 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9)))
+(((-690 |#1|) (-10 -7 (-15 -4108 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1637 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1118)) (T -690))
+((-1637 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1118)) (-5 *1 (-690 *2)))) (-4108 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1118)) (-5 *1 (-690 *2)))))
+(-10 -7 (-15 -4108 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -1637 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|)))
+((-2669 ((|#2| |#1| |#2|) 9)) (-2657 ((|#1| |#1| |#2|) 8)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -2657 (|#1| |#1| |#2|)) (-15 -2669 (|#2| |#1| |#2|))) (-1118) (-1118)) (T -691))
+((-2669 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+(-10 -7 (-15 -2657 (|#1| |#1| |#2|)) (-15 -2669 (|#2| |#1| |#2|)))
+((-4406 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1118) (-1118) (-1118)) (T -692))
+((-4406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-692 *5 *6 *2)))))
+(-10 -7 (-15 -4406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-2355 (((-1235) $) 21)) (-2301 (((-656 (-1235)) $) 19)) (-1544 (($ (-656 (-1235)) (-1235)) 14)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 29) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 22) (($ (-1136)) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-693) (-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2956 ($ (-1136))) (-15 -1544 ($ (-656 (-1235)) (-1235))) (-15 -2301 ((-656 (-1235)) $)) (-15 -2355 ((-1235) $))))) (T -693))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-693)))) (-1544 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693)))))
+(-13 (-1101) (-625 (-1235)) (-10 -8 (-15 -2956 ($ (-1136))) (-15 -1544 ($ (-656 (-1235)) (-1235))) (-15 -2301 ((-656 (-1235)) $)) (-15 -2355 ((-1235) $))))
+((-1637 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-3697 (((-1 |#1|) |#1|) 8)) (-2823 ((|#1| |#1|) 19)) (-3403 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2956 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23)))
+(((-694 |#1|) (-10 -7 (-15 -3697 ((-1 |#1|) |#1|)) (-15 -2956 ((-1 |#1|) |#1|)) (-15 -3403 (|#1| (-1 |#1| |#1|))) (-15 -3403 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2823 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1637 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1118)) (T -694))
+((-1637 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1118)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1118)) (-5 *1 (-694 *4)))) (-2823 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1118)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1118)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1118)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118)))) (-3697 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118)))))
+(-10 -7 (-15 -3697 ((-1 |#1|) |#1|)) (-15 -2956 ((-1 |#1|) |#1|)) (-15 -3403 (|#1| (-1 |#1| |#1|))) (-15 -3403 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2823 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -1637 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|))))
+((-2157 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2909 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1716 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2441 (((-1 |#2| |#1|) |#2|) 11)))
+(((-695 |#1| |#2|) (-10 -7 (-15 -2441 ((-1 |#2| |#1|) |#2|)) (-15 -2909 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1716 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2157 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1118) (-1118)) (T -695))
+((-2157 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1118)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1118)) (-4 *3 (-1118)))))
+(-10 -7 (-15 -2441 ((-1 |#2| |#1|) |#2|)) (-15 -2909 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1716 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2157 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3940 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2633 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3844 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3980 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3542 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -2633 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3844 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3980 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3542 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3940 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1118) (-1118) (-1118)) (T -696))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1118)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1118)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1118)) (-4 *4 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6)))))
+(-10 -7 (-15 -2633 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3844 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3980 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3542 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3940 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2887 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1787 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1787 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2887 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1067) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1067) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697))
+((-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1067)) (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))))
+(-10 -7 (-15 -1787 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1787 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2887 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2226 (($ (-783) (-783)) 42)) (-3470 (($ $ $) 71)) (-3548 (($ |#3|) 66) (($ $) 67)) (-2052 (((-112) $) 36)) (-2993 (($ $ (-576) (-576)) 82)) (-2852 (($ $ (-576) (-576)) 83)) (-1549 (($ $ (-576) (-576) (-576) (-576)) 88)) (-3235 (($ $) 69)) (-3562 (((-112) $) 15)) (-2640 (($ $ (-576) (-576) $) 89)) (-3140 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 87)) (-1372 (($ (-783) |#2|) 53)) (-2929 (($ (-656 (-656 |#2|))) 51)) (-1538 (((-656 (-656 |#2|)) $) 78)) (-4230 (($ $ $) 70)) (-2858 (((-3 $ "failed") $ |#2|) 120)) (-2209 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-1388 (($ (-656 |#2|)) 54) (($ (-656 $)) 56)) (-1415 (((-112) $) 28)) (-2956 (($ |#4|) 61) (((-874) $) NIL)) (-1335 (((-112) $) 38)) (-3108 (($ $ |#2|) 122)) (-3096 (($ $ $) 93) (($ $) 96)) (-3081 (($ $ $) 91)) (** (($ $ (-783)) 109) (($ $ (-576)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-576) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3108 (|#1| |#1| |#2|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1549 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -2852 (|#1| |#1| (-576) (-576))) (-15 -2993 (|#1| |#1| (-576) (-576))) (-15 -3140 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2209 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -1538 ((-656 (-656 |#2|)) |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -3548 (|#1| |#3|)) (-15 -2956 (|#1| |#4|)) (-15 -1388 (|#1| (-656 |#1|))) (-15 -1388 (|#1| (-656 |#2|))) (-15 -1372 (|#1| (-783) |#2|)) (-15 -2929 (|#1| (-656 (-656 |#2|)))) (-15 -2226 (|#1| (-783) (-783))) (-15 -1335 ((-112) |#1|)) (-15 -2052 ((-112) |#1|)) (-15 -1415 ((-112) |#1|)) (-15 -3562 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1067) (-384 |#2|) (-384 |#2|)) (T -698))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3108 (|#1| |#1| |#2|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| (-576) (-576) |#1|)) (-15 -1549 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -2852 (|#1| |#1| (-576) (-576))) (-15 -2993 (|#1| |#1| (-576) (-576))) (-15 -3140 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2209 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -1538 ((-656 (-656 |#2|)) |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3548 (|#1| |#1|)) (-15 -3548 (|#1| |#3|)) (-15 -2956 (|#1| |#4|)) (-15 -1388 (|#1| (-656 |#1|))) (-15 -1388 (|#1| (-656 |#2|))) (-15 -1372 (|#1| (-783) |#2|)) (-15 -2929 (|#1| (-656 (-656 |#2|)))) (-15 -2226 (|#1| (-783) (-783))) (-15 -1335 ((-112) |#1|)) (-15 -2052 ((-112) |#1|)) (-15 -1415 ((-112) |#1|)) (-15 -3562 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) (-576))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2226 (($ (-783) (-783)) 98)) (-3470 (($ $ $) 88)) (-3548 (($ |#2|) 92) (($ $) 91)) (-2052 (((-112) $) 100)) (-2993 (($ $ (-576) (-576)) 84)) (-2852 (($ $ (-576) (-576)) 83)) (-1549 (($ $ (-576) (-576) (-576) (-576)) 82)) (-3235 (($ $) 90)) (-3562 (((-112) $) 102)) (-3762 (((-112) $ (-783)) 8)) (-2640 (($ $ (-576) (-576) $) 81)) (-3140 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-2663 (($ $ (-576) |#2|) 43)) (-3581 (($ $ (-576) |#3|) 42)) (-1372 (($ (-783) |#1|) 96)) (-4335 (($) 7 T CONST)) (-3446 (($ $) 68 (|has| |#1| (-317)))) (-3389 ((|#2| $ (-576)) 47)) (-3563 (((-783) $) 67 (|has| |#1| (-568)))) (-2481 ((|#1| $ (-576) (-576) |#1|) 44)) (-2405 ((|#1| $ (-576) (-576)) 49)) (-1873 (((-656 |#1|) $) 31)) (-2954 (((-783) $) 66 (|has| |#1| (-568)))) (-3772 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-2199 (((-783) $) 52)) (-3769 (($ (-783) (-783) |#1|) 58)) (-2208 (((-783) $) 51)) (-2266 (((-112) $ (-783)) 9)) (-3331 ((|#1| $) 63 (|has| |#1| (-6 (-4463 "*"))))) (-1823 (((-576) $) 56)) (-1780 (((-576) $) 54)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1982 (((-576) $) 55)) (-4259 (((-576) $) 53)) (-2929 (($ (-656 (-656 |#1|))) 97)) (-2466 (($ (-1 |#1| |#1|) $) 35)) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1538 (((-656 (-656 |#1|)) $) 87)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1495 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-4230 (($ $ $) 89)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) 57)) (-2858 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-1388 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-1415 (((-112) $) 101)) (-2293 ((|#1| $) 64 (|has| |#1| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-4087 ((|#3| $ (-576)) 46)) (-2956 (($ |#3|) 93) (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-1335 (((-112) $) 99)) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3108 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3096 (($ $ $) 79) (($ $) 78)) (-3081 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-699 |#1| |#2| |#3|) (-141) (-1067) (-384 |t#1|) (-384 |t#1|)) (T -699))
+((-3562 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2226 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1372 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2956 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-3548 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-3548 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4230 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3470 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2209 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3140 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2993 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2852 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1549 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2640 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3096 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1067)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2858 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-1495 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -3562 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -2052 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -2226 ($ (-783) (-783))) (-15 -2929 ($ (-656 (-656 |t#1|)))) (-15 -1372 ($ (-783) |t#1|)) (-15 -1388 ($ (-656 |t#1|))) (-15 -1388 ($ (-656 $))) (-15 -2956 ($ |t#3|)) (-15 -3548 ($ |t#2|)) (-15 -3548 ($ $)) (-15 -3235 ($ $)) (-15 -4230 ($ $ $)) (-15 -3470 ($ $ $)) (-15 -1538 ((-656 (-656 |t#1|)) $)) (-15 -2209 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3140 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2993 ($ $ (-576) (-576))) (-15 -2852 ($ $ (-576) (-576))) (-15 -1549 ($ $ (-576) (-576) (-576) (-576))) (-15 -2640 ($ $ (-576) (-576) $)) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -3096 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -2858 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3108 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -3446 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3563 ((-783) $)) (-15 -2954 ((-783) $)) (-15 -3772 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4463 "*"))) (PROGN (-15 -2293 (|t#1| $)) (-15 -3331 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -1495 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-57 |#1| |#2| |#3|) . T) ((-1236) . T))
+((-3446 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-3563 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-2954 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-3772 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-3859 (((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3331 ((|#1| |#4|) 52)) (-2442 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-1495 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-1853 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2071 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-4414 ((|#4| |#4| (-576) (-576)) 55)) (-4128 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-2293 ((|#1| |#4|) 98)) (-2719 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568)))))
+(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2293 (|#1| |#4|)) (-15 -3331 (|#1| |#4|)) (-15 -4414 (|#4| |#4| (-576) (-576))) (-15 -2071 (|#4| |#4| |#1| (-576) (-576))) (-15 -4128 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3563 ((-783) |#4|)) (-15 -2954 ((-783) |#4|)) (-15 -3772 ((-656 |#3|) |#4|)) (-15 -1853 (|#4| |#4|)) (-15 -2442 ((-3 |#4| "failed") |#4|)) (-15 -2719 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3446 (|#4| |#4|)) (-15 -3859 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1495 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700))
+((-1495 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3859 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2719 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2442 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3772 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2954 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4128 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2071 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-4414 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))))
+(-10 -7 (-15 -2293 (|#1| |#4|)) (-15 -3331 (|#1| |#4|)) (-15 -4414 (|#4| |#4| (-576) (-576))) (-15 -2071 (|#4| |#4| |#1| (-576) (-576))) (-15 -4128 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3563 ((-783) |#4|)) (-15 -2954 ((-783) |#4|)) (-15 -3772 ((-656 |#3|) |#4|)) (-15 -1853 (|#4| |#4|)) (-15 -2442 ((-3 |#4| "failed") |#4|)) (-15 -2719 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3446 (|#4| |#4|)) (-15 -3859 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1495 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783) (-783)) 64)) (-3470 (($ $ $) NIL)) (-3548 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-2052 (((-112) $) NIL)) (-2993 (($ $ (-576) (-576)) 22)) (-2852 (($ $ (-576) (-576)) NIL)) (-1549 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3235 (($ $) NIL)) (-3562 (((-112) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2640 (($ $ (-576) (-576) $) NIL)) (-3140 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-2663 (($ $ (-576) (-1286 |#1|)) NIL)) (-3581 (($ $ (-576) (-1286 |#1|)) NIL)) (-1372 (($ (-783) |#1|) 37)) (-4335 (($) NIL T CONST)) (-3446 (($ $) 46 (|has| |#1| (-317)))) (-3389 (((-1286 |#1|) $ (-576)) NIL)) (-3563 (((-783) $) 48 (|has| |#1| (-568)))) (-2481 ((|#1| $ (-576) (-576) |#1|) 69)) (-2405 ((|#1| $ (-576) (-576)) NIL)) (-1873 (((-656 |#1|) $) NIL)) (-2954 (((-783) $) 50 (|has| |#1| (-568)))) (-3772 (((-656 (-1286 |#1|)) $) 53 (|has| |#1| (-568)))) (-2199 (((-783) $) 32)) (-3769 (($ (-783) (-783) |#1|) 28)) (-2208 (((-783) $) 33)) (-2266 (((-112) $ (-783)) NIL)) (-3331 ((|#1| $) 44 (|has| |#1| (-6 (-4463 "*"))))) (-1823 (((-576) $) 10)) (-1780 (((-576) $) 11)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1982 (((-576) $) 14)) (-4259 (((-576) $) 65)) (-2929 (($ (-656 (-656 |#1|))) NIL)) (-2466 (($ (-1 |#1| |#1|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1538 (((-656 (-656 |#1|)) $) 76)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1495 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-4230 (($ $ $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4211 (($ $ |#1|) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1388 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1286 |#1|)) 70)) (-1415 (((-112) $) NIL)) (-2293 ((|#1| $) 42 (|has| |#1| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-1846 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-4087 (((-1286 |#1|) $ (-576)) NIL)) (-2956 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $ $) NIL) (($ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) NIL) (((-1286 |#1|) (-1286 |#1|) $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-701 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -1388 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1495 ((-3 $ "failed") $)) |%noBranch|))) (-1067)) (T -701))
+((-1495 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1067)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-701 *3)))))
+(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -1388 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -1495 ((-3 $ "failed") $)) |%noBranch|)))
+((-1867 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-3295 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-1920 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-2914 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-1484 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-1566 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-2923 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46)))
+(((-702 |#1|) (-10 -7 (-15 -2923 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2914 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1484 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1484 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1566 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3295 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1867 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1920 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1067)) (T -702))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-702 *4)))) (-1920 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-702 *4)))) (-1867 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-3295 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-1566 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-1484 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-1484 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2914 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))) (-2923 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(-10 -7 (-15 -2923 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2914 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1484 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1484 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1566 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3295 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1867 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1920 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783))))
+((-1706 (((-3 |#1| "failed") $) 18)) (-2216 ((|#1| $) NIL)) (-2243 (($) 7 T CONST)) (-1387 (($ |#1|) 8)) (-2956 (($ |#1|) 16) (((-874) $) 23)) (-2132 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2243)) 11)) (-1338 ((|#1| $) 15)))
+(((-703 |#1|) (-13 (-1281) (-1056 |#1|) (-625 (-874)) (-10 -8 (-15 -1387 ($ |#1|)) (-15 -2132 ((-112) $ (|[\|\|]| |#1|))) (-15 -2132 ((-112) $ (|[\|\|]| -2243))) (-15 -1338 (|#1| $)) (-15 -2243 ($) -1716))) (-625 (-874))) (T -703))
+((-1387 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-874))))) (-1338 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2243 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(-13 (-1281) (-1056 |#1|) (-625 (-874)) (-10 -8 (-15 -1387 ($ |#1|)) (-15 -2132 ((-112) $ (|[\|\|]| |#1|))) (-15 -2132 ((-112) $ (|[\|\|]| -2243))) (-15 -1338 (|#1| $)) (-15 -2243 ($) -1716)))
+((-2750 ((|#2| |#2| |#4|) 29)) (-2525 (((-701 |#2|) |#3| |#4|) 35)) (-3848 (((-701 |#2|) |#2| |#4|) 34)) (-2561 (((-1286 |#2|) |#2| |#4|) 16)) (-4173 ((|#2| |#3| |#4|) 28)) (-2506 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-3850 (((-701 |#2|) |#2| |#4| (-783)) 46)))
+(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2561 ((-1286 |#2|) |#2| |#4|)) (-15 -4173 (|#2| |#3| |#4|)) (-15 -2750 (|#2| |#2| |#4|)) (-15 -3848 ((-701 |#2|) |#2| |#4|)) (-15 -3850 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2525 ((-701 |#2|) |#3| |#4|)) (-15 -2506 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1118) (-914 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4461)))) (T -704))
+((-2506 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *7 (-914 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-2525 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *6 (-914 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-3850 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *3 (-914 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-3848 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-2750 (*1 *2 *2 *3) (-12 (-4 *4 (-1118)) (-4 *2 (-914 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461)))))) (-4173 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *2 (-914 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-2561 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-1286 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))))
+(-10 -7 (-15 -2561 ((-1286 |#2|) |#2| |#4|)) (-15 -4173 (|#2| |#3| |#4|)) (-15 -2750 (|#2| |#2| |#4|)) (-15 -3848 ((-701 |#2|) |#2| |#4|)) (-15 -3850 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2525 ((-701 |#2|) |#3| |#4|)) (-15 -2506 ((-701 |#2|) |#3| |#4| (-783) (-783))))
+((-4052 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-3525 ((|#1| (-701 |#2|)) 9)) (-3867 (((-701 |#1|) (-701 |#2|)) 18)))
+(((-705 |#1| |#2|) (-10 -7 (-15 -3525 (|#1| (-701 |#2|))) (-15 -3867 ((-701 |#1|) (-701 |#2|))) (-15 -4052 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1010 |#1|)) (T -705))
+((-4052 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4)))))
+(-10 -7 (-15 -3525 (|#1| (-701 |#2|))) (-15 -3867 ((-701 |#1|) (-701 |#2|))) (-15 -4052 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-2674 (((-701 (-711))) NIL) (((-701 (-711)) (-1286 $)) NIL)) (-1646 (((-711) $) NIL)) (-2384 (($ $) NIL (|has| (-711) (-1221)))) (-2260 (($ $) NIL (|has| (-711) (-1221)))) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-2879 (($ $) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-1870 (((-430 $) $) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-4214 (($ $) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-1323 (((-112) $ $) NIL (|has| (-711) (-317)))) (-1499 (((-783)) NIL (|has| (-711) (-379)))) (-2363 (($ $) NIL (|has| (-711) (-1221)))) (-2238 (($ $) NIL (|has| (-711) (-1221)))) (-2409 (($ $) NIL (|has| (-711) (-1221)))) (-2282 (($ $) NIL (|has| (-711) (-1221)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1056 (-419 (-576)))))) (-2216 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1056 (-419 (-576)))))) (-2524 (($ (-1286 (-711))) NIL) (($ (-1286 (-711)) (-1286 $)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-2806 (($ $ $) NIL (|has| (-711) (-317)))) (-1796 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1286 $)) NIL)) (-3928 (((-701 (-711)) (-1286 $)) NIL) (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-711))) (|:| |vec| (-1286 (-711)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1286 $)) NIL (|has| (-711) (-651 (-576))))) (-2887 (((-3 $ "failed") (-419 (-1191 (-711)))) NIL (|has| (-711) (-374))) (($ (-1191 (-711))) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4225 (((-711) $) 29)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-1874 (((-112) $) NIL (|has| (-711) (-557)))) (-2183 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-3563 (((-937)) NIL)) (-2840 (($) NIL (|has| (-711) (-379)))) (-2818 (($ $ $) NIL (|has| (-711) (-317)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-3243 (($) NIL (|has| (-711) (-360)))) (-4208 (((-112) $) NIL (|has| (-711) (-360)))) (-3454 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-3124 (((-112) $) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-2327 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1078)) (|has| (-711) (-1221))))) (-3009 (($) NIL (|has| (-711) (-1221)))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-711) (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-711) (-899 (-576))))) (-3540 (((-845 (-937)) $) NIL (|has| (-711) (-360))) (((-937) $) NIL (|has| (-711) (-360)))) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221))))) (-3404 (((-711) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-1733 (((-1191 (-711)) $) NIL (|has| (-711) (-374)))) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1787 (($ (-1 (-711) (-711)) $) NIL)) (-4261 (((-937) $) NIL (|has| (-711) (-379)))) (-3118 (($ $) NIL (|has| (-711) (-1221)))) (-2874 (((-1191 (-711)) $) NIL)) (-2850 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| (-711) (-374)))) (-3796 (($) NIL (|has| (-711) (-360)) CONST)) (-2596 (($ (-937)) NIL (|has| (-711) (-379)))) (-3289 (($) NIL)) (-4236 (((-711) $) 31)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-711) (-317)))) (-2892 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-711) (-360)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-925))))) (-4205 (((-430 $) $) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| (-711) (-925))) (|has| (-711) (-374))))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| (-711) (-317)))) (-2858 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-1619 (($ $) NIL (|has| (-711) (-1221)))) (-2666 (($ $ (-1195) (-711)) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-1195)) (-656 (-711))) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-3927 (((-783) $) NIL (|has| (-711) (-317)))) (-2209 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| (-711) (-317)))) (-3206 (((-711)) NIL) (((-711) (-1286 $)) NIL)) (-3665 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-3884 (($ $ (-1 (-711) (-711))) NIL) (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-711) (-914 (-1195)))) (($ $) NIL (|has| (-711) (-239))) (($ $ (-783)) NIL (|has| (-711) (-239)))) (-3767 (((-701 (-711)) (-1286 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-2477 (((-1191 (-711))) NIL)) (-2422 (($ $) NIL (|has| (-711) (-1221)))) (-2291 (($ $) NIL (|has| (-711) (-1221)))) (-3087 (($) NIL (|has| (-711) (-360)))) (-2394 (($ $) NIL (|has| (-711) (-1221)))) (-2270 (($ $) NIL (|has| (-711) (-1221)))) (-2373 (($ $) NIL (|has| (-711) (-1221)))) (-2249 (($ $) NIL (|has| (-711) (-1221)))) (-3458 (((-701 (-711)) (-1286 $)) NIL) (((-1286 (-711)) $) NIL) (((-701 (-711)) (-1286 $) (-1286 $)) NIL) (((-1286 (-711)) $ (-1286 $)) NIL)) (-1846 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1040))) (((-171 (-390)) $) NIL (|has| (-711) (-1040))) (((-905 (-390)) $) NIL (|has| (-711) (-626 (-905 (-390))))) (((-905 (-576)) $) NIL (|has| (-711) (-626 (-905 (-576))))) (($ (-1191 (-711))) NIL) (((-1191 (-711)) $) NIL) (($ (-1286 (-711))) NIL) (((-1286 (-711)) $) NIL)) (-1979 (($ $) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-925))) (|has| (-711) (-360))))) (-3541 (($ (-711) (-711)) 12)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2838 (|has| (-711) (-1056 (-419 (-576)))) (|has| (-711) (-374))))) (-1817 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-2838 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-925))) (|has| (-711) (-146))))) (-4343 (((-1191 (-711)) $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL)) (-2461 (($ $) NIL (|has| (-711) (-1221)))) (-2324 (($ $) NIL (|has| (-711) (-1221)))) (-2946 (((-112) $ $) NIL)) (-2434 (($ $) NIL (|has| (-711) (-1221)))) (-2304 (($ $) NIL (|has| (-711) (-1221)))) (-2485 (($ $) NIL (|has| (-711) (-1221)))) (-2345 (($ $) NIL (|has| (-711) (-1221)))) (-3538 (((-711) $) NIL (|has| (-711) (-1221)))) (-2541 (($ $) NIL (|has| (-711) (-1221)))) (-2354 (($ $) NIL (|has| (-711) (-1221)))) (-2473 (($ $) NIL (|has| (-711) (-1221)))) (-2335 (($ $) NIL (|has| (-711) (-1221)))) (-2447 (($ $) NIL (|has| (-711) (-1221)))) (-2315 (($ $) NIL (|has| (-711) (-1221)))) (-2130 (($ $) NIL (|has| (-711) (-1078)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1 (-711) (-711))) NIL) (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-711) (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-711) (-914 (-1195)))) (($ $) NIL (|has| (-711) (-239))) (($ $ (-783)) NIL (|has| (-711) (-239)))) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-711) (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1221))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1020)) (|has| (-711) (-1221)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374)))))
+(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -2956 ($ (-171 (-390)))) (-15 -2956 ($ (-171 (-576)))) (-15 -2956 ($ (-171 (-711)))) (-15 -2956 ($ (-171 (-713)))) (-15 -2956 ((-171 (-390)) $))))) (T -706))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))))
+(-13 (-399) (-167 (-711)) (-10 -8 (-15 -2956 ($ (-171 (-390)))) (-15 -2956 ($ (-171 (-576)))) (-15 -2956 ($ (-171 (-711)))) (-15 -2956 ($ (-171 (-713)))) (-15 -2956 ((-171 (-390)) $))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4099 (($ $) 63)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-4169 (((-656 (-2 (|:| -1918 |#1|) (|:| -3954 (-783)))) $) 62)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-707 |#1|) (-141) (-1118)) (T -707))
+((-2504 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1118)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1118)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-2 (|:| -1918 *3) (|:| -3954 (-783))))))))
+(-13 (-241 |t#1|) (-10 -8 (-15 -2504 ($ |t#1| $ (-783))) (-15 -4099 ($ $)) (-15 -4169 ((-656 (-2 (|:| -1918 |t#1|) (|:| -3954 (-783)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-1717 (((-656 |#1|) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) (-576)) 65)) (-3534 ((|#1| |#1| (-576)) 62)) (-2892 ((|#1| |#1| |#1| (-576)) 46)) (-4205 (((-656 |#1|) |#1| (-576)) 49)) (-4361 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-1878 (((-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) |#1| (-576)) 61)))
+(((-708 |#1|) (-10 -7 (-15 -2892 (|#1| |#1| |#1| (-576))) (-15 -3534 (|#1| |#1| (-576))) (-15 -4205 ((-656 |#1|) |#1| (-576))) (-15 -1878 ((-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) |#1| (-576))) (-15 -1717 ((-656 |#1|) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) (-576))) (-15 -4361 (|#1| |#1| (-576) |#1| (-576)))) (-1262 (-576))) (T -708))
+((-4361 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -4205 *5) (|:| -2782 (-576))))) (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-1878 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -4205 *3) (|:| -2782 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-2892 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))))
+(-10 -7 (-15 -2892 (|#1| |#1| |#1| (-576))) (-15 -3534 (|#1| |#1| (-576))) (-15 -4205 ((-656 |#1|) |#1| (-576))) (-15 -1878 ((-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) |#1| (-576))) (-15 -1717 ((-656 |#1|) (-656 (-2 (|:| -4205 |#1|) (|:| -2782 (-576)))) (-576))) (-15 -4361 (|#1| |#1| (-576) |#1| (-576))))
+((-1957 (((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2380 (((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 53) (((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 55) (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 57)) (-3603 (((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270))) NIL)) (-2626 (((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270))) 58)))
+(((-709) (-10 -7 (-15 -2380 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2380 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2380 ((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2626 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -3603 ((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -1957 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709))
+((-1957 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-3603 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-2626 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-2380 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-2380 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))) (-2380 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709)))))
+(-10 -7 (-15 -2380 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2380 ((-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2380 ((-1151 (-227)) (-1151 (-227)) (-1 (-959 (-227)) (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -2626 ((-1151 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1112 (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -3603 ((-1151 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1112 (-227)) (-656 (-270)))) (-15 -1957 ((-1 (-959 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-4205 (((-430 (-1191 |#4|)) (-1191 |#4|)) 86) (((-430 |#4|) |#4|) 266)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4|)) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-360) (-965 |#3| |#2| |#1|)) (T -710))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4|)) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 97)) (-2742 (((-576) $) 34)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-2725 (($ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) NIL)) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL)) (-4335 (($) NIL T CONST)) (-3629 (($ $) NIL)) (-1706 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2216 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-2806 (($ $ $) 109)) (-4077 (((-3 $ "failed") $) 100)) (-2818 (($ $ $) 108)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3765 (((-937)) 89) (((-937) (-937)) 88)) (-3730 (((-112) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-3540 (((-576) $) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL)) (-3404 (($ $) NIL)) (-3327 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2232 (((-576) (-576)) 94) (((-576)) 95)) (-3639 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-2160 (((-576) (-576)) 92) (((-576)) 93)) (-2571 (($ $ $) NIL) (($) NIL (-12 (-2085 (|has| $ (-6 -4444))) (-2085 (|has| $ (-6 -4452)))))) (-4292 (((-576) $) 17)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 104)) (-3847 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL)) (-4371 (($ $) NIL)) (-2404 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-937)) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) 105)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2300 (((-576) $) 24)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 107)) (-4176 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-2592 (((-937) (-576)) NIL (|has| $ (-6 -4452)))) (-1846 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) NIL)) (-2956 (((-874) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-3423 (((-783)) 119 T CONST)) (-2450 (($ (-576) (-576) (-937)) 54)) (-4175 (($ $) NIL)) (-2054 (((-937)) NIL) (((-937) (-937)) NIL (|has| $ (-6 -4452)))) (-2617 (((-112) $ $) NIL)) (-2650 (((-937)) 91) (((-937) (-937)) 90)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 18 T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 96)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 118)) (-3108 (($ $ $) 77)) (-3096 (($ $) 115) (($ $ $) 116)) (-3081 (($ $ $) 114)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-711) (-13 (-416) (-399) (-374) (-1056 (-390)) (-1056 (-419 (-576))) (-148) (-10 -8 (-15 -3765 ((-937) (-937))) (-15 -3765 ((-937))) (-15 -2650 ((-937) (-937))) (-15 -2160 ((-576) (-576))) (-15 -2160 ((-576))) (-15 -2232 ((-576) (-576))) (-15 -2232 ((-576))) (-15 -2956 ((-390) $)) (-15 -2956 ($ (-713))) (-15 -4292 ((-576) $)) (-15 -2300 ((-576) $)) (-15 -2450 ($ (-576) (-576) (-937)))))) (T -711))
+((-2300 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3765 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2160 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2232 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-2450 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-5 *1 (-711)))))
+(-13 (-416) (-399) (-374) (-1056 (-390)) (-1056 (-419 (-576))) (-148) (-10 -8 (-15 -3765 ((-937) (-937))) (-15 -3765 ((-937))) (-15 -2650 ((-937) (-937))) (-15 -2160 ((-576) (-576))) (-15 -2160 ((-576))) (-15 -2232 ((-576) (-576))) (-15 -2232 ((-576))) (-15 -2956 ((-390) $)) (-15 -2956 ($ (-713))) (-15 -4292 ((-576) $)) (-15 -2300 ((-576) $)) (-15 -2450 ($ (-576) (-576) (-937)))))
+((-1342 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-3446 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-3605 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-4396 (((-701 |#1|) (-701 |#1|)) 67)) (-3859 (((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|) 84)))
+(((-712 |#1|) (-10 -7 (-15 -4396 ((-701 |#1|) (-701 |#1|))) (-15 -3446 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3605 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1342 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -3859 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|))) (-317)) (T -712))
+((-3859 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-1342 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3605 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3446 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(-10 -7 (-15 -4396 ((-701 |#1|) (-701 |#1|))) (-15 -3446 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3605 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1342 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -3859 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3115 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $ $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL)) (-3938 (($ $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) 31)) (-2216 (((-576) $) 29)) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL)) (-1874 (((-112) $) NIL)) (-2183 (((-419 (-576)) $) NIL)) (-2840 (($ $) NIL) (($) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-2834 (($ $ $ $) NIL)) (-2364 (($ $ $) NIL)) (-3730 (((-112) $) NIL)) (-2636 (($ $ $) NIL)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-4192 (((-112) $) NIL)) (-4314 (((-112) $) NIL)) (-2211 (((-3 $ "failed") $) NIL)) (-3327 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1925 (($ $ $ $) NIL)) (-3639 (($ $ $) NIL)) (-1490 (((-937) (-937)) 10) (((-937)) 9)) (-2571 (($ $ $) NIL)) (-3790 (($ $) NIL)) (-4114 (($ $) NIL)) (-2850 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1987 (($ $ $) NIL)) (-3796 (($) NIL T CONST)) (-1615 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1786 (($ $) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL) (($ $) NIL)) (-2314 (($ $) NIL)) (-3162 (($ $) NIL)) (-1846 (((-227) $) NIL) (((-390) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-3423 (((-783)) NIL T CONST)) (-3925 (((-112) $ $) NIL)) (-2959 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-2650 (($) NIL)) (-2946 (((-112) $ $) NIL)) (-2069 (($ $ $ $) NIL)) (-2130 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL) (($ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-713) (-13 (-399) (-557) (-10 -8 (-15 -1490 ((-937) (-937))) (-15 -1490 ((-937))) (-15 -2956 ((-326 $) (-326 (-576))))))) (T -713))
+((-1490 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))) (-1490 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))))
+(-13 (-399) (-557) (-10 -8 (-15 -1490 ((-937) (-937))) (-15 -1490 ((-937))) (-15 -2956 ((-326 $) (-326 (-576))))))
+((-3116 (((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)) 19)) (-4011 (((-1 |#4| |#2| |#3|) (-1195)) 12)))
+(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4011 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -3116 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)))) (-626 (-548)) (-1236) (-1236) (-1236)) (T -714))
+((-3116 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))))
+(-10 -7 (-15 -4011 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -3116 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195))))
+((-2359 (((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)) 43) (((-1 (-227) (-227)) |#1| (-1195)) 48)))
+(((-715 |#1|) (-10 -7 (-15 -2359 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -2359 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)))) (-626 (-548))) (T -715))
+((-2359 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-2359 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -2359 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -2359 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195))))
+((-2726 (((-1195) |#1| (-1195) (-656 (-1195))) 10) (((-1195) |#1| (-1195) (-1195) (-1195)) 13) (((-1195) |#1| (-1195) (-1195)) 12) (((-1195) |#1| (-1195)) 11)))
+(((-716 |#1|) (-10 -7 (-15 -2726 ((-1195) |#1| (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-656 (-1195))))) (-626 (-548))) (T -716))
+((-2726 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2726 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2726 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-2726 (*1 *2 *3 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -2726 ((-1195) |#1| (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -2726 ((-1195) |#1| (-1195) (-656 (-1195)))))
+((-2239 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-717 |#1| |#2|) (-10 -7 (-15 -2239 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1236) (-1236)) (T -717))
+((-2239 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236)))))
+(-10 -7 (-15 -2239 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2601 (((-1 |#3| |#2|) (-1195)) 11)) (-3116 (((-1 |#3| |#2|) |#1| (-1195)) 21)))
+(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -2601 ((-1 |#3| |#2|) (-1195))) (-15 -3116 ((-1 |#3| |#2|) |#1| (-1195)))) (-626 (-548)) (-1236) (-1236)) (T -718))
+((-3116 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))))
+(-10 -7 (-15 -2601 ((-1 |#3| |#2|) (-1195))) (-15 -3116 ((-1 |#3| |#2|) |#1| (-1195))))
+((-4302 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|) 92)) (-4216 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-2593 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|) 47)))
+(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2593 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -4216 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4302 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -719))
+((-4302 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-965 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-4216 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-965 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12)))) (-2593 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-965 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2593 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -4216 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4302 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1404 (($ $) 48)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-4330 (($ |#1| (-783)) 46)) (-1859 (((-783) $) 50)) (-1380 ((|#1| $) 49)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2782 (((-783) $) 51)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4309 ((|#1| $ (-783)) 47)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-720 |#1|) (-141) (-1067)) (T -720))
+((-2782 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-1404 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067)))))
+(-13 (-1067) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2782 ((-783) $)) (-15 -1859 ((-783) $)) (-15 -1380 (|t#1| $)) (-15 -1404 ($ $)) (-15 -4309 (|t#1| $ (-783))) (-15 -4330 ($ |t#1| (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-1787 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1262 |#1|) (-1262 (-419 |#2|)) (-568) (-1262 |#4|) (-1262 (-419 |#5|))) (T -721))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) (-4 *8 (-1262 *7)))))
+(-10 -7 (-15 -1787 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-4429 (((-1177) (-874)) 38)) (-1416 (((-1291) (-1177)) 31)) (-2003 (((-1177) (-874)) 28)) (-3527 (((-1177) (-874)) 29)) (-2956 (((-874) $) NIL) (((-1177) (-874)) 27)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-722) (-13 (-1118) (-10 -7 (-15 -2956 ((-1177) (-874))) (-15 -2003 ((-1177) (-874))) (-15 -3527 ((-1177) (-874))) (-15 -4429 ((-1177) (-874))) (-15 -1416 ((-1291) (-1177)))))) (T -722))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-4429 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722)))))
+(-13 (-1118) (-10 -7 (-15 -2956 ((-1177) (-874))) (-15 -2003 ((-1177) (-874))) (-15 -3527 ((-1177) (-874))) (-15 -4429 ((-1177) (-874))) (-15 -1416 ((-1291) (-1177)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL)) (-2887 (($ |#1| |#2|) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1440 ((|#2| $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2814 (((-3 $ "failed") $ $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -1440 (|#2| $)) (-15 -2956 (|#1| $)) (-15 -2887 ($ |#1| |#2|)) (-15 -2814 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723))
+((-1440 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2956 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2887 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2814 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-374) (-10 -8 (-15 -1440 (|#2| $)) (-15 -2956 (|#1| $)) (-15 -2887 ($ |#1| |#2|)) (-15 -2814 ((-3 $ "failed") $ $))))
+((-2869 (((-112) $ $) 87)) (-3549 (((-112) $) 36)) (-2862 (((-1286 |#1|) $ (-783)) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-2357 (($ (-1191 |#1|)) NIL)) (-4174 (((-1191 $) $ (-1100)) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2628 (($ $ $) NIL (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1499 (((-783)) 54 (|has| |#1| (-379)))) (-1708 (($ $ (-783)) NIL)) (-1546 (($ $ (-783)) NIL)) (-2392 ((|#2| |#2|) 50)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL)) (-2799 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) 40)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2887 (($ |#2|) 48)) (-4077 (((-3 $ "failed") $) 97)) (-2840 (($) 58 (|has| |#1| (-379)))) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-3497 (($ $ $) NIL)) (-4055 (($ $ $) NIL (|has| |#1| (-568)))) (-3170 (((-2 (|:| -1868 |#1|) (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3807 (((-974 $)) 89)) (-3130 (($ $ |#1| (-783) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-4341 (($ (-1191 |#1|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-4162 (($ $ (-783)) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) 85) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1100)) NIL) (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1440 ((|#2|) 51)) (-1859 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2819 (($ (-1 (-783) (-783)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1525 (((-1191 |#1|) $) NIL)) (-1712 (((-3 (-1100) "failed") $) NIL)) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2874 ((|#2| $) 47)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) 34)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1100)) (|:| -2300 (-783))) "failed") $) NIL)) (-2254 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) NIL (|has| |#1| (-1170)) CONST)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2754 (($ $) 88 (|has| |#1| (-360)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3375 (((-3 $ "failed") $ (-783)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 98 (|has| |#1| (-374)))) (-3206 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2782 (((-783) $) 38) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-3182 (((-974 $)) 42)) (-3224 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2956 (((-874) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1100)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) 70) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 25 T CONST)) (-3495 (((-1286 |#1|) $) 83)) (-2419 (($ (-1286 |#1|)) 57)) (-2155 (($) 8 T CONST)) (-3590 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4012 (((-1286 |#1|) $) NIL)) (-2991 (((-112) $ $) 76)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) 79) (($ $ $) NIL)) (-3081 (($ $ $) 39)) (** (($ $ (-937)) NIL) (($ $ (-783)) 92)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
+(((-724 |#1| |#2|) (-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -2392 (|#2| |#2|)) (-15 -1440 (|#2|)) (-15 -2887 ($ |#2|)) (-15 -2874 (|#2| $)) (-15 -3495 ((-1286 |#1|) $)) (-15 -2419 ($ (-1286 |#1|))) (-15 -4012 ((-1286 |#1|) $)) (-15 -3807 ((-974 $))) (-15 -3182 ((-974 $))) (IF (|has| |#1| (-360)) (-15 -2754 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1067) (-1262 |#1|)) (T -724))
+((-2392 (*1 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-1440 (*1 *2) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) (-2887 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-2874 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067)))) (-3495 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-4012 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-3807 (*1 *2) (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-3182 (*1 *2) (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-2754 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1067)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1262 *2)))))
+(-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -2392 (|#2| |#2|)) (-15 -1440 (|#2|)) (-15 -2887 ($ |#2|)) (-15 -2874 (|#2| $)) (-15 -3495 ((-1286 |#1|) $)) (-15 -2419 ($ (-1286 |#1|))) (-15 -4012 ((-1286 |#1|) $)) (-15 -3807 ((-974 $))) (-15 -3182 ((-974 $))) (IF (|has| |#1| (-360)) (-15 -2754 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 ((|#1| $) 13)) (-3945 (((-1138) $) NIL)) (-2300 ((|#2| $) 12)) (-2968 (($ |#1| |#2|) 16)) (-2956 (((-874) $) NIL) (($ (-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) 15) (((-2 (|:| -2596 |#1|) (|:| -2300 |#2|)) $) 14)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 11)))
+(((-725 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) (-10 -8 (-15 -2300 (|#2| $)) (-15 -2596 (|#1| $)) (-15 -2968 ($ |#1| |#2|)))) (-862) (-1118) (-1 (-112) (-2 (|:| -2596 |#1|) (|:| -2300 |#2|)) (-2 (|:| -2596 |#1|) (|:| -2300 |#2|)))) (T -725))
+((-2300 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -2596 *3) (|:| -2300 *2)) (-2 (|:| -2596 *3) (|:| -2300 *2)))))) (-2596 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *3)) (-2 (|:| -2596 *2) (|:| -2300 *3)))))) (-2968 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1118)) (-14 *4 (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *3)) (-2 (|:| -2596 *2) (|:| -2300 *3)))))))
+(-13 (-862) (-502 (-2 (|:| -2596 |#1|) (|:| -2300 |#2|))) (-10 -8 (-15 -2300 (|#2| $)) (-15 -2596 (|#1| $)) (-15 -2968 ($ |#1| |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 66)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2216 ((|#1| $) NIL) (((-115) $) 39)) (-4077 (((-3 $ "failed") $) 103)) (-1394 ((|#2| (-115) |#2|) 93)) (-4192 (((-112) $) NIL)) (-3696 (($ |#1| (-372 (-115))) 14)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3999 (($ $ (-1 |#2| |#2|)) 65)) (-3462 (($ $ (-1 |#2| |#2|)) 44)) (-2209 ((|#2| $ |#2|) 33)) (-3023 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2956 (((-874) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) 37 T CONST)) (-2617 (((-112) $ $) NIL)) (-2719 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2143 (($) 21 T CONST)) (-2155 (($) 9 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) 48) (($ $ $) NIL)) (-3081 (($ $ $) 83)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
+(((-726 |#1| |#2|) (-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -3023 (|#1| |#1|))) |%noBranch|) (-15 -3462 ($ $ (-1 |#2| |#2|))) (-15 -3999 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1394 (|#2| (-115) |#2|)) (-15 -3696 ($ |#1| (-372 (-115)))))) (-1067) (-660 |#1|)) (T -726))
+((-2719 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2719 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3023 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-3696 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1067)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2)))))
+(-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -3023 (|#1| |#1|))) |%noBranch|) (-15 -3462 ($ $ (-1 |#2| |#2|))) (-15 -3999 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1394 (|#2| (-115) |#2|)) (-15 -3696 ($ |#1| (-372 (-115))))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 33)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-2887 (($ |#1| |#2|) 25)) (-4077 (((-3 $ "failed") $) 51)) (-4192 (((-112) $) 35)) (-1440 ((|#2| $) 12)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 52)) (-3945 (((-1138) $) NIL)) (-2814 (((-3 $ "failed") $ $) 50)) (-2956 (((-874) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-3423 (((-783)) 28 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 16 T CONST)) (-2155 (($) 30 T CONST)) (-2991 (((-112) $ $) 41)) (-3096 (($ $) 46) (($ $ $) 40)) (-3081 (($ $ $) 43)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20)))
+(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1067) (-10 -8 (-15 -1440 (|#2| $)) (-15 -2956 (|#1| $)) (-15 -2887 ($ |#1| |#2|)) (-15 -2814 ((-3 $ "failed") $ $)) (-15 -4077 ((-3 $ "failed") $)) (-15 -1330 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727))
+((-4077 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1440 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2956 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2887 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2814 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1330 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1067) (-10 -8 (-15 -1440 (|#2| $)) (-15 -2956 (|#1| $)) (-15 -2887 ($ |#1| |#2|)) (-15 -2814 ((-3 $ "failed") $ $)) (-15 -4077 ((-3 $ "failed") $)) (-15 -1330 ($ $))))
+((* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-729 |#2|) (-174)) (T -728))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-729 |#1|) (-141) (-174)) (T -729))
+NIL
+(-13 (-111 |t#1| |t#1|) (-652 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3938 (($ |#1|) 17) (($ $ |#1|) 20)) (-1384 (($ |#1|) 18) (($ $ |#1|) 21)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4192 (((-112) $) NIL)) (-4328 (($ |#1| |#1| |#1| |#1|) 8)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 16)) (-3945 (((-1138) $) NIL)) (-2666 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2956 (((-874) $) 39)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 9 T CONST)) (-2991 (((-112) $ $) 48)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14)))
+(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -4328 ($ |#1| |#1| |#1| |#1|)) (-15 -3938 ($ |#1|)) (-15 -1384 ($ |#1|)) (-15 -4077 ($)) (-15 -3938 ($ $ |#1|)) (-15 -1384 ($ $ |#1|)) (-15 -4077 ($ $)) (-15 -2666 (|#1| $ |#1|)) (-15 -2666 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730))
+((-4328 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3938 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1384 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4077 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1384 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4077 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2666 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2666 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))))
+(-13 (-485) (-10 -8 (-15 -4328 ($ |#1| |#1| |#1| |#1|)) (-15 -3938 ($ |#1|)) (-15 -1384 ($ |#1|)) (-15 -4077 ($)) (-15 -3938 ($ $ |#1|)) (-15 -1384 ($ $ |#1|)) (-15 -4077 ($ $)) (-15 -2666 (|#1| $ |#1|)) (-15 -2666 ((-845 |#1|) $ (-845 |#1|)))))
+((-3133 (($ $ (-937)) 19)) (-2128 (($ $ (-937)) 20)) (** (($ $ (-937)) 10)))
+(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-937))) (-15 -2128 (|#1| |#1| (-937))) (-15 -3133 (|#1| |#1| (-937)))) (-732)) (T -731))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-937))) (-15 -2128 (|#1| |#1| (-937))) (-15 -3133 (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-3133 (($ $ (-937)) 16)) (-2128 (($ $ (-937)) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)) (** (($ $ (-937)) 14)) (* (($ $ $) 17)))
(((-732) (-141)) (T -732))
-((-2153 (*1 *1) (-4 *1 (-732))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (-3344 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-3484 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))) (-3612 (*1 *1 *1) (|partial| -4 *1 (-732))) (-2808 (*1 *1 *1) (|partial| -4 *1 (-732))) (-2339 (*1 *1 *1) (|partial| -4 *1 (-732))))
-(-13 (-730) (-10 -8 (-15 (-2153) ($) -1714) (-15 -3943 ((-112) $)) (-15 -3344 ($ $ (-781))) (-15 -3484 ($ $ (-781))) (-15 ** ($ $ (-781))) (-15 -3612 ((-3 $ "failed") $)) (-15 -2808 ((-3 $ "failed") $)) (-15 -2339 ((-3 $ "failed") $))))
-(((-102) . T) ((-623 (-872)) . T) ((-730) . T) ((-1116) . T))
-((-1496 (((-781)) 39)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 23)) (-2882 (($ |#3|) NIL) (((-3 $ "failed") (-417 |#3|)) 49)) (-3612 (((-3 $ "failed") $) 69)) (-2835 (($) 43)) (-2608 ((|#2| $) 21)) (-2975 (($) 18)) (-3879 (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-3898 (((-699 |#2|) (-1284 $) (-1 |#2| |#2|)) 64)) (-1844 (((-1284 |#2|) $) NIL) (($ (-1284 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2451 ((|#3| $) 36)) (-1895 (((-1284 $)) 33)))
-(((-733 |#1| |#2| |#3|) (-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2835 (|#1|)) (-15 -1496 ((-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3898 ((-699 |#2|) (-1284 |#1|) (-1 |#2| |#2|))) (-15 -2882 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1844 (|#1| |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 (|#3| |#1|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -1895 ((-1284 |#1|))) (-15 -2451 (|#3| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|))) (-734 |#2| |#3|) (-174) (-1260 |#2|)) (T -733))
-((-1496 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-781)) (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5)))))
-(-10 -8 (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -2835 (|#1|)) (-15 -1496 ((-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3898 ((-699 |#2|) (-1284 |#1|) (-1 |#2| |#2|))) (-15 -2882 ((-3 |#1| "failed") (-417 |#3|))) (-15 -1844 (|#1| |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2975 (|#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -1844 (|#3| |#1|)) (-15 -1844 (|#1| (-1284 |#2|))) (-15 -1844 ((-1284 |#2|) |#1|)) (-15 -1895 ((-1284 |#1|))) (-15 -2451 (|#3| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 104 (|has| |#1| (-372)))) (-4141 (($ $) 105 (|has| |#1| (-372)))) (-2475 (((-112) $) 107 (|has| |#1| (-372)))) (-4348 (((-699 |#1|) (-1284 $)) 53) (((-699 |#1|)) 68)) (-1644 ((|#1| $) 59)) (-3210 (((-1206 (-935) (-781)) (-574)) 157 (|has| |#1| (-358)))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 124 (|has| |#1| (-372)))) (-3171 (((-428 $) $) 125 (|has| |#1| (-372)))) (-1374 (((-112) $ $) 115 (|has| |#1| (-372)))) (-1496 (((-781)) 98 (|has| |#1| (-377)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 182 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 180 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 177)) (-2216 (((-574) $) 181 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 179 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 178)) (-3114 (($ (-1284 |#1|) (-1284 $)) 55) (($ (-1284 |#1|)) 71)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-358)))) (-2801 (($ $ $) 119 (|has| |#1| (-372)))) (-2375 (((-699 |#1|) $ (-1284 $)) 60) (((-699 |#1|) $) 66)) (-1557 (((-699 (-574)) (-1284 $)) 176 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 175 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 174 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 173) (((-699 |#1|) (-699 $)) 172) (((-699 |#1|) (-1284 $)) 171)) (-2882 (($ |#2|) 168) (((-3 $ "failed") (-417 |#2|)) 165 (|has| |#1| (-372)))) (-3612 (((-3 $ "failed") $) 37)) (-3558 (((-935)) 61)) (-2835 (($) 101 (|has| |#1| (-377)))) (-2812 (($ $ $) 118 (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 113 (|has| |#1| (-372)))) (-1615 (($) 159 (|has| |#1| (-358)))) (-3502 (((-112) $) 160 (|has| |#1| (-358)))) (-2613 (($ $ (-781)) 151 (|has| |#1| (-358))) (($ $) 150 (|has| |#1| (-358)))) (-3342 (((-112) $) 126 (|has| |#1| (-372)))) (-1518 (((-935) $) 162 (|has| |#1| (-358))) (((-843 (-935)) $) 148 (|has| |#1| (-358)))) (-3943 (((-112) $) 35)) (-2608 ((|#1| $) 58)) (-2081 (((-3 $ "failed") $) 152 (|has| |#1| (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 122 (|has| |#1| (-372)))) (-3446 ((|#2| $) 51 (|has| |#1| (-372)))) (-3507 (((-935) $) 100 (|has| |#1| (-377)))) (-2869 ((|#2| $) 166)) (-2845 (($ (-654 $)) 111 (|has| |#1| (-372))) (($ $ $) 110 (|has| |#1| (-372)))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 127 (|has| |#1| (-372)))) (-3792 (($) 153 (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 99 (|has| |#1| (-377)))) (-3940 (((-1136) $) 11)) (-2975 (($) 170)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 112 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 109 (|has| |#1| (-372))) (($ $ $) 108 (|has| |#1| (-372)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) 156 (|has| |#1| (-358)))) (-4201 (((-428 $) $) 123 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 120 (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) 103 (|has| |#1| (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 114 (|has| |#1| (-372)))) (-4220 (((-781) $) 116 (|has| |#1| (-372)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 117 (|has| |#1| (-372)))) (-1924 ((|#1| (-1284 $)) 54) ((|#1|) 67)) (-1532 (((-781) $) 161 (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) 149 (|has| |#1| (-358)))) (-3879 (($ $ (-781)) 146 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 144 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) 140 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193) (-781)) 139 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-654 (-1193))) 138 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193)) 136 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 133 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-372)))) (-3898 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-372)))) (-2966 ((|#2|) 169)) (-3951 (($) 158 (|has| |#1| (-358)))) (-2282 (((-1284 |#1|) $ (-1284 $)) 57) (((-699 |#1|) (-1284 $) (-1284 $)) 56) (((-1284 |#1|) $) 73) (((-699 |#1|) (-1284 $)) 72)) (-1844 (((-1284 |#1|) $) 70) (($ (-1284 |#1|)) 69) ((|#2| $) 183) (($ |#2|) 167)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 155 (|has| |#1| (-358)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ $) 102 (|has| |#1| (-372))) (($ (-417 (-574))) 97 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (($ $) 154 (|has| |#1| (-358))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2451 ((|#2| $) 52)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-1895 (((-1284 $)) 74)) (-3750 (((-112) $ $) 106 (|has| |#1| (-372)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-781)) 147 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) 145 (-2833 (-2095 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) 143 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193) (-781)) 142 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-654 (-1193))) 141 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1193)) 137 (-2095 (|has| |#1| (-912 (-1193))) (|has| |#1| (-372)))) (($ $ (-1 |#1| |#1|) (-781)) 135 (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-372)))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 131 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 128 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-417 (-574)) $) 130 (|has| |#1| (-372))) (($ $ (-417 (-574))) 129 (|has| |#1| (-372)))))
-(((-734 |#1| |#2|) (-141) (-174) (-1260 |t#1|)) (T -734))
-((-2975 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1260 *2)))) (-2966 (*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) (-1844 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3)))) (-2882 (*1 *1 *2) (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-372)) (-4 *3 (-174)) (-4 *1 (-734 *3 *4)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1284 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1260 *5)) (-5 *2 (-699 *5)))))
-(-13 (-419 |t#1| |t#2|) (-174) (-624 |t#2|) (-421 |t#1|) (-386 |t#1|) (-10 -8 (-15 -2975 ($)) (-15 -2966 (|t#2|)) (-15 -2882 ($ |t#2|)) (-15 -1844 ($ |t#2|)) (-15 -2869 (|t#2| $)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-6 (-233 |t#1|)) (-15 -2882 ((-3 $ "failed") (-417 |t#2|))) (-15 -3898 ((-699 |t#1|) (-1284 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-38 |#1|) . T) ((-38 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-102) . T) ((-111 #0# #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-358)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-358)) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) . T) ((-624 |#2|) . T) ((-235 $) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-233 |#1|) |has| |#1| (-372)) ((-239) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-238) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-249) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-298) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-315) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-372) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-412) |has| |#1| (-358)) ((-377) -2833 (|has| |#1| (-377)) (|has| |#1| (-358))) ((-358) |has| |#1| (-358)) ((-379 |#1| |#2|) . T) ((-419 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-566) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-650 |#1|) . T) ((-650 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-727 |#1|) . T) ((-727 $) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) ((-934) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-358)) ((-1234) -2833 (|has| |#1| (-358)) (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193)))) (-12 (|has| |#1| (-239)) (|has| |#1| (-372)))) ((-1238) -2833 (|has| |#1| (-358)) (|has| |#1| (-372))))
-((-1430 (($) 11)) (-3612 (((-3 $ "failed") $) 14)) (-3943 (((-112) $) 10)) (** (($ $ (-935)) NIL) (($ $ (-781)) 20)))
-(((-735 |#1|) (-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3943 ((-112) |#1|)) (-15 -1430 (|#1|)) (-15 ** (|#1| |#1| (-935)))) (-736)) (T -735))
-NIL
-(-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-781))) (-15 -3943 ((-112) |#1|)) (-15 -1430 (|#1|)) (-15 ** (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-1430 (($) 19 T CONST)) (-3612 (((-3 $ "failed") $) 16)) (-3943 (((-112) $) 18)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14) (($ $ (-781)) 17)) (* (($ $ $) 15)))
-(((-736) (-141)) (T -736))
-((-2153 (*1 *1) (-4 *1 (-736))) (-1430 (*1 *1) (-4 *1 (-736))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781)))) (-3612 (*1 *1 *1) (|partial| -4 *1 (-736))))
-(-13 (-1128) (-10 -8 (-15 (-2153) ($) -1714) (-15 -1430 ($) -1714) (-15 -3943 ((-112) $)) (-15 ** ($ $ (-781))) (-15 -3612 ((-3 $ "failed") $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1128) . T) ((-1116) . T))
-((-4001 (((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1433 (((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3349 ((|#2| (-417 |#2|) (-1 |#2| |#2|)) 13)) (-3320 (((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)) 48)))
-(((-737 |#1| |#2|) (-10 -7 (-15 -1433 ((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4001 ((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3349 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -3320 ((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|)))) (-372) (-1260 |#1|)) (T -737))
-((-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1367 (-417 *6)) (|:| |special| (-417 *6)))) (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1367 (-428 *3)) (|:| |special| (-428 *3)))) (-5 *1 (-737 *5 *3)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -1367 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3)))))
-(-10 -7 (-15 -1433 ((-2 (|:| -1367 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4001 ((-2 (|:| -1367 (-428 |#2|)) (|:| |special| (-428 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3349 (|#2| (-417 |#2|) (-1 |#2| |#2|))) (-15 -3320 ((-2 (|:| |poly| |#2|) (|:| -1367 (-417 |#2|)) (|:| |special| (-417 |#2|))) (-417 |#2|) (-1 |#2| |#2|))))
-((-1344 ((|#7| (-654 |#5|) |#6|) NIL)) (-1785 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-738 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1785 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1344 (|#7| (-654 |#5|) |#6|))) (-860) (-803) (-803) (-1065) (-1065) (-963 |#4| |#2| |#1|) (-963 |#5| |#3| |#1|)) (T -738))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *9)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *8 (-1065)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-963 *8 *6 *5)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1065)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-963 *9 *7 *5)) (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803)) (-4 *4 (-963 *8 *6 *5)))))
-(-10 -7 (-15 -1785 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1344 (|#7| (-654 |#5|) |#6|)))
-((-1785 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1785 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-803) (-803) (-1065) (-963 |#5| |#3| |#1|) (-963 |#5| |#4| |#2|)) (T -739))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803)) (-4 *9 (-1065)) (-4 *2 (-963 *9 *8 *6)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803)) (-4 *4 (-963 *9 *7 *5)))))
-(-10 -7 (-15 -1785 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4201 (((-428 |#4|) |#4|) 42)))
-(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-315) (-963 (-966 |#3|) |#1| |#2|)) (T -740))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-963 (-966 *6) *4 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-874 |#1|)) $) NIL)) (-4172 (((-1189 $) $ (-874 |#1|)) NIL) (((-1189 |#2|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4141 (($ $) NIL (|has| |#2| (-566)))) (-2475 (((-112) $) NIL (|has| |#2| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-874 |#1|))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL (|has| |#2| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-874 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-874 |#1|) $) NIL)) (-4047 (($ $ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#2| (-923)))) (-3637 (($ $ |#2| (-541 (-874 |#1|)) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-874 |#1|) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#2|) (-874 |#1|)) NIL) (($ (-1189 $) (-874 |#1|)) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#2| (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-874 |#1|)) NIL)) (-2043 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-3431 (($ (-1 (-541 (-874 |#1|)) (-541 (-874 |#1|))) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3444 (((-3 (-874 |#1|) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-874 |#1|)) (|:| -2754 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-923)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-874 |#1|) |#2|) NIL) (($ $ (-654 (-874 |#1|)) (-654 |#2|)) NIL) (($ $ (-874 |#1|) $) NIL) (($ $ (-654 (-874 |#1|)) (-654 $)) NIL)) (-1924 (($ $ (-874 |#1|)) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-3735 (((-541 (-874 |#1|)) $) NIL) (((-781) $ (-874 |#1|)) NIL) (((-654 (-781)) $ (-654 (-874 |#1|))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-874 |#1|) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-874 |#1|) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-874 |#1|)) NIL (|has| |#2| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-874 |#1|)) NIL) (($ $) NIL (|has| |#2| (-566))) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574))))))) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-541 (-874 |#1|))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-874 |#1|)) (-654 (-781))) NIL) (($ $ (-874 |#1|) (-781)) NIL) (($ $ (-654 (-874 |#1|))) NIL) (($ $ (-874 |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-741 |#1| |#2|) (-963 |#2| (-541 (-874 |#1|)) (-874 |#1|)) (-654 (-1193)) (-1065)) (T -741))
-NIL
-(-963 |#2| (-541 (-874 |#1|)) (-874 |#1|))
-((-3538 (((-2 (|:| -2354 (-966 |#3|)) (|:| -2955 (-966 |#3|))) |#4|) 14)) (-3350 ((|#4| |#4| |#2|) 33)) (-2163 ((|#4| (-417 (-966 |#3|)) |#2|) 64)) (-4438 ((|#4| (-1189 (-966 |#3|)) |#2|) 77)) (-2006 ((|#4| (-1189 |#4|) |#2|) 51)) (-1614 ((|#4| |#4| |#2|) 54)) (-4201 (((-428 |#4|) |#4|) 40)))
-(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-2 (|:| -2354 (-966 |#3|)) (|:| -2955 (-966 |#3|))) |#4|)) (-15 -1614 (|#4| |#4| |#2|)) (-15 -2006 (|#4| (-1189 |#4|) |#2|)) (-15 -3350 (|#4| |#4| |#2|)) (-15 -4438 (|#4| (-1189 (-966 |#3|)) |#2|)) (-15 -2163 (|#4| (-417 (-966 |#3|)) |#2|)) (-15 -4201 ((-428 |#4|) |#4|))) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)))) (-566) (-963 (-417 (-966 |#3|)) |#1| |#2|)) (T -742))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5)))) (-2163 (*1 *2 *3 *4) (-12 (-4 *6 (-566)) (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-966 *6))) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))) (-4438 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 (-966 *6))) (-4 *6 (-566)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))) (-3350 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) (-2006 (*1 *2 *3 *4) (-12 (-5 *3 (-1189 *2)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803)) (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)))) (-1614 (*1 *2 *2 *3) (-12 (-4 *4 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566)) (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566)) (-5 *2 (-2 (|:| -2354 (-966 *6)) (|:| -2955 (-966 *6)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5)))))
-(-10 -7 (-15 -3538 ((-2 (|:| -2354 (-966 |#3|)) (|:| -2955 (-966 |#3|))) |#4|)) (-15 -1614 (|#4| |#4| |#2|)) (-15 -2006 (|#4| (-1189 |#4|) |#2|)) (-15 -3350 (|#4| |#4| |#2|)) (-15 -4438 (|#4| (-1189 (-966 |#3|)) |#2|)) (-15 -2163 (|#4| (-417 (-966 |#3|)) |#2|)) (-15 -4201 ((-428 |#4|) |#4|)))
-((-4201 (((-428 |#4|) |#4|) 54)))
-(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4|))) (-803) (-860) (-13 (-315) (-148)) (-963 (-417 |#3|) |#1| |#2|)) (T -743))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-963 (-417 *6) *4 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4|)))
-((-1785 (((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)) 18)))
-(((-744 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|)))) (-1065) (-1065) (-736)) (T -744))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7)) (-5 *1 (-744 *5 *6 *7)))))
-(-10 -7 (-15 -1785 ((-745 |#2| |#3|) (-1 |#2| |#1|) (-745 |#1| |#3|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 36)) (-2424 (((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $) 37)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 22 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2216 ((|#2| $) NIL) ((|#1| $) NIL)) (-1402 (($ $) 102 (|has| |#2| (-860)))) (-3612 (((-3 $ "failed") $) 85)) (-2835 (($) 48 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) 70)) (-2306 (((-654 $) $) 52)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| |#2|) 17)) (-1785 (($ (-1 |#1| |#1|) $) 68)) (-3507 (((-935) $) 43 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-1366 ((|#2| $) 101 (|has| |#2| (-860)))) (-1378 ((|#1| $) 100 (|has| |#2| (-860)))) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) 35 (-12 (|has| |#2| (-377)) (|has| |#1| (-377))))) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 99) (($ (-574)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|)))) 11)) (-3382 (((-654 |#1|) $) 54)) (-1788 ((|#1| $ |#2|) 115)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 12 T CONST)) (-2153 (($) 44 T CONST)) (-2986 (((-112) $ $) 105)) (-3090 (($ $) 61) (($ $ $) NIL)) (-3074 (($ $ $) 33)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-745 |#1| |#2|) (-13 (-1065) (-1054 |#2|) (-1054 |#1|) (-10 -8 (-15 -4328 ($ |#1| |#2|)) (-15 -1788 (|#1| $ |#2|)) (-15 -2951 ($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))))) (-15 -2424 ((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -3873 ((-112) $)) (-15 -3382 ((-654 |#1|) $)) (-15 -2306 ((-654 $) $)) (-15 -2993 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1366 (|#2| $)) (-15 -1378 (|#1| $)) (-15 -1402 ($ $))) |%noBranch|))) (-1065) (-736)) (T -745))
-((-4328 (*1 *1 *2 *3) (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-736)))) (-1788 (*1 *2 *1 *3) (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) (-4 *3 (-1065)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4)))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-745 *3 *4)) (-4 *4 (-736)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736)))) (-1366 (*1 *2 *1) (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2)) (-4 *3 (-1065)))) (-1378 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *3 (-736)))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1065)) (-4 *3 (-736)))))
-(-13 (-1065) (-1054 |#2|) (-1054 |#1|) (-10 -8 (-15 -4328 ($ |#1| |#2|)) (-15 -1788 (|#1| $ |#2|)) (-15 -2951 ($ (-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))))) (-15 -2424 ((-654 (-2 (|:| -1866 |#1|) (|:| -3806 |#2|))) $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (-15 -3873 ((-112) $)) (-15 -3382 ((-654 |#1|) $)) (-15 -2306 ((-654 $) $)) (-15 -2993 ((-781) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -1366 (|#2| $)) (-15 -1378 (|#1| $)) (-15 -1402 ($ $))) |%noBranch|)))
-((-2864 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3421 (($ $ $) 73)) (-3089 (((-112) $ $) 74)) (-2832 (((-112) $ (-781)) 8)) (-1515 (($ (-654 |#1|)) 69) (($) 68)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2218 (($ $) 63)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) 65)) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22)) (-3655 (($ $ $) 70)) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-4249 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-3848 (($ $ |#1|) 72) (($ $ $) 71)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18)) (-4269 (($ (-654 |#1|)) 67) (($) 66)) (-2981 (((-112) $ $) 23)) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-746 |#1|) (-141) (-1116)) (T -746))
-NIL
-(-13 (-705 |t#1|) (-1114 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-705 |#1|) . T) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3421 (($ $ $) 96)) (-3089 (((-112) $ $) 104)) (-2832 (((-112) $ (-781)) NIL)) (-1515 (($ (-654 |#1|)) 26) (($) 17)) (-3155 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2218 (($ $) 85)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) 70 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459))) (($ |#1| $ (-574)) 75) (($ (-1 (-112) |#1|) $ (-574)) 78)) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (($ |#1| $ (-574)) 80) (($ (-1 (-112) |#1|) $ (-574)) 81)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 32 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) 103)) (-3393 (($) 15) (($ |#1|) 28) (($ (-654 |#1|)) 23)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) 38)) (-2333 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 89)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3655 (($ $ $) 94)) (-1759 ((|#1| $) 62)) (-3705 (($ |#1| $) 63) (($ |#1| $ (-781)) 86)) (-3940 (((-1136) $) NIL)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2098 ((|#1| $) 61)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 56)) (-3014 (($) 14)) (-4249 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 55)) (-3848 (($ $ |#1|) NIL) (($ $ $) 95)) (-1734 (($) 16) (($ (-654 |#1|)) 25)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) 68 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 79)) (-1844 (((-546) $) 36 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 22)) (-2951 (((-872) $) 49)) (-4269 (($ (-654 |#1|)) 27) (($) 18)) (-2981 (((-112) $ $) NIL)) (-3703 (($ (-654 |#1|)) 24)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 100)) (-2877 (((-781) $) 67 (|has| $ (-6 -4459)))))
-(((-747 |#1|) (-13 (-746 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -3393 ($)) (-15 -3393 ($ |#1|)) (-15 -3393 ($ (-654 |#1|))) (-15 -1764 ((-654 |#1|) $)) (-15 -3311 ($ |#1| $ (-574))) (-15 -3311 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2175 ($ |#1| $ (-574))) (-15 -2175 ($ (-1 (-112) |#1|) $ (-574))))) (-1116)) (T -747))
-((-3393 (*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-3393 (*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-3393 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-747 *3)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1116)))) (-3311 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-3311 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) (-5 *1 (-747 *4)))) (-2175 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116)))) (-2175 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116)) (-5 *1 (-747 *4)))))
-(-13 (-746 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -3393 ($)) (-15 -3393 ($ |#1|)) (-15 -3393 ($ (-654 |#1|))) (-15 -1764 ((-654 |#1|) $)) (-15 -3311 ($ |#1| $ (-574))) (-15 -3311 ($ (-1 (-112) |#1|) $ (-574))) (-15 -2175 ($ |#1| $ (-574))) (-15 -2175 ($ (-1 (-112) |#1|) $ (-574)))))
-((-1327 (((-1289) (-1175)) 8)))
-(((-748) (-10 -7 (-15 -1327 ((-1289) (-1175))))) (T -748))
-((-1327 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-748)))))
-(-10 -7 (-15 -1327 ((-1289) (-1175))))
-((-3802 (((-654 |#1|) (-654 |#1|) (-654 |#1|)) 15)))
-(((-749 |#1|) (-10 -7 (-15 -3802 ((-654 |#1|) (-654 |#1|) (-654 |#1|)))) (-860)) (T -749))
-((-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3)))))
-(-10 -7 (-15 -3802 ((-654 |#1|) (-654 |#1|) (-654 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 |#2|) $) 149)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 142 (|has| |#1| (-566)))) (-4141 (($ $) 141 (|has| |#1| (-566)))) (-2475 (((-112) $) 139 (|has| |#1| (-566)))) (-2379 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 80 (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 97 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 83 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-1402 (($ $) 133)) (-3612 (((-3 $ "failed") $) 37)) (-4027 (((-966 |#1|) $ (-781)) 111) (((-966 |#1|) $ (-781) (-781)) 110)) (-1674 (((-112) $) 150)) (-3004 (($) 108 (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $ |#2|) 113) (((-781) $ |#2| (-781)) 112)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 79 (|has| |#1| (-38 (-417 (-574)))))) (-3873 (((-112) $) 131)) (-4328 (($ $ (-654 |#2|) (-654 (-541 |#2|))) 148) (($ $ |#2| (-541 |#2|)) 147) (($ |#1| (-541 |#2|)) 132) (($ $ |#2| (-781)) 115) (($ $ (-654 |#2|) (-654 (-781))) 114)) (-1785 (($ (-1 |#1| |#1|) $) 130)) (-3113 (($ $) 105 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 128)) (-1378 ((|#1| $) 127)) (-4420 (((-1175) $) 10)) (-3083 (($ $ |#2|) 109 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) 11)) (-2249 (($ $ (-781)) 116)) (-2853 (((-3 $ "failed") $ $) 143 (|has| |#1| (-566)))) (-1617 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ |#2| $) 124) (($ $ (-654 |#2|) (-654 $)) 123) (($ $ (-654 (-302 $))) 122) (($ $ (-302 $)) 121) (($ $ $ $) 120) (($ $ (-654 $) (-654 $)) 119)) (-3879 (($ $ (-654 |#2|) (-654 (-781))) 44) (($ $ |#2| (-781)) 43) (($ $ (-654 |#2|)) 42) (($ $ |#2|) 40)) (-3735 (((-541 |#2|) $) 129)) (-2417 (($ $) 95 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 84 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 85 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 93 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 86 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 151)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-566))) (($ (-417 (-574))) 136 (|has| |#1| (-38 (-417 (-574)))))) (-1788 ((|#1| $ (-541 |#2|)) 134) (($ $ |#2| (-781)) 118) (($ $ (-654 |#2|) (-654 (-781))) 117)) (-2705 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 140 (|has| |#1| (-566)))) (-2429 (($ $) 103 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 91 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) 101 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 89 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 99 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 87 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 |#2|) (-654 (-781))) 47) (($ $ |#2| (-781)) 46) (($ $ (-654 |#2|)) 45) (($ $ |#2|) 41)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 135 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ $) 107 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 78 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 138 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 137 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 126) (($ $ |#1|) 125)))
-(((-750 |#1| |#2|) (-141) (-1065) (-860)) (T -750))
-((-1788 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) (-4 *2 (-860)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-1518 (*1 *2 *1 *3) (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *2 (-781)))) (-1518 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)) (-5 *2 (-966 *4)))) (-4027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065)) (-4 *5 (-860)) (-5 *2 (-966 *4)))) (-3083 (*1 *1 *1 *2) (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860)) (-4 *3 (-38 (-417 (-574)))))))
-(-13 (-912 |t#2|) (-989 |t#1| (-541 |t#2|) |t#2|) (-524 |t#2| $) (-317 $) (-10 -8 (-15 -1788 ($ $ |t#2| (-781))) (-15 -1788 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -2249 ($ $ (-781))) (-15 -4328 ($ $ |t#2| (-781))) (-15 -4328 ($ $ (-654 |t#2|) (-654 (-781)))) (-15 -1518 ((-781) $ |t#2|)) (-15 -1518 ((-781) $ |t#2| (-781))) (-15 -4027 ((-966 |t#1|) $ (-781))) (-15 -4027 ((-966 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $ |t#2|)) (-6 (-1018)) (-6 (-1219))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-541 |#2|)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-298) |has| |#1| (-566)) ((-317 $) . T) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 |#2| $) . T) ((-524 $ $) . T) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ |#2|) . T) ((-912 |#2|) . T) ((-914 |#2|) . T) ((-989 |#1| #0# |#2|) . T) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T))
-((-4201 (((-428 (-1189 |#4|)) (-1189 |#4|)) 30) (((-428 |#4|) |#4|) 26)))
-(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 |#4|) |#4|)) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|)))) (-860) (-803) (-13 (-315) (-148)) (-963 |#3| |#2| |#1|)) (T -751))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4)))))
-(-10 -7 (-15 -4201 ((-428 |#4|) |#4|)) (-15 -4201 ((-428 (-1189 |#4|)) (-1189 |#4|))))
-((-2805 (((-428 |#4|) |#4| |#2|) 140)) (-3695 (((-428 |#4|) |#4|) NIL)) (-3171 (((-428 (-1189 |#4|)) (-1189 |#4|)) 127) (((-428 |#4|) |#4|) 52)) (-2856 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4201 (-1189 |#4|)) (|:| -2754 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 81)) (-2495 (((-1189 |#3|) (-1189 |#3|) (-574)) 166)) (-1881 (((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781)) 75)) (-2869 (((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|)) 79)) (-1523 (((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|))) 27)) (-4196 (((-2 (|:| -3414 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574)) 72)) (-1503 (((-574) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574))))) 162)) (-2324 ((|#4| (-574) (-428 |#4|)) 73)) (-2477 (((-112) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574))))) NIL)))
-(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3171 ((-428 |#4|) |#4|)) (-15 -3171 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -3695 ((-428 |#4|) |#4|)) (-15 -1503 ((-574) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))))) (-15 -2805 ((-428 |#4|) |#4| |#2|)) (-15 -4196 ((-2 (|:| -3414 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574))) (-15 -2856 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4201 (-1189 |#4|)) (|:| -2754 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -1523 ((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2324 (|#4| (-574) (-428 |#4|))) (-15 -2477 ((-112) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))))) (-15 -2869 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -1881 ((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781))) (-15 -2495 ((-1189 |#3|) (-1189 |#3|) (-574)))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -752))
-((-2495 (*1 *2 *2 *3) (-12 (-5 *2 (-1189 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))) (-2869 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1189 *11)) (-5 *6 (-654 *10)) (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860)) (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-963 *11 *9 *10)) (-5 *2 (-654 (-1189 *5))) (-5 *1 (-752 *9 *10 *11 *5)) (-5 *3 (-1189 *5)))) (-2477 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-2 (|:| -4201 (-1189 *6)) (|:| -2754 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-963 *7 *5 *6)) (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-315)))) (-1523 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-5 *2 (-2 (|:| |upol| (-1189 *8)) (|:| |Lval| (-654 *8)) (|:| |Lfact| (-654 (-2 (|:| -4201 (-1189 *8)) (|:| -2754 (-574))))) (|:| |ctpol| *8))) (-5 *1 (-752 *6 *7 *8 *9)))) (-2856 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-963 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-654 (-2 (|:| -4201 (-1189 *9)) (|:| -2754 (-574))))))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-5 *2 (-2 (|:| -3414 (-1189 *9)) (|:| |polval| (-1189 *8)))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)) (-5 *4 (-1189 *8)))) (-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -4201 (-1189 *6)) (|:| -2754 (-574))))) (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5)))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5)))))
-(-10 -7 (-15 -3171 ((-428 |#4|) |#4|)) (-15 -3171 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -3695 ((-428 |#4|) |#4|)) (-15 -1503 ((-574) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))))) (-15 -2805 ((-428 |#4|) |#4| |#2|)) (-15 -4196 ((-2 (|:| -3414 (-1189 |#4|)) (|:| |polval| (-1189 |#3|))) (-1189 |#4|) (-1189 |#3|) (-574))) (-15 -2856 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-654 (-2 (|:| -4201 (-1189 |#4|)) (|:| -2754 (-574)))))) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -1523 ((-2 (|:| |upol| (-1189 |#3|)) (|:| |Lval| (-654 |#3|)) (|:| |Lfact| (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574))))) (|:| |ctpol| |#3|)) (-1189 |#4|) (-654 |#2|) (-654 (-654 |#3|)))) (-15 -2324 (|#4| (-574) (-428 |#4|))) (-15 -2477 ((-112) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))) (-654 (-2 (|:| -4201 (-1189 |#3|)) (|:| -2754 (-574)))))) (-15 -2869 ((-3 (-654 (-1189 |#4|)) "failed") (-1189 |#4|) (-1189 |#3|) (-1189 |#3|) |#4| (-654 |#2|) (-654 (-781)) (-654 |#3|))) (-15 -1881 ((-654 (-781)) (-1189 |#4|) (-654 |#2|) (-781))) (-15 -2495 ((-1189 |#3|) (-1189 |#3|) (-574))))
-((-1855 (($ $ (-935)) 17)))
-(((-753 |#1| |#2|) (-10 -8 (-15 -1855 (|#1| |#1| (-935)))) (-754 |#2|) (-174)) (T -753))
-NIL
-(-10 -8 (-15 -1855 (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3344 (($ $ (-935)) 31)) (-1855 (($ $ (-935)) 38)) (-3484 (($ $ (-935)) 32)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3082 (($ $ $) 28)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2362 (($ $ $ $) 29)) (-2030 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-754 |#1|) (-141) (-174)) (T -754))
-((-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-754 *3)) (-4 *3 (-174)))))
-(-13 (-771) (-727 |t#1|) (-10 -8 (-15 -1855 ($ $ (-935)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-730) . T) ((-771) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-1719 (((-1051) (-699 (-227)) (-574) (-112) (-574)) 25)) (-1828 (((-1051) (-699 (-227)) (-574) (-112) (-574)) 24)))
-(((-755) (-10 -7 (-15 -1828 ((-1051) (-699 (-227)) (-574) (-112) (-574))) (-15 -1719 ((-1051) (-699 (-227)) (-574) (-112) (-574))))) (T -755))
-((-1719 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-755)))) (-1828 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-755)))))
-(-10 -7 (-15 -1828 ((-1051) (-699 (-227)) (-574) (-112) (-574))) (-15 -1719 ((-1051) (-699 (-227)) (-574) (-112) (-574))))
-((-3861 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) 43)) (-3303 (((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) 39)) (-2016 (((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 32)))
-(((-756) (-10 -7 (-15 -2016 ((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3303 ((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3861 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))) (T -756))
-((-3861 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1051)) (-5 *1 (-756)))) (-3303 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1051)) (-5 *1 (-756)))) (-2016 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-756)))))
-(-10 -7 (-15 -2016 ((-1051) (-227) (-227) (-227) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3303 ((-1051) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN))))) (-15 -3861 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN))))))
-((-3850 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 34)) (-1429 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 33)) (-3989 (((-1051) (-574) (-699 (-227)) (-574)) 32)) (-2817 (((-1051) (-574) (-699 (-227)) (-574)) 31)) (-2937 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 30)) (-1675 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-1771 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-2936 (((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-1629 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-2997 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-3679 (((-1051) (-574) (-699 (-227)) (-574)) 22)) (-3377 (((-1051) (-574) (-699 (-227)) (-574)) 21)))
-(((-757) (-10 -7 (-15 -3377 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -3679 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2997 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1629 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2936 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1771 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1675 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2937 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2817 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -3989 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -1429 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -3850 ((-1051) (-574) (-574) (-699 (-227)) (-574))))) (T -757))
-((-3850 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-1429 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3989 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2817 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2937 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-1675 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-1771 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2936 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-1629 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-2997 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3679 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))) (-3377 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-757)))))
-(-10 -7 (-15 -3377 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -3679 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -2997 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1629 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2936 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1771 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1675 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2937 ((-1051) (-574) (-574) (-1175) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2817 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -3989 ((-1051) (-574) (-699 (-227)) (-574))) (-15 -1429 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -3850 ((-1051) (-574) (-574) (-699 (-227)) (-574))))
-((-3835 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1599 (((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574)) 51)) (-3371 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1825 (((-1051) (-227) (-227) (-574) (-574) (-574) (-574)) 46)) (-1424 (((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 45)) (-2428 (((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 44)) (-4355 (((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 43)) (-3554 (((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) 42)) (-3652 (((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 38)) (-2580 (((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 37)) (-1977 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 33)) (-4092 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) 32)))
-(((-758) (-10 -7 (-15 -4092 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1977 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -2580 ((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3652 ((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3554 ((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4355 ((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2428 ((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1424 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1825 ((-1051) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -3371 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1599 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3835 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))) (T -758))
-((-3835 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1599 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3371 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1825 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1424 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-2428 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-4355 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3554 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-3652 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-2580 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-758)))) (-1977 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758)))) (-4092 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *2 (-1051)) (-5 *1 (-758)))))
-(-10 -7 (-15 -4092 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -1977 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -2580 ((-1051) (-227) (-227) (-574) (-699 (-227)) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3652 ((-1051) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))) (-15 -3554 ((-1051) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -4355 ((-1051) (-227) (-227) (-227) (-227) (-574) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -2428 ((-1051) (-227) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1424 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G))))) (-15 -1825 ((-1051) (-227) (-227) (-574) (-574) (-574) (-574))) (-15 -3371 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))) (-15 -1599 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-574))) (-15 -3835 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-227) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))))
-((-2803 (((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4283 (((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398)) 69) (((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1957 (((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) 57)) (-1641 (((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 50)) (-1692 (((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3598 (((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4051 (((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) 42)) (-3058 (((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-759) (-10 -7 (-15 -3058 ((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -4051 ((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3598 ((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1692 ((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1641 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1957 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -4283 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -4283 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2803 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -759))
-((-2803 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-4283 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-398)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-4283 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1051)) (-5 *1 (-759)))) (-1957 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-1641 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1051)) (-5 *1 (-759)))) (-1692 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-3598 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-4051 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))) (-3058 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))))
-(-10 -7 (-15 -3058 ((-1051) (-227) (-574) (-574) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -4051 ((-1051) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -3598 ((-1051) (-227) (-574) (-574) (-227) (-1175) (-227) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1692 ((-1051) (-227) (-574) (-574) (-1175) (-574) (-227) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))) (-15 -1641 ((-1051) (-699 (-227)) (-699 (-227)) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))) (-15 -1957 ((-1051) (-227) (-227) (-574) (-227) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG))))) (-15 -4283 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))) (-15 -4283 ((-1051) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))) (-398) (-398))) (-15 -2803 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-4161 (((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574)) 45)) (-2571 (((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) 41)) (-2745 (((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 23)))
-(((-760) (-10 -7 (-15 -2745 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2571 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -4161 ((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))) (T -760))
-((-4161 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227))) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-760)))) (-2571 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1051)) (-5 *1 (-760)))) (-2745 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2745 ((-1051) (-574) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2571 ((-1051) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-1175) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY))))) (-15 -4161 ((-1051) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-685 (-227)) (-574))))
-((-2442 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574)) 35)) (-3327 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574)) 34)) (-2248 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574)) 33)) (-4044 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-2814 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-4207 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574)) 27)) (-1585 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 24)) (-3785 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574)) 23)) (-3584 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 22)) (-2641 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 21)))
-(((-761) (-10 -7 (-15 -2641 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3584 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3785 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1585 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4207 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2814 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4044 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2248 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3327 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -2442 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))) (T -761))
-((-2442 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3327 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-2248 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-4044 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-2814 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-4207 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-761)))) (-1585 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3785 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-3584 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))) (-2641 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-761)))))
-(-10 -7 (-15 -2641 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3584 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3785 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1585 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4207 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-227) (-574))) (-15 -2814 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -4044 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2248 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-699 (-227)) (-227) (-227) (-574))) (-15 -3327 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-227) (-227) (-574))) (-15 -2442 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-699 (-227)) (-227) (-227) (-574))))
-((-3494 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 45)) (-3766 (((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574)) 44)) (-3109 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574)) 43)) (-2675 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 42)) (-1645 (((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574)) 41)) (-2080 (((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 40)) (-3028 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574)) 39)) (-2486 (((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574))) 38)) (-2337 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574)) 35)) (-3633 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574)) 34)) (-2857 (((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574)) 33)) (-2185 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 32)) (-4333 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574)) 31)) (-3224 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574)) 30)) (-3783 (((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 29)) (-4363 (((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574)) 28)) (-3614 (((-1051) (-574) (-699 (-227)) (-227) (-574)) 24)) (-3956 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 21)))
-(((-762) (-10 -7 (-15 -3956 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3614 ((-1051) (-574) (-699 (-227)) (-227) (-574))) (-15 -4363 ((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3783 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3224 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -4333 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -2185 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2857 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -3633 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -2337 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2486 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -3028 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -2080 ((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -1645 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2675 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3109 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3766 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3494 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))) (T -762))
-((-3494 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3766 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3109 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2675 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-1645 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2080 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3028 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2486 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2337 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3633 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2857 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-2185 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))) (-4333 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3224 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3783 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-4363 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3614 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))) (-3956 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-762)))))
-(-10 -7 (-15 -3956 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3614 ((-1051) (-574) (-699 (-227)) (-227) (-574))) (-15 -4363 ((-1051) (-574) (-574) (-574) (-227) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-574)) (-574) (-574) (-574))) (-15 -3783 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -3224 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574) (-574) (-574))) (-15 -4333 ((-1051) (-574) (-227) (-227) (-699 (-227)) (-574) (-574) (-227) (-574))) (-15 -2185 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2857 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574))) (-15 -3633 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574))) (-15 -2337 ((-1051) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2486 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)))) (-15 -3028 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574) (-574) (-574) (-227) (-699 (-227)) (-574))) (-15 -2080 ((-1051) (-1175) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -1645 ((-1051) (-1175) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2675 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3109 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))) (-15 -3766 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3494 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574) (-699 (-227)) (-699 (-227)) (-574) (-574) (-574))))
-((-3105 (((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574)) 63)) (-2422 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2895 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) 58)) (-2616 (((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574)) 51)) (-2053 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4114 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2157 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1869 (((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-763) (-10 -7 (-15 -1869 ((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2157 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -4114 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -2053 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -2616 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2895 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2422 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3105 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))) (T -763))
-((-3105 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2422 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2895 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2616 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2053 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-4114 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-2157 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1051)) (-5 *1 (-763)))) (-1869 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))))
-(-10 -7 (-15 -1869 ((-1051) (-574) (-227) (-227) (-574) (-227) (-112) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -2157 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))) (-15 -4114 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))) (-15 -2053 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))) (-15 -2616 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-574) (-574) (-699 (-227)) (-574))) (-15 -2895 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-227) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-112) (-112) (-112) (-574) (-574) (-699 (-227)) (-699 (-574)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))) (-15 -2422 ((-1051) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-574) (-112) (-227) (-574) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-574) (-574) (-574) (-574) (-574) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-574) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))) (-15 -3105 ((-1051) (-574) (-574) (-574) (-227) (-699 (-227)) (-574) (-699 (-227)) (-574))))
-((-4104 (((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 47)) (-2438 (((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574)) 46)) (-2357 (((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 45)) (-3505 (((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 40)) (-3386 (((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574)) 39)) (-3916 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-574)) 36)) (-3394 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574)) 35)) (-4406 (((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574)) 34)) (-1878 (((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574)) 33)) (-2872 (((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574)) 32)))
-(((-764) (-10 -7 (-15 -2872 ((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -1878 ((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -4406 ((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3394 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3916 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3386 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3505 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2357 ((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2438 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4104 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -764))
-((-4104 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2438 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2357 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3505 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3386 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3916 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-764)))) (-3394 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-4406 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-1878 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227))) (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-764)))) (-2872 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227))) (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1051)) (-5 *1 (-764)))))
-(-10 -7 (-15 -2872 ((-1051) (-574) (-574) (-574) (-574) (-227) (-112) (-112) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-574))) (-15 -1878 ((-1051) (-574) (-574) (-574) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-699 (-574)) (-112) (-227) (-112) (-699 (-574)) (-699 (-227)) (-574))) (-15 -4406 ((-1051) (-574) (-574) (-574) (-574) (-654 (-112)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-227) (-227) (-574))) (-15 -3394 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574))) (-15 -3916 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -3386 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)) (-574))) (-15 -3505 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2357 ((-1051) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -2438 ((-1051) (-1175) (-1175) (-574) (-574) (-699 (-171 (-227))) (-574) (-699 (-171 (-227))) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -4104 ((-1051) (-1175) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))
-((-3118 (((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574)) 79)) (-3892 (((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 68)) (-1923 (((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398)) 56) (((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) 55)) (-3161 (((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574)) 37)) (-1707 (((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574)) 33)) (-1859 (((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574)) 30)) (-3958 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 29)) (-3469 (((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 28)) (-4233 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 27)) (-4087 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574)) 26)) (-1480 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 25)) (-2239 (((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 24)) (-3258 (((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574)) 23)) (-4125 (((-1051) (-699 (-227)) (-574) (-574) (-574) (-574)) 22)) (-1686 (((-1051) (-574) (-574) (-699 (-227)) (-574)) 21)))
-(((-765) (-10 -7 (-15 -1686 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4125 ((-1051) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3258 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2239 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1480 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4087 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -4233 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3469 ((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3958 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1859 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -1707 ((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -3161 ((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1923 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -1923 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -3892 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3118 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))) (T -765))
-((-3118 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3892 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1923 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1923 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3161 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1707 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1859 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3958 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3469 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-4233 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-4087 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1480 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-2239 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-3258 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))) (-4125 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-765)))) (-1686 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-765)))))
-(-10 -7 (-15 -1686 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4125 ((-1051) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -3258 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2239 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1480 ((-1051) (-574) (-574) (-699 (-227)) (-574))) (-15 -4087 ((-1051) (-574) (-574) (-574) (-574) (-699 (-227)) (-574))) (-15 -4233 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3469 ((-1051) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3958 ((-1051) (-574) (-574) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1859 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574) (-574))) (-15 -1707 ((-1051) (-574) (-574) (-227) (-227) (-574) (-574) (-699 (-227)) (-574))) (-15 -3161 ((-1051) (-574) (-574) (-574) (-227) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -1923 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))))) (-15 -1923 ((-1051) (-574) (-574) (-227) (-574) (-574) (-574) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE))) (-398))) (-15 -3892 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3118 ((-1051) (-574) (-574) (-574) (-574) (-574) (-112) (-574) (-112) (-574) (-699 (-171 (-227))) (-699 (-171 (-227))) (-574))))
-((-1812 (((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) 64)) (-1850 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574)) 60)) (-2515 (((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3734 (((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574)) 37)) (-2810 (((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574)) 36)) (-2082 (((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574)) 33)) (-3817 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227))) 32)) (-4055 (((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574)) 28)) (-1604 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 27)) (-1896 (((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574)) 26)) (-4244 (((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574)) 22)))
-(((-766) (-10 -7 (-15 -4244 ((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1896 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1604 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4055 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -3817 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -2082 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2810 ((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3734 ((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2515 ((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -1850 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1812 ((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))) (T -766))
-((-1812 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-1850 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2515 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-3734 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2810 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-2082 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-3817 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-4055 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-766)))) (-1604 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-1896 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-766)))) (-4244 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051)) (-5 *1 (-766)))))
-(-10 -7 (-15 -4244 ((-1051) (-574) (-699 (-171 (-227))) (-574) (-574) (-574) (-574) (-699 (-171 (-227))) (-574))) (-15 -1896 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -1604 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-574))) (-15 -4055 ((-1051) (-699 (-227)) (-574) (-699 (-227)) (-574) (-574) (-574))) (-15 -3817 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-574)) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)))) (-15 -2082 ((-1051) (-574) (-574) (-699 (-227)) (-699 (-227)) (-699 (-227)) (-574))) (-15 -2810 ((-1051) (-574) (-574) (-574) (-227) (-574) (-699 (-227)) (-699 (-227)) (-574))) (-15 -3734 ((-1051) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-574)) (-699 (-227)) (-699 (-574)) (-699 (-574)) (-699 (-227)) (-699 (-227)) (-699 (-574)) (-574))) (-15 -2515 ((-1051) (-574) (-699 (-227)) (-112) (-227) (-574) (-574) (-574) (-574) (-227) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))) (-15 -1850 ((-1051) (-574) (-699 (-227)) (-574) (-699 (-227)) (-699 (-574)) (-574) (-699 (-227)) (-574) (-574) (-574) (-574))) (-15 -1812 ((-1051) (-574) (-574) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-699 (-227)) (-574) (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD))))))
-((-2215 (((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227))) 29)) (-4013 (((-1051) (-1175) (-574) (-574) (-699 (-227))) 28)) (-4096 (((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227))) 27)) (-2834 (((-1051) (-574) (-574) (-574) (-699 (-227))) 21)))
-(((-767) (-10 -7 (-15 -2834 ((-1051) (-574) (-574) (-574) (-699 (-227)))) (-15 -4096 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -4013 ((-1051) (-1175) (-574) (-574) (-699 (-227)))) (-15 -2215 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))) (T -767))
-((-2215 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767)))) (-4013 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767)))) (-4096 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-767)))) (-2834 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051)) (-5 *1 (-767)))))
-(-10 -7 (-15 -2834 ((-1051) (-574) (-574) (-574) (-699 (-227)))) (-15 -4096 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-699 (-574)) (-574) (-699 (-227)))) (-15 -4013 ((-1051) (-1175) (-574) (-574) (-699 (-227)))) (-15 -2215 ((-1051) (-1175) (-574) (-574) (-699 (-227)) (-574) (-574) (-699 (-227)))))
-((-2270 (((-1051) (-227) (-227) (-227) (-227) (-574)) 62)) (-2489 (((-1051) (-227) (-227) (-227) (-574)) 61)) (-3325 (((-1051) (-227) (-227) (-227) (-574)) 60)) (-2563 (((-1051) (-227) (-227) (-574)) 59)) (-2111 (((-1051) (-227) (-574)) 58)) (-3523 (((-1051) (-227) (-574)) 57)) (-3170 (((-1051) (-227) (-574)) 56)) (-1652 (((-1051) (-227) (-574)) 55)) (-2579 (((-1051) (-227) (-574)) 54)) (-4399 (((-1051) (-227) (-574)) 53)) (-4390 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 52)) (-3741 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 51)) (-3064 (((-1051) (-227) (-574)) 50)) (-1943 (((-1051) (-227) (-574)) 49)) (-1992 (((-1051) (-227) (-574)) 48)) (-3767 (((-1051) (-227) (-574)) 47)) (-3326 (((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574)) 46)) (-3829 (((-1051) (-1175) (-171 (-227)) (-1175) (-574)) 45)) (-2633 (((-1051) (-1175) (-171 (-227)) (-1175) (-574)) 44)) (-3379 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 43)) (-2204 (((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574)) 42)) (-2965 (((-1051) (-227) (-574)) 39)) (-3080 (((-1051) (-227) (-574)) 38)) (-3562 (((-1051) (-227) (-574)) 37)) (-4049 (((-1051) (-227) (-574)) 36)) (-2448 (((-1051) (-227) (-574)) 35)) (-3690 (((-1051) (-227) (-574)) 34)) (-1526 (((-1051) (-227) (-574)) 33)) (-4335 (((-1051) (-227) (-574)) 32)) (-2000 (((-1051) (-227) (-574)) 31)) (-3787 (((-1051) (-227) (-574)) 30)) (-2058 (((-1051) (-227) (-227) (-227) (-574)) 29)) (-3053 (((-1051) (-227) (-574)) 28)) (-3441 (((-1051) (-227) (-574)) 27)) (-1630 (((-1051) (-227) (-574)) 26)) (-1493 (((-1051) (-227) (-574)) 25)) (-4105 (((-1051) (-227) (-574)) 24)) (-2730 (((-1051) (-171 (-227)) (-574)) 21)))
-(((-768) (-10 -7 (-15 -2730 ((-1051) (-171 (-227)) (-574))) (-15 -4105 ((-1051) (-227) (-574))) (-15 -1493 ((-1051) (-227) (-574))) (-15 -1630 ((-1051) (-227) (-574))) (-15 -3441 ((-1051) (-227) (-574))) (-15 -3053 ((-1051) (-227) (-574))) (-15 -2058 ((-1051) (-227) (-227) (-227) (-574))) (-15 -3787 ((-1051) (-227) (-574))) (-15 -2000 ((-1051) (-227) (-574))) (-15 -4335 ((-1051) (-227) (-574))) (-15 -1526 ((-1051) (-227) (-574))) (-15 -3690 ((-1051) (-227) (-574))) (-15 -2448 ((-1051) (-227) (-574))) (-15 -4049 ((-1051) (-227) (-574))) (-15 -3562 ((-1051) (-227) (-574))) (-15 -3080 ((-1051) (-227) (-574))) (-15 -2965 ((-1051) (-227) (-574))) (-15 -2204 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3379 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2633 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -3829 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -3326 ((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3767 ((-1051) (-227) (-574))) (-15 -1992 ((-1051) (-227) (-574))) (-15 -1943 ((-1051) (-227) (-574))) (-15 -3064 ((-1051) (-227) (-574))) (-15 -3741 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -4390 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -4399 ((-1051) (-227) (-574))) (-15 -2579 ((-1051) (-227) (-574))) (-15 -1652 ((-1051) (-227) (-574))) (-15 -3170 ((-1051) (-227) (-574))) (-15 -3523 ((-1051) (-227) (-574))) (-15 -2111 ((-1051) (-227) (-574))) (-15 -2563 ((-1051) (-227) (-227) (-574))) (-15 -3325 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2489 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2270 ((-1051) (-227) (-227) (-227) (-227) (-574))))) (T -768))
-((-2270 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2489 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3325 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2563 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3523 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4390 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3741 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1992 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3326 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1175)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3829 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2633 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3379 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2204 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175)) (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4335 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2058 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-3441 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(-10 -7 (-15 -2730 ((-1051) (-171 (-227)) (-574))) (-15 -4105 ((-1051) (-227) (-574))) (-15 -1493 ((-1051) (-227) (-574))) (-15 -1630 ((-1051) (-227) (-574))) (-15 -3441 ((-1051) (-227) (-574))) (-15 -3053 ((-1051) (-227) (-574))) (-15 -2058 ((-1051) (-227) (-227) (-227) (-574))) (-15 -3787 ((-1051) (-227) (-574))) (-15 -2000 ((-1051) (-227) (-574))) (-15 -4335 ((-1051) (-227) (-574))) (-15 -1526 ((-1051) (-227) (-574))) (-15 -3690 ((-1051) (-227) (-574))) (-15 -2448 ((-1051) (-227) (-574))) (-15 -4049 ((-1051) (-227) (-574))) (-15 -3562 ((-1051) (-227) (-574))) (-15 -3080 ((-1051) (-227) (-574))) (-15 -2965 ((-1051) (-227) (-574))) (-15 -2204 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3379 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -2633 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -3829 ((-1051) (-1175) (-171 (-227)) (-1175) (-574))) (-15 -3326 ((-1051) (-574) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -3767 ((-1051) (-227) (-574))) (-15 -1992 ((-1051) (-227) (-574))) (-15 -1943 ((-1051) (-227) (-574))) (-15 -3064 ((-1051) (-227) (-574))) (-15 -3741 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -4390 ((-1051) (-227) (-171 (-227)) (-574) (-1175) (-574))) (-15 -4399 ((-1051) (-227) (-574))) (-15 -2579 ((-1051) (-227) (-574))) (-15 -1652 ((-1051) (-227) (-574))) (-15 -3170 ((-1051) (-227) (-574))) (-15 -3523 ((-1051) (-227) (-574))) (-15 -2111 ((-1051) (-227) (-574))) (-15 -2563 ((-1051) (-227) (-227) (-574))) (-15 -3325 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2489 ((-1051) (-227) (-227) (-227) (-574))) (-15 -2270 ((-1051) (-227) (-227) (-227) (-227) (-574))))
-((-4417 (((-1289)) 20)) (-3372 (((-1175)) 31)) (-2549 (((-1175)) 30)) (-3383 (((-1120) (-1193) (-699 (-574))) 45) (((-1120) (-1193) (-699 (-227))) 41)) (-3660 (((-112)) 19)) (-3249 (((-1175) (-1175)) 34)))
-(((-769) (-10 -7 (-15 -2549 ((-1175))) (-15 -3372 ((-1175))) (-15 -3249 ((-1175) (-1175))) (-15 -3383 ((-1120) (-1193) (-699 (-227)))) (-15 -3383 ((-1120) (-1193) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -4417 ((-1289))))) (T -769))
-((-4417 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-769)))) (-3660 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-574))) (-5 *2 (-1120)) (-5 *1 (-769)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-227))) (-5 *2 (-1120)) (-5 *1 (-769)))) (-3249 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))) (-3372 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))) (-2549 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))))
-(-10 -7 (-15 -2549 ((-1175))) (-15 -3372 ((-1175))) (-15 -3249 ((-1175) (-1175))) (-15 -3383 ((-1120) (-1193) (-699 (-227)))) (-15 -3383 ((-1120) (-1193) (-699 (-574)))) (-15 -3660 ((-112))) (-15 -4417 ((-1289))))
-((-3082 (($ $ $) 10)) (-2362 (($ $ $ $) 9)) (-2030 (($ $ $) 12)))
-(((-770 |#1|) (-10 -8 (-15 -2030 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1| |#1|))) (-771)) (T -770))
-NIL
-(-10 -8 (-15 -2030 (|#1| |#1| |#1|)) (-15 -3082 (|#1| |#1| |#1|)) (-15 -2362 (|#1| |#1| |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3344 (($ $ (-935)) 31)) (-3484 (($ $ (-935)) 32)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3082 (($ $ $) 28)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2362 (($ $ $ $) 29)) (-2030 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30)))
-(((-771) (-141)) (T -771))
-((-2362 (*1 *1 *1 *1 *1) (-4 *1 (-771))) (-3082 (*1 *1 *1 *1) (-4 *1 (-771))) (-2030 (*1 *1 *1 *1) (-4 *1 (-771))))
-(-13 (-21) (-730) (-10 -8 (-15 -2362 ($ $ $ $)) (-15 -3082 ($ $ $)) (-15 -2030 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-1116) . T))
-((-2951 (((-872) $) NIL) (($ (-574)) 10)))
-(((-772 |#1|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-773)) (T -772))
-NIL
-(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-2339 (((-3 $ "failed") $) 43)) (-3344 (($ $ (-935)) 31) (($ $ (-781)) 38)) (-3612 (((-3 $ "failed") $) 41)) (-3943 (((-112) $) 37)) (-2808 (((-3 $ "failed") $) 42)) (-3484 (($ $ (-935)) 32) (($ $ (-781)) 39)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3082 (($ $ $) 28)) (-2951 (((-872) $) 12) (($ (-574)) 34)) (-3070 (((-781)) 35 T CONST)) (-2981 (((-112) $ $) 9)) (-2362 (($ $ $ $) 29)) (-2030 (($ $ $) 27)) (-2141 (($) 19 T CONST)) (-2153 (($) 36 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 33) (($ $ (-781)) 40)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 30)))
+((* (*1 *1 *1 *1) (-4 *1 (-732))) (-3133 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) (-2128 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937)))))
+(-13 (-1118) (-10 -8 (-15 * ($ $ $)) (-15 -3133 ($ $ (-937))) (-15 -2128 ($ $ (-937))) (-15 ** ($ $ (-937)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3133 (($ $ (-937)) NIL) (($ $ (-783)) 18)) (-4192 (((-112) $) 10)) (-2128 (($ $ (-937)) NIL) (($ $ (-783)) 19)) (** (($ $ (-937)) NIL) (($ $ (-783)) 16)))
+(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2128 (|#1| |#1| (-783))) (-15 -3133 (|#1| |#1| (-783))) (-15 -4192 ((-112) |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -2128 (|#1| |#1| (-937))) (-15 -3133 (|#1| |#1| (-937)))) (-734)) (T -733))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2128 (|#1| |#1| (-783))) (-15 -3133 (|#1| |#1| (-783))) (-15 -4192 ((-112) |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -2128 (|#1| |#1| (-937))) (-15 -3133 (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-2710 (((-3 $ "failed") $) 18)) (-3133 (($ $ (-937)) 16) (($ $ (-783)) 23)) (-4077 (((-3 $ "failed") $) 20)) (-4192 (((-112) $) 24)) (-1643 (((-3 $ "failed") $) 19)) (-2128 (($ $ (-937)) 15) (($ $ (-783)) 22)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2155 (($) 25 T CONST)) (-2991 (((-112) $ $) 6)) (** (($ $ (-937)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17)))
+(((-734) (-141)) (T -734))
+((-2155 (*1 *1) (-4 *1 (-734))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-3133 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-2128 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-4077 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1643 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2710 (*1 *1 *1) (|partial| -4 *1 (-734))))
+(-13 (-732) (-10 -8 (-15 (-2155) ($) -1716) (-15 -4192 ((-112) $)) (-15 -3133 ($ $ (-783))) (-15 -2128 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -4077 ((-3 $ "failed") $)) (-15 -1643 ((-3 $ "failed") $)) (-15 -2710 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-732) . T) ((-1118) . T))
+((-1499 (((-783)) 39)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2887 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-4077 (((-3 $ "failed") $) 69)) (-2840 (($) 43)) (-3404 ((|#2| $) 21)) (-2981 (($) 18)) (-3884 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3767 (((-701 |#2|) (-1286 $) (-1 |#2| |#2|)) 64)) (-1846 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4343 ((|#3| $) 36)) (-4093 (((-1286 $)) 33)))
+(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -2840 (|#1|)) (-15 -1499 ((-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3767 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2887 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1846 (|#1| |#3|)) (-15 -2887 (|#1| |#3|)) (-15 -2981 (|#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 (|#3| |#1|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -4093 ((-1286 |#1|))) (-15 -4343 (|#3| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1262 |#2|)) (T -735))
+((-1499 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))))
+(-10 -8 (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -2840 (|#1|)) (-15 -1499 ((-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3767 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2887 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1846 (|#1| |#3|)) (-15 -2887 (|#1| |#3|)) (-15 -2981 (|#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -1846 (|#3| |#1|)) (-15 -1846 (|#1| (-1286 |#2|))) (-15 -1846 ((-1286 |#2|) |#1|)) (-15 -4093 ((-1286 |#1|))) (-15 -4343 (|#3| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -4077 ((-3 |#1| "failed") |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 104 (|has| |#1| (-374)))) (-4334 (($ $) 105 (|has| |#1| (-374)))) (-1428 (((-112) $) 107 (|has| |#1| (-374)))) (-2674 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-1646 ((|#1| $) 59)) (-4171 (((-1208 (-937) (-783)) (-576)) 157 (|has| |#1| (-360)))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 124 (|has| |#1| (-374)))) (-1870 (((-430 $) $) 125 (|has| |#1| (-374)))) (-1323 (((-112) $ $) 115 (|has| |#1| (-374)))) (-1499 (((-783)) 98 (|has| |#1| (-379)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 182 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 180 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 177)) (-2216 (((-576) $) 181 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 179 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 178)) (-2524 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) 163 (|has| |#1| (-360)))) (-2806 (($ $ $) 119 (|has| |#1| (-374)))) (-1796 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-3928 (((-701 (-576)) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 174 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 173) (((-701 |#1|) (-701 $)) 172) (((-701 |#1|) (-1286 $)) 171)) (-2887 (($ |#2|) 168) (((-3 $ "failed") (-419 |#2|)) 165 (|has| |#1| (-374)))) (-4077 (((-3 $ "failed") $) 37)) (-3563 (((-937)) 61)) (-2840 (($) 101 (|has| |#1| (-379)))) (-2818 (($ $ $) 118 (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 113 (|has| |#1| (-374)))) (-3243 (($) 159 (|has| |#1| (-360)))) (-4208 (((-112) $) 160 (|has| |#1| (-360)))) (-3454 (($ $ (-783)) 151 (|has| |#1| (-360))) (($ $) 150 (|has| |#1| (-360)))) (-3124 (((-112) $) 126 (|has| |#1| (-374)))) (-3540 (((-937) $) 162 (|has| |#1| (-360))) (((-845 (-937)) $) 148 (|has| |#1| (-360)))) (-4192 (((-112) $) 35)) (-3404 ((|#1| $) 58)) (-2211 (((-3 $ "failed") $) 152 (|has| |#1| (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 122 (|has| |#1| (-374)))) (-1733 ((|#2| $) 51 (|has| |#1| (-374)))) (-4261 (((-937) $) 100 (|has| |#1| (-379)))) (-2874 ((|#2| $) 166)) (-2850 (($ (-656 $)) 111 (|has| |#1| (-374))) (($ $ $) 110 (|has| |#1| (-374)))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 127 (|has| |#1| (-374)))) (-3796 (($) 153 (|has| |#1| (-360)) CONST)) (-2596 (($ (-937)) 99 (|has| |#1| (-379)))) (-3945 (((-1138) $) 11)) (-2981 (($) 170)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 112 (|has| |#1| (-374)))) (-2892 (($ (-656 $)) 109 (|has| |#1| (-374))) (($ $ $) 108 (|has| |#1| (-374)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) 156 (|has| |#1| (-360)))) (-4205 (((-430 $) $) 123 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 121 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 120 (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ $) 103 (|has| |#1| (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 114 (|has| |#1| (-374)))) (-3927 (((-783) $) 116 (|has| |#1| (-374)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 117 (|has| |#1| (-374)))) (-3206 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3665 (((-783) $) 161 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 149 (|has| |#1| (-360)))) (-3884 (($ $ (-783)) 146 (-2838 (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 144 (-2838 (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 140 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 139 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 138 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 136 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-374)))) (-3767 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 164 (|has| |#1| (-374)))) (-2477 ((|#2|) 169)) (-3087 (($) 158 (|has| |#1| (-360)))) (-3458 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-1846 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) ((|#2| $) 183) (($ |#2|) 167)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 155 (|has| |#1| (-360)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 102 (|has| |#1| (-374))) (($ (-419 (-576))) 97 (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (($ $) 154 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4343 ((|#2| $) 52)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-4093 (((-1286 $)) 74)) (-2946 (((-112) $ $) 106 (|has| |#1| (-374)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-783)) 147 (-2838 (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2838 (-2096 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 143 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 142 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 141 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 137 (-2096 (|has| |#1| (-914 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374)))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 131 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 128 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 130 (|has| |#1| (-374))) (($ $ (-419 (-576))) 129 (|has| |#1| (-374)))))
+(((-736 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -736))
+((-2981 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2)))) (-2477 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2887 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-1846 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2887 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *5)))))
+(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2981 ($)) (-15 -2477 (|t#2|)) (-15 -2887 ($ |t#2|)) (-15 -1846 ($ |t#2|)) (-15 -2874 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-233 |t#1|)) (-15 -2887 ((-3 $ "failed") (-419 |t#2|))) (-15 -3767 ((-701 |t#1|) (-1286 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2838 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#2|) . T) ((-235 $) -2838 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-233 |#1|) |has| |#1| (-374)) ((-239) -2838 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-238) -2838 (|has| |#1| (-360)) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-249) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2838 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) ((-936) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-360)) ((-1236) -2838 (|has| |#1| (-360)) (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195)))) (-12 (|has| |#1| (-239)) (|has| |#1| (-374)))) ((-1240) -2838 (|has| |#1| (-360)) (|has| |#1| (-374))))
+((-4335 (($) 11)) (-4077 (((-3 $ "failed") $) 14)) (-4192 (((-112) $) 10)) (** (($ $ (-937)) NIL) (($ $ (-783)) 20)))
+(((-737 |#1|) (-10 -8 (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -4192 ((-112) |#1|)) (-15 -4335 (|#1|)) (-15 ** (|#1| |#1| (-937)))) (-738)) (T -737))
+NIL
+(-10 -8 (-15 -4077 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -4192 ((-112) |#1|)) (-15 -4335 (|#1|)) (-15 ** (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-4335 (($) 19 T CONST)) (-4077 (((-3 $ "failed") $) 16)) (-4192 (((-112) $) 18)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-2991 (((-112) $ $) 6)) (** (($ $ (-937)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15)))
+(((-738) (-141)) (T -738))
+((-2155 (*1 *1) (-4 *1 (-738))) (-4335 (*1 *1) (-4 *1 (-738))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-4077 (*1 *1 *1) (|partial| -4 *1 (-738))))
+(-13 (-1130) (-10 -8 (-15 (-2155) ($) -1716) (-15 -4335 ($) -1716) (-15 -4192 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -4077 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1130) . T) ((-1118) . T))
+((-3583 (((-2 (|:| -1369 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-4368 (((-2 (|:| -1369 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3189 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-4090 (((-2 (|:| |poly| |#2|) (|:| -1369 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48)))
+(((-739 |#1| |#2|) (-10 -7 (-15 -4368 ((-2 (|:| -1369 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3583 ((-2 (|:| -1369 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3189 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -4090 ((-2 (|:| |poly| |#2|) (|:| -1369 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -739))
+((-4090 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1369 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1369 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1369 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))))
+(-10 -7 (-15 -4368 ((-2 (|:| -1369 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3583 ((-2 (|:| -1369 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3189 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -4090 ((-2 (|:| |poly| |#2|) (|:| -1369 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|))))
+((-1346 ((|#7| (-656 |#5|) |#6|) NIL)) (-1787 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1787 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1346 (|#7| (-656 |#5|) |#6|))) (-862) (-805) (-805) (-1067) (-1067) (-965 |#4| |#2| |#1|) (-965 |#5| |#3| |#1|)) (T -740))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-1067)) (-4 *2 (-965 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-965 *8 *6 *5)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1067)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-965 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-965 *8 *6 *5)))))
+(-10 -7 (-15 -1787 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1346 (|#7| (-656 |#5|) |#6|)))
+((-1787 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1787 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-805) (-805) (-1067) (-965 |#5| |#3| |#1|) (-965 |#5| |#4| |#2|)) (T -741))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) (-4 *9 (-1067)) (-4 *2 (-965 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-965 *9 *7 *5)))))
+(-10 -7 (-15 -1787 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4205 (((-430 |#4|) |#4|) 42)))
+(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195))))) (-317) (-965 (-968 |#3|) |#1| |#2|)) (T -742))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-965 (-968 *6) *4 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-876 |#1|)) $) NIL)) (-4174 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4334 (($ $) NIL (|has| |#2| (-568)))) (-1428 (((-112) $) NIL (|has| |#2| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL (|has| |#2| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-876 |#1|) $) NIL)) (-2799 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#2| (-925)))) (-3130 (($ $ |#2| (-543 (-876 |#1|)) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#2| (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-876 |#1|)) NIL)) (-1859 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2819 (($ (-1 (-543 (-876 |#1|)) (-543 (-876 |#1|))) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1712 (((-3 (-876 |#1|) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#2| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2300 (-783))) "failed") $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#2| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-925)))) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3206 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3884 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2782 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576))))))) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-743 |#1| |#2|) (-965 |#2| (-543 (-876 |#1|)) (-876 |#1|)) (-656 (-1195)) (-1067)) (T -743))
+NIL
+(-965 |#2| (-543 (-876 |#1|)) (-876 |#1|))
+((-1455 (((-2 (|:| -2847 (-968 |#3|)) (|:| -3621 (-968 |#3|))) |#4|) 14)) (-3199 ((|#4| |#4| |#2|) 33)) (-3620 ((|#4| (-419 (-968 |#3|)) |#2|) 64)) (-2321 ((|#4| (-1191 (-968 |#3|)) |#2|) 77)) (-2760 ((|#4| (-1191 |#4|) |#2|) 51)) (-3232 ((|#4| |#4| |#2|) 54)) (-4205 (((-430 |#4|) |#4|) 40)))
+(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1455 ((-2 (|:| -2847 (-968 |#3|)) (|:| -3621 (-968 |#3|))) |#4|)) (-15 -3232 (|#4| |#4| |#2|)) (-15 -2760 (|#4| (-1191 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2321 (|#4| (-1191 (-968 |#3|)) |#2|)) (-15 -3620 (|#4| (-419 (-968 |#3|)) |#2|)) (-15 -4205 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)))) (-568) (-965 (-419 (-968 |#3|)) |#1| |#2|)) (T -744))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-968 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 (-968 *6))) (-4 *6 (-568)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *6 (-568)))) (-3232 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3)))) (-1455 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2847 (-968 *6)) (|:| -3621 (-968 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5)))))
+(-10 -7 (-15 -1455 ((-2 (|:| -2847 (-968 |#3|)) (|:| -3621 (-968 |#3|))) |#4|)) (-15 -3232 (|#4| |#4| |#2|)) (-15 -2760 (|#4| (-1191 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2321 (|#4| (-1191 (-968 |#3|)) |#2|)) (-15 -3620 (|#4| (-419 (-968 |#3|)) |#2|)) (-15 -4205 ((-430 |#4|) |#4|)))
+((-4205 (((-430 |#4|) |#4|) 54)))
+(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4|))) (-805) (-862) (-13 (-317) (-148)) (-965 (-419 |#3|) |#1| |#2|)) (T -745))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-965 (-419 *6) *4 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4|)))
+((-1787 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18)))
+(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1067) (-1067) (-738)) (T -746))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7)))))
+(-10 -7 (-15 -1787 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 36)) (-2206 (((-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|))) $) 37)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2216 ((|#2| $) NIL) ((|#1| $) NIL)) (-1404 (($ $) 102 (|has| |#2| (-862)))) (-4077 (((-3 $ "failed") $) 85)) (-2840 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) 70)) (-2397 (((-656 $) $) 52)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| |#2|) 17)) (-1787 (($ (-1 |#1| |#1|) $) 68)) (-4261 (((-937) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1368 ((|#2| $) 101 (|has| |#2| (-862)))) (-1380 ((|#1| $) 100 (|has| |#2| (-862)))) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|)))) 11)) (-3532 (((-656 |#1|) $) 54)) (-4309 ((|#1| $ |#2|) 115)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 12 T CONST)) (-2155 (($) 44 T CONST)) (-2991 (((-112) $ $) 105)) (-3096 (($ $) 61) (($ $ $) NIL)) (-3081 (($ $ $) 33)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-747 |#1| |#2|) (-13 (-1067) (-1056 |#2|) (-1056 |#1|) (-10 -8 (-15 -4330 ($ |#1| |#2|)) (-15 -4309 (|#1| $ |#2|)) (-15 -2956 ($ (-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|))))) (-15 -2206 ((-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|))) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -1614 ((-112) $)) (-15 -3532 ((-656 |#1|) $)) (-15 -2397 ((-656 $) $)) (-15 -2747 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -1368 (|#2| $)) (-15 -1380 (|#1| $)) (-15 -1404 ($ $))) |%noBranch|))) (-1067) (-738)) (T -747))
+((-4330 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-738)))) (-4309 (*1 *2 *1 *3) (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1868 *3) (|:| -3811 *4)))) (-4 *3 (-1067)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1868 *3) (|:| -3811 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738)))) (-1368 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1067)))) (-1380 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *3 (-738)))) (-1404 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1067)) (-4 *3 (-738)))))
+(-13 (-1067) (-1056 |#2|) (-1056 |#1|) (-10 -8 (-15 -4330 ($ |#1| |#2|)) (-15 -4309 (|#1| $ |#2|)) (-15 -2956 ($ (-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|))))) (-15 -2206 ((-656 (-2 (|:| -1868 |#1|) (|:| -3811 |#2|))) $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (-15 -1614 ((-112) $)) (-15 -3532 ((-656 |#1|) $)) (-15 -2397 ((-656 $) $)) (-15 -2747 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -1368 (|#2| $)) (-15 -1380 (|#1| $)) (-15 -1404 ($ $))) |%noBranch|)))
+((-2869 (((-112) $ $) 19)) (-4356 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2711 (($ $ $) 73)) (-2297 (((-112) $ $) 74)) (-3762 (((-112) $ (-783)) 8)) (-1517 (($ (-656 |#1|)) 69) (($) 68)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4099 (($ $) 63)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) 65)) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22)) (-3318 (($ $ $) 70)) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3945 (((-1138) $) 21)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-4169 (((-656 (-2 (|:| -1918 |#1|) (|:| -3954 (-783)))) $) 62)) (-1403 (($ $ |#1|) 72) (($ $ $) 71)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2956 (((-874) $) 18)) (-4271 (($ (-656 |#1|)) 67) (($) 66)) (-2617 (((-112) $ $) 23)) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20)) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-748 |#1|) (-141) (-1118)) (T -748))
+NIL
+(-13 (-707 |t#1|) (-1116 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-707 |#1|) . T) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-4356 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2711 (($ $ $) 96)) (-2297 (((-112) $ $) 104)) (-3762 (((-112) $ (-783)) NIL)) (-1517 (($ (-656 |#1|)) 26) (($) 17)) (-1707 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-4099 (($ $) 85)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) 70 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 32 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) 103)) (-2374 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) 38)) (-2653 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 89)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3318 (($ $ $) 94)) (-2138 ((|#1| $) 62)) (-2504 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3945 (((-1138) $) NIL)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4256 ((|#1| $) 61)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 56)) (-2953 (($) 14)) (-4169 (((-656 (-2 (|:| -1918 |#1|) (|:| -3954 (-783)))) $) 55)) (-1403 (($ $ |#1|) NIL) (($ $ $) 95)) (-1904 (($) 16) (($ (-656 |#1|)) 25)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 79)) (-1846 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 22)) (-2956 (((-874) $) 49)) (-4271 (($ (-656 |#1|)) 27) (($) 18)) (-2617 (((-112) $ $) NIL)) (-2478 (($ (-656 |#1|)) 24)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 100)) (-2882 (((-783) $) 67 (|has| $ (-6 -4461)))))
+(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -2374 ($)) (-15 -2374 ($ |#1|)) (-15 -2374 ($ (-656 |#1|))) (-15 -2186 ((-656 |#1|) $)) (-15 -3316 ($ |#1| $ (-576))) (-15 -3316 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3710 ($ |#1| $ (-576))) (-15 -3710 ($ (-1 (-112) |#1|) $ (-576))))) (-1118)) (T -749))
+((-2374 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-2374 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-749 *3)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1118)))) (-3316 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-3316 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) (-5 *1 (-749 *4)))) (-3710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118)))) (-3710 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118)) (-5 *1 (-749 *4)))))
+(-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -2374 ($)) (-15 -2374 ($ |#1|)) (-15 -2374 ($ (-656 |#1|))) (-15 -2186 ((-656 |#1|) $)) (-15 -3316 ($ |#1| $ (-576))) (-15 -3316 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3710 ($ |#1| $ (-576))) (-15 -3710 ($ (-1 (-112) |#1|) $ (-576)))))
+((-1329 (((-1291) (-1177)) 8)))
+(((-750) (-10 -7 (-15 -1329 ((-1291) (-1177))))) (T -750))
+((-1329 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750)))))
+(-10 -7 (-15 -1329 ((-1291) (-1177))))
+((-2147 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15)))
+(((-751 |#1|) (-10 -7 (-15 -2147 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-862)) (T -751))
+((-2147 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3)))))
+(-10 -7 (-15 -2147 ((-656 |#1|) (-656 |#1|) (-656 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 |#2|) $) 149)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-4334 (($ $) 141 (|has| |#1| (-568)))) (-1428 (((-112) $) 139 (|has| |#1| (-568)))) (-2384 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-4214 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2409 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-1404 (($ $) 133)) (-4077 (((-3 $ "failed") $) 37)) (-4032 (((-968 |#1|) $ (-783)) 111) (((-968 |#1|) $ (-783) (-783)) 110)) (-2567 (((-112) $) 150)) (-3009 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-1614 (((-112) $) 131)) (-4330 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-1787 (($ (-1 |#1| |#1|) $) 130)) (-3118 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 128)) (-1380 ((|#1| $) 127)) (-2148 (((-1177) $) 10)) (-2254 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) 11)) (-3167 (($ $ (-783)) 116)) (-2858 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-1619 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-3884 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-2782 (((-543 |#2|) $) 129)) (-2422 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 151)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4309 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-1817 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 140 (|has| |#1| (-568)))) (-2434 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2541 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125)))
+(((-752 |#1| |#2|) (-141) (-1067) (-862)) (T -752))
+((-4309 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-862)))) (-4309 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-862)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067)) (-4 *2 (-862)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-3540 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *2 (-783)))) (-3540 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)) (-5 *2 (-968 *4)))) (-4032 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067)) (-4 *5 (-862)) (-5 *2 (-968 *4)))) (-2254 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576)))))))
+(-13 (-914 |t#2|) (-991 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -4309 ($ $ |t#2| (-783))) (-15 -4309 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3167 ($ $ (-783))) (-15 -4330 ($ $ |t#2| (-783))) (-15 -4330 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3540 ((-783) $ |t#2|)) (-15 -3540 ((-783) $ |t#2| (-783))) (-15 -4032 ((-968 |t#1|) $ (-783))) (-15 -4032 ((-968 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $ |t#2|)) (-6 (-1020)) (-6 (-1221))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ |#2|) . T) ((-914 |#2|) . T) ((-916 |#2|) . T) ((-991 |#1| #0# |#2|) . T) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T))
+((-4205 (((-430 (-1191 |#4|)) (-1191 |#4|)) 30) (((-430 |#4|) |#4|) 26)))
+(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 |#4|) |#4|)) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-13 (-317) (-148)) (-965 |#3| |#2| |#1|)) (T -753))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4)))))
+(-10 -7 (-15 -4205 ((-430 |#4|) |#4|)) (-15 -4205 ((-430 (-1191 |#4|)) (-1191 |#4|))))
+((-1625 (((-430 |#4|) |#4| |#2|) 140)) (-2401 (((-430 |#4|) |#4|) NIL)) (-1870 (((-430 (-1191 |#4|)) (-1191 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3942 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -4205 (-1191 |#4|)) (|:| -2300 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-1629 (((-1191 |#3|) (-1191 |#3|) (-576)) 166)) (-3965 (((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783)) 75)) (-2874 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-3591 (((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-3707 (((-2 (|:| -2625 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576)) 72)) (-1472 (((-576) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576))))) 162)) (-2569 ((|#4| (-576) (-430 |#4|)) 73)) (-1447 (((-112) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576))))) NIL)))
+(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 ((-430 |#4|) |#4|)) (-15 -1870 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -2401 ((-430 |#4|) |#4|)) (-15 -1472 ((-576) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))))) (-15 -1625 ((-430 |#4|) |#4| |#2|)) (-15 -3707 ((-2 (|:| -2625 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -3942 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -4205 (-1191 |#4|)) (|:| -2300 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3591 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2569 (|#4| (-576) (-430 |#4|))) (-15 -1447 ((-112) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))))) (-15 -2874 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3965 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -1629 ((-1191 |#3|) (-1191 |#3|) (-576)))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -754))
+((-1629 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-3965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2874 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-965 *11 *9 *10)) (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1191 *5)))) (-1447 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -4205 (-1191 *6)) (|:| -2300 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-965 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-317)))) (-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -4205 (-1191 *8)) (|:| -2300 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-965 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -4205 (-1191 *9)) (|:| -2300 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)))) (-3707 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-5 *2 (-2 (|:| -2625 (-1191 *9)) (|:| |polval| (-1191 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8)))) (-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4205 (-1191 *6)) (|:| -2300 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-2401 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5)))))
+(-10 -7 (-15 -1870 ((-430 |#4|) |#4|)) (-15 -1870 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -2401 ((-430 |#4|) |#4|)) (-15 -1472 ((-576) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))))) (-15 -1625 ((-430 |#4|) |#4| |#2|)) (-15 -3707 ((-2 (|:| -2625 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -3942 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -4205 (-1191 |#4|)) (|:| -2300 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3591 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2569 (|#4| (-576) (-430 |#4|))) (-15 -1447 ((-112) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))) (-656 (-2 (|:| -4205 (-1191 |#3|)) (|:| -2300 (-576)))))) (-15 -2874 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -3965 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -1629 ((-1191 |#3|) (-1191 |#3|) (-576))))
+((-3728 (($ $ (-937)) 17)))
+(((-755 |#1| |#2|) (-10 -8 (-15 -3728 (|#1| |#1| (-937)))) (-756 |#2|) (-174)) (T -755))
+NIL
+(-10 -8 (-15 -3728 (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3133 (($ $ (-937)) 31)) (-3728 (($ $ (-937)) 38)) (-2128 (($ $ (-937)) 32)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3516 (($ $ $) 28)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2927 (($ $ $ $) 29)) (-1736 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-756 |#1|) (-141) (-174)) (T -756))
+((-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-756 *3)) (-4 *3 (-174)))))
+(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -3728 ($ $ (-937)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-1751 (((-1053) (-701 (-227)) (-576) (-112) (-576)) 25)) (-1559 (((-1053) (-701 (-227)) (-576) (-112) (-576)) 24)))
+(((-757) (-10 -7 (-15 -1559 ((-1053) (-701 (-227)) (-576) (-112) (-576))) (-15 -1751 ((-1053) (-701 (-227)) (-576) (-112) (-576))))) (T -757))
+((-1751 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-757)))) (-1559 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-757)))))
+(-10 -7 (-15 -1559 ((-1053) (-701 (-227)) (-576) (-112) (-576))) (-15 -1751 ((-1053) (-701 (-227)) (-576) (-112) (-576))))
+((-1526 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3930 (((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-2853 (((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) 32)))
+(((-758) (-10 -7 (-15 -2853 ((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3930 ((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1526 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758))
+((-1526 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1053)) (-5 *1 (-758)))) (-3930 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1053)) (-5 *1 (-758)))) (-2853 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *2 (-1053)) (-5 *1 (-758)))))
+(-10 -7 (-15 -2853 ((-1053) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3930 ((-1053) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1526 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))
+((-1425 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 34)) (-4324 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3483 (((-1053) (-576) (-701 (-227)) (-576)) 32)) (-3650 (((-1053) (-576) (-701 (-227)) (-576)) 31)) (-3472 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-2578 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-4165 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3460 (((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-3365 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2787 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3537 (((-1053) (-576) (-701 (-227)) (-576)) 22)) (-3480 (((-1053) (-576) (-701 (-227)) (-576)) 21)))
+(((-759) (-10 -7 (-15 -3480 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3537 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -2787 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3365 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3460 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4165 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2578 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3472 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3650 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3483 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -4324 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -1425 ((-1053) (-576) (-576) (-701 (-227)) (-576))))) (T -759))
+((-1425 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-4324 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3483 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3650 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3472 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-2578 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-4165 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3460 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3365 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-2787 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3537 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))) (-3480 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-759)))))
+(-10 -7 (-15 -3480 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3537 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -2787 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3365 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3460 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4165 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2578 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3472 ((-1053) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3650 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -3483 ((-1053) (-576) (-701 (-227)) (-576))) (-15 -4324 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -1425 ((-1053) (-576) (-576) (-701 (-227)) (-576))))
+((-4383 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3111 (((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-3418 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1528 (((-1053) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-4264 (((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2240 (((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-2731 (((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-1630 (((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-3285 (((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) 38)) (-3151 (((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) 37)) (-2479 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) 33)) (-2000 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) 32)))
+(((-760) (-10 -7 (-15 -2000 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -2479 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3151 ((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3285 ((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -1630 ((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2731 ((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2240 ((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4264 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1528 ((-1053) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3418 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3111 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4383 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760))
+((-4383 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3111 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3418 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-1528 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-4264 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-2240 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-2731 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-1630 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3285 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-3151 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-760)))) (-2479 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *2 (-1053)) (-5 *1 (-760)))) (-2000 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *2 (-1053)) (-5 *1 (-760)))))
+(-10 -7 (-15 -2000 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -2479 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3151 ((-1053) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -3285 ((-1053) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))) (-15 -1630 ((-1053) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2731 ((-1053) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2240 ((-1053) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4264 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1528 ((-1053) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3418 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3111 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4383 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))
+((-1599 (((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3297 (((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2285 (((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-2215 (((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-2764 (((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3934 (((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2849 (((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3294 (((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-761) (-10 -7 (-15 -3294 ((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2849 ((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3934 ((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2764 ((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2215 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2285 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3297 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3297 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1599 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761))
+((-1599 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3297 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3297 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1053)) (-5 *1 (-761)))) (-2285 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-2215 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1053)) (-5 *1 (-761)))) (-2764 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3934 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-2849 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))) (-3294 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))))
+(-10 -7 (-15 -3294 ((-1053) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2849 ((-1053) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3934 ((-1053) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2764 ((-1053) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2215 ((-1053) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2285 ((-1053) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3297 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3297 ((-1053) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -1599 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-1429 (((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-3046 (((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-2212 (((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23)))
+(((-762) (-10 -7 (-15 -2212 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3046 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1429 ((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762))
+((-1429 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-762)))) (-3046 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1053)) (-5 *1 (-762)))) (-2212 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-762)))))
+(-10 -7 (-15 -2212 ((-1053) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3046 ((-1053) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1429 ((-1053) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))
+((-4251 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-2973 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-3157 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-2778 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1690 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3805 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-2982 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-1972 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-3813 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-2428 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21)))
+(((-763) (-10 -7 (-15 -2428 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3813 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1972 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2982 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3805 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1690 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2778 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3157 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2973 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4251 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763))
+((-4251 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-2973 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-3157 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-2778 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-1690 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-3805 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-763)))) (-2982 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-1972 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-3813 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))) (-2428 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-763)))))
+(-10 -7 (-15 -2428 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3813 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1972 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2982 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3805 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1690 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2778 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3157 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2973 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -4251 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))
+((-2241 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-1814 (((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-2480 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-2771 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-2246 (((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-2201 (((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-2978 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-1530 (((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-2687 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-3095 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3952 (((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-3808 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2505 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-4327 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-1950 (((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-2816 (((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-4095 (((-1053) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3136 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21)))
+(((-764) (-10 -7 (-15 -3136 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4095 ((-1053) (-576) (-701 (-227)) (-227) (-576))) (-15 -2816 ((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -1950 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4327 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2505 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3808 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3952 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3095 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2687 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1530 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2978 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2201 ((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2246 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2771 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2480 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1814 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2241 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764))
+((-2241 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-1814 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2480 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2771 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2246 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2201 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2978 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-1530 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2687 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3095 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3952 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3808 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2505 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-4327 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-1950 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-2816 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-4095 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))) (-3136 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-764)))))
+(-10 -7 (-15 -3136 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4095 ((-1053) (-576) (-701 (-227)) (-227) (-576))) (-15 -2816 ((-1053) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -1950 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4327 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2505 ((-1053) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3808 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3952 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3095 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2687 ((-1053) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1530 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2978 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2201 ((-1053) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2246 ((-1053) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2771 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2480 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1814 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2241 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))
+((-2429 (((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-2188 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3089 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-3486 (((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-1937 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2198 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3567 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3861 (((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-765) (-10 -7 (-15 -3861 ((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3567 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2198 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1937 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3486 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -3089 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2188 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2429 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765))
+((-2429 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-2188 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3089 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3486 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-765)))) (-1937 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-2198 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3567 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1053)) (-5 *1 (-765)))) (-3861 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))))
+(-10 -7 (-15 -3861 ((-1053) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3567 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2198 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -1937 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3486 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -3089 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -2188 ((-1053) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2429 ((-1053) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))
+((-2106 (((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-4240 (((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-2883 (((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-4239 (((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-2306 (((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-3953 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-2386 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-2004 (((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-3933 (((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-4083 (((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32)))
+(((-766) (-10 -7 (-15 -4083 ((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3933 ((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2004 ((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2386 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3953 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2306 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -4239 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2883 ((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4240 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2106 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766))
+((-2106 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-4240 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-2883 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-4239 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-2306 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3953 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-766)))) (-2386 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-2004 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-3933 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-766)))) (-4083 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1053)) (-5 *1 (-766)))))
+(-10 -7 (-15 -4083 ((-1053) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3933 ((-1053) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2004 ((-1053) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2386 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3953 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2306 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -4239 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2883 ((-1053) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -4240 ((-1053) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2106 ((-1053) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))
+((-2572 (((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-3700 (((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-3193 (((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-1756 (((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-1666 (((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3770 (((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-3159 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1978 (((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4047 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-1946 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-4359 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3088 (((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-1545 (((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2283 (((-1053) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-2697 (((-1053) (-576) (-576) (-701 (-227)) (-576)) 21)))
+(((-767) (-10 -7 (-15 -2697 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -2283 ((-1053) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1545 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3088 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4359 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -1946 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4047 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1978 ((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3159 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3770 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1666 ((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -1756 ((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3193 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3193 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3700 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2572 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767))
+((-2572 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3700 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3193 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3193 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-1756 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-1666 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3770 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3159 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-1978 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-4047 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-1946 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-4359 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-3088 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-1545 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))) (-2283 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-767)))) (-2697 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-767)))))
+(-10 -7 (-15 -2697 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -2283 ((-1053) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1545 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3088 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4359 ((-1053) (-576) (-576) (-701 (-227)) (-576))) (-15 -1946 ((-1053) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4047 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1978 ((-1053) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3159 ((-1053) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3770 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1666 ((-1053) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -1756 ((-1053) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3193 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -3193 ((-1053) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3700 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2572 ((-1053) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))
+((-1417 (((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3681 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-3716 (((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2772 (((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-1663 (((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-2221 (((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-2287 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-2885 (((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-3155 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-2910 (((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-4129 (((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22)))
+(((-768) (-10 -7 (-15 -4129 ((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2910 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3155 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2885 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2287 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2221 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1663 ((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2772 ((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3716 ((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3681 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1417 ((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768))
+((-1417 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3681 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3716 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2772 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-1663 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2221 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2287 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2885 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-768)))) (-3155 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-2910 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-768)))) (-4129 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053)) (-5 *1 (-768)))))
+(-10 -7 (-15 -4129 ((-1053) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2910 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3155 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2885 ((-1053) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2287 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2221 ((-1053) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1663 ((-1053) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2772 ((-1053) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3716 ((-1053) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3681 ((-1053) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1417 ((-1053) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))
+((-4081 (((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-2437 (((-1053) (-1177) (-576) (-576) (-701 (-227))) 28)) (-2043 (((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-3778 (((-1053) (-576) (-576) (-576) (-701 (-227))) 21)))
+(((-769) (-10 -7 (-15 -3778 ((-1053) (-576) (-576) (-576) (-701 (-227)))) (-15 -2043 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -2437 ((-1053) (-1177) (-576) (-576) (-701 (-227)))) (-15 -4081 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769))
+((-4081 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769)))) (-2437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769)))) (-2043 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-769)))) (-3778 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053)) (-5 *1 (-769)))))
+(-10 -7 (-15 -3778 ((-1053) (-576) (-576) (-576) (-701 (-227)))) (-15 -2043 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -2437 ((-1053) (-1177) (-576) (-576) (-701 (-227)))) (-15 -4081 ((-1053) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))
+((-3356 (((-1053) (-227) (-227) (-227) (-227) (-576)) 62)) (-1561 (((-1053) (-227) (-227) (-227) (-576)) 61)) (-2951 (((-1053) (-227) (-227) (-227) (-576)) 60)) (-4147 (((-1053) (-227) (-227) (-576)) 59)) (-4380 (((-1053) (-227) (-576)) 58)) (-4440 (((-1053) (-227) (-576)) 57)) (-1858 (((-1053) (-227) (-576)) 56)) (-2322 (((-1053) (-227) (-576)) 55)) (-3141 (((-1053) (-227) (-576)) 54)) (-1952 (((-1053) (-227) (-576)) 53)) (-1863 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 52)) (-2854 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 51)) (-3360 (((-1053) (-227) (-576)) 50)) (-3413 (((-1053) (-227) (-576)) 49)) (-2630 (((-1053) (-227) (-576)) 48)) (-1826 (((-1053) (-227) (-576)) 47)) (-2962 (((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576)) 46)) (-4329 (((-1053) (-1177) (-171 (-227)) (-1177) (-576)) 45)) (-2361 (((-1053) (-1177) (-171 (-227)) (-1177) (-576)) 44)) (-3502 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 43)) (-3989 (((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576)) 42)) (-2464 (((-1053) (-227) (-576)) 39)) (-3506 (((-1053) (-227) (-576)) 38)) (-3624 (((-1053) (-227) (-576)) 37)) (-2821 (((-1053) (-227) (-576)) 36)) (-4311 (((-1053) (-227) (-576)) 35)) (-2352 (((-1053) (-227) (-576)) 34)) (-3618 (((-1053) (-227) (-576)) 33)) (-2529 (((-1053) (-227) (-576)) 32)) (-2716 (((-1053) (-227) (-576)) 31)) (-1993 (((-1053) (-227) (-576)) 30)) (-1981 (((-1053) (-227) (-227) (-227) (-576)) 29)) (-3239 (((-1053) (-227) (-576)) 28)) (-1684 (((-1053) (-227) (-576)) 27)) (-3376 (((-1053) (-227) (-576)) 26)) (-1386 (((-1053) (-227) (-576)) 25)) (-2117 (((-1053) (-227) (-576)) 24)) (-2046 (((-1053) (-171 (-227)) (-576)) 21)))
+(((-770) (-10 -7 (-15 -2046 ((-1053) (-171 (-227)) (-576))) (-15 -2117 ((-1053) (-227) (-576))) (-15 -1386 ((-1053) (-227) (-576))) (-15 -3376 ((-1053) (-227) (-576))) (-15 -1684 ((-1053) (-227) (-576))) (-15 -3239 ((-1053) (-227) (-576))) (-15 -1981 ((-1053) (-227) (-227) (-227) (-576))) (-15 -1993 ((-1053) (-227) (-576))) (-15 -2716 ((-1053) (-227) (-576))) (-15 -2529 ((-1053) (-227) (-576))) (-15 -3618 ((-1053) (-227) (-576))) (-15 -2352 ((-1053) (-227) (-576))) (-15 -4311 ((-1053) (-227) (-576))) (-15 -2821 ((-1053) (-227) (-576))) (-15 -3624 ((-1053) (-227) (-576))) (-15 -3506 ((-1053) (-227) (-576))) (-15 -2464 ((-1053) (-227) (-576))) (-15 -3989 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -3502 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2361 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -4329 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2962 ((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1826 ((-1053) (-227) (-576))) (-15 -2630 ((-1053) (-227) (-576))) (-15 -3413 ((-1053) (-227) (-576))) (-15 -3360 ((-1053) (-227) (-576))) (-15 -2854 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1863 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1952 ((-1053) (-227) (-576))) (-15 -3141 ((-1053) (-227) (-576))) (-15 -2322 ((-1053) (-227) (-576))) (-15 -1858 ((-1053) (-227) (-576))) (-15 -4440 ((-1053) (-227) (-576))) (-15 -4380 ((-1053) (-227) (-576))) (-15 -4147 ((-1053) (-227) (-227) (-576))) (-15 -2951 ((-1053) (-227) (-227) (-227) (-576))) (-15 -1561 ((-1053) (-227) (-227) (-227) (-576))) (-15 -3356 ((-1053) (-227) (-227) (-227) (-227) (-576))))) (T -770))
+((-3356 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1561 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2951 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-4147 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-4380 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-4440 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1863 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2854 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3360 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2962 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-4329 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2361 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3502 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3989 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1981 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(-10 -7 (-15 -2046 ((-1053) (-171 (-227)) (-576))) (-15 -2117 ((-1053) (-227) (-576))) (-15 -1386 ((-1053) (-227) (-576))) (-15 -3376 ((-1053) (-227) (-576))) (-15 -1684 ((-1053) (-227) (-576))) (-15 -3239 ((-1053) (-227) (-576))) (-15 -1981 ((-1053) (-227) (-227) (-227) (-576))) (-15 -1993 ((-1053) (-227) (-576))) (-15 -2716 ((-1053) (-227) (-576))) (-15 -2529 ((-1053) (-227) (-576))) (-15 -3618 ((-1053) (-227) (-576))) (-15 -2352 ((-1053) (-227) (-576))) (-15 -4311 ((-1053) (-227) (-576))) (-15 -2821 ((-1053) (-227) (-576))) (-15 -3624 ((-1053) (-227) (-576))) (-15 -3506 ((-1053) (-227) (-576))) (-15 -2464 ((-1053) (-227) (-576))) (-15 -3989 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -3502 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2361 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -4329 ((-1053) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2962 ((-1053) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1826 ((-1053) (-227) (-576))) (-15 -2630 ((-1053) (-227) (-576))) (-15 -3413 ((-1053) (-227) (-576))) (-15 -3360 ((-1053) (-227) (-576))) (-15 -2854 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1863 ((-1053) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1952 ((-1053) (-227) (-576))) (-15 -3141 ((-1053) (-227) (-576))) (-15 -2322 ((-1053) (-227) (-576))) (-15 -1858 ((-1053) (-227) (-576))) (-15 -4440 ((-1053) (-227) (-576))) (-15 -4380 ((-1053) (-227) (-576))) (-15 -4147 ((-1053) (-227) (-227) (-576))) (-15 -2951 ((-1053) (-227) (-227) (-227) (-576))) (-15 -1561 ((-1053) (-227) (-227) (-227) (-576))) (-15 -3356 ((-1053) (-227) (-227) (-227) (-227) (-576))))
+((-2112 (((-1291)) 20)) (-3429 (((-1177)) 31)) (-4027 (((-1177)) 30)) (-3543 (((-1122) (-1195) (-701 (-576))) 45) (((-1122) (-1195) (-701 (-227))) 41)) (-3666 (((-112)) 19)) (-1450 (((-1177) (-1177)) 34)))
+(((-771) (-10 -7 (-15 -4027 ((-1177))) (-15 -3429 ((-1177))) (-15 -1450 ((-1177) (-1177))) (-15 -3543 ((-1122) (-1195) (-701 (-227)))) (-15 -3543 ((-1122) (-1195) (-701 (-576)))) (-15 -3666 ((-112))) (-15 -2112 ((-1291))))) (T -771))
+((-2112 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771)))) (-3666 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1122)) (-5 *1 (-771)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1122)) (-5 *1 (-771)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-3429 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-4027 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))))
+(-10 -7 (-15 -4027 ((-1177))) (-15 -3429 ((-1177))) (-15 -1450 ((-1177) (-1177))) (-15 -3543 ((-1122) (-1195) (-701 (-227)))) (-15 -3543 ((-1122) (-1195) (-701 (-576)))) (-15 -3666 ((-112))) (-15 -2112 ((-1291))))
+((-3516 (($ $ $) 10)) (-2927 (($ $ $ $) 9)) (-1736 (($ $ $) 12)))
+(((-772 |#1|) (-10 -8 (-15 -1736 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1| |#1| |#1|))) (-773)) (T -772))
+NIL
+(-10 -8 (-15 -1736 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1| |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3133 (($ $ (-937)) 31)) (-2128 (($ $ (-937)) 32)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3516 (($ $ $) 28)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2927 (($ $ $ $) 29)) (-1736 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 33)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30)))
(((-773) (-141)) (T -773))
-((-3070 (*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773)))))
-(-13 (-771) (-732) (-10 -8 (-15 -3070 ((-781)) -1714) (-15 -2951 ($ (-574)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-730) . T) ((-732) . T) ((-771) . T) ((-1116) . T))
-((-1631 (((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|) 33)) (-1481 (((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|) 23)) (-2451 (((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193)) 20) (((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574))))) 19)))
-(((-774 |#1|) (-10 -7 (-15 -2451 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -2451 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193))) (-15 -1481 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1631 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|))) (-13 (-372) (-858))) (T -774))
-((-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 *4))))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1193)) (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *5)) (-4 *5 (-13 (-372) (-858))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
-(-10 -7 (-15 -2451 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))))) (-15 -2451 ((-966 (-171 (-417 (-574)))) (-699 (-171 (-417 (-574)))) (-1193))) (-15 -1481 ((-654 (-171 |#1|)) (-699 (-171 (-417 (-574)))) |#1|)) (-15 -1631 ((-654 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 (-171 |#1|)))))) (-699 (-171 (-417 (-574)))) |#1|)))
-((-3653 (((-176 (-574)) |#1|) 27)))
-(((-775 |#1|) (-10 -7 (-15 -3653 ((-176 (-574)) |#1|))) (-414)) (T -775))
-((-3653 (*1 *2 *3) (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414)))))
-(-10 -7 (-15 -3653 ((-176 (-574)) |#1|)))
-((-2228 ((|#1| |#1| |#1|) 28)) (-2588 ((|#1| |#1| |#1|) 27)) (-4317 ((|#1| |#1| |#1|) 38)) (-3218 ((|#1| |#1| |#1|) 34)) (-3125 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2649 (((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|) 26)))
-(((-776 |#1| |#2|) (-10 -7 (-15 -2649 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -3125 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -4317 (|#1| |#1| |#1|))) (-718 |#2|) (-372)) (T -776))
-((-4317 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3218 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-3125 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2228 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2588 (*1 *2 *2 *2) (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3)))) (-2649 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4)))))
-(-10 -7 (-15 -2649 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -3125 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -4317 (|#1| |#1| |#1|)))
-((-2169 (((-701 (-1242)) $ (-1242)) 26)) (-1712 (((-701 (-559)) $ (-559)) 25)) (-3976 (((-781) $ (-129)) 27)) (-1365 (((-701 (-130)) $ (-130)) 24)) (-3962 (((-701 (-1242)) $) 12)) (-2695 (((-701 (-1240)) $) 8)) (-3451 (((-701 (-1239)) $) 10)) (-2383 (((-701 (-559)) $) 13)) (-4039 (((-701 (-557)) $) 9)) (-3682 (((-701 (-556)) $) 11)) (-2584 (((-781) $ (-129)) 7)) (-2220 (((-701 (-130)) $) 14)) (-2778 (((-112) $) 31)) (-3007 (((-701 $) |#1| (-968)) 32)) (-1839 (($ $) 6)))
-(((-777 |#1|) (-141) (-1116)) (T -777))
-((-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-968)) (-4 *3 (-1116)) (-5 *2 (-701 *1)) (-4 *1 (-777 *3)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(-13 (-586) (-10 -8 (-15 -3007 ((-701 $) |t#1| (-968))) (-15 -2778 ((-112) $))))
-(((-175) . T) ((-537) . T) ((-586) . T) ((-870) . T))
-((-3001 (((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)) 71)) (-2825 (((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) 69)) (-1924 (((-574)) 85)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -1924 ((-574))) (-15 -2825 ((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -3001 ((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574)))) (-1260 (-574)) (-419 (-574) |#1|)) (T -778))
-((-3001 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1260 *3)) (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4)))) (-2825 (*1 *2) (-12 (-4 *3 (-1260 (-574))) (-5 *2 (-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574))))) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3)))) (-1924 (*1 *2) (-12 (-4 *3 (-1260 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4)) (-4 *4 (-419 *2 *3)))))
-(-10 -7 (-15 -1924 ((-574))) (-15 -2825 ((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))))) (-15 -3001 ((-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574)) (|:| |basisInv| (-699 (-574)))) (-574))))
-((-2864 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-779) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -779))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-779)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-779)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2951 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
-((-3233 (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))) 18) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193))) 17)) (-3426 (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))) 20) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193))) 19)))
-(((-780 |#1|) (-10 -7 (-15 -3233 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3233 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|))))) (-566)) (T -780))
-((-3426 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5)))))
-(-10 -7 (-15 -3233 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3233 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-966 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2354 (($ $ $) 10)) (-3290 (((-3 $ "failed") $ $) 15)) (-3933 (($ $ (-574)) 11)) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($ $) NIL)) (-2812 (($ $ $) NIL)) (-3943 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2887 (($ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 6 T CONST)) (-2153 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ $ $) NIL)))
-(((-781) (-13 (-803) (-736) (-10 -8 (-15 -2812 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -2472 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -3933 ($ $ (-574))) (-15 -2835 ($ $)) (-6 (-4461 "*"))))) (T -781))
-((-2812 (*1 *1 *1 *1) (-5 *1 (-781))) (-2801 (*1 *1 *1 *1) (-5 *1 (-781))) (-2887 (*1 *1 *1 *1) (-5 *1 (-781))) (-2472 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 (-781)) (|:| -3919 (-781)))) (-5 *1 (-781)))) (-2853 (*1 *1 *1 *1) (|partial| -5 *1 (-781))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))) (-2835 (*1 *1 *1) (-5 *1 (-781))))
-(-13 (-803) (-736) (-10 -8 (-15 -2812 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -2887 ($ $ $)) (-15 -2472 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -2853 ((-3 $ "failed") $ $)) (-15 -3933 ($ $ (-574))) (-15 -2835 ($ $)) (-6 (-4461 "*"))))
+((-2927 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-3516 (*1 *1 *1 *1) (-4 *1 (-773))) (-1736 (*1 *1 *1 *1) (-4 *1 (-773))))
+(-13 (-21) (-732) (-10 -8 (-15 -2927 ($ $ $ $)) (-15 -3516 ($ $ $)) (-15 -1736 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1118) . T))
+((-2956 (((-874) $) NIL) (($ (-576)) 10)))
+(((-774 |#1|) (-10 -8 (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-775)) (T -774))
+NIL
+(-10 -8 (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2710 (((-3 $ "failed") $) 43)) (-3133 (($ $ (-937)) 31) (($ $ (-783)) 38)) (-4077 (((-3 $ "failed") $) 41)) (-4192 (((-112) $) 37)) (-1643 (((-3 $ "failed") $) 42)) (-2128 (($ $ (-937)) 32) (($ $ (-783)) 39)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3516 (($ $ $) 28)) (-2956 (((-874) $) 12) (($ (-576)) 34)) (-3423 (((-783)) 35 T CONST)) (-2617 (((-112) $ $) 9)) (-2927 (($ $ $ $) 29)) (-1736 (($ $ $) 27)) (-2143 (($) 19 T CONST)) (-2155 (($) 36 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 33) (($ $ (-783)) 40)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30)))
+(((-775) (-141)) (T -775))
+((-3423 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))))
+(-13 (-773) (-734) (-10 -8 (-15 -3423 ((-783)) -1716) (-15 -2956 ($ (-576)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1118) . T))
+((-3387 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-4369 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-4343 (((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195)) 20) (((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19)))
+(((-776 |#1|) (-10 -7 (-15 -4343 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4343 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -4369 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -3387 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776))
+((-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-4369 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195)) (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -4343 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -4343 ((-968 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -4369 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -3387 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|)))
+((-3296 (((-176 (-576)) |#1|) 27)))
+(((-777 |#1|) (-10 -7 (-15 -3296 ((-176 (-576)) |#1|))) (-416)) (T -777))
+((-3296 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))))
+(-10 -7 (-15 -3296 ((-176 (-576)) |#1|)))
+((-2996 ((|#1| |#1| |#1|) 28)) (-3217 ((|#1| |#1| |#1|) 27)) (-3598 ((|#1| |#1| |#1|) 38)) (-4257 ((|#1| |#1| |#1|) 34)) (-2659 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2501 (((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|) 26)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -2501 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2996 (|#1| |#1| |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -3598 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778))
+((-3598 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4257 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2659 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2996 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3217 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2501 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))))
+(-10 -7 (-15 -2501 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2996 (|#1| |#1| |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -3598 (|#1| |#1| |#1|)))
+((-3668 (((-703 (-1244)) $ (-1244)) 26)) (-1701 (((-703 (-561)) $ (-561)) 25)) (-3358 (((-783) $ (-129)) 27)) (-3901 (((-703 (-130)) $ (-130)) 24)) (-3202 (((-703 (-1244)) $) 12)) (-1720 (((-703 (-1242)) $) 8)) (-1782 (((-703 (-1241)) $) 10)) (-1866 (((-703 (-561)) $) 13)) (-2736 (((-703 (-559)) $) 9)) (-3556 (((-703 (-558)) $) 11)) (-3185 (((-783) $ (-129)) 7)) (-4121 (((-703 (-130)) $) 14)) (-1355 (((-112) $) 31)) (-2886 (((-703 $) |#1| (-970)) 32)) (-3597 (($ $) 6)))
+(((-779 |#1|) (-141) (-1118)) (T -779))
+((-2886 (*1 *2 *3 *4) (-12 (-5 *4 (-970)) (-4 *3 (-1118)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(-13 (-588) (-10 -8 (-15 -2886 ((-703 $) |t#1| (-970))) (-15 -1355 ((-112) $))))
+(((-175) . T) ((-539) . T) ((-588) . T) ((-872) . T))
+((-2835 (((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-3701 (((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-3206 (((-576)) 85)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -3206 ((-576))) (-15 -3701 ((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2835 ((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1262 (-576)) (-421 (-576) |#1|)) (T -780))
+((-2835 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3701 (*1 *2) (-12 (-4 *3 (-1262 (-576))) (-5 *2 (-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-3206 (*1 *2) (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3)))))
+(-10 -7 (-15 -3206 ((-576))) (-15 -3701 ((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2835 ((-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576))))
+((-2869 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 20) (($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-781) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2956 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2956 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2956 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2956 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2216 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
+((-4390 (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))) 18) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195))) 17)) (-2766 (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))) 20) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195))) 19)))
+(((-782 |#1|) (-10 -7 (-15 -4390 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -4390 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|))))) (-568)) (T -782))
+((-2766 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5)))))
+(-10 -7 (-15 -4390 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -4390 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-968 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2847 (($ $ $) 10)) (-3798 (((-3 $ "failed") $ $) 15)) (-3938 (($ $ (-576)) 11)) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($ $) NIL)) (-2818 (($ $ $) NIL)) (-4192 (((-112) $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2892 (($ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 6 T CONST)) (-2155 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL)))
+(((-783) (-13 (-805) (-738) (-10 -8 (-15 -2818 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -1408 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2858 ((-3 $ "failed") $ $)) (-15 -3938 ($ $ (-576))) (-15 -2840 ($ $)) (-6 (-4463 "*"))))) (T -783))
+((-2818 (*1 *1 *1 *1) (-5 *1 (-783))) (-2806 (*1 *1 *1 *1) (-5 *1 (-783))) (-2892 (*1 *1 *1 *1) (-5 *1 (-783))) (-1408 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1758 (-783)) (|:| -3983 (-783)))) (-5 *1 (-783)))) (-2858 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-2840 (*1 *1 *1) (-5 *1 (-783))))
+(-13 (-805) (-738) (-10 -8 (-15 -2818 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -1408 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2858 ((-3 $ "failed") $ $)) (-15 -3938 ($ $ (-576))) (-15 -2840 ($ $)) (-6 (-4463 "*"))))
((|Integer|) (|%ige| |#1| 0))
-((-3426 (((-3 |#2| "failed") |#2| |#2| (-115) (-1193)) 37)))
-(((-782 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 |#2| "failed") |#2| |#2| (-115) (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -782))
-((-3426 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1219) (-973))))))
-(-10 -7 (-15 -3426 ((-3 |#2| "failed") |#2| |#2| (-115) (-1193))))
-((-2951 (((-784) |#1|) 8)))
-(((-783 |#1|) (-10 -7 (-15 -2951 ((-784) |#1|))) (-1234)) (T -783))
-((-2951 (*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1234)))))
-(-10 -7 (-15 -2951 ((-784) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 7)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)))
-(((-784) (-1116)) (T -784))
-NIL
-(-1116)
-((-2608 ((|#2| |#4|) 35)))
-(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2608 (|#2| |#4|))) (-462) (-1260 |#1|) (-734 |#1| |#2|) (-1260 |#3|)) (T -785))
-((-2608 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1260 *5)))))
-(-10 -7 (-15 -2608 (|#2| |#4|)))
-((-3612 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3869 (((-1289) (-1175) (-1175) |#4| |#5|) 33)) (-3604 ((|#4| |#4| |#5|) 74)) (-1747 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 79)) (-3662 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 16)))
-(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3612 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3604 (|#4| |#4| |#5|)) (-15 -1747 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -3869 ((-1289) (-1175) (-1175) |#4| |#5|)) (-15 -3662 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -786))
-((-3662 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3869 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1175)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *4 (-1081 *6 *7 *8)) (-5 *2 (-1289)) (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1087 *6 *7 *8 *4)))) (-1747 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3604 (*1 *2 *2 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *2 (-1081 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3)) (-4 *3 (-1087 *4 *5 *6 *2)))) (-3612 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3612 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3604 (|#4| |#4| |#5|)) (-15 -1747 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -3869 ((-1289) (-1175) (-1175) |#4| |#5|)) (-15 -3662 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)))
-((-1704 (((-3 (-1189 (-1189 |#1|)) "failed") |#4|) 51)) (-3955 (((-654 |#4|) |#4|) 22)) (-2535 ((|#4| |#4|) 17)))
-(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3955 ((-654 |#4|) |#4|)) (-15 -1704 ((-3 (-1189 (-1189 |#1|)) "failed") |#4|)) (-15 -2535 (|#4| |#4|))) (-358) (-337 |#1|) (-1260 |#2|) (-1260 |#3|) (-935)) (T -787))
-((-2535 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1260 *4)) (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1260 *5)) (-14 *6 (-935)))) (-1704 (*1 *2 *3) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6)) (-14 *7 (-935)))) (-3955 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5)) (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6)) (-14 *7 (-935)))))
-(-10 -7 (-15 -3955 ((-654 |#4|) |#4|)) (-15 -1704 ((-3 (-1189 (-1189 |#1|)) "failed") |#4|)) (-15 -2535 (|#4| |#4|)))
-((-3054 (((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|)) 72)) (-4329 (((-654 (-781)) |#1|) 20)))
-(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3054 ((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -4329 ((-654 (-781)) |#1|))) (-1260 |#4|) (-803) (-860) (-315) (-963 |#4| |#2| |#3|)) (T -788))
-((-4329 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7)) (-4 *3 (-1260 *6)) (-4 *7 (-963 *6 *4 *5)))) (-3054 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1260 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315)) (-4 *10 (-963 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-654 (-1189 *10))) (|:| |dterm| (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| *10))))) (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10)))) (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1189 *10)) (-5 *4 (-654 *6)) (-5 *5 (-654 *10)))))
-(-10 -7 (-15 -3054 ((-2 (|:| |deter| (-654 (-1189 |#5|))) (|:| |dterm| (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-654 |#1|)) (|:| |nlead| (-654 |#5|))) (-1189 |#5|) (-654 |#1|) (-654 |#5|))) (-15 -4329 ((-654 (-781)) |#1|)))
-((-3747 (((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|) 31)) (-3266 (((-654 |#1|) (-699 (-417 (-574))) |#1|) 21)) (-2451 (((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193)) 18) (((-966 (-417 (-574))) (-699 (-417 (-574)))) 17)))
-(((-789 |#1|) (-10 -7 (-15 -2451 ((-966 (-417 (-574))) (-699 (-417 (-574))))) (-15 -2451 ((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193))) (-15 -3266 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3747 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|))) (-13 (-372) (-858))) (T -789))
-((-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 (-2 (|:| |outval| *4) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 *4)))))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1193)) (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *5)) (-4 *5 (-13 (-372) (-858))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))))
-(-10 -7 (-15 -2451 ((-966 (-417 (-574))) (-699 (-417 (-574))))) (-15 -2451 ((-966 (-417 (-574))) (-699 (-417 (-574))) (-1193))) (-15 -3266 ((-654 |#1|) (-699 (-417 (-574))) |#1|)) (-15 -3747 ((-654 (-2 (|:| |outval| |#1|) (|:| |outmult| (-574)) (|:| |outvect| (-654 (-699 |#1|))))) (-699 (-417 (-574))) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 36)) (-4350 (((-654 |#2|) $) NIL)) (-4172 (((-1189 $) $ |#2|) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 |#2|)) NIL)) (-1978 (($ $) 30)) (-3591 (((-112) $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ $) 110 (|has| |#1| (-566)))) (-2676 (((-654 $) $ $) 123 (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (((-3 $ "failed") (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (((-3 $ "failed") (-966 |#1|)) NIL (-2833 (-12 (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-1008 (-574))))))) (((-3 (-1141 |#1| |#2|) "failed") $) 21)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#2| $) NIL) (($ (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (($ (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (($ (-966 |#1|)) NIL (-2833 (-12 (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574))))) (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-555)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-1008 (-574))))))) (((-1141 |#1| |#2|) $) NIL)) (-4047 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-566)))) (-1402 (($ $) NIL) (($ $ |#2|) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3709 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-1580 (((-112) $) NIL)) (-3959 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 81)) (-2669 (($ $) 136 (|has| |#1| (-462)))) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-1931 (($ $) NIL (|has| |#1| (-566)))) (-2449 (($ $) NIL (|has| |#1| (-566)))) (-1784 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2892 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3637 (($ $ |#1| (-541 |#2|) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) 57)) (-2993 (((-781) $) NIL)) (-2821 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3793 (($ $ $ $ $) 107 (|has| |#1| (-566)))) (-4063 ((|#2| $) 22)) (-4339 (($ (-1189 |#1|) |#2|) NIL) (($ (-1189 $) |#2|) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 38) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1420 (($ $ $) 63)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#2|) NIL)) (-2102 (((-112) $) NIL)) (-2043 (((-541 |#2|) $) NIL) (((-781) $ |#2|) NIL) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-2019 (((-781) $) 23)) (-3431 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3444 (((-3 |#2| "failed") $) NIL)) (-2949 (($ $) NIL (|has| |#1| (-462)))) (-1326 (($ $) NIL (|has| |#1| (-462)))) (-3561 (((-654 $) $) NIL)) (-2300 (($ $) 39)) (-3712 (($ $) NIL (|has| |#1| (-462)))) (-2723 (((-654 $) $) 43)) (-1399 (($ $) 41)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2091 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4128 (-781))) $ $) 96)) (-3351 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $) 78) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $ |#2|) NIL)) (-4431 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $) NIL) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $ |#2|) NIL)) (-2003 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2190 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4420 (((-1175) $) NIL)) (-3521 (($ $ $) 125 (|has| |#1| (-566)))) (-3950 (((-654 $) $) 32)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| |#2|) (|:| -2754 (-781))) "failed") $) NIL)) (-2897 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-3184 (($ $ $) NIL)) (-3792 (($ $) 24)) (-1624 (((-112) $ $) NIL)) (-1848 (((-112) $ $) NIL) (((-112) $ (-654 $)) NIL)) (-1857 (($ $ $) NIL)) (-4046 (($ $) 26)) (-3940 (((-1136) $) NIL)) (-1766 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-566)))) (-4156 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-566)))) (-1343 (((-112) $) 56)) (-1355 ((|#1| $) 58)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 ((|#1| |#1| $) 133 (|has| |#1| (-462))) (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2939 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-566)))) (-1338 (($ $ |#1|) 129 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2201 (($ $ |#1|) 128 (|has| |#1| (-566))) (($ $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-654 |#2|) (-654 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-654 |#2|) (-654 $)) NIL)) (-1924 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-3735 (((-541 |#2|) $) NIL) (((-781) $ |#2|) 45) (((-654 (-781)) $ (-654 |#2|)) NIL)) (-3021 (($ $) NIL)) (-3761 (($ $) 35)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546))))) (($ (-966 (-417 (-574)))) NIL (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193))))) (($ (-966 (-574))) NIL (-2833 (-12 (|has| |#1| (-38 (-574))) (|has| |#2| (-624 (-1193))) (-2084 (|has| |#1| (-38 (-417 (-574)))))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#2| (-624 (-1193)))))) (($ (-966 |#1|)) NIL (|has| |#2| (-624 (-1193)))) (((-1175) $) NIL (-12 (|has| |#1| (-1054 (-574))) (|has| |#2| (-624 (-1193))))) (((-966 |#1|) $) NIL (|has| |#2| (-624 (-1193))))) (-1732 ((|#1| $) 132 (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-966 |#1|) $) NIL (|has| |#2| (-624 (-1193)))) (((-1141 |#1| |#2|) $) 18) (($ (-1141 |#1| |#2|)) 19) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) 47) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 13 T CONST)) (-1760 (((-3 (-112) "failed") $ $) NIL)) (-2153 (($) 37 T CONST)) (-2217 (($ $ $ $ (-781)) 105 (|has| |#1| (-566)))) (-3971 (($ $ $ (-781)) 104 (|has| |#1| (-566)))) (-3585 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 75)) (-3074 (($ $ $) 85)) (** (($ $ (-935)) NIL) (($ $ (-781)) 70)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 62) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-790 |#1| |#2|) (-13 (-1081 |#1| (-541 |#2|) |#2|) (-623 (-1141 |#1| |#2|)) (-1054 (-1141 |#1| |#2|))) (-1065) (-860)) (T -790))
-NIL
-(-13 (-1081 |#1| (-541 |#2|) |#2|) (-623 (-1141 |#1| |#2|)) (-1054 (-1141 |#1| |#2|)))
-((-1785 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 13)))
-(((-791 |#1| |#2|) (-10 -7 (-15 -1785 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1065) (-1065)) (T -791))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))))
-(-10 -7 (-15 -1785 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 12)) (-4052 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-3391 (($ (-1189 |#1|)) NIL)) (-4172 (((-1189 $) $ (-1098)) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-4227 (((-654 $) $ $) 54 (|has| |#1| (-566)))) (-2982 (($ $ $) 50 (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2027 (($ $ (-781)) NIL)) (-2145 (($ $ (-781)) NIL)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL) (((-3 (-1189 |#1|) "failed") $) 10)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL) (((-1189 |#1|) $) NIL)) (-4047 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2617 (($ $ $) NIL)) (-1891 (($ $ $) 87 (|has| |#1| (-566)))) (-3959 (((-2 (|:| -1866 |#1|) (|:| -3758 $) (|:| -3919 $)) $ $) 86 (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-781) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3209 (($ $ (-781)) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-1420 (($ $ $) 27)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1098)) NIL) (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2043 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-3431 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2143 (((-1189 |#1|) $) NIL)) (-3444 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2091 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4128 (-781))) $ $) 37)) (-1394 (($ $ $) 41)) (-3128 (($ $ $) 47)) (-3351 (((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $) 46)) (-4420 (((-1175) $) NIL)) (-3521 (($ $ $) 56 (|has| |#1| (-566)))) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1098)) (|:| -2754 (-781))) "failed") $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-1766 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-566)))) (-4156 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-566)))) (-4100 (((-2 (|:| -4047 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-566)))) (-2325 (((-2 (|:| -4047 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-566)))) (-1343 (((-112) $) 13)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-2753 (($ $ (-781) |#1| $) 26)) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2939 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-566)))) (-1741 (((-2 (|:| -4047 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-566)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4293 (((-3 $ "failed") $ (-781)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1924 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3735 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2908 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1098)) NIL) (((-1189 |#1|) $) 7) (($ (-1189 |#1|)) 8) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 28 T CONST)) (-2153 (($) 32 T CONST)) (-3585 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) 40) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-792 |#1|) (-13 (-1260 |#1|) (-623 (-1189 |#1|)) (-1054 (-1189 |#1|)) (-10 -8 (-15 -2753 ($ $ (-781) |#1| $)) (-15 -1420 ($ $ $)) (-15 -2091 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4128 (-781))) $ $)) (-15 -1394 ($ $ $)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -3128 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -4227 ((-654 $) $ $)) (-15 -3521 ($ $ $)) (-15 -2939 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -1766 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -1741 ((-2 (|:| -4047 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2325 ((-2 (|:| -4047 |#1|) (|:| |coef1| $)) $ $)) (-15 -4100 ((-2 (|:| -4047 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1065)) (T -792))
-((-2753 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-1420 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-2091 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -4128 (-781)))) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-1394 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-3351 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1866 *3) (|:| |gap| (-781)) (|:| -3758 (-792 *3)) (|:| -3919 (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-1065)))) (-3128 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))) (-4227 (*1 *2 *1 *1) (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-3521 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1065)))) (-2939 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-4156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-1766 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-1741 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4047 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-2325 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4047 *3) (|:| |coef1| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))) (-4100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4047 *3) (|:| |coef2| (-792 *3)))) (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))))
-(-13 (-1260 |#1|) (-623 (-1189 |#1|)) (-1054 (-1189 |#1|)) (-10 -8 (-15 -2753 ($ $ (-781) |#1| $)) (-15 -1420 ($ $ $)) (-15 -2091 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4128 (-781))) $ $)) (-15 -1394 ($ $ $)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -3128 ($ $ $)) (IF (|has| |#1| (-566)) (PROGN (-15 -4227 ((-654 $) $ $)) (-15 -3521 ($ $ $)) (-15 -2939 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -1766 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -1741 ((-2 (|:| -4047 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2325 ((-2 (|:| -4047 |#1|) (|:| |coef1| $)) $ $)) (-15 -4100 ((-2 (|:| -4047 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-4250 ((|#1| (-781) |#1|) 33 (|has| |#1| (-38 (-417 (-574)))))) (-2638 ((|#1| (-781) |#1|) 23)) (-2407 ((|#1| (-781) |#1|) 35 (|has| |#1| (-38 (-417 (-574)))))))
-(((-793 |#1|) (-10 -7 (-15 -2638 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2407 (|#1| (-781) |#1|)) (-15 -4250 (|#1| (-781) |#1|))) |%noBranch|)) (-174)) (T -793))
-((-4250 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2407 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-2638 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -2638 (|#1| (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -2407 (|#1| (-781) |#1|)) (-15 -4250 (|#1| (-781) |#1|))) |%noBranch|))
-((-2864 (((-112) $ $) 7)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) 86)) (-3291 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2581 ((|#4| |#4| $) 90)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3129 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) 106)) (-2235 (((-112) |#4| $) 137)) (-2261 (((-112) |#4| $) 134)) (-4327 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) 105) (((-112) $) 104)) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-2423 (((-654 $) |#4| $) 130)) (-2570 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3655 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1608 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-2252 (((-654 |#4|) $) 108)) (-2897 (((-112) |#4| $) 100) (((-112) $) 96)) (-3184 ((|#4| |#4| $) 91)) (-1624 (((-112) $ $) 111)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) 101) (((-112) $) 97)) (-1857 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4014 (((-3 $ "failed") $ |#4|) 79)) (-2249 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3735 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3615 (($ $) 89)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4292 (((-781) $) 77 (|has| |#3| (-377)))) (-2981 (((-112) $ $) 9)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3708 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) 82)) (-3510 (((-112) |#4| $) 136)) (-4194 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-794 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -794))
-NIL
-(-13 (-1087 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T))
-((-2686 (((-3 (-388) "failed") (-324 |#1|) (-935)) 62 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-324 |#1|)) 54 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-388) "failed") (-417 (-966 |#1|)) (-935)) 41 (|has| |#1| (-566))) (((-3 (-388) "failed") (-417 (-966 |#1|))) 40 (|has| |#1| (-566))) (((-3 (-388) "failed") (-966 |#1|) (-935)) 31 (|has| |#1| (-1065))) (((-3 (-388) "failed") (-966 |#1|)) 30 (|has| |#1| (-1065)))) (-3084 (((-388) (-324 |#1|) (-935)) 99 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-324 |#1|)) 94 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-388) (-417 (-966 |#1|)) (-935)) 91 (|has| |#1| (-566))) (((-388) (-417 (-966 |#1|))) 90 (|has| |#1| (-566))) (((-388) (-966 |#1|) (-935)) 86 (|has| |#1| (-1065))) (((-388) (-966 |#1|)) 85 (|has| |#1| (-1065))) (((-388) |#1| (-935)) 76) (((-388) |#1|) 22)) (-1586 (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)) 71 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 (-171 |#1|))) 70 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|) (-935)) 63 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-324 |#1|)) 61 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935)) 46 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|)))) 45 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935)) 39 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-417 (-966 |#1|))) 38 (|has| |#1| (-566))) (((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)) 28 (|has| |#1| (-1065))) (((-3 (-171 (-388)) "failed") (-966 |#1|)) 26 (|has| |#1| (-1065))) (((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)) 18 (|has| |#1| (-174))) (((-3 (-171 (-388)) "failed") (-966 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4115 (((-171 (-388)) (-324 (-171 |#1|)) (-935)) 102 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 (-171 |#1|))) 101 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|) (-935)) 100 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-324 |#1|)) 98 (-12 (|has| |#1| (-566)) (|has| |#1| (-860)))) (((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935)) 93 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 (-171 |#1|)))) 92 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 |#1|)) (-935)) 89 (|has| |#1| (-566))) (((-171 (-388)) (-417 (-966 |#1|))) 88 (|has| |#1| (-566))) (((-171 (-388)) (-966 |#1|) (-935)) 84 (|has| |#1| (-1065))) (((-171 (-388)) (-966 |#1|)) 83 (|has| |#1| (-1065))) (((-171 (-388)) (-966 (-171 |#1|)) (-935)) 78 (|has| |#1| (-174))) (((-171 (-388)) (-966 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|) (-935)) 80 (|has| |#1| (-174))) (((-171 (-388)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-388)) |#1| (-935)) 27) (((-171 (-388)) |#1|) 25)))
-(((-795 |#1|) (-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-935))) (-15 -4115 ((-171 (-388)) |#1|)) (-15 -4115 ((-171 (-388)) |#1| (-935))) (IF (|has| |#1| (-174)) (PROGN (-15 -4115 ((-171 (-388)) (-171 |#1|))) (-15 -4115 ((-171 (-388)) (-171 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -3084 ((-388) (-966 |#1|))) (-15 -3084 ((-388) (-966 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 |#1|))) (-15 -4115 ((-171 (-388)) (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-966 |#1|)))) (-15 -3084 ((-388) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 |#1|))) (-15 -4115 ((-171 (-388)) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-966 |#1|))) (-15 -2686 ((-3 (-388) "failed") (-966 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 |#1|))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-417 (-966 |#1|)))) (-15 -2686 ((-3 (-388) "failed") (-417 (-966 |#1|)) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2686 ((-3 (-388) "failed") (-324 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|)) (-624 (-388))) (T -795))
-((-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2686 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2686 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-2686 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-1586 (*1 *2 *3) (|partial| -12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065)) (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-935)) (-4 *5 (-174)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4)))) (-4115 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-4115 (*1 *2 *3) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388))))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))) (-3084 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2)))))
-(-10 -7 (-15 -3084 ((-388) |#1|)) (-15 -3084 ((-388) |#1| (-935))) (-15 -4115 ((-171 (-388)) |#1|)) (-15 -4115 ((-171 (-388)) |#1| (-935))) (IF (|has| |#1| (-174)) (PROGN (-15 -4115 ((-171 (-388)) (-171 |#1|))) (-15 -4115 ((-171 (-388)) (-171 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -3084 ((-388) (-966 |#1|))) (-15 -3084 ((-388) (-966 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-966 |#1|))) (-15 -4115 ((-171 (-388)) (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -3084 ((-388) (-417 (-966 |#1|)))) (-15 -3084 ((-388) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)))) (-15 -4115 ((-171 (-388)) (-417 (-966 |#1|)) (-935))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))))) (-15 -4115 ((-171 (-388)) (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -3084 ((-388) (-324 |#1|))) (-15 -3084 ((-388) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 |#1|))) (-15 -4115 ((-171 (-388)) (-324 |#1|) (-935))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)))) (-15 -4115 ((-171 (-388)) (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 (-171 |#1|)) (-935)))) |%noBranch|) (IF (|has| |#1| (-1065)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-966 |#1|))) (-15 -2686 ((-3 (-388) "failed") (-966 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 |#1|))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-966 |#1|) (-935)))) |%noBranch|) (IF (|has| |#1| (-566)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-417 (-966 |#1|)))) (-15 -2686 ((-3 (-388) "failed") (-417 (-966 |#1|)) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 |#1|)) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-417 (-966 (-171 |#1|))) (-935))) (IF (|has| |#1| (-860)) (PROGN (-15 -2686 ((-3 (-388) "failed") (-324 |#1|))) (-15 -2686 ((-3 (-388) "failed") (-324 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 |#1|))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 |#1|) (-935))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)))) (-15 -1586 ((-3 (-171 (-388)) "failed") (-324 (-171 |#1|)) (-935)))) |%noBranch|)) |%noBranch|))
-((-1805 (((-935) (-1175)) 89)) (-2671 (((-3 (-388) "failed") (-1175)) 36)) (-2122 (((-388) (-1175)) 34)) (-3977 (((-935) (-1175)) 63)) (-3966 (((-1175) (-935)) 73)) (-2587 (((-1175) (-935)) 62)))
-(((-796) (-10 -7 (-15 -2587 ((-1175) (-935))) (-15 -3977 ((-935) (-1175))) (-15 -3966 ((-1175) (-935))) (-15 -1805 ((-935) (-1175))) (-15 -2122 ((-388) (-1175))) (-15 -2671 ((-3 (-388) "failed") (-1175))))) (T -796))
-((-2671 (*1 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796)))))
-(-10 -7 (-15 -2587 ((-1175) (-935))) (-15 -3977 ((-935) (-1175))) (-15 -3966 ((-1175) (-935))) (-15 -1805 ((-935) (-1175))) (-15 -2122 ((-388) (-1175))) (-15 -2671 ((-3 (-388) "failed") (-1175))))
-((-2864 (((-112) $ $) 7)) (-1547 (((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 16) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)) 14)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-797) (-141)) (T -797))
-((-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051)))))) (-1547 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1051)) (-5 *3 (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051)))))) (-1547 (*1 *2 *3 *2) (-12 (-4 *1 (-797)) (-5 *2 (-1051)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(-13 (-1116) (-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1547 ((-1051) (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227))) (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)) (|:| |extra| (-1051))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1547 ((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1051)))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-3600 (((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388))) 55) (((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 52)) (-3143 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 61)) (-2464 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 50)) (-4011 (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388))) 63) (((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388))) 62)))
-(((-798) (-10 -7 (-15 -4011 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -4011 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -2464 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -3600 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -3600 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3143 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))))) (T -798))
-((-3143 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-3600 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388)))) (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-3600 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-574)) (-5 *6 (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388)))) (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-2464 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-4011 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))) (-4011 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388))) (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289)) (-5 *1 (-798)))))
-(-10 -7 (-15 -4011 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -4011 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -2464 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -3600 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))) (-15 -3600 ((-1289) (-1284 (-388)) (-574) (-388) (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))) (-388) (-1284 (-388)) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)) (-1284 (-388)))) (-15 -3143 ((-1289) (-1284 (-388)) (-574) (-388) (-388) (-574) (-1 (-1289) (-1284 (-388)) (-1284 (-388)) (-388)))))
-((-2917 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 64)) (-2142 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 40)) (-4257 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 63)) (-3357 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 38)) (-3248 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 62)) (-2369 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574)) 24)) (-2787 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 41)) (-4221 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 39)) (-4038 (((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574)) 37)))
-(((-799) (-10 -7 (-15 -4038 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -4221 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2787 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2369 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3357 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2142 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3248 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4257 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2917 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))) (T -799))
-((-2917 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4257 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3248 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2142 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-3357 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2369 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-2787 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4221 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))) (-4038 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388)) (-5 *2 (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574)) (|:| |success| (-112)))) (-5 *1 (-799)) (-5 *5 (-574)))))
-(-10 -7 (-15 -4038 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -4221 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2787 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574) (-574))) (-15 -2369 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3357 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2142 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -3248 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -4257 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))) (-15 -2917 ((-2 (|:| -3079 (-388)) (|:| -2691 (-388)) (|:| |totalpts| (-574)) (|:| |success| (-112))) (-1 (-388) (-388)) (-388) (-388) (-388) (-388) (-574) (-574))))
-((-2376 (((-1229 |#1|) |#1| (-227) (-574)) 69)))
-(((-800 |#1|) (-10 -7 (-15 -2376 ((-1229 |#1|) |#1| (-227) (-574)))) (-990)) (T -800))
-((-2376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1229 *3)) (-5 *1 (-800 *3)) (-4 *3 (-990)))))
-(-10 -7 (-15 -2376 ((-1229 |#1|) |#1| (-227) (-574))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 25)) (-3290 (((-3 $ "failed") $ $) 27)) (-1430 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3090 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26) (($ (-574) $) 29)))
-(((-801) (-141)) (T -801))
-NIL
-(-13 (-805) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 25)) (-1430 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26)))
-(((-802) (-141)) (T -802))
-NIL
-(-13 (-804) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-804) . T) ((-860) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 25)) (-2354 (($ $ $) 28)) (-3290 (((-3 $ "failed") $ $) 27)) (-1430 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26)))
+((-2766 (((-3 |#2| "failed") |#2| |#2| (-115) (-1195)) 37)))
+(((-784 |#1| |#2|) (-10 -7 (-15 -2766 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -784))
+((-2766 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-975))))))
+(-10 -7 (-15 -2766 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195))))
+((-2956 (((-786) |#1|) 8)))
+(((-785 |#1|) (-10 -7 (-15 -2956 ((-786) |#1|))) (-1236)) (T -785))
+((-2956 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236)))))
+(-10 -7 (-15 -2956 ((-786) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 7)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)))
+(((-786) (-1118)) (T -786))
+NIL
+(-1118)
+((-3404 ((|#2| |#4|) 35)))
+(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3404 (|#2| |#4|))) (-464) (-1262 |#1|) (-736 |#1| |#2|) (-1262 |#3|)) (T -787))
+((-3404 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5)))))
+(-10 -7 (-15 -3404 (|#2| |#4|)))
+((-4077 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1587 (((-1291) (-1177) (-1177) |#4| |#5|) 33)) (-3998 ((|#4| |#4| |#5|) 74)) (-2029 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|) 79)) (-3384 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|) 16)))
+(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4077 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3998 (|#4| |#4| |#5|)) (-15 -2029 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1587 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -3384 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -788))
+((-3384 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1587 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *4 (-1083 *6 *7 *8)) (-5 *2 (-1291)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1089 *6 *7 *8 *4)))) (-2029 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3998 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *2 (-1083 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1089 *4 *5 *6 *2)))) (-4077 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(-10 -7 (-15 -4077 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3998 (|#4| |#4| |#5|)) (-15 -2029 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1587 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -3384 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)))
+((-1706 (((-3 (-1191 (-1191 |#1|)) "failed") |#4|) 51)) (-3125 (((-656 |#4|) |#4|) 22)) (-3898 ((|#4| |#4|) 17)))
+(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3125 ((-656 |#4|) |#4|)) (-15 -1706 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -3898 (|#4| |#4|))) (-360) (-339 |#1|) (-1262 |#2|) (-1262 |#3|) (-937)) (T -789))
+((-3898 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-937)))) (-1706 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-937)))) (-3125 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-937)))))
+(-10 -7 (-15 -3125 ((-656 |#4|) |#4|)) (-15 -1706 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -3898 (|#4| |#4|)))
+((-3249 (((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-2458 (((-656 (-783)) |#1|) 20)))
+(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3249 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -2458 ((-656 (-783)) |#1|))) (-1262 |#4|) (-805) (-862) (-317) (-965 |#4| |#2| |#3|)) (T -790))
+((-2458 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *6)) (-4 *7 (-965 *6 *4 *5)))) (-3249 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-965 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1191 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10)))))
+(-10 -7 (-15 -3249 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -2458 ((-656 (-783)) |#1|)))
+((-2912 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1623 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-4343 (((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195)) 18) (((-968 (-419 (-576))) (-701 (-419 (-576)))) 17)))
+(((-791 |#1|) (-10 -7 (-15 -4343 ((-968 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4343 ((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -1623 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2912 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791))
+((-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195)) (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -4343 ((-968 (-419 (-576))) (-701 (-419 (-576))))) (-15 -4343 ((-968 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -1623 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2912 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 36)) (-4352 (((-656 |#2|) $) NIL)) (-4174 (((-1191 $) $ |#2|) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-1980 (($ $) 30)) (-3874 (((-112) $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2628 (($ $ $) 110 (|has| |#1| (-568)))) (-2781 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (((-3 $ "failed") (-968 (-576))) NIL (-2838 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (((-3 $ "failed") (-968 |#1|)) NIL (-2838 (-12 (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-1010 (-576))))))) (((-3 (-1143 |#1| |#2|) "failed") $) 21)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#2| $) NIL) (($ (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-968 (-576))) NIL (-2838 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-968 |#1|)) NIL (-2838 (-12 (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-1010 (-576))))))) (((-1143 |#1| |#2|) $) NIL)) (-2799 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-1404 (($ $) NIL) (($ $ |#2|) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2540 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2938 (((-112) $) NIL)) (-3170 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 81)) (-2707 (($ $) 136 (|has| |#1| (-464)))) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3283 (($ $) NIL (|has| |#1| (-568)))) (-4322 (($ $) NIL (|has| |#1| (-568)))) (-4286 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3054 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3130 (($ $ |#1| (-543 |#2|) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) 57)) (-2747 (((-783) $) NIL)) (-3670 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2047 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2977 ((|#2| $) 22)) (-4341 (($ (-1191 |#1|) |#2|) NIL) (($ (-1191 $) |#2|) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4218 (($ $ $) 63)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#2|) NIL)) (-4294 (((-112) $) NIL)) (-1859 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2890 (((-783) $) 23)) (-2819 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1712 (((-3 |#2| "failed") $) NIL)) (-3585 (($ $) NIL (|has| |#1| (-464)))) (-1603 (($ $) NIL (|has| |#1| (-464)))) (-3616 (((-656 $) $) NIL)) (-2347 (($ $) 39)) (-2563 (($ $) NIL (|has| |#1| (-464)))) (-1983 (((-656 $) $) 43)) (-3477 (($ $) 41)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4191 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2318 (-783))) $ $) 96)) (-3212 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $) 78) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $ |#2|) NIL)) (-2247 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $) NIL) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $ |#2|) NIL)) (-2749 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3858 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2148 (((-1177) $) NIL)) (-4419 (($ $ $) 125 (|has| |#1| (-568)))) (-3074 (((-656 $) $) 32)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| |#2|) (|:| -2300 (-783))) "failed") $) NIL)) (-3103 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1992 (($ $ $) NIL)) (-3796 (($ $) 24)) (-3320 (((-112) $ $) NIL)) (-3661 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3748 (($ $ $) NIL)) (-2788 (($ $) 26)) (-3945 (((-1138) $) NIL)) (-4113 (((-2 (|:| -2892 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-1374 (((-2 (|:| -2892 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-1345 (((-112) $) 56)) (-1357 ((|#1| $) 58)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-3493 (((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-1674 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3962 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-3206 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2782 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-3008 (($ $) NIL)) (-1779 (($ $) 35)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-968 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-968 (-576))) NIL (-2838 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2085 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-968 |#1|)) NIL (|has| |#2| (-626 (-1195)))) (((-1177) $) NIL (-12 (|has| |#1| (-1056 (-576))) (|has| |#2| (-626 (-1195))))) (((-968 |#1|) $) NIL (|has| |#2| (-626 (-1195))))) (-1885 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-968 |#1|) $) NIL (|has| |#2| (-626 (-1195)))) (((-1143 |#1| |#2|) $) 18) (($ (-1143 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 13 T CONST)) (-2151 (((-3 (-112) "failed") $ $) NIL)) (-2155 (($) 37 T CONST)) (-4089 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-3301 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-3590 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) 75)) (-3081 (($ $ $) 85)) (** (($ $ (-937)) NIL) (($ $ (-783)) 70)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-792 |#1| |#2|) (-13 (-1083 |#1| (-543 |#2|) |#2|) (-625 (-1143 |#1| |#2|)) (-1056 (-1143 |#1| |#2|))) (-1067) (-862)) (T -792))
+NIL
+(-13 (-1083 |#1| (-543 |#2|) |#2|) (-625 (-1143 |#1| |#2|)) (-1056 (-1143 |#1| |#2|)))
+((-1787 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13)))
+(((-793 |#1| |#2|) (-10 -7 (-15 -1787 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1067) (-1067)) (T -793))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))))
+(-10 -7 (-15 -1787 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 12)) (-2862 (((-1286 |#1|) $ (-783)) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-2357 (($ (-1191 |#1|)) NIL)) (-4174 (((-1191 $) $ (-1100)) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3988 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2628 (($ $ $) 50 (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1708 (($ $ (-783)) NIL)) (-1546 (($ $ (-783)) NIL)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL) (((-3 (-1191 |#1|) "failed") $) 10)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL) (((-1191 |#1|) $) NIL)) (-2799 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-3497 (($ $ $) NIL)) (-4055 (($ $ $) 87 (|has| |#1| (-568)))) (-3170 (((-2 (|:| -1868 |#1|) (|:| -1758 $) (|:| -3983 $)) $ $) 86 (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-783) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-4341 (($ (-1191 |#1|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-4162 (($ $ (-783)) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-4218 (($ $ $) 27)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1100)) NIL) (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1859 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2819 (($ (-1 (-783) (-783)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1525 (((-1191 |#1|) $) NIL)) (-1712 (((-3 (-1100) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4191 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2318 (-783))) $ $) 37)) (-1602 (($ $ $) 41)) (-2691 (($ $ $) 47)) (-3212 (((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $) 46)) (-2148 (((-1177) $) NIL)) (-4419 (($ $ $) 56 (|has| |#1| (-568)))) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1100)) (|:| -2300 (-783))) "failed") $) NIL)) (-2254 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) NIL (|has| |#1| (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-4113 (((-2 (|:| -2892 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-1374 (((-2 (|:| -2892 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-2073 (((-2 (|:| -2799 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-2579 (((-2 (|:| -2799 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-1345 (((-112) $) 13)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2288 (($ $ (-783) |#1| $) 26)) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-3493 (((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1963 (((-2 (|:| -2799 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3375 (((-3 $ "failed") $ (-783)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3206 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2782 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-3224 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1100)) NIL) (((-1191 |#1|) $) 7) (($ (-1191 |#1|)) 8) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 28 T CONST)) (-2155 (($) 32 T CONST)) (-3590 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) 40) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-794 |#1|) (-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1056 (-1191 |#1|)) (-10 -8 (-15 -2288 ($ $ (-783) |#1| $)) (-15 -4218 ($ $ $)) (-15 -4191 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2318 (-783))) $ $)) (-15 -1602 ($ $ $)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2691 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3988 ((-656 $) $ $)) (-15 -4419 ($ $ $)) (-15 -3493 ((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1374 ((-2 (|:| -2892 $) (|:| |coef1| $)) $ $)) (-15 -4113 ((-2 (|:| -2892 $) (|:| |coef2| $)) $ $)) (-15 -1963 ((-2 (|:| -2799 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2579 ((-2 (|:| -2799 |#1|) (|:| |coef1| $)) $ $)) (-15 -2073 ((-2 (|:| -2799 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1067)) (T -794))
+((-2288 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-4218 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-4191 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2318 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-3212 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1868 *3) (|:| |gap| (-783)) (|:| -1758 (-794 *3)) (|:| -3983 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1067)))) (-2691 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))) (-3988 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-4419 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1067)))) (-3493 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2892 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1374 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2892 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-4113 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2892 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-1963 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2799 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-2579 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2799 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))) (-2073 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2799 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))))
+(-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1056 (-1191 |#1|)) (-10 -8 (-15 -2288 ($ $ (-783) |#1| $)) (-15 -4218 ($ $ $)) (-15 -4191 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2318 (-783))) $ $)) (-15 -1602 ($ $ $)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2691 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3988 ((-656 $) $ $)) (-15 -4419 ($ $ $)) (-15 -3493 ((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1374 ((-2 (|:| -2892 $) (|:| |coef1| $)) $ $)) (-15 -4113 ((-2 (|:| -2892 $) (|:| |coef2| $)) $ $)) (-15 -1963 ((-2 (|:| -2799 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2579 ((-2 (|:| -2799 |#1|) (|:| |coef1| $)) $ $)) (-15 -2073 ((-2 (|:| -2799 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4178 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-2402 ((|#1| (-783) |#1|) 23)) (-2063 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576)))))))
+(((-795 |#1|) (-10 -7 (-15 -2402 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2063 (|#1| (-783) |#1|)) (-15 -4178 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795))
+((-4178 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2063 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2402 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -2402 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2063 (|#1| (-783) |#1|)) (-15 -4178 (|#1| (-783) |#1|))) |%noBranch|))
+((-2869 (((-112) $ $) 7)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) 86)) (-3809 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) 102) (((-112) $) 98)) (-3276 ((|#4| |#4| $) 93)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 127)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-2940 (((-3 $ "failed") $) 83)) (-3164 ((|#4| |#4| $) 90)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2705 ((|#4| |#4| $) 88)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) 106)) (-3062 (((-112) |#4| $) 137)) (-3278 (((-112) |#4| $) 134)) (-2445 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) 105) (((-112) $) 104)) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 128)) (-3338 (((-3 |#4| "failed") $) 84)) (-2196 (((-656 $) |#4| $) 130)) (-3036 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3318 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3187 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3200 (((-656 |#4|) $) 108)) (-3103 (((-112) |#4| $) 100) (((-112) $) 96)) (-1992 ((|#4| |#4| $) 91)) (-3320 (((-112) $ $) 111)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-3945 (((-1138) $) 11)) (-2930 (((-3 |#4| "failed") $) 85)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2452 (((-3 $ "failed") $ |#4|) 79)) (-3167 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-2782 (((-783) $) 107)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-4104 (($ $) 89)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3364 (((-783) $) 77 (|has| |#3| (-379)))) (-2617 (((-112) $ $) 9)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2526 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) 82)) (-4300 (((-112) |#4| $) 136)) (-3684 (((-112) |#3| $) 81)) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -796))
+NIL
+(-13 (-1089 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T))
+((-2889 (((-3 (-390) "failed") (-326 |#1|) (-937)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-968 |#1|)) (-937)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-968 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-968 |#1|) (-937)) 31 (|has| |#1| (-1067))) (((-3 (-390) "failed") (-968 |#1|)) 30 (|has| |#1| (-1067)))) (-3090 (((-390) (-326 |#1|) (-937)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-968 |#1|)) (-937)) 91 (|has| |#1| (-568))) (((-390) (-419 (-968 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-968 |#1|) (-937)) 86 (|has| |#1| (-1067))) (((-390) (-968 |#1|)) 85 (|has| |#1| (-1067))) (((-390) |#1| (-937)) 76) (((-390) |#1|) 22)) (-2994 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-937)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-968 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)) 28 (|has| |#1| (-1067))) (((-3 (-171 (-390)) "failed") (-968 |#1|)) 26 (|has| |#1| (-1067))) (((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-968 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4123 (((-171 (-390)) (-326 (-171 |#1|)) (-937)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-937)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 |#1|)) (-937)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-968 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-968 |#1|) (-937)) 84 (|has| |#1| (-1067))) (((-171 (-390)) (-968 |#1|)) 83 (|has| |#1| (-1067))) (((-171 (-390)) (-968 (-171 |#1|)) (-937)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-968 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-937)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-937)) 27) (((-171 (-390)) |#1|) 25)))
+(((-797 |#1|) (-10 -7 (-15 -3090 ((-390) |#1|)) (-15 -3090 ((-390) |#1| (-937))) (-15 -4123 ((-171 (-390)) |#1|)) (-15 -4123 ((-171 (-390)) |#1| (-937))) (IF (|has| |#1| (-174)) (PROGN (-15 -4123 ((-171 (-390)) (-171 |#1|))) (-15 -4123 ((-171 (-390)) (-171 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-968 (-171 |#1|)))) (-15 -4123 ((-171 (-390)) (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -3090 ((-390) (-968 |#1|))) (-15 -3090 ((-390) (-968 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-968 |#1|))) (-15 -4123 ((-171 (-390)) (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3090 ((-390) (-419 (-968 |#1|)))) (-15 -3090 ((-390) (-419 (-968 |#1|)) (-937))) (-15 -4123 ((-171 (-390)) (-419 (-968 |#1|)))) (-15 -4123 ((-171 (-390)) (-419 (-968 |#1|)) (-937))) (-15 -4123 ((-171 (-390)) (-419 (-968 (-171 |#1|))))) (-15 -4123 ((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -3090 ((-390) (-326 |#1|))) (-15 -3090 ((-390) (-326 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-326 |#1|))) (-15 -4123 ((-171 (-390)) (-326 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4123 ((-171 (-390)) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-968 |#1|))) (-15 -2889 ((-3 (-390) "failed") (-968 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 |#1|))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-419 (-968 |#1|)))) (-15 -2889 ((-3 (-390) "failed") (-419 (-968 |#1|)) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2889 ((-3 (-390) "failed") (-326 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797))
+((-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2889 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-2994 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-4123 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))))
+(-10 -7 (-15 -3090 ((-390) |#1|)) (-15 -3090 ((-390) |#1| (-937))) (-15 -4123 ((-171 (-390)) |#1|)) (-15 -4123 ((-171 (-390)) |#1| (-937))) (IF (|has| |#1| (-174)) (PROGN (-15 -4123 ((-171 (-390)) (-171 |#1|))) (-15 -4123 ((-171 (-390)) (-171 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-968 (-171 |#1|)))) (-15 -4123 ((-171 (-390)) (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -3090 ((-390) (-968 |#1|))) (-15 -3090 ((-390) (-968 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-968 |#1|))) (-15 -4123 ((-171 (-390)) (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3090 ((-390) (-419 (-968 |#1|)))) (-15 -3090 ((-390) (-419 (-968 |#1|)) (-937))) (-15 -4123 ((-171 (-390)) (-419 (-968 |#1|)))) (-15 -4123 ((-171 (-390)) (-419 (-968 |#1|)) (-937))) (-15 -4123 ((-171 (-390)) (-419 (-968 (-171 |#1|))))) (-15 -4123 ((-171 (-390)) (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -3090 ((-390) (-326 |#1|))) (-15 -3090 ((-390) (-326 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-326 |#1|))) (-15 -4123 ((-171 (-390)) (-326 |#1|) (-937))) (-15 -4123 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4123 ((-171 (-390)) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1067)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-968 |#1|))) (-15 -2889 ((-3 (-390) "failed") (-968 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 |#1|))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-968 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-419 (-968 |#1|)))) (-15 -2889 ((-3 (-390) "failed") (-419 (-968 |#1|)) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 |#1|)) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-419 (-968 (-171 |#1|))) (-937))) (IF (|has| |#1| (-862)) (PROGN (-15 -2889 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2889 ((-3 (-390) "failed") (-326 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-937))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -2994 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|))
+((-1347 (((-937) (-1177)) 89)) (-2729 (((-3 (-390) "failed") (-1177)) 36)) (-1364 (((-390) (-1177)) 34)) (-3369 (((-937) (-1177)) 63)) (-3247 (((-1177) (-937)) 73)) (-3207 (((-1177) (-937)) 62)))
+(((-798) (-10 -7 (-15 -3207 ((-1177) (-937))) (-15 -3369 ((-937) (-1177))) (-15 -3247 ((-1177) (-937))) (-15 -1347 ((-937) (-1177))) (-15 -1364 ((-390) (-1177))) (-15 -2729 ((-3 (-390) "failed") (-1177))))) (T -798))
+((-2729 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798)))))
+(-10 -7 (-15 -3207 ((-1177) (-937))) (-15 -3369 ((-937) (-1177))) (-15 -3247 ((-1177) (-937))) (-15 -1347 ((-937) (-1177))) (-15 -1364 ((-390) (-1177))) (-15 -2729 ((-3 (-390) "failed") (-1177))))
+((-2869 (((-112) $ $) 7)) (-3826 (((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 16) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)) 14)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-799) (-141)) (T -799))
+((-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053)))))) (-3826 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1053)) (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053)))))) (-3826 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1053)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(-13 (-1118) (-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3826 ((-1053) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1053))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3826 ((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1053)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3956 (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 55) (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 52)) (-2837 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 61)) (-4441 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 50)) (-2412 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 63) (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 62)))
+(((-800) (-10 -7 (-15 -2412 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2412 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -4441 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3956 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3956 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2837 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))))) (T -800))
+((-2837 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3956 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3956 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-4441 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2412 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-2412 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))))
+(-10 -7 (-15 -2412 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -2412 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -4441 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3956 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3956 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -2837 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))))
+((-3312 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-1513 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-4243 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-3267 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-1442 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-1734 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-1443 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3936 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-2724 (((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37)))
+(((-801) (-10 -7 (-15 -2724 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3936 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1443 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1734 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3267 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1513 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1442 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4243 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3312 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801))
+((-3312 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4243 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1442 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1513 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3267 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1734 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1443 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3936 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2724 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))))
+(-10 -7 (-15 -2724 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3936 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1443 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1734 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3267 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1513 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1442 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4243 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3312 ((-2 (|:| -3084 (-390)) (|:| -2696 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))
+((-1809 (((-1231 |#1|) |#1| (-227) (-576)) 69)))
+(((-802 |#1|) (-10 -7 (-15 -1809 ((-1231 |#1|) |#1| (-227) (-576)))) (-992)) (T -802))
+((-1809 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3)) (-5 *1 (-802 *3)) (-4 *3 (-992)))))
+(-10 -7 (-15 -1809 ((-1231 |#1|) |#1| (-227) (-576))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-4335 (($) 24 T CONST)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3096 (($ $ $) 31) (($ $) 30)) (-3081 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26) (($ (-576) $) 29)))
(((-803) (-141)) (T -803))
-((-2354 (*1 *1 *1 *1) (-4 *1 (-803))))
-(-13 (-805) (-10 -8 (-15 -2354 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22)))
+NIL
+(-13 (-807) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 25)) (-4335 (($) 24 T CONST)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3081 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26)))
(((-804) (-141)) (T -804))
NIL
-(-13 (-860) (-25))
-(((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 25)) (-3290 (((-3 $ "failed") $ $) 27)) (-1430 (($) 24 T CONST)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3074 (($ $ $) 21)) (* (($ (-935) $) 22) (($ (-781) $) 26)))
+(-13 (-806) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-806) . T) ((-862) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 25)) (-2847 (($ $ $) 28)) (-3798 (((-3 $ "failed") $ $) 27)) (-4335 (($) 24 T CONST)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3081 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26)))
(((-805) (-141)) (T -805))
-NIL
-(-13 (-802) (-132))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-802) . T) ((-804) . T) ((-860) . T) ((-1116) . T))
-((-4311 (((-112) $) 42)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 43)) (-3701 (((-3 (-417 (-574)) "failed") $) 78)) (-4391 (((-112) $) 72)) (-3805 (((-417 (-574)) $) 76)) (-2608 ((|#2| $) 26)) (-1785 (($ (-1 |#2| |#2|) $) 23)) (-1328 (($ $) 58)) (-1844 (((-546) $) 67)) (-4090 (($ $) 21)) (-2951 (((-872) $) 53) (($ (-574)) 40) (($ |#2|) 38) (($ (-417 (-574))) NIL)) (-3070 (((-781)) 10)) (-4107 ((|#2| $) 71)) (-2986 (((-112) $ $) 30)) (-3009 (((-112) $ $) 69)) (-3090 (($ $) 32) (($ $ $) NIL)) (-3074 (($ $ $) 31)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-806 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4107 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-807 |#2|) (-174)) (T -806))
-((-3070 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4)) (-4 *3 (-807 *4)))))
-(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4107 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1496 (((-781)) 58 (|has| |#1| (-377)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 100 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 94)) (-2216 (((-574) $) 99 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 96 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 95)) (-3612 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 84)) (-3701 (((-3 (-417 (-574)) "failed") $) 71 (|has| |#1| (-555)))) (-4391 (((-112) $) 73 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 72 (|has| |#1| (-555)))) (-2835 (($) 61 (|has| |#1| (-377)))) (-3943 (((-112) $) 35)) (-2446 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2608 ((|#1| $) 76)) (-3634 (($ $ $) 67 (|has| |#1| (-860)))) (-2976 (($ $ $) 66 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 86)) (-3507 (((-935) $) 60 (|has| |#1| (-377)))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 70 (|has| |#1| (-372)))) (-2591 (($ (-935)) 59 (|has| |#1| (-377)))) (-2789 ((|#1| $) 81)) (-3481 ((|#1| $) 82)) (-3464 ((|#1| $) 83)) (-2352 ((|#1| $) 77)) (-3262 ((|#1| $) 78)) (-2033 ((|#1| $) 79)) (-3725 ((|#1| $) 80)) (-3940 (((-1136) $) 11)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 92 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 90 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 89 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 88 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 87 (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) 93 (|has| |#1| (-294 |#1| |#1|)))) (-1844 (((-546) $) 68 (|has| |#1| (-624 (-546))))) (-4090 (($ $) 85)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 98 (|has| |#1| (-1054 (-417 (-574)))))) (-2705 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-4107 ((|#1| $) 74 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 64 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 63 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 65 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 62 (|has| |#1| (-860)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-807 |#1|) (-141) (-174)) (T -807))
-((-4090 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-2446 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3701 (*1 *2 *1) (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
-(-13 (-38 |t#1|) (-421 |t#1|) (-347 |t#1|) (-10 -8 (-15 -4090 ($ $)) (-15 -4223 (|t#1| $)) (-15 -3464 (|t#1| $)) (-15 -3481 (|t#1| $)) (-15 -2789 (|t#1| $)) (-15 -3725 (|t#1| $)) (-15 -2033 (|t#1| $)) (-15 -3262 (|t#1| $)) (-15 -2352 (|t#1| $)) (-15 -2608 (|t#1| $)) (-15 -2446 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-377)) (-6 (-377)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -4107 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -1328 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-377) |has| |#1| (-377)) ((-347 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) |has| |#1| (-294 |#1| |#1|)))
-((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-807 |#2|) (-174) (-807 |#4|) (-174)) (T -808))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5)))))
-(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-1015 |#1|) "failed") $) 35) (((-3 (-574) "failed") $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2216 ((|#1| $) NIL) (((-1015 |#1|) $) 33) (((-574) $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-574))) (|has| |#1| (-1054 (-574))))) (((-417 (-574)) $) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-3612 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 16)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4391 (((-112) $) NIL (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2835 (($) NIL (|has| |#1| (-377)))) (-3943 (((-112) $) NIL)) (-2446 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1015 |#1|) (-1015 |#1|)) 29)) (-2608 ((|#1| $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-2789 ((|#1| $) 22)) (-3481 ((|#1| $) 20)) (-3464 ((|#1| $) 18)) (-2352 ((|#1| $) 26)) (-3262 ((|#1| $) 25)) (-2033 ((|#1| $) 24)) (-3725 ((|#1| $) 23)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-4090 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1015 |#1|)) 30) (($ (-417 (-574))) NIL (-2833 (|has| (-1015 |#1|) (-1054 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-4107 ((|#1| $) NIL (|has| |#1| (-1076)))) (-2141 (($) 8 T CONST)) (-2153 (($) 12 T CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-809 |#1|) (-13 (-807 |#1|) (-421 (-1015 |#1|)) (-10 -8 (-15 -2446 ($ (-1015 |#1|) (-1015 |#1|))))) (-174)) (T -809))
-((-2446 (*1 *1 *2 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3)))))
-(-13 (-807 |#1|) (-421 (-1015 |#1|)) (-10 -8 (-15 -2446 ($ (-1015 |#1|) (-1015 |#1|)))))
-((-2864 (((-112) $ $) 7)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-1364 (((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2986 (((-112) $ $) 6)))
-(((-810) (-141)) (T -810))
-((-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-810)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)))))) (-1364 (*1 *2 *3) (-12 (-4 *1 (-810)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1051)))))
-(-13 (-1116) (-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1364 ((-1051) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-4226 (((-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#3| |#2| (-1193)) 19)))
-(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -4226 ((-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#3| |#2| (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973)) (-666 |#2|)) (T -811))
-((-4226 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-4 *4 (-13 (-29 *6) (-1219) (-973))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1895 (-654 *4)))) (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4)))))
-(-10 -7 (-15 -4226 ((-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#3| |#2| (-1193))))
-((-3426 (((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)) 28) (((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193)) 18) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193)) 24) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193)) 26) (((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193)) 37) (((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193)) 35)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193))) (-15 -3426 ((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193))) (-15 -3426 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3426 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -812))
-((-3426 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-812 *6 *2)))) (-3426 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2)) (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-5 *1 (-812 *6 *2)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1193)) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1895 (-654 *3))) *3 "failed")) (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1219) (-973))))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1895 (-654 *7))) *7 "failed")) (-5 *1 (-812 *6 *7)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)))) (-3426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1193)) (-4 *6 (-13 (-29 *5) (-1219) (-973))) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-1284 *6))) (-5 *1 (-812 *5 *6)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973))) (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7))))) (-5 *1 (-812 *6 *7)) (-5 *4 (-1284 *7)))))
-(-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-699 |#2|) (-1284 |#2|) (-1193))) (-15 -3426 ((-3 (-654 (-1284 |#2|)) "failed") (-699 |#2|) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 (-302 |#2|)) (-654 (-115)) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#2|)) (|:| -1895 (-654 (-1284 |#2|)))) "failed") (-654 |#2|) (-654 (-115)) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") (-302 |#2|) (-115) (-1193))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -1895 (-654 |#2|))) |#2| "failed") |#2| (-115) (-1193))) (-15 -3426 ((-3 |#2| "failed") (-302 |#2|) (-115) (-302 |#2|) (-654 |#2|))) (-15 -3426 ((-3 |#2| "failed") |#2| (-115) (-302 |#2|) (-654 |#2|))))
-((-2437 (($) 9)) (-2068 (((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1772 (((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3705 (($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) 24)) (-1940 (($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) 22)) (-3844 (((-1289)) 11)))
-(((-813) (-10 -8 (-15 -2437 ($)) (-15 -3844 ((-1289))) (-15 -1772 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1940 ($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -3705 ($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2068 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -813))
-((-2068 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))) (-5 *1 (-813)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))) (-5 *1 (-813)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-5 *1 (-813)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-813)))) (-3844 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-813)))) (-2437 (*1 *1) (-5 *1 (-813))))
-(-10 -8 (-15 -2437 ($)) (-15 -3844 ((-1289))) (-15 -1772 ((-654 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1940 ($ (-654 (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388)))))))) (-15 -3705 ($ (-2 (|:| -3667 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1916 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))))))) (-15 -2068 ((-3 (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388)) (|:| |expense| (-388)) (|:| |accuracy| (-388)) (|:| |intermediateResults| (-388))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-3087 ((|#2| |#2| (-1193)) 17)) (-3417 ((|#2| |#2| (-1193)) 56)) (-1671 (((-1 |#2| |#2|) (-1193)) 11)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -3087 (|#2| |#2| (-1193))) (-15 -3417 (|#2| |#2| (-1193))) (-15 -1671 ((-1 |#2| |#2|) (-1193)))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)) (-13 (-29 |#1|) (-1219) (-973))) (T -814))
-((-1671 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-13 (-29 *4) (-1219) (-973))))) (-3417 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973))))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973))))))
-(-10 -7 (-15 -3087 (|#2| |#2| (-1193))) (-15 -3417 (|#2| |#2| (-1193))) (-15 -1671 ((-1 |#2| |#2|) (-1193))))
-((-3426 (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388)) 128) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388)) 129) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388)) 131) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388)) 133) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388)) 134) (((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388))) 136) (((-1051) (-818) (-1079)) 120) (((-1051) (-818)) 121)) (-1879 (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079)) 80) (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818)) 82)))
-(((-815) (-10 -7 (-15 -3426 ((-1051) (-818))) (-15 -3426 ((-1051) (-818) (-1079))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079))))) (T -815))
-((-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-815)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388))) (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-815)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1051)) (-5 *1 (-815)))))
-(-10 -7 (-15 -3426 ((-1051) (-818))) (-15 -3426 ((-1051) (-818) (-1079))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388))) (-15 -3426 ((-1051) (-1284 (-324 (-388))) (-388) (-388) (-654 (-388)) (-324 (-388)) (-654 (-388)) (-388) (-388))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-818) (-1079))))
-((-2893 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1895 (-654 |#4|))) (-663 |#4|) |#4|) 33)))
-(((-816 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2893 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1895 (-654 |#4|))) (-663 |#4|) |#4|))) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|)) (T -816))
-((-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-816 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2893 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1895 (-654 |#4|))) (-663 |#4|) |#4|)))
-((-2212 (((-2 (|:| -4097 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))) 53)) (-2602 (((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4| |#2|) 62) (((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4|) 61) (((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3| |#2|) 20) (((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3|) 21)) (-2885 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4396 ((|#2| |#3| (-654 (-417 |#2|))) 109) (((-3 |#2| "failed") |#3| (-417 |#2|)) 105)))
-(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4396 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4396 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3| |#2|)) (-15 -2885 (|#2| |#3| |#1|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4| |#2|)) (-15 -2885 (|#2| |#4| |#1|)) (-15 -2212 ((-2 (|:| -4097 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-417 (-574)))) (-1260 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -817))
-((-2212 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-2 (|:| -4097 *7) (|:| |rh| (-654 (-417 *6))))) (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6))) (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6))))) (-2885 (*1 *2 *3 *4) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *5 *3)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-666 *2)) (-4 *3 (-666 (-417 *2))))) (-2602 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2707 *4)))) (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4)) (-4 *3 (-666 (-417 *4))))) (-2602 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2707 *5)))) (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 (-417 *5))))) (-2885 (*1 *2 *3 *4) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))) (-2602 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2707 *4)))) (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4)) (-4 *6 (-666 (-417 *4))))) (-2602 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2707 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-4396 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1260 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 (-417 *2))))) (-4396 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1260 *5)) (-5 *1 (-817 *5 *2 *3 *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *6 (-666 *4)))))
-(-10 -7 (-15 -4396 ((-3 |#2| "failed") |#3| (-417 |#2|))) (-15 -4396 (|#2| |#3| (-654 (-417 |#2|)))) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#3| |#2|)) (-15 -2885 (|#2| |#3| |#1|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4|)) (-15 -2602 ((-654 (-2 (|:| -3332 |#2|) (|:| -2707 |#2|))) |#4| |#2|)) (-15 -2885 (|#2| |#4| |#1|)) (-15 -2212 ((-2 (|:| -4097 |#3|) (|:| |rh| (-654 (-417 |#2|)))) |#4| (-654 (-417 |#2|)))))
-((-2864 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-818) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -818))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-818)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
-((-4202 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|)) 154)) (-3098 (((-654 (-2 (|:| |poly| |#2|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 52)) (-4151 (((-654 (-2 (|:| |deg| (-781)) (|:| -4097 |#2|))) |#3|) 122)) (-1451 ((|#2| |#3|) 42)) (-1790 (((-654 (-2 (|:| -1714 |#1|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|)) 99)) (-2544 ((|#3| |#3| (-417 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
-(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1451 (|#2| |#3|)) (-15 -4151 ((-654 (-2 (|:| |deg| (-781)) (|:| -4097 |#2|))) |#3|)) (-15 -1790 ((-654 (-2 (|:| -1714 |#1|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3098 ((-654 (-2 (|:| |poly| |#2|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -4202 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2544 (|#3| |#3| |#2|)) (-15 -2544 (|#3| |#3| (-417 |#2|)))) (-13 (-372) (-148) (-1054 (-417 (-574)))) (-1260 |#1|) (-666 |#2|) (-666 (-417 |#2|))) (T -819))
-((-2544 (*1 *2 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))) (-2544 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-1260 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3)) (-4 *5 (-666 (-417 *3))))) (-4202 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-654 *7) *7 (-1189 *7))) (-5 *5 (-1 (-428 *7) *7)) (-4 *7 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4097 *3)))) (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7)) (-4 *8 (-666 (-417 *7))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4097 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-1790 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -1714 *5) (|:| -4097 *3)))) (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6)) (-4 *7 (-666 (-417 *6))))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4097 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-666 (-417 *5))))) (-1451 (*1 *2 *3) (-12 (-4 *2 (-1260 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2)) (-4 *5 (-666 (-417 *2))))))
-(-10 -7 (-15 -1451 (|#2| |#3|)) (-15 -4151 ((-654 (-2 (|:| |deg| (-781)) (|:| -4097 |#2|))) |#3|)) (-15 -1790 ((-654 (-2 (|:| -1714 |#1|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -3098 ((-654 (-2 (|:| |poly| |#2|) (|:| -4097 |#3|))) |#3| (-1 (-654 |#1|) |#2|))) (-15 -4202 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 |#3|))) |#3| (-1 (-654 |#2|) |#2| (-1189 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2544 (|#3| |#3| |#2|)) (-15 -2544 (|#3| |#3| (-417 |#2|))))
-((-1594 (((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|))) 147) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|)) 146) (((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|))) 141) (((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|)) 139)) (-3498 ((|#2| (-664 |#2| (-417 |#2|))) 88) ((|#2| (-663 (-417 |#2|))) 91)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -1594 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -1594 ((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1594 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -1594 ((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3498 (|#2| (-663 (-417 |#2|)))) (-15 -3498 (|#2| (-664 |#2| (-417 |#2|))))) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -820))
-((-3498 (*1 *2 *3) (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| -1895 (-654 (-417 *6))) (|:| -3479 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-820 *5 *6)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| -1895 (-654 (-417 *6))) (|:| -3479 (-699 *5)))) (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-820 *5 *6)))))
-(-10 -7 (-15 -1594 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-663 (-417 |#2|)) (-417 |#2|))) (-15 -1594 ((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-663 (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -1594 ((-2 (|:| |particular| (-3 (-417 |#2|) "failed")) (|:| -1895 (-654 (-417 |#2|)))) (-664 |#2| (-417 |#2|)) (-417 |#2|))) (-15 -1594 ((-2 (|:| -1895 (-654 (-417 |#2|))) (|:| -3479 (-699 |#1|))) (-664 |#2| (-417 |#2|)) (-654 (-417 |#2|)))) (-15 -3498 (|#2| (-663 (-417 |#2|)))) (-15 -3498 (|#2| (-664 |#2| (-417 |#2|)))))
-((-2038 (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|) 49)))
-(((-821 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2038 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|))) (-372) (-666 |#1|) (-1260 |#1|) (-734 |#1| |#3|) (-666 |#4|)) (T -821))
-((-2038 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *7 (-1260 *5)) (-4 *4 (-734 *5 *7)) (-5 *2 (-2 (|:| -3479 (-699 *6)) (|:| |vec| (-1284 *5)))) (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4)))))
-(-10 -7 (-15 -2038 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) |#5| |#4|)))
-((-4202 (((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 47)) (-2031 (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|))) 164 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-663 (-417 |#2|))) 166 (|has| |#1| (-27))) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 38) (((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 39) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|)) 36) (((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 37)) (-3098 (((-654 (-2 (|:| |poly| |#2|) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|)) 96)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -4202 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3098 ((-654 (-2 (|:| |poly| |#2|) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|)) (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))) (-1260 |#1|)) (T -822))
-((-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4097 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-4202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-5 *2 (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4097 (-664 *6 (-417 *6)))))) (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))) (-2031 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))) (-2031 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7)) (-5 *5 (-1 (-428 *7) *7)) (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))))
-(-10 -7 (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|) (-1 (-428 |#2|) |#2|))) (-15 -4202 ((-654 (-2 (|:| |frac| (-417 |#2|)) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -3098 ((-654 (-2 (|:| |poly| |#2|) (|:| -4097 (-664 |#2| (-417 |#2|))))) (-664 |#2| (-417 |#2|)) (-1 (-654 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)))) (-15 -2031 ((-654 (-417 |#2|)) (-663 (-417 |#2|)) (-1 (-428 |#2|) |#2|))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)))) (-15 -2031 ((-654 (-417 |#2|)) (-664 |#2| (-417 |#2|)) (-1 (-428 |#2|) |#2|)))) |%noBranch|))
-((-2830 (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|)) 110) (((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4097 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|)) 15)) (-3233 (((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1895 (-654 |#1|))) |#2| |#1|)) 116)) (-3426 (((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -1895 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed") |#2| |#1|)) 54)))
-(((-823 |#1| |#2|) (-10 -7 (-15 -2830 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4097 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|))) (-15 -2830 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -1895 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3233 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1895 (-654 |#1|))) |#2| |#1|)))) (-372) (-666 |#1|)) (T -823))
-((-3233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1895 (-654 *6))) *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1284 *6) "failed")) (|:| -1895 (-654 (-1284 *6))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1284 *6)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1895 (-654 *6))) "failed") *7 *6)) (-4 *6 (-372)) (-4 *7 (-666 *6)) (-5 *2 (-2 (|:| |particular| (-1284 *6)) (|:| -1895 (-699 *6)))) (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *6)))) (-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-4 *6 (-666 *5)) (-5 *2 (-2 (|:| -3479 (-699 *6)) (|:| |vec| (-1284 *5)))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *5)))) (-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| A (-699 *5)) (|:| |eqs| (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5)) (|:| -4097 *6) (|:| |rh| *5)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *6 (-666 *5)))))
-(-10 -7 (-15 -2830 ((-2 (|:| A (-699 |#1|)) (|:| |eqs| (-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)) (|:| -4097 |#2|) (|:| |rh| |#1|))))) (-699 |#1|) (-1284 |#1|))) (-15 -2830 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#1|))) (-699 |#2|) (-1284 |#1|))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1284 |#1|)) (|:| -1895 (-699 |#1|))) "failed") (-699 |#1|) (-1284 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1895 (-654 |#1|))) "failed") |#2| |#1|))) (-15 -3233 ((-2 (|:| |particular| (-3 (-1284 |#1|) "failed")) (|:| -1895 (-654 (-1284 |#1|)))) (-699 |#2|) (-1284 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1895 (-654 |#1|))) |#2| |#1|))))
-((-3241 (((-699 |#1|) (-654 |#1|) (-781)) 14) (((-699 |#1|) (-654 |#1|)) 15)) (-1538 (((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|)) 39)) (-1954 (((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)) 46)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -3241 ((-699 |#1|) (-654 |#1|))) (-15 -3241 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -1538 ((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -1954 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|)))) (-372) (-666 |#1|)) (T -824))
-((-1954 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372)) (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2)))) (-1538 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1284 *4)) (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4)) (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4)))))
-(-10 -7 (-15 -3241 ((-699 |#1|) (-654 |#1|))) (-15 -3241 ((-699 |#1|) (-654 |#1|) (-781))) (-15 -1538 ((-3 (-1284 |#1|) "failed") |#2| |#1| (-654 |#1|))) (-15 -1954 ((-3 |#1| "failed") |#2| |#1| (-654 |#1|) (-1 |#1| |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-4311 (((-112) $) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))))) (-3472 (($ (-935)) NIL (|has| |#2| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) NIL (|has| |#2| (-803)))) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#2| (-377)))) (-3135 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1116)))) (-2216 (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) ((|#2| $) NIL (|has| |#2| (-1116)))) (-1557 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#2| (-1065)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-699 $)) NIL (|has| |#2| (-1065))) (((-699 |#2|) (-1284 $)) NIL (|has| |#2| (-1065)))) (-3612 (((-3 $ "failed") $) NIL (|has| |#2| (-1065)))) (-2835 (($) NIL (|has| |#2| (-377)))) (-2473 ((|#2| $ (-574) |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ (-574)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#2| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-1764 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#2| (-860)))) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#2| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#2| (-1116)))) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#2| (-377)))) (-3940 (((-1136) $) NIL (|has| |#2| (-1116)))) (-2925 ((|#2| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ (-574) |#2|) NIL) ((|#2| $ (-574)) NIL)) (-3936 ((|#2| $ $) NIL (|has| |#2| (-1065)))) (-4247 (($ (-1284 |#2|)) NIL)) (-2732 (((-135)) NIL (|has| |#2| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#2|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#2| (-1054 (-574))) (|has| |#2| (-1116))) (|has| |#2| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#2| (-1054 (-417 (-574)))) (|has| |#2| (-1116)))) (($ |#2|) NIL (|has| |#2| (-1116))) (((-872) $) NIL (|has| |#2| (-623 (-872))))) (-3070 (((-781)) NIL (|has| |#2| (-1065)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-2859 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#2| (-132)) (|has| |#2| (-736))) CONST)) (-2153 (($) NIL (|has| |#2| (-1065)) CONST)) (-3585 (($ $ (-781)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#2| (-912 (-1193))) (|has| |#2| (-1065)))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#2| (-1065))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#2| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) 11 (|has| |#2| (-860)))) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $ $) NIL (|has| |#2| (-1065))) (($ $) NIL (|has| |#2| (-1065)))) (-3074 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-781)) NIL (|has| |#2| (-1065))) (($ $ (-935)) NIL (|has| |#2| (-1065)))) (* (($ (-574) $) NIL (|has| |#2| (-1065))) (($ $ $) NIL (|has| |#2| (-1065))) (($ $ |#2|) NIL (|has| |#2| (-736))) (($ |#2| $) NIL (|has| |#2| (-736))) (($ (-781) $) NIL (|has| |#2| (-132))) (($ (-935) $) NIL (|has| |#2| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-825 |#1| |#2| |#3|) (-244 |#1| |#2|) (-781) (-803) (-1 (-112) (-1284 |#2|) (-1284 |#2|))) (T -825))
+((-2847 (*1 *1 *1 *1) (-4 *1 (-805))))
+(-13 (-807) (-10 -8 (-15 -2847 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3081 (($ $ $) 21)) (* (($ (-937) $) 22)))
+(((-806) (-141)) (T -806))
+NIL
+(-13 (-862) (-25))
+(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-4335 (($) 24 T CONST)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 23 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3081 (($ $ $) 21)) (* (($ (-937) $) 22) (($ (-783) $) 26)))
+(((-807) (-141)) (T -807))
+NIL
+(-13 (-804) (-132))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-862) . T) ((-1118) . T))
+((-3549 (((-112) $) 42)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-2456 (((-3 (-419 (-576)) "failed") $) 78)) (-1874 (((-112) $) 72)) (-2183 (((-419 (-576)) $) 76)) (-3404 ((|#2| $) 26)) (-1787 (($ (-1 |#2| |#2|) $) 23)) (-1330 (($ $) 58)) (-1846 (((-548) $) 67)) (-1979 (($ $) 21)) (-2956 (((-874) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-3423 (((-783)) 10)) (-2130 ((|#2| $) 71)) (-2991 (((-112) $ $) 30)) (-3014 (((-112) $ $) 69)) (-3096 (($ $) 32) (($ $ $) NIL)) (-3081 (($ $ $) 31)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-808 |#1| |#2|) (-10 -8 (-15 -3014 ((-112) |#1| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2130 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808))
+((-3423 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4)))))
+(-10 -8 (-15 -3014 ((-112) |#1| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1330 (|#1| |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2130 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-1499 (((-783)) 58 (|has| |#1| (-379)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 94)) (-2216 (((-576) $) 99 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 96 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 95)) (-4077 (((-3 $ "failed") $) 37)) (-4225 ((|#1| $) 84)) (-2456 (((-3 (-419 (-576)) "failed") $) 71 (|has| |#1| (-557)))) (-1874 (((-112) $) 73 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 72 (|has| |#1| (-557)))) (-2840 (($) 61 (|has| |#1| (-379)))) (-4192 (((-112) $) 35)) (-4287 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3404 ((|#1| $) 76)) (-3639 (($ $ $) 67 (|has| |#1| (-862)))) (-2571 (($ $ $) 66 (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) 86)) (-4261 (((-937) $) 60 (|has| |#1| (-379)))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 70 (|has| |#1| (-374)))) (-2596 (($ (-937)) 59 (|has| |#1| (-379)))) (-1463 ((|#1| $) 81)) (-2104 ((|#1| $) 82)) (-1926 ((|#1| $) 83)) (-2820 ((|#1| $) 77)) (-1577 ((|#1| $) 78)) (-1767 ((|#1| $) 79)) (-2683 ((|#1| $) 80)) (-3945 (((-1138) $) 11)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) 92 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 89 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 88 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 87 (|has| |#1| (-526 (-1195) |#1|)))) (-2209 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|)))) (-1846 (((-548) $) 68 (|has| |#1| (-626 (-548))))) (-1979 (($ $) 85)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (|has| |#1| (-1056 (-419 (-576)))))) (-1817 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2130 ((|#1| $) 74 (|has| |#1| (-1078)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 64 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 63 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 65 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 62 (|has| |#1| (-862)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-809 |#1|) (-141) (-174)) (T -809))
+((-1979 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2683 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4287 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2456 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1330 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -1979 ($ $)) (-15 -4225 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -2104 (|t#1| $)) (-15 -1463 (|t#1| $)) (-15 -2683 (|t#1| $)) (-15 -1767 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -2820 (|t#1| $)) (-15 -3404 (|t#1| $)) (-15 -4287 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2130 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -1330 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) |has| |#1| (-296 |#1| |#1|)))
+((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))))
+(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-1017 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2838 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2838 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-2216 ((|#1| $) NIL) (((-1017 |#1|) $) 33) (((-576) $) NIL (-2838 (|has| (-1017 |#1|) (-1056 (-576))) (|has| |#1| (-1056 (-576))))) (((-419 (-576)) $) NIL (-2838 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-4077 (((-3 $ "failed") $) NIL)) (-4225 ((|#1| $) 16)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1874 (((-112) $) NIL (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-2840 (($) NIL (|has| |#1| (-379)))) (-4192 (((-112) $) NIL)) (-4287 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1017 |#1|) (-1017 |#1|)) 29)) (-3404 ((|#1| $) NIL)) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-1463 ((|#1| $) 22)) (-2104 ((|#1| $) 20)) (-1926 ((|#1| $) 18)) (-2820 ((|#1| $) 26)) (-1577 ((|#1| $) 25)) (-1767 ((|#1| $) 24)) (-2683 ((|#1| $) 23)) (-3945 (((-1138) $) NIL)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1979 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1017 |#1|)) 30) (($ (-419 (-576))) NIL (-2838 (|has| (-1017 |#1|) (-1056 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2130 ((|#1| $) NIL (|has| |#1| (-1078)))) (-2143 (($) 8 T CONST)) (-2155 (($) 12 T CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1017 |#1|)) (-10 -8 (-15 -4287 ($ (-1017 |#1|) (-1017 |#1|))))) (-174)) (T -811))
+((-4287 (*1 *1 *2 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3)))))
+(-13 (-809 |#1|) (-423 (-1017 |#1|)) (-10 -8 (-15 -4287 ($ (-1017 |#1|) (-1017 |#1|)))))
+((-2869 (((-112) $ $) 7)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3891 (((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2991 (((-112) $ $) 6)))
+(((-812) (-141)) (T -812))
+((-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)))))) (-3891 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1053)))))
+(-13 (-1118) (-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3891 ((-1053) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3977 (((-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#3| |#2| (-1195)) 19)))
+(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -3977 ((-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#3| |#2| (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975)) (-668 |#2|)) (T -813))
+((-3977 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-975))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4093 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -3977 ((-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#3| |#2| (-1195))))
+((-2766 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195)) 18) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195)) 24) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195)) 26) (((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195)) 37) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195)) 35)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -2766 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -2766 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2766 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -814))
+((-2766 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-2766 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4093 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-975))))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4093 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-2766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195)) (-4 *6 (-13 (-29 *5) (-1221) (-975))) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975))) (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7)))))
+(-10 -7 (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -2766 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -4093 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -2766 ((-3 (-2 (|:| |particular| |#2|) (|:| -4093 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -2766 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2766 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|))))
+((-4227 (($) 9)) (-2088 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1773 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2504 (($ (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-3383 (($ (-656 (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-1356 (((-1291)) 11)))
+(((-815) (-10 -8 (-15 -4227 ($)) (-15 -1356 ((-1291))) (-15 -1773 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3383 ($ (-656 (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2504 ($ (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2088 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815))
+((-2088 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-1356 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815)))) (-4227 (*1 *1) (-5 *1 (-815))))
+(-10 -8 (-15 -4227 ($)) (-15 -1356 ((-1291))) (-15 -1773 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3383 ($ (-656 (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2504 ($ (-2 (|:| -3672 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -1918 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2088 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-3092 ((|#2| |#2| (-1195)) 17)) (-2665 ((|#2| |#2| (-1195)) 56)) (-2530 (((-1 |#2| |#2|) (-1195)) 11)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -3092 (|#2| |#2| (-1195))) (-15 -2665 (|#2| |#2| (-1195))) (-15 -2530 ((-1 |#2| |#2|) (-1195)))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-975))) (T -816))
+((-2530 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1221) (-975))))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975))))) (-3092 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975))))))
+(-10 -7 (-15 -3092 (|#2| |#2| (-1195))) (-15 -2665 (|#2| |#2| (-1195))) (-15 -2530 ((-1 |#2| |#2|) (-1195))))
+((-2766 (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1053) (-820) (-1081)) 120) (((-1053) (-820)) 121)) (-3944 (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081)) 80) (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820)) 82)))
+(((-817) (-10 -7 (-15 -2766 ((-1053) (-820))) (-15 -2766 ((-1053) (-820) (-1081))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081))))) (T -817))
+((-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-817)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1053)) (-5 *1 (-817)))))
+(-10 -7 (-15 -2766 ((-1053) (-820))) (-15 -2766 ((-1053) (-820) (-1081))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2766 ((-1053) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1081))))
+((-3064 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4093 (-656 |#4|))) (-665 |#4|) |#4|) 33)))
+(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3064 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4093 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818))
+((-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3064 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4093 (-656 |#4|))) (-665 |#4|) |#4|)))
+((-4052 (((-2 (|:| -4102 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-3352 (((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4|) 61) (((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3|) 21)) (-4182 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1923 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105)))
+(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1923 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1923 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3| |#2|)) (-15 -4182 (|#2| |#3| |#1|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4| |#2|)) (-15 -4182 (|#2| |#4| |#1|)) (-15 -4052 ((-2 (|:| -4102 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819))
+((-4052 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -4102 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-4182 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-3352 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3337 *4) (|:| -2712 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -3337 *5) (|:| -2712 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-4182 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-3352 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3337 *4) (|:| -2712 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -3337 *5) (|:| -2712 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-1923 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))))
+(-10 -7 (-15 -1923 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1923 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#3| |#2|)) (-15 -4182 (|#2| |#3| |#1|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4|)) (-15 -3352 ((-656 (-2 (|:| -3337 |#2|) (|:| -2712 |#2|))) |#4| |#2|)) (-15 -4182 (|#2| |#4| |#1|)) (-15 -4052 ((-2 (|:| -4102 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|)))))
+((-2869 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-820) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2216 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
+((-3751 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-2369 (((-656 (-2 (|:| |poly| |#2|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-4433 (((-656 (-2 (|:| |deg| (-783)) (|:| -4102 |#2|))) |#3|) 122)) (-4106 ((|#2| |#3|) 42)) (-4331 (((-656 (-2 (|:| -1716 |#1|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3975 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
+(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4106 (|#2| |#3|)) (-15 -4433 ((-656 (-2 (|:| |deg| (-783)) (|:| -4102 |#2|))) |#3|)) (-15 -4331 ((-656 (-2 (|:| -1716 |#1|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2369 ((-656 (-2 (|:| |poly| |#2|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3751 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3975 (|#3| |#3| |#2|)) (-15 -3975 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1056 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821))
+((-3975 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3975 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-3751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4102 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4102 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-4331 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1716 *5) (|:| -4102 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-4433 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4102 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-4106 (*1 *2 *3) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))))
+(-10 -7 (-15 -4106 (|#2| |#3|)) (-15 -4433 ((-656 (-2 (|:| |deg| (-783)) (|:| -4102 |#2|))) |#3|)) (-15 -4331 ((-656 (-2 (|:| -1716 |#1|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2369 ((-656 (-2 (|:| |poly| |#2|) (|:| -4102 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3751 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3975 (|#3| |#3| |#2|)) (-15 -3975 (|#3| |#3| (-419 |#2|))))
+((-3060 (((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 147) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 146) (((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 141) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 139)) (-2273 ((|#2| (-666 |#2| (-419 |#2|))) 88) ((|#2| (-665 (-419 |#2|))) 91)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -3060 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -3060 ((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -3060 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -3060 ((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2273 (|#2| (-665 (-419 |#2|)))) (-15 -2273 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -822))
+((-2273 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| -4093 (-656 (-419 *6))) (|:| -2081 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| -4093 (-656 (-419 *6))) (|:| -2081 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-822 *5 *6)))))
+(-10 -7 (-15 -3060 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -3060 ((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -3060 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4093 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -3060 ((-2 (|:| -4093 (-656 (-419 |#2|))) (|:| -2081 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2273 (|#2| (-665 (-419 |#2|)))) (-15 -2273 (|#2| (-666 |#2| (-419 |#2|)))))
+((-1824 (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|) 49)))
+(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1824 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1262 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823))
+((-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -2081 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -1824 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|)))
+((-3751 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-1746 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-2369 (((-656 (-2 (|:| |poly| |#2|) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3751 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2369 ((-656 (-2 (|:| |poly| |#2|) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))) (-1262 |#1|)) (T -824))
+((-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4102 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4102 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))))
+(-10 -7 (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3751 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2369 ((-656 (-2 (|:| |poly| |#2|) (|:| -4102 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -1746 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -1746 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|))
+((-3756 (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -4102 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|)) 15)) (-4390 (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4093 (-656 |#1|))) |#2| |#1|)) 116)) (-2766 (((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -4093 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed") |#2| |#1|)) 54)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -3756 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -4102 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -3756 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -4093 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -4390 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4093 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825))
+((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4093 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *6) "failed")) (|:| -4093 (-656 (-1286 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4093 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -4093 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6)))) (-3756 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -2081 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5)))) (-3756 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -4102 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *6 (-668 *5)))))
+(-10 -7 (-15 -3756 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -4102 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -3756 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -2766 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -4093 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4093 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -4390 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -4093 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4093 (-656 |#1|))) |#2| |#1|))))
+((-1365 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-3732 (((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-2253 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -1365 ((-701 |#1|) (-656 |#1|))) (-15 -1365 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -3732 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2253 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826))
+((-2253 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-3732 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-1365 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))))
+(-10 -7 (-15 -1365 ((-701 |#1|) (-656 |#1|))) (-15 -1365 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -3732 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2253 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3549 (((-112) $) NIL (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2010 (($ (-937)) NIL (|has| |#2| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) NIL (|has| |#2| (-805)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#2| (-379)))) (-3140 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1118)))) (-2216 (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) ((|#2| $) NIL (|has| |#2| (-1118)))) (-3928 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1067)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1067))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1067)))) (-4077 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-2840 (($) NIL (|has| |#2| (-379)))) (-2481 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ (-576)) NIL)) (-1873 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#2| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#2| (-862)))) (-2186 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#2| (-862)))) (-2466 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#2| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#2| (-1118)))) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#2| (-379)))) (-3945 (((-1138) $) NIL (|has| |#2| (-1118)))) (-2930 ((|#2| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-4144 ((|#2| $ $) NIL (|has| |#2| (-1067)))) (-4249 (($ (-1286 |#2|)) NIL)) (-2068 (((-135)) NIL (|has| |#2| (-374)))) (-3884 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3954 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-2838 (-12 (|has| |#2| (-1056 (-576))) (|has| |#2| (-1118))) (|has| |#2| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1056 (-419 (-576)))) (|has| |#2| (-1118)))) (($ |#2|) NIL (|has| |#2| (-1118))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-3423 (((-783)) NIL (|has| |#2| (-1067)) CONST)) (-2617 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3972 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) NIL (-2838 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2155 (($) NIL (|has| |#2| (-1067)) CONST)) (-3590 (($ $ (-783)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-914 (-1195))) (|has| |#2| (-1067)))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1067))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1067)))) (-3047 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#2| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3014 (((-112) $ $) 11 (|has| |#2| (-862)))) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3081 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1067))) (($ $ (-937)) NIL (|has| |#2| (-1067)))) (* (($ $ $) NIL (|has| |#2| (-1067))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-937) $) NIL (|has| |#2| (-25)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-827 |#1| |#2| |#3|) (-244 |#1| |#2|) (-783) (-805) (-1 (-112) (-1286 |#2|) (-1286 |#2|))) (T -827))
NIL
(-244 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3555 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1193)) NIL)) (-3716 (((-781) $) NIL) (((-781) $ (-1193)) NIL)) (-4350 (((-654 (-828 (-1193))) $) NIL)) (-4172 (((-1189 $) $ (-828 (-1193))) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-828 (-1193)))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3632 (($ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-828 (-1193)) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL) (((-3 (-1141 |#1| (-1193)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-828 (-1193)) $) NIL) (((-1193) $) NIL) (((-1141 |#1| (-1193)) $) NIL)) (-4047 (($ $ $ (-828 (-1193))) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1193))) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-541 (-828 (-1193))) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-828 (-1193)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-828 (-1193)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ (-1193)) NIL) (((-781) $) NIL)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-828 (-1193))) NIL) (($ (-1189 $) (-828 (-1193))) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-828 (-1193)))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-828 (-1193))) NIL)) (-2043 (((-541 (-828 (-1193))) $) NIL) (((-781) $ (-828 (-1193))) NIL) (((-654 (-781)) $ (-654 (-828 (-1193)))) NIL)) (-3431 (($ (-1 (-541 (-828 (-1193))) (-541 (-828 (-1193)))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (((-1 $ (-781)) (-1193)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-3444 (((-3 (-828 (-1193)) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 (((-828 (-1193)) $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-1966 (((-112) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-828 (-1193))) (|:| -2754 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-828 (-1193)) |#1|) NIL) (($ $ (-654 (-828 (-1193))) (-654 |#1|)) NIL) (($ $ (-828 (-1193)) $) NIL) (($ $ (-654 (-828 (-1193))) (-654 $)) NIL) (($ $ (-1193) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1924 (($ $ (-828 (-1193))) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193)))) NIL) (($ $ (-828 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-654 (-1193)) $) NIL)) (-3735 (((-541 (-828 (-1193))) $) NIL) (((-781) $ (-828 (-1193))) NIL) (((-654 (-781)) $ (-654 (-828 (-1193)))) NIL) (((-781) $ (-1193)) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-828 (-1193)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-828 (-1193))) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-828 (-1193))) NIL) (($ (-1193)) NIL) (($ (-1141 |#1| (-1193))) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-541 (-828 (-1193)))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-828 (-1193))) (-654 (-781))) NIL) (($ $ (-828 (-1193)) (-781)) NIL) (($ $ (-654 (-828 (-1193)))) NIL) (($ $ (-828 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-826 |#1|) (-13 (-260 |#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) (-1054 (-1141 |#1| (-1193)))) (-1065)) (T -826))
-NIL
-(-13 (-260 |#1| (-1193) (-828 (-1193)) (-541 (-828 (-1193)))) (-1054 (-1141 |#1| (-1193))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-372)))) (-4141 (($ $) NIL (|has| |#2| (-372)))) (-2475 (((-112) $) NIL (|has| |#2| (-372)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#2| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-372)))) (-1374 (((-112) $ $) NIL (|has| |#2| (-372)))) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL (|has| |#2| (-372)))) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#2| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-3342 (((-112) $) NIL (|has| |#2| (-372)))) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2845 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 20 (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-372))) (($ $ $) NIL (|has| |#2| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-4220 (((-781) $) NIL (|has| |#2| (-372)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-372)))) (-3879 (($ $) 13) (($ $ (-781)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-417 (-574))) NIL (|has| |#2| (-372))) (($ $) NIL (|has| |#2| (-372)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) 15 (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL) (($ $ (-574)) 18 (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-417 (-574)) $) NIL (|has| |#2| (-372))) (($ $ (-417 (-574))) NIL (|has| |#2| (-372)))))
-(((-827 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|))) (-1116) (-912 |#1|) |#1|) (T -827))
-NIL
-(-13 (-111 $ $) (-239) (-500 |#2|) (-10 -7 (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-3716 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1518 (((-781) $) 11)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4071 (($ |#1| (-781)) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-2981 (((-112) $ $) NIL)) (-3585 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-828 |#1|) (-273 |#1|) (-860)) (T -828))
-NIL
-(-273 |#1|)
-((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 38)) (-1496 (((-781) $) NIL)) (-1430 (($) NIL T CONST)) (-3362 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2935 (($ $) 42)) (-3612 (((-3 $ "failed") $) NIL)) (-2888 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3943 (((-112) $) NIL)) (-1720 ((|#1| $ (-574)) NIL)) (-1910 (((-781) $ (-574)) NIL)) (-1442 (($ $) 54)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-2393 (($ (-1 (-781) (-781)) $) NIL)) (-2972 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2643 (((-112) $ $) 51)) (-4109 (((-781) $) 34)) (-4420 (((-1175) $) NIL)) (-4314 (($ $ $) NIL)) (-4041 (($ $ $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 ((|#1| $) 41)) (-3996 (((-654 (-2 (|:| |gen| |#1|) (|:| -1617 (-781)))) $) NIL)) (-2472 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2840 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 53)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ |#1| (-781)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-829 |#1|) (-13 (-395 |#1|) (-856) (-10 -8 (-15 -2925 (|#1| $)) (-15 -2935 ($ $)) (-15 -1442 ($ $)) (-15 -2643 ((-112) $ $)) (-15 -2972 ((-3 $ "failed") $ |#1|)) (-15 -3362 ((-3 $ "failed") $ |#1|)) (-15 -2840 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4109 ((-781) $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -829))
-((-2925 (*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-1442 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2643 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-2972 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-3362 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860)))) (-2840 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860)))))
-(-13 (-395 |#1|) (-856) (-10 -8 (-15 -2925 (|#1| $)) (-15 -2935 ($ $)) (-15 -1442 ($ $)) (-15 -2643 ((-112) $ $)) (-15 -2972 ((-3 $ "failed") $ |#1|)) (-15 -3362 ((-3 $ "failed") $ |#1|)) (-15 -2840 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4109 ((-781) $)) (-15 -1663 ((-654 |#1|) $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1370 (((-574) $) 59)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-2516 (((-112) $) 57)) (-3943 (((-112) $) 35)) (-1935 (((-112) $) 58)) (-3634 (($ $ $) 56)) (-2976 (($ $ $) 55)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-4107 (($ $) 60)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 53)) (-3020 (((-112) $ $) 52)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 54)) (-3009 (((-112) $ $) 51)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-830) (-141)) (T -830))
-NIL
-(-13 (-566) (-858))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-1781 (($ (-1136)) 7)) (-4208 (((-112) $ (-1175) (-1136)) 15)) (-4365 (((-832) $) 12)) (-3488 (((-832) $) 11)) (-2131 (((-1289) $) 9)) (-3191 (((-112) $ (-1136)) 16)))
-(((-831) (-10 -8 (-15 -1781 ($ (-1136))) (-15 -2131 ((-1289) $)) (-15 -3488 ((-832) $)) (-15 -4365 ((-832) $)) (-15 -4208 ((-112) $ (-1175) (-1136))) (-15 -3191 ((-112) $ (-1136))))) (T -831))
-((-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))) (-4208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-831)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-831)))))
-(-10 -8 (-15 -1781 ($ (-1136))) (-15 -2131 ((-1289) $)) (-15 -3488 ((-832) $)) (-15 -4365 ((-832) $)) (-15 -4208 ((-112) $ (-1175) (-1136))) (-15 -3191 ((-112) $ (-1136))))
-((-3674 (((-1289) $ (-833)) 12)) (-3345 (((-1289) $ (-1193)) 32)) (-3599 (((-1289) $ (-1175) (-1175)) 34)) (-1536 (((-1289) $ (-1175)) 33)) (-1321 (((-1289) $) 19)) (-3638 (((-1289) $ (-574)) 28)) (-4124 (((-1289) $ (-227)) 30)) (-2781 (((-1289) $) 18)) (-4397 (((-1289) $) 26)) (-2076 (((-1289) $) 25)) (-4017 (((-1289) $) 23)) (-2656 (((-1289) $) 24)) (-3592 (((-1289) $) 22)) (-2418 (((-1289) $) 21)) (-1758 (((-1289) $) 20)) (-2055 (((-1289) $) 16)) (-2828 (((-1289) $) 17)) (-4214 (((-1289) $) 15)) (-4142 (((-1289) $) 14)) (-2716 (((-1289) $) 13)) (-2564 (($ (-1175) (-833)) 9)) (-2648 (($ (-1175) (-1175) (-833)) 8)) (-2192 (((-1193) $) 51)) (-1947 (((-1193) $) 55)) (-1779 (((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $) 54)) (-3418 (((-1175) $) 52)) (-3072 (((-1289) $) 41)) (-3896 (((-574) $) 49)) (-2891 (((-227) $) 50)) (-3309 (((-1289) $) 40)) (-3300 (((-1289) $) 48)) (-4198 (((-1289) $) 47)) (-2026 (((-1289) $) 45)) (-3983 (((-1289) $) 46)) (-4184 (((-1289) $) 44)) (-3091 (((-1289) $) 43)) (-3240 (((-1289) $) 42)) (-4323 (((-1289) $) 38)) (-1555 (((-1289) $) 39)) (-3821 (((-1289) $) 37)) (-2847 (((-1289) $) 36)) (-1994 (((-1289) $) 35)) (-3305 (((-1289) $) 11)))
-(((-832) (-10 -8 (-15 -2648 ($ (-1175) (-1175) (-833))) (-15 -2564 ($ (-1175) (-833))) (-15 -3305 ((-1289) $)) (-15 -3674 ((-1289) $ (-833))) (-15 -2716 ((-1289) $)) (-15 -4142 ((-1289) $)) (-15 -4214 ((-1289) $)) (-15 -2055 ((-1289) $)) (-15 -2828 ((-1289) $)) (-15 -2781 ((-1289) $)) (-15 -1321 ((-1289) $)) (-15 -1758 ((-1289) $)) (-15 -2418 ((-1289) $)) (-15 -3592 ((-1289) $)) (-15 -4017 ((-1289) $)) (-15 -2656 ((-1289) $)) (-15 -2076 ((-1289) $)) (-15 -4397 ((-1289) $)) (-15 -3638 ((-1289) $ (-574))) (-15 -4124 ((-1289) $ (-227))) (-15 -3345 ((-1289) $ (-1193))) (-15 -1536 ((-1289) $ (-1175))) (-15 -3599 ((-1289) $ (-1175) (-1175))) (-15 -1994 ((-1289) $)) (-15 -2847 ((-1289) $)) (-15 -3821 ((-1289) $)) (-15 -4323 ((-1289) $)) (-15 -1555 ((-1289) $)) (-15 -3309 ((-1289) $)) (-15 -3072 ((-1289) $)) (-15 -3240 ((-1289) $)) (-15 -3091 ((-1289) $)) (-15 -4184 ((-1289) $)) (-15 -2026 ((-1289) $)) (-15 -3983 ((-1289) $)) (-15 -4198 ((-1289) $)) (-15 -3300 ((-1289) $)) (-15 -3896 ((-574) $)) (-15 -2891 ((-227) $)) (-15 -2192 ((-1193) $)) (-15 -3418 ((-1175) $)) (-15 -1779 ((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $)) (-15 -1947 ((-1193) $)))) (T -832))
-((-1947 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1175)) (|:| -2039 (-1175)))) (-5 *1 (-832)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-832)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3599 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-1536 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-3345 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-3638 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1289)) (-5 *1 (-832)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))) (-2564 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832)))) (-2648 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832)))))
-(-10 -8 (-15 -2648 ($ (-1175) (-1175) (-833))) (-15 -2564 ($ (-1175) (-833))) (-15 -3305 ((-1289) $)) (-15 -3674 ((-1289) $ (-833))) (-15 -2716 ((-1289) $)) (-15 -4142 ((-1289) $)) (-15 -4214 ((-1289) $)) (-15 -2055 ((-1289) $)) (-15 -2828 ((-1289) $)) (-15 -2781 ((-1289) $)) (-15 -1321 ((-1289) $)) (-15 -1758 ((-1289) $)) (-15 -2418 ((-1289) $)) (-15 -3592 ((-1289) $)) (-15 -4017 ((-1289) $)) (-15 -2656 ((-1289) $)) (-15 -2076 ((-1289) $)) (-15 -4397 ((-1289) $)) (-15 -3638 ((-1289) $ (-574))) (-15 -4124 ((-1289) $ (-227))) (-15 -3345 ((-1289) $ (-1193))) (-15 -1536 ((-1289) $ (-1175))) (-15 -3599 ((-1289) $ (-1175) (-1175))) (-15 -1994 ((-1289) $)) (-15 -2847 ((-1289) $)) (-15 -3821 ((-1289) $)) (-15 -4323 ((-1289) $)) (-15 -1555 ((-1289) $)) (-15 -3309 ((-1289) $)) (-15 -3072 ((-1289) $)) (-15 -3240 ((-1289) $)) (-15 -3091 ((-1289) $)) (-15 -4184 ((-1289) $)) (-15 -2026 ((-1289) $)) (-15 -3983 ((-1289) $)) (-15 -4198 ((-1289) $)) (-15 -3300 ((-1289) $)) (-15 -3896 ((-574) $)) (-15 -2891 ((-227) $)) (-15 -2192 ((-1193) $)) (-15 -3418 ((-1175) $)) (-15 -1779 ((-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))) $)) (-15 -1947 ((-1193) $)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 13)) (-2981 (((-112) $ $) NIL)) (-3975 (($) 16)) (-3926 (($) 14)) (-3564 (($) 17)) (-3621 (($) 15)) (-2986 (((-112) $ $) 9)))
-(((-833) (-13 (-1116) (-10 -8 (-15 -3926 ($)) (-15 -3975 ($)) (-15 -3564 ($)) (-15 -3621 ($))))) (T -833))
-((-3926 (*1 *1) (-5 *1 (-833))) (-3975 (*1 *1) (-5 *1 (-833))) (-3564 (*1 *1) (-5 *1 (-833))) (-3621 (*1 *1) (-5 *1 (-833))))
-(-13 (-1116) (-10 -8 (-15 -3926 ($)) (-15 -3975 ($)) (-15 -3564 ($)) (-15 -3621 ($))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 23) (($ (-1193)) 19)) (-2981 (((-112) $ $) NIL)) (-1952 (((-112) $) 10)) (-1892 (((-112) $) 9)) (-2120 (((-112) $) 11)) (-2268 (((-112) $) 8)) (-2986 (((-112) $ $) 21)))
-(((-834) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2268 ((-112) $)) (-15 -1892 ((-112) $)) (-15 -1952 ((-112) $)) (-15 -2120 ((-112) $))))) (T -834))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-834)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2268 ((-112) $)) (-15 -1892 ((-112) $)) (-15 -1952 ((-112) $)) (-15 -2120 ((-112) $))))
-((-2864 (((-112) $ $) NIL)) (-1486 (($ (-834) (-654 (-1193))) 32)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4152 (((-834) $) 33)) (-4176 (((-654 (-1193)) $) 34)) (-2951 (((-872) $) 31)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-835) (-13 (-1116) (-10 -8 (-15 -4152 ((-834) $)) (-15 -4176 ((-654 (-1193)) $)) (-15 -1486 ($ (-834) (-654 (-1193))))))) (T -835))
-((-4152 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-835)))) (-1486 (*1 *1 *2 *3) (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1193))) (-5 *1 (-835)))))
-(-13 (-1116) (-10 -8 (-15 -4152 ((-834) $)) (-15 -4176 ((-654 (-1193)) $)) (-15 -1486 ($ (-834) (-654 (-1193))))))
-((-4029 (((-1289) (-832) (-324 |#1|) (-112)) 23) (((-1289) (-832) (-324 |#1|)) 89) (((-1175) (-324 |#1|) (-112)) 88) (((-1175) (-324 |#1|)) 87)))
-(((-836 |#1|) (-10 -7 (-15 -4029 ((-1175) (-324 |#1|))) (-15 -4029 ((-1175) (-324 |#1|) (-112))) (-15 -4029 ((-1289) (-832) (-324 |#1|))) (-15 -4029 ((-1289) (-832) (-324 |#1|) (-112)))) (-13 (-838) (-1065))) (T -836))
-((-4029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *5)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1065))) (-5 *2 (-1175)) (-5 *1 (-836 *5)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1065))) (-5 *2 (-1175)) (-5 *1 (-836 *4)))))
-(-10 -7 (-15 -4029 ((-1175) (-324 |#1|))) (-15 -4029 ((-1175) (-324 |#1|) (-112))) (-15 -4029 ((-1289) (-832) (-324 |#1|))) (-15 -4029 ((-1289) (-832) (-324 |#1|) (-112))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-1801 ((|#1| $) 10)) (-4285 (($ |#1|) 9)) (-3943 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) NIL)) (-2043 (((-781) $) NIL)) (-1378 ((|#2| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-3735 (((-781) $) NIL)) (-2951 (((-872) $) 17) (($ (-574)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-1788 ((|#2| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $) NIL (|has| |#1| (-239))) (($ $ (-781)) NIL (|has| |#1| (-239)))) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-837 |#1| |#2|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -1801 (|#1| $)))) (-718 |#2|) (-1065)) (T -837))
-((-4285 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))) (-1801 (*1 *2 *1) (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1065)))))
-(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4285 ($ |#1|)) (-15 -1801 (|#1| $))))
-((-4029 (((-1289) (-832) $ (-112)) 9) (((-1289) (-832) $) 8) (((-1175) $ (-112)) 7) (((-1175) $) 6)))
-(((-838) (-141)) (T -838))
-((-4029 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1289)))) (-4029 (*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1289)))) (-4029 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1175)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1175)))))
-(-13 (-10 -8 (-15 -4029 ((-1175) $)) (-15 -4029 ((-1175) $ (-112))) (-15 -4029 ((-1289) (-832) $)) (-15 -4029 ((-1289) (-832) $ (-112)))))
-((-3790 (((-320) (-1175) (-1175)) 12)) (-2210 (((-112) (-1175) (-1175)) 34)) (-3529 (((-112) (-1175)) 33)) (-1737 (((-52) (-1175)) 25)) (-2073 (((-52) (-1175)) 23)) (-2135 (((-52) (-832)) 17)) (-3823 (((-654 (-1175)) (-1175)) 28)) (-2144 (((-654 (-1175))) 27)))
-(((-839) (-10 -7 (-15 -2135 ((-52) (-832))) (-15 -2073 ((-52) (-1175))) (-15 -1737 ((-52) (-1175))) (-15 -2144 ((-654 (-1175)))) (-15 -3823 ((-654 (-1175)) (-1175))) (-15 -3529 ((-112) (-1175))) (-15 -2210 ((-112) (-1175) (-1175))) (-15 -3790 ((-320) (-1175) (-1175))))) (T -839))
-((-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-839)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))) (-3823 (*1 *2 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)) (-5 *3 (-1175)))) (-2144 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(-10 -7 (-15 -2135 ((-52) (-832))) (-15 -2073 ((-52) (-1175))) (-15 -1737 ((-52) (-1175))) (-15 -2144 ((-654 (-1175)))) (-15 -3823 ((-654 (-1175)) (-1175))) (-15 -3529 ((-112) (-1175))) (-15 -2210 ((-112) (-1175) (-1175))) (-15 -3790 ((-320) (-1175) (-1175))))
-((-2864 (((-112) $ $) 19)) (-4353 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3421 (($ $ $) 73)) (-3089 (((-112) $ $) 74)) (-2832 (((-112) $ (-781)) 8)) (-1515 (($ (-654 |#1|)) 69) (($) 68)) (-3155 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2218 (($ $) 63)) (-1573 (($ $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ |#1| $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) 65)) (-3814 (((-112) $ (-781)) 9)) (-3634 ((|#1| $) 79)) (-2645 (($ $ $) 82)) (-2470 (($ $ $) 81)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2976 ((|#1| $) 80)) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22)) (-3655 (($ $ $) 70)) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41) (($ |#1| $ (-781)) 64)) (-3940 (((-1136) $) 21)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-4249 (((-654 (-2 (|:| -1916 |#1|) (|:| -3949 (-781)))) $) 62)) (-3848 (($ $ |#1|) 72) (($ $ $) 71)) (-1734 (($) 50) (($ (-654 |#1|)) 49)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 51)) (-2951 (((-872) $) 18)) (-4269 (($ (-654 |#1|)) 67) (($) 66)) (-2981 (((-112) $ $) 23)) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20)) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-840 |#1|) (-141) (-860)) (T -840))
-((-3634 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860)))))
-(-13 (-746 |t#1|) (-984 |t#1|) (-10 -8 (-15 -3634 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-241 |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-705 |#1|) . T) ((-746 |#1|) . T) ((-984 |#1|) . T) ((-1114 |#1|) . T) ((-1116) . T) ((-1234) . T))
-((-3049 (((-1289) (-1136) (-1136)) 48)) (-4364 (((-1289) (-831) (-52)) 45)) (-2886 (((-52) (-831)) 16)))
-(((-841) (-10 -7 (-15 -2886 ((-52) (-831))) (-15 -4364 ((-1289) (-831) (-52))) (-15 -3049 ((-1289) (-1136) (-1136))))) (T -841))
-((-3049 (*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1289)) (-5 *1 (-841)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1289)) (-5 *1 (-841)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841)))))
-(-10 -7 (-15 -2886 ((-52) (-831))) (-15 -4364 ((-1289) (-831) (-52))) (-15 -3049 ((-1289) (-1136) (-1136))))
-((-1785 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)) 12) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 13)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|)))) (-1116) (-1116)) (T -842))
-((-1785 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-842 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))))
-(-10 -7 (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1785 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL (|has| |#1| (-21)))) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1370 (((-574) $) NIL (|has| |#1| (-858)))) (-1430 (($) NIL (|has| |#1| (-21)) CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 15)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 9)) (-3612 (((-3 $ "failed") $) 42 (|has| |#1| (-858)))) (-3701 (((-3 (-417 (-574)) "failed") $) 52 (|has| |#1| (-555)))) (-4391 (((-112) $) 46 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 49 (|has| |#1| (-555)))) (-2516 (((-112) $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $) NIL (|has| |#1| (-858)))) (-1935 (((-112) $) NIL (|has| |#1| (-858)))) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-2976 (($ $ $) NIL (|has| |#1| (-858)))) (-4420 (((-1175) $) NIL)) (-1752 (($) 13)) (-2455 (((-112) $) 12)) (-3940 (((-1136) $) NIL)) (-3272 (((-112) $) 11)) (-2951 (((-872) $) 18) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))))) (-3070 (((-781)) 36 (|has| |#1| (-858)) CONST)) (-2981 (((-112) $ $) 54)) (-4107 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) 23 (|has| |#1| (-21)) CONST)) (-2153 (($) 33 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) 21)) (-3031 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 45 (|has| |#1| (-858)))) (-3090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3074 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-935)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 39 (|has| |#1| (-858))) (($ (-574) $) 27 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-21)))))
-(((-843 |#1|) (-13 (-1116) (-421 |#1|) (-10 -8 (-15 -1752 ($)) (-15 -3272 ((-112) $)) (-15 -2455 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1116)) (T -843))
-((-1752 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1116)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3701 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))))
-(-13 (-1116) (-421 |#1|) (-10 -8 (-15 -1752 ($)) (-15 -3272 ((-112) $)) (-15 -2455 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
-((-1575 (((-112) $ |#2|) 14)) (-2951 (((-872) $) 11)))
-(((-844 |#1| |#2|) (-10 -8 (-15 -1575 ((-112) |#1| |#2|)) (-15 -2951 ((-872) |#1|))) (-845 |#2|) (-1116)) (T -844))
-NIL
-(-10 -8 (-15 -1575 ((-112) |#1| |#2|)) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-2039 ((|#1| $) 16)) (-4420 (((-1175) $) 10)) (-1575 (((-112) $ |#1|) 14)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-4069 (((-55) $) 15)) (-2986 (((-112) $ $) 6)))
-(((-845 |#1|) (-141) (-1116)) (T -845))
-((-2039 (*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1116)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-55)))) (-1575 (*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(-13 (-1116) (-10 -8 (-15 -2039 (|t#1| $)) (-15 -4069 ((-55) $)) (-15 -1575 ((-112) $ |t#1|))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-115) $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3530 ((|#1| (-115) |#1|) NIL)) (-3943 (((-112) $) NIL)) (-4195 (($ |#1| (-370 (-115))) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4228 (($ $ (-1 |#1| |#1|)) NIL)) (-3672 (($ $ (-1 |#1| |#1|)) NIL)) (-2207 ((|#1| $ |#1|) NIL)) (-1907 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ (-115) (-574)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-846 |#1|) (-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3728 ($ $)) (-15 -3728 ($ $ $)) (-15 -1907 (|#1| |#1|))) |%noBranch|) (-15 -3672 ($ $ (-1 |#1| |#1|))) (-15 -4228 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3530 (|#1| (-115) |#1|)) (-15 -4195 ($ |#1| (-370 (-115)))))) (-1065)) (T -846))
-((-3728 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-3728 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-1907 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))) (-3672 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1065)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1065)))) (-3530 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1065)))) (-4195 (*1 *1 *2 *3) (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1065)))))
-(-13 (-1065) (-1054 |#1|) (-1054 (-115)) (-294 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3728 ($ $)) (-15 -3728 ($ $ $)) (-15 -1907 (|#1| |#1|))) |%noBranch|) (-15 -3672 ($ $ (-1 |#1| |#1|))) (-15 -4228 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-574))) (-15 ** ($ $ (-574))) (-15 -3530 (|#1| (-115) |#1|)) (-15 -4195 ($ |#1| (-370 (-115))))))
-((-2795 (((-216 (-512)) (-1175)) 9)))
-(((-847) (-10 -7 (-15 -2795 ((-216 (-512)) (-1175))))) (T -847))
-((-2795 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-216 (-512))) (-5 *1 (-847)))))
-(-10 -7 (-15 -2795 ((-216 (-512)) (-1175))))
-((-2864 (((-112) $ $) NIL)) (-3132 (((-1134) $) 10)) (-2039 (((-516) $) 9)) (-4420 (((-1175) $) NIL)) (-1575 (((-112) $ (-516)) NIL)) (-3940 (((-1136) $) NIL)) (-2963 (($ (-516) (-1134)) 8)) (-2951 (((-872) $) 25)) (-2981 (((-112) $ $) NIL)) (-4069 (((-55) $) 20)) (-2986 (((-112) $ $) 12)))
-(((-848) (-13 (-845 (-516)) (-10 -8 (-15 -3132 ((-1134) $)) (-15 -2963 ($ (-516) (-1134)))))) (T -848))
-((-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-848)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-848)))))
-(-13 (-845 (-516)) (-10 -8 (-15 -3132 ((-1134) $)) (-15 -2963 ($ (-516) (-1134)))))
-((-2864 (((-112) $ $) 7)) (-1556 (((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 15) (((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 17) (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 16)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-849) (-141)) (T -849))
-((-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)))))) (-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-849)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)))))) (-1556 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) (-5 *2 (-1051)))) (-1556 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *3 (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *2 (-1051)))))
-(-13 (-1116) (-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -1556 ((-1051) (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -1556 ((-1051) (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2727 (((-1051) (-654 (-324 (-388))) (-654 (-388))) 166) (((-1051) (-324 (-388)) (-654 (-388))) 164) (((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388)))) 162) (((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388)))) 160) (((-1051) (-851)) 125) (((-1051) (-851) (-1079)) 124)) (-1879 (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079)) 85) (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851)) 87)) (-3874 (((-1051) (-654 (-324 (-388))) (-654 (-388))) 167) (((-1051) (-851)) 150)))
-(((-850) (-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079))) (-15 -2727 ((-1051) (-851) (-1079))) (-15 -2727 ((-1051) (-851))) (-15 -3874 ((-1051) (-851))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)))) (-15 -2727 ((-1051) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3874 ((-1051) (-654 (-324 (-388))) (-654 (-388)))))) (T -850))
-((-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388)))) (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1051)) (-5 *1 (-850)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-850)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-850)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-850)))))
-(-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-851) (-1079))) (-15 -2727 ((-1051) (-851) (-1079))) (-15 -2727 ((-1051) (-851))) (-15 -3874 ((-1051) (-851))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-324 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)) (-654 (-853 (-388))) (-654 (-853 (-388))))) (-15 -2727 ((-1051) (-324 (-388)) (-654 (-388)))) (-15 -2727 ((-1051) (-654 (-324 (-388))) (-654 (-388)))) (-15 -3874 ((-1051) (-654 (-324 (-388))) (-654 (-388)))))
-((-2864 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) $) 21)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) 14) (($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))))) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-851) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2951 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -2951 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) $))))) (T -851))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (-5 *1 (-851)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))) (-5 *1 (-851)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))))) (-5 *1 (-851)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227))))))) (-5 *1 (-851)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227))))))) (-15 -2951 ($ (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) (-15 -2951 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227))) (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227)))) (|:| |ub| (-654 (-853 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))) $))))
-((-1785 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)) 13) (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14)))
-(((-852 |#1| |#2|) (-10 -7 (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|)))) (-1116) (-1116)) (T -852))
-((-1785 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-852 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))))
-(-10 -7 (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|))) (-15 -1785 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|) (-853 |#2|) (-853 |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL (|has| |#1| (-21)))) (-2385 (((-1136) $) 31)) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1370 (((-574) $) NIL (|has| |#1| (-858)))) (-1430 (($) NIL (|has| |#1| (-21)) CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 18)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 9)) (-3612 (((-3 $ "failed") $) 58 (|has| |#1| (-858)))) (-3701 (((-3 (-417 (-574)) "failed") $) 65 (|has| |#1| (-555)))) (-4391 (((-112) $) 60 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 63 (|has| |#1| (-555)))) (-2516 (((-112) $) NIL (|has| |#1| (-858)))) (-2319 (($) 14)) (-3943 (((-112) $) NIL (|has| |#1| (-858)))) (-1935 (((-112) $) NIL (|has| |#1| (-858)))) (-2332 (($) 16)) (-3634 (($ $ $) NIL (|has| |#1| (-858)))) (-2976 (($ $ $) NIL (|has| |#1| (-858)))) (-4420 (((-1175) $) NIL)) (-2455 (((-112) $) 12)) (-3940 (((-1136) $) NIL)) (-3272 (((-112) $) 11)) (-2951 (((-872) $) 24) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 8) (($ (-574)) NIL (-2833 (|has| |#1| (-858)) (|has| |#1| (-1054 (-574)))))) (-3070 (((-781)) 51 (|has| |#1| (-858)) CONST)) (-2981 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| |#1| (-858)))) (-2141 (($) 37 (|has| |#1| (-21)) CONST)) (-2153 (($) 48 (|has| |#1| (-858)) CONST)) (-3042 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-858)))) (-2986 (((-112) $ $) 35)) (-3031 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3009 (((-112) $ $) 59 (|has| |#1| (-858)))) (-3090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3074 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-935)) NIL (|has| |#1| (-858))) (($ $ (-781)) NIL (|has| |#1| (-858)))) (* (($ $ $) 55 (|has| |#1| (-858))) (($ (-574) $) 42 (|has| |#1| (-21))) (($ (-781) $) NIL (|has| |#1| (-21))) (($ (-935) $) NIL (|has| |#1| (-21)))))
-(((-853 |#1|) (-13 (-1116) (-421 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2332 ($)) (-15 -3272 ((-112) $)) (-15 -2455 ((-112) $)) (-15 -2385 ((-1136) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|))) (-1116)) (T -853))
-((-2319 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))) (-2332 (*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))) (-3701 (*1 *2 *1) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116)))))
-(-13 (-1116) (-421 |#1|) (-10 -8 (-15 -2319 ($)) (-15 -2332 ($)) (-15 -3272 ((-112) $)) (-15 -2455 ((-112) $)) (-15 -2385 ((-1136) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-1496 (((-781)) 23)) (-2835 (($) 26)) (-3634 (($ $ $) 14) (($) 22 T CONST)) (-2976 (($ $ $) 15) (($) 21 T CONST)) (-3507 (((-935) $) 25)) (-4420 (((-1175) $) 10)) (-2591 (($ (-935)) 24)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)))
-(((-854) (-141)) (T -854))
-((-3634 (*1 *1) (-4 *1 (-854))) (-2976 (*1 *1) (-4 *1 (-854))))
-(-13 (-860) (-377) (-10 -8 (-15 -3634 ($) -1714) (-15 -2976 ($) -1714)))
-(((-102) . T) ((-623 (-872)) . T) ((-377) . T) ((-860) . T) ((-1116) . T))
-((-2771 (((-112) (-1284 |#2|) (-1284 |#2|)) 19)) (-4347 (((-112) (-1284 |#2|) (-1284 |#2|)) 20)) (-3699 (((-112) (-1284 |#2|) (-1284 |#2|)) 16)))
-(((-855 |#1| |#2|) (-10 -7 (-15 -3699 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -2771 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -4347 ((-112) (-1284 |#2|) (-1284 |#2|)))) (-781) (-802)) (T -855))
-((-4347 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-2771 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112)) (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
-(-10 -7 (-15 -3699 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -2771 ((-112) (-1284 |#2|) (-1284 |#2|))) (-15 -4347 ((-112) (-1284 |#2|) (-1284 |#2|))))
-((-2864 (((-112) $ $) 7)) (-1430 (($) 24 T CONST)) (-3612 (((-3 $ "failed") $) 27)) (-3943 (((-112) $) 25)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2153 (($) 23 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-935)) 22) (($ $ (-781)) 26)) (* (($ $ $) 21)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1638 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-2599 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-4352 (((-656 (-830 (-1195))) $) NIL)) (-4174 (((-1191 $) $ (-830 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1195)))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3077 (($ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-830 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1143 |#1| (-1195)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-830 (-1195)) $) NIL) (((-1195) $) NIL) (((-1143 |#1| (-1195)) $) NIL)) (-2799 (($ $ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-543 (-830 (-1195))) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#1|) (-830 (-1195))) NIL) (($ (-1191 $) (-830 (-1195))) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-830 (-1195))) NIL)) (-1859 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL)) (-2819 (($ (-1 (-543 (-830 (-1195))) (-543 (-830 (-1195)))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1775 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-1712 (((-3 (-830 (-1195)) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-3685 (((-830 (-1195)) $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2368 (((-112) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-830 (-1195))) (|:| -2300 (-783))) "failed") $) NIL)) (-2612 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1195)) |#1|) NIL) (($ $ (-656 (-830 (-1195))) (-656 |#1|)) NIL) (($ $ (-830 (-1195)) $) NIL) (($ $ (-656 (-830 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-239))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-3206 (($ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3050 (((-656 (-1195)) $) NIL)) (-2782 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1143 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-828 |#1|) (-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1056 (-1143 |#1| (-1195)))) (-1067)) (T -828))
+NIL
+(-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1056 (-1143 |#1| (-1195))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-4334 (($ $) NIL (|has| |#2| (-374)))) (-1428 (((-112) $) NIL (|has| |#2| (-374)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#2| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-374)))) (-1323 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL (|has| |#2| (-374)))) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#2| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3124 (((-112) $) NIL (|has| |#2| (-374)))) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2850 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 20 (|has| |#2| (-374)))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#2| (-374)))) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3927 (((-783) $) NIL (|has| |#2| (-374)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-374)))) (-3884 (($ $) 13) (($ $ (-783)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) 15 (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374)))))
+(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1118) (-914 |#1|) |#1|) (T -829))
+NIL
+(-13 (-111 $ $) (-239) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-2599 (((-783) $) NIL)) (-1500 ((|#1| $) 10)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3540 (((-783) $) 11)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1775 (($ |#1| (-783)) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3884 (($ $ (-783)) NIL) (($ $) NIL)) (-2956 (((-874) $) NIL) (($ |#1|) NIL)) (-2617 (((-112) $ $) NIL)) (-3590 (($ $ (-783)) NIL) (($ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-830 |#1|) (-275 |#1|) (-862)) (T -830))
+NIL
+(-275 |#1|)
+((-2869 (((-112) $ $) NIL)) (-1665 (((-656 |#1|) $) 38)) (-1499 (((-783) $) NIL)) (-4335 (($) NIL T CONST)) (-3322 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-2940 (($ $) 42)) (-4077 (((-3 $ "failed") $) NIL)) (-4203 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4192 (((-112) $) NIL)) (-1762 ((|#1| $ (-576)) NIL)) (-3056 (((-783) $ (-576)) NIL)) (-1351 (($ $) 54)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2121 (($ (-1 |#1| |#1|) $) NIL)) (-1945 (($ (-1 (-783) (-783)) $) NIL)) (-2534 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2453 (((-112) $ $) 51)) (-4114 (((-783) $) 34)) (-2148 (((-1177) $) NIL)) (-3566 (($ $ $) NIL)) (-2758 (($ $ $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 ((|#1| $) 41)) (-3544 (((-656 (-2 (|:| |gen| |#1|) (|:| -1619 (-783)))) $) NIL)) (-1408 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2845 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2956 (((-874) $) NIL) (($ |#1|) NIL)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 20 T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 53)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -2930 (|#1| $)) (-15 -2940 ($ $)) (-15 -1351 ($ $)) (-15 -2453 ((-112) $ $)) (-15 -2534 ((-3 $ "failed") $ |#1|)) (-15 -3322 ((-3 $ "failed") $ |#1|)) (-15 -2845 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4114 ((-783) $)) (-15 -1665 ((-656 |#1|) $)))) (-862)) (T -831))
+((-2930 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2940 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-1351 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-2534 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3322 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2845 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862)))))
+(-13 (-397 |#1|) (-858) (-10 -8 (-15 -2930 (|#1| $)) (-15 -2940 ($ $)) (-15 -1351 ($ $)) (-15 -2453 ((-112) $ $)) (-15 -2534 ((-3 $ "failed") $ |#1|)) (-15 -3322 ((-3 $ "failed") $ |#1|)) (-15 -2845 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4114 ((-783) $)) (-15 -1665 ((-656 |#1|) $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2627 (((-576) $) 59)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-3730 (((-112) $) 57)) (-4192 (((-112) $) 35)) (-3327 (((-112) $) 58)) (-3639 (($ $ $) 56)) (-2571 (($ $ $) 55)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ $) 48)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2130 (($ $) 60)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 53)) (-3024 (((-112) $ $) 52)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 54)) (-3014 (((-112) $ $) 51)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-832) (-141)) (T -832))
+NIL
+(-13 (-568) (-860))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-4260 (($ (-1138)) 7)) (-3815 (((-112) $ (-1177) (-1138)) 15)) (-2843 (((-834) $) 12)) (-2176 (((-834) $) 11)) (-1422 (((-1291) $) 9)) (-2066 (((-112) $ (-1138)) 16)))
+(((-833) (-10 -8 (-15 -4260 ($ (-1138))) (-15 -1422 ((-1291) $)) (-15 -2176 ((-834) $)) (-15 -2843 ((-834) $)) (-15 -3815 ((-112) $ (-1177) (-1138))) (-15 -2066 ((-112) $ (-1138))))) (T -833))
+((-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3815 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833)))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-833)))))
+(-10 -8 (-15 -4260 ($ (-1138))) (-15 -1422 ((-1291) $)) (-15 -2176 ((-834) $)) (-15 -2843 ((-834) $)) (-15 -3815 ((-112) $ (-1177) (-1138))) (-15 -2066 ((-112) $ (-1138))))
+((-3487 (((-1291) $ (-835)) 12)) (-3145 (((-1291) $ (-1195)) 32)) (-3946 (((-1291) $ (-1177) (-1177)) 34)) (-3709 (((-1291) $ (-1177)) 33)) (-1547 (((-1291) $) 19)) (-3142 (((-1291) $ (-576)) 28)) (-2274 (((-1291) $ (-227)) 30)) (-1390 (((-1291) $) 18)) (-1932 (((-1291) $) 26)) (-2169 (((-1291) $) 25)) (-2488 (((-1291) $) 23)) (-2575 (((-1291) $) 24)) (-3886 (((-1291) $) 22)) (-2152 (((-1291) $) 21)) (-2127 (((-1291) $) 20)) (-1959 (((-1291) $) 16)) (-3735 (((-1291) $) 17)) (-3864 (((-1291) $) 15)) (-4345 (((-1291) $) 14)) (-1921 (((-1291) $) 13)) (-4157 (($ (-1177) (-835)) 9)) (-2492 (($ (-1177) (-1177) (-835)) 8)) (-3879 (((-1195) $) 51)) (-3452 (((-1195) $) 55)) (-4238 (((-2 (|:| |cd| (-1177)) (|:| -2041 (-1177))) $) 54)) (-2677 (((-1177) $) 52)) (-3443 (((-1291) $) 41)) (-3746 (((-576) $) 49)) (-3041 (((-227) $) 50)) (-3991 (((-1291) $) 40)) (-3903 (((-1291) $) 48)) (-3718 (((-1291) $) 47)) (-1697 (((-1291) $) 45)) (-3421 (((-1291) $) 46)) (-1659 (((-1291) $) 44)) (-2308 (((-1291) $) 43)) (-1353 (((-1291) $) 42)) (-3655 (((-1291) $) 38)) (-3910 (((-1291) $) 39)) (-4235 (((-1291) $) 37)) (-3869 (((-1291) $) 36)) (-2646 (((-1291) $) 35)) (-3951 (((-1291) $) 11)))
+(((-834) (-10 -8 (-15 -2492 ($ (-1177) (-1177) (-835))) (-15 -4157 ($ (-1177) (-835))) (-15 -3951 ((-1291) $)) (-15 -3487 ((-1291) $ (-835))) (-15 -1921 ((-1291) $)) (-15 -4345 ((-1291) $)) (-15 -3864 ((-1291) $)) (-15 -1959 ((-1291) $)) (-15 -3735 ((-1291) $)) (-15 -1390 ((-1291) $)) (-15 -1547 ((-1291) $)) (-15 -2127 ((-1291) $)) (-15 -2152 ((-1291) $)) (-15 -3886 ((-1291) $)) (-15 -2488 ((-1291) $)) (-15 -2575 ((-1291) $)) (-15 -2169 ((-1291) $)) (-15 -1932 ((-1291) $)) (-15 -3142 ((-1291) $ (-576))) (-15 -2274 ((-1291) $ (-227))) (-15 -3145 ((-1291) $ (-1195))) (-15 -3709 ((-1291) $ (-1177))) (-15 -3946 ((-1291) $ (-1177) (-1177))) (-15 -2646 ((-1291) $)) (-15 -3869 ((-1291) $)) (-15 -4235 ((-1291) $)) (-15 -3655 ((-1291) $)) (-15 -3910 ((-1291) $)) (-15 -3991 ((-1291) $)) (-15 -3443 ((-1291) $)) (-15 -1353 ((-1291) $)) (-15 -2308 ((-1291) $)) (-15 -1659 ((-1291) $)) (-15 -1697 ((-1291) $)) (-15 -3421 ((-1291) $)) (-15 -3718 ((-1291) $)) (-15 -3903 ((-1291) $)) (-15 -3746 ((-576) $)) (-15 -3041 ((-227) $)) (-15 -3879 ((-1195) $)) (-15 -2677 ((-1177) $)) (-15 -4238 ((-2 (|:| |cd| (-1177)) (|:| -2041 (-1177))) $)) (-15 -3452 ((-1195) $)))) (T -834))
+((-3452 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -2041 (-1177)))) (-5 *1 (-834)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-3145 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2274 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-3142 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2492 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))))
+(-10 -8 (-15 -2492 ($ (-1177) (-1177) (-835))) (-15 -4157 ($ (-1177) (-835))) (-15 -3951 ((-1291) $)) (-15 -3487 ((-1291) $ (-835))) (-15 -1921 ((-1291) $)) (-15 -4345 ((-1291) $)) (-15 -3864 ((-1291) $)) (-15 -1959 ((-1291) $)) (-15 -3735 ((-1291) $)) (-15 -1390 ((-1291) $)) (-15 -1547 ((-1291) $)) (-15 -2127 ((-1291) $)) (-15 -2152 ((-1291) $)) (-15 -3886 ((-1291) $)) (-15 -2488 ((-1291) $)) (-15 -2575 ((-1291) $)) (-15 -2169 ((-1291) $)) (-15 -1932 ((-1291) $)) (-15 -3142 ((-1291) $ (-576))) (-15 -2274 ((-1291) $ (-227))) (-15 -3145 ((-1291) $ (-1195))) (-15 -3709 ((-1291) $ (-1177))) (-15 -3946 ((-1291) $ (-1177) (-1177))) (-15 -2646 ((-1291) $)) (-15 -3869 ((-1291) $)) (-15 -4235 ((-1291) $)) (-15 -3655 ((-1291) $)) (-15 -3910 ((-1291) $)) (-15 -3991 ((-1291) $)) (-15 -3443 ((-1291) $)) (-15 -1353 ((-1291) $)) (-15 -2308 ((-1291) $)) (-15 -1659 ((-1291) $)) (-15 -1697 ((-1291) $)) (-15 -3421 ((-1291) $)) (-15 -3718 ((-1291) $)) (-15 -3903 ((-1291) $)) (-15 -3746 ((-576) $)) (-15 -3041 ((-227) $)) (-15 -3879 ((-1195) $)) (-15 -2677 ((-1177) $)) (-15 -4238 ((-2 (|:| |cd| (-1177)) (|:| -2041 (-1177))) $)) (-15 -3452 ((-1195) $)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 13)) (-2617 (((-112) $ $) NIL)) (-3347 (($) 16)) (-4053 (($) 14)) (-3643 (($) 17)) (-4167 (($) 15)) (-2991 (((-112) $ $) 9)))
+(((-835) (-13 (-1118) (-10 -8 (-15 -4053 ($)) (-15 -3347 ($)) (-15 -3643 ($)) (-15 -4167 ($))))) (T -835))
+((-4053 (*1 *1) (-5 *1 (-835))) (-3347 (*1 *1) (-5 *1 (-835))) (-3643 (*1 *1) (-5 *1 (-835))) (-4167 (*1 *1) (-5 *1 (-835))))
+(-13 (-1118) (-10 -8 (-15 -4053 ($)) (-15 -3347 ($)) (-15 -3643 ($)) (-15 -4167 ($))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 23) (($ (-1195)) 19)) (-2617 (((-112) $ $) NIL)) (-3507 (((-112) $) 10)) (-4065 (((-112) $) 9)) (-1354 (((-112) $) 11)) (-3345 (((-112) $) 8)) (-2991 (((-112) $ $) 21)))
+(((-836) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-1195))) (-15 -3345 ((-112) $)) (-15 -4065 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -1354 ((-112) $))))) (T -836))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-1195))) (-15 -3345 ((-112) $)) (-15 -4065 ((-112) $)) (-15 -3507 ((-112) $)) (-15 -1354 ((-112) $))))
+((-2869 (((-112) $ $) NIL)) (-4422 (($ (-836) (-656 (-1195))) 32)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1320 (((-836) $) 33)) (-1573 (((-656 (-1195)) $) 34)) (-2956 (((-874) $) 31)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-837) (-13 (-1118) (-10 -8 (-15 -1320 ((-836) $)) (-15 -1573 ((-656 (-1195)) $)) (-15 -4422 ($ (-836) (-656 (-1195))))))) (T -837))
+((-1320 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837)))) (-4422 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837)))))
+(-13 (-1118) (-10 -8 (-15 -1320 ((-836) $)) (-15 -1573 ((-656 (-1195)) $)) (-15 -4422 ($ (-836) (-656 (-1195))))))
+((-2616 (((-1291) (-834) (-326 |#1|) (-112)) 23) (((-1291) (-834) (-326 |#1|)) 89) (((-1177) (-326 |#1|) (-112)) 88) (((-1177) (-326 |#1|)) 87)))
+(((-838 |#1|) (-10 -7 (-15 -2616 ((-1177) (-326 |#1|))) (-15 -2616 ((-1177) (-326 |#1|) (-112))) (-15 -2616 ((-1291) (-834) (-326 |#1|))) (-15 -2616 ((-1291) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1067))) (T -838))
+((-2616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *6)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *5)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1067))) (-5 *2 (-1177)) (-5 *1 (-838 *5)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1067))) (-5 *2 (-1177)) (-5 *1 (-838 *4)))))
+(-10 -7 (-15 -2616 ((-1177) (-326 |#1|))) (-15 -2616 ((-1177) (-326 |#1|) (-112))) (-15 -2616 ((-1291) (-834) (-326 |#1|))) (-15 -2616 ((-1291) (-834) (-326 |#1|) (-112))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4439 ((|#1| $) 10)) (-4288 (($ |#1|) 9)) (-4192 (((-112) $) NIL)) (-4330 (($ |#2| (-783)) NIL)) (-1859 (((-783) $) NIL)) (-1380 ((|#2| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3884 (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-2782 (((-783) $) NIL)) (-2956 (((-874) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4309 ((|#2| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $) NIL (|has| |#1| (-239))) (($ $ (-783)) NIL (|has| |#1| (-239)))) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4288 ($ |#1|)) (-15 -4439 (|#1| $)))) (-720 |#2|) (-1067)) (T -839))
+((-4288 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-4439 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1067)))))
+(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4288 ($ |#1|)) (-15 -4439 (|#1| $))))
+((-2616 (((-1291) (-834) $ (-112)) 9) (((-1291) (-834) $) 8) (((-1177) $ (-112)) 7) (((-1177) $) 6)))
+(((-840) (-141)) (T -840))
+((-2616 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291)))) (-2616 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291)))) (-2616 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177)))))
+(-13 (-10 -8 (-15 -2616 ((-1177) $)) (-15 -2616 ((-1177) $ (-112))) (-15 -2616 ((-1291) (-834) $)) (-15 -2616 ((-1291) (-834) $ (-112)))))
+((-2026 (((-322) (-1177) (-1177)) 12)) (-4031 (((-112) (-1177) (-1177)) 34)) (-1382 (((-112) (-1177)) 33)) (-1933 (((-52) (-1177)) 25)) (-2133 (((-52) (-1177)) 23)) (-1461 (((-52) (-834)) 17)) (-4258 (((-656 (-1177)) (-1177)) 28)) (-1535 (((-656 (-1177))) 27)))
+(((-841) (-10 -7 (-15 -1461 ((-52) (-834))) (-15 -2133 ((-52) (-1177))) (-15 -1933 ((-52) (-1177))) (-15 -1535 ((-656 (-1177)))) (-15 -4258 ((-656 (-1177)) (-1177))) (-15 -1382 ((-112) (-1177))) (-15 -4031 ((-112) (-1177) (-1177))) (-15 -2026 ((-322) (-1177) (-1177))))) (T -841))
+((-2026 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841)))) (-4031 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-4258 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177)))) (-1535 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(-10 -7 (-15 -1461 ((-52) (-834))) (-15 -2133 ((-52) (-1177))) (-15 -1933 ((-52) (-1177))) (-15 -1535 ((-656 (-1177)))) (-15 -4258 ((-656 (-1177)) (-1177))) (-15 -1382 ((-112) (-1177))) (-15 -4031 ((-112) (-1177) (-1177))) (-15 -2026 ((-322) (-1177) (-1177))))
+((-2869 (((-112) $ $) 19)) (-4356 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2711 (($ $ $) 73)) (-2297 (((-112) $ $) 74)) (-3762 (((-112) $ (-783)) 8)) (-1517 (($ (-656 |#1|)) 69) (($) 68)) (-1707 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-4099 (($ $) 63)) (-4060 (($ $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) 65)) (-2266 (((-112) $ (-783)) 9)) (-3639 ((|#1| $) 79)) (-2470 (($ $ $) 82)) (-1383 (($ $ $) 81)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2571 ((|#1| $) 80)) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22)) (-3318 (($ $ $) 70)) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3945 (((-1138) $) 21)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-4169 (((-656 (-2 (|:| -1918 |#1|) (|:| -3954 (-783)))) $) 62)) (-1403 (($ $ |#1|) 72) (($ $ $) 71)) (-1904 (($) 50) (($ (-656 |#1|)) 49)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 51)) (-2956 (((-874) $) 18)) (-4271 (($ (-656 |#1|)) 67) (($) 66)) (-2617 (((-112) $ $) 23)) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20)) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-842 |#1|) (-141) (-862)) (T -842))
+((-3639 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862)))))
+(-13 (-748 |t#1|) (-986 |t#1|) (-10 -8 (-15 -3639 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-241 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-986 |#1|) . T) ((-1116 |#1|) . T) ((-1118) . T) ((-1236) . T))
+((-3194 (((-1291) (-1138) (-1138)) 48)) (-2830 (((-1291) (-833) (-52)) 45)) (-4193 (((-52) (-833)) 16)))
+(((-843) (-10 -7 (-15 -4193 ((-52) (-833))) (-15 -2830 ((-1291) (-833) (-52))) (-15 -3194 ((-1291) (-1138) (-1138))))) (T -843))
+((-3194 (*1 *2 *3 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843)))))
+(-10 -7 (-15 -4193 ((-52) (-833))) (-15 -2830 ((-1291) (-833) (-52))) (-15 -3194 ((-1291) (-1138) (-1138))))
+((-1787 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -1787 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -1787 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1118) (-1118)) (T -844))
+((-1787 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-844 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))))
+(-10 -7 (-15 -1787 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -1787 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL (|has| |#1| (-21)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2627 (((-576) $) NIL (|has| |#1| (-860)))) (-4335 (($) NIL (|has| |#1| (-21)) CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 9)) (-4077 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-2456 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-1874 (((-112) $) 46 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-3730 (((-112) $) NIL (|has| |#1| (-860)))) (-4192 (((-112) $) NIL (|has| |#1| (-860)))) (-3327 (((-112) $) NIL (|has| |#1| (-860)))) (-3639 (($ $ $) NIL (|has| |#1| (-860)))) (-2571 (($ $ $) NIL (|has| |#1| (-860)))) (-2148 (((-1177) $) NIL)) (-1754 (($) 13)) (-4376 (((-112) $) 12)) (-3945 (((-1138) $) NIL)) (-3610 (((-112) $) 11)) (-2956 (((-874) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2838 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))))) (-3423 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-2617 (((-112) $ $) 54)) (-2130 (($ $) NIL (|has| |#1| (-860)))) (-2143 (($) 23 (|has| |#1| (-21)) CONST)) (-2155 (($) 33 (|has| |#1| (-860)) CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2991 (((-112) $ $) 21)) (-3034 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3014 (((-112) $ $) 45 (|has| |#1| (-860)))) (-3096 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3081 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-937)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-21)))))
+(((-845 |#1|) (-13 (-1118) (-423 |#1|) (-10 -8 (-15 -1754 ($)) (-15 -3610 ((-112) $)) (-15 -4376 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1118)) (T -845))
+((-1754 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1118)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-2456 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))))
+(-13 (-1118) (-423 |#1|) (-10 -8 (-15 -1754 ($)) (-15 -3610 ((-112) $)) (-15 -4376 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+((-2881 (((-112) $ |#2|) 14)) (-2956 (((-874) $) 11)))
+(((-846 |#1| |#2|) (-10 -8 (-15 -2881 ((-112) |#1| |#2|)) (-15 -2956 ((-874) |#1|))) (-847 |#2|) (-1118)) (T -846))
+NIL
+(-10 -8 (-15 -2881 ((-112) |#1| |#2|)) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-2041 ((|#1| $) 16)) (-2148 (((-1177) $) 10)) (-2881 (((-112) $ |#1|) 14)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-1755 (((-55) $) 15)) (-2991 (((-112) $ $) 6)))
+(((-847 |#1|) (-141) (-1118)) (T -847))
+((-2041 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1118)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-55)))) (-2881 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(-13 (-1118) (-10 -8 (-15 -2041 (|t#1| $)) (-15 -1755 ((-55) $)) (-15 -2881 ((-112) $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-115) $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-1394 ((|#1| (-115) |#1|) NIL)) (-4192 (((-112) $) NIL)) (-3696 (($ |#1| (-372 (-115))) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3999 (($ $ (-1 |#1| |#1|)) NIL)) (-3462 (($ $ (-1 |#1| |#1|)) NIL)) (-2209 ((|#1| $ |#1|) NIL)) (-3023 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2719 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-848 |#1|) (-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -3023 (|#1| |#1|))) |%noBranch|) (-15 -3462 ($ $ (-1 |#1| |#1|))) (-15 -3999 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1394 (|#1| (-115) |#1|)) (-15 -3696 ($ |#1| (-372 (-115)))))) (-1067)) (T -848))
+((-2719 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-2719 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-3023 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1067)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1067)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1067)))) (-3696 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1067)))))
+(-13 (-1067) (-1056 |#1|) (-1056 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -3023 (|#1| |#1|))) |%noBranch|) (-15 -3462 ($ $ (-1 |#1| |#1|))) (-15 -3999 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -1394 (|#1| (-115) |#1|)) (-15 -3696 ($ |#1| (-372 (-115))))))
+((-1527 (((-216 (-514)) (-1177)) 9)))
+(((-849) (-10 -7 (-15 -1527 ((-216 (-514)) (-1177))))) (T -849))
+((-1527 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849)))))
+(-10 -7 (-15 -1527 ((-216 (-514)) (-1177))))
+((-2869 (((-112) $ $) NIL)) (-3137 (((-1136) $) 10)) (-2041 (((-518) $) 9)) (-2148 (((-1177) $) NIL)) (-2881 (((-112) $ (-518)) NIL)) (-3945 (((-1138) $) NIL)) (-2968 (($ (-518) (-1136)) 8)) (-2956 (((-874) $) 25)) (-2617 (((-112) $ $) NIL)) (-1755 (((-55) $) 20)) (-2991 (((-112) $ $) 12)))
+(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -3137 ((-1136) $)) (-15 -2968 ($ (-518) (-1136)))))) (T -850))
+((-3137 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-850)))) (-2968 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-850)))))
+(-13 (-847 (-518)) (-10 -8 (-15 -3137 ((-1136) $)) (-15 -2968 ($ (-518) (-1136)))))
+((-2869 (((-112) $ $) 7)) (-3919 (((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 15) (((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 16)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-851) (-141)) (T -851))
+((-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)))))) (-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)))))) (-3919 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) (-5 *2 (-1053)))) (-3919 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1053)))))
+(-13 (-1118) (-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -3919 ((-1053) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -3919 ((-1053) (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2732 (((-1053) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1053) (-326 (-390)) (-656 (-390))) 164) (((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1053) (-853)) 125) (((-1053) (-853) (-1081)) 124)) (-3944 (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081)) 85) (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853)) 87)) (-1626 (((-1053) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1053) (-853)) 150)))
+(((-852) (-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081))) (-15 -2732 ((-1053) (-853) (-1081))) (-15 -2732 ((-1053) (-853))) (-15 -1626 ((-1053) (-853))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)))) (-15 -2732 ((-1053) (-656 (-326 (-390))) (-656 (-390)))) (-15 -1626 ((-1053) (-656 (-326 (-390))) (-656 (-390)))))) (T -852))
+((-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1053)) (-5 *1 (-852)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-852)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852)))))
+(-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1081))) (-15 -2732 ((-1053) (-853) (-1081))) (-15 -2732 ((-1053) (-853))) (-15 -1626 ((-1053) (-853))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2732 ((-1053) (-326 (-390)) (-656 (-390)))) (-15 -2732 ((-1053) (-656 (-326 (-390))) (-656 (-390)))) (-15 -1626 ((-1053) (-656 (-326 (-390))) (-656 (-390)))))
+((-2869 (((-112) $ $) NIL)) (-2216 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) $) 21)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))))) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-853) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2956 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -2956 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) $))))) (T -853))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))) (-5 *1 (-853)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))))) (-5 *1 (-853)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227))))))) (-5 *1 (-853)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2956 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) (-15 -2956 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))))) (-15 -2216 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))) $))))
+((-1787 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -1787 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -1787 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1118) (-1118)) (T -854))
+((-1787 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-854 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))))
+(-10 -7 (-15 -1787 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -1787 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL (|has| |#1| (-21)))) (-1876 (((-1138) $) 31)) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2627 (((-576) $) NIL (|has| |#1| (-860)))) (-4335 (($) NIL (|has| |#1| (-21)) CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 9)) (-4077 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-2456 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-1874 (((-112) $) 60 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-3730 (((-112) $) NIL (|has| |#1| (-860)))) (-2323 (($) 14)) (-4192 (((-112) $) NIL (|has| |#1| (-860)))) (-3327 (((-112) $) NIL (|has| |#1| (-860)))) (-2336 (($) 16)) (-3639 (($ $ $) NIL (|has| |#1| (-860)))) (-2571 (($ $ $) NIL (|has| |#1| (-860)))) (-2148 (((-1177) $) NIL)) (-4376 (((-112) $) 12)) (-3945 (((-1138) $) NIL)) (-3610 (((-112) $) 11)) (-2956 (((-874) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2838 (|has| |#1| (-860)) (|has| |#1| (-1056 (-576)))))) (-3423 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-2617 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| |#1| (-860)))) (-2143 (($) 37 (|has| |#1| (-21)) CONST)) (-2155 (($) 48 (|has| |#1| (-860)) CONST)) (-3047 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2991 (((-112) $ $) 35)) (-3034 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3014 (((-112) $ $) 59 (|has| |#1| (-860)))) (-3096 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3081 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-937)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-937) $) NIL (|has| |#1| (-21)))))
+(((-855 |#1|) (-13 (-1118) (-423 |#1|) (-10 -8 (-15 -2323 ($)) (-15 -2336 ($)) (-15 -3610 ((-112) $)) (-15 -4376 ((-112) $)) (-15 -1876 ((-1138) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1118)) (T -855))
+((-2323 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))) (-2336 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))) (-2456 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118)))))
+(-13 (-1118) (-423 |#1|) (-10 -8 (-15 -2323 ($)) (-15 -2336 ($)) (-15 -3610 ((-112) $)) (-15 -4376 ((-112) $)) (-15 -1876 ((-1138) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-1499 (((-783)) 23)) (-2840 (($) 26)) (-3639 (($ $ $) 14) (($) 22 T CONST)) (-2571 (($ $ $) 15) (($) 21 T CONST)) (-4261 (((-937) $) 25)) (-2148 (((-1177) $) 10)) (-2596 (($ (-937)) 24)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)))
(((-856) (-141)) (T -856))
+((-3639 (*1 *1) (-4 *1 (-856))) (-2571 (*1 *1) (-4 *1 (-856))))
+(-13 (-862) (-379) (-10 -8 (-15 -3639 ($) -1716) (-15 -2571 ($) -1716)))
+(((-102) . T) ((-625 (-874)) . T) ((-379) . T) ((-862) . T) ((-1118) . T))
+((-4392 (((-112) (-1286 |#2|) (-1286 |#2|)) 19)) (-2662 (((-112) (-1286 |#2|) (-1286 |#2|)) 20)) (-2430 (((-112) (-1286 |#2|) (-1286 |#2|)) 16)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -2430 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -4392 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2662 ((-112) (-1286 |#2|) (-1286 |#2|)))) (-783) (-804)) (T -857))
+((-2662 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-4392 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2430 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(-10 -7 (-15 -2430 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -4392 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2662 ((-112) (-1286 |#2|) (-1286 |#2|))))
+((-2869 (((-112) $ $) 7)) (-4335 (($) 24 T CONST)) (-4077 (((-3 $ "failed") $) 27)) (-4192 (((-112) $) 25)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2155 (($) 23 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (** (($ $ (-937)) 22) (($ $ (-783)) 26)) (* (($ $ $) 21)))
+(((-858) (-141)) (T -858))
NIL
-(-13 (-867) (-736))
-(((-102) . T) ((-623 (-872)) . T) ((-736) . T) ((-867) . T) ((-860) . T) ((-1128) . T) ((-1116) . T))
-((-1370 (((-574) $) 21)) (-2516 (((-112) $) 10)) (-1935 (((-112) $) 12)) (-4107 (($ $) 23)))
-(((-857 |#1|) (-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -1370 ((-574) |#1|)) (-15 -1935 ((-112) |#1|)) (-15 -2516 ((-112) |#1|))) (-858)) (T -857))
+(-13 (-869) (-738))
+(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-869) . T) ((-862) . T) ((-1130) . T) ((-1118) . T))
+((-2627 (((-576) $) 21)) (-3730 (((-112) $) 10)) (-3327 (((-112) $) 12)) (-2130 (($ $) 23)))
+(((-859 |#1|) (-10 -8 (-15 -2130 (|#1| |#1|)) (-15 -2627 ((-576) |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3730 ((-112) |#1|))) (-860)) (T -859))
NIL
-(-10 -8 (-15 -4107 (|#1| |#1|)) (-15 -1370 ((-574) |#1|)) (-15 -1935 ((-112) |#1|)) (-15 -2516 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 25)) (-3290 (((-3 $ "failed") $ $) 27)) (-1370 (((-574) $) 37)) (-1430 (($) 24 T CONST)) (-3612 (((-3 $ "failed") $) 42)) (-2516 (((-112) $) 39)) (-3943 (((-112) $) 44)) (-1935 (((-112) $) 38)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 46)) (-3070 (((-781)) 47 T CONST)) (-2981 (((-112) $ $) 9)) (-4107 (($ $) 36)) (-2141 (($) 23 T CONST)) (-2153 (($) 45 T CONST)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (-3090 (($ $ $) 31) (($ $) 30)) (-3074 (($ $ $) 21)) (** (($ $ (-781)) 43) (($ $ (-935)) 40)) (* (($ (-935) $) 22) (($ (-781) $) 26) (($ (-574) $) 29) (($ $ $) 41)))
-(((-858) (-141)) (T -858))
-((-2516 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574)))) (-4107 (*1 *1 *1) (-4 *1 (-858))))
-(-13 (-801) (-1065) (-736) (-10 -8 (-15 -2516 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -1370 ((-574) $)) (-15 -4107 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-860) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-3634 (($ $ $) 12)) (-2976 (($ $ $) 11)) (-2981 (((-112) $ $) 9)) (-3042 (((-112) $ $) 15)) (-3020 (((-112) $ $) 13)) (-3031 (((-112) $ $) 16)))
-(((-859 |#1|) (-10 -8 (-15 -3634 (|#1| |#1| |#1|)) (-15 -2976 (|#1| |#1| |#1|)) (-15 -3031 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3020 ((-112) |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-860)) (T -859))
-NIL
-(-10 -8 (-15 -3634 (|#1| |#1| |#1|)) (-15 -2976 (|#1| |#1| |#1|)) (-15 -3031 ((-112) |#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3020 ((-112) |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)))
+(-10 -8 (-15 -2130 (|#1| |#1|)) (-15 -2627 ((-576) |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3730 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 25)) (-3798 (((-3 $ "failed") $ $) 27)) (-2627 (((-576) $) 37)) (-4335 (($) 24 T CONST)) (-4077 (((-3 $ "failed") $) 42)) (-3730 (((-112) $) 39)) (-4192 (((-112) $) 44)) (-3327 (((-112) $) 38)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 46)) (-3423 (((-783)) 47 T CONST)) (-2617 (((-112) $ $) 9)) (-2130 (($ $) 36)) (-2143 (($) 23 T CONST)) (-2155 (($) 45 T CONST)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (-3096 (($ $ $) 31) (($ $) 30)) (-3081 (($ $ $) 21)) (** (($ $ (-783)) 43) (($ $ (-937)) 40)) (* (($ (-937) $) 22) (($ (-783) $) 26) (($ (-576) $) 29) (($ $ $) 41)))
(((-860) (-141)) (T -860))
-((-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3020 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-2976 (*1 *1 *1 *1) (-4 *1 (-860))) (-3634 (*1 *1 *1 *1) (-4 *1 (-860))))
-(-13 (-1116) (-10 -8 (-15 -3009 ((-112) $ $)) (-15 -3020 ((-112) $ $)) (-15 -3042 ((-112) $ $)) (-15 -3031 ((-112) $ $)) (-15 -2976 ($ $ $)) (-15 -3634 ($ $ $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-3911 (($ $ $) 49)) (-3096 (($ $ $) 48)) (-2738 (($ $ $) 46)) (-3205 (($ $ $) 55)) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 50)) (-3123 (((-3 $ "failed") $ $) 53)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-4135 (($ $) 39)) (-2228 (($ $ $) 43)) (-2588 (($ $ $) 42)) (-4317 (($ $ $) 51)) (-3218 (($ $ $) 57)) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 45)) (-3125 (((-3 $ "failed") $ $) 52)) (-2853 (((-3 $ "failed") $ |#2|) 32)) (-1732 ((|#2| $) 36)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#2|) 13)) (-3382 (((-654 |#2|) $) 21)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-861 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#1| |#1|)) (-15 -2693 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3205 (|#1| |#1| |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -3809 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -3125 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3382 ((-654 |#2|) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -2951 ((-872) |#1|))) (-862 |#2|) (-1065)) (T -861))
-NIL
-(-10 -8 (-15 -4317 (|#1| |#1| |#1|)) (-15 -2693 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3205 (|#1| |#1| |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -3809 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2975 |#1|)) |#1| |#1|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -3125 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -2853 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3382 ((-654 |#2|) |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3911 (($ $ $) 50 (|has| |#1| (-372)))) (-3096 (($ $ $) 51 (|has| |#1| (-372)))) (-2738 (($ $ $) 53 (|has| |#1| (-372)))) (-3205 (($ $ $) 48 (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 47 (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) 49 (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 52 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) 80 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 77 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-574) $) 79 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 76 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 75)) (-1402 (($ $) 69)) (-3612 (((-3 $ "failed") $) 37)) (-4135 (($ $) 60 (|has| |#1| (-462)))) (-3943 (((-112) $) 35)) (-4328 (($ |#1| (-781)) 67)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 62 (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63 (|has| |#1| (-566)))) (-2043 (((-781) $) 71)) (-2228 (($ $ $) 57 (|has| |#1| (-372)))) (-2588 (($ $ $) 58 (|has| |#1| (-372)))) (-4317 (($ $ $) 46 (|has| |#1| (-372)))) (-3218 (($ $ $) 55 (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 54 (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) 56 (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 59 (|has| |#1| (-372)))) (-1378 ((|#1| $) 70)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-566)))) (-3735 (((-781) $) 72)) (-1732 ((|#1| $) 61 (|has| |#1| (-462)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 78 (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) 73)) (-3382 (((-654 |#1|) $) 66)) (-1788 ((|#1| $ (-781)) 68)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2912 ((|#1| $ |#1| |#1|) 65)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-862 |#1|) (-141) (-1065)) (T -862))
-((-3735 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-1402 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-4328 (*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-654 *3)))) (-2912 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-2338 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3)))) (-4386 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462)))) (-2649 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3)))) (-2588 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-2228 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3125 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3218 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3809 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-2738 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3424 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3)))) (-3096 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3911 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3123 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3205 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-2693 (*1 *2 *1 *1) (-12 (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1))) (-4 *1 (-862 *3)))) (-4317 (*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(-13 (-1065) (-111 |t#1| |t#1|) (-421 |t#1|) (-10 -8 (-15 -3735 ((-781) $)) (-15 -2043 ((-781) $)) (-15 -1378 (|t#1| $)) (-15 -1402 ($ $)) (-15 -1788 (|t#1| $ (-781))) (-15 -4328 ($ |t#1| (-781))) (-15 -3382 ((-654 |t#1|) $)) (-15 -2912 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2853 ((-3 $ "failed") $ |t#1|)) (-15 -2338 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -4386 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -1732 (|t#1| $)) (-15 -4135 ($ $))) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-15 -2649 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -2588 ($ $ $)) (-15 -2228 ($ $ $)) (-15 -3125 ((-3 $ "failed") $ $)) (-15 -3218 ($ $ $)) (-15 -3809 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -2738 ($ $ $)) (-15 -3424 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -3096 ($ $ $)) (-15 -3911 ($ $ $)) (-15 -3123 ((-3 $ "failed") $ $)) (-15 -3205 ($ $ $)) (-15 -2693 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $)) (-15 -4317 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-421 |#1|) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1054 #0#) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-3762 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3424 (((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-372)))) (-4386 (((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-566)))) (-2649 (((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-372)))) (-2912 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -3762 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2912 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2338 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4386 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2649 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3424 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1065) (-862 |#1|)) (T -863))
-((-3424 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2649 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-4386 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2338 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3)) (-4 *3 (-862 *5)))) (-2912 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1065)) (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))) (-3762 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1065)) (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5)))))
-(-10 -7 (-15 -3762 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2912 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-566)) (PROGN (-15 -2338 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4386 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2649 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3424 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3911 (($ $ $) NIL (|has| |#1| (-372)))) (-3096 (($ $ $) NIL (|has| |#1| (-372)))) (-2738 (($ $ $) NIL (|has| |#1| (-372)))) (-3205 (($ $ $) NIL (|has| |#1| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3123 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 34 (|has| |#1| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-2573 (((-872) $ (-872)) NIL)) (-3943 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) NIL)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 30 (|has| |#1| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 28 (|has| |#1| (-566)))) (-2043 (((-781) $) NIL)) (-2228 (($ $ $) NIL (|has| |#1| (-372)))) (-2588 (($ $ $) NIL (|has| |#1| (-372)))) (-4317 (($ $ $) NIL (|has| |#1| (-372)))) (-3218 (($ $ $) NIL (|has| |#1| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-3125 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 32 (|has| |#1| (-372)))) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3735 (((-781) $) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-1054 (-417 (-574))))) (($ |#1|) NIL)) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2912 ((|#1| $ |#1| |#1|) 15)) (-2141 (($) NIL T CONST)) (-2153 (($) 23 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 19) (($ $ (-781)) 24)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-864 |#1| |#2| |#3|) (-13 (-862 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-872))))) (-1065) (-99 |#1|) (-1 |#1| |#1|)) (T -864))
-((-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-862 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-872)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3911 (($ $ $) NIL (|has| |#2| (-372)))) (-3096 (($ $ $) NIL (|has| |#2| (-372)))) (-2738 (($ $ $) NIL (|has| |#2| (-372)))) (-3205 (($ $ $) NIL (|has| |#2| (-372)))) (-2693 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-3123 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-3424 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-372)))) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#2| (-462)))) (-3943 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) 17)) (-4386 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-566)))) (-2338 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-566)))) (-2043 (((-781) $) NIL)) (-2228 (($ $ $) NIL (|has| |#2| (-372)))) (-2588 (($ $ $) NIL (|has| |#2| (-372)))) (-4317 (($ $ $) NIL (|has| |#2| (-372)))) (-3218 (($ $ $) NIL (|has| |#2| (-372)))) (-3809 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-3125 (((-3 $ "failed") $ $) NIL (|has| |#2| (-372)))) (-2649 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-372)))) (-1378 ((|#2| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-3735 (((-781) $) NIL)) (-1732 ((|#2| $) NIL (|has| |#2| (-462)))) (-2951 (((-872) $) 24) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (($ (-1280 |#1|)) 19)) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-781)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2912 ((|#2| $ |#2| |#2|) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) 13 T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-865 |#1| |#2| |#3| |#4|) (-13 (-862 |#2|) (-626 (-1280 |#1|))) (-1193) (-1065) (-99 |#2|) (-1 |#2| |#2|)) (T -865))
-NIL
-(-13 (-862 |#2|) (-626 (-1280 |#1|)))
-((-2373 ((|#1| (-781) |#1|) 45 (|has| |#1| (-38 (-417 (-574)))))) (-4162 ((|#1| (-781) (-781) |#1|) 36) ((|#1| (-781) |#1|) 24)) (-2558 ((|#1| (-781) |#1|) 40)) (-1516 ((|#1| (-781) |#1|) 38)) (-4031 ((|#1| (-781) |#1|) 37)))
-(((-866 |#1|) (-10 -7 (-15 -4031 (|#1| (-781) |#1|)) (-15 -1516 (|#1| (-781) |#1|)) (-15 -2558 (|#1| (-781) |#1|)) (-15 -4162 (|#1| (-781) |#1|)) (-15 -4162 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2373 (|#1| (-781) |#1|)) |%noBranch|)) (-174)) (T -866))
-((-2373 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-174)))) (-4162 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-4162 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-2558 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))) (-4031 (*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -4031 (|#1| (-781) |#1|)) (-15 -1516 (|#1| (-781) |#1|)) (-15 -2558 (|#1| (-781) |#1|)) (-15 -4162 (|#1| (-781) |#1|)) (-15 -4162 (|#1| (-781) (-781) |#1|)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -2373 (|#1| (-781) |#1|)) |%noBranch|))
-((-2864 (((-112) $ $) 7)) (-3634 (($ $ $) 14)) (-2976 (($ $ $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-3042 (((-112) $ $) 17)) (-3020 (((-112) $ $) 18)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 16)) (-3009 (((-112) $ $) 19)) (** (($ $ (-935)) 22)) (* (($ $ $) 21)))
-(((-867) (-141)) (T -867))
-NIL
-(-13 (-860) (-1128))
-(((-102) . T) ((-623 (-872)) . T) ((-860) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-3079 (((-574) $) 14)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 20) (($ (-574)) 13)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 11)))
-(((-868) (-13 (-860) (-10 -8 (-15 -2951 ($ (-574))) (-15 -3079 ((-574) $))))) (T -868))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868)))))
-(-13 (-860) (-10 -8 (-15 -2951 ($ (-574))) (-15 -3079 ((-574) $))))
-((-2169 (((-701 (-1242)) $ (-1242)) 15)) (-1712 (((-701 (-559)) $ (-559)) 12)) (-3976 (((-781) $ (-129)) 30)))
-(((-869 |#1|) (-10 -8 (-15 -3976 ((-781) |#1| (-129))) (-15 -2169 ((-701 (-1242)) |#1| (-1242))) (-15 -1712 ((-701 (-559)) |#1| (-559)))) (-870)) (T -869))
-NIL
-(-10 -8 (-15 -3976 ((-781) |#1| (-129))) (-15 -2169 ((-701 (-1242)) |#1| (-1242))) (-15 -1712 ((-701 (-559)) |#1| (-559))))
-((-2169 (((-701 (-1242)) $ (-1242)) 8)) (-1712 (((-701 (-559)) $ (-559)) 9)) (-3976 (((-781) $ (-129)) 7)) (-1365 (((-701 (-130)) $ (-130)) 10)) (-1839 (($ $) 6)))
-(((-870) (-141)) (T -870))
-((-1365 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))) (-1712 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))) (-2169 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1242))) (-5 *3 (-1242)))) (-3976 (*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781)))))
-(-13 (-175) (-10 -8 (-15 -1365 ((-701 (-130)) $ (-130))) (-15 -1712 ((-701 (-559)) $ (-559))) (-15 -2169 ((-701 (-1242)) $ (-1242))) (-15 -3976 ((-781) $ (-129)))))
+((-3730 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2130 (*1 *1 *1) (-4 *1 (-860))))
+(-13 (-803) (-1067) (-738) (-10 -8 (-15 -3730 ((-112) $)) (-15 -3327 ((-112) $)) (-15 -2627 ((-576) $)) (-15 -2130 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-3639 (($ $ $) 12)) (-2571 (($ $ $) 11)) (-2617 (((-112) $ $) 9)) (-3047 (((-112) $ $) 15)) (-3024 (((-112) $ $) 13)) (-3034 (((-112) $ $) 16)))
+(((-861 |#1|) (-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3047 ((-112) |#1| |#1|)) (-15 -3024 ((-112) |#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|))) (-862)) (T -861))
+NIL
+(-10 -8 (-15 -3639 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3047 ((-112) |#1| |#1|)) (-15 -3024 ((-112) |#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)))
+(((-862) (-141)) (T -862))
+((-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3047 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-2571 (*1 *1 *1 *1) (-4 *1 (-862))) (-3639 (*1 *1 *1 *1) (-4 *1 (-862))))
+(-13 (-1118) (-10 -8 (-15 -3014 ((-112) $ $)) (-15 -3024 ((-112) $ $)) (-15 -3047 ((-112) $ $)) (-15 -3034 ((-112) $ $)) (-15 -2571 ($ $ $)) (-15 -3639 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3904 (($ $ $) 49)) (-2349 (($ $ $) 48)) (-2136 (($ $ $) 46)) (-2210 (($ $ $) 55)) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 50)) (-2631 (((-3 $ "failed") $ $) 53)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-4290 (($ $) 39)) (-2996 (($ $ $) 43)) (-3217 (($ $ $) 42)) (-3598 (($ $ $) 51)) (-4257 (($ $ $) 57)) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 45)) (-2659 (((-3 $ "failed") $ $) 52)) (-2858 (((-3 $ "failed") $ |#2|) 32)) (-1885 ((|#2| $) 36)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-3532 (((-656 |#2|) $) 21)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-863 |#1| |#2|) (-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -2958 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2631 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2136 (|#1| |#1| |#1|)) (-15 -2213 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2996 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3532 ((-656 |#2|) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -2956 ((-874) |#1|))) (-864 |#2|) (-1067)) (T -863))
+NIL
+(-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -2958 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2631 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2136 (|#1| |#1| |#1|)) (-15 -2213 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2981 |#1|)) |#1| |#1|)) (-15 -4257 (|#1| |#1| |#1|)) (-15 -2659 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2996 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -2858 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3532 ((-656 |#2|) |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-3904 (($ $ $) 50 (|has| |#1| (-374)))) (-2349 (($ $ $) 51 (|has| |#1| (-374)))) (-2136 (($ $ $) 53 (|has| |#1| (-374)))) (-2210 (($ $ $) 48 (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 47 (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 52 (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2216 (((-576) $) 79 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 75)) (-1404 (($ $) 69)) (-4077 (((-3 $ "failed") $) 37)) (-4290 (($ $) 60 (|has| |#1| (-464)))) (-4192 (((-112) $) 35)) (-4330 (($ |#1| (-783)) 67)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 62 (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63 (|has| |#1| (-568)))) (-1859 (((-783) $) 71)) (-2996 (($ $ $) 57 (|has| |#1| (-374)))) (-3217 (($ $ $) 58 (|has| |#1| (-374)))) (-3598 (($ $ $) 46 (|has| |#1| (-374)))) (-4257 (($ $ $) 55 (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 54 (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 59 (|has| |#1| (-374)))) (-1380 ((|#1| $) 70)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2782 (((-783) $) 72)) (-1885 ((|#1| $) 61 (|has| |#1| (-464)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) 73)) (-3532 (((-656 |#1|) $) 66)) (-4309 ((|#1| $ (-783)) 68)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2917 ((|#1| $ |#1| |#1|) 65)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-864 |#1|) (-141) (-1067)) (T -864))
+((-2782 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-1404 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-656 *3)))) (-2917 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)))) (-2858 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-2699 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3)))) (-1816 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-4290 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464)))) (-2501 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2996 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2659 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-4257 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2213 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1))) (-4 *1 (-864 *3)))) (-2136 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2744 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-3904 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2631 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2210 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2958 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1))) (-4 *1 (-864 *3)))) (-3598 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(-13 (-1067) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -2782 ((-783) $)) (-15 -1859 ((-783) $)) (-15 -1380 (|t#1| $)) (-15 -1404 ($ $)) (-15 -4309 (|t#1| $ (-783))) (-15 -4330 ($ |t#1| (-783))) (-15 -3532 ((-656 |t#1|) $)) (-15 -2917 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -2858 ((-3 $ "failed") $ |t#1|)) (-15 -2699 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -1816 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1885 (|t#1| $)) (-15 -4290 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2501 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -3217 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2659 ((-3 $ "failed") $ $)) (-15 -4257 ($ $ $)) (-15 -2213 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $)) (-15 -2136 ($ $ $)) (-15 -2744 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2349 ($ $ $)) (-15 -3904 ($ $ $)) (-15 -2631 ((-3 $ "failed") $ $)) (-15 -2210 ($ $ $)) (-15 -2958 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $)) (-15 -3598 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1056 #0#) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-3768 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2744 (((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-1816 (((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2501 (((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-2917 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -3768 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2917 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2699 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1816 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2501 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2744 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1067) (-864 |#1|)) (T -865))
+((-2744 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2501 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-1816 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2699 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2917 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1067)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-3768 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1067)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5)))))
+(-10 -7 (-15 -3768 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2917 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2699 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1816 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2501 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2744 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3904 (($ $ $) NIL (|has| |#1| (-374)))) (-2349 (($ $ $) NIL (|has| |#1| (-374)))) (-2136 (($ $ $) NIL (|has| |#1| (-374)))) (-2210 (($ $ $) NIL (|has| |#1| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2631 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 34 (|has| |#1| (-374)))) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-3069 (((-874) $ (-874)) NIL)) (-4192 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) NIL)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 30 (|has| |#1| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 28 (|has| |#1| (-568)))) (-1859 (((-783) $) NIL)) (-2996 (($ $ $) NIL (|has| |#1| (-374)))) (-3217 (($ $ $) NIL (|has| |#1| (-374)))) (-3598 (($ $ $) NIL (|has| |#1| (-374)))) (-4257 (($ $ $) NIL (|has| |#1| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 32 (|has| |#1| (-374)))) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2782 (((-783) $) NIL)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1056 (-419 (-576))))) (($ |#1|) NIL)) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2917 ((|#1| $ |#1| |#1|) 15)) (-2143 (($) NIL T CONST)) (-2155 (($) 23 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) 19) (($ $ (-783)) 24)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-874))))) (-1067) (-99 |#1|) (-1 |#1| |#1|)) (T -866))
+((-3069 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-864 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-874)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-3904 (($ $ $) NIL (|has| |#2| (-374)))) (-2349 (($ $ $) NIL (|has| |#2| (-374)))) (-2136 (($ $ $) NIL (|has| |#2| (-374)))) (-2210 (($ $ $) NIL (|has| |#2| (-374)))) (-2958 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#2| (-374)))) (-2631 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2744 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-374)))) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#2| (-464)))) (-4192 (((-112) $) NIL)) (-4330 (($ |#2| (-783)) 17)) (-1816 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-568)))) (-2699 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-568)))) (-1859 (((-783) $) NIL)) (-2996 (($ $ $) NIL (|has| |#2| (-374)))) (-3217 (($ $ $) NIL (|has| |#2| (-374)))) (-3598 (($ $ $) NIL (|has| |#2| (-374)))) (-4257 (($ $ $) NIL (|has| |#2| (-374)))) (-2213 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#2| (-374)))) (-2659 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2501 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-374)))) (-1380 ((|#2| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2782 (((-783) $) NIL)) (-1885 ((|#2| $) NIL (|has| |#2| (-464)))) (-2956 (((-874) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (($ (-1282 |#1|)) 19)) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-783)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2917 ((|#2| $ |#2| |#2|) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) 13 T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-628 (-1282 |#1|))) (-1195) (-1067) (-99 |#2|) (-1 |#2| |#2|)) (T -867))
+NIL
+(-13 (-864 |#2|) (-628 (-1282 |#1|)))
+((-1774 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1439 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-4103 ((|#1| (-783) |#1|) 40)) (-3521 ((|#1| (-783) |#1|) 38)) (-2643 ((|#1| (-783) |#1|) 37)))
+(((-868 |#1|) (-10 -7 (-15 -2643 (|#1| (-783) |#1|)) (-15 -3521 (|#1| (-783) |#1|)) (-15 -4103 (|#1| (-783) |#1|)) (-15 -1439 (|#1| (-783) |#1|)) (-15 -1439 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1774 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -868))
+((-1774 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1439 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1439 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-4103 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-3521 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-2643 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -2643 (|#1| (-783) |#1|)) (-15 -3521 (|#1| (-783) |#1|)) (-15 -4103 (|#1| (-783) |#1|)) (-15 -1439 (|#1| (-783) |#1|)) (-15 -1439 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1774 (|#1| (-783) |#1|)) |%noBranch|))
+((-2869 (((-112) $ $) 7)) (-3639 (($ $ $) 14)) (-2571 (($ $ $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3047 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 16)) (-3014 (((-112) $ $) 19)) (** (($ $ (-937)) 22)) (* (($ $ $) 21)))
+(((-869) (-141)) (T -869))
+NIL
+(-13 (-862) (-1130))
+(((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3084 (((-576) $) 14)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 20) (($ (-576)) 13)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 9)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 11)))
+(((-870) (-13 (-862) (-10 -8 (-15 -2956 ($ (-576))) (-15 -3084 ((-576) $))))) (T -870))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870)))))
+(-13 (-862) (-10 -8 (-15 -2956 ($ (-576))) (-15 -3084 ((-576) $))))
+((-3668 (((-703 (-1244)) $ (-1244)) 15)) (-1701 (((-703 (-561)) $ (-561)) 12)) (-3358 (((-783) $ (-129)) 30)))
+(((-871 |#1|) (-10 -8 (-15 -3358 ((-783) |#1| (-129))) (-15 -3668 ((-703 (-1244)) |#1| (-1244))) (-15 -1701 ((-703 (-561)) |#1| (-561)))) (-872)) (T -871))
+NIL
+(-10 -8 (-15 -3358 ((-783) |#1| (-129))) (-15 -3668 ((-703 (-1244)) |#1| (-1244))) (-15 -1701 ((-703 (-561)) |#1| (-561))))
+((-3668 (((-703 (-1244)) $ (-1244)) 8)) (-1701 (((-703 (-561)) $ (-561)) 9)) (-3358 (((-783) $ (-129)) 7)) (-3901 (((-703 (-130)) $ (-130)) 10)) (-3597 (($ $) 6)))
+(((-872) (-141)) (T -872))
+((-3901 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-1701 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-3668 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244)))) (-3358 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(-13 (-175) (-10 -8 (-15 -3901 ((-703 (-130)) $ (-130))) (-15 -1701 ((-703 (-561)) $ (-561))) (-15 -3668 ((-703 (-1244)) $ (-1244))) (-15 -3358 ((-783) $ (-129)))))
(((-175) . T))
-((-2169 (((-701 (-1242)) $ (-1242)) NIL)) (-1712 (((-701 (-559)) $ (-559)) NIL)) (-3976 (((-781) $ (-129)) NIL)) (-1365 (((-701 (-130)) $ (-130)) 22)) (-2052 (($ (-398)) 12) (($ (-1175)) 14)) (-2634 (((-112) $) 19)) (-2951 (((-872) $) 26)) (-1839 (($ $) 23)))
-(((-871) (-13 (-870) (-623 (-872)) (-10 -8 (-15 -2052 ($ (-398))) (-15 -2052 ($ (-1175))) (-15 -2634 ((-112) $))))) (T -871))
-((-2052 (*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-871)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))))
-(-13 (-870) (-623 (-872)) (-10 -8 (-15 -2052 ($ (-398))) (-15 -2052 ($ (-1175))) (-15 -2634 ((-112) $))))
-((-2864 (((-112) $ $) NIL) (($ $ $) 85)) (-3777 (($ $ $) 125)) (-3016 (((-574) $) 31) (((-574)) 36)) (-4215 (($ (-574)) 53)) (-3310 (($ $ $) 54) (($ (-654 $)) 84)) (-1690 (($ $ (-654 $)) 82)) (-3460 (((-574) $) 34)) (-3625 (($ $ $) 73)) (-3535 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1930 (((-574) $) 33)) (-2842 (($ $ $) 72)) (-3232 (($ $) 114)) (-3749 (($ $ $) 129)) (-1794 (($ (-654 $)) 61)) (-4122 (($ $ (-654 $)) 79)) (-1514 (($ (-574) (-574)) 55)) (-3843 (($ $) 126) (($ $ $) 127)) (-3878 (($ $ (-574)) 43) (($ $) 46)) (-2801 (($ $ $) 97)) (-2863 (($ $ $) 132)) (-1391 (($ $) 115)) (-2812 (($ $ $) 98)) (-1322 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1803 (((-1289) $) 10)) (-3503 (($ $) 118) (($ $ (-781)) 122)) (-3156 (($ $ $) 75)) (-3480 (($ $ $) 74)) (-4197 (($ $ (-654 $)) 110)) (-1472 (($ $ $) 113)) (-2460 (($ (-654 $)) 59)) (-3253 (($ $) 70) (($ (-654 $)) 71)) (-2540 (($ $ $) 123)) (-3283 (($ $) 116)) (-3360 (($ $ $) 128)) (-2573 (($ (-574)) 21) (($ (-1193)) 23) (($ (-1175)) 30) (($ (-227)) 25)) (-2106 (($ $ $) 101)) (-2084 (($ $) 102)) (-3602 (((-1289) (-1175)) 15)) (-2177 (($ (-1175)) 14)) (-2924 (($ (-654 (-654 $))) 58)) (-3865 (($ $ (-574)) 42) (($ $) 45)) (-4420 (((-1175) $) NIL)) (-1906 (($ $ $) 131)) (-3087 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3774 (((-112) $) 108)) (-4191 (($ $ (-654 $)) 111) (($ $ $ $) 112)) (-4404 (($ (-574)) 39)) (-1846 (((-574) $) 32) (((-574)) 35)) (-4262 (($ $ $) 40) (($ (-654 $)) 83)) (-3940 (((-1136) $) NIL)) (-2853 (($ $ $) 99)) (-3014 (($) 13)) (-2207 (($ $ (-654 $)) 109)) (-1524 (((-1175) (-1175)) 8)) (-3936 (($ $) 117) (($ $ (-781)) 121)) (-2840 (($ $ $) 96)) (-3879 (($ $ (-781)) 139)) (-2107 (($ (-654 $)) 60)) (-2951 (((-872) $) 19)) (-3332 (($ $ (-574)) 41) (($ $) 44)) (-1996 (($ $) 68) (($ (-654 $)) 69)) (-4269 (($ $) 66) (($ (-654 $)) 67)) (-2078 (($ $) 124)) (-2929 (($ (-654 $)) 65)) (-3751 (($ $ $) 105)) (-2981 (((-112) $ $) NIL)) (-2321 (($ $ $) 130)) (-2095 (($ $ $) 100)) (-4266 (($ $ $) 103) (($ $) 104)) (-3042 (($ $ $) 89)) (-3020 (($ $ $) 87)) (-2986 (((-112) $ $) 16) (($ $ $) 17)) (-3031 (($ $ $) 88)) (-3009 (($ $ $) 86)) (-3099 (($ $ $) 94)) (-3090 (($ $ $) 91) (($ $) 92)) (-3074 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-872) (-13 (-1116) (-10 -8 (-15 -1803 ((-1289) $)) (-15 -2177 ($ (-1175))) (-15 -3602 ((-1289) (-1175))) (-15 -2573 ($ (-574))) (-15 -2573 ($ (-1193))) (-15 -2573 ($ (-1175))) (-15 -2573 ($ (-227))) (-15 -3014 ($)) (-15 -1524 ((-1175) (-1175))) (-15 -3016 ((-574) $)) (-15 -1846 ((-574) $)) (-15 -3016 ((-574))) (-15 -1846 ((-574))) (-15 -1930 ((-574) $)) (-15 -3460 ((-574) $)) (-15 -4404 ($ (-574))) (-15 -4215 ($ (-574))) (-15 -1514 ($ (-574) (-574))) (-15 -3865 ($ $ (-574))) (-15 -3878 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -3332 ($ $)) (-15 -4262 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -4262 ($ (-654 $))) (-15 -3310 ($ (-654 $))) (-15 -4197 ($ $ (-654 $))) (-15 -4191 ($ $ (-654 $))) (-15 -4191 ($ $ $ $)) (-15 -1472 ($ $ $)) (-15 -3774 ((-112) $)) (-15 -2207 ($ $ (-654 $))) (-15 -3232 ($ $)) (-15 -1906 ($ $ $)) (-15 -2078 ($ $)) (-15 -2924 ($ (-654 (-654 $)))) (-15 -3777 ($ $ $)) (-15 -3843 ($ $)) (-15 -3843 ($ $ $)) (-15 -3360 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -2321 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3879 ($ $ (-781))) (-15 -3751 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -4122 ($ $ (-654 $))) (-15 -1690 ($ $ (-654 $))) (-15 -1391 ($ $)) (-15 -3936 ($ $)) (-15 -3936 ($ $ (-781))) (-15 -3503 ($ $)) (-15 -3503 ($ $ (-781))) (-15 -3283 ($ $)) (-15 -2540 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -1322 ($ $)) (-15 -1322 ($ $ $)) (-15 -1322 ($ $ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -4269 ($ $)) (-15 -4269 ($ (-654 $))) (-15 -1996 ($ $)) (-15 -1996 ($ (-654 $))) (-15 -3253 ($ $)) (-15 -3253 ($ (-654 $))) (-15 -2460 ($ (-654 $))) (-15 -2107 ($ (-654 $))) (-15 -1794 ($ (-654 $))) (-15 -2929 ($ (-654 $))) (-15 -2986 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3020 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 -3099 ($ $ $)) (-15 ** ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -2812 ($ $ $)) (-15 -2853 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $)) (-15 -2084 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $))))) (T -872))
-((-1803 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-872)))) (-2177 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-872)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-872)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872)))) (-3014 (*1 *1) (-5 *1 (-872))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3016 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1846 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4404 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-1514 (*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))) (-3865 (*1 *1 *1) (-5 *1 (-872))) (-3878 (*1 *1 *1) (-5 *1 (-872))) (-3332 (*1 *1 *1) (-5 *1 (-872))) (-4262 (*1 *1 *1 *1) (-5 *1 (-872))) (-3310 (*1 *1 *1 *1) (-5 *1 (-872))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-4191 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-1472 (*1 *1 *1 *1) (-5 *1 (-872))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3232 (*1 *1 *1) (-5 *1 (-872))) (-1906 (*1 *1 *1 *1) (-5 *1 (-872))) (-2078 (*1 *1 *1) (-5 *1 (-872))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872)))) (-3777 (*1 *1 *1 *1) (-5 *1 (-872))) (-3843 (*1 *1 *1) (-5 *1 (-872))) (-3843 (*1 *1 *1 *1) (-5 *1 (-872))) (-3360 (*1 *1 *1 *1) (-5 *1 (-872))) (-3749 (*1 *1 *1 *1) (-5 *1 (-872))) (-2321 (*1 *1 *1 *1) (-5 *1 (-872))) (-2863 (*1 *1 *1 *1) (-5 *1 (-872))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3751 (*1 *1 *1 *1) (-5 *1 (-872))) (-2842 (*1 *1 *1 *1) (-5 *1 (-872))) (-3625 (*1 *1 *1 *1) (-5 *1 (-872))) (-3480 (*1 *1 *1 *1) (-5 *1 (-872))) (-3156 (*1 *1 *1 *1) (-5 *1 (-872))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1690 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1391 (*1 *1 *1) (-5 *1 (-872))) (-3936 (*1 *1 *1) (-5 *1 (-872))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3503 (*1 *1 *1) (-5 *1 (-872))) (-3503 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872)))) (-3283 (*1 *1 *1) (-5 *1 (-872))) (-2540 (*1 *1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1 *1) (-5 *1 (-872))) (-3535 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-1322 (*1 *1 *1) (-5 *1 (-872))) (-1322 (*1 *1 *1 *1) (-5 *1 (-872))) (-1322 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1 *1) (-5 *1 (-872))) (-3087 (*1 *1 *1 *1 *1) (-5 *1 (-872))) (-4269 (*1 *1 *1) (-5 *1 (-872))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1996 (*1 *1 *1) (-5 *1 (-872))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-3253 (*1 *1 *1) (-5 *1 (-872))) (-3253 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-1794 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))) (-2986 (*1 *1 *1 *1) (-5 *1 (-872))) (-2864 (*1 *1 *1 *1) (-5 *1 (-872))) (-3009 (*1 *1 *1 *1) (-5 *1 (-872))) (-3020 (*1 *1 *1 *1) (-5 *1 (-872))) (-3031 (*1 *1 *1 *1) (-5 *1 (-872))) (-3042 (*1 *1 *1 *1) (-5 *1 (-872))) (-3074 (*1 *1 *1 *1) (-5 *1 (-872))) (-3090 (*1 *1 *1 *1) (-5 *1 (-872))) (-3090 (*1 *1 *1) (-5 *1 (-872))) (* (*1 *1 *1 *1) (-5 *1 (-872))) (-3099 (*1 *1 *1 *1) (-5 *1 (-872))) (** (*1 *1 *1 *1) (-5 *1 (-872))) (-2840 (*1 *1 *1 *1) (-5 *1 (-872))) (-2801 (*1 *1 *1 *1) (-5 *1 (-872))) (-2812 (*1 *1 *1 *1) (-5 *1 (-872))) (-2853 (*1 *1 *1 *1) (-5 *1 (-872))) (-2095 (*1 *1 *1 *1) (-5 *1 (-872))) (-2106 (*1 *1 *1 *1) (-5 *1 (-872))) (-2084 (*1 *1 *1) (-5 *1 (-872))) (-4266 (*1 *1 *1 *1) (-5 *1 (-872))) (-4266 (*1 *1 *1) (-5 *1 (-872))))
-(-13 (-1116) (-10 -8 (-15 -1803 ((-1289) $)) (-15 -2177 ($ (-1175))) (-15 -3602 ((-1289) (-1175))) (-15 -2573 ($ (-574))) (-15 -2573 ($ (-1193))) (-15 -2573 ($ (-1175))) (-15 -2573 ($ (-227))) (-15 -3014 ($)) (-15 -1524 ((-1175) (-1175))) (-15 -3016 ((-574) $)) (-15 -1846 ((-574) $)) (-15 -3016 ((-574))) (-15 -1846 ((-574))) (-15 -1930 ((-574) $)) (-15 -3460 ((-574) $)) (-15 -4404 ($ (-574))) (-15 -4215 ($ (-574))) (-15 -1514 ($ (-574) (-574))) (-15 -3865 ($ $ (-574))) (-15 -3878 ($ $ (-574))) (-15 -3332 ($ $ (-574))) (-15 -3865 ($ $)) (-15 -3878 ($ $)) (-15 -3332 ($ $)) (-15 -4262 ($ $ $)) (-15 -3310 ($ $ $)) (-15 -4262 ($ (-654 $))) (-15 -3310 ($ (-654 $))) (-15 -4197 ($ $ (-654 $))) (-15 -4191 ($ $ (-654 $))) (-15 -4191 ($ $ $ $)) (-15 -1472 ($ $ $)) (-15 -3774 ((-112) $)) (-15 -2207 ($ $ (-654 $))) (-15 -3232 ($ $)) (-15 -1906 ($ $ $)) (-15 -2078 ($ $)) (-15 -2924 ($ (-654 (-654 $)))) (-15 -3777 ($ $ $)) (-15 -3843 ($ $)) (-15 -3843 ($ $ $)) (-15 -3360 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -2321 ($ $ $)) (-15 -2863 ($ $ $)) (-15 -3879 ($ $ (-781))) (-15 -3751 ($ $ $)) (-15 -2842 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -4122 ($ $ (-654 $))) (-15 -1690 ($ $ (-654 $))) (-15 -1391 ($ $)) (-15 -3936 ($ $)) (-15 -3936 ($ $ (-781))) (-15 -3503 ($ $)) (-15 -3503 ($ $ (-781))) (-15 -3283 ($ $)) (-15 -2540 ($ $ $)) (-15 -3535 ($ $)) (-15 -3535 ($ $ $)) (-15 -3535 ($ $ $ $)) (-15 -1322 ($ $)) (-15 -1322 ($ $ $)) (-15 -1322 ($ $ $ $)) (-15 -3087 ($ $)) (-15 -3087 ($ $ $)) (-15 -3087 ($ $ $ $)) (-15 -4269 ($ $)) (-15 -4269 ($ (-654 $))) (-15 -1996 ($ $)) (-15 -1996 ($ (-654 $))) (-15 -3253 ($ $)) (-15 -3253 ($ (-654 $))) (-15 -2460 ($ (-654 $))) (-15 -2107 ($ (-654 $))) (-15 -1794 ($ (-654 $))) (-15 -2929 ($ (-654 $))) (-15 -2986 ($ $ $)) (-15 -2864 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3020 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -3090 ($ $ $)) (-15 -3090 ($ $)) (-15 * ($ $ $)) (-15 -3099 ($ $ $)) (-15 ** ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2801 ($ $ $)) (-15 -2812 ($ $ $)) (-15 -2853 ($ $ $)) (-15 -2095 ($ $ $)) (-15 -2106 ($ $ $)) (-15 -2084 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $))))
-((-2384 (((-1289) (-654 (-52))) 23)) (-3231 (((-1289) (-1175) (-872)) 13) (((-1289) (-872)) 8) (((-1289) (-1175)) 10)))
-(((-873) (-10 -7 (-15 -3231 ((-1289) (-1175))) (-15 -3231 ((-1289) (-872))) (-15 -3231 ((-1289) (-1175) (-872))) (-15 -2384 ((-1289) (-654 (-52)))))) (T -873))
-((-2384 (*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-873)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-873)))))
-(-10 -7 (-15 -3231 ((-1289) (-1175))) (-15 -3231 ((-1289) (-872))) (-15 -3231 ((-1289) (-1175) (-872))) (-15 -2384 ((-1289) (-654 (-52)))))
-((-2864 (((-112) $ $) NIL)) (-1498 (((-3 $ "failed") (-1193)) 36)) (-1496 (((-781)) 32)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) 29)) (-4420 (((-1175) $) 43)) (-2591 (($ (-935)) 28)) (-3940 (((-1136) $) NIL)) (-1844 (((-1193) $) 13) (((-546) $) 19) (((-903 (-388)) $) 26) (((-903 (-574)) $) 22)) (-2951 (((-872) $) 16)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 40)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 38)))
-(((-874 |#1|) (-13 (-854) (-624 (-1193)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1193))))) (-654 (-1193))) (T -874))
-((-1498 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2)))))
-(-13 (-854) (-624 (-1193)) (-624 (-546)) (-624 (-903 (-388))) (-624 (-903 (-574))) (-10 -8 (-15 -1498 ((-3 $ "failed") (-1193)))))
-((-2864 (((-112) $ $) NIL)) (-2039 (((-516) $) 9)) (-1764 (((-654 (-449)) $) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 16)))
-(((-875) (-13 (-1116) (-10 -8 (-15 -2039 ((-516) $)) (-15 -1764 ((-654 (-449)) $))))) (T -875))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875)))))
-(-13 (-1116) (-10 -8 (-15 -2039 ((-516) $)) (-15 -1764 ((-654 (-449)) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-966 |#1|)) NIL) (((-966 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3070 (((-781)) NIL T CONST)) (-1377 (((-1289) (-781)) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-876 |#1| |#2| |#3| |#4|) (-13 (-1065) (-500 (-966 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1377 ((-1289) (-781))))) (-1065) (-654 (-1193)) (-654 (-781)) (-781)) (T -876))
-((-3099 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-781))) (-14 *5 (-781)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-876 *4 *5 *6 *7)) (-4 *4 (-1065)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 *3)) (-14 *7 *3))))
-(-13 (-1065) (-500 (-966 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1377 ((-1289) (-781)))))
-((-4003 (((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|) 38)) (-1605 (((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|) 29)))
-(((-877 |#1| |#2| |#3|) (-10 -7 (-15 -1605 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -4003 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|))) (-372) (-1275 |#1|) (-1260 |#1|)) (T -877))
-((-4003 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5)))) (-1605 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6)) (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5)))))
-(-10 -7 (-15 -1605 ((-3 (-417 |#3|) "failed") (-781) (-781) |#2| |#2|)) (-15 -4003 ((-3 (-176 |#3|) "failed") (-781) (-781) |#2| |#2|)))
-((-1605 (((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|)) 30) (((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) 28)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -1605 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (-15 -1605 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|)))) (-372) (-1193) |#1|) (T -878))
-((-1605 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) (-5 *1 (-878 *5 *6 *7)))) (-1605 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372)) (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5))) (-5 *1 (-878 *5 *6 *7)))))
-(-10 -7 (-15 -1605 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (-15 -1605 ((-3 (-417 (-1257 |#2| |#1|)) "failed") (-781) (-781) (-1276 |#1| |#2| |#3|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-4212 (($ $ (-574)) 68)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-3843 (($ (-1189 (-574)) (-574)) 67)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-1809 (($ $) 70)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-1518 (((-781) $) 75)) (-3943 (((-112) $) 35)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-1500 (((-574)) 72)) (-1673 (((-574) $) 71)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2249 (($ $ (-574)) 74)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1773 (((-1173 (-574)) $) 76)) (-3263 (($ $) 73)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-3525 (((-574) $ (-574)) 69)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-879 |#1|) (-141) (-574)) (T -879))
-((-1773 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1173 (-574))))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781)))) (-2249 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3263 (*1 *1 *1) (-4 *1 (-879 *2))) (-1500 (*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-1809 (*1 *1 *1) (-4 *1 (-879 *2))) (-3525 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-4212 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4)))))
-(-13 (-315) (-148) (-10 -8 (-15 -1773 ((-1173 (-574)) $)) (-15 -1518 ((-781) $)) (-15 -2249 ($ $ (-574))) (-15 -3263 ($ $)) (-15 -1500 ((-574))) (-15 -1673 ((-574) $)) (-15 -1809 ($ $)) (-15 -3525 ((-574) $ (-574))) (-15 -4212 ($ $ (-574))) (-15 -3843 ($ (-1189 (-574)) (-574)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-315) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $ (-574)) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3843 (($ (-1189 (-574)) (-574)) NIL)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-1809 (($ $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1518 (((-781) $) NIL)) (-3943 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-1500 (((-574)) NIL)) (-1673 (((-574) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2249 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1773 (((-1173 (-574)) $) NIL)) (-3263 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-574) $ (-574)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL)))
-(((-880 |#1|) (-879 |#1|) (-574)) (T -880))
-NIL
-(-879 |#1|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-880 |#1|) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-880 |#1|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| (-880 |#1|) (-1054 (-574))))) (-2216 (((-880 |#1|) $) NIL) (((-1193) $) NIL (|has| (-880 |#1|) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-880 |#1|) (-1054 (-574)))) (((-574) $) NIL (|has| (-880 |#1|) (-1054 (-574))))) (-3358 (($ $) NIL) (($ (-574) $) NIL)) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-880 |#1|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-880 |#1|))) (|:| |vec| (-1284 (-880 |#1|)))) (-699 $) (-1284 $)) NIL) (((-699 (-880 |#1|)) (-699 $)) NIL) (((-699 (-880 |#1|)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-880 |#1|) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-880 |#1|) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-880 |#1|) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-880 |#1|) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-1168)))) (-1935 (((-112) $) NIL (|has| (-880 |#1|) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-2976 (($ $ $) NIL (|has| (-880 |#1|) (-860)))) (-1785 (($ (-1 (-880 |#1|) (-880 |#1|)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-880 |#1|) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-880 |#1|) (-315)))) (-3229 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-880 |#1|) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-880 |#1|)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-880 |#1|) (-880 |#1|)) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-302 (-880 |#1|))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-302 (-880 |#1|)))) NIL (|has| (-880 |#1|) (-317 (-880 |#1|)))) (($ $ (-654 (-1193)) (-654 (-880 |#1|))) NIL (|has| (-880 |#1|) (-524 (-1193) (-880 |#1|)))) (($ $ (-1193) (-880 |#1|)) NIL (|has| (-880 |#1|) (-524 (-1193) (-880 |#1|))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-880 |#1|)) NIL (|has| (-880 |#1|) (-294 (-880 |#1|) (-880 |#1|))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-880 |#1|) $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-880 |#1|) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-880 |#1|) (-624 (-546)))) (((-388) $) NIL (|has| (-880 |#1|) (-1038))) (((-227) $) NIL (|has| (-880 |#1|) (-1038)))) (-3653 (((-176 (-417 (-574))) $) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL) (($ (-880 |#1|)) NIL) (($ (-1193)) NIL (|has| (-880 |#1|) (-1054 (-1193))))) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-880 |#1|) (-923))) (|has| (-880 |#1|) (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 (((-880 |#1|) $) NIL (|has| (-880 |#1|) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) NIL)) (-4107 (($ $) NIL (|has| (-880 |#1|) (-830)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-880 |#1|) (-239))) (($ $) NIL (|has| (-880 |#1|) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-880 |#1|) (-912 (-1193)))) (($ $ (-1 (-880 |#1|) (-880 |#1|)) (-781)) NIL) (($ $ (-1 (-880 |#1|) (-880 |#1|))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-880 |#1|) (-860)))) (-3099 (($ $ $) NIL) (($ (-880 |#1|) (-880 |#1|)) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-880 |#1|) $) NIL) (($ $ (-880 |#1|)) NIL)))
-(((-881 |#1|) (-13 (-1008 (-880 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $)))) (-574)) (T -881))
-((-3525 (*1 *2 *1 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3) (-5 *3 (-574)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574)))) (-3358 (*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2))))
-(-13 (-1008 (-880 |#1|)) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 ((|#2| $) NIL (|has| |#2| (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| |#2| (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (|has| |#2| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574))))) (-2216 ((|#2| $) NIL) (((-1193) $) NIL (|has| |#2| (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-574)))) (((-574) $) NIL (|has| |#2| (-1054 (-574))))) (-3358 (($ $) 35) (($ (-574) $) 38)) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) 64)) (-2835 (($) NIL (|has| |#2| (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) NIL (|has| |#2| (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| |#2| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| |#2| (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 ((|#2| $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#2| (-1168)))) (-1935 (((-112) $) NIL (|has| |#2| (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| |#2| (-860)))) (-2976 (($ $ $) NIL (|has| |#2| (-860)))) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 60)) (-3792 (($) NIL (|has| |#2| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| |#2| (-315)))) (-3229 ((|#2| $) NIL (|has| |#2| (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 |#2|) (-654 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-317 |#2|))) (($ $ (-302 |#2|)) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-302 |#2|))) NIL (|has| |#2| (-317 |#2|))) (($ $ (-654 (-1193)) (-654 |#2|)) NIL (|has| |#2| (-524 (-1193) |#2|))) (($ $ (-1193) |#2|) NIL (|has| |#2| (-524 (-1193) |#2|)))) (-4220 (((-781) $) NIL)) (-2207 (($ $ |#2|) NIL (|has| |#2| (-294 |#2| |#2|)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1611 (($ $) NIL)) (-2980 ((|#2| $) NIL)) (-1844 (((-903 (-574)) $) NIL (|has| |#2| (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| |#2| (-624 (-903 (-388))))) (((-546) $) NIL (|has| |#2| (-624 (-546)))) (((-388) $) NIL (|has| |#2| (-1038))) (((-227) $) NIL (|has| |#2| (-1038)))) (-3653 (((-176 (-417 (-574))) $) 78)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2951 (((-872) $) 106) (($ (-574)) 20) (($ $) NIL) (($ (-417 (-574))) 25) (($ |#2|) 19) (($ (-1193)) NIL (|has| |#2| (-1054 (-1193))))) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3941 ((|#2| $) NIL (|has| |#2| (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ (-574)) 71)) (-4107 (($ $) NIL (|has| |#2| (-830)))) (-2141 (($) 15 T CONST)) (-2153 (($) 17 T CONST)) (-3585 (($ $ (-781)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#2| (-860)))) (-2986 (((-112) $ $) 46)) (-3031 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#2| (-860)))) (-3099 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3090 (($ $) 50) (($ $ $) 52)) (-3074 (($ $ $) 48)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) 61)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 53) (($ $ $) 55) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-882 |#1| |#2|) (-13 (-1008 |#2|) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $)))) (-574) (-879 |#1|)) (T -882))
-((-3525 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5)) (-5 *3 (-574)) (-4 *5 (-879 *4)))) (-3653 (*1 *2 *1) (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))) (-3358 (*1 *1 *1) (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))))
-(-13 (-1008 |#2|) (-10 -8 (-15 -3525 ((-417 (-574)) $ (-574))) (-15 -3653 ((-176 (-417 (-574))) $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $))))
-((-2864 (((-112) $ $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2408 ((|#2| $) 12)) (-2624 (($ |#1| |#2|) 9)) (-4420 (((-1175) $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-3940 (((-1136) $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#1| $) 11)) (-2963 (($ |#1| |#2|) 10)) (-2951 (((-872) $) 18 (-2833 (-12 (|has| |#1| (-623 (-872))) (|has| |#2| (-623 (-872)))) (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116)))))) (-2981 (((-112) $ $) NIL (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))) (-2986 (((-112) $ $) 23 (-12 (|has| |#1| (-1116)) (|has| |#2| (-1116))))))
-(((-883 |#1| |#2|) (-13 (-1234) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1116)) (IF (|has| |#2| (-1116)) (-6 (-1116)) |%noBranch|) |%noBranch|) (-15 -2624 ($ |#1| |#2|)) (-15 -2963 ($ |#1| |#2|)) (-15 -2925 (|#1| $)) (-15 -2408 (|#2| $)))) (-1234) (-1234)) (T -883))
-((-2624 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))) (-2925 (*1 *2 *1) (-12 (-4 *2 (-1234)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1234)))) (-2408 (*1 *2 *1) (-12 (-4 *2 (-1234)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1234)))))
-(-13 (-1234) (-10 -8 (IF (|has| |#1| (-623 (-872))) (IF (|has| |#2| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1116)) (IF (|has| |#2| (-1116)) (-6 (-1116)) |%noBranch|) |%noBranch|) (-15 -2624 ($ |#1| |#2|)) (-15 -2963 ($ |#1| |#2|)) (-15 -2925 (|#1| $)) (-15 -2408 (|#2| $))))
-((-2864 (((-112) $ $) NIL)) (-2674 (((-574) $) 16)) (-3075 (($ (-158)) 13)) (-2724 (($ (-158)) 14)) (-4420 (((-1175) $) NIL)) (-1646 (((-158) $) 15)) (-3940 (((-1136) $) NIL)) (-4106 (($ (-158)) 11)) (-4278 (($ (-158)) 10)) (-2951 (((-872) $) 24) (($ (-158)) 17)) (-2635 (($ (-158)) 12)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-884) (-13 (-1116) (-10 -8 (-15 -4278 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -3075 ($ (-158))) (-15 -2724 ($ (-158))) (-15 -1646 ((-158) $)) (-15 -2674 ((-574) $)) (-15 -2951 ($ (-158)))))) (T -884))
-((-4278 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-3075 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2724 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
-(-13 (-1116) (-10 -8 (-15 -4278 ($ (-158))) (-15 -4106 ($ (-158))) (-15 -2635 ($ (-158))) (-15 -3075 ($ (-158))) (-15 -2724 ($ (-158))) (-15 -1646 ((-158) $)) (-15 -2674 ((-574) $)) (-15 -2951 ($ (-158)))))
-((-2951 (((-324 (-574)) (-417 (-966 (-48)))) 23) (((-324 (-574)) (-966 (-48))) 18)))
-(((-885) (-10 -7 (-15 -2951 ((-324 (-574)) (-966 (-48)))) (-15 -2951 ((-324 (-574)) (-417 (-966 (-48))))))) (T -885))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 (-48)))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-966 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885)))))
-(-10 -7 (-15 -2951 ((-324 (-574)) (-966 (-48)))) (-15 -2951 ((-324 (-574)) (-417 (-966 (-48))))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2130 (((-112) $ (|[\|\|]| (-516))) 9) (((-112) $ (|[\|\|]| (-1175))) 13)) (-2981 (((-112) $ $) NIL)) (-1337 (((-516) $) 10) (((-1175) $) 14)) (-2986 (((-112) $ $) 15)))
-(((-886) (-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $))))) (T -886))
-((-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-886)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-886)))))
-(-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $))))
-((-1785 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -1785 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1234) (-1234)) (T -887))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -1785 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-2849 (($ |#1| |#1|) 8)) (-2915 ((|#1| $ (-781)) 15)))
-(((-888 |#1|) (-10 -8 (-15 -2849 ($ |#1| |#1|)) (-15 -2915 (|#1| $ (-781)))) (-1234)) (T -888))
-((-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1234)))) (-2849 (*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1234)))))
-(-10 -8 (-15 -2849 ($ |#1| |#1|)) (-15 -2915 (|#1| $ (-781))))
-((-1785 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15)))
-(((-889 |#1| |#2|) (-10 -7 (-15 -1785 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1234) (-1234)) (T -889))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))))
-(-10 -7 (-15 -1785 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|))))
-((-2849 (($ |#1| |#1| |#1|) 8)) (-2915 ((|#1| $ (-781)) 15)))
-(((-890 |#1|) (-10 -8 (-15 -2849 ($ |#1| |#1| |#1|)) (-15 -2915 (|#1| $ (-781)))) (-1234)) (T -890))
-((-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1234)))) (-2849 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1234)))))
-(-10 -8 (-15 -2849 ($ |#1| |#1| |#1|)) (-15 -2915 (|#1| $ (-781))))
-((-1756 (((-654 (-1198)) (-1175)) 9)))
-(((-891) (-10 -7 (-15 -1756 ((-654 (-1198)) (-1175))))) (T -891))
-((-1756 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-891)))))
-(-10 -7 (-15 -1756 ((-654 (-1198)) (-1175))))
-((-1785 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15)))
-(((-892 |#1| |#2|) (-10 -7 (-15 -1785 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1234) (-1234)) (T -892))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))))
-(-10 -7 (-15 -1785 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
-((-2545 (($ |#1| |#1| |#1|) 8)) (-2915 ((|#1| $ (-781)) 15)))
-(((-893 |#1|) (-10 -8 (-15 -2545 ($ |#1| |#1| |#1|)) (-15 -2915 (|#1| $ (-781)))) (-1234)) (T -893))
-((-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1234)))) (-2545 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1234)))))
-(-10 -8 (-15 -2545 ($ |#1| |#1| |#1|)) (-15 -2915 (|#1| $ (-781))))
-((-3062 (((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574)))) 41)) (-4145 (((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574))) 31)) (-3534 (((-1173 (-654 (-574))) (-654 (-574))) 53) (((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574))) 50)) (-1998 (((-1173 (-654 (-574))) (-574)) 55)) (-3770 (((-1173 (-654 (-935))) (-1173 (-654 (-935)))) 22)) (-4090 (((-654 (-935)) (-654 (-935))) 18)))
-(((-894) (-10 -7 (-15 -4090 ((-654 (-935)) (-654 (-935)))) (-15 -3770 ((-1173 (-654 (-935))) (-1173 (-654 (-935))))) (-15 -4145 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3062 ((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574))))) (-15 -3534 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3534 ((-1173 (-654 (-574))) (-654 (-574)))) (-15 -1998 ((-1173 (-654 (-574))) (-574))))) (T -894))
-((-1998 (*1 *2 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3534 (*1 *2 *3 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3062 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *3 (-654 (-574))) (-5 *1 (-894)))) (-4145 (*1 *2 *3 *3) (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-654 (-574))))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1173 (-654 (-935)))) (-5 *1 (-894)))) (-4090 (*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-894)))))
-(-10 -7 (-15 -4090 ((-654 (-935)) (-654 (-935)))) (-15 -3770 ((-1173 (-654 (-935))) (-1173 (-654 (-935))))) (-15 -4145 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3062 ((-1173 (-654 (-574))) (-654 (-574)) (-1173 (-654 (-574))))) (-15 -3534 ((-1173 (-654 (-574))) (-654 (-574)) (-654 (-574)))) (-15 -3534 ((-1173 (-654 (-574))) (-654 (-574)))) (-15 -1998 ((-1173 (-654 (-574))) (-574))))
-((-1844 (((-903 (-388)) $) 9 (|has| |#1| (-624 (-903 (-388))))) (((-903 (-574)) $) 8 (|has| |#1| (-624 (-903 (-574)))))))
-(((-895 |#1|) (-141) (-1234)) (T -895))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|)))
-(((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))))
-((-2864 (((-112) $ $) NIL)) (-3764 (($) 14)) (-3260 (($ (-900 |#1| |#2|) (-900 |#1| |#3|)) 28)) (-3627 (((-900 |#1| |#3|) $) 16)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3036 (((-112) $) 22)) (-3574 (($) 19)) (-2951 (((-872) $) 31)) (-2981 (((-112) $ $) NIL)) (-1375 (((-900 |#1| |#2|) $) 15)) (-2986 (((-112) $ $) 26)))
-(((-896 |#1| |#2| |#3|) (-13 (-1116) (-10 -8 (-15 -3036 ((-112) $)) (-15 -3574 ($)) (-15 -3764 ($)) (-15 -3260 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -1375 ((-900 |#1| |#2|) $)) (-15 -3627 ((-900 |#1| |#3|) $)))) (-1116) (-1116) (-676 |#2|)) (T -896))
-((-3036 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4)))) (-3574 (*1 *1) (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) (-3764 (*1 *1) (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116)) (-4 *4 (-676 *3)))) (-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))) (-1375 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4)))) (-3627 (*1 *2 *1) (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5)) (-4 *3 (-1116)) (-4 *5 (-676 *4)))))
-(-13 (-1116) (-10 -8 (-15 -3036 ((-112) $)) (-15 -3574 ($)) (-15 -3764 ($)) (-15 -3260 ($ (-900 |#1| |#2|) (-900 |#1| |#3|))) (-15 -1375 ((-900 |#1| |#2|) $)) (-15 -3627 ((-900 |#1| |#3|) $))))
-((-2864 (((-112) $ $) 7)) (-1821 (((-900 |#1| $) $ (-903 |#1|) (-900 |#1| $)) 14)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-897 |#1|) (-141) (-1116)) (T -897))
-((-1821 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4)) (-4 *4 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -1821 ((-900 |t#1| $) $ (-903 |t#1|) (-900 |t#1| $)))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-1575 (((-112) (-654 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1627 (((-900 |#1| |#2|) |#2| |#3|) 45 (-12 (-2084 (|has| |#2| (-1054 (-1193)))) (-2084 (|has| |#2| (-1065))))) (((-654 (-302 (-966 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1065)) (-2084 (|has| |#2| (-1054 (-1193)))))) (((-654 (-302 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1054 (-1193)))) (((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|) 21)))
-(((-898 |#1| |#2| |#3|) (-10 -7 (-15 -1575 ((-112) |#2| |#3|)) (-15 -1575 ((-112) (-654 |#2|) |#3|)) (-15 -1627 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1054 (-1193))) (-15 -1627 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1065)) (-15 -1627 ((-654 (-302 (-966 |#2|))) |#2| |#3|)) (-15 -1627 ((-900 |#1| |#2|) |#2| |#3|))))) (-1116) (-897 |#1|) (-624 (-903 |#1|))) (T -898))
-((-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4)) (-2084 (-4 *3 (-1054 (-1193)))) (-2084 (-4 *3 (-1065))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 (-966 *3)))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1065)) (-2084 (-4 *3 (-1054 (-1193)))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1054 (-1193))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))) (-1627 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6))) (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5))))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))) (-1575 (*1 *2 *3 *4) (-12 (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))))
-(-10 -7 (-15 -1575 ((-112) |#2| |#3|)) (-15 -1575 ((-112) (-654 |#2|) |#3|)) (-15 -1627 ((-896 |#1| |#2| (-654 |#2|)) (-654 |#2|) |#3|)) (IF (|has| |#2| (-1054 (-1193))) (-15 -1627 ((-654 (-302 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1065)) (-15 -1627 ((-654 (-302 (-966 |#2|))) |#2| |#3|)) (-15 -1627 ((-900 |#1| |#2|) |#2| |#3|)))))
-((-1785 (((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)) 22)))
-(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|)))) (-1116) (-1116) (-1116)) (T -899))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-900 *5 *7)) (-5 *1 (-899 *5 *6 *7)))))
-(-10 -7 (-15 -1785 ((-900 |#1| |#3|) (-1 |#3| |#2|) (-900 |#1| |#2|))))
-((-2864 (((-112) $ $) NIL)) (-4353 (($ $ $) 40)) (-3192 (((-3 (-112) "failed") $ (-903 |#1|)) 37)) (-3764 (($) 12)) (-4420 (((-1175) $) NIL)) (-3353 (($ (-903 |#1|) |#2| $) 20)) (-3940 (((-1136) $) NIL)) (-1765 (((-3 |#2| "failed") (-903 |#1|) $) 51)) (-3036 (((-112) $) 15)) (-3574 (($) 13)) (-4282 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $) 25)) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|)))) 23)) (-2951 (((-872) $) 45)) (-2981 (((-112) $ $) NIL)) (-1742 (($ (-903 |#1|) |#2| $ |#2|) 49)) (-3759 (($ (-903 |#1|) |#2| $) 48)) (-2986 (((-112) $ $) 42)))
-(((-900 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3036 ((-112) $)) (-15 -3574 ($)) (-15 -3764 ($)) (-15 -4353 ($ $ $)) (-15 -1765 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3759 ($ (-903 |#1|) |#2| $)) (-15 -3353 ($ (-903 |#1|) |#2| $)) (-15 -1742 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4282 ((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))))) (-15 -3192 ((-3 (-112) "failed") $ (-903 |#1|))))) (-1116) (-1116)) (T -900))
-((-3036 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-3574 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3764 (*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-4353 (*1 *1 *1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1765 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-4 *2 (-1116)) (-5 *1 (-900 *4 *2)))) (-3759 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-3353 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-1742 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3)) (-4 *3 (-1116)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4)))) (-4 *4 (-1116)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)))) (-3192 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5)) (-4 *5 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -3036 ((-112) $)) (-15 -3574 ($)) (-15 -3764 ($)) (-15 -4353 ($ $ $)) (-15 -1765 ((-3 |#2| "failed") (-903 |#1|) $)) (-15 -3759 ($ (-903 |#1|) |#2| $)) (-15 -3353 ($ (-903 |#1|) |#2| $)) (-15 -1742 ($ (-903 |#1|) |#2| $ |#2|)) (-15 -4282 ((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))) $)) (-15 -2963 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 |#2|))))) (-15 -3192 ((-3 (-112) "failed") $ (-903 |#1|)))))
-((-2586 (((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|))) 32) (((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|))) 46) (((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|)) 35)) (-3192 (((-112) (-654 |#2|) (-903 |#1|)) 42) (((-112) |#2| (-903 |#1|)) 36)) (-2530 (((-1 (-112) |#2|) (-903 |#1|)) 16)) (-4081 (((-654 |#2|) (-903 |#1|)) 24)) (-1997 (((-903 |#1|) (-903 |#1|) |#2|) 20)))
-(((-901 |#1| |#2|) (-10 -7 (-15 -2586 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|)))) (-15 -2530 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3192 ((-112) |#2| (-903 |#1|))) (-15 -3192 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1997 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -4081 ((-654 |#2|) (-903 |#1|)))) (-1116) (-1234)) (T -901))
-((-4081 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-654 *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1234)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-901 *5 *3)) (-4 *3 (-1234)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))) (-2586 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1193))) (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-901 *5 *6)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1116)) (-4 *5 (-1234)) (-5 *1 (-901 *4 *5)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1116)) (-4 *5 (-1234)) (-5 *1 (-901 *4 *5)))))
-(-10 -7 (-15 -2586 ((-903 |#1|) (-903 |#1|) (-1 (-112) |#2|))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1 (-112) |#2|)))) (-15 -2586 ((-903 |#1|) (-903 |#1|) (-654 (-1193)) (-1 (-112) (-654 |#2|)))) (-15 -2530 ((-1 (-112) |#2|) (-903 |#1|))) (-15 -3192 ((-112) |#2| (-903 |#1|))) (-15 -3192 ((-112) (-654 |#2|) (-903 |#1|))) (-15 -1997 ((-903 |#1|) (-903 |#1|) |#2|)) (-15 -4081 ((-654 |#2|) (-903 |#1|))))
-((-1785 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 19)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -1785 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1116) (-1116)) (T -902))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))))
-(-10 -7 (-15 -1785 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|))))
-((-2864 (((-112) $ $) NIL)) (-1553 (($ $ (-654 (-52))) 74)) (-4350 (((-654 $) $) 139)) (-1865 (((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $) 30)) (-3331 (((-112) $) 35)) (-2225 (($ $ (-654 (-1193)) (-52)) 31)) (-3702 (($ $ (-654 (-52))) 73)) (-1704 (((-3 |#1| "failed") $) 71) (((-3 (-1193) "failed") $) 164)) (-2216 ((|#1| $) 68) (((-1193) $) NIL)) (-3297 (($ $) 126)) (-3795 (((-112) $) 55)) (-2603 (((-654 (-52)) $) 50)) (-1466 (($ (-1193) (-112) (-112) (-112)) 75)) (-2956 (((-3 (-654 $) "failed") (-654 $)) 82)) (-3330 (((-112) $) 58)) (-3301 (((-112) $) 57)) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) 41)) (-1787 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3921 (((-3 (-2 (|:| |val| $) (|:| -2754 $)) "failed") $) 97)) (-4245 (((-3 (-654 $) "failed") $) 40)) (-1398 (((-3 (-654 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $) 107)) (-1724 (((-3 (-654 $) "failed") $) 42)) (-4436 (((-3 (-2 (|:| |val| $) (|:| -2754 (-781))) "failed") $) 45)) (-2824 (((-112) $) 34)) (-3940 (((-1136) $) NIL)) (-3744 (((-112) $) 28)) (-1485 (((-112) $) 52)) (-1908 (((-654 (-52)) $) 130)) (-1546 (((-112) $) 56)) (-2207 (($ (-115) (-654 $)) 104)) (-4291 (((-781) $) 33)) (-3157 (($ $) 72)) (-1844 (($ (-654 $)) 69)) (-3102 (((-112) $) 32)) (-2951 (((-872) $) 63) (($ |#1|) 23) (($ (-1193)) 76)) (-2981 (((-112) $ $) NIL)) (-1997 (($ $ (-52)) 129)) (-2141 (($) 103 T CONST)) (-2153 (($) 83 T CONST)) (-2986 (((-112) $ $) 93)) (-3099 (($ $ $) 117)) (-3074 (($ $ $) 121)) (** (($ $ (-781)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-903 |#1|) (-13 (-1116) (-1054 |#1|) (-1054 (-1193)) (-10 -8 (-15 0 ($) -1714) (-15 1 ($) -1714) (-15 -4245 ((-3 (-654 $) "failed") $)) (-15 -1730 ((-3 (-654 $) "failed") $)) (-15 -1398 ((-3 (-654 $) "failed") $ (-115))) (-15 -1398 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -4436 ((-3 (-2 (|:| |val| $) (|:| -2754 (-781))) "failed") $)) (-15 -1787 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1724 ((-3 (-654 $) "failed") $)) (-15 -3921 ((-3 (-2 (|:| |val| $) (|:| -2754 $)) "failed") $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3099 ($ $ $)) (-15 -4291 ((-781) $)) (-15 -1844 ($ (-654 $))) (-15 -3157 ($ $)) (-15 -2824 ((-112) $)) (-15 -3795 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -3102 ((-112) $)) (-15 -1546 ((-112) $)) (-15 -3301 ((-112) $)) (-15 -3330 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -2603 ((-654 (-52)) $)) (-15 -3702 ($ $ (-654 (-52)))) (-15 -1553 ($ $ (-654 (-52)))) (-15 -1466 ($ (-1193) (-112) (-112) (-112))) (-15 -2225 ($ $ (-654 (-1193)) (-52))) (-15 -1865 ((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $)) (-15 -3744 ((-112) $)) (-15 -3297 ($ $)) (-15 -1997 ($ $ (-52))) (-15 -1908 ((-654 (-52)) $)) (-15 -4350 ((-654 $) $)) (-15 -2956 ((-3 (-654 $) "failed") (-654 $))))) (-1116)) (T -903))
-((-2141 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-2153 (*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-4245 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1730 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1398 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-1398 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3))))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-4436 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2754 (-781)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1787 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1724 (*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3921 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2754 (-903 *3)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-3074 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-3099 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1466 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-112)) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-2225 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-52)) (-5 *1 (-903 *4)) (-4 *4 (-1116)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52)))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-3297 (*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))) (-1997 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))) (-2956 (*1 *2 *2) (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(-13 (-1116) (-1054 |#1|) (-1054 (-1193)) (-10 -8 (-15 (-2141) ($) -1714) (-15 (-2153) ($) -1714) (-15 -4245 ((-3 (-654 $) "failed") $)) (-15 -1730 ((-3 (-654 $) "failed") $)) (-15 -1398 ((-3 (-654 $) "failed") $ (-115))) (-15 -1398 ((-3 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 $))) "failed") $)) (-15 -4436 ((-3 (-2 (|:| |val| $) (|:| -2754 (-781))) "failed") $)) (-15 -1787 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1724 ((-3 (-654 $) "failed") $)) (-15 -3921 ((-3 (-2 (|:| |val| $) (|:| -2754 $)) "failed") $)) (-15 -2207 ($ (-115) (-654 $))) (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))) (-15 ** ($ $ $)) (-15 -3099 ($ $ $)) (-15 -4291 ((-781) $)) (-15 -1844 ($ (-654 $))) (-15 -3157 ($ $)) (-15 -2824 ((-112) $)) (-15 -3795 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -3102 ((-112) $)) (-15 -1546 ((-112) $)) (-15 -3301 ((-112) $)) (-15 -3330 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -2603 ((-654 (-52)) $)) (-15 -3702 ($ $ (-654 (-52)))) (-15 -1553 ($ $ (-654 (-52)))) (-15 -1466 ($ (-1193) (-112) (-112) (-112))) (-15 -2225 ($ $ (-654 (-1193)) (-52))) (-15 -1865 ((-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))) $)) (-15 -3744 ((-112) $)) (-15 -3297 ($ $)) (-15 -1997 ($ $ (-52))) (-15 -1908 ((-654 (-52)) $)) (-15 -4350 ((-654 $) $)) (-15 -2956 ((-3 (-654 $) "failed") (-654 $)))))
-((-2864 (((-112) $ $) NIL)) (-1663 (((-654 |#1|) $) 19)) (-3620 (((-112) $) 49)) (-1704 (((-3 (-682 |#1|) "failed") $) 56)) (-2216 (((-682 |#1|) $) 54)) (-2935 (($ $) 23)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4109 (((-781) $) 61)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-682 |#1|) $) 21)) (-2951 (((-872) $) 47) (($ (-682 |#1|)) 26) (((-829 |#1|) $) 36) (($ |#1|) 25)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 9 T CONST)) (-4375 (((-654 (-682 |#1|)) $) 28)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 12)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 67)))
-(((-904 |#1|) (-13 (-860) (-1054 (-682 |#1|)) (-10 -8 (-15 1 ($) -1714) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ($ |#1|)) (-15 -2925 ((-682 |#1|) $)) (-15 -4109 ((-781) $)) (-15 -4375 ((-654 (-682 |#1|)) $)) (-15 -2935 ($ $)) (-15 -3620 ((-112) $)) (-15 -1663 ((-654 |#1|) $)))) (-860)) (T -904))
-((-2153 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2951 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-2935 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
-(-13 (-860) (-1054 (-682 |#1|)) (-10 -8 (-15 (-2153) ($) -1714) (-15 -2951 ((-829 |#1|) $)) (-15 -2951 ($ |#1|)) (-15 -2925 ((-682 |#1|) $)) (-15 -4109 ((-781) $)) (-15 -4375 ((-654 (-682 |#1|)) $)) (-15 -2935 ($ $)) (-15 -3620 ((-112) $)) (-15 -1663 ((-654 |#1|) $))))
-((-3824 ((|#1| |#1| |#1|) 19)))
-(((-905 |#1| |#2|) (-10 -7 (-15 -3824 (|#1| |#1| |#1|))) (-1260 |#2|) (-1065)) (T -905))
-((-3824 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1260 *3)))))
-(-10 -7 (-15 -3824 (|#1| |#1| |#1|)))
-((-3585 ((|#2| $ |#3|) 10)))
-(((-906 |#1| |#2| |#3|) (-10 -8 (-15 -3585 (|#2| |#1| |#3|))) (-907 |#2| |#3|) (-1234) (-1234)) (T -906))
-NIL
-(-10 -8 (-15 -3585 (|#2| |#1| |#3|)))
-((-3879 ((|#1| $ |#2|) 7)) (-3585 ((|#1| $ |#2|) 6)))
-(((-907 |#1| |#2|) (-141) (-1234) (-1234)) (T -907))
-((-3879 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234)))) (-3585 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -3879 (|t#1| $ |t#2|)) (-15 -3585 (|t#1| $ |t#2|))))
-(((-1234) . T))
-((-2864 (((-112) $ $) 7)) (-1879 (((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-1863 (((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 14)) (-2986 (((-112) $ $) 6)))
-(((-908) (-141)) (T -908))
-((-1879 (*1 *2 *3 *4) (-12 (-4 *1 (-908)) (-5 *3 (-1079)) (-5 *4 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175)))))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *3 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *2 (-1051)))))
-(-13 (-1116) (-10 -7 (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))) (-1079) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -1863 ((-1051) (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-4433 ((|#1| |#1| (-781)) 27)) (-2275 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3320 (((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781)) 30) (((-654 |#1|) |#1|) 38)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -3320 ((-654 |#1|) |#1|)) (-15 -3320 ((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2275 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4433 (|#1| |#1| (-781)))) (-1260 |#2|) (-372)) (T -909))
-((-4433 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4)) (-4 *2 (-1260 *4)))) (-2275 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1260 *3)))) (-3320 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372)) (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-909 *3 *5)) (-4 *3 (-1260 *5)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -3320 ((-654 |#1|) |#1|)) (-15 -3320 ((-3 (-2 (|:| -3865 |#1|) (|:| -3878 |#1|)) "failed") |#1| (-781) (-781))) (-15 -2275 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4433 (|#1| |#1| (-781))))
-((-3426 (((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175)) 104) (((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227)) 100) (((-1051) (-911) (-1079)) 92) (((-1051) (-911)) 93)) (-1879 (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079)) 62) (((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911)) 64)))
-(((-910) (-10 -7 (-15 -3426 ((-1051) (-911))) (-15 -3426 ((-1051) (-911) (-1079))) (-15 -3426 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227))) (-15 -3426 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079))))) (T -910))
-((-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-910)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175))))) (-5 *1 (-910)))) (-3426 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3426 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175)) (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-910)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1051)) (-5 *1 (-910)))))
-(-10 -7 (-15 -3426 ((-1051) (-911))) (-15 -3426 ((-1051) (-911) (-1079))) (-15 -3426 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175) (-227))) (-15 -3426 ((-1051) (-388) (-388) (-388) (-388) (-781) (-781) (-654 (-324 (-388))) (-654 (-654 (-324 (-388)))) (-1175))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911))) (-15 -1879 ((-2 (|:| -1879 (-388)) (|:| -2039 (-1175)) (|:| |explanations| (-654 (-1175)))) (-911) (-1079))))
-((-2864 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $) 19)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 21) (($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) 18)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-911) (-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $))))) (T -911))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227)))) (-5 *1 (-911)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ($ (-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-654 (-324 (-227)))) (|:| |constraints| (-654 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-781)) (|:| |boundaryType| (-574)) (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227)))))) (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175)) (|:| |tol| (-227))) $))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3879 (($ $ (-654 |#1|) (-654 (-781))) 44) (($ $ |#1| (-781)) 43) (($ $ (-654 |#1|)) 42) (($ $ |#1|) 40)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 |#1|) (-654 (-781))) 47) (($ $ |#1| (-781)) 46) (($ $ (-654 |#1|)) 45) (($ $ |#1|) 41)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-912 |#1|) (-141) (-1116)) (T -912))
-NIL
-(-13 (-1065) (-914 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-907 $ |#1|) . T) ((-914 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T))
-((-3879 (($ $ |#2|) NIL) (($ $ (-654 |#2|)) 10) (($ $ |#2| (-781)) 12) (($ $ (-654 |#2|) (-654 (-781))) 15)) (-3585 (($ $ |#2|) 16) (($ $ (-654 |#2|)) 18) (($ $ |#2| (-781)) 19) (($ $ (-654 |#2|) (-654 (-781))) 21)))
-(((-913 |#1| |#2|) (-10 -8 (-15 -3585 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3585 (|#1| |#1| |#2| (-781))) (-15 -3585 (|#1| |#1| (-654 |#2|))) (-15 -3879 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3879 (|#1| |#1| |#2| (-781))) (-15 -3879 (|#1| |#1| (-654 |#2|))) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3879 (|#1| |#1| |#2|))) (-914 |#2|) (-1116)) (T -913))
-NIL
-(-10 -8 (-15 -3585 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3585 (|#1| |#1| |#2| (-781))) (-15 -3585 (|#1| |#1| (-654 |#2|))) (-15 -3879 (|#1| |#1| (-654 |#2|) (-654 (-781)))) (-15 -3879 (|#1| |#1| |#2| (-781))) (-15 -3879 (|#1| |#1| (-654 |#2|))) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3879 (|#1| |#1| |#2|)))
-((-3879 (($ $ |#1|) 7) (($ $ (-654 |#1|)) 15) (($ $ |#1| (-781)) 14) (($ $ (-654 |#1|) (-654 (-781))) 13)) (-3585 (($ $ |#1|) 6) (($ $ (-654 |#1|)) 12) (($ $ |#1| (-781)) 11) (($ $ (-654 |#1|) (-654 (-781))) 10)))
-(((-914 |#1|) (-141) (-1116)) (T -914))
-((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) (-3879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) (-4 *4 (-1116)))) (-3585 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))) (-3585 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116)))) (-3585 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4)) (-4 *4 (-1116)))))
-(-13 (-907 $ |t#1|) (-10 -8 (-15 -3879 ($ $ (-654 |t#1|))) (-15 -3879 ($ $ |t#1| (-781))) (-15 -3879 ($ $ (-654 |t#1|) (-654 (-781)))) (-15 -3585 ($ $ (-654 |t#1|))) (-15 -3585 ($ $ |t#1| (-781))) (-15 -3585 ($ $ (-654 |t#1|) (-654 (-781))))))
-(((-907 $ |#1|) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 26)) (-2832 (((-112) $ (-781)) NIL)) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-1755 (($ $ $) NIL (|has| $ (-6 -4460)))) (-1400 (($ $ $) NIL (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) (($ $ "left" $) NIL (|has| $ (-6 -4460))) (($ $ "right" $) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-3878 (($ $) 25)) (-3775 (($ |#1|) 12) (($ $ $) 17)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-3865 (($ $) 23)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) 20)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1220 |#1|) $) 9) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 21 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-915 |#1|) (-13 (-120 |#1|) (-623 (-1220 |#1|)) (-10 -8 (-15 -3775 ($ |#1|)) (-15 -3775 ($ $ $)))) (-1116)) (T -915))
-((-3775 (*1 *1 *2) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116)))) (-3775 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116)))))
-(-13 (-120 |#1|) (-623 (-1220 |#1|)) (-10 -8 (-15 -3775 ($ |#1|)) (-15 -3775 ($ $ $))))
-((-3017 ((|#2| (-1158 |#1| |#2|)) 48)))
-(((-916 |#1| |#2|) (-10 -7 (-15 -3017 (|#2| (-1158 |#1| |#2|)))) (-935) (-13 (-1065) (-10 -7 (-6 (-4461 "*"))))) (T -916))
-((-3017 (*1 *2 *3) (-12 (-5 *3 (-1158 *4 *2)) (-14 *4 (-935)) (-4 *2 (-13 (-1065) (-10 -7 (-6 (-4461 "*"))))) (-5 *1 (-916 *4 *2)))))
-(-10 -7 (-15 -3017 (|#2| (-1158 |#1| |#2|))))
-((-2864 (((-112) $ $) 7)) (-2211 (((-1118 |#1|) $) 35)) (-1430 (($) 19 T CONST)) (-3612 (((-3 $ "failed") $) 16)) (-2694 (((-1118 |#1|) $ |#1|) 34)) (-3943 (((-112) $) 18)) (-3634 (($ $ $) 32 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2976 (($ $ $) 31 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 25)) (-3940 (((-1136) $) 11)) (-2207 ((|#1| $ |#1|) 38)) (-2527 (($ (-654 (-654 |#1|))) 36)) (-4165 (($ (-654 |#1|)) 37)) (-4090 (($ $ $) 22)) (-3082 (($ $ $) 21)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2153 (($) 20 T CONST)) (-3042 (((-112) $ $) 29 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3020 (((-112) $ $) 28 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 30 (-2833 (|has| |#1| (-860)) (|has| |#1| (-377))))) (-3009 (((-112) $ $) 33)) (-3099 (($ $ $) 24)) (** (($ $ (-935)) 14) (($ $ (-781)) 17) (($ $ (-574)) 23)) (* (($ $ $) 15)))
-(((-917 |#1|) (-141) (-1116)) (T -917))
-((-4165 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-917 *3)))) (-2527 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-4 *1 (-917 *3)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) (-2694 (*1 *2 *1 *3) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(-13 (-483) (-294 |t#1| |t#1|) (-10 -8 (-15 -4165 ($ (-654 |t#1|))) (-15 -2527 ($ (-654 (-654 |t#1|)))) (-15 -2211 ((-1118 |t#1|) $)) (-15 -2694 ((-1118 |t#1|) $ |t#1|)) (-15 -3009 ((-112) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-377)) (-6 (-860)) |%noBranch|)))
-(((-102) . T) ((-623 (-872)) . T) ((-294 |#1| |#1|) . T) ((-483) . T) ((-736) . T) ((-860) -2833 (|has| |#1| (-860)) (|has| |#1| (-377))) ((-1128) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-3800 (((-654 (-654 (-781))) $) 160)) (-3221 (((-654 (-781)) (-919 |#1|) $) 188)) (-3242 (((-654 (-781)) (-919 |#1|) $) 189)) (-2211 (((-1118 |#1|) $) 152)) (-3461 (((-654 (-919 |#1|)) $) 149)) (-2835 (((-919 |#1|) $ (-574)) 154) (((-919 |#1|) $) 155)) (-3475 (($ (-654 (-919 |#1|))) 162)) (-1518 (((-781) $) 156)) (-3471 (((-1118 (-1118 |#1|)) $) 186)) (-2694 (((-1118 |#1|) $ |#1|) 177) (((-1118 (-1118 |#1|)) $ (-1118 |#1|)) 197) (((-1118 (-654 |#1|)) $ (-654 |#1|)) 200)) (-2333 (((-112) (-919 |#1|) $) 137)) (-4420 (((-1175) $) NIL)) (-1510 (((-1289) $) 142) (((-1289) $ (-574) (-574)) 201)) (-3940 (((-1136) $) NIL)) (-2837 (((-654 (-919 |#1|)) $) 143)) (-2207 (((-919 |#1|) $ (-781)) 150)) (-3735 (((-781) $) 157)) (-2951 (((-872) $) 174) (((-654 (-919 |#1|)) $) 28) (($ (-654 (-919 |#1|))) 161)) (-2981 (((-112) $ $) NIL)) (-2644 (((-654 |#1|) $) 159)) (-2986 (((-112) $ $) 194)) (-3031 (((-112) $ $) 192)) (-3009 (((-112) $ $) 191)))
-(((-918 |#1|) (-13 (-1116) (-10 -8 (-15 -2951 ((-654 (-919 |#1|)) $)) (-15 -2837 ((-654 (-919 |#1|)) $)) (-15 -2207 ((-919 |#1|) $ (-781))) (-15 -2835 ((-919 |#1|) $ (-574))) (-15 -2835 ((-919 |#1|) $)) (-15 -1518 ((-781) $)) (-15 -3735 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -3461 ((-654 (-919 |#1|)) $)) (-15 -3800 ((-654 (-654 (-781))) $)) (-15 -2951 ($ (-654 (-919 |#1|)))) (-15 -3475 ($ (-654 (-919 |#1|)))) (-15 -2694 ((-1118 |#1|) $ |#1|)) (-15 -3471 ((-1118 (-1118 |#1|)) $)) (-15 -2694 ((-1118 (-1118 |#1|)) $ (-1118 |#1|))) (-15 -2694 ((-1118 (-654 |#1|)) $ (-654 |#1|))) (-15 -2333 ((-112) (-919 |#1|) $)) (-15 -3221 ((-654 (-781)) (-919 |#1|) $)) (-15 -3242 ((-654 (-781)) (-919 |#1|) $)) (-15 -2211 ((-1118 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3031 ((-112) $ $)) (-15 -1510 ((-1289) $)) (-15 -1510 ((-1289) $ (-574) (-574))))) (-1116)) (T -918))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) (-4 *4 (-1116)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4)) (-4 *4 (-1116)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))) (-3475 (*1 *1 *2) (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))) (-2694 (*1 *2 *1 *3) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-2694 (*1 *2 *1 *3) (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-918 *4)) (-5 *3 (-1118 *4)))) (-2694 (*1 *2 *1 *3) (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-654 *4))) (-5 *1 (-918 *4)) (-5 *3 (-654 *4)))) (-2333 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-918 *4)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) (-5 *1 (-918 *4)))) (-3242 (*1 *2 *3 *1) (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781))) (-5 *1 (-918 *4)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3009 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-3031 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))) (-1510 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-918 *4)) (-4 *4 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -2951 ((-654 (-919 |#1|)) $)) (-15 -2837 ((-654 (-919 |#1|)) $)) (-15 -2207 ((-919 |#1|) $ (-781))) (-15 -2835 ((-919 |#1|) $ (-574))) (-15 -2835 ((-919 |#1|) $)) (-15 -1518 ((-781) $)) (-15 -3735 ((-781) $)) (-15 -2644 ((-654 |#1|) $)) (-15 -3461 ((-654 (-919 |#1|)) $)) (-15 -3800 ((-654 (-654 (-781))) $)) (-15 -2951 ($ (-654 (-919 |#1|)))) (-15 -3475 ($ (-654 (-919 |#1|)))) (-15 -2694 ((-1118 |#1|) $ |#1|)) (-15 -3471 ((-1118 (-1118 |#1|)) $)) (-15 -2694 ((-1118 (-1118 |#1|)) $ (-1118 |#1|))) (-15 -2694 ((-1118 (-654 |#1|)) $ (-654 |#1|))) (-15 -2333 ((-112) (-919 |#1|) $)) (-15 -3221 ((-654 (-781)) (-919 |#1|) $)) (-15 -3242 ((-654 (-781)) (-919 |#1|) $)) (-15 -2211 ((-1118 |#1|) $)) (-15 -3009 ((-112) $ $)) (-15 -3031 ((-112) $ $)) (-15 -1510 ((-1289) $)) (-15 -1510 ((-1289) $ (-574) (-574)))))
-((-2864 (((-112) $ $) NIL)) (-2211 (((-1118 |#1|) $) 60)) (-2786 (((-654 $) (-654 $)) 103)) (-1370 (((-574) $) 83)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-1518 (((-781) $) 80)) (-2694 (((-1118 |#1|) $ |#1|) 70)) (-3943 (((-112) $) NIL)) (-1476 (((-112) $) 88)) (-2056 (((-781) $) 84)) (-3634 (($ $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2976 (($ $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-4268 (((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $) 55)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 130)) (-3940 (((-1136) $) NIL)) (-4036 (((-1118 |#1|) $) 136 (|has| |#1| (-377)))) (-4434 (((-112) $) 81)) (-2207 ((|#1| $ |#1|) 68)) (-3735 (((-781) $) 62)) (-2527 (($ (-654 (-654 |#1|))) 118)) (-4005 (((-987) $) 74)) (-4165 (($ (-654 |#1|)) 32)) (-4090 (($ $ $) NIL)) (-3082 (($ $ $) NIL)) (-3815 (($ (-654 (-654 |#1|))) 57)) (-3917 (($ (-654 (-654 |#1|))) 123)) (-1633 (($ (-654 |#1|)) 132)) (-2951 (((-872) $) 117) (($ (-654 (-654 |#1|))) 91) (($ (-654 |#1|)) 92)) (-2981 (((-112) $ $) NIL)) (-2153 (($) 24 T CONST)) (-3042 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3020 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-2986 (((-112) $ $) 66)) (-3031 (((-112) $ $) NIL (-2833 (|has| |#1| (-377)) (|has| |#1| (-860))))) (-3009 (((-112) $ $) 90)) (-3099 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ $ $) 33)))
-(((-919 |#1|) (-13 (-917 |#1|) (-10 -8 (-15 -4268 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -3815 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 |#1|))) (-15 -3917 ($ (-654 (-654 |#1|)))) (-15 -3735 ((-781) $)) (-15 -4005 ((-987) $)) (-15 -1518 ((-781) $)) (-15 -2056 ((-781) $)) (-15 -1370 ((-574) $)) (-15 -4434 ((-112) $)) (-15 -1476 ((-112) $)) (-15 -2786 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -4036 ((-1118 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1633 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -1633 ($ (-654 |#1|))) |%noBranch|)))) (-1116)) (T -919))
-((-4268 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3)))) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1116)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-919 *3)) (-4 *3 (-377)) (-4 *3 (-1116)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3)))))
-(-13 (-917 |#1|) (-10 -8 (-15 -4268 ((-2 (|:| |preimage| (-654 |#1|)) (|:| |image| (-654 |#1|))) $)) (-15 -3815 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 (-654 |#1|)))) (-15 -2951 ($ (-654 |#1|))) (-15 -3917 ($ (-654 (-654 |#1|)))) (-15 -3735 ((-781) $)) (-15 -4005 ((-987) $)) (-15 -1518 ((-781) $)) (-15 -2056 ((-781) $)) (-15 -1370 ((-574) $)) (-15 -4434 ((-112) $)) (-15 -1476 ((-112) $)) (-15 -2786 ((-654 $) (-654 $))) (IF (|has| |#1| (-377)) (-15 -4036 ((-1118 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1633 ($ (-654 |#1|))) (IF (|has| |#1| (-377)) (-15 -1633 ($ (-654 |#1|))) |%noBranch|))))
-((-1962 (((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|)) 160)) (-2637 ((|#1|) 97)) (-1333 (((-428 (-1189 |#4|)) (-1189 |#4|)) 169)) (-3845 (((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|)) 84)) (-3859 (((-428 (-1189 |#4|)) (-1189 |#4|)) 179)) (-3863 (((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|) 113)))
-(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1962 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|))) (-15 -3859 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -1333 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -2637 (|#1|)) (-15 -3863 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|)) (-15 -3845 ((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|)))) (-923) (-803) (-860) (-963 |#1| |#2| |#3|)) (T -920))
-((-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-923)) (-4 *6 (-803)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-428 (-1189 *8))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-1189 *8)))) (-3863 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) (-4 *7 (-963 *5 *6 *4)) (-4 *5 (-923)) (-4 *6 (-803)) (-4 *4 (-860)) (-5 *1 (-920 *5 *6 *4 *7)))) (-2637 (*1 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))) (-1333 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7)))) (-1962 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-920 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1962 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|))) (-15 -3859 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -1333 ((-428 (-1189 |#4|)) (-1189 |#4|))) (-15 -2637 (|#1|)) (-15 -3863 ((-3 (-654 (-1189 |#4|)) "failed") (-654 (-1189 |#4|)) (-1189 |#4|) |#3|)) (-15 -3845 ((-428 (-1189 |#4|)) (-654 |#3|) (-1189 |#4|))))
-((-1962 (((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|)) 39)) (-2637 ((|#1|) 72)) (-1333 (((-428 (-1189 |#2|)) (-1189 |#2|)) 121)) (-3845 (((-428 (-1189 |#2|)) (-1189 |#2|)) 105)) (-3859 (((-428 (-1189 |#2|)) (-1189 |#2|)) 132)))
-(((-921 |#1| |#2|) (-10 -7 (-15 -1962 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|))) (-15 -3859 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -1333 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -2637 (|#1|)) (-15 -3845 ((-428 (-1189 |#2|)) (-1189 |#2|)))) (-923) (-1260 |#1|)) (T -921))
-((-3845 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-2637 (*1 *2) (-12 (-4 *2 (-923)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1260 *2)))) (-1333 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5))) (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))) (-1962 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-923)) (-5 *1 (-921 *4 *5)))))
-(-10 -7 (-15 -1962 ((-3 (-654 (-1189 |#2|)) "failed") (-654 (-1189 |#2|)) (-1189 |#2|))) (-15 -3859 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -1333 ((-428 (-1189 |#2|)) (-1189 |#2|))) (-15 -2637 (|#1|)) (-15 -3845 ((-428 (-1189 |#2|)) (-1189 |#2|))))
-((-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 42)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 18)) (-2705 (((-3 $ "failed") $) 36)))
-(((-922 |#1|) (-10 -8 (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|)))) (-923)) (T -922))
-NIL
-(-10 -8 (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 66)) (-2684 (($ $) 57)) (-3171 (((-428 $) $) 58)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 63)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3342 (((-112) $) 59)) (-3943 (((-112) $) 35)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3235 (((-428 (-1189 $)) (-1189 $)) 64)) (-3000 (((-428 (-1189 $)) (-1189 $)) 65)) (-4201 (((-428 $) $) 56)) (-2853 (((-3 $ "failed") $ $) 48)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 62 (|has| $ (-146)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-2705 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-923) (-141)) (T -923))
-((-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-923)))) (-1517 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-3000 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-3235 (*1 *2 *3) (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))) (-3571 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-654 (-1189 *1))) (-5 *3 (-1189 *1)) (-4 *1 (-923)))) (-2263 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-923)) (-5 *2 (-1284 *1)))) (-2705 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-923)))))
-(-13 (-1238) (-10 -8 (-15 -1517 ((-428 (-1189 $)) (-1189 $))) (-15 -3000 ((-428 (-1189 $)) (-1189 $))) (-15 -3235 ((-428 (-1189 $)) (-1189 $))) (-15 -2064 ((-1189 $) (-1189 $) (-1189 $))) (-15 -3571 ((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $))) (IF (|has| $ (-146)) (PROGN (-15 -2263 ((-3 (-1284 $) "failed") (-699 $))) (-15 -2705 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-1738 (((-112) $) NIL)) (-2276 (((-781)) NIL)) (-1644 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-3210 (((-1206 (-935) (-781)) (-574)) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 $ "failed") $) NIL)) (-2216 (($ $) NIL)) (-3114 (($ (-1284 $)) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-1615 (($) NIL)) (-3502 (((-112) $) NIL)) (-2613 (($ $) NIL) (($ $ (-781)) NIL)) (-3342 (((-112) $) NIL)) (-1518 (((-843 (-935)) $) NIL) (((-935) $) NIL)) (-3943 (((-112) $) NIL)) (-4400 (($) NIL (|has| $ (-377)))) (-3576 (((-112) $) NIL (|has| $ (-377)))) (-2608 (($ $ (-935)) NIL (|has| $ (-377))) (($ $) NIL)) (-2081 (((-3 $ "failed") $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3446 (((-1189 $) $ (-935)) NIL (|has| $ (-377))) (((-1189 $) $) NIL)) (-3507 (((-935) $) NIL)) (-2739 (((-1189 $) $) NIL (|has| $ (-377)))) (-2873 (((-3 (-1189 $) "failed") $ $) NIL (|has| $ (-377))) (((-1189 $) $) NIL (|has| $ (-377)))) (-3200 (($ $ (-1189 $)) NIL (|has| $ (-377)))) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL T CONST)) (-2591 (($ (-935)) NIL)) (-2958 (((-112) $) NIL)) (-3940 (((-1136) $) NIL)) (-2975 (($) NIL (|has| $ (-377)))) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL)) (-4201 (((-428 $) $) NIL)) (-1676 (((-935)) NIL) (((-843 (-935))) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-1532 (((-3 (-781) "failed") $ $) NIL) (((-781) $) NIL)) (-2732 (((-135)) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-3735 (((-935) $) NIL) (((-843 (-935)) $) NIL)) (-2966 (((-1189 $)) NIL)) (-3951 (($) NIL)) (-3883 (($) NIL (|has| $ (-377)))) (-2282 (((-699 $) (-1284 $)) NIL) (((-1284 $) $) NIL)) (-1844 (((-574) $) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL)) (-2705 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $) (-935)) NIL) (((-1284 $)) NIL)) (-3750 (((-112) $ $) NIL)) (-4194 (((-112) $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2535 (($ $ (-781)) NIL (|has| $ (-377))) (($ $) NIL (|has| $ (-377)))) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-924 |#1|) (-13 (-358) (-337 $) (-624 (-574))) (-935)) (T -924))
-NIL
-(-13 (-358) (-337 $) (-624 (-574)))
-((-3901 (((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)) 77)) (-4427 (((-112) (-345 |#2| |#3| |#4| |#5|)) 17)) (-1518 (((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|)) 15)))
-(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1518 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -4427 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -3901 ((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|)))) (-13 (-566) (-1054 (-574))) (-440 |#1|) (-1260 |#2|) (-1260 (-417 |#3|)) (-351 |#2| |#3| |#4|)) (T -925))
-((-3901 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-2 (|:| -1518 (-781)) (|:| -2722 *8))) (-5 *1 (-925 *4 *5 *6 *7 *8)))) (-4427 (*1 *2 *3) (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7 *8)))) (-1518 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1518 ((-3 (-781) "failed") (-345 |#2| |#3| |#4| |#5|))) (-15 -4427 ((-112) (-345 |#2| |#3| |#4| |#5|))) (-15 -3901 ((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#5|)) "failed") (-345 |#2| |#3| |#4| |#5|))))
-((-3901 (((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 64)) (-4427 (((-112) (-345 (-417 (-574)) |#1| |#2| |#3|)) 16)) (-1518 (((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)) 14)))
-(((-926 |#1| |#2| |#3|) (-10 -7 (-15 -1518 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -4427 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3901 ((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|)))) (-1260 (-417 (-574))) (-1260 (-417 |#1|)) (-351 (-417 (-574)) |#1| |#2|)) (T -926))
-((-3901 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-2 (|:| -1518 (-781)) (|:| -2722 *6))) (-5 *1 (-926 *4 *5 *6)))) (-4427 (*1 *2 *3) (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6)))) (-1518 (*1 *2 *3) (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6)) (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781)) (-5 *1 (-926 *4 *5 *6)))))
-(-10 -7 (-15 -1518 ((-3 (-781) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -4427 ((-112) (-345 (-417 (-574)) |#1| |#2| |#3|))) (-15 -3901 ((-3 (-2 (|:| -1518 (-781)) (|:| -2722 |#3|)) "failed") (-345 (-417 (-574)) |#1| |#2| |#3|))))
-((-1835 ((|#2| |#2|) 26)) (-1468 (((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) 15)) (-2313 (((-935) (-574)) 38)) (-2594 (((-574) |#2|) 45)) (-1841 (((-574) |#2|) 21) (((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|) 20)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -2313 ((-935) (-574))) (-15 -1841 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -1841 ((-574) |#2|)) (-15 -1468 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2594 ((-574) |#2|)) (-15 -1835 (|#2| |#2|))) (-1260 (-417 (-574))) (-1260 (-417 |#1|))) (T -927))
-((-1835 (*1 *2 *2) (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *1 (-927 *3 *2)) (-4 *2 (-1260 (-417 *3))))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))) (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4))))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3)) (-4 *3 (-1260 (-417 *4))))) (-1841 (*1 *2 *3) (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))) (-5 *1 (-927 *3 *4)) (-4 *4 (-1260 (-417 *3))))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-574)) (-4 *4 (-1260 (-417 *3))) (-5 *2 (-935)) (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4))))))
-(-10 -7 (-15 -2313 ((-935) (-574))) (-15 -1841 ((-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))) |#1|)) (-15 -1841 ((-574) |#2|)) (-15 -1468 ((-574) (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))) (-15 -2594 ((-574) |#2|)) (-15 -1835 (|#2| |#2|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 ((|#1| $) 100)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-2801 (($ $ $) NIL)) (-3612 (((-3 $ "failed") $) 94)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2767 (($ |#1| (-428 |#1|)) 92)) (-1830 (((-1189 |#1|) |#1| |#1|) 53)) (-2167 (($ $) 61)) (-3943 (((-112) $) NIL)) (-2543 (((-574) $) 97)) (-3076 (($ $ (-574)) 99)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2725 ((|#1| $) 96)) (-3107 (((-428 |#1|) $) 95)) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) 93)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3237 (($ $) 50)) (-2951 (((-872) $) 124) (($ (-574)) 73) (($ $) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 41) (((-417 |#1|) $) 78) (($ (-417 (-428 |#1|))) 86)) (-3070 (((-781)) 71 T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) 26 T CONST)) (-2153 (($) 15 T CONST)) (-2986 (((-112) $ $) 87)) (-3099 (($ $ $) NIL)) (-3090 (($ $) 108) (($ $ $) NIL)) (-3074 (($ $ $) 49)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 110) (($ $ $) 48) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-928 |#1|) (-13 (-372) (-38 |#1|) (-10 -8 (-15 -2951 ((-417 |#1|) $)) (-15 -2951 ($ (-417 (-428 |#1|)))) (-15 -3237 ($ $)) (-15 -3107 ((-428 |#1|) $)) (-15 -2725 (|#1| $)) (-15 -3076 ($ $ (-574))) (-15 -2543 ((-574) $)) (-15 -1830 ((-1189 |#1|) |#1| |#1|)) (-15 -2167 ($ $)) (-15 -2767 ($ |#1| (-428 |#1|))) (-15 -4356 (|#1| $)))) (-315)) (T -928))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-928 *3)))) (-3237 (*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2725 (*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-3076 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-1830 (*1 *2 *3 *3) (-12 (-5 *2 (-1189 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-928 *2)))) (-4356 (*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))))
-(-13 (-372) (-38 |#1|) (-10 -8 (-15 -2951 ((-417 |#1|) $)) (-15 -2951 ($ (-417 (-428 |#1|)))) (-15 -3237 ($ $)) (-15 -3107 ((-428 |#1|) $)) (-15 -2725 (|#1| $)) (-15 -3076 ($ $ (-574))) (-15 -2543 ((-574) $)) (-15 -1830 ((-1189 |#1|) |#1| |#1|)) (-15 -2167 ($ $)) (-15 -2767 ($ |#1| (-428 |#1|))) (-15 -4356 (|#1| $))))
-((-2767 (((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193)) 17) (((-52) (-417 (-966 |#1|)) (-1193)) 18)))
-(((-929 |#1|) (-10 -7 (-15 -2767 ((-52) (-417 (-966 |#1|)) (-1193))) (-15 -2767 ((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193)))) (-13 (-315) (-148))) (T -929))
-((-2767 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-428 (-966 *6))) (-5 *5 (-1193)) (-5 *3 (-966 *6)) (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *6)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *5)))))
-(-10 -7 (-15 -2767 ((-52) (-417 (-966 |#1|)) (-1193))) (-15 -2767 ((-52) (-966 |#1|) (-428 (-966 |#1|)) (-1193))))
-((-2132 ((|#4| (-654 |#4|)) 147) (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2887 (((-1189 |#4|) (-654 (-1189 |#4|))) 140) (((-1189 |#4|) (-1189 |#4|) (-1189 |#4|)) 61) ((|#4| (-654 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2887 (|#4| |#4| |#4|)) (-15 -2887 (|#4| (-654 |#4|))) (-15 -2887 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2887 ((-1189 |#4|) (-654 (-1189 |#4|)))) (-15 -2132 (|#4| |#4| |#4|)) (-15 -2132 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2132 (|#4| (-654 |#4|)))) (-803) (-860) (-315) (-963 |#3| |#1| |#2|)) (T -930))
-((-2132 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2132 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2132 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 (-1189 *7))) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-1189 *7)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)))) (-2887 (*1 *2 *2 *2) (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4)))))
-(-10 -7 (-15 -2887 (|#4| |#4| |#4|)) (-15 -2887 (|#4| (-654 |#4|))) (-15 -2887 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2887 ((-1189 |#4|) (-654 (-1189 |#4|)))) (-15 -2132 (|#4| |#4| |#4|)) (-15 -2132 ((-1189 |#4|) (-1189 |#4|) (-1189 |#4|))) (-15 -2132 (|#4| (-654 |#4|))))
-((-2867 (((-918 (-574)) (-987)) 38) (((-918 (-574)) (-654 (-574))) 34)) (-4271 (((-918 (-574)) (-654 (-574))) 67) (((-918 (-574)) (-935)) 68)) (-4295 (((-918 (-574))) 39)) (-3628 (((-918 (-574))) 53) (((-918 (-574)) (-654 (-574))) 52)) (-3993 (((-918 (-574))) 51) (((-918 (-574)) (-654 (-574))) 50)) (-1802 (((-918 (-574))) 49) (((-918 (-574)) (-654 (-574))) 48)) (-2777 (((-918 (-574))) 47) (((-918 (-574)) (-654 (-574))) 46)) (-4340 (((-918 (-574))) 45) (((-918 (-574)) (-654 (-574))) 44)) (-3999 (((-918 (-574))) 55) (((-918 (-574)) (-654 (-574))) 54)) (-1745 (((-918 (-574)) (-654 (-574))) 72) (((-918 (-574)) (-935)) 74)) (-3215 (((-918 (-574)) (-654 (-574))) 69) (((-918 (-574)) (-935)) 70)) (-4054 (((-918 (-574)) (-654 (-574))) 65) (((-918 (-574)) (-935)) 66)) (-1455 (((-918 (-574)) (-654 (-935))) 57)))
-(((-931) (-10 -7 (-15 -4271 ((-918 (-574)) (-935))) (-15 -4271 ((-918 (-574)) (-654 (-574)))) (-15 -4054 ((-918 (-574)) (-935))) (-15 -4054 ((-918 (-574)) (-654 (-574)))) (-15 -1455 ((-918 (-574)) (-654 (-935)))) (-15 -3215 ((-918 (-574)) (-935))) (-15 -3215 ((-918 (-574)) (-654 (-574)))) (-15 -1745 ((-918 (-574)) (-935))) (-15 -1745 ((-918 (-574)) (-654 (-574)))) (-15 -4340 ((-918 (-574)) (-654 (-574)))) (-15 -4340 ((-918 (-574)))) (-15 -2777 ((-918 (-574)) (-654 (-574)))) (-15 -2777 ((-918 (-574)))) (-15 -1802 ((-918 (-574)) (-654 (-574)))) (-15 -1802 ((-918 (-574)))) (-15 -3993 ((-918 (-574)) (-654 (-574)))) (-15 -3993 ((-918 (-574)))) (-15 -3628 ((-918 (-574)) (-654 (-574)))) (-15 -3628 ((-918 (-574)))) (-15 -3999 ((-918 (-574)) (-654 (-574)))) (-15 -3999 ((-918 (-574)))) (-15 -4295 ((-918 (-574)))) (-15 -2867 ((-918 (-574)) (-654 (-574)))) (-15 -2867 ((-918 (-574)) (-987))))) (T -931))
-((-2867 (*1 *2 *3) (-12 (-5 *3 (-987)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4295 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3999 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3628 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3993 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1802 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2777 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4340 (*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(-10 -7 (-15 -4271 ((-918 (-574)) (-935))) (-15 -4271 ((-918 (-574)) (-654 (-574)))) (-15 -4054 ((-918 (-574)) (-935))) (-15 -4054 ((-918 (-574)) (-654 (-574)))) (-15 -1455 ((-918 (-574)) (-654 (-935)))) (-15 -3215 ((-918 (-574)) (-935))) (-15 -3215 ((-918 (-574)) (-654 (-574)))) (-15 -1745 ((-918 (-574)) (-935))) (-15 -1745 ((-918 (-574)) (-654 (-574)))) (-15 -4340 ((-918 (-574)) (-654 (-574)))) (-15 -4340 ((-918 (-574)))) (-15 -2777 ((-918 (-574)) (-654 (-574)))) (-15 -2777 ((-918 (-574)))) (-15 -1802 ((-918 (-574)) (-654 (-574)))) (-15 -1802 ((-918 (-574)))) (-15 -3993 ((-918 (-574)) (-654 (-574)))) (-15 -3993 ((-918 (-574)))) (-15 -3628 ((-918 (-574)) (-654 (-574)))) (-15 -3628 ((-918 (-574)))) (-15 -3999 ((-918 (-574)) (-654 (-574)))) (-15 -3999 ((-918 (-574)))) (-15 -4295 ((-918 (-574)))) (-15 -2867 ((-918 (-574)) (-654 (-574)))) (-15 -2867 ((-918 (-574)) (-987))))
-((-2911 (((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))) 14)) (-3849 (((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))) 13)))
-(((-932 |#1|) (-10 -7 (-15 -3849 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -2911 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193))))) (-462)) (T -932))
-((-2911 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-932 *4)))) (-3849 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462)) (-5 *1 (-932 *4)))))
-(-10 -7 (-15 -3849 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -2911 ((-654 (-966 |#1|)) (-654 (-966 |#1|)) (-654 (-1193)))))
-((-2951 (((-324 |#1|) (-487)) 16)))
-(((-933 |#1|) (-10 -7 (-15 -2951 ((-324 |#1|) (-487)))) (-566)) (T -933))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-933 *4)) (-4 *4 (-566)))))
-(-10 -7 (-15 -2951 ((-324 |#1|) (-487))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3943 (((-112) $) 35)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-934) (-141)) (T -934))
-((-2046 (*1 *2 *3) (-12 (-4 *1 (-934)) (-5 *2 (-2 (|:| -1866 (-654 *1)) (|:| -2975 *1))) (-5 *3 (-654 *1)))) (-1987 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-934)))))
-(-13 (-462) (-10 -8 (-15 -2046 ((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $))) (-15 -1987 ((-3 (-654 $) "failed") (-654 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2887 (($ $ $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2153 (($) NIL T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ $ $) NIL)))
-(((-935) (-13 (-804) (-736) (-10 -8 (-15 -2887 ($ $ $)) (-6 (-4461 "*"))))) (T -935))
-((-2887 (*1 *1 *1 *1) (-5 *1 (-935))))
-(-13 (-804) (-736) (-10 -8 (-15 -2887 ($ $ $)) (-6 (-4461 "*"))))
+((-3668 (((-703 (-1244)) $ (-1244)) NIL)) (-1701 (((-703 (-561)) $ (-561)) NIL)) (-3358 (((-783) $ (-129)) NIL)) (-3901 (((-703 (-130)) $ (-130)) 22)) (-1929 (($ (-400)) 12) (($ (-1177)) 14)) (-2370 (((-112) $) 19)) (-2956 (((-874) $) 26)) (-3597 (($ $) 23)))
+(((-873) (-13 (-872) (-625 (-874)) (-10 -8 (-15 -1929 ($ (-400))) (-15 -1929 ($ (-1177))) (-15 -2370 ((-112) $))))) (T -873))
+((-1929 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))))
+(-13 (-872) (-625 (-874)) (-10 -8 (-15 -1929 ($ (-400))) (-15 -1929 ($ (-1177))) (-15 -2370 ((-112) $))))
+((-2869 (((-112) $ $) NIL) (($ $ $) 85)) (-1911 (($ $ $) 125)) (-3021 (((-576) $) 31) (((-576)) 36)) (-3875 (($ (-576)) 53)) (-4002 (($ $ $) 54) (($ (-656 $)) 84)) (-2743 (($ $ (-656 $)) 82)) (-1886 (((-576) $) 34)) (-3630 (($ $ $) 73)) (-3539 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3272 (((-576) $) 33)) (-3840 (($ $ $) 72)) (-3237 (($ $) 114)) (-2936 (($ $ $) 129)) (-4374 (($ (-656 $)) 61)) (-4126 (($ $ (-656 $)) 79)) (-3511 (($ (-576) (-576)) 55)) (-1343 (($ $) 126) (($ $ $) 127)) (-3883 (($ $ (-576)) 43) (($ $) 46)) (-2806 (($ $ $) 97)) (-4014 (($ $ $) 132)) (-3258 (($ $) 115)) (-2818 (($ $ $) 98)) (-1557 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1802 (((-1291) $) 10)) (-4217 (($ $) 118) (($ $ (-783)) 122)) (-1718 (($ $ $) 75)) (-2094 (($ $ $) 74)) (-4199 (($ $ (-656 $)) 110)) (-4279 (($ $ $) 113)) (-4407 (($ (-656 $)) 59)) (-1492 (($ $) 70) (($ (-656 $)) 71)) (-3935 (($ $ $) 123)) (-3723 (($ $) 116)) (-3299 (($ $ $) 128)) (-3069 (($ (-576)) 21) (($ (-1195)) 23) (($ (-1177)) 30) (($ (-227)) 25)) (-2107 (($ $ $) 101)) (-2085 (($ $) 102)) (-3976 (((-1291) (-1177)) 15)) (-2179 (($ (-1177)) 14)) (-2929 (($ (-656 (-656 $))) 58)) (-3870 (($ $ (-576)) 42) (($ $) 45)) (-2148 (((-1177) $) NIL)) (-1908 (($ $ $) 131)) (-3092 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3779 (((-112) $) 108)) (-1726 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-1996 (($ (-576)) 39)) (-1850 (((-576) $) 32) (((-576)) 35)) (-3121 (($ $ $) 40) (($ (-656 $)) 83)) (-3945 (((-1138) $) NIL)) (-2858 (($ $ $) 99)) (-2953 (($) 13)) (-2209 (($ $ (-656 $)) 109)) (-3600 (((-1177) (-1177)) 8)) (-4144 (($ $) 117) (($ $ (-783)) 121)) (-2845 (($ $ $) 96)) (-3884 (($ $ (-783)) 139)) (-4338 (($ (-656 $)) 60)) (-2956 (((-874) $) 19)) (-3337 (($ $ (-576)) 41) (($ $) 44)) (-2671 (($ $) 68) (($ (-656 $)) 69)) (-4271 (($ $) 66) (($ (-656 $)) 67)) (-2113 (($ $) 124)) (-3411 (($ (-656 $)) 65)) (-2959 (($ $ $) 105)) (-2617 (((-112) $ $) NIL)) (-2531 (($ $ $) 130)) (-2096 (($ $ $) 100)) (-4266 (($ $ $) 103) (($ $) 104)) (-3047 (($ $ $) 89)) (-3024 (($ $ $) 87)) (-2991 (((-112) $ $) 16) (($ $ $) 17)) (-3034 (($ $ $) 88)) (-3014 (($ $ $) 86)) (-3108 (($ $ $) 94)) (-3096 (($ $ $) 91) (($ $) 92)) (-3081 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-874) (-13 (-1118) (-10 -8 (-15 -1802 ((-1291) $)) (-15 -2179 ($ (-1177))) (-15 -3976 ((-1291) (-1177))) (-15 -3069 ($ (-576))) (-15 -3069 ($ (-1195))) (-15 -3069 ($ (-1177))) (-15 -3069 ($ (-227))) (-15 -2953 ($)) (-15 -3600 ((-1177) (-1177))) (-15 -3021 ((-576) $)) (-15 -1850 ((-576) $)) (-15 -3021 ((-576))) (-15 -1850 ((-576))) (-15 -3272 ((-576) $)) (-15 -1886 ((-576) $)) (-15 -1996 ($ (-576))) (-15 -3875 ($ (-576))) (-15 -3511 ($ (-576) (-576))) (-15 -3870 ($ $ (-576))) (-15 -3883 ($ $ (-576))) (-15 -3337 ($ $ (-576))) (-15 -3870 ($ $)) (-15 -3883 ($ $)) (-15 -3337 ($ $)) (-15 -3121 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -3121 ($ (-656 $))) (-15 -4002 ($ (-656 $))) (-15 -4199 ($ $ (-656 $))) (-15 -1726 ($ $ (-656 $))) (-15 -1726 ($ $ $ $)) (-15 -4279 ($ $ $)) (-15 -3779 ((-112) $)) (-15 -2209 ($ $ (-656 $))) (-15 -3237 ($ $)) (-15 -1908 ($ $ $)) (-15 -2113 ($ $)) (-15 -2929 ($ (-656 (-656 $)))) (-15 -1911 ($ $ $)) (-15 -1343 ($ $)) (-15 -1343 ($ $ $)) (-15 -3299 ($ $ $)) (-15 -2936 ($ $ $)) (-15 -2531 ($ $ $)) (-15 -4014 ($ $ $)) (-15 -3884 ($ $ (-783))) (-15 -2959 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -1718 ($ $ $)) (-15 -4126 ($ $ (-656 $))) (-15 -2743 ($ $ (-656 $))) (-15 -3258 ($ $)) (-15 -4144 ($ $)) (-15 -4144 ($ $ (-783))) (-15 -4217 ($ $)) (-15 -4217 ($ $ (-783))) (-15 -3723 ($ $)) (-15 -3935 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -1557 ($ $)) (-15 -1557 ($ $ $)) (-15 -1557 ($ $ $ $)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3092 ($ $ $ $)) (-15 -4271 ($ $)) (-15 -4271 ($ (-656 $))) (-15 -2671 ($ $)) (-15 -2671 ($ (-656 $))) (-15 -1492 ($ $)) (-15 -1492 ($ (-656 $))) (-15 -4407 ($ (-656 $))) (-15 -4338 ($ (-656 $))) (-15 -4374 ($ (-656 $))) (-15 -3411 ($ (-656 $))) (-15 -2991 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -3096 ($ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2858 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $)) (-15 -2085 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $))))) (T -874))
+((-1802 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) (-2953 (*1 *1) (-5 *1 (-874))) (-3600 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3021 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1850 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3511 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3337 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3870 (*1 *1 *1) (-5 *1 (-874))) (-3883 (*1 *1 *1) (-5 *1 (-874))) (-3337 (*1 *1 *1) (-5 *1 (-874))) (-3121 (*1 *1 *1 *1) (-5 *1 (-874))) (-4002 (*1 *1 *1 *1) (-5 *1 (-874))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1726 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1726 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-4279 (*1 *1 *1 *1) (-5 *1 (-874))) (-3779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3237 (*1 *1 *1) (-5 *1 (-874))) (-1908 (*1 *1 *1 *1) (-5 *1 (-874))) (-2113 (*1 *1 *1) (-5 *1 (-874))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) (-1911 (*1 *1 *1 *1) (-5 *1 (-874))) (-1343 (*1 *1 *1) (-5 *1 (-874))) (-1343 (*1 *1 *1 *1) (-5 *1 (-874))) (-3299 (*1 *1 *1 *1) (-5 *1 (-874))) (-2936 (*1 *1 *1 *1) (-5 *1 (-874))) (-2531 (*1 *1 *1 *1) (-5 *1 (-874))) (-4014 (*1 *1 *1 *1) (-5 *1 (-874))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-2959 (*1 *1 *1 *1) (-5 *1 (-874))) (-3840 (*1 *1 *1 *1) (-5 *1 (-874))) (-3630 (*1 *1 *1 *1) (-5 *1 (-874))) (-2094 (*1 *1 *1 *1) (-5 *1 (-874))) (-1718 (*1 *1 *1 *1) (-5 *1 (-874))) (-4126 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2743 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3258 (*1 *1 *1) (-5 *1 (-874))) (-4144 (*1 *1 *1) (-5 *1 (-874))) (-4144 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4217 (*1 *1 *1) (-5 *1 (-874))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-3723 (*1 *1 *1) (-5 *1 (-874))) (-3935 (*1 *1 *1 *1) (-5 *1 (-874))) (-3539 (*1 *1 *1) (-5 *1 (-874))) (-3539 (*1 *1 *1 *1) (-5 *1 (-874))) (-3539 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-1557 (*1 *1 *1) (-5 *1 (-874))) (-1557 (*1 *1 *1 *1) (-5 *1 (-874))) (-1557 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-3092 (*1 *1 *1) (-5 *1 (-874))) (-3092 (*1 *1 *1 *1) (-5 *1 (-874))) (-3092 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-4271 (*1 *1 *1) (-5 *1 (-874))) (-4271 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2671 (*1 *1 *1) (-5 *1 (-874))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1492 (*1 *1 *1) (-5 *1 (-874))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4407 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4338 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4374 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2991 (*1 *1 *1 *1) (-5 *1 (-874))) (-2869 (*1 *1 *1 *1) (-5 *1 (-874))) (-3014 (*1 *1 *1 *1) (-5 *1 (-874))) (-3024 (*1 *1 *1 *1) (-5 *1 (-874))) (-3034 (*1 *1 *1 *1) (-5 *1 (-874))) (-3047 (*1 *1 *1 *1) (-5 *1 (-874))) (-3081 (*1 *1 *1 *1) (-5 *1 (-874))) (-3096 (*1 *1 *1 *1) (-5 *1 (-874))) (-3096 (*1 *1 *1) (-5 *1 (-874))) (* (*1 *1 *1 *1) (-5 *1 (-874))) (-3108 (*1 *1 *1 *1) (-5 *1 (-874))) (** (*1 *1 *1 *1) (-5 *1 (-874))) (-2845 (*1 *1 *1 *1) (-5 *1 (-874))) (-2806 (*1 *1 *1 *1) (-5 *1 (-874))) (-2818 (*1 *1 *1 *1) (-5 *1 (-874))) (-2858 (*1 *1 *1 *1) (-5 *1 (-874))) (-2096 (*1 *1 *1 *1) (-5 *1 (-874))) (-2107 (*1 *1 *1 *1) (-5 *1 (-874))) (-2085 (*1 *1 *1) (-5 *1 (-874))) (-4266 (*1 *1 *1 *1) (-5 *1 (-874))) (-4266 (*1 *1 *1) (-5 *1 (-874))))
+(-13 (-1118) (-10 -8 (-15 -1802 ((-1291) $)) (-15 -2179 ($ (-1177))) (-15 -3976 ((-1291) (-1177))) (-15 -3069 ($ (-576))) (-15 -3069 ($ (-1195))) (-15 -3069 ($ (-1177))) (-15 -3069 ($ (-227))) (-15 -2953 ($)) (-15 -3600 ((-1177) (-1177))) (-15 -3021 ((-576) $)) (-15 -1850 ((-576) $)) (-15 -3021 ((-576))) (-15 -1850 ((-576))) (-15 -3272 ((-576) $)) (-15 -1886 ((-576) $)) (-15 -1996 ($ (-576))) (-15 -3875 ($ (-576))) (-15 -3511 ($ (-576) (-576))) (-15 -3870 ($ $ (-576))) (-15 -3883 ($ $ (-576))) (-15 -3337 ($ $ (-576))) (-15 -3870 ($ $)) (-15 -3883 ($ $)) (-15 -3337 ($ $)) (-15 -3121 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -3121 ($ (-656 $))) (-15 -4002 ($ (-656 $))) (-15 -4199 ($ $ (-656 $))) (-15 -1726 ($ $ (-656 $))) (-15 -1726 ($ $ $ $)) (-15 -4279 ($ $ $)) (-15 -3779 ((-112) $)) (-15 -2209 ($ $ (-656 $))) (-15 -3237 ($ $)) (-15 -1908 ($ $ $)) (-15 -2113 ($ $)) (-15 -2929 ($ (-656 (-656 $)))) (-15 -1911 ($ $ $)) (-15 -1343 ($ $)) (-15 -1343 ($ $ $)) (-15 -3299 ($ $ $)) (-15 -2936 ($ $ $)) (-15 -2531 ($ $ $)) (-15 -4014 ($ $ $)) (-15 -3884 ($ $ (-783))) (-15 -2959 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -2094 ($ $ $)) (-15 -1718 ($ $ $)) (-15 -4126 ($ $ (-656 $))) (-15 -2743 ($ $ (-656 $))) (-15 -3258 ($ $)) (-15 -4144 ($ $)) (-15 -4144 ($ $ (-783))) (-15 -4217 ($ $)) (-15 -4217 ($ $ (-783))) (-15 -3723 ($ $)) (-15 -3935 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -1557 ($ $)) (-15 -1557 ($ $ $)) (-15 -1557 ($ $ $ $)) (-15 -3092 ($ $)) (-15 -3092 ($ $ $)) (-15 -3092 ($ $ $ $)) (-15 -4271 ($ $)) (-15 -4271 ($ (-656 $))) (-15 -2671 ($ $)) (-15 -2671 ($ (-656 $))) (-15 -1492 ($ $)) (-15 -1492 ($ (-656 $))) (-15 -4407 ($ (-656 $))) (-15 -4338 ($ (-656 $))) (-15 -4374 ($ (-656 $))) (-15 -3411 ($ (-656 $))) (-15 -2991 ($ $ $)) (-15 -2869 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3047 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -3096 ($ $ $)) (-15 -3096 ($ $)) (-15 * ($ $ $)) (-15 -3108 ($ $ $)) (-15 ** ($ $ $)) (-15 -2845 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2858 ($ $ $)) (-15 -2096 ($ $ $)) (-15 -2107 ($ $ $)) (-15 -2085 ($ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $))))
+((-2389 (((-1291) (-656 (-52))) 23)) (-3236 (((-1291) (-1177) (-874)) 13) (((-1291) (-874)) 8) (((-1291) (-1177)) 10)))
+(((-875) (-10 -7 (-15 -3236 ((-1291) (-1177))) (-15 -3236 ((-1291) (-874))) (-15 -3236 ((-1291) (-1177) (-874))) (-15 -2389 ((-1291) (-656 (-52)))))) (T -875))
+((-2389 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875)))))
+(-10 -7 (-15 -3236 ((-1291) (-1177))) (-15 -3236 ((-1291) (-874))) (-15 -3236 ((-1291) (-1177) (-874))) (-15 -2389 ((-1291) (-656 (-52)))))
+((-2869 (((-112) $ $) NIL)) (-1500 (((-3 $ "failed") (-1195)) 36)) (-1499 (((-783)) 32)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) 29)) (-2148 (((-1177) $) 43)) (-2596 (($ (-937)) 28)) (-3945 (((-1138) $) NIL)) (-1846 (((-1195) $) 13) (((-548) $) 19) (((-905 (-390)) $) 26) (((-905 (-576)) $) 22)) (-2956 (((-874) $) 16)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 40)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 38)))
+(((-876 |#1|) (-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1500 ((-3 $ "failed") (-1195))))) (-656 (-1195))) (T -876))
+((-1500 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2)))))
+(-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1500 ((-3 $ "failed") (-1195)))))
+((-2869 (((-112) $ $) NIL)) (-2041 (((-518) $) 9)) (-2186 (((-656 (-451)) $) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 21)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 16)))
+(((-877) (-13 (-1118) (-10 -8 (-15 -2041 ((-518) $)) (-15 -2186 ((-656 (-451)) $))))) (T -877))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877)))))
+(-13 (-1118) (-10 -8 (-15 -2041 ((-518) $)) (-15 -2186 ((-656 (-451)) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-968 |#1|)) NIL) (((-968 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-3423 (((-783)) NIL T CONST)) (-3325 (((-1291) (-783)) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-878 |#1| |#2| |#3| |#4|) (-13 (-1067) (-502 (-968 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3325 ((-1291) (-783))))) (-1067) (-656 (-1195)) (-656 (-783)) (-783)) (T -878))
+((-3108 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1067)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3)) (-14 *7 *3))))
+(-13 (-1067) (-502 (-968 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3325 ((-1291) (-783)))))
+((-3604 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-3166 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29)))
+(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -3166 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3604 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1277 |#1|) (-1262 |#1|)) (T -879))
+((-3604 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))) (-3166 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))))
+(-10 -7 (-15 -3166 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3604 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|)))
+((-3166 (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) 28)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3166 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -3166 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)))) (-374) (-1195) |#1|) (T -880))
+((-3166 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-3166 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7)))))
+(-10 -7 (-15 -3166 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -3166 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4214 (($ $ (-576)) 68)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-1343 (($ (-1191 (-576)) (-576)) 67)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-1381 (($ $) 70)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3540 (((-783) $) 75)) (-4192 (((-112) $) 35)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1440 (((-576)) 72)) (-2554 (((-576) $) 71)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3167 (($ $ (-576)) 74)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-4176 (((-1175 (-576)) $) 76)) (-1588 (($ $) 73)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-3530 (((-576) $ (-576)) 69)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-881 |#1|) (-141) (-576)) (T -881))
+((-4176 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1175 (-576))))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) (-3167 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1588 (*1 *1 *1) (-4 *1 (-881 *2))) (-1440 (*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1381 (*1 *1 *1) (-4 *1 (-881 *2))) (-3530 (*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-4214 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4)))))
+(-13 (-317) (-148) (-10 -8 (-15 -4176 ((-1175 (-576)) $)) (-15 -3540 ((-783) $)) (-15 -3167 ($ $ (-576))) (-15 -1588 ($ $)) (-15 -1440 ((-576))) (-15 -2554 ((-576) $)) (-15 -1381 ($ $)) (-15 -3530 ((-576) $ (-576))) (-15 -4214 ($ $ (-576))) (-15 -1343 ($ (-1191 (-576)) (-576)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $ (-576)) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-1343 (($ (-1191 (-576)) (-576)) NIL)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-1381 (($ $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3540 (((-783) $) NIL)) (-4192 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1440 (((-576)) NIL)) (-2554 (((-576) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3167 (($ $ (-576)) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-4176 (((-1175 (-576)) $) NIL)) (-1588 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-576) $ (-576)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-882 |#1|) (-881 |#1|) (-576)) (T -882))
+NIL
+(-881 |#1|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-882 |#1|) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-882 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-882 |#1|) (-1056 (-576))))) (-2216 (((-882 |#1|) $) NIL) (((-1195) $) NIL (|has| (-882 |#1|) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-882 |#1|) (-1056 (-576)))) (((-576) $) NIL (|has| (-882 |#1|) (-1056 (-576))))) (-3279 (($ $) NIL) (($ (-576) $) NIL)) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-882 |#1|))) (|:| |vec| (-1286 (-882 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-882 |#1|)) (-701 $)) NIL) (((-701 (-882 |#1|)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-882 |#1|) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-882 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-882 |#1|) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-882 |#1|) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-1170)))) (-3327 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-2571 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-1787 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-882 |#1|) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-882 |#1|) (-317)))) (-4371 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-882 |#1|)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-304 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-304 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-1195)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|)))) (($ $ (-1195) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-296 (-882 |#1|) (-882 |#1|))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-882 |#1|) (-239))) (($ $) NIL (|has| (-882 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-882 |#1|) $) NIL)) (-1846 (((-905 (-576)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-882 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-882 |#1|) (-1040))) (((-227) $) NIL (|has| (-882 |#1|) (-1040)))) (-3296 (((-176 (-419 (-576))) $) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-882 |#1|)) NIL) (($ (-1195)) NIL (|has| (-882 |#1|) (-1056 (-1195))))) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-925))) (|has| (-882 |#1|) (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-419 (-576)) $ (-576)) NIL)) (-2130 (($ $) NIL (|has| (-882 |#1|) (-832)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-882 |#1|) (-239))) (($ $) NIL (|has| (-882 |#1|) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-914 (-1195)))) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3108 (($ $ $) NIL) (($ (-882 |#1|) (-882 |#1|)) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-882 |#1|) $) NIL) (($ $ (-882 |#1|)) NIL)))
+(((-883 |#1|) (-13 (-1010 (-882 |#1|)) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $)))) (-576)) (T -883))
+((-3530 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) (-3279 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) (-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2))))
+(-13 (-1010 (-882 |#1|)) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 ((|#2| $) NIL (|has| |#2| (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| |#2| (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| |#2| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576))))) (-2216 ((|#2| $) NIL) (((-1195) $) NIL (|has| |#2| (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-576)))) (((-576) $) NIL (|has| |#2| (-1056 (-576))))) (-3279 (($ $) 35) (($ (-576) $) 38)) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) 64)) (-2840 (($) NIL (|has| |#2| (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) NIL (|has| |#2| (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#2| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#2| (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 ((|#2| $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#2| (-1170)))) (-3327 (((-112) $) NIL (|has| |#2| (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| |#2| (-862)))) (-2571 (($ $ $) NIL (|has| |#2| (-862)))) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 60)) (-3796 (($) NIL (|has| |#2| (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| |#2| (-317)))) (-4371 ((|#2| $) NIL (|has| |#2| (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1195) |#2|))) (($ $ (-1195) |#2|) NIL (|has| |#2| (-526 (-1195) |#2|)))) (-3927 (((-783) $) NIL)) (-2209 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3210 (($ $) NIL)) (-2987 ((|#2| $) NIL)) (-1846 (((-905 (-576)) $) NIL (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#2| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1040))) (((-227) $) NIL (|has| |#2| (-1040)))) (-3296 (((-176 (-419 (-576))) $) 78)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-2956 (((-874) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1195)) NIL (|has| |#2| (-1056 (-1195))))) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-4175 ((|#2| $) NIL (|has| |#2| (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-419 (-576)) $ (-576)) 71)) (-2130 (($ $) NIL (|has| |#2| (-832)))) (-2143 (($) 15 T CONST)) (-2155 (($) 17 T CONST)) (-3590 (($ $ (-783)) NIL (|has| |#2| (-239))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3047 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2991 (((-112) $ $) 46)) (-3034 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3108 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3096 (($ $) 50) (($ $ $) 52)) (-3081 (($ $ $) 48)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-884 |#1| |#2|) (-13 (-1010 |#2|) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $)))) (-576) (-881 |#1|)) (T -884))
+((-3530 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) (-5 *3 (-576)) (-4 *5 (-881 *4)))) (-3296 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))) (-3279 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) (-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))))
+(-13 (-1010 |#2|) (-10 -8 (-15 -3530 ((-419 (-576)) $ (-576))) (-15 -3296 ((-176 (-419 (-576))) $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $))))
+((-2869 (((-112) $ $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-2413 ((|#2| $) 12)) (-2629 (($ |#1| |#2|) 9)) (-2148 (((-1177) $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-3945 (((-1138) $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#1| $) 11)) (-2968 (($ |#1| |#2|) 10)) (-2956 (((-874) $) 18 (-2838 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118)))))) (-2617 (((-112) $ $) NIL (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))) (-2991 (((-112) $ $) 23 (-12 (|has| |#1| (-1118)) (|has| |#2| (-1118))))))
+(((-885 |#1| |#2|) (-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1118)) (IF (|has| |#2| (-1118)) (-6 (-1118)) |%noBranch|) |%noBranch|) (-15 -2629 ($ |#1| |#2|)) (-15 -2968 ($ |#1| |#2|)) (-15 -2930 (|#1| $)) (-15 -2413 (|#2| $)))) (-1236) (-1236)) (T -885))
+((-2629 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-2968 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-2930 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) (-2413 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236)))))
+(-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1118)) (IF (|has| |#2| (-1118)) (-6 (-1118)) |%noBranch|) |%noBranch|) (-15 -2629 ($ |#1| |#2|)) (-15 -2968 ($ |#1| |#2|)) (-15 -2930 (|#1| $)) (-15 -2413 (|#2| $))))
+((-2869 (((-112) $ $) NIL)) (-2762 (((-576) $) 16)) (-3463 (($ (-158)) 13)) (-1994 (($ (-158)) 14)) (-2148 (((-1177) $) NIL)) (-2259 (((-158) $) 15)) (-3945 (((-1138) $) NIL)) (-4111 (($ (-158)) 11)) (-3263 (($ (-158)) 10)) (-2956 (((-874) $) 24) (($ (-158)) 17)) (-2641 (($ (-158)) 12)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-886) (-13 (-1118) (-10 -8 (-15 -3263 ($ (-158))) (-15 -4111 ($ (-158))) (-15 -2641 ($ (-158))) (-15 -3463 ($ (-158))) (-15 -1994 ($ (-158))) (-15 -2259 ((-158) $)) (-15 -2762 ((-576) $)) (-15 -2956 ($ (-158)))))) (T -886))
+((-3263 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-4111 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(-13 (-1118) (-10 -8 (-15 -3263 ($ (-158))) (-15 -4111 ($ (-158))) (-15 -2641 ($ (-158))) (-15 -3463 ($ (-158))) (-15 -1994 ($ (-158))) (-15 -2259 ((-158) $)) (-15 -2762 ((-576) $)) (-15 -2956 ($ (-158)))))
+((-2956 (((-326 (-576)) (-419 (-968 (-48)))) 23) (((-326 (-576)) (-968 (-48))) 18)))
+(((-887) (-10 -7 (-15 -2956 ((-326 (-576)) (-968 (-48)))) (-15 -2956 ((-326 (-576)) (-419 (-968 (-48))))))) (T -887))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-968 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))))
+(-10 -7 (-15 -2956 ((-326 (-576)) (-968 (-48)))) (-15 -2956 ((-326 (-576)) (-419 (-968 (-48))))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2132 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1177))) 13)) (-2617 (((-112) $ $) NIL)) (-1338 (((-518) $) 10) (((-1177) $) 14)) (-2991 (((-112) $ $) 15)))
+(((-888) (-13 (-1101) (-1281) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-518)))) (-15 -1338 ((-518) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1177)))) (-15 -1338 ((-1177) $))))) (T -888))
+((-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888)))))
+(-13 (-1101) (-1281) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-518)))) (-15 -1338 ((-518) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1177)))) (-15 -1338 ((-1177) $))))
+((-1787 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -1787 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1236) (-1236)) (T -889))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))))
+(-10 -7 (-15 -1787 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|))))
+((-3895 (($ |#1| |#1|) 8)) (-3292 ((|#1| $ (-783)) 15)))
+(((-890 |#1|) (-10 -8 (-15 -3895 ($ |#1| |#1|)) (-15 -3292 (|#1| $ (-783)))) (-1236)) (T -890))
+((-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) (-3895 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236)))))
+(-10 -8 (-15 -3895 ($ |#1| |#1|)) (-15 -3292 (|#1| $ (-783))))
+((-1787 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -1787 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1236) (-1236)) (T -891))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))))
+(-10 -7 (-15 -1787 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
+((-3895 (($ |#1| |#1| |#1|) 8)) (-3292 ((|#1| $ (-783)) 15)))
+(((-892 |#1|) (-10 -8 (-15 -3895 ($ |#1| |#1| |#1|)) (-15 -3292 (|#1| $ (-783)))) (-1236)) (T -892))
+((-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) (-3895 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236)))))
+(-10 -8 (-15 -3895 ($ |#1| |#1| |#1|)) (-15 -3292 (|#1| $ (-783))))
+((-2103 (((-656 (-1200)) (-1177)) 9)))
+(((-893) (-10 -7 (-15 -2103 ((-656 (-1200)) (-1177))))) (T -893))
+((-2103 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893)))))
+(-10 -7 (-15 -2103 ((-656 (-1200)) (-1177))))
+((-1787 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -1787 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1236) (-1236)) (T -894))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))))
+(-10 -7 (-15 -1787 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|))))
+((-3987 (($ |#1| |#1| |#1|) 8)) (-3292 ((|#1| $ (-783)) 15)))
+(((-895 |#1|) (-10 -8 (-15 -3987 ($ |#1| |#1| |#1|)) (-15 -3292 (|#1| $ (-783)))) (-1236)) (T -895))
+((-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236)))) (-3987 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236)))))
+(-10 -8 (-15 -3987 ($ |#1| |#1| |#1|)) (-15 -3292 (|#1| $ (-783))))
+((-3336 (((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576)))) 41)) (-4378 (((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-1438 (((-1175 (-656 (-576))) (-656 (-576))) 53) (((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-2692 (((-1175 (-656 (-576))) (-576)) 55)) (-1861 (((-1175 (-656 (-937))) (-1175 (-656 (-937)))) 22)) (-1979 (((-656 (-937)) (-656 (-937))) 18)))
+(((-896) (-10 -7 (-15 -1979 ((-656 (-937)) (-656 (-937)))) (-15 -1861 ((-1175 (-656 (-937))) (-1175 (-656 (-937))))) (-15 -4378 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3336 ((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576))))) (-15 -1438 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1438 ((-1175 (-656 (-576))) (-656 (-576)))) (-15 -2692 ((-1175 (-656 (-576))) (-576))))) (T -896))
+((-2692 (*1 *2 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-1438 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3336 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-896)))) (-4378 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-1175 (-656 (-937)))) (-5 *1 (-896)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-896)))))
+(-10 -7 (-15 -1979 ((-656 (-937)) (-656 (-937)))) (-15 -1861 ((-1175 (-656 (-937))) (-1175 (-656 (-937))))) (-15 -4378 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3336 ((-1175 (-656 (-576))) (-656 (-576)) (-1175 (-656 (-576))))) (-15 -1438 ((-1175 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1438 ((-1175 (-656 (-576))) (-656 (-576)))) (-15 -2692 ((-1175 (-656 (-576))) (-576))))
+((-1846 (((-905 (-390)) $) 9 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 8 (|has| |#1| (-626 (-905 (-576)))))))
+(((-897 |#1|) (-141) (-1236)) (T -897))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|)))
+(((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+((-2869 (((-112) $ $) NIL)) (-3769 (($) 14)) (-1555 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28)) (-3632 (((-902 |#1| |#3|) $) 16)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3057 (((-112) $) 22)) (-3580 (($) 19)) (-2956 (((-874) $) 31)) (-2617 (((-112) $ $) NIL)) (-1339 (((-902 |#1| |#2|) $) 15)) (-2991 (((-112) $ $) 26)))
+(((-898 |#1| |#2| |#3|) (-13 (-1118) (-10 -8 (-15 -3057 ((-112) $)) (-15 -3580 ($)) (-15 -3769 ($)) (-15 -1555 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1339 ((-902 |#1| |#2|) $)) (-15 -3632 ((-902 |#1| |#3|) $)))) (-1118) (-1118) (-678 |#2|)) (T -898))
+((-3057 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4)))) (-3580 (*1 *1) (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) (-4 *4 (-678 *3)))) (-3769 (*1 *1) (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118)) (-4 *4 (-678 *3)))) (-1555 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))) (-1339 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4)))) (-3632 (*1 *2 *1) (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1118)) (-4 *5 (-678 *4)))))
+(-13 (-1118) (-10 -8 (-15 -3057 ((-112) $)) (-15 -3580 ($)) (-15 -3769 ($)) (-15 -1555 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1339 ((-902 |#1| |#2|) $)) (-15 -3632 ((-902 |#1| |#3|) $))))
+((-2869 (((-112) $ $) 7)) (-1487 (((-902 |#1| $) $ (-905 |#1|) (-902 |#1| $)) 14)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-899 |#1|) (-141) (-1118)) (T -899))
+((-1487 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -1487 ((-902 |t#1| $) $ (-905 |t#1|) (-902 |t#1| $)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2881 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3343 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-2085 (|has| |#2| (-1056 (-1195)))) (-2085 (|has| |#2| (-1067))))) (((-656 (-304 (-968 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1067)) (-2085 (|has| |#2| (-1056 (-1195)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1056 (-1195)))) (((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21)))
+(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -2881 ((-112) |#2| |#3|)) (-15 -2881 ((-112) (-656 |#2|) |#3|)) (-15 -3343 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3343 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1067)) (-15 -3343 ((-656 (-304 (-968 |#2|))) |#2| |#3|)) (-15 -3343 ((-902 |#1| |#2|) |#2| |#3|))))) (-1118) (-899 |#1|) (-626 (-905 |#1|))) (T -900))
+((-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-2085 (-4 *3 (-1056 (-1195)))) (-2085 (-4 *3 (-1067))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 (-968 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1067)) (-2085 (-4 *3 (-1056 (-1195)))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1056 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3343 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) (-2881 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))) (-2881 (*1 *2 *3 *4) (-12 (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))))
+(-10 -7 (-15 -2881 ((-112) |#2| |#3|)) (-15 -2881 ((-112) (-656 |#2|) |#3|)) (-15 -3343 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1056 (-1195))) (-15 -3343 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1067)) (-15 -3343 ((-656 (-304 (-968 |#2|))) |#2| |#3|)) (-15 -3343 ((-902 |#1| |#2|) |#2| |#3|)))))
+((-1787 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22)))
+(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1118) (-1118) (-1118)) (T -901))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-902 *5 *7)) (-5 *1 (-901 *5 *6 *7)))))
+(-10 -7 (-15 -1787 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|))))
+((-2869 (((-112) $ $) NIL)) (-4356 (($ $ $) 40)) (-2075 (((-3 (-112) "failed") $ (-905 |#1|)) 37)) (-3769 (($) 12)) (-2148 (((-1177) $) NIL)) (-3234 (($ (-905 |#1|) |#2| $) 20)) (-3945 (((-1138) $) NIL)) (-2195 (((-3 |#2| "failed") (-905 |#1|) $) 51)) (-3057 (((-112) $) 15)) (-3580 (($) 13)) (-4284 (((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|))) $) 25)) (-2968 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|)))) 23)) (-2956 (((-874) $) 45)) (-2617 (((-112) $ $) NIL)) (-1976 (($ (-905 |#1|) |#2| $ |#2|) 49)) (-1769 (($ (-905 |#1|) |#2| $) 48)) (-2991 (((-112) $ $) 42)))
+(((-902 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3057 ((-112) $)) (-15 -3580 ($)) (-15 -3769 ($)) (-15 -4356 ($ $ $)) (-15 -2195 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -1769 ($ (-905 |#1|) |#2| $)) (-15 -3234 ($ (-905 |#1|) |#2| $)) (-15 -1976 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -4284 ((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|))) $)) (-15 -2968 ($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|))))) (-15 -2075 ((-3 (-112) "failed") $ (-905 |#1|))))) (-1118) (-1118)) (T -902))
+((-3057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3580 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3769 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-4356 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2195 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-4 *2 (-1118)) (-5 *1 (-902 *4 *2)))) (-1769 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-3234 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-1976 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1118)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 *4)))) (-4 *4 (-1118)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)))) (-2075 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -3057 ((-112) $)) (-15 -3580 ($)) (-15 -3769 ($)) (-15 -4356 ($ $ $)) (-15 -2195 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -1769 ($ (-905 |#1|) |#2| $)) (-15 -3234 ($ (-905 |#1|) |#2| $)) (-15 -1976 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -4284 ((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|))) $)) (-15 -2968 ($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 |#2|))))) (-15 -2075 ((-3 (-112) "failed") $ (-905 |#1|)))))
+((-2590 (((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|))) 32) (((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|)) 35)) (-2075 (((-112) (-656 |#2|) (-905 |#1|)) 42) (((-112) |#2| (-905 |#1|)) 36)) (-2535 (((-1 (-112) |#2|) (-905 |#1|)) 16)) (-1888 (((-656 |#2|) (-905 |#1|)) 24)) (-2680 (((-905 |#1|) (-905 |#1|) |#2|) 20)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -2590 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2590 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2590 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -2535 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2075 ((-112) |#2| (-905 |#1|))) (-15 -2075 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -2680 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -1888 ((-656 |#2|) (-905 |#1|)))) (-1118) (-1236)) (T -903))
+((-1888 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-656 *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-2680 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1236)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3)) (-4 *3 (-1236)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-2590 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-903 *5 *6)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1118)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1118)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))))
+(-10 -7 (-15 -2590 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2590 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2590 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -2535 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2075 ((-112) |#2| (-905 |#1|))) (-15 -2075 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -2680 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -1888 ((-656 |#2|) (-905 |#1|))))
+((-1787 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -1787 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1118) (-1118)) (T -904))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6)))))
+(-10 -7 (-15 -1787 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3890 (($ $ (-656 (-52))) 74)) (-4352 (((-656 $) $) 139)) (-3831 (((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $) 30)) (-3018 (((-112) $) 35)) (-2963 (($ $ (-656 (-1195)) (-52)) 31)) (-2469 (($ $ (-656 (-52))) 73)) (-1706 (((-3 |#1| "failed") $) 71) (((-3 (-1195) "failed") $) 164)) (-2216 ((|#1| $) 68) (((-1195) $) NIL)) (-3866 (($ $) 126)) (-2067 (((-112) $) 55)) (-3363 (((-656 (-52)) $) 50)) (-4220 (($ (-1195) (-112) (-112) (-112)) 75)) (-2366 (((-3 (-656 $) "failed") (-656 $)) 82)) (-3006 (((-112) $) 58)) (-3911 (((-112) $) 57)) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) 41)) (-1790 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4004 (((-3 (-2 (|:| |val| $) (|:| -2300 $)) "failed") $) 97)) (-4139 (((-3 (-656 $) "failed") $) 40)) (-3466 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -4288 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-1794 (((-3 (-656 $) "failed") $) 42)) (-2302 (((-3 (-2 (|:| |val| $) (|:| -2300 (-783))) "failed") $) 45)) (-3691 (((-112) $) 34)) (-3945 (((-1138) $) NIL)) (-2878 (((-112) $) 28)) (-4411 (((-112) $) 52)) (-3033 (((-656 (-52)) $) 130)) (-3817 (((-112) $) 56)) (-2209 (($ (-115) (-656 $)) 104)) (-4295 (((-783) $) 33)) (-3162 (($ $) 72)) (-1846 (($ (-656 $)) 69)) (-2391 (((-112) $) 32)) (-2956 (((-874) $) 63) (($ |#1|) 23) (($ (-1195)) 76)) (-2617 (((-112) $ $) NIL)) (-2680 (($ $ (-52)) 129)) (-2143 (($) 103 T CONST)) (-2155 (($) 83 T CONST)) (-2991 (((-112) $ $) 93)) (-3108 (($ $ $) 117)) (-3081 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-905 |#1|) (-13 (-1118) (-1056 |#1|) (-1056 (-1195)) (-10 -8 (-15 0 ($) -1716) (-15 1 ($) -1716) (-15 -4139 ((-3 (-656 $) "failed") $)) (-15 -1864 ((-3 (-656 $) "failed") $)) (-15 -3466 ((-3 (-656 $) "failed") $ (-115))) (-15 -3466 ((-3 (-2 (|:| -4288 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2302 ((-3 (-2 (|:| |val| $) (|:| -2300 (-783))) "failed") $)) (-15 -1790 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1794 ((-3 (-656 $) "failed") $)) (-15 -4004 ((-3 (-2 (|:| |val| $) (|:| -2300 $)) "failed") $)) (-15 -2209 ($ (-115) (-656 $))) (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3108 ($ $ $)) (-15 -4295 ((-783) $)) (-15 -1846 ($ (-656 $))) (-15 -3162 ($ $)) (-15 -3691 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -3018 ((-112) $)) (-15 -2391 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3363 ((-656 (-52)) $)) (-15 -2469 ($ $ (-656 (-52)))) (-15 -3890 ($ $ (-656 (-52)))) (-15 -4220 ($ (-1195) (-112) (-112) (-112))) (-15 -2963 ($ $ (-656 (-1195)) (-52))) (-15 -3831 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -2878 ((-112) $)) (-15 -3866 ($ $)) (-15 -2680 ($ $ (-52))) (-15 -3033 ((-656 (-52)) $)) (-15 -4352 ((-656 $) $)) (-15 -2366 ((-3 (-656 $) "failed") (-656 $))))) (-1118)) (T -905))
+((-2143 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-2155 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-4139 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1864 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3466 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3466 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4288 (-115)) (|:| |arg| (-656 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2302 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2300 (-783)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1790 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1794 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-4004 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2300 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2209 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3081 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-3108 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3162 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-4220 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-2963 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4)) (-4 *4 (-1118)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52)))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))) (-2680 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))) (-2366 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(-13 (-1118) (-1056 |#1|) (-1056 (-1195)) (-10 -8 (-15 (-2143) ($) -1716) (-15 (-2155) ($) -1716) (-15 -4139 ((-3 (-656 $) "failed") $)) (-15 -1864 ((-3 (-656 $) "failed") $)) (-15 -3466 ((-3 (-656 $) "failed") $ (-115))) (-15 -3466 ((-3 (-2 (|:| -4288 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2302 ((-3 (-2 (|:| |val| $) (|:| -2300 (-783))) "failed") $)) (-15 -1790 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1794 ((-3 (-656 $) "failed") $)) (-15 -4004 ((-3 (-2 (|:| |val| $) (|:| -2300 $)) "failed") $)) (-15 -2209 ($ (-115) (-656 $))) (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3108 ($ $ $)) (-15 -4295 ((-783) $)) (-15 -1846 ($ (-656 $))) (-15 -3162 ($ $)) (-15 -3691 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -3018 ((-112) $)) (-15 -2391 ((-112) $)) (-15 -3817 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -4411 ((-112) $)) (-15 -3363 ((-656 (-52)) $)) (-15 -2469 ($ $ (-656 (-52)))) (-15 -3890 ($ $ (-656 (-52)))) (-15 -4220 ($ (-1195) (-112) (-112) (-112))) (-15 -2963 ($ $ (-656 (-1195)) (-52))) (-15 -3831 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -2878 ((-112) $)) (-15 -3866 ($ $)) (-15 -2680 ($ $ (-52))) (-15 -3033 ((-656 (-52)) $)) (-15 -4352 ((-656 $) $)) (-15 -2366 ((-3 (-656 $) "failed") (-656 $)))))
+((-2869 (((-112) $ $) NIL)) (-1665 (((-656 |#1|) $) 19)) (-4158 (((-112) $) 49)) (-1706 (((-3 (-684 |#1|) "failed") $) 56)) (-2216 (((-684 |#1|) $) 54)) (-2940 (($ $) 23)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-4114 (((-783) $) 61)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-684 |#1|) $) 21)) (-2956 (((-874) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 9 T CONST)) (-2960 (((-656 (-684 |#1|)) $) 28)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 12)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 67)))
+(((-906 |#1|) (-13 (-862) (-1056 (-684 |#1|)) (-10 -8 (-15 1 ($) -1716) (-15 -2956 ((-831 |#1|) $)) (-15 -2956 ($ |#1|)) (-15 -2930 ((-684 |#1|) $)) (-15 -4114 ((-783) $)) (-15 -2960 ((-656 (-684 |#1|)) $)) (-15 -2940 ($ $)) (-15 -4158 ((-112) $)) (-15 -1665 ((-656 |#1|) $)))) (-862)) (T -906))
+((-2155 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2956 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2940 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(-13 (-862) (-1056 (-684 |#1|)) (-10 -8 (-15 (-2155) ($) -1716) (-15 -2956 ((-831 |#1|) $)) (-15 -2956 ($ |#1|)) (-15 -2930 ((-684 |#1|) $)) (-15 -4114 ((-783) $)) (-15 -2960 ((-656 (-684 |#1|)) $)) (-15 -2940 ($ $)) (-15 -4158 ((-112) $)) (-15 -1665 ((-656 |#1|) $))))
+((-4270 ((|#1| |#1| |#1|) 19)))
+(((-907 |#1| |#2|) (-10 -7 (-15 -4270 (|#1| |#1| |#1|))) (-1262 |#2|) (-1067)) (T -907))
+((-4270 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3)))))
+(-10 -7 (-15 -4270 (|#1| |#1| |#1|)))
+((-3590 ((|#2| $ |#3|) 10)))
+(((-908 |#1| |#2| |#3|) (-10 -8 (-15 -3590 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1236) (-1236)) (T -908))
+NIL
+(-10 -8 (-15 -3590 (|#2| |#1| |#3|)))
+((-3884 ((|#1| $ |#2|) 7)) (-3590 ((|#1| $ |#2|) 6)))
+(((-909 |#1| |#2|) (-141) (-1236) (-1236)) (T -909))
+((-3884 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) (-3590 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -3884 (|t#1| $ |t#2|)) (-15 -3590 (|t#1| $ |t#2|))))
+(((-1236) . T))
+((-2869 (((-112) $ $) 7)) (-3944 (((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3812 (((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 14)) (-2991 (((-112) $ $) 6)))
+(((-910) (-141)) (T -910))
+((-3944 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1081)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177)))))) (-3812 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-1053)))))
+(-13 (-1118) (-10 -7 (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))) (-1081) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -3812 ((-1053) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2269 ((|#1| |#1| (-783)) 27)) (-3408 (((-3 |#1| "failed") |#1| |#1|) 24)) (-4090 (((-3 (-2 (|:| -3870 |#1|) (|:| -3883 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -4090 ((-656 |#1|) |#1|)) (-15 -4090 ((-3 (-2 (|:| -3870 |#1|) (|:| -3883 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3408 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2269 (|#1| |#1| (-783)))) (-1262 |#2|) (-374)) (T -911))
+((-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1262 *4)))) (-3408 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1262 *3)))) (-4090 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3870 *3) (|:| -3883 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1262 *5)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -4090 ((-656 |#1|) |#1|)) (-15 -4090 ((-3 (-2 (|:| -3870 |#1|) (|:| -3883 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3408 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2269 (|#1| |#1| (-783))))
+((-2766 (((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177)) 104) (((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227)) 100) (((-1053) (-913) (-1081)) 92) (((-1053) (-913)) 93)) (-3944 (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081)) 62) (((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913)) 64)))
+(((-912) (-10 -7 (-15 -2766 ((-1053) (-913))) (-15 -2766 ((-1053) (-913) (-1081))) (-15 -2766 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -2766 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081))))) (T -912))
+((-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-2766 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-2766 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-912)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1053)) (-5 *1 (-912)))))
+(-10 -7 (-15 -2766 ((-1053) (-913))) (-15 -2766 ((-1053) (-913) (-1081))) (-15 -2766 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -2766 ((-1053) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -3944 ((-2 (|:| -3944 (-390)) (|:| -2041 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1081))))
+((-2869 (((-112) $ $) NIL)) (-2216 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $) 19)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 18)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-913) (-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $))))) (T -913))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -2216 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3884 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-914 |#1|) (-141) (-1118)) (T -914))
+NIL
+(-13 (-1067) (-916 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ |#1|) . T) ((-916 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T))
+((-3884 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-3590 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21)))
+(((-915 |#1| |#2|) (-10 -8 (-15 -3590 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3590 (|#1| |#1| |#2| (-783))) (-15 -3590 (|#1| |#1| (-656 |#2|))) (-15 -3884 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3884 (|#1| |#1| |#2| (-783))) (-15 -3884 (|#1| |#1| (-656 |#2|))) (-15 -3590 (|#1| |#1| |#2|)) (-15 -3884 (|#1| |#1| |#2|))) (-916 |#2|) (-1118)) (T -915))
+NIL
+(-10 -8 (-15 -3590 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3590 (|#1| |#1| |#2| (-783))) (-15 -3590 (|#1| |#1| (-656 |#2|))) (-15 -3884 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3884 (|#1| |#1| |#2| (-783))) (-15 -3884 (|#1| |#1| (-656 |#2|))) (-15 -3590 (|#1| |#1| |#2|)) (-15 -3884 (|#1| |#1| |#2|)))
+((-3884 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-3590 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10)))
+(((-916 |#1|) (-141) (-1118)) (T -916))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) (-3884 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3884 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) (-4 *4 (-1118)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118)))) (-3590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4)) (-4 *4 (-1118)))))
+(-13 (-909 $ |t#1|) (-10 -8 (-15 -3884 ($ $ (-656 |t#1|))) (-15 -3884 ($ $ |t#1| (-783))) (-15 -3884 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -3590 ($ $ (-656 |t#1|))) (-15 -3590 ($ $ |t#1| (-783))) (-15 -3590 ($ $ (-656 |t#1|) (-656 (-783))))))
+(((-909 $ |#1|) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) 26)) (-3762 (((-112) $ (-783)) NIL)) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-2092 (($ $ $) NIL (|has| $ (-6 -4462)))) (-2543 (($ $ $) NIL (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-3883 (($ $) 25)) (-3780 (($ |#1|) 12) (($ $ $) 17)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-3870 (($ $) 23)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) 20)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1222 |#1|) $) 9) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 21 (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-917 |#1|) (-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -3780 ($ |#1|)) (-15 -3780 ($ $ $)))) (-1118)) (T -917))
+((-3780 (*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118)))) (-3780 (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118)))))
+(-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -3780 ($ |#1|)) (-15 -3780 ($ $ $))))
+((-2975 ((|#2| (-1160 |#1| |#2|)) 48)))
+(((-918 |#1| |#2|) (-10 -7 (-15 -2975 (|#2| (-1160 |#1| |#2|)))) (-937) (-13 (-1067) (-10 -7 (-6 (-4463 "*"))))) (T -918))
+((-2975 (*1 *2 *3) (-12 (-5 *3 (-1160 *4 *2)) (-14 *4 (-937)) (-4 *2 (-13 (-1067) (-10 -7 (-6 (-4463 "*"))))) (-5 *1 (-918 *4 *2)))))
+(-10 -7 (-15 -2975 (|#2| (-1160 |#1| |#2|))))
+((-2869 (((-112) $ $) 7)) (-4040 (((-1120 |#1|) $) 35)) (-4335 (($) 19 T CONST)) (-4077 (((-3 $ "failed") $) 16)) (-2969 (((-1120 |#1|) $ |#1|) 34)) (-4192 (((-112) $) 18)) (-3639 (($ $ $) 32 (-2838 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2571 (($ $ $) 31 (-2838 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 25)) (-3945 (((-1138) $) 11)) (-2209 ((|#1| $ |#1|) 38)) (-3833 (($ (-656 (-656 |#1|))) 36)) (-1470 (($ (-656 |#1|)) 37)) (-1979 (($ $ $) 22)) (-3516 (($ $ $) 21)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2155 (($) 20 T CONST)) (-3047 (((-112) $ $) 29 (-2838 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3024 (((-112) $ $) 28 (-2838 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 30 (-2838 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3014 (((-112) $ $) 33)) (-3108 (($ $ $) 24)) (** (($ $ (-937)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15)))
+(((-919 |#1|) (-141) (-1118)) (T -919))
+((-1470 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-919 *3)))) (-3833 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-4 *1 (-919 *3)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) (-2969 (*1 *2 *1 *3) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -1470 ($ (-656 |t#1|))) (-15 -3833 ($ (-656 (-656 |t#1|)))) (-15 -4040 ((-1120 |t#1|) $)) (-15 -2969 ((-1120 |t#1|) $ |t#1|)) (-15 -3014 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|)))
+(((-102) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-862) -2838 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1130) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-2122 (((-656 (-656 (-783))) $) 160)) (-4293 (((-656 (-783)) (-921 |#1|) $) 188)) (-1377 (((-656 (-783)) (-921 |#1|) $) 189)) (-4040 (((-1120 |#1|) $) 152)) (-1897 (((-656 (-921 |#1|)) $) 149)) (-2840 (((-921 |#1|) $ (-576)) 154) (((-921 |#1|) $) 155)) (-2040 (($ (-656 (-921 |#1|))) 162)) (-3540 (((-783) $) 156)) (-1999 (((-1120 (-1120 |#1|)) $) 186)) (-2969 (((-1120 |#1|) $ |#1|) 177) (((-1120 (-1120 |#1|)) $ (-1120 |#1|)) 197) (((-1120 (-656 |#1|)) $ (-656 |#1|)) 200)) (-2653 (((-112) (-921 |#1|) $) 137)) (-2148 (((-1177) $) NIL)) (-1534 (((-1291) $) 142) (((-1291) $ (-576) (-576)) 201)) (-3945 (((-1138) $) NIL)) (-3800 (((-656 (-921 |#1|)) $) 143)) (-2209 (((-921 |#1|) $ (-783)) 150)) (-2782 (((-783) $) 157)) (-2956 (((-874) $) 174) (((-656 (-921 |#1|)) $) 28) (($ (-656 (-921 |#1|))) 161)) (-2617 (((-112) $ $) NIL)) (-2650 (((-656 |#1|) $) 159)) (-2991 (((-112) $ $) 194)) (-3034 (((-112) $ $) 192)) (-3014 (((-112) $ $) 191)))
+(((-920 |#1|) (-13 (-1118) (-10 -8 (-15 -2956 ((-656 (-921 |#1|)) $)) (-15 -3800 ((-656 (-921 |#1|)) $)) (-15 -2209 ((-921 |#1|) $ (-783))) (-15 -2840 ((-921 |#1|) $ (-576))) (-15 -2840 ((-921 |#1|) $)) (-15 -3540 ((-783) $)) (-15 -2782 ((-783) $)) (-15 -2650 ((-656 |#1|) $)) (-15 -1897 ((-656 (-921 |#1|)) $)) (-15 -2122 ((-656 (-656 (-783))) $)) (-15 -2956 ($ (-656 (-921 |#1|)))) (-15 -2040 ($ (-656 (-921 |#1|)))) (-15 -2969 ((-1120 |#1|) $ |#1|)) (-15 -1999 ((-1120 (-1120 |#1|)) $)) (-15 -2969 ((-1120 (-1120 |#1|)) $ (-1120 |#1|))) (-15 -2969 ((-1120 (-656 |#1|)) $ (-656 |#1|))) (-15 -2653 ((-112) (-921 |#1|) $)) (-15 -4293 ((-656 (-783)) (-921 |#1|) $)) (-15 -1377 ((-656 (-783)) (-921 |#1|) $)) (-15 -4040 ((-1120 |#1|) $)) (-15 -3014 ((-112) $ $)) (-15 -3034 ((-112) $ $)) (-15 -1534 ((-1291) $)) (-15 -1534 ((-1291) $ (-576) (-576))))) (-1118)) (T -920))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) (-4 *4 (-1118)))) (-2840 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4)) (-4 *4 (-1118)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))) (-2969 (*1 *2 *1 *3) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-1999 (*1 *2 *1) (-12 (-5 *2 (-1120 (-1120 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-2969 (*1 *2 *1 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-1120 *4))) (-5 *1 (-920 *4)) (-5 *3 (-1120 *4)))) (-2969 (*1 *2 *1 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-656 *4))) (-5 *1 (-920 *4)) (-5 *3 (-656 *4)))) (-2653 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-920 *4)))) (-4293 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) (-5 *1 (-920 *4)))) (-1377 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783))) (-5 *1 (-920 *4)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3014 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-3034 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))) (-1534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-920 *4)) (-4 *4 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -2956 ((-656 (-921 |#1|)) $)) (-15 -3800 ((-656 (-921 |#1|)) $)) (-15 -2209 ((-921 |#1|) $ (-783))) (-15 -2840 ((-921 |#1|) $ (-576))) (-15 -2840 ((-921 |#1|) $)) (-15 -3540 ((-783) $)) (-15 -2782 ((-783) $)) (-15 -2650 ((-656 |#1|) $)) (-15 -1897 ((-656 (-921 |#1|)) $)) (-15 -2122 ((-656 (-656 (-783))) $)) (-15 -2956 ($ (-656 (-921 |#1|)))) (-15 -2040 ($ (-656 (-921 |#1|)))) (-15 -2969 ((-1120 |#1|) $ |#1|)) (-15 -1999 ((-1120 (-1120 |#1|)) $)) (-15 -2969 ((-1120 (-1120 |#1|)) $ (-1120 |#1|))) (-15 -2969 ((-1120 (-656 |#1|)) $ (-656 |#1|))) (-15 -2653 ((-112) (-921 |#1|) $)) (-15 -4293 ((-656 (-783)) (-921 |#1|) $)) (-15 -1377 ((-656 (-783)) (-921 |#1|) $)) (-15 -4040 ((-1120 |#1|) $)) (-15 -3014 ((-112) $ $)) (-15 -3034 ((-112) $ $)) (-15 -1534 ((-1291) $)) (-15 -1534 ((-1291) $ (-576) (-576)))))
+((-2869 (((-112) $ $) NIL)) (-4040 (((-1120 |#1|) $) 60)) (-2791 (((-656 $) (-656 $)) 103)) (-2627 (((-576) $) 83)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-3540 (((-783) $) 80)) (-2969 (((-1120 |#1|) $ |#1|) 70)) (-4192 (((-112) $) NIL)) (-4314 (((-112) $) 88)) (-1969 (((-783) $) 84)) (-3639 (($ $ $) NIL (-2838 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2571 (($ $ $) NIL (-2838 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3175 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 130)) (-3945 (((-1138) $) NIL)) (-2701 (((-1120 |#1|) $) 136 (|has| |#1| (-379)))) (-2280 (((-112) $) 81)) (-2209 ((|#1| $ |#1|) 68)) (-2782 (((-783) $) 62)) (-3833 (($ (-656 (-656 |#1|))) 118)) (-3622 (((-989) $) 74)) (-1470 (($ (-656 |#1|)) 32)) (-1979 (($ $ $) NIL)) (-3516 (($ $ $) NIL)) (-2277 (($ (-656 (-656 |#1|))) 57)) (-3964 (($ (-656 (-656 |#1|))) 123)) (-3407 (($ (-656 |#1|)) 132)) (-2956 (((-874) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-2617 (((-112) $ $) NIL)) (-2155 (($) 24 T CONST)) (-3047 (((-112) $ $) NIL (-2838 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3024 (((-112) $ $) NIL (-2838 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2991 (((-112) $ $) 66)) (-3034 (((-112) $ $) NIL (-2838 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3014 (((-112) $ $) 90)) (-3108 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33)))
+(((-921 |#1|) (-13 (-919 |#1|) (-10 -8 (-15 -3175 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2277 ($ (-656 (-656 |#1|)))) (-15 -2956 ($ (-656 (-656 |#1|)))) (-15 -2956 ($ (-656 |#1|))) (-15 -3964 ($ (-656 (-656 |#1|)))) (-15 -2782 ((-783) $)) (-15 -3622 ((-989) $)) (-15 -3540 ((-783) $)) (-15 -1969 ((-783) $)) (-15 -2627 ((-576) $)) (-15 -2280 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -2791 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2701 ((-1120 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3407 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3407 ($ (-656 |#1|))) |%noBranch|)))) (-1118)) (T -921))
+((-3175 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2791 (*1 *2 *2) (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1118)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-921 *3)) (-4 *3 (-379)) (-4 *3 (-1118)))) (-3407 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3)))))
+(-13 (-919 |#1|) (-10 -8 (-15 -3175 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -2277 ($ (-656 (-656 |#1|)))) (-15 -2956 ($ (-656 (-656 |#1|)))) (-15 -2956 ($ (-656 |#1|))) (-15 -3964 ($ (-656 (-656 |#1|)))) (-15 -2782 ((-783) $)) (-15 -3622 ((-989) $)) (-15 -3540 ((-783) $)) (-15 -1969 ((-783) $)) (-15 -2627 ((-576) $)) (-15 -2280 ((-112) $)) (-15 -4314 ((-112) $)) (-15 -2791 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2701 ((-1120 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3407 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -3407 ($ (-656 |#1|))) |%noBranch|))))
+((-2329 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|)) 160)) (-2393 ((|#1|) 97)) (-1635 (((-430 (-1191 |#4|)) (-1191 |#4|)) 169)) (-1367 (((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)) 84)) (-1506 (((-430 (-1191 |#4|)) (-1191 |#4|)) 179)) (-1548 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|) 113)))
+(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2329 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -1506 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1635 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -2393 (|#1|)) (-15 -1548 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -1367 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)))) (-925) (-805) (-862) (-965 |#1| |#2| |#3|)) (T -922))
+((-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-925)) (-4 *6 (-805)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) (-1548 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-965 *5 *6 *4)) (-4 *5 (-925)) (-4 *6 (-805)) (-4 *4 (-862)) (-5 *1 (-922 *5 *6 *4 *7)))) (-2393 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925)) (-5 *1 (-922 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2329 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-922 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2329 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -1506 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1635 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -2393 (|#1|)) (-15 -1548 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -1367 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|))))
+((-2329 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 39)) (-2393 ((|#1|) 72)) (-1635 (((-430 (-1191 |#2|)) (-1191 |#2|)) 121)) (-1367 (((-430 (-1191 |#2|)) (-1191 |#2|)) 105)) (-1506 (((-430 (-1191 |#2|)) (-1191 |#2|)) 132)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -2329 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -1506 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -1635 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -2393 (|#1|)) (-15 -1367 ((-430 (-1191 |#2|)) (-1191 |#2|)))) (-925) (-1262 |#1|)) (T -923))
+((-1367 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-2393 (*1 *2) (-12 (-4 *2 (-925)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1262 *2)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))) (-2329 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-925)) (-5 *1 (-923 *4 *5)))))
+(-10 -7 (-15 -2329 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -1506 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -1635 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -2393 (|#1|)) (-15 -1367 ((-430 (-1191 |#2|)) (-1191 |#2|))))
+((-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 42)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 18)) (-1817 (((-3 $ "failed") $) 36)))
+(((-924 |#1|) (-10 -8 (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-925)) (T -924))
+NIL
+(-10 -8 (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 66)) (-2879 (($ $) 57)) (-1870 (((-430 $) $) 58)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 63)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-3124 (((-112) $) 59)) (-4192 (((-112) $) 35)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4412 (((-430 (-1191 $)) (-1191 $)) 64)) (-2822 (((-430 (-1191 $)) (-1191 $)) 65)) (-4205 (((-430 $) $) 56)) (-2858 (((-3 $ "failed") $ $) 48)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1817 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-925) (-141)) (T -925))
+((-2045 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-925)))) (-3529 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-2822 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-4412 (*1 *2 *3) (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1)) (-4 *1 (-925)))) (-3300 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-925)) (-5 *2 (-1286 *1)))) (-1817 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-925)))))
+(-13 (-1240) (-10 -8 (-15 -3529 ((-430 (-1191 $)) (-1191 $))) (-15 -2822 ((-430 (-1191 $)) (-1191 $))) (-15 -4412 ((-430 (-1191 $)) (-1191 $))) (-15 -2045 ((-1191 $) (-1191 $) (-1191 $))) (-15 -3695 ((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $))) (IF (|has| $ (-146)) (PROGN (-15 -3300 ((-3 (-1286 $) "failed") (-701 $))) (-15 -1817 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3419 (((-783)) NIL)) (-1646 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-4171 (((-1208 (-937) (-783)) (-576)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 $ "failed") $) NIL)) (-2216 (($ $) NIL)) (-2524 (($ (-1286 $)) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3243 (($) NIL)) (-4208 (((-112) $) NIL)) (-3454 (($ $) NIL) (($ $ (-783)) NIL)) (-3124 (((-112) $) NIL)) (-3540 (((-845 (-937)) $) NIL) (((-937) $) NIL)) (-4192 (((-112) $) NIL)) (-1962 (($) NIL (|has| $ (-379)))) (-3729 (((-112) $) NIL (|has| $ (-379)))) (-3404 (($ $ (-937)) NIL (|has| $ (-379))) (($ $) NIL)) (-2211 (((-3 $ "failed") $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1733 (((-1191 $) $ (-937)) NIL (|has| $ (-379))) (((-1191 $) $) NIL)) (-4261 (((-937) $) NIL)) (-2146 (((-1191 $) $) NIL (|has| $ (-379)))) (-4091 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-2156 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL T CONST)) (-2596 (($ (-937)) NIL)) (-2388 (((-112) $) NIL)) (-3945 (((-1138) $) NIL)) (-2981 (($) NIL (|has| $ (-379)))) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL)) (-4205 (((-430 $) $) NIL)) (-2591 (((-937)) NIL) (((-845 (-937))) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3665 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2068 (((-135)) NIL)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2782 (((-937) $) NIL) (((-845 (-937)) $) NIL)) (-2477 (((-1191 $)) NIL)) (-3087 (($) NIL)) (-1689 (($) NIL (|has| $ (-379)))) (-3458 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) NIL)) (-1846 (((-576) $) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-1817 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $) (-937)) NIL) (((-1286 $)) NIL)) (-2946 (((-112) $ $) NIL)) (-3684 (((-112) $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3898 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-926 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-937)) (T -926))
+NIL
+(-13 (-360) (-339 $) (-626 (-576)))
+((-3801 (((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-2204 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3540 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15)))
+(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3540 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2204 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3801 ((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1056 (-576))) (-442 |#1|) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -927))
+((-3801 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-2 (|:| -3540 (-783)) (|:| -2726 *8))) (-5 *1 (-927 *4 *5 *6 *7 *8)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7 *8)))) (-3540 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-783)) (-5 *1 (-927 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3540 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2204 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -3801 ((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|))))
+((-3801 (((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-2204 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3540 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14)))
+(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -3540 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2204 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3801 ((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1262 (-419 (-576))) (-1262 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -928))
+((-3801 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3540 (-783)) (|:| -2726 *6))) (-5 *1 (-928 *4 *5 *6)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6)))) (-3540 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6)))))
+(-10 -7 (-15 -3540 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2204 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3801 ((-3 (-2 (|:| -3540 (-783)) (|:| -2726 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))))
+((-3555 ((|#2| |#2|) 26)) (-4244 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-2462 (((-937) (-576)) 38)) (-3262 (((-576) |#2|) 45)) (-3614 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -2462 ((-937) (-576))) (-15 -3614 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3614 ((-576) |#2|)) (-15 -4244 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3262 ((-576) |#2|)) (-15 -3555 (|#2| |#2|))) (-1262 (-419 (-576))) (-1262 (-419 |#1|))) (T -929))
+((-3555 (*1 *2 *2) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-929 *3 *2)) (-4 *2 (-1262 (-419 *3))))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4))))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3614 (*1 *2 *3) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-929 *3 *4)) (-4 *4 (-1262 (-419 *3))))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-937)) (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4))))))
+(-10 -7 (-15 -2462 ((-937) (-576))) (-15 -3614 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3614 ((-576) |#2|)) (-15 -4244 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -3262 ((-576) |#2|)) (-15 -3555 (|#2| |#2|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 ((|#1| $) 100)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-2806 (($ $ $) NIL)) (-4077 (((-3 $ "failed") $) 94)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-4351 (($ |#1| (-430 |#1|)) 92)) (-1580 (((-1191 |#1|) |#1| |#1|) 53)) (-3648 (($ $) 61)) (-4192 (((-112) $) NIL)) (-3967 (((-576) $) 97)) (-3475 (($ $ (-576)) 99)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2005 ((|#1| $) 96)) (-2454 (((-430 |#1|) $) 95)) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) 93)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-4436 (($ $) 50)) (-2956 (((-874) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-3423 (((-783)) 71 T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) 26 T CONST)) (-2155 (($) 15 T CONST)) (-2991 (((-112) $ $) 87)) (-3108 (($ $ $) NIL)) (-3096 (($ $) 108) (($ $ $) NIL)) (-3081 (($ $ $) 49)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-930 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -2956 ((-419 |#1|) $)) (-15 -2956 ($ (-419 (-430 |#1|)))) (-15 -4436 ($ $)) (-15 -2454 ((-430 |#1|) $)) (-15 -2005 (|#1| $)) (-15 -3475 ($ $ (-576))) (-15 -3967 ((-576) $)) (-15 -1580 ((-1191 |#1|) |#1| |#1|)) (-15 -3648 ($ $)) (-15 -4351 ($ |#1| (-430 |#1|))) (-15 -2742 (|#1| $)))) (-317)) (T -930))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-930 *3)))) (-4436 (*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-2005 (*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-3475 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-1580 (*1 *2 *3 *3) (-12 (-5 *2 (-1191 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))) (-3648 (*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))) (-4351 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-930 *2)))) (-2742 (*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))))
+(-13 (-374) (-38 |#1|) (-10 -8 (-15 -2956 ((-419 |#1|) $)) (-15 -2956 ($ (-419 (-430 |#1|)))) (-15 -4436 ($ $)) (-15 -2454 ((-430 |#1|) $)) (-15 -2005 (|#1| $)) (-15 -3475 ($ $ (-576))) (-15 -3967 ((-576) $)) (-15 -1580 ((-1191 |#1|) |#1| |#1|)) (-15 -3648 ($ $)) (-15 -4351 ($ |#1| (-430 |#1|))) (-15 -2742 (|#1| $))))
+((-4351 (((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195)) 17) (((-52) (-419 (-968 |#1|)) (-1195)) 18)))
+(((-931 |#1|) (-10 -7 (-15 -4351 ((-52) (-419 (-968 |#1|)) (-1195))) (-15 -4351 ((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -931))
+((-4351 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-968 *6))) (-5 *5 (-1195)) (-5 *3 (-968 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *6)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *5)))))
+(-10 -7 (-15 -4351 ((-52) (-419 (-968 |#1|)) (-1195))) (-15 -4351 ((-52) (-968 |#1|) (-430 (-968 |#1|)) (-1195))))
+((-1432 ((|#4| (-656 |#4|)) 147) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-2892 (((-1191 |#4|) (-656 (-1191 |#4|))) 140) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
+(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2892 (|#4| |#4| |#4|)) (-15 -2892 (|#4| (-656 |#4|))) (-15 -2892 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2892 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -1432 (|#4| |#4| |#4|)) (-15 -1432 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -1432 (|#4| (-656 |#4|)))) (-805) (-862) (-317) (-965 |#3| |#1| |#2|)) (T -932))
+((-1432 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-1432 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) (-1432 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-932 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))) (-2892 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5)) (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-2892 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4)))))
+(-10 -7 (-15 -2892 (|#4| |#4| |#4|)) (-15 -2892 (|#4| (-656 |#4|))) (-15 -2892 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2892 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -1432 (|#4| |#4| |#4|)) (-15 -1432 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -1432 (|#4| (-656 |#4|))))
+((-4042 (((-920 (-576)) (-989)) 38) (((-920 (-576)) (-656 (-576))) 34)) (-3186 (((-920 (-576)) (-656 (-576))) 67) (((-920 (-576)) (-937)) 68)) (-3396 (((-920 (-576))) 39)) (-3035 (((-920 (-576))) 53) (((-920 (-576)) (-656 (-576))) 52)) (-3515 (((-920 (-576))) 51) (((-920 (-576)) (-656 (-576))) 50)) (-1333 (((-920 (-576))) 49) (((-920 (-576)) (-656 (-576))) 48)) (-1344 (((-920 (-576))) 47) (((-920 (-576)) (-656 (-576))) 46)) (-2576 (((-920 (-576))) 45) (((-920 (-576)) (-656 (-576))) 44)) (-3571 (((-920 (-576))) 55) (((-920 (-576)) (-656 (-576))) 54)) (-2008 (((-920 (-576)) (-656 (-576))) 72) (((-920 (-576)) (-937)) 74)) (-4221 (((-920 (-576)) (-656 (-576))) 69) (((-920 (-576)) (-937)) 70)) (-2873 (((-920 (-576)) (-656 (-576))) 65) (((-920 (-576)) (-937)) 66)) (-4140 (((-920 (-576)) (-656 (-937))) 57)))
+(((-933) (-10 -7 (-15 -3186 ((-920 (-576)) (-937))) (-15 -3186 ((-920 (-576)) (-656 (-576)))) (-15 -2873 ((-920 (-576)) (-937))) (-15 -2873 ((-920 (-576)) (-656 (-576)))) (-15 -4140 ((-920 (-576)) (-656 (-937)))) (-15 -4221 ((-920 (-576)) (-937))) (-15 -4221 ((-920 (-576)) (-656 (-576)))) (-15 -2008 ((-920 (-576)) (-937))) (-15 -2008 ((-920 (-576)) (-656 (-576)))) (-15 -2576 ((-920 (-576)) (-656 (-576)))) (-15 -2576 ((-920 (-576)))) (-15 -1344 ((-920 (-576)) (-656 (-576)))) (-15 -1344 ((-920 (-576)))) (-15 -1333 ((-920 (-576)) (-656 (-576)))) (-15 -1333 ((-920 (-576)))) (-15 -3515 ((-920 (-576)) (-656 (-576)))) (-15 -3515 ((-920 (-576)))) (-15 -3035 ((-920 (-576)) (-656 (-576)))) (-15 -3035 ((-920 (-576)))) (-15 -3571 ((-920 (-576)) (-656 (-576)))) (-15 -3571 ((-920 (-576)))) (-15 -3396 ((-920 (-576)))) (-15 -4042 ((-920 (-576)) (-656 (-576)))) (-15 -4042 ((-920 (-576)) (-989))))) (T -933))
+((-4042 (*1 *2 *3) (-12 (-5 *3 (-989)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3396 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3571 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3035 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3515 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-1333 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-1344 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2576 (*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(-10 -7 (-15 -3186 ((-920 (-576)) (-937))) (-15 -3186 ((-920 (-576)) (-656 (-576)))) (-15 -2873 ((-920 (-576)) (-937))) (-15 -2873 ((-920 (-576)) (-656 (-576)))) (-15 -4140 ((-920 (-576)) (-656 (-937)))) (-15 -4221 ((-920 (-576)) (-937))) (-15 -4221 ((-920 (-576)) (-656 (-576)))) (-15 -2008 ((-920 (-576)) (-937))) (-15 -2008 ((-920 (-576)) (-656 (-576)))) (-15 -2576 ((-920 (-576)) (-656 (-576)))) (-15 -2576 ((-920 (-576)))) (-15 -1344 ((-920 (-576)) (-656 (-576)))) (-15 -1344 ((-920 (-576)))) (-15 -1333 ((-920 (-576)) (-656 (-576)))) (-15 -1333 ((-920 (-576)))) (-15 -3515 ((-920 (-576)) (-656 (-576)))) (-15 -3515 ((-920 (-576)))) (-15 -3035 ((-920 (-576)) (-656 (-576)))) (-15 -3035 ((-920 (-576)))) (-15 -3571 ((-920 (-576)) (-656 (-576)))) (-15 -3571 ((-920 (-576)))) (-15 -3396 ((-920 (-576)))) (-15 -4042 ((-920 (-576)) (-656 (-576)))) (-15 -4042 ((-920 (-576)) (-989))))
+((-3257 (((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))) 14)) (-1414 (((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))) 13)))
+(((-934 |#1|) (-10 -7 (-15 -1414 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -3257 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195))))) (-464)) (T -934))
+((-3257 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-934 *4)))) (-1414 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-934 *4)))))
+(-10 -7 (-15 -1414 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -3257 ((-656 (-968 |#1|)) (-656 (-968 |#1|)) (-656 (-1195)))))
+((-2956 (((-326 |#1|) (-489)) 16)))
+(((-935 |#1|) (-10 -7 (-15 -2956 ((-326 |#1|) (-489)))) (-568)) (T -935))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-935 *4)) (-4 *4 (-568)))))
+(-10 -7 (-15 -2956 ((-326 |#1|) (-489))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-4192 (((-112) $) 35)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-936) (-141)) (T -936))
+((-1889 (*1 *2 *3) (-12 (-4 *1 (-936)) (-5 *2 (-2 (|:| -1868 (-656 *1)) (|:| -2981 *1))) (-5 *3 (-656 *1)))) (-2583 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-936)))))
+(-13 (-464) (-10 -8 (-15 -1889 ((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $))) (-15 -2583 ((-3 (-656 $) "failed") (-656 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2892 (($ $ $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2155 (($) NIL T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ $ $) NIL)))
+(((-937) (-13 (-806) (-738) (-10 -8 (-15 -2892 ($ $ $)) (-6 (-4463 "*"))))) (T -937))
+((-2892 (*1 *1 *1 *1) (-5 *1 (-937))))
+(-13 (-806) (-738) (-10 -8 (-15 -2892 ($ $ $)) (-6 (-4463 "*"))))
((|NonNegativeInteger|) (|%igt| |#1| 0))
-((-2746 ((|#2| (-654 |#1|) (-654 |#1|)) 28)))
-(((-936 |#1| |#2|) (-10 -7 (-15 -2746 (|#2| (-654 |#1|) (-654 |#1|)))) (-372) (-1260 |#1|)) (T -936))
-((-2746 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1260 *4)) (-5 *1 (-936 *4 *2)))))
-(-10 -7 (-15 -2746 (|#2| (-654 |#1|) (-654 |#1|))))
-((-2034 (((-1189 |#2|) (-654 |#2|) (-654 |#2|)) 17) (((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|)) 13)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -2034 ((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -2034 ((-1189 |#2|) (-654 |#2|) (-654 |#2|)))) (-1193) (-372)) (T -937))
-((-2034 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1189 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-1193)))) (-2034 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1193)) (-4 *5 (-372)) (-5 *1 (-937 *4 *5)))))
-(-10 -7 (-15 -2034 ((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-654 |#2|) (-654 |#2|))) (-15 -2034 ((-1189 |#2|) (-654 |#2|) (-654 |#2|))))
-((-2914 (((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175)) 174)) (-1373 ((|#4| |#4|) 193)) (-4411 (((-654 (-417 (-966 |#1|))) (-654 (-1193))) 146)) (-1559 (((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574)) 88)) (-2868 (((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|)) 69)) (-2614 (((-699 |#4|) (-699 |#4|) (-654 |#4|)) 65)) (-4419 (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175)) 186)) (-3796 (((-574) (-699 |#4|) (-935) (-1175)) 166) (((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175)) 165) (((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175)) 164) (((-574) (-699 |#4|) (-1175)) 154) (((-574) (-699 |#4|) (-654 (-1193)) (-1175)) 153) (((-574) (-699 |#4|) (-654 |#4|) (-1175)) 152) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935)) 151) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935)) 150) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935)) 149) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|)) 148) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193))) 147) (((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|)) 143)) (-2246 ((|#4| (-966 |#1|)) 80)) (-2410 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 190)) (-4373 (((-654 (-654 (-574))) (-574) (-574)) 159)) (-3518 (((-654 (-654 |#4|)) (-654 (-654 |#4|))) 106)) (-3925 (((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 100)) (-3397 (((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|))))) 99)) (-1885 (((-112) (-654 (-966 |#1|))) 19) (((-112) (-654 |#4|)) 15)) (-1725 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|)) 84)) (-1431 (((-654 |#4|) |#4|) 57)) (-3675 (((-654 (-417 (-966 |#1|))) (-654 |#4|)) 142) (((-699 (-417 (-966 |#1|))) (-699 |#4|)) 66) (((-417 (-966 |#1|)) |#4|) 139)) (-3474 (((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574)) 112)) (-3839 (((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781)) 98)) (-1851 (((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781)) 121)) (-4255 (((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3479 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) 56)))
-(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935))) (-15 -3796 ((-574) (-699 |#4|) (-654 |#4|) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 (-1193)) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-935) (-1175))) (-15 -2914 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -4419 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -3474 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574))) (-15 -3675 ((-417 (-966 |#1|)) |#4|)) (-15 -3675 ((-699 (-417 (-966 |#1|))) (-699 |#4|))) (-15 -3675 ((-654 (-417 (-966 |#1|))) (-654 |#4|))) (-15 -4411 ((-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2246 (|#4| (-966 |#1|))) (-15 -1725 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3839 ((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2868 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|))) (-15 -4255 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3479 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1431 ((-654 |#4|) |#4|)) (-15 -3397 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3925 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3518 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -4373 ((-654 (-654 (-574))) (-574) (-574))) (-15 -2410 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1851 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2614 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -1559 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1373 (|#4| |#4|)) (-15 -1885 ((-112) (-654 |#4|))) (-15 -1885 ((-112) (-654 (-966 |#1|))))) (-13 (-315) (-148)) (-13 (-860) (-624 (-1193))) (-803) (-963 |#1| |#3| |#2|)) (T -938))
-((-1885 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *2)) (-4 *2 (-963 *3 *5 *4)))) (-1559 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-966 *9)))) (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574)) (-4 *9 (-13 (-315) (-148))) (-4 *12 (-963 *9 *11 *10)) (-4 *10 (-13 (-860) (-624 (-1193)))) (-4 *11 (-803)) (-5 *2 (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12)) (|:| |wcond| (-654 (-966 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *9)))) (|:| -1895 (-654 (-1284 (-417 (-966 *9))))))))) (-5 *1 (-938 *9 *10 *11 *12)))) (-2614 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *5 *6 *7 *8)))) (-4373 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574)))) (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *6 *5)))) (-3518 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-963 *3 *5 *4)) (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193)))) (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *6)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-938 *4 *5 *6 *7)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *7) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *7))))) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781)) (-5 *1 (-938 *4 *5 *6 *7)))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-963 *4 *6 *5)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3479 (-699 (-417 (-966 *4)))) (|:| |vec| (-654 (-417 (-966 *4)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -1895 (-654 (-1284 (-417 (-966 *4))))))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-2868 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -1895 (-654 (-1284 (-417 (-966 *4))))))) (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148))) (-4 *7 (-963 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| *8) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 *8))))) (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-781)))) (-1725 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-4 *7 (-963 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7)))) (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-315) (-148))) (-4 *2 (-963 *4 *6 *5)) (-5 *1 (-938 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-699 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3675 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-417 (-966 *4))) (-5 *1 (-938 *4 *5 *6 *3)) (-4 *3 (-963 *4 *6 *5)))) (-3474 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-966 *8)))) (-5 *5 (-781)) (-5 *6 (-1175)) (-4 *8 (-13 (-315) (-148))) (-4 *11 (-963 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1193)))) (-4 *10 (-803)) (-5 *2 (-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11)) (|:| |wcond| (-654 (-966 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *8)))) (|:| -1895 (-654 (-1284 (-417 (-966 *8)))))))))) (|:| |rgsz| (-574)))) (-5 *1 (-938 *8 *9 *10 *11)) (-5 *7 (-574)))) (-4419 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-966 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -1895 (-654 (-1284 (-417 (-966 *4)))))))))) (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -1895 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *4 (-1175)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-963 *5 *7 *6)) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-935)) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3796 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *7 *8 *9 *10)))) (-3796 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-935)) (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148))) (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *7 *8 *9 *10)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-1175)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1175)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *6 *7 *8 *9)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-935)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -1895 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-966 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) (|:| -1895 (-654 (-1284 (-417 (-966 *6)))))))))) (-5 *1 (-938 *6 *7 *8 *9)))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-699 *9)) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9)) (|:| |wcond| (-654 (-966 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *6)))) (|:| -1895 (-654 (-1284 (-417 (-966 *6)))))))))) (-5 *1 (-938 *6 *7 *8 *9)) (-5 *4 (-654 *9)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7)) (|:| |wcond| (-654 (-966 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *4)))) (|:| -1895 (-654 (-1284 (-417 (-966 *4)))))))))) (-5 *1 (-938 *4 *5 *6 *7)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1193))) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -1895 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-654 (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8)) (|:| |wcond| (-654 (-966 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 *5)))) (|:| -1895 (-654 (-1284 (-417 (-966 *5)))))))))) (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
-(-10 -7 (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 |#4|) (-935))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-654 (-1193)) (-935))) (-15 -3796 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-699 |#4|) (-935))) (-15 -3796 ((-574) (-699 |#4|) (-654 |#4|) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 (-1193)) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 |#4|) (-935) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-654 (-1193)) (-935) (-1175))) (-15 -3796 ((-574) (-699 |#4|) (-935) (-1175))) (-15 -2914 ((-574) (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -4419 ((-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|))))))))) (-1175))) (-15 -3474 ((-2 (|:| |rgl| (-654 (-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))))) (|:| |rgsz| (-574))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-781) (-1175) (-574))) (-15 -3675 ((-417 (-966 |#1|)) |#4|)) (-15 -3675 ((-699 (-417 (-966 |#1|))) (-699 |#4|))) (-15 -3675 ((-654 (-417 (-966 |#1|))) (-654 |#4|))) (-15 -4411 ((-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2246 (|#4| (-966 |#1|))) (-15 -1725 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-654 |#4|)) (|:| |n0| (-654 |#4|))) (-654 |#4|) (-654 |#4|))) (-15 -3839 ((-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))) (-699 |#4|) (-781))) (-15 -2868 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-654 |#4|))) (-15 -4255 ((-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))) (-2 (|:| -3479 (-699 (-417 (-966 |#1|)))) (|:| |vec| (-654 (-417 (-966 |#1|)))) (|:| -3558 (-781)) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (-15 -1431 ((-654 |#4|) |#4|)) (-15 -3397 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3925 ((-781) (-654 (-2 (|:| -3558 (-781)) (|:| |eqns| (-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))) (|:| |fgb| (-654 |#4|)))))) (-15 -3518 ((-654 (-654 |#4|)) (-654 (-654 |#4|)))) (-15 -4373 ((-654 (-654 (-574))) (-574) (-574))) (-15 -2410 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -1851 ((-654 (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574))))) (-699 |#4|) (-781))) (-15 -2614 ((-699 |#4|) (-699 |#4|) (-654 |#4|))) (-15 -1559 ((-2 (|:| |eqzro| (-654 |#4|)) (|:| |neqzro| (-654 |#4|)) (|:| |wcond| (-654 (-966 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1284 (-417 (-966 |#1|)))) (|:| -1895 (-654 (-1284 (-417 (-966 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))) (-699 |#4|) (-654 (-417 (-966 |#1|))) (-654 (-654 |#4|)) (-781) (-781) (-574))) (-15 -1373 (|#4| |#4|)) (-15 -1885 ((-112) (-654 |#4|))) (-15 -1885 ((-112) (-654 (-966 |#1|)))))
-((-4173 (((-941) |#1| (-1193)) 17) (((-941) |#1| (-1193) (-1110 (-227))) 21)) (-3088 (((-941) |#1| |#1| (-1193) (-1110 (-227))) 19) (((-941) |#1| (-1193) (-1110 (-227))) 15)))
-(((-939 |#1|) (-10 -7 (-15 -3088 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -3088 ((-941) |#1| |#1| (-1193) (-1110 (-227)))) (-15 -4173 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -4173 ((-941) |#1| (-1193)))) (-624 (-546))) (T -939))
-((-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-3088 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))) (-3088 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941)) (-5 *1 (-939 *3)) (-4 *3 (-624 (-546))))))
-(-10 -7 (-15 -3088 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -3088 ((-941) |#1| |#1| (-1193) (-1110 (-227)))) (-15 -4173 ((-941) |#1| (-1193) (-1110 (-227)))) (-15 -4173 ((-941) |#1| (-1193))))
-((-4258 (($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 121)) (-2452 (((-1110 (-227)) $) 64)) (-2439 (((-1110 (-227)) $) 63)) (-2426 (((-1110 (-227)) $) 62)) (-1684 (((-654 (-654 (-227))) $) 69)) (-3073 (((-1110 (-227)) $) 65)) (-2529 (((-574) (-574)) 57)) (-2521 (((-574) (-574)) 52)) (-2389 (((-574) (-574)) 55)) (-1944 (((-112) (-112)) 59)) (-4116 (((-574)) 56)) (-1432 (($ $ (-1110 (-227))) 124) (($ $) 125)) (-1502 (($ (-1 (-957 (-227)) (-227)) (-1110 (-227))) 131) (($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 132)) (-3088 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 135) (($ $ (-1110 (-227))) 127)) (-1813 (((-574)) 60)) (-4066 (((-574)) 50)) (-3236 (((-574)) 53)) (-3368 (((-654 (-654 (-957 (-227)))) $) 151)) (-2774 (((-112) (-112)) 61)) (-2951 (((-872) $) 149)) (-1743 (((-112)) 58)))
-(((-940) (-13 (-990) (-10 -8 (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ $ (-1110 (-227)))) (-15 -4258 ($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -1432 ($ $ (-1110 (-227)))) (-15 -1432 ($ $)) (-15 -3073 ((-1110 (-227)) $)) (-15 -1684 ((-654 (-654 (-227))) $)) (-15 -4066 ((-574))) (-15 -2521 ((-574) (-574))) (-15 -3236 ((-574))) (-15 -2389 ((-574) (-574))) (-15 -4116 ((-574))) (-15 -2529 ((-574) (-574))) (-15 -1743 ((-112))) (-15 -1944 ((-112) (-112))) (-15 -1813 ((-574))) (-15 -2774 ((-112) (-112)))))) (T -940))
-((-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-1502 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3088 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3088 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-940)))) (-3088 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-4258 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-1432 (*1 *1 *1) (-5 *1 (-940))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-940)))) (-4066 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2521 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-3236 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-4116 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-1743 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))) (-1813 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))))
-(-13 (-990) (-10 -8 (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ $ (-1110 (-227)))) (-15 -4258 ($ $ (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -1432 ($ $ (-1110 (-227)))) (-15 -1432 ($ $)) (-15 -3073 ((-1110 (-227)) $)) (-15 -1684 ((-654 (-654 (-227))) $)) (-15 -4066 ((-574))) (-15 -2521 ((-574) (-574))) (-15 -3236 ((-574))) (-15 -2389 ((-574) (-574))) (-15 -4116 ((-574))) (-15 -2529 ((-574) (-574))) (-15 -1743 ((-112))) (-15 -1944 ((-112) (-112))) (-15 -1813 ((-574))) (-15 -2774 ((-112) (-112)))))
-((-4258 (($ $ (-1110 (-227))) 122) (($ $ (-1110 (-227)) (-1110 (-227))) 123)) (-2439 (((-1110 (-227)) $) 73)) (-2426 (((-1110 (-227)) $) 72)) (-3073 (((-1110 (-227)) $) 74)) (-3465 (((-574) (-574)) 66)) (-3470 (((-574) (-574)) 61)) (-4062 (((-574) (-574)) 64)) (-4237 (((-112) (-112)) 68)) (-2630 (((-574)) 65)) (-1432 (($ $ (-1110 (-227))) 126) (($ $) 127)) (-1502 (($ (-1 (-957 (-227)) (-227)) (-1110 (-227))) 141) (($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 142)) (-4173 (($ (-1 (-227) (-227)) (-1110 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3088 (($ (-1 (-227) (-227)) (-1110 (-227))) 137) (($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227))) 138) (($ (-654 (-1 (-227) (-227))) (-1110 (-227))) 146) (($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227))) 140) (($ $ (-1110 (-227))) 128)) (-3043 (((-112) $) 69)) (-3138 (((-574)) 70)) (-1698 (((-574)) 59)) (-2585 (((-574)) 62)) (-3368 (((-654 (-654 (-957 (-227)))) $) 35)) (-3572 (((-112) (-112)) 71)) (-2951 (((-872) $) 167)) (-2628 (((-112)) 67)))
-(((-941) (-13 (-969) (-10 -8 (-15 -3088 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)))) (-15 -3088 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -4173 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -4173 ($ (-1 (-227) (-227)))) (-15 -3088 ($ $ (-1110 (-227)))) (-15 -3043 ((-112) $)) (-15 -4258 ($ $ (-1110 (-227)))) (-15 -4258 ($ $ (-1110 (-227)) (-1110 (-227)))) (-15 -1432 ($ $ (-1110 (-227)))) (-15 -1432 ($ $)) (-15 -3073 ((-1110 (-227)) $)) (-15 -1698 ((-574))) (-15 -3470 ((-574) (-574))) (-15 -2585 ((-574))) (-15 -4062 ((-574) (-574))) (-15 -2630 ((-574))) (-15 -3465 ((-574) (-574))) (-15 -2628 ((-112))) (-15 -4237 ((-112) (-112))) (-15 -3138 ((-574))) (-15 -3572 ((-112) (-112)))))) (T -941))
-((-3088 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-1502 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227))) (-5 *1 (-941)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-941)))) (-3088 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-4258 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-4258 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-1432 (*1 *1 *1) (-5 *1 (-941))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))) (-1698 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-2585 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-2630 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-2628 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-3138 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(-13 (-969) (-10 -8 (-15 -3088 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)))) (-15 -3088 ($ (-654 (-1 (-227) (-227))) (-1110 (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)))) (-15 -3088 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)))) (-15 -1502 ($ (-1 (-957 (-227)) (-227)) (-1110 (-227)) (-1110 (-227)) (-1110 (-227)))) (-15 -4173 ($ (-1 (-227) (-227)) (-1110 (-227)))) (-15 -4173 ($ (-1 (-227) (-227)))) (-15 -3088 ($ $ (-1110 (-227)))) (-15 -3043 ((-112) $)) (-15 -4258 ($ $ (-1110 (-227)))) (-15 -4258 ($ $ (-1110 (-227)) (-1110 (-227)))) (-15 -1432 ($ $ (-1110 (-227)))) (-15 -1432 ($ $)) (-15 -3073 ((-1110 (-227)) $)) (-15 -1698 ((-574))) (-15 -3470 ((-574) (-574))) (-15 -2585 ((-574))) (-15 -4062 ((-574) (-574))) (-15 -2630 ((-574))) (-15 -3465 ((-574) (-574))) (-15 -2628 ((-112))) (-15 -4237 ((-112) (-112))) (-15 -3138 ((-574))) (-15 -3572 ((-112) (-112)))))
-((-3321 (((-654 (-1110 (-227))) (-654 (-654 (-957 (-227))))) 34)))
-(((-942) (-10 -7 (-15 -3321 ((-654 (-1110 (-227))) (-654 (-654 (-957 (-227)))))))) (T -942))
-((-3321 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-1110 (-227)))) (-5 *1 (-942)))))
-(-10 -7 (-15 -3321 ((-654 (-1110 (-227))) (-654 (-654 (-957 (-227)))))))
-((-3100 ((|#2| |#2|) 28)) (-2501 ((|#2| |#2|) 29)) (-1714 ((|#2| |#2|) 27)) (-2121 ((|#2| |#2| (-516)) 26)))
-(((-943 |#1| |#2|) (-10 -7 (-15 -2121 (|#2| |#2| (-516))) (-15 -1714 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2501 (|#2| |#2|))) (-1116) (-440 |#1|)) (T -943))
-((-2501 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3)))) (-2121 (*1 *2 *2 *3) (-12 (-5 *3 (-516)) (-4 *4 (-1116)) (-5 *1 (-943 *4 *2)) (-4 *2 (-440 *4)))))
-(-10 -7 (-15 -2121 (|#2| |#2| (-516))) (-15 -1714 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2501 (|#2| |#2|)))
-((-3100 (((-324 (-574)) (-1193)) 16)) (-2501 (((-324 (-574)) (-1193)) 14)) (-1714 (((-324 (-574)) (-1193)) 12)) (-2121 (((-324 (-574)) (-1193) (-516)) 19)))
-(((-944) (-10 -7 (-15 -2121 ((-324 (-574)) (-1193) (-516))) (-15 -1714 ((-324 (-574)) (-1193))) (-15 -3100 ((-324 (-574)) (-1193))) (-15 -2501 ((-324 (-574)) (-1193))))) (T -944))
-((-2501 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-516)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))))
-(-10 -7 (-15 -2121 ((-324 (-574)) (-1193) (-516))) (-15 -1714 ((-324 (-574)) (-1193))) (-15 -3100 ((-324 (-574)) (-1193))) (-15 -2501 ((-324 (-574)) (-1193))))
-((-1821 (((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)) 25)) (-4088 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -4088 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1821 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-897 |#1|) (-13 (-1116) (-1054 |#2|))) (T -945))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-13 (-1116) (-1054 *3))) (-4 *3 (-897 *5)) (-5 *1 (-945 *5 *3 *6)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1116) (-1054 *5))) (-4 *5 (-897 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-945 *4 *5 *6)))))
-(-10 -7 (-15 -4088 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1821 ((-900 |#1| |#3|) |#2| (-903 |#1|) (-900 |#1| |#3|))))
-((-1821 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 30)))
-(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-13 (-566) (-897 |#1|)) (-13 (-440 |#2|) (-624 (-903 |#1|)) (-897 |#1|) (-1054 (-622 $)))) (T -946))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1054 (-622 $)))) (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5))) (-5 *1 (-946 *5 *6 *3)))))
-(-10 -7 (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))
-((-1821 (((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)) 13)))
-(((-947 |#1|) (-10 -7 (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|)))) (-555)) (T -947))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555)) (-5 *1 (-947 *3)))))
-(-10 -7 (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))))
-((-1821 (((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)) 57)))
-(((-948 |#1| |#2|) (-10 -7 (-15 -1821 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|)))) (-1116) (-13 (-1116) (-1054 (-622 $)) (-624 (-903 |#1|)) (-897 |#1|))) (T -948))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1116)) (-4 *6 (-13 (-1116) (-1054 (-622 $)) (-624 *4) (-897 *5))) (-5 *4 (-903 *5)) (-5 *1 (-948 *5 *6)))))
-(-10 -7 (-15 -1821 ((-900 |#1| |#2|) (-622 |#2|) (-903 |#1|) (-900 |#1| |#2|))))
-((-1821 (((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)) 17)))
-(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|)))) (-1116) (-897 |#1|) (-676 |#2|)) (T -949))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-949 *5 *6 *3)))))
-(-10 -7 (-15 -1821 ((-896 |#1| |#2| |#3|) |#3| (-903 |#1|) (-896 |#1| |#2| |#3|))))
-((-1821 (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|)) 17 (|has| |#3| (-897 |#1|))) (((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|))) 16)))
-(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1821 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -1821 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|)) (-1116) (-803) (-860) (-13 (-1065) (-897 |#1|)) (-13 (-963 |#4| |#2| |#3|) (-624 (-903 |#1|)))) (T -950))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-13 (-963 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5)) (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-13 (-1065) (-897 *5))) (-5 *1 (-950 *5 *6 *7 *8 *3)))) (-1821 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3))) (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6)) (-4 *6 (-1116)) (-4 *3 (-13 (-963 *9 *7 *8) (-624 *4))) (-4 *7 (-803)) (-4 *9 (-13 (-1065) (-897 *6))) (-5 *1 (-950 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1821 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|) (-1 (-900 |#1| |#5|) |#3| (-903 |#1|) (-900 |#1| |#5|)))) (IF (|has| |#3| (-897 |#1|)) (-15 -1821 ((-900 |#1| |#5|) |#5| (-903 |#1|) (-900 |#1| |#5|))) |%noBranch|))
-((-2586 ((|#2| |#2| (-654 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -2586 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2586 (|#2| |#2| (-654 (-1 (-112) |#3|))))) (-1116) (-440 |#1|) (-1234)) (T -951))
-((-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-4 *4 (-1116)) (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1234)) (-4 *4 (-1116)) (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4)))))
-(-10 -7 (-15 -2586 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2586 (|#2| |#2| (-654 (-1 (-112) |#3|)))))
-((-2586 (((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|))) 18) (((-324 (-574)) (-1193) (-1 (-112) |#1|)) 15)))
-(((-952 |#1|) (-10 -7 (-15 -2586 ((-324 (-574)) (-1193) (-1 (-112) |#1|))) (-15 -2586 ((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|))))) (-1234)) (T -952))
-((-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-5 *2 (-324 (-574))) (-5 *1 (-952 *5)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1234)) (-5 *2 (-324 (-574))) (-5 *1 (-952 *5)))))
-(-10 -7 (-15 -2586 ((-324 (-574)) (-1193) (-1 (-112) |#1|))) (-15 -2586 ((-324 (-574)) (-1193) (-654 (-1 (-112) |#1|)))))
-((-1821 (((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)) 25)))
-(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-1116) (-13 (-566) (-897 |#1|) (-624 (-903 |#1|))) (-1008 |#2|)) (T -953))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-1008 *6)) (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5)) (-5 *1 (-953 *5 *6 *3)))))
-(-10 -7 (-15 -1821 ((-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))
-((-1821 (((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193))) 18)))
-(((-954 |#1|) (-10 -7 (-15 -1821 ((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193))))) (-1116)) (T -954))
-((-1821 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 (-1193))) (-5 *3 (-1193)) (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *1 (-954 *5)))))
-(-10 -7 (-15 -1821 ((-900 |#1| (-1193)) (-1193) (-903 |#1|) (-900 |#1| (-1193)))))
-((-3515 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 34)) (-1821 (((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))) 33)))
-(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -3515 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|))))) (-1116) (-1065) (-13 (-1065) (-624 (-903 |#1|)) (-1054 |#2|))) (T -955))
-((-3515 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6))) (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1116)) (-4 *8 (-13 (-1065) (-624 (-903 *6)) (-1054 *7))) (-5 *2 (-900 *6 *8)) (-4 *7 (-1065)) (-5 *1 (-955 *6 *7 *8)))) (-1821 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9))) (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1116)) (-4 *9 (-13 (-1065) (-624 (-903 *7)) (-1054 *8))) (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1065)) (-5 *1 (-955 *7 *8 *9)))))
-(-10 -7 (-15 -1821 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-1 |#3| (-654 |#3|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))) (-15 -3515 ((-900 |#1| |#3|) (-654 |#3|) (-654 (-903 |#1|)) (-900 |#1| |#3|) (-1 (-900 |#1| |#3|) |#3| (-903 |#1|) (-900 |#1| |#3|)))))
-((-1722 (((-1189 (-417 (-574))) (-574)) 79)) (-1440 (((-1189 (-574)) (-574)) 82)) (-3438 (((-1189 (-574)) (-574)) 76)) (-4166 (((-574) (-1189 (-574))) 72)) (-1324 (((-1189 (-417 (-574))) (-574)) 65)) (-2638 (((-1189 (-574)) (-574)) 49)) (-1516 (((-1189 (-574)) (-574)) 84)) (-4031 (((-1189 (-574)) (-574)) 83)) (-4033 (((-1189 (-417 (-574))) (-574)) 67)))
-(((-956) (-10 -7 (-15 -4033 ((-1189 (-417 (-574))) (-574))) (-15 -4031 ((-1189 (-574)) (-574))) (-15 -1516 ((-1189 (-574)) (-574))) (-15 -2638 ((-1189 (-574)) (-574))) (-15 -1324 ((-1189 (-417 (-574))) (-574))) (-15 -4166 ((-574) (-1189 (-574)))) (-15 -3438 ((-1189 (-574)) (-574))) (-15 -1440 ((-1189 (-574)) (-574))) (-15 -1722 ((-1189 (-417 (-574))) (-574))))) (T -956))
-((-1722 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))) (-1440 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-3438 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-574)) (-5 *1 (-956)))) (-1324 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))) (-2638 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-4031 (*1 *2 *3) (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))) (-4033 (*1 *2 *3) (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(-10 -7 (-15 -4033 ((-1189 (-417 (-574))) (-574))) (-15 -4031 ((-1189 (-574)) (-574))) (-15 -1516 ((-1189 (-574)) (-574))) (-15 -2638 ((-1189 (-574)) (-574))) (-15 -1324 ((-1189 (-417 (-574))) (-574))) (-15 -4166 ((-574) (-1189 (-574)))) (-15 -3438 ((-1189 (-574)) (-574))) (-15 -1440 ((-1189 (-574)) (-574))) (-15 -1722 ((-1189 (-417 (-574))) (-574))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781)) NIL (|has| |#1| (-23)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-3565 (($ (-654 |#1|)) 9)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1901 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-2302 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-2249 (($ $ (-654 |#1|)) 25)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 18) (($ $ (-1251 (-574))) NIL)) (-3936 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2732 (((-935) $) 13)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2523 (($ $ $) 23)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 14)) (-2963 (($ (-654 |#1|)) NIL)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) 11 (|has| $ (-6 -4459)))))
-(((-957 |#1|) (-996 |#1|) (-1065)) (T -957))
-NIL
-(-996 |#1|)
-((-1340 (((-491 |#1| |#2|) (-966 |#2|)) 22)) (-3447 (((-253 |#1| |#2|) (-966 |#2|)) 35)) (-3133 (((-966 |#2|) (-491 |#1| |#2|)) 27)) (-3753 (((-253 |#1| |#2|) (-491 |#1| |#2|)) 57)) (-3130 (((-966 |#2|) (-253 |#1| |#2|)) 32)) (-3729 (((-491 |#1| |#2|) (-253 |#1| |#2|)) 48)))
-(((-958 |#1| |#2|) (-10 -7 (-15 -3729 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3753 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -1340 ((-491 |#1| |#2|) (-966 |#2|))) (-15 -3133 ((-966 |#2|) (-491 |#1| |#2|))) (-15 -3130 ((-966 |#2|) (-253 |#1| |#2|))) (-15 -3447 ((-253 |#1| |#2|) (-966 |#2|)))) (-654 (-1193)) (-1065)) (T -958))
-((-3447 (*1 *2 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5)))))
-(-10 -7 (-15 -3729 ((-491 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3753 ((-253 |#1| |#2|) (-491 |#1| |#2|))) (-15 -1340 ((-491 |#1| |#2|) (-966 |#2|))) (-15 -3133 ((-966 |#2|) (-491 |#1| |#2|))) (-15 -3130 ((-966 |#2|) (-253 |#1| |#2|))) (-15 -3447 ((-253 |#1| |#2|) (-966 |#2|))))
-((-2815 (((-654 |#2|) |#2| |#2|) 10)) (-3731 (((-781) (-654 |#1|)) 48 (|has| |#1| (-858)))) (-3340 (((-654 |#2|) |#2|) 11)) (-2067 (((-781) (-654 |#1|) (-574) (-574)) 52 (|has| |#1| (-858)))) (-2985 ((|#1| |#2|) 38 (|has| |#1| (-858)))))
-(((-959 |#1| |#2|) (-10 -7 (-15 -2815 ((-654 |#2|) |#2| |#2|)) (-15 -3340 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2985 (|#1| |#2|)) (-15 -3731 ((-781) (-654 |#1|))) (-15 -2067 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|)) (-372) (-1260 |#1|)) (T -959))
-((-2067 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372)) (-5 *2 (-781)) (-5 *1 (-959 *5 *6)) (-4 *6 (-1260 *5)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-959 *4 *5)) (-4 *5 (-1260 *4)))) (-2985 (*1 *2 *3) (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-959 *2 *3)) (-4 *3 (-1260 *2)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1260 *4)))) (-2815 (*1 *2 *3 *3) (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -2815 ((-654 |#2|) |#2| |#2|)) (-15 -3340 ((-654 |#2|) |#2|)) (IF (|has| |#1| (-858)) (PROGN (-15 -2985 (|#1| |#2|)) (-15 -3731 ((-781) (-654 |#1|))) (-15 -2067 ((-781) (-654 |#1|) (-574) (-574)))) |%noBranch|))
-((-1785 (((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)) 19)))
-(((-960 |#1| |#2|) (-10 -7 (-15 -1785 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) (-1065) (-1065)) (T -960))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-966 *6)) (-5 *1 (-960 *5 *6)))))
-(-10 -7 (-15 -1785 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|))))
-((-4172 (((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|)) 18)))
-(((-961 |#1| |#2|) (-10 -7 (-15 -4172 ((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|)))) (-1193) (-1065)) (T -961))
-((-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1280 *5)) (-14 *5 (-1193)) (-4 *6 (-1065)) (-5 *2 (-1257 *5 (-966 *6))) (-5 *1 (-961 *5 *6)) (-5 *3 (-966 *6)))))
-(-10 -7 (-15 -4172 ((-1257 |#1| (-966 |#2|)) (-966 |#2|) (-1280 |#1|))))
-((-3654 (((-781) $) 88) (((-781) $ (-654 |#4|)) 93)) (-2684 (($ $) 203)) (-3171 (((-428 $) $) 195)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 141)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) 73)) (-4047 (($ $ $ |#4|) 95)) (-1557 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 131) (((-699 |#2|) (-699 $)) 121) (((-699 |#2|) (-1284 $)) NIL)) (-4135 (($ $) 210) (($ $ |#4|) 213)) (-1389 (((-654 $) $) 77)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 229) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 222)) (-2306 (((-654 $) $) 34)) (-4328 (($ |#2| |#3|) NIL) (($ $ |#4| (-781)) NIL) (($ $ (-654 |#4|) (-654 (-781))) 71)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#4|) 192)) (-1730 (((-3 (-654 $) "failed") $) 52)) (-4245 (((-3 (-654 $) "failed") $) 39)) (-4436 (((-3 (-2 (|:| |var| |#4|) (|:| -2754 (-781))) "failed") $) 57)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 134)) (-3235 (((-428 (-1189 $)) (-1189 $)) 147)) (-3000 (((-428 (-1189 $)) (-1189 $)) 145)) (-4201 (((-428 $) $) 165)) (-2661 (($ $ (-654 (-302 $))) 24) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-654 |#4|) (-654 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-654 |#4|) (-654 $)) NIL)) (-1924 (($ $ |#4|) 97)) (-1844 (((-903 (-388)) $) 243) (((-903 (-574)) $) 236) (((-546) $) 251)) (-1732 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 184)) (-1788 ((|#2| $ |#3|) NIL) (($ $ |#4| (-781)) 62) (($ $ (-654 |#4|) (-654 (-781))) 69)) (-2705 (((-3 $ "failed") $) 186)) (-2981 (((-112) $ $) 216)))
-(((-962 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2263 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -4135 (|#1| |#1| |#4|)) (-15 -1732 (|#1| |#1| |#4|)) (-15 -1924 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1389 ((-654 |#1|) |#1|)) (-15 -3654 ((-781) |#1| (-654 |#4|))) (-15 -3654 ((-781) |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| |#4|) (|:| -2754 (-781))) "failed") |#1|)) (-15 -1730 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4245 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4328 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4328 (|#1| |#1| |#4| (-781))) (-15 -4057 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -2306 ((-654 |#1|) |#1|)) (-15 -1788 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -1788 (|#1| |#1| |#4| (-781))) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4328 (|#1| |#2| |#3|)) (-15 -1788 (|#2| |#1| |#3|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|))) (-963 |#2| |#3| |#4|) (-1065) (-803) (-860)) (T -962))
-NIL
-(-10 -8 (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2705 ((-3 |#1| "failed") |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -2263 ((-3 (-1284 |#1|) "failed") (-699 |#1|))) (-15 -4135 (|#1| |#1| |#4|)) (-15 -1732 (|#1| |#1| |#4|)) (-15 -1924 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1389 ((-654 |#1|) |#1|)) (-15 -3654 ((-781) |#1| (-654 |#4|))) (-15 -3654 ((-781) |#1|)) (-15 -4436 ((-3 (-2 (|:| |var| |#4|) (|:| -2754 (-781))) "failed") |#1|)) (-15 -1730 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4245 ((-3 (-654 |#1|) "failed") |#1|)) (-15 -4328 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -4328 (|#1| |#1| |#4| (-781))) (-15 -4057 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -2306 ((-654 |#1|) |#1|)) (-15 -1788 (|#1| |#1| (-654 |#4|) (-654 (-781)))) (-15 -1788 (|#1| |#1| |#4| (-781))) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#4| |#1|)) (-15 -2661 (|#1| |#1| (-654 |#4|) (-654 |#2|))) (-15 -2661 (|#1| |#1| |#4| |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -4328 (|#1| |#2| |#3|)) (-15 -1788 (|#2| |#1| |#3|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 113)) (-4172 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-4141 (($ $) 91 (|has| |#1| (-566)))) (-2475 (((-112) $) 93 (|has| |#1| (-566)))) (-3654 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2684 (($ $) 101 (|has| |#1| (-462)))) (-3171 (((-428 $) $) 100 (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141)) (-2216 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142)) (-4047 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1402 (($ $) 159)) (-1557 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-3612 (((-3 $ "failed") $) 37)) (-4135 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3342 (((-112) $) 99 (|has| |#1| (-923)))) (-3637 (($ $ |#1| |#2| $) 177)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3943 (((-112) $) 35)) (-2993 (((-781) $) 174)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-2306 (((-654 $) $) 129)) (-3873 (((-112) $) 157)) (-4328 (($ |#1| |#2|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#3|) 123)) (-2043 ((|#2| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-3431 (($ (-1 |#2| |#2|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-3444 (((-3 |#3| "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-2845 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-4420 (((-1175) $) 10)) (-1730 (((-3 (-654 $) "failed") $) 117)) (-4245 (((-3 (-654 $) "failed") $) 118)) (-4436 (((-3 (-2 (|:| |var| |#3|) (|:| -2754 (-781))) "failed") $) 116)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 102 (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143)) (-1924 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40)) (-3735 ((|#2| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-566))) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))))) (-3382 (((-654 |#1|) $) 173)) (-1788 ((|#1| $ |#2|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-2705 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 32 T CONST)) (-3245 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-963 |#1| |#2| |#3|) (-141) (-1065) (-803) (-860)) (T -963))
-((-4135 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-3735 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-1788 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *2 (-860)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) (-2306 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-1189 *3)))) (-3444 (*1 *2 *1) (|partial| -12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2043 (*1 *2 *1 *3) (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-781)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781))))) (-4057 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-963 *4 *5 *3)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *4)) (-4 *4 (-1065)) (-4 *1 (-963 *4 *5 *3)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4339 (*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)))) (-4245 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-1730 (*1 *2 *1) (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-4436 (*1 *2 *1) (|partial| -12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2754 (-781)))))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3654 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1389 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5)))) (-4047 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1924 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-174)))) (-1732 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-4135 (*1 *1 *1 *2) (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *3 (-462)))) (-2684 (*1 *1 *1) (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-428 *1)) (-4 *1 (-963 *3 *4 *5)))))
-(-13 (-912 |t#3|) (-334 |t#1| |t#2|) (-317 $) (-524 |t#3| |t#1|) (-524 |t#3| $) (-1054 |t#3|) (-386 |t#1|) (-10 -8 (-15 -3735 ((-781) $ |t#3|)) (-15 -3735 ((-654 (-781)) $ (-654 |t#3|))) (-15 -1788 ($ $ |t#3| (-781))) (-15 -1788 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -2306 ((-654 $) $)) (-15 -4172 ((-1189 $) $ |t#3|)) (-15 -4172 ((-1189 |t#1|) $)) (-15 -3444 ((-3 |t#3| "failed") $)) (-15 -2043 ((-781) $ |t#3|)) (-15 -2043 ((-654 (-781)) $ (-654 |t#3|))) (-15 -4057 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |t#3|)) (-15 -4328 ($ $ |t#3| (-781))) (-15 -4328 ($ $ (-654 |t#3|) (-654 (-781)))) (-15 -4339 ($ (-1189 |t#1|) |t#3|)) (-15 -4339 ($ (-1189 $) |t#3|)) (-15 -4245 ((-3 (-654 $) "failed") $)) (-15 -1730 ((-3 (-654 $) "failed") $)) (-15 -4436 ((-3 (-2 (|:| |var| |t#3|) (|:| -2754 (-781))) "failed") $)) (-15 -3654 ((-781) $)) (-15 -3654 ((-781) $ (-654 |t#3|))) (-15 -4350 ((-654 |t#3|) $)) (-15 -1389 ((-654 $) $)) (IF (|has| |t#1| (-624 (-546))) (IF (|has| |t#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-574)))) (IF (|has| |t#3| (-624 (-903 (-574)))) (-6 (-624 (-903 (-574)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-624 (-903 (-388)))) (IF (|has| |t#3| (-624 (-903 (-388)))) (-6 (-624 (-903 (-388)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-574))) (IF (|has| |t#3| (-897 (-574))) (-6 (-897 (-574))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-897 (-388))) (IF (|has| |t#3| (-897 (-388))) (-6 (-897 (-388))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4047 ($ $ $ |t#3|)) (-15 -1924 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-6 (-462)) (-15 -1732 ($ $ |t#3|)) (-15 -4135 ($ $)) (-15 -4135 ($ $ |t#3|)) (-15 -3171 ((-428 $) $)) (-15 -2684 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-923)) (-6 (-923)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ |#3|) . T) ((-912 |#3|) . T) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923)))
-((-4350 (((-654 |#2|) |#5|) 40)) (-4172 (((-1189 |#5|) |#5| |#2| (-1189 |#5|)) 23) (((-417 (-1189 |#5|)) |#5| |#2|) 16)) (-4339 ((|#5| (-417 (-1189 |#5|)) |#2|) 30)) (-3444 (((-3 |#2| "failed") |#5|) 71)) (-1730 (((-3 (-654 |#5|) "failed") |#5|) 65)) (-3921 (((-3 (-2 (|:| |val| |#5|) (|:| -2754 (-574))) "failed") |#5|) 53)) (-4245 (((-3 (-654 |#5|) "failed") |#5|) 67)) (-4436 (((-3 (-2 (|:| |var| |#2|) (|:| -2754 (-574))) "failed") |#5|) 57)))
-(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4350 ((-654 |#2|) |#5|)) (-15 -3444 ((-3 |#2| "failed") |#5|)) (-15 -4172 ((-417 (-1189 |#5|)) |#5| |#2|)) (-15 -4339 (|#5| (-417 (-1189 |#5|)) |#2|)) (-15 -4172 ((-1189 |#5|) |#5| |#2| (-1189 |#5|))) (-15 -4245 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1730 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -4436 ((-3 (-2 (|:| |var| |#2|) (|:| -2754 (-574))) "failed") |#5|)) (-15 -3921 ((-3 (-2 (|:| |val| |#5|) (|:| -2754 (-574))) "failed") |#5|))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2980 (|#4| $))))) (T -964))
-((-3921 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2754 (-574)))) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))) (-4436 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2754 (-574)))) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))) (-1730 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))) (-4245 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))) (-4172 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))) (-4 *7 (-963 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-5 *1 (-964 *5 *4 *6 *7 *3)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1189 *2))) (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-4 *2 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))) (-5 *1 (-964 *5 *4 *6 *7 *2)) (-4 *7 (-963 *6 *5 *4)))) (-4172 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-417 (-1189 *3))) (-5 *1 (-964 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))) (-3444 (*1 *2 *3) (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1065)) (-4 *6 (-963 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-964 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *6)) (-15 -2970 (*6 $)) (-15 -2980 (*6 $))))))) (-4350 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *5)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))))
-(-10 -7 (-15 -4350 ((-654 |#2|) |#5|)) (-15 -3444 ((-3 |#2| "failed") |#5|)) (-15 -4172 ((-417 (-1189 |#5|)) |#5| |#2|)) (-15 -4339 (|#5| (-417 (-1189 |#5|)) |#2|)) (-15 -4172 ((-1189 |#5|) |#5| |#2| (-1189 |#5|))) (-15 -4245 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -1730 ((-3 (-654 |#5|) "failed") |#5|)) (-15 -4436 ((-3 (-2 (|:| |var| |#2|) (|:| -2754 (-574))) "failed") |#5|)) (-15 -3921 ((-3 (-2 (|:| |val| |#5|) (|:| -2754 (-574))) "failed") |#5|)))
-((-1785 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1785 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-803) (-860) (-1065) (-963 |#3| |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (T -965))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *6 (-803)) (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781)))))) (-5 *1 (-965 *6 *7 *8 *5 *2)) (-4 *5 (-963 *8 *6 *7)))))
-(-10 -7 (-15 -1785 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) 16)) (-4172 (((-1189 $) $ (-1193)) 21) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1193))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 8) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1193) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1193) $) NIL)) (-4047 (($ $ $ (-1193)) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1193)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-541 (-1193)) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1193) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1193) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-1193)) NIL) (($ (-1189 $) (-1193)) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1193)) NIL)) (-2043 (((-541 (-1193)) $) NIL) (((-781) $ (-1193)) NIL) (((-654 (-781)) $ (-654 (-1193))) NIL)) (-3431 (($ (-1 (-541 (-1193)) (-541 (-1193))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3444 (((-3 (-1193) "failed") $) 19)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1193)) (|:| -2754 (-781))) "failed") $) NIL)) (-3083 (($ $ (-1193)) 29 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1193) |#1|) NIL) (($ $ (-654 (-1193)) (-654 |#1|)) NIL) (($ $ (-1193) $) NIL) (($ $ (-654 (-1193)) (-654 $)) NIL)) (-1924 (($ $ (-1193)) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-3735 (((-541 (-1193)) $) NIL) (((-781) $ (-1193)) NIL) (((-654 (-781)) $ (-654 (-1193))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1193) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1193) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1193) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1193)) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 25) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1193)) 27) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-966 |#1|) (-13 (-963 |#1| (-541 (-1193)) (-1193)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1193))) |%noBranch|))) (-1065)) (T -966))
-((-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-966 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))))
-(-13 (-963 |#1| (-541 (-1193)) (-1193)) (-10 -8 (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1193))) |%noBranch|)))
-((-2496 (((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781)) 49)) (-4222 (((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781)) 44)) (-1487 (((-2 (|:| -2754 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)) 65)) (-3826 (((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781)) 74 (|has| |#3| (-462)))))
-(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2496 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -4222 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3826 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -1487 ((-2 (|:| -2754 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781)))) (-803) (-860) (-566) (-963 |#3| |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2951 ($ |#4|)) (-15 -2970 (|#4| $)) (-15 -2980 (|#4| $))))) (T -967))
-((-1487 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *3 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| (-654 *3)))) (-5 *1 (-967 *5 *6 *7 *3 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2951 ($ *3)) (-15 -2970 (*3 $)) (-15 -2980 (*3 $))))))) (-3826 (*1 *2 *3 *4) (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| *3))) (-5 *1 (-967 *5 *6 *7 *8 *3)) (-5 *4 (-781)) (-4 *3 (-13 (-372) (-10 -8 (-15 -2951 ($ *8)) (-15 -2970 (*8 $)) (-15 -2980 (*8 $))))))) (-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *9) (|:| |radicand| *9))) (-5 *1 (-967 *5 *6 *7 *8 *9)) (-5 *4 (-781)) (-4 *9 (-13 (-372) (-10 -8 (-15 -2951 ($ *8)) (-15 -2970 (*8 $)) (-15 -2980 (*8 $))))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566)) (-4 *7 (-963 *3 *5 *6)) (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *8) (|:| |radicand| *8))) (-5 *1 (-967 *5 *6 *3 *7 *8)) (-5 *4 (-781)) (-4 *8 (-13 (-372) (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))))
-(-10 -7 (-15 -2496 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#3| (-781))) (-15 -4222 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) (-417 (-574)) (-781))) (IF (|has| |#3| (-462)) (-15 -3826 ((-2 (|:| -2754 (-781)) (|:| -1866 |#5|) (|:| |radicand| |#5|)) |#5| (-781))) |%noBranch|) (-15 -1487 ((-2 (|:| -2754 (-781)) (|:| -1866 |#4|) (|:| |radicand| (-654 |#4|))) |#4| (-781))))
-((-2864 (((-112) $ $) NIL)) (-2126 (($ (-1136)) 8)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (((-1136) $) 12)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11)))
-(((-968) (-13 (-1116) (-623 (-1136)) (-10 -8 (-15 -2126 ($ (-1136)))))) (T -968))
-((-2126 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-968)))))
-(-13 (-1116) (-623 (-1136)) (-10 -8 (-15 -2126 ($ (-1136)))))
-((-2439 (((-1110 (-227)) $) 8)) (-2426 (((-1110 (-227)) $) 9)) (-3368 (((-654 (-654 (-957 (-227)))) $) 10)) (-2951 (((-872) $) 6)))
-(((-969) (-141)) (T -969))
-((-3368 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-654 (-654 (-957 (-227))))))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227))))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227))))))
-(-13 (-623 (-872)) (-10 -8 (-15 -3368 ((-654 (-654 (-957 (-227)))) $)) (-15 -2426 ((-1110 (-227)) $)) (-15 -2439 ((-1110 (-227)) $))))
-(((-623 (-872)) . T))
-((-3103 (((-3 (-699 |#1|) "failed") |#2| (-935)) 18)))
-(((-970 |#1| |#2|) (-10 -7 (-15 -3103 ((-3 (-699 |#1|) "failed") |#2| (-935)))) (-566) (-666 |#1|)) (T -970))
-((-3103 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-935)) (-4 *5 (-566)) (-5 *2 (-699 *5)) (-5 *1 (-970 *5 *3)) (-4 *3 (-666 *5)))))
-(-10 -7 (-15 -3103 ((-3 (-699 |#1|) "failed") |#2| (-935))))
-((-1904 (((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|) 16)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|) 18)) (-1785 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 13)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -1904 ((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -1785 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1234) (-1234)) (T -971))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-972 *6)) (-5 *1 (-971 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-972 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-971 *5 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-972 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-972 *5)) (-5 *1 (-971 *6 *5)))))
-(-10 -7 (-15 -1904 ((-972 |#2|) (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-972 |#1|) |#2|)) (-15 -1785 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) 19 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 18 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 16)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) |#1|) 15)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) 11 (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) 20 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) 17) (($ $ (-1251 (-574))) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) 21)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 14)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2877 (((-781) $) 8 (|has| $ (-6 -4459)))))
-(((-972 |#1|) (-19 |#1|) (-1234)) (T -972))
+((-2222 ((|#2| (-656 |#1|) (-656 |#1|)) 28)))
+(((-938 |#1| |#2|) (-10 -7 (-15 -2222 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1262 |#1|)) (T -938))
+((-2222 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4)) (-5 *1 (-938 *4 *2)))))
+(-10 -7 (-15 -2222 (|#2| (-656 |#1|) (-656 |#1|))))
+((-1776 (((-1191 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -1776 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -1776 ((-1191 |#2|) (-656 |#2|) (-656 |#2|)))) (-1195) (-374)) (T -939))
+((-1776 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5)) (-5 *1 (-939 *4 *5)) (-14 *4 (-1195)))) (-1776 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195)) (-4 *5 (-374)) (-5 *1 (-939 *4 *5)))))
+(-10 -7 (-15 -1776 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -1776 ((-1191 |#2|) (-656 |#2|) (-656 |#2|))))
+((-3281 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177)) 174)) (-1647 ((|#4| |#4|) 193)) (-2060 (((-656 (-419 (-968 |#1|))) (-656 (-1195))) 146)) (-3949 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-4054 (((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|)) 69)) (-3465 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-2137 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177)) 186)) (-2078 (((-576) (-701 |#4|) (-937) (-1177)) 166) (((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177)) 164) (((-576) (-701 |#4|) (-1177)) 154) (((-576) (-701 |#4|) (-656 (-1195)) (-1177)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1177)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-3146 ((|#4| (-968 |#1|)) 80)) (-2072 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-2937 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-4386 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-4043 (((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-2424 (((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-4006 (((-112) (-656 (-968 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-1807 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-4346 (((-656 |#4|) |#4|) 57)) (-3496 (((-656 (-419 (-968 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-968 |#1|))) (-701 |#4|)) 66) (((-419 (-968 |#1|)) |#4|) 139)) (-2030 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576)) 112)) (-4425 (((-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-3693 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-4219 (((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2081 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -3563 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56)))
+(((-940 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937))) (-15 -2078 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-937) (-1177))) (-15 -3281 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2137 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2030 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576))) (-15 -3496 ((-419 (-968 |#1|)) |#4|)) (-15 -3496 ((-701 (-419 (-968 |#1|))) (-701 |#4|))) (-15 -3496 ((-656 (-419 (-968 |#1|))) (-656 |#4|))) (-15 -2060 ((-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3146 (|#4| (-968 |#1|))) (-15 -1807 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -4425 ((-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -4054 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|))) (-15 -4219 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2081 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -3563 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -4346 ((-656 |#4|) |#4|)) (-15 -2424 ((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4043 ((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4386 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -2937 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2072 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3693 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3465 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3949 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1647 (|#4| |#4|)) (-15 -4006 ((-112) (-656 |#4|))) (-15 -4006 ((-112) (-656 (-968 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1195))) (-805) (-965 |#1| |#3| |#2|)) (T -940))
+((-4006 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *2 (-965 *3 *5 *4)))) (-3949 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-968 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-965 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-968 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *9)))) (|:| -4093 (-656 (-1286 (-419 (-968 *9))))))))) (-5 *1 (-940 *9 *10 *11 *12)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2937 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *6 *5)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-965 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *6)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-940 *4 *5 *6 *7)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-940 *4 *5 *6 *7)))) (-4346 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-940 *4 *5 *6 *3)) (-4 *3 (-965 *4 *6 *5)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2081 (-701 (-419 (-968 *4)))) (|:| |vec| (-656 (-419 (-968 *4)))) (|:| -3563 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -4093 (-656 (-1286 (-419 (-968 *4))))))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -4093 (-656 (-1286 (-419 (-968 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-965 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-783)))) (-1807 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-4 *7 (-965 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-965 *4 *6 *5)) (-5 *1 (-940 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7)))) (-3496 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-419 (-968 *4))) (-5 *1 (-940 *4 *5 *6 *3)) (-4 *3 (-965 *4 *6 *5)))) (-2030 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-968 *8)))) (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-965 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-968 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *8)))) (|:| -4093 (-656 (-1286 (-419 (-968 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-940 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-968 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -4093 (-656 (-1286 (-419 (-968 *4)))))))))) (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -4093 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-965 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-937)) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2078 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *7 *8 *9 *10)))) (-2078 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-937)) (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *7 *8 *9 *10)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8)))) (-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *6 *7 *8 *9)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-937)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -4093 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-968 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) (|:| -4093 (-656 (-1286 (-419 (-968 *6)))))))))) (-5 *1 (-940 *6 *7 *8 *9)))) (-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-968 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *6)))) (|:| -4093 (-656 (-1286 (-419 (-968 *6)))))))))) (-5 *1 (-940 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-968 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *4)))) (|:| -4093 (-656 (-1286 (-419 (-968 *4)))))))))) (-5 *1 (-940 *4 *5 *6 *7)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -4093 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-968 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 *5)))) (|:| -4093 (-656 (-1286 (-419 (-968 *5)))))))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(-10 -7 (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-937))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-937))) (-15 -2078 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-701 |#4|) (-937))) (-15 -2078 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 |#4|) (-937) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-656 (-1195)) (-937) (-1177))) (-15 -2078 ((-576) (-701 |#4|) (-937) (-1177))) (-15 -3281 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2137 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|))))))))) (-1177))) (-15 -2030 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-783) (-1177) (-576))) (-15 -3496 ((-419 (-968 |#1|)) |#4|)) (-15 -3496 ((-701 (-419 (-968 |#1|))) (-701 |#4|))) (-15 -3496 ((-656 (-419 (-968 |#1|))) (-656 |#4|))) (-15 -2060 ((-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3146 (|#4| (-968 |#1|))) (-15 -1807 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -4425 ((-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -4054 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-656 |#4|))) (-15 -4219 ((-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))) (-2 (|:| -2081 (-701 (-419 (-968 |#1|)))) (|:| |vec| (-656 (-419 (-968 |#1|)))) (|:| -3563 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -4346 ((-656 |#4|) |#4|)) (-15 -2424 ((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4043 ((-783) (-656 (-2 (|:| -3563 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -4386 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -2937 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2072 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3693 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3465 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -3949 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-968 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-968 |#1|)))) (|:| -4093 (-656 (-1286 (-419 (-968 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-968 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -1647 (|#4| |#4|)) (-15 -4006 ((-112) (-656 |#4|))) (-15 -4006 ((-112) (-656 (-968 |#1|)))))
+((-1542 (((-943) |#1| (-1195)) 17) (((-943) |#1| (-1195) (-1112 (-227))) 21)) (-2286 (((-943) |#1| |#1| (-1195) (-1112 (-227))) 19) (((-943) |#1| (-1195) (-1112 (-227))) 15)))
+(((-941 |#1|) (-10 -7 (-15 -2286 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2286 ((-943) |#1| |#1| (-1195) (-1112 (-227)))) (-15 -1542 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -1542 ((-943) |#1| (-1195)))) (-626 (-548))) (T -941))
+((-1542 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-1542 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-2286 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943)) (-5 *1 (-941 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -2286 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -2286 ((-943) |#1| |#1| (-1195) (-1112 (-227)))) (-15 -1542 ((-943) |#1| (-1195) (-1112 (-227)))) (-15 -1542 ((-943) |#1| (-1195))))
+((-3070 (($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 121)) (-2457 (((-1112 (-227)) $) 64)) (-2444 (((-1112 (-227)) $) 63)) (-2431 (((-1112 (-227)) $) 62)) (-2675 (((-656 (-656 (-227))) $) 69)) (-3453 (((-1112 (-227)) $) 65)) (-3853 (((-576) (-576)) 57)) (-3783 (((-576) (-576)) 52)) (-1915 (((-576) (-576)) 55)) (-3422 (((-112) (-112)) 59)) (-2207 (((-576)) 56)) (-4358 (($ $ (-1112 (-227))) 124) (($ $) 125)) (-1460 (($ (-1 (-959 (-227)) (-227)) (-1112 (-227))) 131) (($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 132)) (-2286 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 135) (($ $ (-1112 (-227))) 127)) (-1426 (((-576)) 60)) (-2998 (((-576)) 50)) (-4424 (((-576)) 53)) (-3388 (((-656 (-656 (-959 (-227)))) $) 151)) (-4426 (((-112) (-112)) 61)) (-2956 (((-874) $) 149)) (-1986 (((-112)) 58)))
+(((-942) (-13 (-992) (-10 -8 (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ $ (-1112 (-227)))) (-15 -3070 ($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -4358 ($ $ (-1112 (-227)))) (-15 -4358 ($ $)) (-15 -3453 ((-1112 (-227)) $)) (-15 -2675 ((-656 (-656 (-227))) $)) (-15 -2998 ((-576))) (-15 -3783 ((-576) (-576))) (-15 -4424 ((-576))) (-15 -1915 ((-576) (-576))) (-15 -2207 ((-576))) (-15 -3853 ((-576) (-576))) (-15 -1986 ((-112))) (-15 -3422 ((-112) (-112))) (-15 -1426 ((-576))) (-15 -4426 ((-112) (-112)))))) (T -942))
+((-1460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-1460 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2286 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2286 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-942)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-3070 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-4358 (*1 *1 *1) (-5 *1 (-942))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-942)))) (-2998 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-4424 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-2207 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-1986 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-3422 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-1426 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))) (-4426 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
+(-13 (-992) (-10 -8 (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ $ (-1112 (-227)))) (-15 -3070 ($ $ (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -4358 ($ $ (-1112 (-227)))) (-15 -4358 ($ $)) (-15 -3453 ((-1112 (-227)) $)) (-15 -2675 ((-656 (-656 (-227))) $)) (-15 -2998 ((-576))) (-15 -3783 ((-576) (-576))) (-15 -4424 ((-576))) (-15 -1915 ((-576) (-576))) (-15 -2207 ((-576))) (-15 -3853 ((-576) (-576))) (-15 -1986 ((-112))) (-15 -3422 ((-112) (-112))) (-15 -1426 ((-576))) (-15 -4426 ((-112) (-112)))))
+((-3070 (($ $ (-1112 (-227))) 122) (($ $ (-1112 (-227)) (-1112 (-227))) 123)) (-2444 (((-1112 (-227)) $) 73)) (-2431 (((-1112 (-227)) $) 72)) (-3453 (((-1112 (-227)) $) 74)) (-1934 (((-576) (-576)) 66)) (-1988 (((-576) (-576)) 61)) (-2965 (((-576) (-576)) 64)) (-4068 (((-112) (-112)) 68)) (-2343 (((-576)) 65)) (-4358 (($ $ (-1112 (-227))) 126) (($ $) 127)) (-1460 (($ (-1 (-959 (-227)) (-227)) (-1112 (-227))) 141) (($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 142)) (-1542 (($ (-1 (-227) (-227)) (-1112 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2286 (($ (-1 (-227) (-227)) (-1112 (-227))) 137) (($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1112 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227))) 140) (($ $ (-1112 (-227))) 128)) (-3127 (((-112) $) 69)) (-2780 (((-576)) 70)) (-2831 (((-576)) 59)) (-3196 (((-576)) 62)) (-3388 (((-656 (-656 (-959 (-227)))) $) 35)) (-3577 (((-112) (-112)) 71)) (-2956 (((-874) $) 167)) (-2330 (((-112)) 67)))
+(((-943) (-13 (-971) (-10 -8 (-15 -2286 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)))) (-15 -2286 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1542 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -1542 ($ (-1 (-227) (-227)))) (-15 -2286 ($ $ (-1112 (-227)))) (-15 -3127 ((-112) $)) (-15 -3070 ($ $ (-1112 (-227)))) (-15 -3070 ($ $ (-1112 (-227)) (-1112 (-227)))) (-15 -4358 ($ $ (-1112 (-227)))) (-15 -4358 ($ $)) (-15 -3453 ((-1112 (-227)) $)) (-15 -2831 ((-576))) (-15 -1988 ((-576) (-576))) (-15 -3196 ((-576))) (-15 -2965 ((-576) (-576))) (-15 -2343 ((-576))) (-15 -1934 ((-576) (-576))) (-15 -2330 ((-112))) (-15 -4068 ((-112) (-112))) (-15 -2780 ((-576))) (-15 -3577 ((-112) (-112)))))) (T -943))
+((-2286 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-1460 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-1460 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-1542 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227))) (-5 *1 (-943)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-943)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-3070 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-4358 (*1 *1 *1) (-5 *1 (-943))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))) (-2831 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3196 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2343 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2330 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2780 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(-13 (-971) (-10 -8 (-15 -2286 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)))) (-15 -2286 ($ (-656 (-1 (-227) (-227))) (-1112 (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)))) (-15 -2286 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)))) (-15 -1460 ($ (-1 (-959 (-227)) (-227)) (-1112 (-227)) (-1112 (-227)) (-1112 (-227)))) (-15 -1542 ($ (-1 (-227) (-227)) (-1112 (-227)))) (-15 -1542 ($ (-1 (-227) (-227)))) (-15 -2286 ($ $ (-1112 (-227)))) (-15 -3127 ((-112) $)) (-15 -3070 ($ $ (-1112 (-227)))) (-15 -3070 ($ $ (-1112 (-227)) (-1112 (-227)))) (-15 -4358 ($ $ (-1112 (-227)))) (-15 -4358 ($ $)) (-15 -3453 ((-1112 (-227)) $)) (-15 -2831 ((-576))) (-15 -1988 ((-576) (-576))) (-15 -3196 ((-576))) (-15 -2965 ((-576) (-576))) (-15 -2343 ((-576))) (-15 -1934 ((-576) (-576))) (-15 -2330 ((-112))) (-15 -4068 ((-112) (-112))) (-15 -2780 ((-576))) (-15 -3577 ((-112) (-112)))))
+((-4100 (((-656 (-1112 (-227))) (-656 (-656 (-959 (-227))))) 34)))
+(((-944) (-10 -7 (-15 -4100 ((-656 (-1112 (-227))) (-656 (-656 (-959 (-227)))))))) (T -944))
+((-4100 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-1112 (-227)))) (-5 *1 (-944)))))
+(-10 -7 (-15 -4100 ((-656 (-1112 (-227))) (-656 (-656 (-959 (-227)))))))
+((-3105 ((|#2| |#2|) 28)) (-2507 ((|#2| |#2|) 29)) (-1716 ((|#2| |#2|) 27)) (-2123 ((|#2| |#2| (-518)) 26)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -2123 (|#2| |#2| (-518))) (-15 -1716 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2507 (|#2| |#2|))) (-1118) (-442 |#1|)) (T -945))
+((-2507 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-1716 (*1 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3)))) (-2123 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1118)) (-5 *1 (-945 *4 *2)) (-4 *2 (-442 *4)))))
+(-10 -7 (-15 -2123 (|#2| |#2| (-518))) (-15 -1716 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)))
+((-3105 (((-326 (-576)) (-1195)) 16)) (-2507 (((-326 (-576)) (-1195)) 14)) (-1716 (((-326 (-576)) (-1195)) 12)) (-2123 (((-326 (-576)) (-1195) (-518)) 19)))
+(((-946) (-10 -7 (-15 -2123 ((-326 (-576)) (-1195) (-518))) (-15 -1716 ((-326 (-576)) (-1195))) (-15 -3105 ((-326 (-576)) (-1195))) (-15 -2507 ((-326 (-576)) (-1195))))) (T -946))
+((-2507 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))))
+(-10 -7 (-15 -2123 ((-326 (-576)) (-1195) (-518))) (-15 -1716 ((-326 (-576)) (-1195))) (-15 -3105 ((-326 (-576)) (-1195))) (-15 -2507 ((-326 (-576)) (-1195))))
+((-1487 (((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)) 25)) (-1956 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -1956 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1487 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-899 |#1|) (-13 (-1118) (-1056 |#2|))) (T -947))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-13 (-1118) (-1056 *3))) (-4 *3 (-899 *5)) (-5 *1 (-947 *5 *3 *6)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1118) (-1056 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-947 *4 *5 *6)))))
+(-10 -7 (-15 -1956 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1487 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|))))
+((-1487 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 30)))
+(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-13 (-568) (-899 |#1|)) (-13 (-442 |#2|) (-626 (-905 |#1|)) (-899 |#1|) (-1056 (-624 $)))) (T -948))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1056 (-624 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-948 *5 *6 *3)))))
+(-10 -7 (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))
+((-1487 (((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)) 13)))
+(((-949 |#1|) (-10 -7 (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) (-557)) (T -949))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) (-5 *1 (-949 *3)))))
+(-10 -7 (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))))
+((-1487 (((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)) 57)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -1487 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) (-1118) (-13 (-1118) (-1056 (-624 $)) (-626 (-905 |#1|)) (-899 |#1|))) (T -950))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1118)) (-4 *6 (-13 (-1118) (-1056 (-624 $)) (-626 *4) (-899 *5))) (-5 *4 (-905 *5)) (-5 *1 (-950 *5 *6)))))
+(-10 -7 (-15 -1487 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|))))
+((-1487 (((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)) 17)))
+(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -1487 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) (-1118) (-899 |#1|) (-678 |#2|)) (T -951))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-951 *5 *6 *3)))))
+(-10 -7 (-15 -1487 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|))))
+((-1487 (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|))) (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|))) 16)))
+(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1487 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1487 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1118) (-805) (-862) (-13 (-1067) (-899 |#1|)) (-13 (-965 |#4| |#2| |#3|) (-626 (-905 |#1|)))) (T -952))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-13 (-965 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-13 (-1067) (-899 *5))) (-5 *1 (-952 *5 *6 *7 *8 *3)))) (-1487 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1118)) (-4 *3 (-13 (-965 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1067) (-899 *6))) (-5 *1 (-952 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -1487 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1487 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|))
+((-2590 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -2590 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2590 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1118) (-442 |#1|) (-1236)) (T -953))
+((-2590 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1118)) (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1118)) (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4)))))
+(-10 -7 (-15 -2590 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2590 (|#2| |#2| (-656 (-1 (-112) |#3|)))))
+((-2590 (((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1195) (-1 (-112) |#1|)) 15)))
+(((-954 |#1|) (-10 -7 (-15 -2590 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -2590 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))))) (-1236)) (T -954))
+((-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-954 *5)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-954 *5)))))
+(-10 -7 (-15 -2590 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -2590 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|)))))
+((-1487 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 25)))
+(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1118) (-13 (-568) (-899 |#1|) (-626 (-905 |#1|))) (-1010 |#2|)) (T -955))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-1010 *6)) (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) (-5 *1 (-955 *5 *6 *3)))))
+(-10 -7 (-15 -1487 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))
+((-1487 (((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))) 18)))
+(((-956 |#1|) (-10 -7 (-15 -1487 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))))) (-1118)) (T -956))
+((-1487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *1 (-956 *5)))))
+(-10 -7 (-15 -1487 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195)))))
+((-4355 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 34)) (-1487 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 33)))
+(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -1487 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -4355 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) (-1118) (-1067) (-13 (-1067) (-626 (-905 |#1|)) (-1056 |#2|))) (T -957))
+((-4355 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1118)) (-4 *8 (-13 (-1067) (-626 (-905 *6)) (-1056 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1067)) (-5 *1 (-957 *6 *7 *8)))) (-1487 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1118)) (-4 *9 (-13 (-1067) (-626 (-905 *7)) (-1056 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1067)) (-5 *1 (-957 *7 *8 *9)))))
+(-10 -7 (-15 -1487 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -4355 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))))
+((-1781 (((-1191 (-419 (-576))) (-576)) 79)) (-1321 (((-1191 (-576)) (-576)) 82)) (-2906 (((-1191 (-576)) (-576)) 76)) (-1481 (((-576) (-1191 (-576))) 72)) (-1579 (((-1191 (-419 (-576))) (-576)) 65)) (-2402 (((-1191 (-576)) (-576)) 49)) (-3521 (((-1191 (-576)) (-576)) 84)) (-2643 (((-1191 (-576)) (-576)) 83)) (-2667 (((-1191 (-419 (-576))) (-576)) 67)))
+(((-958) (-10 -7 (-15 -2667 ((-1191 (-419 (-576))) (-576))) (-15 -2643 ((-1191 (-576)) (-576))) (-15 -3521 ((-1191 (-576)) (-576))) (-15 -2402 ((-1191 (-576)) (-576))) (-15 -1579 ((-1191 (-419 (-576))) (-576))) (-15 -1481 ((-576) (-1191 (-576)))) (-15 -2906 ((-1191 (-576)) (-576))) (-15 -1321 ((-1191 (-576)) (-576))) (-15 -1781 ((-1191 (-419 (-576))) (-576))))) (T -958))
+((-1781 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1321 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-2906 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-958)))) (-1579 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))) (-2402 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-3521 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-2643 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))) (-2667 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))))
+(-10 -7 (-15 -2667 ((-1191 (-419 (-576))) (-576))) (-15 -2643 ((-1191 (-576)) (-576))) (-15 -3521 ((-1191 (-576)) (-576))) (-15 -2402 ((-1191 (-576)) (-576))) (-15 -1579 ((-1191 (-419 (-576))) (-576))) (-15 -1481 ((-576) (-1191 (-576)))) (-15 -2906 ((-1191 (-576)) (-576))) (-15 -1321 ((-1191 (-576)) (-576))) (-15 -1781 ((-1191 (-419 (-576))) (-576))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783)) NIL (|has| |#1| (-23)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-3569 (($ (-656 |#1|)) 9)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3878 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2356 (((-112) $ (-783)) NIL)) (-4114 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3167 (($ $ (-656 |#1|)) 25)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1253 (-576))) NIL)) (-4144 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-2068 (((-937) $) 13)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3794 (($ $ $) 23)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-2968 (($ (-656 |#1|)) NIL)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3096 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3081 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2882 (((-783) $) 11 (|has| $ (-6 -4461)))))
+(((-959 |#1|) (-998 |#1|) (-1067)) (T -959))
+NIL
+(-998 |#1|)
+((-1691 (((-493 |#1| |#2|) (-968 |#2|)) 22)) (-1743 (((-253 |#1| |#2|) (-968 |#2|)) 35)) (-2738 (((-968 |#2|) (-493 |#1| |#2|)) 27)) (-2970 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2717 (((-968 |#2|) (-253 |#1| |#2|)) 32)) (-2730 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48)))
+(((-960 |#1| |#2|) (-10 -7 (-15 -2730 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2970 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1691 ((-493 |#1| |#2|) (-968 |#2|))) (-15 -2738 ((-968 |#2|) (-493 |#1| |#2|))) (-15 -2717 ((-968 |#2|) (-253 |#1| |#2|))) (-15 -1743 ((-253 |#1| |#2|) (-968 |#2|)))) (-656 (-1195)) (-1067)) (T -960))
+((-1743 (*1 *2 *3) (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5)))))
+(-10 -7 (-15 -2730 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2970 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -1691 ((-493 |#1| |#2|) (-968 |#2|))) (-15 -2738 ((-968 |#2|) (-493 |#1| |#2|))) (-15 -2717 ((-968 |#2|) (-253 |#1| |#2|))) (-15 -1743 ((-253 |#1| |#2|) (-968 |#2|))))
+((-1700 (((-656 |#2|) |#2| |#2|) 10)) (-2751 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-3100 (((-656 |#2|) |#2|) 11)) (-2076 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2668 ((|#1| |#2|) 38 (|has| |#1| (-860)))))
+(((-961 |#1| |#2|) (-10 -7 (-15 -1700 ((-656 |#2|) |#2| |#2|)) (-15 -3100 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2668 (|#1| |#2|)) (-15 -2751 ((-783) (-656 |#1|))) (-15 -2076 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1262 |#1|)) (T -961))
+((-2076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-961 *5 *6)) (-4 *6 (-1262 *5)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-961 *4 *5)) (-4 *5 (-1262 *4)))) (-2668 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1262 *2)))) (-3100 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) (-4 *3 (-1262 *4)))) (-1700 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -1700 ((-656 |#2|) |#2| |#2|)) (-15 -3100 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2668 (|#1| |#2|)) (-15 -2751 ((-783) (-656 |#1|))) (-15 -2076 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|))
+((-1787 (((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)) 19)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -1787 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|)))) (-1067) (-1067)) (T -962))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-968 *6)) (-5 *1 (-962 *5 *6)))))
+(-10 -7 (-15 -1787 ((-968 |#2|) (-1 |#2| |#1|) (-968 |#1|))))
+((-4174 (((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|)) 18)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -4174 ((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|)))) (-1195) (-1067)) (T -963))
+((-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1067)) (-5 *2 (-1259 *5 (-968 *6))) (-5 *1 (-963 *5 *6)) (-5 *3 (-968 *6)))))
+(-10 -7 (-15 -4174 ((-1259 |#1| (-968 |#2|)) (-968 |#2|) (-1282 |#1|))))
+((-3306 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-2879 (($ $) 203)) (-1870 (((-430 $) $) 195)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 141)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2799 (($ $ $ |#4|) 95)) (-3928 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 131) (((-701 |#2|) (-701 $)) 121) (((-701 |#2|) (-1286 $)) NIL)) (-4290 (($ $) 210) (($ $ |#4|) 213)) (-1391 (((-656 $) $) 77)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 229) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 222)) (-2397 (((-656 $) $) 34)) (-4330 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#4|) 192)) (-1864 (((-3 (-656 $) "failed") $) 52)) (-4139 (((-3 (-656 $) "failed") $) 39)) (-2302 (((-3 (-2 (|:| |var| |#4|) (|:| -2300 (-783))) "failed") $) 57)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 134)) (-4412 (((-430 (-1191 $)) (-1191 $)) 147)) (-2822 (((-430 (-1191 $)) (-1191 $)) 145)) (-4205 (((-430 $) $) 165)) (-2666 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-3206 (($ $ |#4|) 97)) (-1846 (((-905 (-390)) $) 243) (((-905 (-576)) $) 236) (((-548) $) 251)) (-1885 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 184)) (-4309 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-1817 (((-3 $ "failed") $) 186)) (-2617 (((-112) $ $) 216)))
+(((-964 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3300 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -4290 (|#1| |#1| |#4|)) (-15 -1885 (|#1| |#1| |#4|)) (-15 -3206 (|#1| |#1| |#4|)) (-15 -2799 (|#1| |#1| |#1| |#4|)) (-15 -1391 ((-656 |#1|) |#1|)) (-15 -3306 ((-783) |#1| (-656 |#4|))) (-15 -3306 ((-783) |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| |#4|) (|:| -2300 (-783))) "failed") |#1|)) (-15 -1864 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4139 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4330 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4330 (|#1| |#1| |#4| (-783))) (-15 -2908 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -2397 ((-656 |#1|) |#1|)) (-15 -4309 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4309 (|#1| |#1| |#4| (-783))) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#4| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4330 (|#1| |#2| |#3|)) (-15 -4309 (|#2| |#1| |#3|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|))) (-965 |#2| |#3| |#4|) (-1067) (-805) (-862)) (T -964))
+NIL
+(-10 -8 (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -1817 ((-3 |#1| "failed") |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3300 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -4290 (|#1| |#1| |#4|)) (-15 -1885 (|#1| |#1| |#4|)) (-15 -3206 (|#1| |#1| |#4|)) (-15 -2799 (|#1| |#1| |#1| |#4|)) (-15 -1391 ((-656 |#1|) |#1|)) (-15 -3306 ((-783) |#1| (-656 |#4|))) (-15 -3306 ((-783) |#1|)) (-15 -2302 ((-3 (-2 (|:| |var| |#4|) (|:| -2300 (-783))) "failed") |#1|)) (-15 -1864 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4139 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -4330 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4330 (|#1| |#1| |#4| (-783))) (-15 -2908 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -2397 ((-656 |#1|) |#1|)) (-15 -4309 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4309 (|#1| |#1| |#4| (-783))) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#4| |#1|)) (-15 -2666 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2666 (|#1| |#1| |#4| |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4330 (|#1| |#2| |#3|)) (-15 -4309 (|#2| |#1| |#3|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -2617 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 |#3|) $) 113)) (-4174 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4334 (($ $) 91 (|has| |#1| (-568)))) (-1428 (((-112) $) 93 (|has| |#1| (-568)))) (-3306 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2879 (($ $) 101 (|has| |#1| (-464)))) (-1870 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141)) (-2216 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142)) (-2799 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1404 (($ $) 159)) (-3928 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-4077 (((-3 $ "failed") $) 37)) (-4290 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1391 (((-656 $) $) 112)) (-3124 (((-112) $) 99 (|has| |#1| (-925)))) (-3130 (($ $ |#1| |#2| $) 177)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-4192 (((-112) $) 35)) (-2747 (((-783) $) 174)) (-4341 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-2397 (((-656 $) $) 129)) (-1614 (((-112) $) 157)) (-4330 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#3|) 123)) (-1859 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2819 (($ (-1 |#2| |#2|) $) 176)) (-1787 (($ (-1 |#1| |#1|) $) 156)) (-1712 (((-3 |#3| "failed") $) 126)) (-1368 (($ $) 154)) (-1380 ((|#1| $) 153)) (-2850 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2148 (((-1177) $) 10)) (-1864 (((-3 (-656 $) "failed") $) 117)) (-4139 (((-3 (-656 $) "failed") $) 118)) (-2302 (((-3 (-2 (|:| |var| |#3|) (|:| -2300 (-783))) "failed") $) 116)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 171)) (-1357 ((|#1| $) 172)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-2892 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 102 (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-3206 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2782 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-1846 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2096 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3532 (((-656 |#1|) $) 173)) (-4309 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1817 (((-3 $ "failed") $) 82 (-2838 (-2096 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 32 T CONST)) (-1412 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-965 |#1| |#2| |#3|) (-141) (-1067) (-805) (-862)) (T -965))
+((-4290 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2782 (*1 *2 *1 *3) (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-2782 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-4309 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *2 (-862)))) (-4309 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-4174 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *3)))) (-1712 (*1 *2 *1) (|partial| -12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1859 (*1 *2 *1 *3) (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-2908 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-965 *4 *5 *3)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *2 (-862)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)))) (-4341 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1067)) (-4 *1 (-965 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-862)))) (-4341 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)))) (-4139 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-1864 (*1 *2 *1) (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-2302 (*1 *2 *1) (|partial| -12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2300 (-783)))))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3306 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-1391 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5)))) (-2799 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3206 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1885 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-4290 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1870 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-965 *3 *4 *5)))))
+(-13 (-914 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1056 |t#3|) (-388 |t#1|) (-10 -8 (-15 -2782 ((-783) $ |t#3|)) (-15 -2782 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4309 ($ $ |t#3| (-783))) (-15 -4309 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2397 ((-656 $) $)) (-15 -4174 ((-1191 $) $ |t#3|)) (-15 -4174 ((-1191 |t#1|) $)) (-15 -1712 ((-3 |t#3| "failed") $)) (-15 -1859 ((-783) $ |t#3|)) (-15 -1859 ((-656 (-783)) $ (-656 |t#3|))) (-15 -2908 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |t#3|)) (-15 -4330 ($ $ |t#3| (-783))) (-15 -4330 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -4341 ($ (-1191 |t#1|) |t#3|)) (-15 -4341 ($ (-1191 $) |t#3|)) (-15 -4139 ((-3 (-656 $) "failed") $)) (-15 -1864 ((-3 (-656 $) "failed") $)) (-15 -2302 ((-3 (-2 (|:| |var| |t#3|) (|:| -2300 (-783))) "failed") $)) (-15 -3306 ((-783) $)) (-15 -3306 ((-783) $ (-656 |t#3|))) (-15 -4352 ((-656 |t#3|) $)) (-15 -1391 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-576)))) (IF (|has| |t#3| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (IF (|has| |t#3| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-576))) (IF (|has| |t#3| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (IF (|has| |t#3| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2799 ($ $ $ |t#3|)) (-15 -3206 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -1885 ($ $ |t#3|)) (-15 -4290 ($ $)) (-15 -4290 ($ $ |t#3|)) (-15 -1870 ((-430 $) $)) (-15 -2879 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-925)) (-6 (-925)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-300) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-914 |#3|) . T) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925)))
+((-4352 (((-656 |#2|) |#5|) 40)) (-4174 (((-1191 |#5|) |#5| |#2| (-1191 |#5|)) 23) (((-419 (-1191 |#5|)) |#5| |#2|) 16)) (-4341 ((|#5| (-419 (-1191 |#5|)) |#2|) 30)) (-1712 (((-3 |#2| "failed") |#5|) 71)) (-1864 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-4004 (((-3 (-2 (|:| |val| |#5|) (|:| -2300 (-576))) "failed") |#5|) 53)) (-4139 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-2302 (((-3 (-2 (|:| |var| |#2|) (|:| -2300 (-576))) "failed") |#5|) 57)))
+(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4352 ((-656 |#2|) |#5|)) (-15 -1712 ((-3 |#2| "failed") |#5|)) (-15 -4174 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -4341 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -4174 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -4139 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1864 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2302 ((-3 (-2 (|:| |var| |#2|) (|:| -2300 (-576))) "failed") |#5|)) (-15 -4004 ((-3 (-2 (|:| |val| |#5|) (|:| -2300 (-576))) "failed") |#5|))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2956 ($ |#4|)) (-15 -2976 (|#4| $)) (-15 -2987 (|#4| $))))) (T -966))
+((-4004 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2300 (-576)))) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))) (-2302 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2300 (-576)))) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))) (-1864 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))) (-4139 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))) (-4174 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))) (-4 *7 (-965 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-5 *1 (-966 *5 *4 *6 *7 *3)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-4 *2 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))) (-5 *1 (-966 *5 *4 *6 *7 *2)) (-4 *7 (-965 *6 *5 *4)))) (-4174 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) (-5 *1 (-966 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))) (-1712 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1067)) (-4 *6 (-965 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-966 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *6)) (-15 -2976 (*6 $)) (-15 -2987 (*6 $))))))) (-4352 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-966 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))))
+(-10 -7 (-15 -4352 ((-656 |#2|) |#5|)) (-15 -1712 ((-3 |#2| "failed") |#5|)) (-15 -4174 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -4341 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -4174 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -4139 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1864 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2302 ((-3 (-2 (|:| |var| |#2|) (|:| -2300 (-576))) "failed") |#5|)) (-15 -4004 ((-3 (-2 (|:| |val| |#5|) (|:| -2300 (-576))) "failed") |#5|)))
+((-1787 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1787 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-862) (-1067) (-965 |#3| |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -967))
+((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *6 (-805)) (-4 *2 (-13 (-1118) (-10 -8 (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-967 *6 *7 *8 *5 *2)) (-4 *5 (-965 *8 *6 *7)))))
+(-10 -7 (-15 -1787 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1195)) $) 16)) (-4174 (((-1191 $) $ (-1195)) 21) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1195))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1195) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1195) $) NIL)) (-2799 (($ $ $ (-1195)) NIL (|has| |#1| (-174)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-543 (-1195)) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1195) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1195) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#1|) (-1195)) NIL) (($ (-1191 $) (-1195)) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1195)) NIL)) (-1859 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-2819 (($ (-1 (-543 (-1195)) (-543 (-1195))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1712 (((-3 (-1195) "failed") $) 19)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1195)) (|:| -2300 (-783))) "failed") $) NIL)) (-2254 (($ $ (-1195)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1195) |#1|) NIL) (($ $ (-656 (-1195)) (-656 |#1|)) NIL) (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL)) (-3206 (($ $ (-1195)) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2782 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1195) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1195)) 27) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-968 |#1|) (-13 (-965 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1195))) |%noBranch|))) (-1067)) (T -968))
+((-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-968 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))))
+(-13 (-965 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1195))) |%noBranch|)))
+((-1639 (((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-3948 (((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-4434 (((-2 (|:| -2300 (-783)) (|:| -1868 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-4297 (((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464)))))
+(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1639 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3948 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -4297 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -4434 ((-2 (|:| -2300 (-783)) (|:| -1868 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-862) (-568) (-965 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2956 ($ |#4|)) (-15 -2976 (|#4| $)) (-15 -2987 (|#4| $))))) (T -969))
+((-4434 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-969 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2956 ($ *3)) (-15 -2976 (*3 $)) (-15 -2987 (*3 $))))))) (-4297 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| *3))) (-5 *1 (-969 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2956 ($ *8)) (-15 -2976 (*8 $)) (-15 -2987 (*8 $))))))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *9) (|:| |radicand| *9))) (-5 *1 (-969 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -2956 ($ *8)) (-15 -2976 (*8 $)) (-15 -2987 (*8 $))))))) (-1639 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-965 *3 *5 *6)) (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *8) (|:| |radicand| *8))) (-5 *1 (-969 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))))
+(-10 -7 (-15 -1639 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -3948 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -4297 ((-2 (|:| -2300 (-783)) (|:| -1868 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -4434 ((-2 (|:| -2300 (-783)) (|:| -1868 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783))))
+((-2869 (((-112) $ $) NIL)) (-2129 (($ (-1138)) 8)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15) (((-1138) $) 12)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 11)))
+(((-970) (-13 (-1118) (-625 (-1138)) (-10 -8 (-15 -2129 ($ (-1138)))))) (T -970))
+((-2129 (*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-970)))))
+(-13 (-1118) (-625 (-1138)) (-10 -8 (-15 -2129 ($ (-1138)))))
+((-2444 (((-1112 (-227)) $) 8)) (-2431 (((-1112 (-227)) $) 9)) (-3388 (((-656 (-656 (-959 (-227)))) $) 10)) (-2956 (((-874) $) 6)))
+(((-971) (-141)) (T -971))
+((-3388 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-656 (-656 (-959 (-227))))))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227))))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227))))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3388 ((-656 (-656 (-959 (-227)))) $)) (-15 -2431 ((-1112 (-227)) $)) (-15 -2444 ((-1112 (-227)) $))))
+(((-625 (-874)) . T))
+((-2403 (((-3 (-701 |#1|) "failed") |#2| (-937)) 18)))
+(((-972 |#1| |#2|) (-10 -7 (-15 -2403 ((-3 (-701 |#1|) "failed") |#2| (-937)))) (-568) (-668 |#1|)) (T -972))
+((-2403 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-937)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-972 *5 *3)) (-4 *3 (-668 *5)))))
+(-10 -7 (-15 -2403 ((-3 (-701 |#1|) "failed") |#2| (-937))))
+((-3000 (((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|) 16)) (-2887 ((|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|) 18)) (-1787 (((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)) 13)))
+(((-973 |#1| |#2|) (-10 -7 (-15 -3000 ((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -1787 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|)))) (-1236) (-1236)) (T -973))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-974 *6)) (-5 *1 (-973 *5 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-974 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-973 *5 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-974 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-974 *5)) (-5 *1 (-973 *6 *5)))))
+(-10 -7 (-15 -3000 ((-974 |#2|) (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-974 |#1|) |#2|)) (-15 -1787 ((-974 |#2|) (-1 |#2| |#1|) (-974 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 16)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) |#1|) 15)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) 11 (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) 20 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1253 (-576))) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) 21)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 14)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2882 (((-783) $) 8 (|has| $ (-6 -4461)))))
+(((-974 |#1|) (-19 |#1|) (-1236)) (T -974))
NIL
(-19 |#1|)
-((-2961 (($ $ (-1108 $)) 7) (($ $ (-1193)) 6)))
-(((-973) (-141)) (T -973))
-((-2961 (*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-973)))) (-2961 (*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-1193)))))
-(-13 (-10 -8 (-15 -2961 ($ $ (-1193))) (-15 -2961 ($ $ (-1108 $)))))
-((-1615 (((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193)) 26) (((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193))) 27) (((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193)) 49)))
-(((-974 |#1|) (-10 -7 (-15 -1615 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193))) (-15 -1615 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -1615 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193)))) (-13 (-372) (-148))) (T -974))
-((-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-5 *5 (-1193)) (-4 *6 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *6))) (|:| |prim| (-1189 *6)))) (-5 *1 (-974 *6)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *5))) (|:| |prim| (-1189 *5)))) (-5 *1 (-974 *5)))) (-1615 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-966 *5)) (-5 *4 (-1193)) (-4 *5 (-13 (-372) (-148))) (-5 *2 (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 *5)))) (-5 *1 (-974 *5)))))
-(-10 -7 (-15 -1615 ((-2 (|:| |coef1| (-574)) (|:| |coef2| (-574)) (|:| |prim| (-1189 |#1|))) (-966 |#1|) (-1193) (-966 |#1|) (-1193))) (-15 -1615 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)))) (-15 -1615 ((-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 |#1|))) (|:| |prim| (-1189 |#1|))) (-654 (-966 |#1|)) (-654 (-1193)) (-1193))))
-((-3256 (((-654 |#1|) |#1| |#1|) 47)) (-3342 (((-112) |#1|) 44)) (-4302 ((|#1| |#1|) 79)) (-3649 ((|#1| |#1|) 78)))
-(((-975 |#1|) (-10 -7 (-15 -3342 ((-112) |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3256 ((-654 |#1|) |#1| |#1|))) (-555)) (T -975))
-((-3256 (*1 *2 *3 *3) (-12 (-5 *2 (-654 *3)) (-5 *1 (-975 *3)) (-4 *3 (-555)))) (-4302 (*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))) (-3649 (*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))) (-3342 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-975 *3)) (-4 *3 (-555)))))
-(-10 -7 (-15 -3342 ((-112) |#1|)) (-15 -3649 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -3256 ((-654 |#1|) |#1| |#1|)))
-((-1803 (((-1289) (-872)) 9)))
-(((-976) (-10 -7 (-15 -1803 ((-1289) (-872))))) (T -976))
-((-1803 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-976)))))
-(-10 -7 (-15 -1803 ((-1289) (-872))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 78 (|has| |#1| (-566)))) (-4141 (($ $) 79 (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 34)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) 31)) (-3612 (((-3 $ "failed") $) 42)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-3637 (($ $ |#1| |#2| $) 62)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) 17)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| |#2|) NIL)) (-2043 ((|#2| $) 24)) (-3431 (($ (-1 |#2| |#2|) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1366 (($ $) 28)) (-1378 ((|#1| $) 26)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 51)) (-1355 ((|#1| $) NIL)) (-2753 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-566))))) (-2853 (((-3 $ "failed") $ $) 91 (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-566)))) (-3735 ((|#2| $) 22)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) 46) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 41) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ |#2|) 37)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) 15 T CONST)) (-3245 (($ $ $ (-781)) 74 (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) 84 (|has| |#1| (-566)))) (-2141 (($) 27 T CONST)) (-2153 (($) 12 T CONST)) (-2986 (((-112) $ $) 83)) (-3099 (($ $ |#1|) 92 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) 69) (($ $ (-781)) 67)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-977 |#1| |#2|) (-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2753 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065) (-802)) (T -977))
-((-2753 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-977 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *2 (-802)))))
-(-13 (-334 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| |#2| (-132)) (-15 -2753 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-2354 (($ $ $) 65 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (-3290 (((-3 $ "failed") $ $) 52 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (-1496 (((-781)) 36 (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-1482 ((|#2| $) 22)) (-3609 ((|#1| $) 21)) (-1430 (($) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-3612 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-2835 (($) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3943 (((-112) $) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (-3634 (($ $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2976 (($ $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2471 (($ |#1| |#2|) 20)) (-3507 (((-935) $) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 39 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2591 (($ (-935)) NIL (-12 (|has| |#1| (-377)) (|has| |#2| (-377))))) (-3940 (((-1136) $) NIL)) (-4090 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3082 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-2951 (((-872) $) 14)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 42 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))) CONST)) (-2153 (($) 25 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))) CONST)) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-2986 (((-112) $ $) 19)) (-3031 (((-112) $ $) NIL (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3009 (((-112) $ $) 69 (-2833 (-12 (|has| |#1| (-803)) (|has| |#2| (-803))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))))) (-3099 (($ $ $) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483))))) (-3090 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3074 (($ $ $) 45 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803)))))) (** (($ $ (-574)) NIL (-12 (|has| |#1| (-483)) (|has| |#2| (-483)))) (($ $ (-781)) 32 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736))))) (($ $ (-935)) NIL (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))) (* (($ (-574) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-781) $) 48 (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ (-935) $) NIL (-2833 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-803)) (|has| |#2| (-803))))) (($ $ $) 28 (-2833 (-12 (|has| |#1| (-483)) (|has| |#2| (-483))) (-12 (|has| |#1| (-736)) (|has| |#2| (-736)))))))
-(((-978 |#1| |#2|) (-13 (-1116) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2471 ($ |#1| |#2|)) (-15 -3609 (|#1| $)) (-15 -1482 (|#2| $)))) (-1116) (-1116)) (T -978))
-((-2471 (*1 *1 *2 *3) (-12 (-5 *1 (-978 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3609 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1116)))) (-1482 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-978 *3 *2)) (-4 *3 (-1116)))))
-(-13 (-1116) (-10 -8 (IF (|has| |#1| (-377)) (IF (|has| |#2| (-377)) (-6 (-377)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-736)) (IF (|has| |#2| (-736)) (-6 (-736)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-483)) (IF (|has| |#2| (-483)) (-6 (-483)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-803)) (IF (|has| |#2| (-803)) (-6 (-803)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -2471 ($ |#1| |#2|)) (-15 -3609 (|#1| $)) (-15 -1482 (|#2| $))))
-((-3079 (((-1120) $) 12)) (-3134 (($ (-516) (-1120)) 14)) (-2039 (((-516) $) 9)) (-2951 (((-872) $) 24)))
-(((-979) (-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -3079 ((-1120) $)) (-15 -3134 ($ (-516) (-1120)))))) (T -979))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-979)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-979)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-979)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2039 ((-516) $)) (-15 -3079 ((-1120) $)) (-15 -3134 ($ (-516) (-1120)))))
-((-2864 (((-112) $ $) NIL)) (-1569 (($) NIL T CONST)) (-2106 (($ $ $) 30)) (-2084 (($ $) 24)) (-4420 (((-1175) $) NIL)) (-3056 (((-701 (-883 $ $)) $) 55)) (-3640 (((-701 $) $) 45)) (-3230 (((-701 (-883 $ $)) $) 56)) (-3380 (((-701 (-883 $ $)) $) 57)) (-2609 (((-701 |#1|) $) 36)) (-2077 (((-701 (-883 $ $)) $) 54)) (-3335 (($ $ $) 31)) (-3940 (((-1136) $) NIL)) (-2896 (($) NIL T CONST)) (-2728 (($ $ $) 32)) (-2284 (($ $ $) 29)) (-3618 (($ $ $) 27)) (-2951 (((-872) $) 59) (($ |#1|) 12)) (-2981 (((-112) $ $) NIL)) (-2095 (($ $ $) 28)) (-2986 (((-112) $ $) NIL)))
-(((-980 |#1|) (-13 (-983) (-626 |#1|) (-10 -8 (-15 -2609 ((-701 |#1|) $)) (-15 -3640 ((-701 $) $)) (-15 -2077 ((-701 (-883 $ $)) $)) (-15 -3056 ((-701 (-883 $ $)) $)) (-15 -3230 ((-701 (-883 $ $)) $)) (-15 -3380 ((-701 (-883 $ $)) $)) (-15 -3618 ($ $ $)) (-15 -2284 ($ $ $)))) (-1116)) (T -980))
-((-2609 (*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-701 (-980 *3))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))) (-3618 (*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116)))))
-(-13 (-983) (-626 |#1|) (-10 -8 (-15 -2609 ((-701 |#1|) $)) (-15 -3640 ((-701 $) $)) (-15 -2077 ((-701 (-883 $ $)) $)) (-15 -3056 ((-701 (-883 $ $)) $)) (-15 -3230 ((-701 (-883 $ $)) $)) (-15 -3380 ((-701 (-883 $ $)) $)) (-15 -3618 ($ $ $)) (-15 -2284 ($ $ $))))
-((-3704 (((-980 |#1|) (-980 |#1|)) 46)) (-2740 (((-980 |#1|) (-980 |#1|)) 22)) (-1375 (((-1118 |#1|) (-980 |#1|)) 41)))
-(((-981 |#1|) (-13 (-1234) (-10 -7 (-15 -2740 ((-980 |#1|) (-980 |#1|))) (-15 -1375 ((-1118 |#1|) (-980 |#1|))) (-15 -3704 ((-980 |#1|) (-980 |#1|))))) (-1116)) (T -981))
-((-2740 (*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1116)) (-5 *2 (-1118 *4)) (-5 *1 (-981 *4)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3)))))
-(-13 (-1234) (-10 -7 (-15 -2740 ((-980 |#1|) (-980 |#1|))) (-15 -1375 ((-1118 |#1|) (-980 |#1|))) (-15 -3704 ((-980 |#1|) (-980 |#1|)))))
-((-1785 (((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)) 29)))
-(((-982 |#1| |#2|) (-13 (-1234) (-10 -7 (-15 -1785 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|))))) (-1116) (-1116)) (T -982))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *2 (-980 *6)) (-5 *1 (-982 *5 *6)))))
-(-13 (-1234) (-10 -7 (-15 -1785 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)))))
-((-2864 (((-112) $ $) 15)) (-1569 (($) 14 T CONST)) (-2106 (($ $ $) 6)) (-2084 (($ $) 8)) (-4420 (((-1175) $) 19)) (-3335 (($ $ $) 12)) (-3940 (((-1136) $) 18)) (-2896 (($) 13 T CONST)) (-2728 (($ $ $) 11)) (-2951 (((-872) $) 17)) (-2981 (((-112) $ $) 20)) (-2095 (($ $ $) 7)) (-2986 (((-112) $ $) 16)))
-(((-983) (-141)) (T -983))
-((-1569 (*1 *1) (-4 *1 (-983))) (-2896 (*1 *1) (-4 *1 (-983))) (-3335 (*1 *1 *1 *1) (-4 *1 (-983))) (-2728 (*1 *1 *1 *1) (-4 *1 (-983))))
-(-13 (-113) (-1116) (-10 -8 (-15 -1569 ($) -1714) (-15 -2896 ($) -1714) (-15 -3335 ($ $ $)) (-15 -2728 ($ $ $))))
-(((-102) . T) ((-113) . T) ((-623 (-872)) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-2645 (($ $ $) 44)) (-2470 (($ $ $) 45)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2976 ((|#1| $) 46)) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-984 |#1|) (-141) (-860)) (T -984))
-((-2976 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -2976 (|t#1| $)) (-15 -2470 ($ $ $)) (-15 -2645 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-1817 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 105)) (-2982 ((|#2| |#2| |#2|) 103)) (-2711 (((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 107)) (-2219 (((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|) 109)) (-3573 (((-2 (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|) 131 (|has| |#1| (-462)))) (-1938 (((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|) 56)) (-1922 (((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|) 80)) (-1634 (((-2 (|:| |coef1| |#2|) (|:| -4047 |#1|)) |#2| |#2|) 82)) (-1902 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-4284 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 89)) (-4023 (((-2 (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|) 121)) (-2592 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 92)) (-2271 (((-654 (-781)) |#2| |#2|) 102)) (-1577 ((|#1| |#2| |#2|) 50)) (-2113 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|) 129 (|has| |#1| (-462)))) (-2176 ((|#1| |#2| |#2|) 127 (|has| |#1| (-462)))) (-1483 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|) 54)) (-1986 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|) 79)) (-4047 ((|#1| |#2| |#2|) 76)) (-3959 (((-2 (|:| -1866 |#1|) (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|) 41)) (-2024 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3895 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3521 ((|#2| |#2| |#2|) 93)) (-3765 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 87)) (-2542 ((|#2| |#2| |#2| (-781)) 85)) (-2887 ((|#2| |#2| |#2|) 135 (|has| |#1| (-462)))) (-2853 (((-1284 |#2|) (-1284 |#2|) |#1|) 22)) (-2472 (((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|) 46)) (-3838 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|) 119)) (-1924 ((|#1| |#2|) 116)) (-2706 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781)) 91)) (-3837 ((|#2| |#2| |#2| (-781)) 90)) (-2658 (((-654 |#2|) |#2| |#2|) 99)) (-3499 ((|#2| |#2| |#1| |#1| (-781)) 62)) (-3700 ((|#1| |#1| |#1| (-781)) 61)) (* (((-1284 |#2|) |#1| (-1284 |#2|)) 17)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -4047 (|#1| |#2| |#2|)) (-15 -1986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1922 ((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1634 ((-2 (|:| |coef1| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -2542 (|#2| |#2| |#2| (-781))) (-15 -3765 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4284 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3837 (|#2| |#2| |#2| (-781))) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2592 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3521 (|#2| |#2| |#2|)) (-15 -3895 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1902 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2982 (|#2| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2711 ((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2219 ((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -1924 (|#1| |#2|)) (-15 -3838 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|)) (-15 -4023 ((-2 (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|)) (-15 -2658 ((-654 |#2|) |#2| |#2|)) (-15 -2271 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -2176 (|#1| |#2| |#2|)) (-15 -2113 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|)) (-15 -3573 ((-2 (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1284 |#2|) |#1| (-1284 |#2|))) (-15 -2853 ((-1284 |#2|) (-1284 |#2|) |#1|)) (-15 -3959 ((-2 (|:| -1866 |#1|) (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|)) (-15 -2472 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|)) (-15 -3700 (|#1| |#1| |#1| (-781))) (-15 -3499 (|#2| |#2| |#1| |#1| (-781))) (-15 -2024 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1577 (|#1| |#2| |#2|)) (-15 -1483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1938 ((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|))) (-566) (-1260 |#1|)) (T -985))
-((-1938 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4047 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1483 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4047 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1577 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-2024 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-3499 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-3700 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-985 *2 *4)) (-4 *4 (-1260 *2)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3959 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -1866 *4) (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2853 (*1 *2 *2 *3) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) (-5 *1 (-985 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566)) (-5 *1 (-985 *3 *4)))) (-2887 (*1 *2 *2 *2) (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-3573 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2176 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2113 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2176 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2176 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-2271 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2658 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-4023 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1924 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1924 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1924 (*1 *2 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))) (-2219 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2711 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1817 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2887 *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-2982 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-1902 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3895 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-3521 (*1 *2 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))) (-2592 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-2706 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-3837 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) (-4 *2 (-1260 *4)))) (-4284 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-3765 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))) (-2542 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2)) (-4 *2 (-1260 *4)))) (-1634 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4047 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1922 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4047 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-1986 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4047 *4))) (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))) (-4047 (*1 *2 *3 *3) (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))))
-(-10 -7 (-15 -4047 (|#1| |#2| |#2|)) (-15 -1986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1922 ((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1634 ((-2 (|:| |coef1| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -2542 (|#2| |#2| |#2| (-781))) (-15 -3765 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -4284 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3837 (|#2| |#2| |#2| (-781))) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -2592 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-781))) (-15 -3521 (|#2| |#2| |#2|)) (-15 -3895 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1902 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2982 (|#2| |#2| |#2|)) (-15 -1817 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2711 ((-2 (|:| |coef2| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2219 ((-2 (|:| |coef1| |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -1924 (|#1| |#2|)) (-15 -3838 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|)) (-15 -4023 ((-2 (|:| |coef2| |#2|) (|:| -1924 |#1|)) |#2|)) (-15 -2658 ((-654 |#2|) |#2| |#2|)) (-15 -2271 ((-654 (-781)) |#2| |#2|)) (IF (|has| |#1| (-462)) (PROGN (-15 -2176 (|#1| |#2| |#2|)) (-15 -2113 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|)) (-15 -3573 ((-2 (|:| |coef2| |#2|) (|:| -2176 |#1|)) |#2| |#2|)) (-15 -2887 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1284 |#2|) |#1| (-1284 |#2|))) (-15 -2853 ((-1284 |#2|) (-1284 |#2|) |#1|)) (-15 -3959 ((-2 (|:| -1866 |#1|) (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|)) (-15 -2472 ((-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) |#2| |#2|)) (-15 -3700 (|#1| |#1| |#1| (-781))) (-15 -3499 (|#2| |#2| |#1| |#1| (-781))) (-15 -2024 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1577 (|#1| |#2| |#2|)) (-15 -1483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)) (-15 -1938 ((-2 (|:| |coef2| |#2|) (|:| -4047 |#1|)) |#2| |#2|)))
-((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-986) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -986))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-986)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-986)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 40)) (-3290 (((-3 $ "failed") $ $) 54)) (-1430 (($) NIL T CONST)) (-2813 (((-654 (-883 (-935) (-935))) $) 67)) (-2704 (((-935) $) 94)) (-1871 (((-654 (-935)) $) 17)) (-2500 (((-1173 $) (-781)) 39)) (-4320 (($ (-654 (-935))) 16)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4090 (($ $) 70)) (-2951 (((-872) $) 90) (((-654 (-935)) $) 11)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 8 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 44)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 42)) (-3074 (($ $ $) 46)) (* (($ (-935) $) NIL) (($ (-781) $) 49)) (-2877 (((-781) $) 22)))
-(((-987) (-13 (-805) (-623 (-654 (-935))) (-10 -8 (-15 -4320 ($ (-654 (-935)))) (-15 -1871 ((-654 (-935)) $)) (-15 -2877 ((-781) $)) (-15 -2500 ((-1173 $) (-781))) (-15 -2813 ((-654 (-883 (-935) (-935))) $)) (-15 -2704 ((-935) $)) (-15 -4090 ($ $))))) (T -987))
-((-4320 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-987)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1173 (-987))) (-5 *1 (-987)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-935) (-935)))) (-5 *1 (-987)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-987)))) (-4090 (*1 *1 *1) (-5 *1 (-987))))
-(-13 (-805) (-623 (-654 (-935))) (-10 -8 (-15 -4320 ($ (-654 (-935)))) (-15 -1871 ((-654 (-935)) $)) (-15 -2877 ((-781) $)) (-15 -2500 ((-1173 $) (-781))) (-15 -2813 ((-654 (-883 (-935) (-935))) $)) (-15 -2704 ((-935) $)) (-15 -4090 ($ $))))
-((-3099 (($ $ |#2|) 31)) (-3090 (($ $) 23) (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-417 (-574)) $) 27) (($ $ (-417 (-574))) 29)))
-(((-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3099 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|))) (-989 |#2| |#3| |#4|) (-1065) (-802) (-860)) (T -988))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-417 (-574)))) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 -3099 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 * (|#1| (-935) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 86)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-1674 (((-112) $) 85)) (-3943 (((-112) $) 35)) (-3873 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-654 |#3|) (-654 |#2|)) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-3735 ((|#2| $) 76)) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1788 ((|#1| $ |#2|) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-989 |#1| |#2| |#3|) (-141) (-1065) (-802) (-860)) (T -989))
-((-1378 (*1 *2 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860)) (-4 *2 (-1065)))) (-1366 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *4 (-860)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *2 *4)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *2 (-802)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-989 *4 *3 *2)) (-4 *4 (-1065)) (-4 *3 (-802)) (-4 *2 (-860)))) (-4328 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-989 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-802)) (-4 *6 (-860)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-654 *5)))) (-1674 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3263 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802)) (-4 *4 (-860)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4328 ($ $ |t#3| |t#2|)) (-15 -4328 ($ $ (-654 |t#3|) (-654 |t#2|))) (-15 -1366 ($ $)) (-15 -1378 (|t#1| $)) (-15 -3735 (|t#2| $)) (-15 -4350 ((-654 |t#3|) $)) (-15 -1674 ((-112) $)) (-15 -3263 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2452 (((-1110 (-227)) $) 8)) (-2439 (((-1110 (-227)) $) 9)) (-2426 (((-1110 (-227)) $) 10)) (-3368 (((-654 (-654 (-957 (-227)))) $) 11)) (-2951 (((-872) $) 6)))
-(((-990) (-141)) (T -990))
-((-3368 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-654 (-654 (-957 (-227))))))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))))
-(-13 (-623 (-872)) (-10 -8 (-15 -3368 ((-654 (-654 (-957 (-227)))) $)) (-15 -2426 ((-1110 (-227)) $)) (-15 -2439 ((-1110 (-227)) $)) (-15 -2452 ((-1110 (-227)) $))))
-(((-623 (-872)) . T))
-((-4350 (((-654 |#4|) $) 23)) (-4376 (((-112) $) 55)) (-3683 (((-112) $) 54)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#4|) 42)) (-2604 (((-112) $) 56)) (-3890 (((-112) $ $) 62)) (-3887 (((-112) $ $) 65)) (-3611 (((-112) $) 60)) (-3688 (((-654 |#5|) (-654 |#5|) $) 98)) (-2492 (((-654 |#5|) (-654 |#5|) $) 95)) (-3919 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2089 (((-654 |#4|) $) 27)) (-1726 (((-112) |#4| $) 34)) (-3745 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4216 (($ $ |#4|) 39)) (-2490 (($ $ |#4|) 38)) (-3476 (($ $ |#4|) 40)) (-2986 (((-112) $ $) 46)))
-(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3683 ((-112) |#1|)) (-15 -3688 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2492 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3919 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3745 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2604 ((-112) |#1|)) (-15 -3887 ((-112) |#1| |#1|)) (-15 -3890 ((-112) |#1| |#1|)) (-15 -3611 ((-112) |#1|)) (-15 -4376 ((-112) |#1|)) (-15 -2786 ((-2 (|:| |under| |#1|) (|:| -3229 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4216 (|#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#4|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -1726 ((-112) |#4| |#1|)) (-15 -2089 ((-654 |#4|) |#1|)) (-15 -4350 ((-654 |#4|) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-992 |#2| |#3| |#4| |#5|) (-1065) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -991))
-NIL
-(-10 -8 (-15 -3683 ((-112) |#1|)) (-15 -3688 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -2492 ((-654 |#5|) (-654 |#5|) |#1|)) (-15 -3919 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3745 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2604 ((-112) |#1|)) (-15 -3887 ((-112) |#1| |#1|)) (-15 -3890 ((-112) |#1| |#1|)) (-15 -3611 ((-112) |#1|)) (-15 -4376 ((-112) |#1|)) (-15 -2786 ((-2 (|:| |under| |#1|) (|:| -3229 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4216 (|#1| |#1| |#4|)) (-15 -3476 (|#1| |#1| |#4|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -1726 ((-112) |#4| |#1|)) (-15 -2089 ((-654 |#4|) |#1|)) (-15 -4350 ((-654 |#4|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459)))) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459)))) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-3940 (((-1136) $) 11)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-2981 (((-112) $ $) 9)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-992 |#1| |#2| |#3| |#4|) (-141) (-1065) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -992))
-((-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-1081 *3 *4 *2)) (-4 *2 (-860)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-1726 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *3 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))) (-2490 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-3476 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-4216 (*1 *1 *1 *2) (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))) (-2786 (*1 *2 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3229 *1) (|:| |upper| *1))) (-4 *1 (-992 *4 *5 *3 *6)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3887 (*1 *2 *1 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))) (-3745 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3919 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2492 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)))) (-3688 (*1 *2 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-5 *2 (-112)))))
-(-13 (-1116) (-152 |t#4|) (-623 (-654 |t#4|)) (-10 -8 (-6 -4459) (-15 -1704 ((-3 $ "failed") (-654 |t#4|))) (-15 -2216 ($ (-654 |t#4|))) (-15 -4063 (|t#3| $)) (-15 -4350 ((-654 |t#3|) $)) (-15 -2089 ((-654 |t#3|) $)) (-15 -1726 ((-112) |t#3| $)) (-15 -2490 ($ $ |t#3|)) (-15 -3476 ($ $ |t#3|)) (-15 -4216 ($ $ |t#3|)) (-15 -2786 ((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |t#3|)) (-15 -4376 ((-112) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -3611 ((-112) $)) (-15 -3890 ((-112) $ $)) (-15 -3887 ((-112) $ $)) (-15 -2604 ((-112) $)) (-15 -3745 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3919 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2492 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3688 ((-654 |t#4|) (-654 |t#4|) $)) (-15 -3683 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-1116) . T) ((-1234) . T))
-((-4357 (((-654 |#4|) |#4| |#4|) 136)) (-3696 (((-654 |#4|) (-654 |#4|) (-112)) 125 (|has| |#1| (-462))) (((-654 |#4|) (-654 |#4|)) 126 (|has| |#1| (-462)))) (-3832 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 44)) (-4149 (((-112) |#4|) 43)) (-4042 (((-654 |#4|) |#4|) 121 (|has| |#1| (-462)))) (-3862 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|)) 24)) (-2487 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 30)) (-1637 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|)) 31)) (-3223 (((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|)) 90)) (-4366 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2785 (((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3985 (((-654 |#4|) (-654 |#4|)) 128)) (-4231 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112)) 59) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 61)) (-2394 ((|#4| |#4| (-654 |#4|)) 60)) (-1678 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 132 (|has| |#1| (-462)))) (-3158 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 135 (|has| |#1| (-462)))) (-4134 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 134 (|has| |#1| (-462)))) (-4309 (((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|))) 105) (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 107) (((-654 |#4|) (-654 |#4|) |#4|) 140) (((-654 |#4|) |#4| |#4|) 137) (((-654 |#4|) (-654 |#4|)) 106)) (-3559 (((-654 |#4|) (-654 |#4|) (-654 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1783 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 52)) (-3946 (((-112) (-654 |#4|)) 79)) (-2413 (((-112) (-654 |#4|) (-654 (-654 |#4|))) 67)) (-3148 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 37)) (-3387 (((-112) |#4|) 36)) (-1735 (((-654 |#4|) (-654 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1609 (((-654 |#4|) (-654 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-3025 (((-654 |#4|) (-654 |#4|)) 83)) (-1818 (((-654 |#4|) (-654 |#4|)) 97)) (-4288 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-2508 (((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|)) 50)) (-2182 (((-112) |#4|) 45)))
-(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4309 ((-654 |#4|) (-654 |#4|))) (-15 -4309 ((-654 |#4|) |#4| |#4|)) (-15 -3985 ((-654 |#4|) (-654 |#4|))) (-15 -4357 ((-654 |#4|) |#4| |#4|)) (-15 -4309 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -4309 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4309 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -4288 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2413 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3946 ((-112) (-654 |#4|))) (-15 -3862 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -2487 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1637 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1783 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4149 ((-112) |#4|)) (-15 -3832 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3387 ((-112) |#4|)) (-15 -3148 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2182 ((-112) |#4|)) (-15 -2508 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4231 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4231 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2394 (|#4| |#4| (-654 |#4|))) (-15 -3025 ((-654 |#4|) (-654 |#4|))) (-15 -3223 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1818 ((-654 |#4|) (-654 |#4|))) (-15 -4366 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2785 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -4042 ((-654 |#4|) |#4|)) (-15 -3696 ((-654 |#4|) (-654 |#4|))) (-15 -3696 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -1678 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4134 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3158 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1609 ((-654 |#4|) (-654 |#4|))) (-15 -1735 ((-654 |#4|) (-654 |#4|))) (-15 -3559 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|)) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -993))
-((-3559 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3158 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-4134 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-1678 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3696 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-4042 (*1 *2 *3) (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-2785 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-993 *5 *6 *7 *8)))) (-4366 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *1 (-993 *6 *7 *8 *9)))) (-1818 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-3223 (*1 *2 *3) (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2010 (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2394 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *2)))) (-4231 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-3387 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-4149 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-1783 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7)))) (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8)))) (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *7)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *5 *6 *7 *8)))) (-4288 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *4 *5 *6 *7)))) (-4309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))) (-4309 (*1 *2 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-4309 (*1 *2 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *3)))) (-4357 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))) (-4309 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))) (-4309 (*1 *2 *2) (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4309 ((-654 |#4|) (-654 |#4|))) (-15 -4309 ((-654 |#4|) |#4| |#4|)) (-15 -3985 ((-654 |#4|) (-654 |#4|))) (-15 -4357 ((-654 |#4|) |#4| |#4|)) (-15 -4309 ((-654 |#4|) (-654 |#4|) |#4|)) (-15 -4309 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4309 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-1 (-654 |#4|) (-654 |#4|)))) (-15 -4288 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -2413 ((-112) (-654 |#4|) (-654 (-654 |#4|)))) (-15 -3946 ((-112) (-654 |#4|))) (-15 -3862 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-1 (-112) |#4|) (-654 |#4|))) (-15 -2487 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1637 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 (-1 (-112) |#4|)) (-654 |#4|))) (-15 -1783 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4149 ((-112) |#4|)) (-15 -3832 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -3387 ((-112) |#4|)) (-15 -3148 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -2182 ((-112) |#4|)) (-15 -2508 ((-2 (|:| |goodPols| (-654 |#4|)) (|:| |badPols| (-654 |#4|))) (-654 |#4|))) (-15 -4231 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4231 ((-654 |#4|) (-654 |#4|) (-654 |#4|) (-112))) (-15 -2394 (|#4| |#4| (-654 |#4|))) (-15 -3025 ((-654 |#4|) (-654 |#4|))) (-15 -3223 ((-3 (-2 (|:| |bas| (-486 |#1| |#2| |#3| |#4|)) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|))) (-15 -1818 ((-654 |#4|) (-654 |#4|))) (-15 -4366 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2785 ((-654 |#4|) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-462)) (PROGN (-15 -4042 ((-654 |#4|) |#4|)) (-15 -3696 ((-654 |#4|) (-654 |#4|))) (-15 -3696 ((-654 |#4|) (-654 |#4|) (-112))) (-15 -1678 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -4134 ((-654 |#4|) (-654 |#4|) (-654 |#4|))) (-15 -3158 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (PROGN (-15 -1609 ((-654 |#4|) (-654 |#4|))) (-15 -1735 ((-654 |#4|) (-654 |#4|))) (-15 -3559 ((-654 |#4|) (-654 |#4|) (-654 |#4|)))) |%noBranch|) |%noBranch|))
-((-1350 (((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4360 (((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)) 46)) (-2311 (((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-994 |#1|) (-10 -7 (-15 -1350 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2311 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4360 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|)))) (-372)) (T -994))
-((-4360 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5))))) (-5 *1 (-994 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)))) (-2311 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372)) (-5 *1 (-994 *5)))) (-1350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372)) (-5 *2 (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6)))) (-5 *1 (-994 *6)) (-5 *3 (-699 *6)))))
-(-10 -7 (-15 -1350 ((-2 (|:| R (-699 |#1|)) (|:| A (-699 |#1|)) (|:| |Ainv| (-699 |#1|))) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2311 ((-699 |#1|) (-699 |#1|) (-699 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4360 ((-654 (-2 (|:| C (-699 |#1|)) (|:| |g| (-1284 |#1|)))) (-699 |#1|) (-1284 |#1|))))
-((-3171 (((-428 |#4|) |#4|) 56)))
-(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3171 ((-428 |#4|) |#4|))) (-860) (-803) (-462) (-963 |#3| |#2| |#1|)) (T -995))
-((-3171 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4)))))
-(-10 -7 (-15 -3171 ((-428 |#4|) |#4|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2224 (($ (-781)) 115 (|has| |#1| (-23)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-3565 (($ (-654 |#1|)) 121)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1901 ((|#1| $) 105 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-2302 (((-112) $ (-781)) 10)) (-4109 ((|#1| $) 106 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-2249 (($ $ (-654 |#1|)) 119)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-3936 ((|#1| $ $) 109 (|has| |#1| (-1065)))) (-2732 (((-935) $) 120)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-2523 (($ $ $) 107)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546)))) (($ (-654 |#1|)) 122)) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3090 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-996 |#1|) (-141) (-1065)) (T -996))
-((-3565 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-996 *3)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1065)) (-5 *2 (-935)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1065)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-996 *3)) (-4 *3 (-1065)))))
-(-13 (-1282 |t#1|) (-628 (-654 |t#1|)) (-10 -8 (-15 -3565 ($ (-654 |t#1|))) (-15 -2732 ((-935) $)) (-15 -2523 ($ $ $)) (-15 -2249 ($ $ (-654 |t#1|)))))
-(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-628 (-654 |#1|)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T) ((-1282 |#1|) . T))
-((-1785 (((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|)) 17)))
-(((-997 |#1| |#2|) (-10 -7 (-15 -1785 ((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|)))) (-1065) (-1065)) (T -997))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-957 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-957 *6)) (-5 *1 (-997 *5 *6)))))
-(-10 -7 (-15 -1785 ((-957 |#2|) (-1 |#2| |#1|) (-957 |#1|))))
-((-2715 ((|#1| (-957 |#1|)) 14)) (-4146 ((|#1| (-957 |#1|)) 13)) (-2025 ((|#1| (-957 |#1|)) 12)) (-3162 ((|#1| (-957 |#1|)) 16)) (-2674 ((|#1| (-957 |#1|)) 24)) (-2576 ((|#1| (-957 |#1|)) 15)) (-2401 ((|#1| (-957 |#1|)) 17)) (-1646 ((|#1| (-957 |#1|)) 23)) (-4393 ((|#1| (-957 |#1|)) 22)))
-(((-998 |#1|) (-10 -7 (-15 -2025 (|#1| (-957 |#1|))) (-15 -4146 (|#1| (-957 |#1|))) (-15 -2715 (|#1| (-957 |#1|))) (-15 -2576 (|#1| (-957 |#1|))) (-15 -3162 (|#1| (-957 |#1|))) (-15 -2401 (|#1| (-957 |#1|))) (-15 -4393 (|#1| (-957 |#1|))) (-15 -1646 (|#1| (-957 |#1|))) (-15 -2674 (|#1| (-957 |#1|)))) (-1065)) (T -998))
-((-2674 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(-10 -7 (-15 -2025 (|#1| (-957 |#1|))) (-15 -4146 (|#1| (-957 |#1|))) (-15 -2715 (|#1| (-957 |#1|))) (-15 -2576 (|#1| (-957 |#1|))) (-15 -3162 (|#1| (-957 |#1|))) (-15 -2401 (|#1| (-957 |#1|))) (-15 -4393 (|#1| (-957 |#1|))) (-15 -1646 (|#1| (-957 |#1|))) (-15 -2674 (|#1| (-957 |#1|))))
-((-2747 (((-3 |#1| "failed") |#1|) 18)) (-3540 (((-3 |#1| "failed") |#1|) 6)) (-4137 (((-3 |#1| "failed") |#1|) 16)) (-2074 (((-3 |#1| "failed") |#1|) 4)) (-3412 (((-3 |#1| "failed") |#1|) 20)) (-2948 (((-3 |#1| "failed") |#1|) 8)) (-2114 (((-3 |#1| "failed") |#1| (-781)) 1)) (-3900 (((-3 |#1| "failed") |#1|) 3)) (-1979 (((-3 |#1| "failed") |#1|) 2)) (-3044 (((-3 |#1| "failed") |#1|) 21)) (-1776 (((-3 |#1| "failed") |#1|) 9)) (-3214 (((-3 |#1| "failed") |#1|) 19)) (-2430 (((-3 |#1| "failed") |#1|) 7)) (-2323 (((-3 |#1| "failed") |#1|) 17)) (-3856 (((-3 |#1| "failed") |#1|) 5)) (-3390 (((-3 |#1| "failed") |#1|) 24)) (-3359 (((-3 |#1| "failed") |#1|) 12)) (-3018 (((-3 |#1| "failed") |#1|) 22)) (-1383 (((-3 |#1| "failed") |#1|) 10)) (-3579 (((-3 |#1| "failed") |#1|) 26)) (-3626 (((-3 |#1| "failed") |#1|) 14)) (-1525 (((-3 |#1| "failed") |#1|) 27)) (-3613 (((-3 |#1| "failed") |#1|) 15)) (-1381 (((-3 |#1| "failed") |#1|) 25)) (-3893 (((-3 |#1| "failed") |#1|) 13)) (-3336 (((-3 |#1| "failed") |#1|) 23)) (-1656 (((-3 |#1| "failed") |#1|) 11)))
-(((-999 |#1|) (-141) (-1219)) (T -999))
-((-1525 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3579 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1381 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3390 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3336 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3018 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3044 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3412 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3214 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2747 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2323 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-4137 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3613 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3626 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3893 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1656 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1383 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1776 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2430 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3540 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3856 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2074 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-3900 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-1979 (*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))) (-2114 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(-13 (-10 -7 (-15 -2114 ((-3 |t#1| "failed") |t#1| (-781))) (-15 -1979 ((-3 |t#1| "failed") |t#1|)) (-15 -3900 ((-3 |t#1| "failed") |t#1|)) (-15 -2074 ((-3 |t#1| "failed") |t#1|)) (-15 -3856 ((-3 |t#1| "failed") |t#1|)) (-15 -3540 ((-3 |t#1| "failed") |t#1|)) (-15 -2430 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -1776 ((-3 |t#1| "failed") |t#1|)) (-15 -1383 ((-3 |t#1| "failed") |t#1|)) (-15 -1656 ((-3 |t#1| "failed") |t#1|)) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3893 ((-3 |t#1| "failed") |t#1|)) (-15 -3626 ((-3 |t#1| "failed") |t#1|)) (-15 -3613 ((-3 |t#1| "failed") |t#1|)) (-15 -4137 ((-3 |t#1| "failed") |t#1|)) (-15 -2323 ((-3 |t#1| "failed") |t#1|)) (-15 -2747 ((-3 |t#1| "failed") |t#1|)) (-15 -3214 ((-3 |t#1| "failed") |t#1|)) (-15 -3412 ((-3 |t#1| "failed") |t#1|)) (-15 -3044 ((-3 |t#1| "failed") |t#1|)) (-15 -3018 ((-3 |t#1| "failed") |t#1|)) (-15 -3336 ((-3 |t#1| "failed") |t#1|)) (-15 -3390 ((-3 |t#1| "failed") |t#1|)) (-15 -1381 ((-3 |t#1| "failed") |t#1|)) (-15 -3579 ((-3 |t#1| "failed") |t#1|)) (-15 -1525 ((-3 |t#1| "failed") |t#1|))))
-((-3350 ((|#4| |#4| (-654 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1614 ((|#4| |#4| (-654 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1785 ((|#4| (-1 |#4| (-966 |#1|)) |#4|) 31)))
-(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1614 (|#4| |#4| |#3|)) (-15 -1614 (|#4| |#4| (-654 |#3|))) (-15 -3350 (|#4| |#4| |#3|)) (-15 -3350 (|#4| |#4| (-654 |#3|))) (-15 -1785 (|#4| (-1 |#4| (-966 |#1|)) |#4|))) (-1065) (-803) (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193))))) (-963 (-966 |#1|) |#2| |#3|)) (T -1000))
-((-1785 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-966 *4))) (-4 *4 (-1065)) (-4 *2 (-963 (-966 *4) *5 *6)) (-4 *5 (-803)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *6 *2)))) (-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) (-4 *2 (-963 (-966 *4) *5 *6)))) (-3350 (*1 *2 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3)))) (-1614 (*1 *2 *2 *3) (-12 (-5 *3 (-654 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2)) (-4 *2 (-963 (-966 *4) *5 *6)))) (-1614 (*1 *2 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)) (-15 -1498 ((-3 $ "failed") (-1193)))))) (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3)))))
-(-10 -7 (-15 -1614 (|#4| |#4| |#3|)) (-15 -1614 (|#4| |#4| (-654 |#3|))) (-15 -3350 (|#4| |#4| |#3|)) (-15 -3350 (|#4| |#4| (-654 |#3|))) (-15 -1785 (|#4| (-1 |#4| (-966 |#1|)) |#4|)))
-((-2392 ((|#2| |#3|) 35)) (-3001 (((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 79)) (-2825 (((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 100)))
-(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2392 (|#2| |#3|))) (-358) (-1260 |#1|) (-1260 |#2|) (-734 |#2| |#3|)) (T -1001))
-((-2392 (*1 *2 *3) (-12 (-4 *3 (-1260 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1001 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1001 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5)))) (-2825 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -1895 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1001 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5)))))
-(-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)) (-15 -2392 (|#2| |#3|)))
-((-3369 (((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))) 82)))
-(((-1002 |#1| |#2|) (-10 -7 (-15 -3369 ((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574))))))) (-654 (-1193)) (-781)) (T -1002))
-((-3369 (*1 *2 *2) (-12 (-5 *2 (-1003 (-417 (-574)) (-874 *3) (-246 *4 (-781)) (-253 *3 (-417 (-574))))) (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-1002 *3 *4)))))
-(-10 -7 (-15 -3369 ((-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))) (-1003 (-417 (-574)) (-874 |#1|) (-246 |#2| (-781)) (-253 |#1| (-417 (-574)))))))
-((-2864 (((-112) $ $) NIL)) (-1964 (((-3 (-112) "failed") $) 71)) (-3704 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-315))))) (-1864 (($ $ (-3 (-112) "failed")) 72)) (-3473 (($ (-654 |#4|) |#4|) 25)) (-4420 (((-1175) $) NIL)) (-2568 (($ $) 69)) (-3940 (((-1136) $) NIL)) (-2265 (((-112) $) 70)) (-3014 (($) 30)) (-1437 ((|#4| $) 74)) (-3910 (((-654 |#4|) $) 73)) (-2951 (((-872) $) 68)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1116) (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -3473 ($ (-654 |#4|) |#4|)) (-15 -1964 ((-3 (-112) "failed") $)) (-15 -1864 ($ $ (-3 (-112) "failed"))) (-15 -2265 ((-112) $)) (-15 -3910 ((-654 |#4|) $)) (-15 -1437 (|#4| $)) (-15 -2568 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -3704 ($ $)) |%noBranch|) |%noBranch|))) (-462) (-860) (-803) (-963 |#1| |#3| |#2|)) (T -1003))
-((-3014 (*1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *2 (-654 *3)) (-4 *3 (-963 *4 *6 *5)) (-4 *4 (-462)) (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1003 *4 *5 *6 *3)))) (-1964 (*1 *2 *1) (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-1864 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-2265 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-3910 (*1 *2 *1) (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))) (-1437 (*1 *2 *1) (-12 (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))) (-2568 (*1 *1 *1) (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))) (-3704 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))))
-(-13 (-1116) (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -3473 ($ (-654 |#4|) |#4|)) (-15 -1964 ((-3 (-112) "failed") $)) (-15 -1864 ($ $ (-3 (-112) "failed"))) (-15 -2265 ((-112) $)) (-15 -3910 ((-654 |#4|) $)) (-15 -1437 (|#4| $)) (-15 -2568 ($ $)) (IF (|has| |#1| (-315)) (IF (|has| |#1| (-148)) (-15 -3704 ($ $)) |%noBranch|) |%noBranch|)))
-((-3398 (((-112) |#5| |#5|) 44)) (-1589 (((-112) |#5| |#5|) 59)) (-1925 (((-112) |#5| (-654 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2517 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-1744 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 70)) (-3506 (((-1289)) 32)) (-2001 (((-1289) (-1175) (-1175) (-1175)) 28)) (-1587 (((-654 |#5|) (-654 |#5|)) 100)) (-1807 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) 92)) (-4322 (((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 122)) (-3669 (((-112) |#5| |#5|) 53)) (-3454 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4379 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-4074 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-1624 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2061 (((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2227 (((-654 |#5|) (-654 |#5|)) 49)))
-(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2001 ((-1289) (-1175) (-1175) (-1175))) (-15 -3506 ((-1289))) (-15 -3398 ((-112) |#5| |#5|)) (-15 -2227 ((-654 |#5|) (-654 |#5|))) (-15 -3669 ((-112) |#5| |#5|)) (-15 -1589 ((-112) |#5| |#5|)) (-15 -2517 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4379 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4074 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1624 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3454 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1925 ((-112) |#5| |#5|)) (-15 -1925 ((-112) |#5| (-654 |#5|))) (-15 -1587 ((-654 |#5|) (-654 |#5|))) (-15 -1744 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -1807 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -4322 ((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2061 ((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1004))
-((-2061 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| -4097 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1004 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1087 *6 *7 *8 *9)))) (-4322 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4097 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1004 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1807 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1004 *5 *6 *7 *8 *3)))) (-1925 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3454 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-1624 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4074 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4379 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2517 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3669 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1004 *3 *4 *5 *6 *7)))) (-3398 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3506 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2001 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2001 ((-1289) (-1175) (-1175) (-1175))) (-15 -3506 ((-1289))) (-15 -3398 ((-112) |#5| |#5|)) (-15 -2227 ((-654 |#5|) (-654 |#5|))) (-15 -3669 ((-112) |#5| |#5|)) (-15 -1589 ((-112) |#5| |#5|)) (-15 -2517 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4379 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4074 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1624 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3454 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1925 ((-112) |#5| |#5|)) (-15 -1925 ((-112) |#5| (-654 |#5|))) (-15 -1587 ((-654 |#5|) (-654 |#5|))) (-15 -1744 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -1807 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -4322 ((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2061 ((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1498 (((-1193) $) 15)) (-3079 (((-1175) $) 16)) (-2707 (($ (-1193) (-1175)) 14)) (-2951 (((-872) $) 13)))
-(((-1005) (-13 (-623 (-872)) (-10 -8 (-15 -2707 ($ (-1193) (-1175))) (-15 -1498 ((-1193) $)) (-15 -3079 ((-1175) $))))) (T -1005))
-((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-1005)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1005)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1005)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2707 ($ (-1193) (-1175))) (-15 -1498 ((-1193) $)) (-15 -3079 ((-1175) $))))
-((-1785 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) (-566) (-566) (-1008 |#1|) (-1008 |#2|)) (T -1006))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566)) (-4 *2 (-1008 *6)) (-5 *1 (-1006 *5 *6 *4 *2)) (-4 *4 (-1008 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-1193) "failed") $) 66) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) 96)) (-2216 ((|#2| $) NIL) (((-1193) $) 61) (((-417 (-574)) $) NIL) (((-574) $) 93)) (-1557 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 115) (((-699 |#2|) (-699 $)) 28) (((-699 |#2|) (-1284 $)) NIL)) (-2835 (($) 99)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 76) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 85)) (-2447 (($ $) 10)) (-2081 (((-3 $ "failed") $) 20)) (-1785 (($ (-1 |#2| |#2|) $) 22)) (-3792 (($) 16)) (-3577 (($ $) 55)) (-3879 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1611 (($ $) 12)) (-1844 (((-903 (-574)) $) 71) (((-903 (-388)) $) 80) (((-546) $) 40) (((-388) $) 44) (((-227) $) 48)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 91) (($ |#2|) NIL) (($ (-1193)) 58)) (-3070 (((-781)) 31)) (-3009 (((-112) $ $) 51)))
-(((-1007 |#1| |#2|) (-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -2835 (|#1|)) (-15 -3577 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1008 |#2|) (-566)) (T -1007))
-((-3070 (*1 *2) (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1007 *3 *4)) (-4 *3 (-1008 *4)))))
-(-10 -8 (-15 -3009 ((-112) |#1| |#1|)) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -2951 (|#1| (-1193))) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -2835 (|#1|)) (-15 -3577 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1821 ((-900 (-574) |#1|) |#1| (-903 (-574)) (-900 (-574) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1557 ((-699 |#2|) (-1284 |#1|))) (-15 -1557 ((-699 |#2|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4356 ((|#1| $) 149 (|has| |#1| (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 140 (|has| |#1| (-923)))) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 143 (|has| |#1| (-923)))) (-1374 (((-112) $ $) 65)) (-1370 (((-574) $) 130 (|has| |#1| (-830)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 189) (((-3 (-1193) "failed") $) 138 (|has| |#1| (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 121 (|has| |#1| (-1054 (-574)))) (((-3 (-574) "failed") $) 119 (|has| |#1| (-1054 (-574))))) (-2216 ((|#1| $) 190) (((-1193) $) 139 (|has| |#1| (-1054 (-1193)))) (((-417 (-574)) $) 122 (|has| |#1| (-1054 (-574)))) (((-574) $) 120 (|has| |#1| (-1054 (-574))))) (-2801 (($ $ $) 61)) (-1557 (((-699 (-574)) (-1284 $)) 164 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 163 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 162 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 161) (((-699 |#1|) (-699 $)) 160) (((-699 |#1|) (-1284 $)) 159)) (-3612 (((-3 $ "failed") $) 37)) (-2835 (($) 147 (|has| |#1| (-555)))) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-2516 (((-112) $) 132 (|has| |#1| (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 156 (|has| |#1| (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 155 (|has| |#1| (-897 (-388))))) (-3943 (((-112) $) 35)) (-2447 (($ $) 151)) (-2970 ((|#1| $) 153)) (-2081 (((-3 $ "failed") $) 118 (|has| |#1| (-1168)))) (-1935 (((-112) $) 131 (|has| |#1| (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 128 (|has| |#1| (-860)))) (-2976 (($ $ $) 127 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 181)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3792 (($) 117 (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3577 (($ $) 148 (|has| |#1| (-315)))) (-3229 ((|#1| $) 145 (|has| |#1| (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 142 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 141 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 187 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 186 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 185 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 184 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 183 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 182 (|has| |#1| (-524 (-1193) |#1|)))) (-4220 (((-781) $) 64)) (-2207 (($ $ |#1|) 188 (|has| |#1| (-294 |#1| |#1|)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-3879 (($ $ (-781)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 173 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 172 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 171 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 169 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 166) (($ $ (-1 |#1| |#1|)) 165)) (-1611 (($ $) 150)) (-2980 ((|#1| $) 152)) (-1844 (((-903 (-574)) $) 158 (|has| |#1| (-624 (-903 (-574))))) (((-903 (-388)) $) 157 (|has| |#1| (-624 (-903 (-388))))) (((-546) $) 135 (|has| |#1| (-624 (-546)))) (((-388) $) 134 (|has| |#1| (-1038))) (((-227) $) 133 (|has| |#1| (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 144 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 193) (($ (-1193)) 137 (|has| |#1| (-1054 (-1193))))) (-2705 (((-3 $ "failed") $) 136 (-2833 (|has| |#1| (-146)) (-2095 (|has| $ (-146)) (|has| |#1| (-923)))))) (-3070 (((-781)) 32 T CONST)) (-3941 ((|#1| $) 146 (|has| |#1| (-555)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-4107 (($ $) 129 (|has| |#1| (-830)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-781)) 180 (|has| |#1| (-239))) (($ $) 178 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 176 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 175 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 174 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 170 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 168) (($ $ (-1 |#1| |#1|)) 167)) (-3042 (((-112) $ $) 125 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 124 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 126 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 123 (|has| |#1| (-860)))) (-3099 (($ $ $) 73) (($ |#1| |#1|) 154)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ |#1| $) 192) (($ $ |#1|) 191)))
-(((-1008 |#1|) (-141) (-566)) (T -1008))
-((-3099 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2980 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315)))) (-2835 (*1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-555)) (-4 *2 (-566)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555)))))
-(-13 (-372) (-38 |t#1|) (-1054 |t#1|) (-347 |t#1|) (-233 |t#1|) (-386 |t#1|) (-895 |t#1|) (-410 |t#1|) (-10 -8 (-15 -3099 ($ |t#1| |t#1|)) (-15 -2970 (|t#1| $)) (-15 -2980 (|t#1| $)) (-15 -2447 ($ $)) (-15 -1611 ($ $)) (IF (|has| |t#1| (-1168)) (-6 (-1168)) |%noBranch|) (IF (|has| |t#1| (-1054 (-574))) (PROGN (-6 (-1054 (-574))) (-6 (-1054 (-417 (-574))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-1038)) (-6 (-1038)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1054 (-1193))) (-6 (-1054 (-1193))) |%noBranch|) (IF (|has| |t#1| (-315)) (PROGN (-15 -4356 (|t#1| $)) (-15 -3577 ($ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2835 ($)) (-15 -3941 (|t#1| $)) (-15 -3229 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-923)) (-6 (-923)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 #1=(-1193)) |has| |#1| (-1054 (-1193))) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) |has| |#1| (-1038)) ((-624 (-388)) |has| |#1| (-1038)) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-624 (-903 (-388))) |has| |#1| (-624 (-903 (-388)))) ((-624 (-903 (-574))) |has| |#1| (-624 (-903 (-574)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) . T) ((-315) . T) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-372) . T) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-410 |#1|) . T) ((-462) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #2=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-649 #2#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-801) |has| |#1| (-830)) ((-802) |has| |#1| (-830)) ((-804) |has| |#1| (-830)) ((-805) |has| |#1| (-830)) ((-830) |has| |#1| (-830)) ((-858) |has| |#1| (-830)) ((-860) -2833 (|has| |#1| (-860)) (|has| |#1| (-830))) ((-907 $ #3=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #3#) |has| |#1| (-912 (-1193))) ((-914 #3#) |has| |#1| (-912 (-1193))) ((-897 (-388)) |has| |#1| (-897 (-388))) ((-897 (-574)) |has| |#1| (-897 (-574))) ((-895 |#1|) . T) ((-923) |has| |#1| (-923)) ((-934) . T) ((-1038) |has| |#1| (-1038)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-574))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #1#) |has| |#1| (-1054 (-1193))) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-1168)) ((-1234) . T) ((-1238) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3322 (($ (-1158 |#1| |#2|)) 11)) (-2924 (((-1158 |#1| |#2|) $) 12)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL)))
-(((-1009 |#1| |#2|) (-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3322 ($ (-1158 |#1| |#2|))) (-15 -2924 ((-1158 |#1| |#2|) $)))) (-935) (-372)) (T -1009))
-((-3322 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372)) (-5 *1 (-1009 *3 *4)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-5 *1 (-1009 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372)))))
-(-13 (-21) (-294 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3322 ($ (-1158 |#1| |#2|))) (-15 -2924 ((-1158 |#1| |#2|) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1010) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))) (T -1010))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1010)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-2041 (($ $) 47)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4109 (((-781) $) 46)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1757 ((|#1| $) 45)) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-4006 ((|#1| |#1| $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2605 ((|#1| $) 48)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2146 ((|#1| $) 44)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1011 |#1|) (-141) (-1234)) (T -1011))
-((-4006 (*1 *2 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-2041 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -4006 (|t#1| |t#1| $)) (-15 -2605 (|t#1| $)) (-15 -2041 ($ $)) (-15 -4109 ((-781) $)) (-15 -1757 (|t#1| $)) (-15 -2146 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-4311 (((-112) $) 43)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#2| $) 44)) (-3701 (((-3 (-417 (-574)) "failed") $) 78)) (-4391 (((-112) $) 72)) (-3805 (((-417 (-574)) $) 76)) (-3943 (((-112) $) 42)) (-2608 ((|#2| $) 22)) (-1785 (($ (-1 |#2| |#2|) $) 19)) (-1328 (($ $) 58)) (-3879 (($ $ (-781)) NIL) (($ $) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1844 (((-546) $) 67)) (-4090 (($ $) 17)) (-2951 (((-872) $) 53) (($ (-574)) 39) (($ |#2|) 37) (($ (-417 (-574))) NIL)) (-3070 (((-781)) 10)) (-4107 ((|#2| $) 71)) (-2986 (((-112) $ $) 26)) (-3009 (((-112) $ $) 69)) (-3090 (($ $) 30) (($ $ $) 29)) (-3074 (($ $ $) 27)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL)))
-(((-1012 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1328 (|#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4107 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -3943 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-1013 |#2|) (-174)) (T -1012))
-((-3070 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1012 *3 *4)) (-4 *3 (-1013 *4)))))
-(-10 -8 (-15 -2951 (|#1| (-417 (-574)))) (-15 -3009 ((-112) |#1| |#1|)) (-15 * (|#1| (-417 (-574)) |#1|)) (-15 * (|#1| |#1| (-417 (-574)))) (-15 -1328 (|#1| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -4107 (|#2| |#1|)) (-15 -2608 (|#2| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1785 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -3943 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 * (|#1| (-781) |#1|)) (-15 -4311 ((-112) |#1|)) (-15 * (|#1| (-935) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1704 (((-3 (-574) "failed") $) 131 (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 129 (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) 126)) (-2216 (((-574) $) 130 (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) 128 (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) 127)) (-1557 (((-699 (-574)) (-1284 $)) 101 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 100 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 99 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 98) (((-699 |#1|) (-699 $)) 97) (((-699 |#1|) (-1284 $)) 96)) (-3612 (((-3 $ "failed") $) 37)) (-4223 ((|#1| $) 89)) (-3701 (((-3 (-417 (-574)) "failed") $) 85 (|has| |#1| (-555)))) (-4391 (((-112) $) 87 (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) 86 (|has| |#1| (-555)))) (-2945 (($ |#1| |#1| |#1| |#1|) 90)) (-3943 (((-112) $) 35)) (-2608 ((|#1| $) 91)) (-3634 (($ $ $) 78 (|has| |#1| (-860)))) (-2976 (($ $ $) 77 (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) 102)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 82 (|has| |#1| (-372)))) (-2352 ((|#1| $) 92)) (-3262 ((|#1| $) 93)) (-2033 ((|#1| $) 94)) (-3940 (((-1136) $) 11)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 108 (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) 107 (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) 106 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) 105 (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) 104 (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) 103 (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) 109 (|has| |#1| (-294 |#1| |#1|)))) (-3879 (($ $ (-781)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 118 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 117 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 116 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 114 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 111) (($ $ (-1 |#1| |#1|)) 110)) (-1844 (((-546) $) 83 (|has| |#1| (-624 (-546))))) (-4090 (($ $) 95)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 44) (($ (-417 (-574))) 72 (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (((-3 $ "failed") $) 84 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-4107 ((|#1| $) 88 (|has| |#1| (-1076)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-781)) 125 (|has| |#1| (-239))) (($ $) 123 (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) 121 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 120 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 119 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 115 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 113) (($ $ (-1 |#1| |#1|)) 112)) (-3042 (((-112) $ $) 75 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 74 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 76 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 73 (|has| |#1| (-860)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 81 (|has| |#1| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-417 (-574))) 80 (|has| |#1| (-372))) (($ (-417 (-574)) $) 79 (|has| |#1| (-372)))))
-(((-1013 |#1|) (-141) (-174)) (T -1013))
-((-4090 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-2945 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)) (-4 *2 (-1076)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))) (-3701 (*1 *2 *1) (|partial| -12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-417 (-574))))))
-(-13 (-38 |t#1|) (-421 |t#1|) (-233 |t#1|) (-347 |t#1|) (-386 |t#1|) (-10 -8 (-15 -4090 ($ $)) (-15 -2033 (|t#1| $)) (-15 -3262 (|t#1| $)) (-15 -2352 (|t#1| $)) (-15 -2608 (|t#1| $)) (-15 -2945 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4223 (|t#1| $)) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1076)) (-15 -4107 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -4391 ((-112) $)) (-15 -3805 ((-417 (-574)) $)) (-15 -3701 ((-3 (-417 (-574)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-372)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-372)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-372))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-372)) ((-294 |#1| $) |has| |#1| (-294 |#1| |#1|)) ((-298) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-317 |#1|) |has| |#1| (-317 |#1|)) ((-347 |#1|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-524 (-1193) |#1|) |has| |#1| (-524 (-1193) |#1|)) ((-524 |#1| |#1|) |has| |#1| (-317 |#1|)) ((-656 #0#) |has| |#1| (-372)) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-372)) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-372)) ((-650 |#1|) . T) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-372)) ((-727 |#1|) . T) ((-736) . T) ((-860) |has| |#1| (-860)) ((-907 $ #2=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #2#) |has| |#1| (-912 (-1193))) ((-914 #2#) |has| |#1| (-912 (-1193))) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1067 #0#) |has| |#1| (-372)) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1072 #0#) |has| |#1| (-372)) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-372)) (|has| |#1| (-298))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) -2833 (|has| |#1| (-912 (-1193))) (|has| |#1| (-294 |#1| |#1|)) (|has| |#1| (-239))))
-((-1785 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1014 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|))) (-1013 |#2|) (-174) (-1013 |#4|) (-174)) (T -1014))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1013 *6)) (-5 *1 (-1014 *4 *5 *2 *6)) (-4 *4 (-1013 *5)))))
-(-10 -7 (-15 -1785 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4223 ((|#1| $) 12)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-555)))) (-4391 (((-112) $) NIL (|has| |#1| (-555)))) (-3805 (((-417 (-574)) $) NIL (|has| |#1| (-555)))) (-2945 (($ |#1| |#1| |#1| |#1|) 16)) (-3943 (((-112) $) NIL)) (-2608 ((|#1| $) NIL)) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-2352 ((|#1| $) 15)) (-3262 ((|#1| $) 14)) (-2033 ((|#1| $) 13)) (-3940 (((-1136) $) NIL)) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-317 |#1|))) (($ $ (-302 |#1|)) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-302 |#1|))) NIL (|has| |#1| (-317 |#1|))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-524 (-1193) |#1|))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-524 (-1193) |#1|)))) (-2207 (($ $ |#1|) NIL (|has| |#1| (-294 |#1| |#1|)))) (-3879 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-4090 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-4107 ((|#1| $) NIL (|has| |#1| (-1076)))) (-2141 (($) 8 T CONST)) (-2153 (($) 10 T CONST)) (-3585 (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-372)))))
-(((-1015 |#1|) (-1013 |#1|) (-174)) (T -1015))
-NIL
-(-1013 |#1|)
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-2041 (($ $) 23)) (-2420 (($ (-654 |#1|)) 33)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4109 (((-781) $) 26)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) 28)) (-3705 (($ |#1| $) 17)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1757 ((|#1| $) 27)) (-2098 ((|#1| $) 22)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-4006 ((|#1| |#1| $) 16)) (-2265 (((-112) $) 18)) (-3014 (($) NIL)) (-2605 ((|#1| $) 21)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) NIL)) (-2146 ((|#1| $) 30)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1016 |#1|) (-13 (-1011 |#1|) (-10 -8 (-15 -2420 ($ (-654 |#1|))))) (-1116)) (T -1016))
-((-2420 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1016 *3)))))
-(-13 (-1011 |#1|) (-10 -8 (-15 -2420 ($ (-654 |#1|)))))
-((-4212 (($ $) 12)) (-4439 (($ $ (-574)) 13)))
-(((-1017 |#1|) (-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -4439 (|#1| |#1| (-574)))) (-1018)) (T -1017))
-NIL
-(-10 -8 (-15 -4212 (|#1| |#1|)) (-15 -4439 (|#1| |#1| (-574))))
-((-4212 (($ $) 6)) (-4439 (($ $ (-574)) 7)) (** (($ $ (-417 (-574))) 8)))
-(((-1018) (-141)) (T -1018))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-417 (-574))))) (-4439 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-574)))) (-4212 (*1 *1 *1) (-4 *1 (-1018))))
-(-13 (-10 -8 (-15 -4212 ($ $)) (-15 -4439 ($ $ (-574))) (-15 ** ($ $ (-417 (-574))))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4229 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| (-417 |#2|) (-372)))) (-4141 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2475 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-4348 (((-699 (-417 |#2|)) (-1284 $)) NIL) (((-699 (-417 |#2|))) NIL)) (-1644 (((-417 |#2|) $) NIL)) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| (-417 |#2|) (-358)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-3171 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-1374 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1496 (((-781)) NIL (|has| (-417 |#2|) (-377)))) (-4073 (((-112)) NIL)) (-2718 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-3 (-417 |#2|) "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| (-417 |#2|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-417 |#2|) (-1054 (-417 (-574))))) (((-417 |#2|) $) NIL)) (-3114 (($ (-1284 (-417 |#2|)) (-1284 $)) NIL) (($ (-1284 (-417 |#2|))) 79) (($ (-1284 |#2|) |#2|) NIL)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-417 |#2|) (-358)))) (-2801 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2375 (((-699 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-417 |#2|) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-417 |#2|))) (|:| |vec| (-1284 (-417 |#2|)))) (-699 $) (-1284 $)) NIL) (((-699 (-417 |#2|)) (-699 $)) NIL) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-2710 (((-1284 $) (-1284 $)) NIL)) (-2882 (($ |#3|) 73) (((-3 $ "failed") (-417 |#3|)) NIL (|has| (-417 |#2|) (-372)))) (-3612 (((-3 $ "failed") $) NIL)) (-4009 (((-654 (-654 |#1|))) NIL (|has| |#1| (-377)))) (-3142 (((-112) |#1| |#1|) NIL)) (-3558 (((-935)) NIL)) (-2835 (($) NIL (|has| (-417 |#2|) (-377)))) (-4048 (((-112)) NIL)) (-3995 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2812 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| (-417 |#2|) (-372)))) (-4135 (($ $) NIL)) (-1615 (($) NIL (|has| (-417 |#2|) (-358)))) (-3502 (((-112) $) NIL (|has| (-417 |#2|) (-358)))) (-2613 (($ $ (-781)) NIL (|has| (-417 |#2|) (-358))) (($ $) NIL (|has| (-417 |#2|) (-358)))) (-3342 (((-112) $) NIL (|has| (-417 |#2|) (-372)))) (-1518 (((-935) $) NIL (|has| (-417 |#2|) (-358))) (((-843 (-935)) $) NIL (|has| (-417 |#2|) (-358)))) (-3943 (((-112) $) NIL)) (-1948 (((-781)) NIL)) (-3318 (((-1284 $) (-1284 $)) NIL)) (-2608 (((-417 |#2|) $) NIL)) (-3657 (((-654 (-966 |#1|)) (-1193)) NIL (|has| |#1| (-372)))) (-2081 (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3446 ((|#3| $) NIL (|has| (-417 |#2|) (-372)))) (-3507 (((-935) $) NIL (|has| (-417 |#2|) (-377)))) (-2869 ((|#3| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-4420 (((-1175) $) NIL)) (-2994 (((-699 (-417 |#2|))) 57)) (-4377 (((-699 (-417 |#2|))) 56)) (-1328 (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2013 (($ (-1284 |#2|) |#2|) 80)) (-3395 (((-699 (-417 |#2|))) 55)) (-2222 (((-699 (-417 |#2|))) 54)) (-3537 (((-2 (|:| |num| (-699 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2677 (((-2 (|:| |num| (-1284 |#2|)) (|:| |den| |#2|)) $) 86)) (-3174 (((-1284 $)) 51)) (-2825 (((-1284 $)) 50)) (-3196 (((-112) $) NIL)) (-2983 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3792 (($) NIL (|has| (-417 |#2|) (-358)) CONST)) (-2591 (($ (-935)) NIL (|has| (-417 |#2|) (-377)))) (-2919 (((-3 |#2| "failed")) 70)) (-3940 (((-1136) $) NIL)) (-3364 (((-781)) NIL)) (-2975 (($) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| (-417 |#2|) (-372)))) (-2887 (($ (-654 $)) NIL (|has| (-417 |#2|) (-372))) (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| (-417 |#2|) (-358)))) (-4201 (((-428 $) $) NIL (|has| (-417 |#2|) (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-417 |#2|) (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| (-417 |#2|) (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| (-417 |#2|) (-372)))) (-4220 (((-781) $) NIL (|has| (-417 |#2|) (-372)))) (-2207 ((|#1| $ |#1| |#1|) NIL)) (-4148 (((-3 |#2| "failed")) 68)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| (-417 |#2|) (-372)))) (-1924 (((-417 |#2|) (-1284 $)) NIL) (((-417 |#2|)) 47)) (-1532 (((-781) $) NIL (|has| (-417 |#2|) (-358))) (((-3 (-781) "failed") $ $) NIL (|has| (-417 |#2|) (-358)))) (-3879 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-3898 (((-699 (-417 |#2|)) (-1284 $) (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372)))) (-2966 ((|#3|) 58)) (-3951 (($) NIL (|has| (-417 |#2|) (-358)))) (-2282 (((-1284 (-417 |#2|)) $ (-1284 $)) NIL) (((-699 (-417 |#2|)) (-1284 $) (-1284 $)) NIL) (((-1284 (-417 |#2|)) $) 81) (((-699 (-417 |#2|)) (-1284 $)) NIL)) (-1844 (((-1284 (-417 |#2|)) $) NIL) (($ (-1284 (-417 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| (-417 |#2|) (-358)))) (-2572 (((-1284 $) (-1284 $)) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 |#2|)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-417 |#2|) (-1054 (-417 (-574)))) (|has| (-417 |#2|) (-372)))) (($ $) NIL (|has| (-417 |#2|) (-372)))) (-2705 (($ $) NIL (|has| (-417 |#2|) (-358))) (((-3 $ "failed") $) NIL (|has| (-417 |#2|) (-146)))) (-2451 ((|#3| $) NIL)) (-3070 (((-781)) NIL T CONST)) (-4418 (((-112)) 65)) (-2600 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) NIL)) (-3750 (((-112) $ $) NIL (|has| (-417 |#2|) (-372)))) (-4089 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4428 (((-112)) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-1 (-417 |#2|) (-417 |#2|)) (-781)) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1 (-417 |#2|) (-417 |#2|))) NIL (|has| (-417 |#2|) (-372))) (($ $ (-1193)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| (-417 |#2|) (-372)) (|has| (-417 |#2|) (-912 (-1193))))) (($ $) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358)))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-417 |#2|) (-239)) (|has| (-417 |#2|) (-372))) (|has| (-417 |#2|) (-358))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ $) NIL (|has| (-417 |#2|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| (-417 |#2|) (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 |#2|)) NIL) (($ (-417 |#2|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-417 |#2|) (-372))) (($ $ (-417 (-574))) NIL (|has| (-417 |#2|) (-372)))))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-351 |#1| |#2| |#3|) (-1238) (-1260 |#1|) (-1260 (-417 |#2|)) (-417 |#2|) (-781)) (T -1019))
-NIL
-(-351 |#1| |#2| |#3|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2971 (((-654 (-574)) $) 73)) (-2788 (($ (-654 (-574))) 81)) (-4356 (((-574) $) 48 (|has| (-574) (-315)))) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL (|has| (-574) (-830)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) 60) (((-3 (-1193) "failed") $) NIL (|has| (-574) (-1054 (-1193)))) (((-3 (-417 (-574)) "failed") $) 57 (|has| (-574) (-1054 (-574)))) (((-3 (-574) "failed") $) 60 (|has| (-574) (-1054 (-574))))) (-2216 (((-574) $) NIL) (((-1193) $) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) NIL (|has| (-574) (-1054 (-574)))) (((-574) $) NIL (|has| (-574) (-1054 (-574))))) (-2801 (($ $ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| (-574) (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2835 (($) NIL (|has| (-574) (-555)))) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2240 (((-654 (-574)) $) 79)) (-2516 (((-112) $) NIL (|has| (-574) (-830)))) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (|has| (-574) (-897 (-574)))) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (|has| (-574) (-897 (-388))))) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL)) (-2970 (((-574) $) 45)) (-2081 (((-3 $ "failed") $) NIL (|has| (-574) (-1168)))) (-1935 (((-112) $) NIL (|has| (-574) (-830)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-574) (-860)))) (-1785 (($ (-1 (-574) (-574)) $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL)) (-3792 (($) NIL (|has| (-574) (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-3577 (($ $) NIL (|has| (-574) (-315))) (((-417 (-574)) $) 50)) (-3773 (((-1173 (-574)) $) 78)) (-2696 (($ (-654 (-574)) (-654 (-574))) 82)) (-3229 (((-574) $) 64 (|has| (-574) (-555)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| (-574) (-923)))) (-4201 (((-428 $) $) NIL)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2661 (($ $ (-654 (-574)) (-654 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-574) (-574)) NIL (|has| (-574) (-317 (-574)))) (($ $ (-302 (-574))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-302 (-574)))) NIL (|has| (-574) (-317 (-574)))) (($ $ (-654 (-1193)) (-654 (-574))) NIL (|has| (-574) (-524 (-1193) (-574)))) (($ $ (-1193) (-574)) NIL (|has| (-574) (-524 (-1193) (-574))))) (-4220 (((-781) $) NIL)) (-2207 (($ $ (-574)) NIL (|has| (-574) (-294 (-574) (-574))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) 15 (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-1611 (($ $) NIL)) (-2980 (((-574) $) 47)) (-1815 (((-654 (-574)) $) 80)) (-1844 (((-903 (-574)) $) NIL (|has| (-574) (-624 (-903 (-574))))) (((-903 (-388)) $) NIL (|has| (-574) (-624 (-903 (-388))))) (((-546) $) NIL (|has| (-574) (-624 (-546)))) (((-388) $) NIL (|has| (-574) (-1038))) (((-227) $) NIL (|has| (-574) (-1038)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-574) (-923))))) (-2951 (((-872) $) 107) (($ (-574)) 51) (($ $) NIL) (($ (-417 (-574))) 27) (($ (-574)) 51) (($ (-1193)) NIL (|has| (-574) (-1054 (-1193)))) (((-417 (-574)) $) 25)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-574) (-923))) (|has| (-574) (-146))))) (-3070 (((-781)) 13 T CONST)) (-3941 (((-574) $) 62 (|has| (-574) (-555)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-4107 (($ $) NIL (|has| (-574) (-830)))) (-2141 (($) 14 T CONST)) (-2153 (($) 17 T CONST)) (-3585 (($ $ (-781)) NIL (|has| (-574) (-239))) (($ $) NIL (|has| (-574) (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1193)) NIL (|has| (-574) (-912 (-1193)))) (($ $ (-1 (-574) (-574)) (-781)) NIL) (($ $ (-1 (-574) (-574))) NIL)) (-3042 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-574) (-860)))) (-2986 (((-112) $ $) 21)) (-3031 (((-112) $ $) NIL (|has| (-574) (-860)))) (-3009 (((-112) $ $) 40 (|has| (-574) (-860)))) (-3099 (($ $ $) 36) (($ (-574) (-574)) 38)) (-3090 (($ $) 23) (($ $ $) 30)) (-3074 (($ $ $) 28)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 32) (($ $ $) 34) (($ $ (-417 (-574))) NIL) (($ (-417 (-574)) $) NIL) (($ (-574) $) 32) (($ $ (-574)) NIL)))
-(((-1020 |#1|) (-13 (-1008 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -2971 ((-654 (-574)) $)) (-15 -3773 ((-1173 (-574)) $)) (-15 -2240 ((-654 (-574)) $)) (-15 -1815 ((-654 (-574)) $)) (-15 -2788 ($ (-654 (-574)))) (-15 -2696 ($ (-654 (-574)) (-654 (-574)))))) (-574)) (T -1020))
-((-3577 (*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-2788 (*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))) (-2696 (*1 *1 *2 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(-13 (-1008 (-574)) (-623 (-417 (-574))) (-10 -8 (-15 -3577 ((-417 (-574)) $)) (-15 -2971 ((-654 (-574)) $)) (-15 -3773 ((-1173 (-574)) $)) (-15 -2240 ((-654 (-574)) $)) (-15 -1815 ((-654 (-574)) $)) (-15 -2788 ($ (-654 (-574)))) (-15 -2696 ($ (-654 (-574)) (-654 (-574))))))
-((-2876 (((-52) (-417 (-574)) (-574)) 9)))
-(((-1021) (-10 -7 (-15 -2876 ((-52) (-417 (-574)) (-574))))) (T -1021))
-((-2876 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52)) (-5 *1 (-1021)))))
-(-10 -7 (-15 -2876 ((-52) (-417 (-574)) (-574))))
-((-1496 (((-574)) 23)) (-1921 (((-574)) 28)) (-2957 (((-1289) (-574)) 26)) (-2775 (((-574) (-574)) 29) (((-574)) 22)))
-(((-1022) (-10 -7 (-15 -2775 ((-574))) (-15 -1496 ((-574))) (-15 -2775 ((-574) (-574))) (-15 -2957 ((-1289) (-574))) (-15 -1921 ((-574))))) (T -1022))
-((-1921 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1022)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-1496 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))) (-2775 (*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))))
-(-10 -7 (-15 -2775 ((-574))) (-15 -1496 ((-574))) (-15 -2775 ((-574) (-574))) (-15 -2957 ((-1289) (-574))) (-15 -1921 ((-574))))
-((-3037 (((-428 |#1|) |#1|) 43)) (-4201 (((-428 |#1|) |#1|) 41)))
-(((-1023 |#1|) (-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1|))) (-1260 (-417 (-574)))) (T -1023))
-((-3037 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1260 (-417 (-574)))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1260 (-417 (-574)))))))
-(-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1|)))
-((-3701 (((-3 (-417 (-574)) "failed") |#1|) 15)) (-4391 (((-112) |#1|) 14)) (-3805 (((-417 (-574)) |#1|) 10)))
-(((-1024 |#1|) (-10 -7 (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|))) (-1054 (-417 (-574)))) (T -1024))
-((-3701 (*1 *2 *3) (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2)))) (-4391 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1054 (-417 (-574)))))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2)))))
-(-10 -7 (-15 -3805 ((-417 (-574)) |#1|)) (-15 -4391 ((-112) |#1|)) (-15 -3701 ((-3 (-417 (-574)) "failed") |#1|)))
-((-3135 ((|#2| $ "value" |#2|) 12)) (-2207 ((|#2| $ "value") 10)) (-3779 (((-112) $ $) 18)))
-(((-1025 |#1| |#2|) (-10 -8 (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -3779 ((-112) |#1| |#1|)) (-15 -2207 (|#2| |#1| "value"))) (-1026 |#2|) (-1234)) (T -1025))
-NIL
-(-10 -8 (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -3779 ((-112) |#1| |#1|)) (-15 -2207 (|#2| |#1| "value")))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-1430 (($) 7 T CONST)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48)) (-4072 (((-574) $ $) 45)) (-3864 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1026 |#1|) (-141) (-1234)) (T -1026))
-((-1418 (*1 *2 *1) (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))) (-4345 (*1 *2 *1) (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))) (-4072 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))) (-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-1777 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4460)) (-4 *1 (-1026 *3)) (-4 *3 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234)))) (-2234 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234)))))
-(-13 (-499 |t#1|) (-10 -8 (-15 -1418 ((-654 $) $)) (-15 -4345 ((-654 $) $)) (-15 -2899 ((-112) $)) (-15 -3079 (|t#1| $)) (-15 -2207 (|t#1| $ "value")) (-15 -3864 ((-112) $)) (-15 -3482 ((-654 |t#1|) $)) (-15 -4072 ((-574) $ $)) (IF (|has| |t#1| (-1116)) (PROGN (-15 -3779 ((-112) $ $)) (-15 -3514 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -1777 ($ $ (-654 $))) (-15 -3135 (|t#1| $ "value" |t#1|)) (-15 -2234 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-4212 (($ $) 9) (($ $ (-935)) 49) (($ (-417 (-574))) 13) (($ (-574)) 15)) (-2231 (((-3 $ "failed") (-1189 $) (-935) (-872)) 24) (((-3 $ "failed") (-1189 $) (-935)) 32)) (-4439 (($ $ (-574)) 58)) (-3070 (((-781)) 18)) (-4259 (((-654 $) (-1189 $)) NIL) (((-654 $) (-1189 (-417 (-574)))) 63) (((-654 $) (-1189 (-574))) 68) (((-654 $) (-966 $)) 72) (((-654 $) (-966 (-417 (-574)))) 76) (((-654 $) (-966 (-574))) 80)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) 53)))
-(((-1027 |#1|) (-10 -8 (-15 -4212 (|#1| (-574))) (-15 -4212 (|#1| (-417 (-574)))) (-15 -4212 (|#1| |#1| (-935))) (-15 -4259 ((-654 |#1|) (-966 (-574)))) (-15 -4259 ((-654 |#1|) (-966 (-417 (-574))))) (-15 -4259 ((-654 |#1|) (-966 |#1|))) (-15 -4259 ((-654 |#1|) (-1189 (-574)))) (-15 -4259 ((-654 |#1|) (-1189 (-417 (-574))))) (-15 -4259 ((-654 |#1|) (-1189 |#1|))) (-15 -2231 ((-3 |#1| "failed") (-1189 |#1|) (-935))) (-15 -2231 ((-3 |#1| "failed") (-1189 |#1|) (-935) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4439 (|#1| |#1| (-574))) (-15 -4212 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3070 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935)))) (-1028)) (T -1027))
-((-3070 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1027 *3)) (-4 *3 (-1028)))))
-(-10 -8 (-15 -4212 (|#1| (-574))) (-15 -4212 (|#1| (-417 (-574)))) (-15 -4212 (|#1| |#1| (-935))) (-15 -4259 ((-654 |#1|) (-966 (-574)))) (-15 -4259 ((-654 |#1|) (-966 (-417 (-574))))) (-15 -4259 ((-654 |#1|) (-966 |#1|))) (-15 -4259 ((-654 |#1|) (-1189 (-574)))) (-15 -4259 ((-654 |#1|) (-1189 (-417 (-574))))) (-15 -4259 ((-654 |#1|) (-1189 |#1|))) (-15 -2231 ((-3 |#1| "failed") (-1189 |#1|) (-935))) (-15 -2231 ((-3 |#1| "failed") (-1189 |#1|) (-935) (-872))) (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -4439 (|#1| |#1| (-574))) (-15 -4212 (|#1| |#1|)) (-15 ** (|#1| |#1| (-574))) (-15 -3070 ((-781))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 102)) (-4141 (($ $) 103)) (-2475 (((-112) $) 105)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 122)) (-3171 (((-428 $) $) 123)) (-4212 (($ $) 86) (($ $ (-935)) 72) (($ (-417 (-574))) 71) (($ (-574)) 70)) (-1374 (((-112) $ $) 113)) (-1370 (((-574) $) 139)) (-1430 (($) 18 T CONST)) (-2231 (((-3 $ "failed") (-1189 $) (-935) (-872)) 80) (((-3 $ "failed") (-1189 $) (-935)) 79)) (-1704 (((-3 (-574) "failed") $) 99 (|has| (-417 (-574)) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 97 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) 94)) (-2216 (((-574) $) 98 (|has| (-417 (-574)) (-1054 (-574)))) (((-417 (-574)) $) 96 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-417 (-574)) $) 95)) (-4369 (($ $ (-872)) 69)) (-4394 (($ $ (-872)) 68)) (-2801 (($ $ $) 117)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 116)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 111)) (-3342 (((-112) $) 124)) (-2516 (((-112) $) 137)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 85)) (-1935 (((-112) $) 138)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 120)) (-3634 (($ $ $) 136)) (-2976 (($ $ $) 135)) (-3182 (((-3 (-1189 $) "failed") $) 81)) (-2478 (((-3 (-872) "failed") $) 83)) (-4241 (((-3 (-1189 $) "failed") $) 82)) (-2845 (($ (-654 $)) 109) (($ $ $) 108)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 125)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 110)) (-2887 (($ (-654 $)) 107) (($ $ $) 106)) (-4201 (((-428 $) $) 121)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 118)) (-2853 (((-3 $ "failed") $ $) 101)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 112)) (-4220 (((-781) $) 114)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 115)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 129) (($ $) 100) (($ (-417 (-574))) 93) (($ (-574)) 92) (($ (-417 (-574))) 89)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 104)) (-3525 (((-417 (-574)) $ $) 67)) (-4259 (((-654 $) (-1189 $)) 78) (((-654 $) (-1189 (-417 (-574)))) 77) (((-654 $) (-1189 (-574))) 76) (((-654 $) (-966 $)) 75) (((-654 $) (-966 (-417 (-574)))) 74) (((-654 $) (-966 (-574))) 73)) (-4107 (($ $) 140)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 133)) (-3020 (((-112) $ $) 132)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 134)) (-3009 (((-112) $ $) 131)) (-3099 (($ $ $) 130)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 126) (($ $ (-417 (-574))) 84)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ (-417 (-574)) $) 128) (($ $ (-417 (-574))) 127) (($ (-574) $) 91) (($ $ (-574)) 90) (($ (-417 (-574)) $) 88) (($ $ (-417 (-574))) 87)))
-(((-1028) (-141)) (T -1028))
-((-4212 (*1 *1 *1) (-4 *1 (-1028))) (-2478 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-4241 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))) (-3182 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))) (-2231 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-5 *4 (-872)) (-4 *1 (-1028)))) (-2231 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-4 *1 (-1028)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1189 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028)))) (-4212 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-935)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1028)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1028)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-4394 (*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))) (-3525 (*1 *2 *1 *1) (-12 (-4 *1 (-1028)) (-5 *2 (-417 (-574))))))
-(-13 (-148) (-858) (-174) (-372) (-421 (-417 (-574))) (-38 (-574)) (-38 (-417 (-574))) (-1018) (-10 -8 (-15 -2478 ((-3 (-872) "failed") $)) (-15 -4241 ((-3 (-1189 $) "failed") $)) (-15 -3182 ((-3 (-1189 $) "failed") $)) (-15 -2231 ((-3 $ "failed") (-1189 $) (-935) (-872))) (-15 -2231 ((-3 $ "failed") (-1189 $) (-935))) (-15 -4259 ((-654 $) (-1189 $))) (-15 -4259 ((-654 $) (-1189 (-417 (-574))))) (-15 -4259 ((-654 $) (-1189 (-574)))) (-15 -4259 ((-654 $) (-966 $))) (-15 -4259 ((-654 $) (-966 (-417 (-574))))) (-15 -4259 ((-654 $) (-966 (-574)))) (-15 -4212 ($ $ (-935))) (-15 -4212 ($ $)) (-15 -4212 ($ (-417 (-574)))) (-15 -4212 ($ (-574))) (-15 -4369 ($ $ (-872))) (-15 -4394 ($ $ (-872))) (-15 -3525 ((-417 (-574)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 #1=(-574)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-421 (-417 (-574))) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 #1#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 #1#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-934) . T) ((-1018) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) |has| (-417 (-574)) (-1054 (-574))) ((-1067 #0#) . T) ((-1067 #1#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 #1#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2554 (((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1029 |#1| |#2|) (-10 -7 (-15 -2554 ((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-27) (-440 |#1|))) (T -1029))
-((-2554 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1193)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1219) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112)))) (-5 *1 (-1029 *8 *4)))))
-(-10 -7 (-15 -2554 ((-2 (|:| |ans| |#2|) (|:| -3878 |#2|) (|:| |sol?| (-112))) (-574) |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1666 (((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1030 |#1| |#2|) (-10 -7 (-15 -1666 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))) (-13 (-1219) (-27) (-440 |#1|))) (T -1030))
-((-1666 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1193)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-654 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1219) (-27) (-440 *8))) (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574)) (-5 *2 (-654 *4)) (-5 *1 (-1030 *8 *4)))))
-(-10 -7 (-15 -1666 ((-3 (-654 |#2|) "failed") (-574) |#2| |#2| |#2| (-1193) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-654 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-654 |#2|)) (-1 (-3 (-2 (|:| -1401 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4158 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4097 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)) 38)) (-2826 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 69)) (-1462 (((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|)) 74)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -2826 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1462 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -4158 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4097 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|)))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -1031))
-((-4158 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 *4))) (-5 *4 (-574)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4097 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1031 *6 *3)))) (-1462 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5)))) (-2826 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6)) (|:| -2150 *6))) (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6)))))
-(-10 -7 (-15 -2826 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |c| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1462 ((-2 (|:| |ans| (-417 |#2|)) (|:| |nosol| (-112))) (-417 |#2|) (-417 |#2|))) (-15 -4158 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4097 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-574)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-574) (-1 |#2| |#2|))))
-((-1376 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|)) 22)) (-1357 (((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)) 34)))
-(((-1032 |#1| |#2|) (-10 -7 (-15 -1376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1357 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|)))) (-13 (-372) (-148) (-1054 (-574))) (-1260 |#1|)) (T -1032))
-((-1357 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-417 *5)))) (-1376 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6) (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2150 *6))) (-5 *1 (-1032 *5 *6)) (-5 *3 (-417 *6)))))
-(-10 -7 (-15 -1376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-417 |#2|)) (|:| |h| |#2|) (|:| |c1| (-417 |#2|)) (|:| |c2| (-417 |#2|)) (|:| -2150 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|) (-1 |#2| |#2|))) (-15 -1357 ((-3 (-654 (-417 |#2|)) "failed") (-417 |#2|) (-417 |#2|) (-417 |#2|))))
-((-3986 (((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -3716 (-574))))) 34)) (-1700 (((-1 |#1|) (-1118 |#1|)) 42)) (-3041 (((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574)) 31)))
-(((-1033 |#1|) (-10 -7 (-15 -1700 ((-1 |#1|) (-1118 |#1|))) (-15 -3986 ((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -3716 (-574)))))) (-15 -3041 ((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574)))) (-1116)) (T -1033))
-((-3041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1284 *6)) (-5 *4 (-1284 (-574))) (-5 *5 (-574)) (-4 *6 (-1116)) (-5 *2 (-1 *6)) (-5 *1 (-1033 *6)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3079 *4) (|:| -3716 (-574))))) (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4)))))
-(-10 -7 (-15 -1700 ((-1 |#1|) (-1118 |#1|))) (-15 -3986 ((-1 |#1|) (-654 (-2 (|:| -3079 |#1|) (|:| -3716 (-574)))))) (-15 -3041 ((-1 |#1|) (-1284 |#1|) (-1284 (-574)) (-574))))
-((-1518 (((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1518 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-372) (-1260 |#1|) (-1260 (-417 |#2|)) (-351 |#1| |#2| |#3|) (-13 (-377) (-372))) (T -1034))
-((-1518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372)) (-4 *7 (-1260 *6)) (-4 *4 (-1260 (-417 *7))) (-4 *8 (-351 *6 *7 *4)) (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781)) (-5 *1 (-1034 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -1518 ((-781) (-345 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4150 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 11)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1035) (-13 (-1099) (-10 -8 (-15 -4150 ((-1151) $)) (-15 -2051 ((-1151) $))))) (T -1035))
-((-4150 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035)))))
-(-13 (-1099) (-10 -8 (-15 -4150 ((-1151) $)) (-15 -2051 ((-1151) $))))
-((-1432 (((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 32) (((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 29)) (-3315 (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 34) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574))) 30) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 33) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|) 28)) (-2702 (((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) 20)) (-1372 (((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 17)))
-(((-1036 |#1|) (-10 -7 (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1372 ((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -2702 ((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))) (-1260 (-574))) (T -1036))
-((-2702 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574))))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *2 (-417 (-574))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574))))) (-1432 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) (-1432 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))) (-3315 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))) (-3315 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-417 (-574))))) (-3315 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))))))
-(-10 -7 (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -1372 ((-417 (-574)) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -2702 ((-654 (-417 (-574))) (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))))
-((-1432 (((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 35) (((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 32)) (-3315 (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574))) 30) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574))) 26) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) 28) (((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|) 24)))
-(((-1037 |#1|) (-10 -7 (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-1260 (-417 (-574)))) (T -1037))
-((-1432 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))))) (-1432 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) (-5 *4 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4)))) (-3315 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *5)) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))) (-3315 (*1 *2 *3 *4) (-12 (-5 *4 (-417 (-574))) (-5 *2 (-654 (-2 (|:| -3865 *4) (|:| -3878 *4)))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4)))) (-3315 (*1 *2 *3 *4) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))) (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574)))))))
-(-10 -7 (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1|)) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-417 (-574)))) (-15 -3315 ((-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-417 (-574)))) (-15 -1432 ((-3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) "failed") |#1| (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))) (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))
-((-1844 (((-227) $) 6) (((-388) $) 9)))
-(((-1038) (-141)) (T -1038))
-NIL
-(-13 (-624 (-227)) (-624 (-388)))
-(((-624 (-227)) . T) ((-624 (-388)) . T))
-((-3426 (((-654 (-388)) (-966 (-574)) (-388)) 28) (((-654 (-388)) (-966 (-417 (-574))) (-388)) 27)) (-4123 (((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388)) 37)))
-(((-1039) (-10 -7 (-15 -3426 ((-654 (-388)) (-966 (-417 (-574))) (-388))) (-15 -3426 ((-654 (-388)) (-966 (-574)) (-388))) (-15 -4123 ((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388))))) (T -1039))
-((-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1039)) (-5 *5 (-388)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1039)) (-5 *4 (-388)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 (-388))) (-5 *1 (-1039)) (-5 *4 (-388)))))
-(-10 -7 (-15 -3426 ((-654 (-388)) (-966 (-417 (-574))) (-388))) (-15 -3426 ((-654 (-388)) (-966 (-574)) (-388))) (-15 -4123 ((-654 (-654 (-388))) (-654 (-966 (-574))) (-654 (-1193)) (-388))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 75)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-4212 (($ $) NIL) (($ $ (-935)) NIL) (($ (-417 (-574))) NIL) (($ (-574)) NIL)) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) 70)) (-1430 (($) NIL T CONST)) (-2231 (((-3 $ "failed") (-1189 $) (-935) (-872)) NIL) (((-3 $ "failed") (-1189 $) (-935)) 55)) (-1704 (((-3 (-417 (-574)) "failed") $) NIL (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-574) "failed") $) NIL (-2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))))) (-2216 (((-417 (-574)) $) 17 (|has| (-417 (-574)) (-1054 (-417 (-574))))) (((-417 (-574)) $) 17) ((|#1| $) 117) (((-574) $) NIL (-2833 (|has| (-417 (-574)) (-1054 (-574))) (|has| |#1| (-1054 (-574)))))) (-4369 (($ $ (-872)) 47)) (-4394 (($ $ (-872)) 48)) (-2801 (($ $ $) NIL)) (-3422 (((-417 (-574)) $ $) 21)) (-3612 (((-3 $ "failed") $) 88)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-2516 (((-112) $) 66)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL)) (-1935 (((-112) $) 69)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-3182 (((-3 (-1189 $) "failed") $) 83)) (-2478 (((-3 (-872) "failed") $) 82)) (-4241 (((-3 (-1189 $) "failed") $) 80)) (-2403 (((-3 (-1077 $ (-1189 $)) "failed") $) 78)) (-2845 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 89)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ (-654 $)) NIL) (($ $ $) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2951 (((-872) $) 87) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) 63) (($ (-417 (-574))) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#1|) 119)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-3525 (((-417 (-574)) $ $) 27)) (-4259 (((-654 $) (-1189 $)) 61) (((-654 $) (-1189 (-417 (-574)))) NIL) (((-654 $) (-1189 (-574))) NIL) (((-654 $) (-966 $)) NIL) (((-654 $) (-966 (-417 (-574)))) NIL) (((-654 $) (-966 (-574))) NIL)) (-2918 (($ (-1077 $ (-1189 $)) (-872)) 46)) (-4107 (($ $) 22)) (-2141 (($) 32 T CONST)) (-2153 (($) 39 T CONST)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 76)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 24)) (-3099 (($ $ $) 37)) (-3090 (($ $) 38) (($ $ $) 74)) (-3074 (($ $ $) 112)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL) (($ $ (-417 (-574))) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 98) (($ $ $) 104) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ (-574) $) 98) (($ $ (-574)) NIL) (($ (-417 (-574)) $) NIL) (($ $ (-417 (-574))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1040 |#1|) (-13 (-1028) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2918 ($ (-1077 $ (-1189 $)) (-872))) (-15 -2403 ((-3 (-1077 $ (-1189 $)) "failed") $)) (-15 -3422 ((-417 (-574)) $ $)))) (-13 (-858) (-372) (-1038))) (T -1040))
-((-2918 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-1040 *4) (-1189 (-1040 *4)))) (-5 *3 (-872)) (-5 *1 (-1040 *4)) (-4 *4 (-13 (-858) (-372) (-1038))))) (-2403 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077 (-1040 *3) (-1189 (-1040 *3)))) (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038))))) (-3422 (*1 *2 *1 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038))))))
-(-13 (-1028) (-421 |#1|) (-38 |#1|) (-10 -8 (-15 -2918 ($ (-1077 $ (-1189 $)) (-872))) (-15 -2403 ((-3 (-1077 $ (-1189 $)) "failed") $)) (-15 -3422 ((-417 (-574)) $ $))))
-((-3257 (((-2 (|:| -4097 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| |#2| |#1|)) (-15 -3257 ((-2 (|:| -4097 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|)))) (-372) (-666 |#1|)) (T -1041))
-((-3257 (*1 *2 *3 *4) (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4097 *3) (|:| -4285 (-654 *5)))) (-5 *1 (-1041 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))) (-3257 (*1 *2 *2 *3) (-12 (-4 *3 (-372)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-666 *3)))))
-(-10 -7 (-15 -3257 (|#2| |#2| |#1|)) (-15 -3257 ((-2 (|:| -4097 |#2|) (|:| -4285 (-654 |#1|))) |#2| (-654 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2659 ((|#1| $ |#1|) 14)) (-3135 ((|#1| $ |#1|) 12)) (-2506 (($ |#1|) 10)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2207 ((|#1| $) 11)) (-3997 ((|#1| $) 13)) (-2951 (((-872) $) 21 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 9)))
-(((-1042 |#1|) (-13 (-1234) (-10 -8 (-15 -2506 ($ |#1|)) (-15 -2207 (|#1| $)) (-15 -3135 (|#1| $ |#1|)) (-15 -3997 (|#1| $)) (-15 -2659 (|#1| $ |#1|)) (-15 -2986 ((-112) $ $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1042))
-((-2506 (*1 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-3997 (*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2659 (*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))) (-2986 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1042 *3)) (-4 *3 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -2506 ($ |#1|)) (-15 -2207 (|#1| $)) (-15 -3135 (|#1| $ |#1|)) (-15 -3997 (|#1| $)) (-15 -2659 (|#1| $ |#1|)) (-15 -2986 ((-112) $ $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3291 (((-654 $) (-654 |#4|)) 118) (((-654 $) (-654 |#4|) (-112)) 119) (((-654 $) (-654 |#4|) (-112) (-112)) 117) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4350 (((-654 |#3|) $) NIL)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 112)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 66)) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) 29 (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3688 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2581 ((|#4| |#4| $) 69)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) NIL)) (-2235 (((-112) |#4| $) NIL)) (-2261 (((-112) |#4| $) NIL)) (-4327 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1454 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 133)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4063 ((|#3| $) 38)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2089 (((-654 |#3|) $) NIL)) (-1726 (((-112) |#3| $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 110)) (-3334 (((-3 |#4| "failed") $) 42)) (-2423 (((-654 $) |#4| $) 93)) (-2570 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3655 (((-654 $) |#4| $) 115) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 116) (((-654 $) |#4| (-654 $)) NIL)) (-3483 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 128)) (-1608 (($ |#4| $) 82) (($ (-654 |#4|) $) 83) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2252 (((-654 |#4|) $) NIL)) (-2897 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3184 ((|#4| |#4| $) NIL)) (-1624 (((-112) $ $) NIL)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1857 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4014 (((-3 $ "failed") $ |#4|) 59)) (-2249 (($ $ |#4|) NIL) (((-654 $) |#4| $) 95) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 89)) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 14)) (-3735 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-4216 (($ $ |#3|) 52)) (-2490 (($ $ |#3|) 54)) (-3615 (($ $) NIL)) (-3476 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4292 (((-781) $) NIL (|has| |#3| (-377)))) (-2981 (((-112) $ $) NIL)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3708 (((-654 $) |#4| $) 92) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) NIL)) (-3510 (((-112) |#4| $) NIL)) (-4194 (((-112) |#3| $) 65)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1043 |#1| |#2| |#3| |#4|) (-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1608 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3483 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1454 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1043))
-((-1608 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *3))) (-5 *1 (-1043 *5 *6 *7 *3)) (-4 *3 (-1081 *5 *6 *7)))) (-3291 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-3291 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8)))) (-1454 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1043 *5 *6 *7 *8))))) (-5 *1 (-1043 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
-(-13 (-1087 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1608 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3483 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1454 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)))))
-((-3903 (((-654 (-699 |#1|)) (-654 (-699 |#1|))) 70) (((-699 |#1|) (-699 |#1|)) 69) (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 68) (((-699 |#1|) (-699 |#1|) (-699 |#1|)) 65)) (-3427 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935)) 63) (((-699 |#1|) (-699 |#1|) (-935)) 62)) (-3293 (((-654 (-699 (-574))) (-654 (-654 (-574)))) 81) (((-654 (-699 (-574))) (-654 (-919 (-574))) (-574)) 80) (((-699 (-574)) (-654 (-574))) 77) (((-699 (-574)) (-919 (-574)) (-574)) 75)) (-1539 (((-699 (-966 |#1|)) (-781)) 95)) (-4413 (((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935)) 49 (|has| |#1| (-6 (-4461 "*")))) (((-699 |#1|) (-699 |#1|) (-935)) 47 (|has| |#1| (-6 (-4461 "*"))))))
-(((-1044 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -4413 ((-699 |#1|) (-699 |#1|) (-935))) |%noBranch|) (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -4413 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) |%noBranch|) (-15 -1539 ((-699 (-966 |#1|)) (-781))) (-15 -3427 ((-699 |#1|) (-699 |#1|) (-935))) (-15 -3427 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) (-15 -3903 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3903 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3903 ((-699 |#1|) (-699 |#1|))) (-15 -3903 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3293 ((-699 (-574)) (-919 (-574)) (-574))) (-15 -3293 ((-699 (-574)) (-654 (-574)))) (-15 -3293 ((-654 (-699 (-574))) (-654 (-919 (-574))) (-574))) (-15 -3293 ((-654 (-699 (-574))) (-654 (-654 (-574)))))) (-1065)) (T -1044))
-((-3293 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-919 (-574)))) (-5 *4 (-574)) (-5 *2 (-654 (-699 *4))) (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-919 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4)) (-5 *1 (-1044 *5)) (-4 *5 (-1065)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))) (-3427 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-3427 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-699 (-966 *4))) (-5 *1 (-1044 *4)) (-4 *4 (-1065)))) (-4413 (*1 *2 *2 *3) (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))) (-4413 (*1 *2 *2 *3) (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -4413 ((-699 |#1|) (-699 |#1|) (-935))) |%noBranch|) (IF (|has| |#1| (-6 (-4461 "*"))) (-15 -4413 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) |%noBranch|) (-15 -1539 ((-699 (-966 |#1|)) (-781))) (-15 -3427 ((-699 |#1|) (-699 |#1|) (-935))) (-15 -3427 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-935))) (-15 -3903 ((-699 |#1|) (-699 |#1|) (-699 |#1|))) (-15 -3903 ((-654 (-699 |#1|)) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3903 ((-699 |#1|) (-699 |#1|))) (-15 -3903 ((-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -3293 ((-699 (-574)) (-919 (-574)) (-574))) (-15 -3293 ((-699 (-574)) (-654 (-574)))) (-15 -3293 ((-654 (-699 (-574))) (-654 (-919 (-574))) (-574))) (-15 -3293 ((-654 (-699 (-574))) (-654 (-654 (-574))))))
-((-2226 (((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)) 70 (|has| |#1| (-315)))) (-1433 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))) 110 (|has| |#1| (-372))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|)) 117 (|has| |#1| (-372)))) (-3583 (((-1284 |#1|) (-654 (-1284 |#1|)) (-574)) 135 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-4409 (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935)) 123 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112)) 122 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|))) 121 (-12 (|has| |#1| (-372)) (|has| |#1| (-377)))) (((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574)) 120 (-12 (|has| |#1| (-372)) (|has| |#1| (-377))))) (-4067 (((-112) (-654 (-699 |#1|))) 103 (|has| |#1| (-372))) (((-112) (-654 (-699 |#1|)) (-574)) 106 (|has| |#1| (-372)))) (-3159 (((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|)) 67 (|has| |#1| (-315)))) (-4423 (((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|)) 47)) (-2154 (((-699 |#1|) (-1284 (-1284 |#1|))) 40)) (-2356 (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574)) 94 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|))) 93 (|has| |#1| (-372))) (((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574)) 101 (|has| |#1| (-372)))))
-(((-1045 |#1|) (-10 -7 (-15 -2154 ((-699 |#1|) (-1284 (-1284 |#1|)))) (-15 -4423 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3159 ((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -2226 ((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -4067 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -4067 ((-112) (-654 (-699 |#1|)))) (-15 -1433 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -1433 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935))) (-15 -3583 ((-1284 |#1|) (-654 (-1284 |#1|)) (-574)))) |%noBranch|) |%noBranch|)) (-1065)) (T -1045))
-((-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1284 *5))) (-5 *4 (-574)) (-5 *2 (-1284 *5)) (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)))) (-4409 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-4409 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-4409 (*1 *2 *3) (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1065)) (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-654 (-699 *4))))) (-4409 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377)) (-4 *6 (-1065)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1045 *6)) (-5 *3 (-654 (-699 *6))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 (-1284 *5))) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-654 (-699 *5))))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *4)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372)) (-4 *5 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *5)))) (-2356 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-1065)))) (-2356 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4)) (-4 *4 (-372)) (-4 *4 (-1065)))) (-2356 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574)) (-5 *2 (-699 *6)) (-5 *1 (-1045 *6)) (-4 *6 (-372)) (-4 *6 (-1065)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1284 *5)) (-4 *5 (-315)) (-4 *5 (-1065)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1065)) (-5 *2 (-1284 (-1284 *5))) (-5 *1 (-1045 *5)) (-5 *4 (-1284 *5)))) (-4423 (*1 *2 *3 *2) (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1045 *4)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1284 (-1284 *4))) (-4 *4 (-1065)) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4)))))
-(-10 -7 (-15 -2154 ((-699 |#1|) (-1284 (-1284 |#1|)))) (-15 -4423 ((-699 |#1|) (-654 (-699 |#1|)) (-699 |#1|))) (IF (|has| |#1| (-315)) (PROGN (-15 -3159 ((-1284 (-1284 |#1|)) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -2226 ((-699 |#1|) (-654 (-699 |#1|)) (-1284 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-112) (-574))) (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2356 ((-699 |#1|) (-654 (-699 |#1|)) (-654 (-699 |#1|)) (-574))) (-15 -4067 ((-112) (-654 (-699 |#1|)) (-574))) (-15 -4067 ((-112) (-654 (-699 |#1|)))) (-15 -1433 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 |#1|))) (-15 -1433 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-1284 (-1284 |#1|))))) |%noBranch|) (IF (|has| |#1| (-377)) (IF (|has| |#1| (-372)) (PROGN (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112) (-574) (-574))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-112))) (-15 -4409 ((-654 (-654 (-699 |#1|))) (-654 (-699 |#1|)) (-935))) (-15 -3583 ((-1284 |#1|) (-654 (-1284 |#1|)) (-574)))) |%noBranch|) |%noBranch|))
-((-1708 ((|#1| (-935) |#1|) 18)))
-(((-1046 |#1|) (-10 -7 (-15 -1708 (|#1| (-935) |#1|))) (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $))))) (T -1046))
-((-1708 (*1 *2 *3 *2) (-12 (-5 *3 (-935)) (-5 *1 (-1046 *2)) (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $))))))))
-(-10 -7 (-15 -1708 (|#1| (-935) |#1|)))
-((-1958 (((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574))))) 67)) (-2029 (((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574))))) 52)) (-2752 (((-654 (-324 (-574))) (-699 (-417 (-966 (-574))))) 45)) (-1385 (((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574))))) 85)) (-3012 (((-699 (-324 (-574))) (-699 (-324 (-574)))) 38)) (-1540 (((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574))))) 74)) (-4371 (((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574))))) 82)))
-(((-1047) (-10 -7 (-15 -1958 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574)))))) (-15 -2029 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574)))))) (-15 -2752 ((-654 (-324 (-574))) (-699 (-417 (-966 (-574)))))) (-15 -4371 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574)))))) (-15 -3012 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -1540 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -1385 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574)))))))) (T -1047))
-((-1385 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))) (-4371 (*1 *2 *3) (|partial| -12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-324 (-574)))) (-5 *1 (-1047)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *4 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)) (-5 *3 (-324 (-574))))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574)))))))) (-5 *1 (-1047)))))
-(-10 -7 (-15 -1958 ((-654 (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574)) (|:| |radvect| (-654 (-699 (-324 (-574))))))) (-699 (-417 (-966 (-574)))))) (-15 -2029 ((-654 (-699 (-324 (-574)))) (-324 (-574)) (-699 (-417 (-966 (-574)))))) (-15 -2752 ((-654 (-324 (-574))) (-699 (-417 (-966 (-574)))))) (-15 -4371 ((-3 (-699 (-324 (-574))) "failed") (-699 (-417 (-966 (-574)))))) (-15 -3012 ((-699 (-324 (-574))) (-699 (-324 (-574))))) (-15 -1540 ((-654 (-699 (-324 (-574)))) (-654 (-699 (-324 (-574)))))) (-15 -1385 ((-654 (-699 (-324 (-574)))) (-699 (-417 (-966 (-574)))))))
-((-2503 ((|#1| |#1| (-935)) 18)))
-(((-1048 |#1|) (-10 -7 (-15 -2503 (|#1| |#1| (-935)))) (-13 (-1116) (-10 -8 (-15 * ($ $ $))))) (T -1048))
-((-2503 (*1 *2 *2 *3) (-12 (-5 *3 (-935)) (-5 *1 (-1048 *2)) (-4 *2 (-13 (-1116) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2503 (|#1| |#1| (-935))))
-((-2951 ((|#1| (-320)) 11) (((-1289) |#1|) 9)))
-(((-1049 |#1|) (-10 -7 (-15 -2951 ((-1289) |#1|)) (-15 -2951 (|#1| (-320)))) (-1234)) (T -1049))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1049 *2)) (-4 *2 (-1234)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1289)) (-5 *1 (-1049 *3)) (-4 *3 (-1234)))))
-(-10 -7 (-15 -2951 ((-1289) |#1|)) (-15 -2951 (|#1| (-320))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-2882 (($ |#4|) 25)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-2869 ((|#4| $) 27)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 46) (($ (-574)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3070 (((-781)) 43 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 23 T CONST)) (-2986 (((-112) $ $) 40)) (-3090 (($ $) 31) (($ $ $) NIL)) (-3074 (($ $ $) 29)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1050 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -2951 ($ |#4|)) (-15 -2869 (|#4| $)))) (-372) (-803) (-860) (-963 |#1| |#2| |#3|) (-654 |#4|)) (T -1050))
-((-2882 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5)) (-14 *6 (-654 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-963 *3 *4 *5)) (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2)))))
-(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -2951 ($ |#4|)) (-15 -2869 (|#4| $))))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2620 (((-1289) $ (-1193) (-1193)) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3852 (((-112) (-112)) 43)) (-1554 (((-112) (-112)) 42)) (-3135 (((-52) $ (-1193) (-52)) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 (-52) "failed") (-1193) $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2175 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1193) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-52) $ (-1193) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1193)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-1193) $) NIL (|has| (-1193) (-860)))) (-1764 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2790 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-1772 (((-654 (-1193)) $) 37)) (-2968 (((-112) (-1193) $) NIL)) (-1759 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3705 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-1583 (((-654 (-1193)) $) NIL)) (-1470 (((-112) (-1193) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2925 (((-52) $) NIL (|has| (-1193) (-860)))) (-3748 (((-3 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL)) (-1465 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2445 (((-654 (-52)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 (((-52) $ (-1193)) 39) (((-52) $ (-1193) (-52)) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2951 (((-872) $) 41 (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1051) (-13 (-1210 (-1193) (-52)) (-10 -7 (-15 -3852 ((-112) (-112))) (-15 -1554 ((-112) (-112))) (-6 -4459)))) (T -1051))
-((-3852 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051)))))
-(-13 (-1210 (-1193) (-52)) (-10 -7 (-15 -3852 ((-112) (-112))) (-15 -1554 ((-112) (-112))) (-6 -4459)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1052) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))) (T -1052))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1052)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $))))
+((-2425 (($ $ (-1110 $)) 7) (($ $ (-1195)) 6)))
+(((-975) (-141)) (T -975))
+((-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-975)))) (-2425 (*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-1195)))))
+(-13 (-10 -8 (-15 -2425 ($ $ (-1195))) (-15 -2425 ($ $ (-1110 $)))))
+((-3243 (((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195)) 26) (((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195)) 49)))
+(((-976 |#1|) (-10 -7 (-15 -3243 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195))) (-15 -3243 ((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -3243 ((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195)))) (-13 (-374) (-148))) (T -976))
+((-3243 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 *6))) (|:| |prim| (-1191 *6)))) (-5 *1 (-976 *6)))) (-3243 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-976 *5)))) (-3243 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-968 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 *5)))) (-5 *1 (-976 *5)))))
+(-10 -7 (-15 -3243 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-968 |#1|) (-1195) (-968 |#1|) (-1195))) (-15 -3243 ((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)))) (-15 -3243 ((-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-968 |#1|)) (-656 (-1195)) (-1195))))
+((-1524 (((-656 |#1|) |#1| |#1|) 47)) (-3124 (((-112) |#1|) 44)) (-3456 ((|#1| |#1|) 79)) (-3250 ((|#1| |#1|) 78)))
+(((-977 |#1|) (-10 -7 (-15 -3124 ((-112) |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -1524 ((-656 |#1|) |#1| |#1|))) (-557)) (T -977))
+((-1524 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-977 *3)) (-4 *3 (-557)))) (-3456 (*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))) (-3250 (*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))) (-3124 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -3124 ((-112) |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -1524 ((-656 |#1|) |#1| |#1|)))
+((-1802 (((-1291) (-874)) 9)))
+(((-978) (-10 -7 (-15 -1802 ((-1291) (-874))))) (T -978))
+((-1802 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-978)))))
+(-10 -7 (-15 -1802 ((-1291) (-874))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-4334 (($ $) 79 (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) 31)) (-4077 (((-3 $ "failed") $) 42)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-3130 (($ $ |#1| |#2| $) 62)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) 17)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| |#2|) NIL)) (-1859 ((|#2| $) 24)) (-2819 (($ (-1 |#2| |#2|) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1368 (($ $) 28)) (-1380 ((|#1| $) 26)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) 51)) (-1357 ((|#1| $) NIL)) (-2288 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-2858 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-2782 ((|#2| $) 22)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ |#2|) 37)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) 15 T CONST)) (-1412 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2143 (($) 27 T CONST)) (-2155 (($) 12 T CONST)) (-2991 (((-112) $ $) 83)) (-3108 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) 69) (($ $ (-783)) 67)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-979 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2288 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067) (-804)) (T -979))
+((-2288 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-979 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *2 (-804)))))
+(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2288 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2847 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-3798 (((-3 $ "failed") $ $) 52 (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-1499 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-4379 ((|#2| $) 22)) (-4045 ((|#1| $) 21)) (-4335 (($) NIL (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-4077 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2840 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-4192 (((-112) $) NIL (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-3639 (($ $ $) NIL (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2571 (($ $ $) NIL (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-1395 (($ |#1| |#2|) 20)) (-4261 (((-937) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2596 (($ (-937)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3945 (((-1138) $) NIL)) (-1979 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3516 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2956 (((-874) $) 14)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 42 (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2155 (($) 25 (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3047 (((-112) $ $) NIL (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3024 (((-112) $ $) NIL (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2991 (((-112) $ $) 19)) (-3034 (((-112) $ $) NIL (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3014 (((-112) $ $) 69 (-2838 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3108 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3096 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3081 (($ $ $) 45 (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-937)) NIL (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-937) $) NIL (-2838 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-2838 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))))
+(((-980 |#1| |#2|) (-13 (-1118) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -1395 ($ |#1| |#2|)) (-15 -4045 (|#1| $)) (-15 -4379 (|#2| $)))) (-1118) (-1118)) (T -980))
+((-1395 (*1 *1 *2 *3) (-12 (-5 *1 (-980 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-4045 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1118)))) (-4379 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-980 *3 *2)) (-4 *3 (-1118)))))
+(-13 (-1118) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -1395 ($ |#1| |#2|)) (-15 -4045 (|#1| $)) (-15 -4379 (|#2| $))))
+((-3084 (((-1122) $) 12)) (-2748 (($ (-518) (-1122)) 14)) (-2041 (((-518) $) 9)) (-2956 (((-874) $) 24)))
+(((-981) (-13 (-625 (-874)) (-10 -8 (-15 -2041 ((-518) $)) (-15 -3084 ((-1122) $)) (-15 -2748 ($ (-518) (-1122)))))) (T -981))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-981)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-981)))) (-2748 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-981)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2041 ((-518) $)) (-15 -3084 ((-1122) $)) (-15 -2748 ($ (-518) (-1122)))))
+((-2869 (((-112) $ $) NIL)) (-1571 (($) NIL T CONST)) (-2107 (($ $ $) 30)) (-2085 (($ $) 24)) (-2148 (((-1177) $) NIL)) (-3273 (((-703 (-885 $ $)) $) 55)) (-3163 (((-703 $) $) 45)) (-4381 (((-703 (-885 $ $)) $) 56)) (-3513 (((-703 (-885 $ $)) $) 57)) (-3415 (((-703 |#1|) $) 36)) (-2182 (((-703 (-885 $ $)) $) 54)) (-3039 (($ $ $) 31)) (-3945 (((-1138) $) NIL)) (-2901 (($) NIL T CONST)) (-2027 (($ $ $) 32)) (-3481 (($ $ $) 29)) (-4137 (($ $ $) 27)) (-2956 (((-874) $) 59) (($ |#1|) 12)) (-2617 (((-112) $ $) NIL)) (-2096 (($ $ $) 28)) (-2991 (((-112) $ $) NIL)))
+(((-982 |#1|) (-13 (-985) (-628 |#1|) (-10 -8 (-15 -3415 ((-703 |#1|) $)) (-15 -3163 ((-703 $) $)) (-15 -2182 ((-703 (-885 $ $)) $)) (-15 -3273 ((-703 (-885 $ $)) $)) (-15 -4381 ((-703 (-885 $ $)) $)) (-15 -3513 ((-703 (-885 $ $)) $)) (-15 -4137 ($ $ $)) (-15 -3481 ($ $ $)))) (-1118)) (T -982))
+((-3415 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-703 (-982 *3))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))) (-4137 (*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118)))) (-3481 (*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118)))))
+(-13 (-985) (-628 |#1|) (-10 -8 (-15 -3415 ((-703 |#1|) $)) (-15 -3163 ((-703 $) $)) (-15 -2182 ((-703 (-885 $ $)) $)) (-15 -3273 ((-703 (-885 $ $)) $)) (-15 -4381 ((-703 (-885 $ $)) $)) (-15 -3513 ((-703 (-885 $ $)) $)) (-15 -4137 ($ $ $)) (-15 -3481 ($ $ $))))
+((-2493 (((-982 |#1|) (-982 |#1|)) 46)) (-2159 (((-982 |#1|) (-982 |#1|)) 22)) (-1339 (((-1120 |#1|) (-982 |#1|)) 41)))
+(((-983 |#1|) (-13 (-1236) (-10 -7 (-15 -2159 ((-982 |#1|) (-982 |#1|))) (-15 -1339 ((-1120 |#1|) (-982 |#1|))) (-15 -2493 ((-982 |#1|) (-982 |#1|))))) (-1118)) (T -983))
+((-2159 (*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-982 *4)) (-4 *4 (-1118)) (-5 *2 (-1120 *4)) (-5 *1 (-983 *4)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3)))))
+(-13 (-1236) (-10 -7 (-15 -2159 ((-982 |#1|) (-982 |#1|))) (-15 -1339 ((-1120 |#1|) (-982 |#1|))) (-15 -2493 ((-982 |#1|) (-982 |#1|)))))
+((-1787 (((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|)) 29)))
+(((-984 |#1| |#2|) (-13 (-1236) (-10 -7 (-15 -1787 ((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|))))) (-1118) (-1118)) (T -984))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-982 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-982 *6)) (-5 *1 (-984 *5 *6)))))
+(-13 (-1236) (-10 -7 (-15 -1787 ((-982 |#2|) (-1 |#2| |#1|) (-982 |#1|)))))
+((-2869 (((-112) $ $) 15)) (-1571 (($) 14 T CONST)) (-2107 (($ $ $) 6)) (-2085 (($ $) 8)) (-2148 (((-1177) $) 19)) (-3039 (($ $ $) 12)) (-3945 (((-1138) $) 18)) (-2901 (($) 13 T CONST)) (-2027 (($ $ $) 11)) (-2956 (((-874) $) 17)) (-2617 (((-112) $ $) 20)) (-2096 (($ $ $) 7)) (-2991 (((-112) $ $) 16)))
+(((-985) (-141)) (T -985))
+((-1571 (*1 *1) (-4 *1 (-985))) (-2901 (*1 *1) (-4 *1 (-985))) (-3039 (*1 *1 *1 *1) (-4 *1 (-985))) (-2027 (*1 *1 *1 *1) (-4 *1 (-985))))
+(-13 (-113) (-1118) (-10 -8 (-15 -1571 ($) -1716) (-15 -2901 ($) -1716) (-15 -3039 ($ $ $)) (-15 -2027 ($ $ $))))
+(((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2470 (($ $ $) 44)) (-1383 (($ $ $) 45)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2571 ((|#1| $) 46)) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-986 |#1|) (-141) (-862)) (T -986))
+((-2571 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -2571 (|t#1| $)) (-15 -1383 ($ $ $)) (-15 -2470 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-1445 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|) 105)) (-2628 ((|#2| |#2| |#2|) 103)) (-1871 (((-2 (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|) 107)) (-4109 (((-2 (|:| |coef1| |#2|) (|:| -2892 |#2|)) |#2| |#2|) 109)) (-3706 (((-2 (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-3361 (((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|) 56)) (-3183 (((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|) 80)) (-3417 (((-2 (|:| |coef1| |#2|) (|:| -2799 |#1|)) |#2| |#2|) 82)) (-2979 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3307 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-2558 (((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|) 121)) (-3241 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-3367 (((-656 (-783)) |#2| |#2|) 102)) (-2904 ((|#1| |#2| |#2|) 50)) (-4400 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-3724 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-4389 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|) 54)) (-2573 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|) 79)) (-2799 ((|#1| |#2| |#2|) 76)) (-3170 (((-2 (|:| -1868 |#1|) (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|) 41)) (-1678 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3736 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-4419 ((|#2| |#2| |#2|) 93)) (-1803 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3957 ((|#2| |#2| |#2| (-783)) 85)) (-2892 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-2858 (((-1286 |#2|) (-1286 |#2|) |#1|) 22)) (-1408 (((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|) 46)) (-4415 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|) 119)) (-3206 ((|#1| |#2|) 116)) (-1827 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-4403 ((|#2| |#2| |#2| (-783)) 90)) (-2600 (((-656 |#2|) |#2| |#2|) 99)) (-4185 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-2443 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1286 |#2|) |#1| (-1286 |#2|)) 17)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -2799 (|#1| |#2| |#2|)) (-15 -2573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3417 ((-2 (|:| |coef1| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3957 (|#2| |#2| |#2| (-783))) (-15 -1803 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3307 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4403 (|#2| |#2| |#2| (-783))) (-15 -1827 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3241 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4419 (|#2| |#2| |#2|)) (-15 -3736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2979 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2628 (|#2| |#2| |#2|)) (-15 -1445 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -1871 ((-2 (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -4109 ((-2 (|:| |coef1| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -3206 (|#1| |#2|)) (-15 -4415 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|)) (-15 -2558 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|)) (-15 -2600 ((-656 |#2|) |#2| |#2|)) (-15 -3367 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3724 (|#1| |#2| |#2|)) (-15 -4400 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -2858 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -3170 ((-2 (|:| -1868 |#1|) (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|)) (-15 -1408 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|)) (-15 -2443 (|#1| |#1| |#1| (-783))) (-15 -4185 (|#2| |#2| |#1| |#1| (-783))) (-15 -1678 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2904 (|#1| |#2| |#2|)) (-15 -4389 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|))) (-568) (-1262 |#1|)) (T -987))
+((-3361 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2799 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4389 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2799 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2904 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-1678 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-4185 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-2443 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-987 *2 *4)) (-4 *4 (-1262 *2)))) (-1408 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-3170 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1868 *4) (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2858 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-987 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-987 *3 *4)))) (-2892 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-3706 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3724 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4400 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3724 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-3724 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-3367 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4415 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-3206 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))) (-4109 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2892 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2892 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-1445 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2892 *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2628 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-2979 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-3736 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-4419 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))) (-3241 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-1827 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-4403 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) (-4 *2 (-1262 *4)))) (-3307 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-1803 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))) (-3957 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2)) (-4 *2 (-1262 *4)))) (-3417 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2799 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-3183 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2799 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2573 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2799 *4))) (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))) (-2799 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))))
+(-10 -7 (-15 -2799 (|#1| |#2| |#2|)) (-15 -2573 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3183 ((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3417 ((-2 (|:| |coef1| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3957 (|#2| |#2| |#2| (-783))) (-15 -1803 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3307 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4403 (|#2| |#2| |#2| (-783))) (-15 -1827 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3241 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4419 (|#2| |#2| |#2|)) (-15 -3736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2979 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2628 (|#2| |#2| |#2|)) (-15 -1445 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -1871 ((-2 (|:| |coef2| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -4109 ((-2 (|:| |coef1| |#2|) (|:| -2892 |#2|)) |#2| |#2|)) (-15 -3206 (|#1| |#2|)) (-15 -4415 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|)) (-15 -2558 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2|)) (-15 -2600 ((-656 |#2|) |#2| |#2|)) (-15 -3367 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3724 (|#1| |#2| |#2|)) (-15 -4400 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef2| |#2|) (|:| -3724 |#1|)) |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -2858 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -3170 ((-2 (|:| -1868 |#1|) (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|)) (-15 -1408 ((-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) |#2| |#2|)) (-15 -2443 (|#1| |#1| |#1| (-783))) (-15 -4185 (|#2| |#2| |#1| |#1| (-783))) (-15 -1678 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2904 (|#1| |#2| |#2|)) (-15 -4389 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -2799 |#1|)) |#2| |#2|)))
+((-2869 (((-112) $ $) NIL)) (-2355 (((-1235) $) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 10)) (-2956 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-988) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))) (T -988))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-988)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-988)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 40)) (-3798 (((-3 $ "failed") $ $) 54)) (-4335 (($) NIL T CONST)) (-1681 (((-656 (-885 (-937) (-937))) $) 67)) (-1804 (((-937) $) 94)) (-1873 (((-656 (-937)) $) 17)) (-1667 (((-1175 $) (-783)) 39)) (-3626 (($ (-656 (-937))) 16)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1979 (($ $) 70)) (-2956 (((-874) $) 90) (((-656 (-937)) $) 11)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 8 T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 44)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 42)) (-3081 (($ $ $) 46)) (* (($ (-937) $) NIL) (($ (-783) $) 49)) (-2882 (((-783) $) 22)))
+(((-989) (-13 (-807) (-625 (-656 (-937))) (-10 -8 (-15 -3626 ($ (-656 (-937)))) (-15 -1873 ((-656 (-937)) $)) (-15 -2882 ((-783) $)) (-15 -1667 ((-1175 $) (-783))) (-15 -1681 ((-656 (-885 (-937) (-937))) $)) (-15 -1804 ((-937) $)) (-15 -1979 ($ $))))) (T -989))
+((-3626 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-989)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1175 (-989))) (-5 *1 (-989)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-937) (-937)))) (-5 *1 (-989)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-989)))) (-1979 (*1 *1 *1) (-5 *1 (-989))))
+(-13 (-807) (-625 (-656 (-937))) (-10 -8 (-15 -3626 ($ (-656 (-937)))) (-15 -1873 ((-656 (-937)) $)) (-15 -2882 ((-783) $)) (-15 -1667 ((-1175 $) (-783))) (-15 -1681 ((-656 (-885 (-937) (-937))) $)) (-15 -1804 ((-937) $)) (-15 -1979 ($ $))))
+((-3108 (($ $ |#2|) 31)) (-3096 (($ $) 23) (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3108 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|))) (-991 |#2| |#3| |#4|) (-1067) (-804) (-862)) (T -990))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3108 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-937) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 |#3|) $) 86)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-2567 (((-112) $) 85)) (-4192 (((-112) $) 35)) (-1614 (((-112) $) 74)) (-4330 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2782 ((|#2| $) 76)) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4309 ((|#1| $ |#2|) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-991 |#1| |#2| |#3|) (-141) (-1067) (-804) (-862)) (T -991))
+((-1380 (*1 *2 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) (-4 *2 (-1067)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *4 (-862)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *2 *4)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *2 (-804)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-991 *4 *3 *2)) (-4 *4 (-1067)) (-4 *3 (-804)) (-4 *2 (-862)))) (-4330 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-804)) (-4 *6 (-862)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804)) (-4 *4 (-862)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4330 ($ $ |t#3| |t#2|)) (-15 -4330 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -1368 ($ $)) (-15 -1380 (|t#1| $)) (-15 -2782 (|t#2| $)) (-15 -4352 ((-656 |t#3|) $)) (-15 -2567 ((-112) $)) (-15 -1588 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2457 (((-1112 (-227)) $) 8)) (-2444 (((-1112 (-227)) $) 9)) (-2431 (((-1112 (-227)) $) 10)) (-3388 (((-656 (-656 (-959 (-227)))) $) 11)) (-2956 (((-874) $) 6)))
+(((-992) (-141)) (T -992))
+((-3388 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-656 (-656 (-959 (-227))))))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3388 ((-656 (-656 (-959 (-227)))) $)) (-15 -2431 ((-1112 (-227)) $)) (-15 -2444 ((-1112 (-227)) $)) (-15 -2457 ((-1112 (-227)) $))))
+(((-625 (-874)) . T))
+((-4352 (((-656 |#4|) $) 23)) (-2971 (((-112) $) 55)) (-3565 (((-112) $) 54)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#4|) 42)) (-3373 (((-112) $) 56)) (-3679 (((-112) $ $) 62)) (-3651 (((-112) $ $) 65)) (-4066 (((-112) $) 60)) (-2331 (((-656 |#5|) (-656 |#5|) $) 98)) (-1595 (((-656 |#5|) (-656 |#5|) $) 95)) (-3983 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-4172 (((-656 |#4|) $) 27)) (-1820 (((-112) |#4| $) 34)) (-2891 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3888 (($ $ |#4|) 39)) (-1572 (($ $ |#4|) 38)) (-2051 (($ $ |#4|) 40)) (-2991 (((-112) $ $) 46)))
+(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3565 ((-112) |#1|)) (-15 -2331 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1595 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3983 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2891 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3373 ((-112) |#1|)) (-15 -3651 ((-112) |#1| |#1|)) (-15 -3679 ((-112) |#1| |#1|)) (-15 -4066 ((-112) |#1|)) (-15 -2971 ((-112) |#1|)) (-15 -2791 ((-2 (|:| |under| |#1|) (|:| -4371 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3888 (|#1| |#1| |#4|)) (-15 -2051 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -1820 ((-112) |#4| |#1|)) (-15 -4172 ((-656 |#4|) |#1|)) (-15 -4352 ((-656 |#4|) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-994 |#2| |#3| |#4| |#5|) (-1067) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -993))
+NIL
+(-10 -8 (-15 -3565 ((-112) |#1|)) (-15 -2331 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1595 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -3983 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2891 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3373 ((-112) |#1|)) (-15 -3651 ((-112) |#1| |#1|)) (-15 -3679 ((-112) |#1| |#1|)) (-15 -4066 ((-112) |#1|)) (-15 -2971 ((-112) |#1|)) (-15 -2791 ((-2 (|:| |under| |#1|) (|:| -4371 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3888 (|#1| |#1| |#4|)) (-15 -2051 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -1820 ((-112) |#4| |#1|)) (-15 -4172 ((-656 |#4|) |#1|)) (-15 -4352 ((-656 |#4|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461)))) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461)))) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3945 (((-1138) $) 11)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2617 (((-112) $ $) 9)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-994 |#1| |#2| |#3| |#4|) (-141) (-1067) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -994))
+((-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-1083 *3 *4 *2)) (-4 *2 (-862)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1820 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *3 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))) (-1572 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-2051 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-3888 (*1 *1 *1 *2) (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))) (-2791 (*1 *2 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4371 *1) (|:| |upper| *1))) (-4 *1 (-994 *4 *5 *3 *6)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3679 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3651 (*1 *2 *1 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2891 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3983 (*1 *2 *3 *1) (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1595 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)))) (-2331 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))))
+(-13 (-1118) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4461) (-15 -1706 ((-3 $ "failed") (-656 |t#4|))) (-15 -2216 ($ (-656 |t#4|))) (-15 -2977 (|t#3| $)) (-15 -4352 ((-656 |t#3|) $)) (-15 -4172 ((-656 |t#3|) $)) (-15 -1820 ((-112) |t#3| $)) (-15 -1572 ($ $ |t#3|)) (-15 -2051 ($ $ |t#3|)) (-15 -3888 ($ $ |t#3|)) (-15 -2791 ((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |t#3|)) (-15 -2971 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -4066 ((-112) $)) (-15 -3679 ((-112) $ $)) (-15 -3651 ((-112) $ $)) (-15 -3373 ((-112) $)) (-15 -2891 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3983 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1595 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2331 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3565 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-1118) . T) ((-1236) . T))
+((-2752 (((-656 |#4|) |#4| |#4|) 136)) (-2418 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-4363 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-4420 (((-112) |#4|) 43)) (-2767 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-1537 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-1541 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-3447 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-4317 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-2856 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-1433 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3441 (((-656 |#4|) (-656 |#4|)) 128)) (-4028 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-1955 ((|#4| |#4| (-656 |#4|)) 60)) (-2613 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-1727 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-4277 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-3528 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-1668 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4273 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-3042 (((-112) (-656 |#4|)) 79)) (-2105 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-1652 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-2316 (((-112) |#4|) 36)) (-1914 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3198 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2944 (((-656 |#4|) (-656 |#4|)) 83)) (-1456 (((-656 |#4|) (-656 |#4|)) 97)) (-3342 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-3662 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-3777 (((-112) |#4|) 45)))
+(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3528 ((-656 |#4|) (-656 |#4|))) (-15 -3528 ((-656 |#4|) |#4| |#4|)) (-15 -3441 ((-656 |#4|) (-656 |#4|))) (-15 -2752 ((-656 |#4|) |#4| |#4|)) (-15 -3528 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -3528 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3528 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3342 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2105 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3042 ((-112) (-656 |#4|))) (-15 -1537 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1541 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3447 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4273 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4420 ((-112) |#4|)) (-15 -4363 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2316 ((-112) |#4|)) (-15 -1652 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3777 ((-112) |#4|)) (-15 -3662 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4028 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1955 (|#4| |#4| (-656 |#4|))) (-15 -2944 ((-656 |#4|) (-656 |#4|))) (-15 -4317 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1456 ((-656 |#4|) (-656 |#4|))) (-15 -2856 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1433 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2767 ((-656 |#4|) |#4|)) (-15 -2418 ((-656 |#4|) (-656 |#4|))) (-15 -2418 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2613 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4277 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1727 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3198 ((-656 |#4|) (-656 |#4|))) (-15 -1914 ((-656 |#4|) (-656 |#4|))) (-15 -1668 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -995))
+((-1668 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-1727 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-4277 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-2613 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-2418 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-1433 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-995 *5 *6 *7 *8)))) (-2856 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *1 (-995 *6 *7 *8 *9)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-4317 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2012 (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-1955 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *2)))) (-4028 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3777 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-4363 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4420 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-4273 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *7)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *5 *6 *7 *8)))) (-3342 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *4 *5 *6 *7)))) (-3528 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3528 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *3)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3441 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))) (-3528 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3528 ((-656 |#4|) (-656 |#4|))) (-15 -3528 ((-656 |#4|) |#4| |#4|)) (-15 -3441 ((-656 |#4|) (-656 |#4|))) (-15 -2752 ((-656 |#4|) |#4| |#4|)) (-15 -3528 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -3528 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3528 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3342 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2105 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3042 ((-112) (-656 |#4|))) (-15 -1537 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1541 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3447 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4273 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4420 ((-112) |#4|)) (-15 -4363 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2316 ((-112) |#4|)) (-15 -1652 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3777 ((-112) |#4|)) (-15 -3662 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -4028 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4028 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1955 (|#4| |#4| (-656 |#4|))) (-15 -2944 ((-656 |#4|) (-656 |#4|))) (-15 -4317 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1456 ((-656 |#4|) (-656 |#4|))) (-15 -2856 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1433 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2767 ((-656 |#4|) |#4|)) (-15 -2418 ((-656 |#4|) (-656 |#4|))) (-15 -2418 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2613 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4277 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1727 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3198 ((-656 |#4|) (-656 |#4|))) (-15 -1914 ((-656 |#4|) (-656 |#4|))) (-15 -1668 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|))
+((-1770 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2783 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 46)) (-2450 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-996 |#1|) (-10 -7 (-15 -1770 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2450 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2783 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -996))
+((-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5))))) (-5 *1 (-996 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)))) (-2450 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-996 *5)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-996 *6)) (-5 *3 (-701 *6)))))
+(-10 -7 (-15 -1770 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2450 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2783 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))))
+((-1870 (((-430 |#4|) |#4|) 56)))
+(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 ((-430 |#4|) |#4|))) (-862) (-805) (-464) (-965 |#3| |#2| |#1|)) (T -997))
+((-1870 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4)))))
+(-10 -7 (-15 -1870 ((-430 |#4|) |#4|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2226 (($ (-783)) 115 (|has| |#1| (-23)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1454 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-3569 (($ (-656 |#1|)) 121)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3878 (((-701 |#1|) $ $) 108 (|has| |#1| (-1067)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2967 ((|#1| $) 105 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2356 (((-112) $ (-783)) 10)) (-4114 ((|#1| $) 106 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-3167 (($ $ (-656 |#1|)) 119)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-4144 ((|#1| $ $) 109 (|has| |#1| (-1067)))) (-2068 (((-937) $) 120)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3794 (($ $ $) 107)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-2968 (($ (-656 |#1|)) 72)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3096 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3081 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-998 |#1|) (-141) (-1067)) (T -998))
+((-3569 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-998 *3)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1067)) (-5 *2 (-937)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1067)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-998 *3)) (-4 *3 (-1067)))))
+(-13 (-1284 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -3569 ($ (-656 |t#1|))) (-15 -2068 ((-937) $)) (-15 -3794 ($ $ $)) (-15 -3167 ($ $ (-656 |t#1|)))))
+(((-34) . T) ((-102) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T) ((-1284 |#1|) . T))
+((-1787 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 17)))
+(((-999 |#1| |#2|) (-10 -7 (-15 -1787 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1067) (-1067)) (T -999))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-959 *6)) (-5 *1 (-999 *5 *6)))))
+(-10 -7 (-15 -1787 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|))))
+((-1912 ((|#1| (-959 |#1|)) 14)) (-4388 ((|#1| (-959 |#1|)) 13)) (-1688 ((|#1| (-959 |#1|)) 12)) (-1766 ((|#1| (-959 |#1|)) 16)) (-2762 ((|#1| (-959 |#1|)) 24)) (-3109 ((|#1| (-959 |#1|)) 15)) (-2009 ((|#1| (-959 |#1|)) 17)) (-2259 ((|#1| (-959 |#1|)) 23)) (-1894 ((|#1| (-959 |#1|)) 22)))
+(((-1000 |#1|) (-10 -7 (-15 -1688 (|#1| (-959 |#1|))) (-15 -4388 (|#1| (-959 |#1|))) (-15 -1912 (|#1| (-959 |#1|))) (-15 -3109 (|#1| (-959 |#1|))) (-15 -1766 (|#1| (-959 |#1|))) (-15 -2009 (|#1| (-959 |#1|))) (-15 -1894 (|#1| (-959 |#1|))) (-15 -2259 (|#1| (-959 |#1|))) (-15 -2762 (|#1| (-959 |#1|)))) (-1067)) (T -1000))
+((-2762 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(-10 -7 (-15 -1688 (|#1| (-959 |#1|))) (-15 -4388 (|#1| (-959 |#1|))) (-15 -1912 (|#1| (-959 |#1|))) (-15 -3109 (|#1| (-959 |#1|))) (-15 -1766 (|#1| (-959 |#1|))) (-15 -2009 (|#1| (-959 |#1|))) (-15 -1894 (|#1| (-959 |#1|))) (-15 -2259 (|#1| (-959 |#1|))) (-15 -2762 (|#1| (-959 |#1|))))
+((-2234 (((-3 |#1| "failed") |#1|) 18)) (-1480 (((-3 |#1| "failed") |#1|) 6)) (-4312 (((-3 |#1| "failed") |#1|) 16)) (-2145 (((-3 |#1| "failed") |#1|) 4)) (-2604 (((-3 |#1| "failed") |#1|) 20)) (-3572 (((-3 |#1| "failed") |#1|) 8)) (-4413 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3791 (((-3 |#1| "failed") |#1|) 3)) (-2490 (((-3 |#1| "failed") |#1|) 2)) (-3138 (((-3 |#1| "failed") |#1|) 21)) (-4206 (((-3 |#1| "failed") |#1|) 9)) (-4212 (((-3 |#1| "failed") |#1|) 19)) (-2251 (((-3 |#1| "failed") |#1|) 7)) (-2556 (((-3 |#1| "failed") |#1|) 17)) (-1476 (((-3 |#1| "failed") |#1|) 5)) (-2346 (((-3 |#1| "failed") |#1|) 24)) (-3290 (((-3 |#1| "failed") |#1|) 12)) (-2986 (((-3 |#1| "failed") |#1|) 22)) (-3981 (((-3 |#1| "failed") |#1|) 10)) (-3760 (((-3 |#1| "failed") |#1|) 26)) (-3025 (((-3 |#1| "failed") |#1|) 14)) (-3609 (((-3 |#1| "failed") |#1|) 27)) (-4086 (((-3 |#1| "failed") |#1|) 15)) (-3584 (((-3 |#1| "failed") |#1|) 25)) (-3712 (((-3 |#1| "failed") |#1|) 13)) (-3051 (((-3 |#1| "failed") |#1|) 23)) (-2362 (((-3 |#1| "failed") |#1|) 11)))
+(((-1001 |#1|) (-141) (-1221)) (T -1001))
+((-3609 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3760 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3584 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2346 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3051 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3138 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2604 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4212 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2234 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2556 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4312 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4086 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3025 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3712 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2362 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3981 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4206 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3572 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2251 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-1480 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-1476 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2145 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-3791 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-2490 (*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))) (-4413 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(-13 (-10 -7 (-15 -4413 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -2490 ((-3 |t#1| "failed") |t#1|)) (-15 -3791 ((-3 |t#1| "failed") |t#1|)) (-15 -2145 ((-3 |t#1| "failed") |t#1|)) (-15 -1476 ((-3 |t#1| "failed") |t#1|)) (-15 -1480 ((-3 |t#1| "failed") |t#1|)) (-15 -2251 ((-3 |t#1| "failed") |t#1|)) (-15 -3572 ((-3 |t#1| "failed") |t#1|)) (-15 -4206 ((-3 |t#1| "failed") |t#1|)) (-15 -3981 ((-3 |t#1| "failed") |t#1|)) (-15 -2362 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3712 ((-3 |t#1| "failed") |t#1|)) (-15 -3025 ((-3 |t#1| "failed") |t#1|)) (-15 -4086 ((-3 |t#1| "failed") |t#1|)) (-15 -4312 ((-3 |t#1| "failed") |t#1|)) (-15 -2556 ((-3 |t#1| "failed") |t#1|)) (-15 -2234 ((-3 |t#1| "failed") |t#1|)) (-15 -4212 ((-3 |t#1| "failed") |t#1|)) (-15 -2604 ((-3 |t#1| "failed") |t#1|)) (-15 -3138 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|)) (-15 -3051 ((-3 |t#1| "failed") |t#1|)) (-15 -2346 ((-3 |t#1| "failed") |t#1|)) (-15 -3584 ((-3 |t#1| "failed") |t#1|)) (-15 -3760 ((-3 |t#1| "failed") |t#1|)) (-15 -3609 ((-3 |t#1| "failed") |t#1|))))
+((-3199 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3232 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1787 ((|#4| (-1 |#4| (-968 |#1|)) |#4|) 31)))
+(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3232 (|#4| |#4| |#3|)) (-15 -3232 (|#4| |#4| (-656 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-656 |#3|))) (-15 -1787 (|#4| (-1 |#4| (-968 |#1|)) |#4|))) (-1067) (-805) (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195))))) (-965 (-968 |#1|) |#2| |#3|)) (T -1002))
+((-1787 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-968 *4))) (-4 *4 (-1067)) (-4 *2 (-965 (-968 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *6 *2)))) (-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) (-4 *2 (-965 (-968 *4) *5 *6)))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2)) (-4 *2 (-965 (-968 *4) *5 *6)))) (-3232 (*1 *2 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)) (-15 -1500 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3)))))
+(-10 -7 (-15 -3232 (|#4| |#4| |#3|)) (-15 -3232 (|#4| |#4| (-656 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-656 |#3|))) (-15 -1787 (|#4| (-1 |#4| (-968 |#1|)) |#4|)))
+((-1935 ((|#2| |#3|) 35)) (-2835 (((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-3701 (((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100)))
+(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1935 (|#2| |#3|))) (-360) (-1262 |#1|) (-1262 |#2|) (-736 |#2| |#3|)) (T -1003))
+((-1935 (*1 *2 *3) (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1003 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-2835 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1003 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-3701 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -4093 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))))
+(-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1935 (|#2| |#3|)))
+((-3398 (((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82)))
+(((-1004 |#1| |#2|) (-10 -7 (-15 -3398 ((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1195)) (-783)) (T -1004))
+((-3398 (*1 *2 *2) (-12 (-5 *2 (-1005 (-419 (-576)) (-876 *3) (-246 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1004 *3 *4)))))
+(-10 -7 (-15 -3398 ((-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1005 (-419 (-576)) (-876 |#1|) (-246 |#2| (-783)) (-253 |#1| (-419 (-576)))))))
+((-2869 (((-112) $ $) NIL)) (-2350 (((-3 (-112) "failed") $) 71)) (-2493 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3822 (($ $ (-3 (-112) "failed")) 72)) (-2021 (($ (-656 |#4|) |#4|) 25)) (-2148 (((-1177) $) NIL)) (-3015 (($ $) 69)) (-3945 (((-1138) $) NIL)) (-3321 (((-112) $) 70)) (-2953 (($) 30)) (-4410 ((|#4| $) 74)) (-3894 (((-656 |#4|) $) 73)) (-2956 (((-874) $) 68)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1005 |#1| |#2| |#3| |#4|) (-13 (-1118) (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -2021 ($ (-656 |#4|) |#4|)) (-15 -2350 ((-3 (-112) "failed") $)) (-15 -3822 ($ $ (-3 (-112) "failed"))) (-15 -3321 ((-112) $)) (-15 -3894 ((-656 |#4|) $)) (-15 -4410 (|#4| $)) (-15 -3015 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2493 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-805) (-965 |#1| |#3| |#2|)) (T -1005))
+((-2953 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) (-2021 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-965 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1005 *4 *5 *6 *3)))) (-2350 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3822 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3321 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))) (-4410 (*1 *2 *1) (-12 (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))) (-3015 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))) (-2493 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))))
+(-13 (-1118) (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -2021 ($ (-656 |#4|) |#4|)) (-15 -2350 ((-3 (-112) "failed") $)) (-15 -3822 ($ $ (-3 (-112) "failed"))) (-15 -3321 ((-112) $)) (-15 -3894 ((-656 |#4|) $)) (-15 -4410 (|#4| $)) (-15 -3015 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2493 ($ $)) |%noBranch|) |%noBranch|)))
+((-2435 (((-112) |#5| |#5|) 44)) (-3017 (((-112) |#5| |#5|) 59)) (-3216 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3740 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1997 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) 70)) (-4252 (((-1291)) 32)) (-2727 (((-1291) (-1177) (-1177) (-1177)) 28)) (-3004 (((-656 |#5|) (-656 |#5|)) 100)) (-1370 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) 92)) (-3645 (((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3435 (((-112) |#5| |#5|) 53)) (-1822 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3003 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-1811 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3320 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2013 (((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2983 (((-656 |#5|) (-656 |#5|)) 49)))
+(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2727 ((-1291) (-1177) (-1177) (-1177))) (-15 -4252 ((-1291))) (-15 -2435 ((-112) |#5| |#5|)) (-15 -2983 ((-656 |#5|) (-656 |#5|))) (-15 -3435 ((-112) |#5| |#5|)) (-15 -3017 ((-112) |#5| |#5|)) (-15 -3740 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3003 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1811 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3320 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1822 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3216 ((-112) |#5| |#5|)) (-15 -3216 ((-112) |#5| (-656 |#5|))) (-15 -3004 ((-656 |#5|) (-656 |#5|))) (-15 -1997 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -1370 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-15 -3645 ((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2013 ((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1006))
+((-2013 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| -4102 (-656 *9)) (|:| -4071 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1006 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1089 *6 *7 *8 *9)))) (-3645 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4102 (-656 *9)) (|:| -4071 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1006 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4071 *7)))) (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1006 *5 *6 *7 *8 *3)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-1822 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-1811 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3003 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3740 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3017 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3435 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1006 *3 *4 *5 *6 *7)))) (-2435 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-4252 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-2727 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2727 ((-1291) (-1177) (-1177) (-1177))) (-15 -4252 ((-1291))) (-15 -2435 ((-112) |#5| |#5|)) (-15 -2983 ((-656 |#5|) (-656 |#5|))) (-15 -3435 ((-112) |#5| |#5|)) (-15 -3017 ((-112) |#5| |#5|)) (-15 -3740 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3003 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1811 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3320 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1822 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3216 ((-112) |#5| |#5|)) (-15 -3216 ((-112) |#5| (-656 |#5|))) (-15 -3004 ((-656 |#5|) (-656 |#5|))) (-15 -1997 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -1370 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-15 -3645 ((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2013 ((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1500 (((-1195) $) 15)) (-3084 (((-1177) $) 16)) (-2712 (($ (-1195) (-1177)) 14)) (-2956 (((-874) $) 13)))
+(((-1007) (-13 (-625 (-874)) (-10 -8 (-15 -2712 ($ (-1195) (-1177))) (-15 -1500 ((-1195) $)) (-15 -3084 ((-1177) $))))) (T -1007))
+((-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1007)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1007)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1007)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2712 ($ (-1195) (-1177))) (-15 -1500 ((-1195) $)) (-15 -3084 ((-1177) $))))
+((-1787 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-1008 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1010 |#1|) (-1010 |#2|)) (T -1008))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1010 *6)) (-5 *1 (-1008 *5 *6 *4 *2)) (-4 *4 (-1010 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2216 ((|#2| $) NIL) (((-1195) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3928 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 115) (((-701 |#2|) (-701 $)) 28) (((-701 |#2|) (-1286 $)) NIL)) (-2840 (($) 99)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 76) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 85)) (-4299 (($ $) 10)) (-2211 (((-3 $ "failed") $) 20)) (-1787 (($ (-1 |#2| |#2|) $) 22)) (-3796 (($) 16)) (-3739 (($ $) 55)) (-3884 (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3210 (($ $) 12)) (-1846 (((-905 (-576)) $) 71) (((-905 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1195)) 58)) (-3423 (((-783)) 31)) (-3014 (((-112) $ $) 51)))
+(((-1009 |#1| |#2|) (-10 -8 (-15 -3014 ((-112) |#1| |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2956 (|#1| (-1195))) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -2840 (|#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -4299 (|#1| |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| |#1|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-1010 |#2|) (-568)) (T -1009))
+((-3423 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1009 *3 *4)) (-4 *3 (-1010 *4)))))
+(-10 -8 (-15 -3014 ((-112) |#1| |#1|)) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2956 (|#1| (-1195))) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -2840 (|#1|)) (-15 -3739 (|#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -4299 (|#1| |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1487 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -3928 ((-701 |#2|) (-1286 |#1|))) (-15 -3928 ((-701 |#2|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| |#1|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2742 ((|#1| $) 149 (|has| |#1| (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 140 (|has| |#1| (-925)))) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 143 (|has| |#1| (-925)))) (-1323 (((-112) $ $) 65)) (-2627 (((-576) $) 130 (|has| |#1| (-832)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 189) (((-3 (-1195) "failed") $) 138 (|has| |#1| (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 121 (|has| |#1| (-1056 (-576)))) (((-3 (-576) "failed") $) 119 (|has| |#1| (-1056 (-576))))) (-2216 ((|#1| $) 190) (((-1195) $) 139 (|has| |#1| (-1056 (-1195)))) (((-419 (-576)) $) 122 (|has| |#1| (-1056 (-576)))) (((-576) $) 120 (|has| |#1| (-1056 (-576))))) (-2806 (($ $ $) 61)) (-3928 (((-701 (-576)) (-1286 $)) 164 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 163 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 162 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 161) (((-701 |#1|) (-701 $)) 160) (((-701 |#1|) (-1286 $)) 159)) (-4077 (((-3 $ "failed") $) 37)) (-2840 (($) 147 (|has| |#1| (-557)))) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-3730 (((-112) $) 132 (|has| |#1| (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 156 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 155 (|has| |#1| (-899 (-390))))) (-4192 (((-112) $) 35)) (-4299 (($ $) 151)) (-2976 ((|#1| $) 153)) (-2211 (((-3 $ "failed") $) 118 (|has| |#1| (-1170)))) (-3327 (((-112) $) 131 (|has| |#1| (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3639 (($ $ $) 128 (|has| |#1| (-862)))) (-2571 (($ $ $) 127 (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) 181)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3796 (($) 117 (|has| |#1| (-1170)) CONST)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-3739 (($ $) 148 (|has| |#1| (-317)))) (-4371 ((|#1| $) 145 (|has| |#1| (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 142 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 141 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) 187 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 186 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 185 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 184 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 183 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 182 (|has| |#1| (-526 (-1195) |#1|)))) (-3927 (((-783) $) 64)) (-2209 (($ $ |#1|) 188 (|has| |#1| (-296 |#1| |#1|)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-3884 (($ $ (-783)) 179 (|has| |#1| (-239))) (($ $) 177 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 173 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 172 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 171 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 169 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 166) (($ $ (-1 |#1| |#1|)) 165)) (-3210 (($ $) 150)) (-2987 ((|#1| $) 152)) (-1846 (((-905 (-576)) $) 158 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 157 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 135 (|has| |#1| (-626 (-548)))) (((-390) $) 134 (|has| |#1| (-1040))) (((-227) $) 133 (|has| |#1| (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 144 (-2096 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 193) (($ (-1195)) 137 (|has| |#1| (-1056 (-1195))))) (-1817 (((-3 $ "failed") $) 136 (-2838 (|has| |#1| (-146)) (-2096 (|has| $ (-146)) (|has| |#1| (-925)))))) (-3423 (((-783)) 32 T CONST)) (-4175 ((|#1| $) 146 (|has| |#1| (-557)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2130 (($ $) 129 (|has| |#1| (-832)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-783)) 180 (|has| |#1| (-239))) (($ $) 178 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 176 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 175 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 174 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 170 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 168) (($ $ (-1 |#1| |#1|)) 167)) (-3047 (((-112) $ $) 125 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 124 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 126 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 123 (|has| |#1| (-862)))) (-3108 (($ $ $) 73) (($ |#1| |#1|) 154)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 192) (($ $ |#1|) 191)))
+(((-1010 |#1|) (-141) (-568)) (T -1010))
+((-3108 (*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-4299 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-3210 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-3739 (*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2840 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557)))))
+(-13 (-374) (-38 |t#1|) (-1056 |t#1|) (-349 |t#1|) (-233 |t#1|) (-388 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3108 ($ |t#1| |t#1|)) (-15 -2976 (|t#1| $)) (-15 -2987 (|t#1| $)) (-15 -4299 ($ $)) (-15 -3210 ($ $)) (IF (|has| |t#1| (-1170)) (-6 (-1170)) |%noBranch|) (IF (|has| |t#1| (-1056 (-576))) (PROGN (-6 (-1056 (-576))) (-6 (-1056 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1056 (-1195))) (-6 (-1056 (-1195))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -2742 (|t#1| $)) (-15 -3739 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2840 ($)) (-15 -4175 (|t#1| $)) (-15 -4371 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-925)) (-6 (-925)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1195)) |has| |#1| (-1056 (-1195))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1040)) ((-626 (-390)) |has| |#1| (-1040)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-862) -2838 (|has| |#1| (-862)) (|has| |#1| (-832))) ((-909 $ #3=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #3#) |has| |#1| (-914 (-1195))) ((-916 #3#) |has| |#1| (-914 (-1195))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-925) |has| |#1| (-925)) ((-936) . T) ((-1040) |has| |#1| (-1040)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-576))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #1#) |has| |#1| (-1056 (-1195))) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-1170)) ((-1236) . T) ((-1240) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4110 (($ (-1160 |#1| |#2|)) 11)) (-2929 (((-1160 |#1| |#2|) $) 12)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2209 ((|#2| $ (-246 |#1| |#2|)) 16)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL)))
+(((-1011 |#1| |#2|) (-13 (-21) (-296 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -4110 ($ (-1160 |#1| |#2|))) (-15 -2929 ((-1160 |#1| |#2|) $)))) (-937) (-374)) (T -1011))
+((-4110 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374)) (-5 *1 (-1011 *3 *4)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-5 *1 (-1011 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374)))))
+(-13 (-21) (-296 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -4110 ($ (-1160 |#1| |#2|))) (-15 -2929 ((-1160 |#1| |#2|) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 9)) (-2956 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1012) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $))))) (T -1012))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1012)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-1836 (($ $) 47)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-4114 (((-783) $) 46)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2114 ((|#1| $) 45)) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-2367 ((|#1| |#1| $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-3385 ((|#1| $) 48)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-1556 ((|#1| $) 44)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1013 |#1|) (-141) (-1236)) (T -1013))
+((-2367 (*1 *2 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-1836 (*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -2367 (|t#1| |t#1| $)) (-15 -3385 (|t#1| $)) (-15 -1836 ($ $)) (-15 -4114 ((-783) $)) (-15 -2114 (|t#1| $)) (-15 -1556 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-3549 (((-112) $) 43)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-2456 (((-3 (-419 (-576)) "failed") $) 78)) (-1874 (((-112) $) 72)) (-2183 (((-419 (-576)) $) 76)) (-4192 (((-112) $) 42)) (-3404 ((|#2| $) 22)) (-1787 (($ (-1 |#2| |#2|) $) 19)) (-1330 (($ $) 58)) (-3884 (($ $ (-783)) NIL) (($ $) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1846 (((-548) $) 67)) (-1979 (($ $) 17)) (-2956 (((-874) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-3423 (((-783)) 10)) (-2130 ((|#2| $) 71)) (-2991 (((-112) $ $) 26)) (-3014 (((-112) $ $) 69)) (-3096 (($ $) 30) (($ $ $) 29)) (-3081 (($ $ $) 27)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-1014 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| (-419 (-576)))) (-15 -3014 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1330 (|#1| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2130 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -4192 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-1015 |#2|) (-174)) (T -1014))
+((-3423 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1014 *3 *4)) (-4 *3 (-1015 *4)))))
+(-10 -8 (-15 -2956 (|#1| (-419 (-576)))) (-15 -3014 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1330 (|#1| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2130 (|#2| |#1|)) (-15 -3404 (|#2| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1787 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -4192 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1706 (((-3 (-576) "failed") $) 131 (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 129 (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) 126)) (-2216 (((-576) $) 130 (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) 128 (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) 127)) (-3928 (((-701 (-576)) (-1286 $)) 101 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 100 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 99 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 98) (((-701 |#1|) (-701 $)) 97) (((-701 |#1|) (-1286 $)) 96)) (-4077 (((-3 $ "failed") $) 37)) (-4225 ((|#1| $) 89)) (-2456 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-1874 (((-112) $) 87 (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) 86 (|has| |#1| (-557)))) (-3545 (($ |#1| |#1| |#1| |#1|) 90)) (-4192 (((-112) $) 35)) (-3404 ((|#1| $) 91)) (-3639 (($ $ $) 78 (|has| |#1| (-862)))) (-2571 (($ $ $) 77 (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) 102)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 82 (|has| |#1| (-374)))) (-2820 ((|#1| $) 92)) (-1577 ((|#1| $) 93)) (-1767 ((|#1| $) 94)) (-3945 (((-1138) $) 11)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) 108 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 107 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 106 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 105 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 104 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 103 (|has| |#1| (-526 (-1195) |#1|)))) (-2209 (($ $ |#1|) 109 (|has| |#1| (-296 |#1| |#1|)))) (-3884 (($ $ (-783)) 124 (|has| |#1| (-239))) (($ $) 122 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 118 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 117 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 116 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 114 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 111) (($ $ (-1 |#1| |#1|)) 110)) (-1846 (((-548) $) 83 (|has| |#1| (-626 (-548))))) (-1979 (($ $) 95)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 72 (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (((-3 $ "failed") $) 84 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2130 ((|#1| $) 88 (|has| |#1| (-1078)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-783)) 125 (|has| |#1| (-239))) (($ $) 123 (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) 121 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 120 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 119 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 115 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 113) (($ $ (-1 |#1| |#1|)) 112)) (-3047 (((-112) $ $) 75 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 74 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 76 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 73 (|has| |#1| (-862)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 81 (|has| |#1| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 80 (|has| |#1| (-374))) (($ (-419 (-576)) $) 79 (|has| |#1| (-374)))))
+(((-1015 |#1|) (-141) (-174)) (T -1015))
+((-1979 (*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-3545 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)) (-4 *2 (-1078)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2456 (*1 *2 *1) (|partial| -12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))))
+(-13 (-38 |t#1|) (-423 |t#1|) (-233 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -1979 ($ $)) (-15 -1767 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -2820 (|t#1| $)) (-15 -3404 (|t#1| $)) (-15 -3545 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4225 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1078)) (-15 -2130 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1874 ((-112) $)) (-15 -2183 ((-419 (-576)) $)) (-15 -2456 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-235 $) |has| |#1| (-239)) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) |has| |#1| (-239)) ((-249) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2838 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-909 $ #2=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #2#) |has| |#1| (-914 (-1195))) ((-916 #2#) |has| |#1| (-914 (-1195))) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1069 #0#) |has| |#1| (-374)) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1074 #0#) |has| |#1| (-374)) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) -2838 (|has| |#1| (-914 (-1195))) (|has| |#1| (-296 |#1| |#1|)) (|has| |#1| (-239))))
+((-1787 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|))) (-1015 |#2|) (-174) (-1015 |#4|) (-174)) (T -1016))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1015 *6)) (-5 *1 (-1016 *4 *5 *2 *6)) (-4 *4 (-1015 *5)))))
+(-10 -7 (-15 -1787 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4225 ((|#1| $) 12)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1874 (((-112) $) NIL (|has| |#1| (-557)))) (-2183 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3545 (($ |#1| |#1| |#1| |#1|) 16)) (-4192 (((-112) $) NIL)) (-3404 ((|#1| $) NIL)) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2820 ((|#1| $) 15)) (-1577 ((|#1| $) 14)) (-1767 ((|#1| $) 13)) (-3945 (((-1138) $) NIL)) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2209 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3884 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-1979 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2130 ((|#1| $) NIL (|has| |#1| (-1078)))) (-2143 (($) 8 T CONST)) (-2155 (($) 10 T CONST)) (-3590 (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374)))))
+(((-1017 |#1|) (-1015 |#1|) (-174)) (T -1017))
+NIL
+(-1015 |#1|)
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-1836 (($ $) 23)) (-2177 (($ (-656 |#1|)) 33)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-4114 (((-783) $) 26)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) 28)) (-2504 (($ |#1| $) 17)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2114 ((|#1| $) 27)) (-4256 ((|#1| $) 22)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-2367 ((|#1| |#1| $) 16)) (-3321 (((-112) $) 18)) (-2953 (($) NIL)) (-3385 ((|#1| $) 21)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) NIL)) (-1556 ((|#1| $) 30)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1018 |#1|) (-13 (-1013 |#1|) (-10 -8 (-15 -2177 ($ (-656 |#1|))))) (-1118)) (T -1018))
+((-2177 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1018 *3)))))
+(-13 (-1013 |#1|) (-10 -8 (-15 -2177 ($ (-656 |#1|)))))
+((-4214 (($ $) 12)) (-2333 (($ $ (-576)) 13)))
+(((-1019 |#1|) (-10 -8 (-15 -4214 (|#1| |#1|)) (-15 -2333 (|#1| |#1| (-576)))) (-1020)) (T -1019))
+NIL
+(-10 -8 (-15 -4214 (|#1| |#1|)) (-15 -2333 (|#1| |#1| (-576))))
+((-4214 (($ $) 6)) (-2333 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8)))
+(((-1020) (-141)) (T -1020))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-419 (-576))))) (-2333 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-576)))) (-4214 (*1 *1 *1) (-4 *1 (-1020))))
+(-13 (-10 -8 (-15 -4214 ($ $)) (-15 -2333 ($ $ (-576))) (-15 ** ($ $ (-419 (-576))))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4009 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4334 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1428 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2674 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1646 (((-419 |#2|) $) NIL)) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1870 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1323 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1499 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-1797 (((-112)) NIL)) (-1939 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| (-419 |#2|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1056 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2524 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 79) (($ (-1286 |#2|) |#2|) NIL)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2806 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1796 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-1860 (((-1286 $) (-1286 $)) NIL)) (-2887 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-4077 (((-3 $ "failed") $) NIL)) (-2387 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2826 (((-112) |#1| |#1|) NIL)) (-3563 (((-937)) NIL)) (-2840 (($) NIL (|has| (-419 |#2|) (-379)))) (-2809 (((-112)) NIL)) (-3533 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2818 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-4290 (($ $) NIL)) (-3243 (($) NIL (|has| (-419 |#2|) (-360)))) (-4208 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3454 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3124 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3540 (((-937) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-937)) $) NIL (|has| (-419 |#2|) (-360)))) (-4192 (((-112) $) NIL)) (-3464 (((-783)) NIL)) (-4072 (((-1286 $) (-1286 $)) NIL)) (-3404 (((-419 |#2|) $) NIL)) (-3340 (((-656 (-968 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-2211 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1733 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-4261 (((-937) $) NIL (|has| (-419 |#2|) (-379)))) (-2874 ((|#3| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-1177) $) NIL)) (-2757 (((-701 (-419 |#2|))) 57)) (-2980 (((-701 (-419 |#2|))) 56)) (-1330 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2824 (($ (-1286 |#2|) |#2|) 80)) (-2396 (((-701 (-419 |#2|))) 55)) (-2950 (((-701 (-419 |#2|))) 54)) (-1446 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2793 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 86)) (-1900 (((-1286 $)) 51)) (-3701 (((-1286 $)) 50)) (-2118 (((-112) $) NIL)) (-2642 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3796 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2596 (($ (-937)) NIL (|has| (-419 |#2|) (-379)))) (-3334 (((-3 |#2| "failed")) 70)) (-3945 (((-1138) $) NIL)) (-3344 (((-783)) NIL)) (-2981 (($) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-2892 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-4205 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2858 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3927 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2209 ((|#1| $ |#1| |#1|) NIL)) (-4409 (((-3 |#2| "failed")) 68)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3206 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 47)) (-3665 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-3884 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3767 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2477 ((|#3|) 58)) (-3087 (($) NIL (|has| (-419 |#2|) (-360)))) (-3458 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-1846 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-3058 (((-1286 $) (-1286 $)) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2838 (|has| (-419 |#2|) (-1056 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1817 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4343 ((|#3| $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2124 (((-112)) 65)) (-3328 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) NIL)) (-2946 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1967 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2214 (((-112)) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1195)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-914 (-1195))))) (($ $) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374)))))
+(((-1021 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-419 |#2|) (-783)) (T -1021))
+NIL
+(-353 |#1| |#2| |#3|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2522 (((-656 (-576)) $) 73)) (-1452 (($ (-656 (-576))) 81)) (-2742 (((-576) $) 48 (|has| (-576) (-317)))) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL (|has| (-576) (-832)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) 60) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1056 (-1195)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1056 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1056 (-576))))) (-2216 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1056 (-576)))) (((-576) $) NIL (|has| (-576) (-1056 (-576))))) (-2806 (($ $ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2840 (($) NIL (|has| (-576) (-557)))) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3101 (((-656 (-576)) $) 79)) (-3730 (((-112) $) NIL (|has| (-576) (-832)))) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL)) (-2976 (((-576) $) 45)) (-2211 (((-3 $ "failed") $) NIL (|has| (-576) (-1170)))) (-3327 (((-112) $) NIL (|has| (-576) (-832)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-576) (-862)))) (-1787 (($ (-1 (-576) (-576)) $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL)) (-3796 (($) NIL (|has| (-576) (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3739 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-1893 (((-1175 (-576)) $) 78)) (-1729 (($ (-656 (-576)) (-656 (-576))) 82)) (-4371 (((-576) $) 64 (|has| (-576) (-557)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-925)))) (-4205 (((-430 $) $) NIL)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2666 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3927 (((-783) $) NIL)) (-2209 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) 15 (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3210 (($ $) NIL)) (-2987 (((-576) $) 47)) (-1436 (((-656 (-576)) $) 80)) (-1846 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1040))) (((-227) $) NIL (|has| (-576) (-1040)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-925))))) (-2956 (((-874) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1195)) NIL (|has| (-576) (-1056 (-1195)))) (((-419 (-576)) $) 25)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-576) (-925))) (|has| (-576) (-146))))) (-3423 (((-783)) 13 T CONST)) (-4175 (((-576) $) 62 (|has| (-576) (-557)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2130 (($ $) NIL (|has| (-576) (-832)))) (-2143 (($) 14 T CONST)) (-2155 (($) 17 T CONST)) (-3590 (($ $ (-783)) NIL (|has| (-576) (-239))) (($ $) NIL (|has| (-576) (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1195)) NIL (|has| (-576) (-914 (-1195)))) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1 (-576) (-576))) NIL)) (-3047 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2991 (((-112) $ $) 21)) (-3034 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3014 (((-112) $ $) 40 (|has| (-576) (-862)))) (-3108 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3096 (($ $) 23) (($ $ $) 30)) (-3081 (($ $ $) 28)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL)))
+(((-1022 |#1|) (-13 (-1010 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2522 ((-656 (-576)) $)) (-15 -1893 ((-1175 (-576)) $)) (-15 -3101 ((-656 (-576)) $)) (-15 -1436 ((-656 (-576)) $)) (-15 -1452 ($ (-656 (-576)))) (-15 -1729 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1022))
+((-3739 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))) (-1729 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(-13 (-1010 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -3739 ((-419 (-576)) $)) (-15 -2522 ((-656 (-576)) $)) (-15 -1893 ((-1175 (-576)) $)) (-15 -3101 ((-656 (-576)) $)) (-15 -1436 ((-656 (-576)) $)) (-15 -1452 ($ (-656 (-576)))) (-15 -1729 ($ (-656 (-576)) (-656 (-576))))))
+((-4112 (((-52) (-419 (-576)) (-576)) 9)))
+(((-1023) (-10 -7 (-15 -4112 ((-52) (-419 (-576)) (-576))))) (T -1023))
+((-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1023)))))
+(-10 -7 (-15 -4112 ((-52) (-419 (-576)) (-576))))
+((-1499 (((-576)) 23)) (-3172 (((-576)) 28)) (-2376 (((-1291) (-576)) 26)) (-4437 (((-576) (-576)) 29) (((-576)) 22)))
+(((-1024) (-10 -7 (-15 -4437 ((-576))) (-15 -1499 ((-576))) (-15 -4437 ((-576) (-576))) (-15 -2376 ((-1291) (-576))) (-15 -3172 ((-576))))) (T -1024))
+((-3172 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1024)))) (-4437 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-1499 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))) (-4437 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))))
+(-10 -7 (-15 -4437 ((-576))) (-15 -1499 ((-576))) (-15 -4437 ((-576) (-576))) (-15 -2376 ((-1291) (-576))) (-15 -3172 ((-576))))
+((-3067 (((-430 |#1|) |#1|) 43)) (-4205 (((-430 |#1|) |#1|) 41)))
+(((-1025 |#1|) (-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1|))) (-1262 (-419 (-576)))) (T -1025))
+((-3067 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3)) (-4 *3 (-1262 (-419 (-576)))))))
+(-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1|)))
+((-2456 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-1874 (((-112) |#1|) 14)) (-2183 (((-419 (-576)) |#1|) 10)))
+(((-1026 |#1|) (-10 -7 (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|))) (-1056 (-419 (-576)))) (T -1026))
+((-2456 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2)))) (-1874 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1056 (-419 (-576)))))) (-2183 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2)))))
+(-10 -7 (-15 -2183 ((-419 (-576)) |#1|)) (-15 -1874 ((-112) |#1|)) (-15 -2456 ((-3 (-419 (-576)) "failed") |#1|)))
+((-3140 ((|#2| $ "value" |#2|) 12)) (-2209 ((|#2| $ "value") 10)) (-1931 (((-112) $ $) 18)))
+(((-1027 |#1| |#2|) (-10 -8 (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -1931 ((-112) |#1| |#1|)) (-15 -2209 (|#2| |#1| "value"))) (-1028 |#2|) (-1236)) (T -1027))
+NIL
+(-10 -8 (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -1931 ((-112) |#1| |#1|)) (-15 -2209 (|#2| |#1| "value")))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-4335 (($) 7 T CONST)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48)) (-1785 (((-576) $ $) 45)) (-1558 (((-112) $) 47)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1028 |#1|) (-141) (-1236)) (T -1028))
+((-4197 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))) (-2635 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-1558 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-1785 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-1931 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-4344 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1028 *3)) (-4 *3 (-1236)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236)))) (-3052 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236)))))
+(-13 (-501 |t#1|) (-10 -8 (-15 -4197 ((-656 $) $)) (-15 -2635 ((-656 $) $)) (-15 -3126 ((-112) $)) (-15 -3084 (|t#1| $)) (-15 -2209 (|t#1| $ "value")) (-15 -1558 ((-112) $)) (-15 -3488 ((-656 |t#1|) $)) (-15 -1785 ((-576) $ $)) (IF (|has| |t#1| (-1118)) (PROGN (-15 -1931 ((-112) $ $)) (-15 -4344 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -4215 ($ $ (-656 $))) (-15 -3140 (|t#1| $ "value" |t#1|)) (-15 -3052 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-4214 (($ $) 9) (($ $ (-937)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-3028 (((-3 $ "failed") (-1191 $) (-937) (-874)) 24) (((-3 $ "failed") (-1191 $) (-937)) 32)) (-2333 (($ $ (-576)) 58)) (-3423 (((-783)) 18)) (-3082 (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 (-419 (-576)))) 63) (((-656 $) (-1191 (-576))) 68) (((-656 $) (-968 $)) 72) (((-656 $) (-968 (-419 (-576)))) 76) (((-656 $) (-968 (-576))) 80)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53)))
+(((-1029 |#1|) (-10 -8 (-15 -4214 (|#1| (-576))) (-15 -4214 (|#1| (-419 (-576)))) (-15 -4214 (|#1| |#1| (-937))) (-15 -3082 ((-656 |#1|) (-968 (-576)))) (-15 -3082 ((-656 |#1|) (-968 (-419 (-576))))) (-15 -3082 ((-656 |#1|) (-968 |#1|))) (-15 -3082 ((-656 |#1|) (-1191 (-576)))) (-15 -3082 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -3082 ((-656 |#1|) (-1191 |#1|))) (-15 -3028 ((-3 |#1| "failed") (-1191 |#1|) (-937))) (-15 -3028 ((-3 |#1| "failed") (-1191 |#1|) (-937) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2333 (|#1| |#1| (-576))) (-15 -4214 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3423 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937)))) (-1030)) (T -1029))
+((-3423 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1029 *3)) (-4 *3 (-1030)))))
+(-10 -8 (-15 -4214 (|#1| (-576))) (-15 -4214 (|#1| (-419 (-576)))) (-15 -4214 (|#1| |#1| (-937))) (-15 -3082 ((-656 |#1|) (-968 (-576)))) (-15 -3082 ((-656 |#1|) (-968 (-419 (-576))))) (-15 -3082 ((-656 |#1|) (-968 |#1|))) (-15 -3082 ((-656 |#1|) (-1191 (-576)))) (-15 -3082 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -3082 ((-656 |#1|) (-1191 |#1|))) (-15 -3028 ((-3 |#1| "failed") (-1191 |#1|) (-937))) (-15 -3028 ((-3 |#1| "failed") (-1191 |#1|) (-937) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2333 (|#1| |#1| (-576))) (-15 -4214 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3423 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 102)) (-4334 (($ $) 103)) (-1428 (((-112) $) 105)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 122)) (-1870 (((-430 $) $) 123)) (-4214 (($ $) 86) (($ $ (-937)) 72) (($ (-419 (-576))) 71) (($ (-576)) 70)) (-1323 (((-112) $ $) 113)) (-2627 (((-576) $) 139)) (-4335 (($) 18 T CONST)) (-3028 (((-3 $ "failed") (-1191 $) (-937) (-874)) 80) (((-3 $ "failed") (-1191 $) (-937)) 79)) (-1706 (((-3 (-576) "failed") $) 99 (|has| (-419 (-576)) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 94)) (-2216 (((-576) $) 98 (|has| (-419 (-576)) (-1056 (-576)))) (((-419 (-576)) $) 96 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-419 (-576)) $) 95)) (-2893 (($ $ (-874)) 69)) (-1903 (($ $ (-874)) 68)) (-2806 (($ $ $) 117)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 116)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 111)) (-3124 (((-112) $) 124)) (-3730 (((-112) $) 137)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 85)) (-3327 (((-112) $) 138)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 120)) (-3639 (($ $ $) 136)) (-2571 (($ $ $) 135)) (-1970 (((-3 (-1191 $) "failed") $) 81)) (-1457 (((-3 (-874) "failed") $) 83)) (-4096 (((-3 (-1191 $) "failed") $) 82)) (-2850 (($ (-656 $)) 109) (($ $ $) 108)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 125)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 110)) (-2892 (($ (-656 $)) 107) (($ $ $) 106)) (-4205 (((-430 $) $) 121)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 118)) (-2858 (((-3 $ "failed") $ $) 101)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 112)) (-3927 (((-783) $) 114)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 115)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 129) (($ $) 100) (($ (-419 (-576))) 93) (($ (-576)) 92) (($ (-419 (-576))) 89)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 104)) (-3530 (((-419 (-576)) $ $) 67)) (-3082 (((-656 $) (-1191 $)) 78) (((-656 $) (-1191 (-419 (-576)))) 77) (((-656 $) (-1191 (-576))) 76) (((-656 $) (-968 $)) 75) (((-656 $) (-968 (-419 (-576)))) 74) (((-656 $) (-968 (-576))) 73)) (-2130 (($ $) 140)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 133)) (-3024 (((-112) $ $) 132)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 134)) (-3014 (((-112) $ $) 131)) (-3108 (($ $ $) 130)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 126) (($ $ (-419 (-576))) 84)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 128) (($ $ (-419 (-576))) 127) (($ (-576) $) 91) (($ $ (-576)) 90) (($ (-419 (-576)) $) 88) (($ $ (-419 (-576))) 87)))
+(((-1030) (-141)) (T -1030))
+((-4214 (*1 *1 *1) (-4 *1 (-1030))) (-1457 (*1 *2 *1) (|partial| -12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-4096 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))) (-1970 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))) (-3028 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-874)) (-4 *1 (-1030)))) (-3028 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1030)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030)))) (-4214 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-937)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1030)))) (-4214 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1030)))) (-2893 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-1903 (*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))) (-3530 (*1 *2 *1 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-419 (-576))))))
+(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1020) (-10 -8 (-15 -1457 ((-3 (-874) "failed") $)) (-15 -4096 ((-3 (-1191 $) "failed") $)) (-15 -1970 ((-3 (-1191 $) "failed") $)) (-15 -3028 ((-3 $ "failed") (-1191 $) (-937) (-874))) (-15 -3028 ((-3 $ "failed") (-1191 $) (-937))) (-15 -3082 ((-656 $) (-1191 $))) (-15 -3082 ((-656 $) (-1191 (-419 (-576))))) (-15 -3082 ((-656 $) (-1191 (-576)))) (-15 -3082 ((-656 $) (-968 $))) (-15 -3082 ((-656 $) (-968 (-419 (-576))))) (-15 -3082 ((-656 $) (-968 (-576)))) (-15 -4214 ($ $ (-937))) (-15 -4214 ($ $)) (-15 -4214 ($ (-419 (-576)))) (-15 -4214 ($ (-576))) (-15 -2893 ($ $ (-874))) (-15 -1903 ($ $ (-874))) (-15 -3530 ((-419 (-576)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-936) . T) ((-1020) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) |has| (-419 (-576)) (-1056 (-576))) ((-1069 #0#) . T) ((-1069 #1#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 #1#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-4067 (((-2 (|:| |ans| |#2|) (|:| -3883 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1031 |#1| |#2|) (-10 -7 (-15 -4067 ((-2 (|:| |ans| |#2|) (|:| -3883 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1031))
+((-4067 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3883 *4) (|:| |sol?| (-112)))) (-5 *1 (-1031 *8 *4)))))
+(-10 -7 (-15 -4067 ((-2 (|:| |ans| |#2|) (|:| -3883 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2472 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1032 |#1| |#2|) (-10 -7 (-15 -2472 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1032))
+((-2472 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1032 *8 *4)))))
+(-10 -7 (-15 -2472 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -2570 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1396 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4102 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-3713 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-4200 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74)))
+(((-1033 |#1| |#2|) (-10 -7 (-15 -3713 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4200 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1396 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4102 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -1033))
+((-1396 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4102 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1033 *6 *3)))) (-4200 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-419 *5)))) (-3713 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2153 *6))) (-5 *1 (-1033 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -3713 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4200 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1396 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4102 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|))))
+((-3314 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-1840 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34)))
+(((-1034 |#1| |#2|) (-10 -7 (-15 -3314 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1840 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1056 (-576))) (-1262 |#1|)) (T -1034))
+((-1840 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-3314 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2153 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -3314 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2153 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1840 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))))
+((-3451 (((-1 |#1|) (-656 (-2 (|:| -3084 |#1|) (|:| -2599 (-576))))) 34)) (-1616 (((-1 |#1|) (-1120 |#1|)) 42)) (-3117 (((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)) 31)))
+(((-1035 |#1|) (-10 -7 (-15 -1616 ((-1 |#1|) (-1120 |#1|))) (-15 -3451 ((-1 |#1|) (-656 (-2 (|:| -3084 |#1|) (|:| -2599 (-576)))))) (-15 -3117 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)))) (-1118)) (T -1035))
+((-3117 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576)) (-4 *6 (-1118)) (-5 *2 (-1 *6)) (-5 *1 (-1035 *6)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3084 *4) (|:| -2599 (-576))))) (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1120 *4)) (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4)))))
+(-10 -7 (-15 -1616 ((-1 |#1|) (-1120 |#1|))) (-15 -3451 ((-1 |#1|) (-656 (-2 (|:| -3084 |#1|) (|:| -2599 (-576)))))) (-15 -3117 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576))))
+((-3540 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3540 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1036))
+((-3540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1036 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3540 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2869 (((-112) $ $) NIL)) (-4153 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 11)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1037) (-13 (-1101) (-10 -8 (-15 -4153 ((-1153) $)) (-15 -2053 ((-1153) $))))) (T -1037))
+((-4153 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037)))))
+(-13 (-1101) (-10 -8 (-15 -4153 ((-1153) $)) (-15 -2053 ((-1153) $))))
+((-4358 (((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) 32) (((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576))) 29)) (-4041 (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) 33) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|) 28)) (-1778 (((-656 (-419 (-576))) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) 20)) (-1640 (((-419 (-576)) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) 17)))
+(((-1038 |#1|) (-10 -7 (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|)) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -1640 ((-419 (-576)) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -1778 ((-656 (-419 (-576))) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))))) (-1262 (-576))) (T -1038))
+((-1778 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576))))) (-4358 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) (-4358 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -3870 *5) (|:| -3883 *5)))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -3870 *5) (|:| -3883 *5))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))) (-4041 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))))))
+(-10 -7 (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|)) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -1640 ((-419 (-576)) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -1778 ((-656 (-419 (-576))) (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))))
+((-4358 (((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) 35) (((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576))) 32)) (-4041 (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) 28) (((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|) 24)))
+(((-1039 |#1|) (-10 -7 (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|)) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))) (-1262 (-419 (-576)))) (T -1039))
+((-4358 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-4358 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -3870 *5) (|:| -3883 *5)))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -3870 *5) (|:| -3883 *5))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -3870 *4) (|:| -3883 *4)))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))) (-5 *4 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))) (-4041 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576)))))))
+(-10 -7 (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1|)) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -4041 ((-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-419 (-576)))) (-15 -4358 ((-3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) "failed") |#1| (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))) (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))))
+((-1846 (((-227) $) 6) (((-390) $) 9)))
+(((-1040) (-141)) (T -1040))
+NIL
+(-13 (-626 (-227)) (-626 (-390)))
+(((-626 (-227)) . T) ((-626 (-390)) . T))
+((-2766 (((-656 (-390)) (-968 (-576)) (-390)) 28) (((-656 (-390)) (-968 (-419 (-576))) (-390)) 27)) (-2263 (((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390)) 37)))
+(((-1041) (-10 -7 (-15 -2766 ((-656 (-390)) (-968 (-419 (-576))) (-390))) (-15 -2766 ((-656 (-390)) (-968 (-576)) (-390))) (-15 -2263 ((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390))))) (T -1041))
+((-2263 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1041)) (-5 *5 (-390)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1041)) (-5 *4 (-390)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1041)) (-5 *4 (-390)))))
+(-10 -7 (-15 -2766 ((-656 (-390)) (-968 (-419 (-576))) (-390))) (-15 -2766 ((-656 (-390)) (-968 (-576)) (-390))) (-15 -2263 ((-656 (-656 (-390))) (-656 (-968 (-576))) (-656 (-1195)) (-390))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 75)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-4214 (($ $) NIL) (($ $ (-937)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) 70)) (-4335 (($) NIL T CONST)) (-3028 (((-3 $ "failed") (-1191 $) (-937) (-874)) NIL) (((-3 $ "failed") (-1191 $) (-937)) 55)) (-1706 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2838 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))))) (-2216 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1056 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2838 (|has| (-419 (-576)) (-1056 (-576))) (|has| |#1| (-1056 (-576)))))) (-2893 (($ $ (-874)) 47)) (-1903 (($ $ (-874)) 48)) (-2806 (($ $ $) NIL)) (-2723 (((-419 (-576)) $ $) 21)) (-4077 (((-3 $ "failed") $) 88)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-3730 (((-112) $) 66)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL)) (-3327 (((-112) $) 69)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1970 (((-3 (-1191 $) "failed") $) 83)) (-1457 (((-3 (-874) "failed") $) 82)) (-4096 (((-3 (-1191 $) "failed") $) 80)) (-2031 (((-3 (-1079 $ (-1191 $)) "failed") $) 78)) (-2850 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 89)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-2956 (((-874) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-3530 (((-419 (-576)) $ $) 27)) (-3082 (((-656 $) (-1191 $)) 61) (((-656 $) (-1191 (-419 (-576)))) NIL) (((-656 $) (-1191 (-576))) NIL) (((-656 $) (-968 $)) NIL) (((-656 $) (-968 (-419 (-576)))) NIL) (((-656 $) (-968 (-576))) NIL)) (-3324 (($ (-1079 $ (-1191 $)) (-874)) 46)) (-2130 (($ $) 22)) (-2143 (($) 32 T CONST)) (-2155 (($) 39 T CONST)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 76)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 24)) (-3108 (($ $ $) 37)) (-3096 (($ $) 38) (($ $ $) 74)) (-3081 (($ $ $) 112)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1042 |#1|) (-13 (-1030) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3324 ($ (-1079 $ (-1191 $)) (-874))) (-15 -2031 ((-3 (-1079 $ (-1191 $)) "failed") $)) (-15 -2723 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1040))) (T -1042))
+((-3324 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 (-1042 *4) (-1191 (-1042 *4)))) (-5 *3 (-874)) (-5 *1 (-1042 *4)) (-4 *4 (-13 (-860) (-374) (-1040))))) (-2031 (*1 *2 *1) (|partial| -12 (-5 *2 (-1079 (-1042 *3) (-1191 (-1042 *3)))) (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040))))) (-2723 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040))))))
+(-13 (-1030) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3324 ($ (-1079 $ (-1191 $)) (-874))) (-15 -2031 ((-3 (-1079 $ (-1191 $)) "failed") $)) (-15 -2723 ((-419 (-576)) $ $))))
+((-1536 (((-2 (|:| -4102 |#2|) (|:| -4288 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1043 |#1| |#2|) (-10 -7 (-15 -1536 (|#2| |#2| |#1|)) (-15 -1536 ((-2 (|:| -4102 |#2|) (|:| -4288 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1043))
+((-1536 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4102 *3) (|:| -4288 (-656 *5)))) (-5 *1 (-1043 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-1536 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-668 *3)))))
+(-10 -7 (-15 -1536 (|#2| |#2| |#1|)) (-15 -1536 ((-2 (|:| -4102 |#2|) (|:| -4288 (-656 |#1|))) |#2| (-656 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2610 ((|#1| $ |#1|) 14)) (-3140 ((|#1| $ |#1|) 12)) (-3644 (($ |#1|) 10)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2209 ((|#1| $) 11)) (-3553 ((|#1| $) 13)) (-2956 (((-874) $) 21 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2991 (((-112) $ $) 9)))
+(((-1044 |#1|) (-13 (-1236) (-10 -8 (-15 -3644 ($ |#1|)) (-15 -2209 (|#1| $)) (-15 -3140 (|#1| $ |#1|)) (-15 -3553 (|#1| $)) (-15 -2610 (|#1| $ |#1|)) (-15 -2991 ((-112) $ $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1044))
+((-3644 (*1 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2209 (*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-3140 (*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-3553 (*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2610 (*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))) (-2991 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1044 *3)) (-4 *3 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -3644 ($ |#1|)) (-15 -2209 (|#1| $)) (-15 -3140 (|#1| $ |#1|)) (-15 -3553 (|#1| $)) (-15 -2610 (|#1| $ |#1|)) (-15 -2991 ((-112) $ $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3809 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4352 (((-656 |#3|) $) NIL)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3276 ((|#4| |#4| $) NIL)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 112)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 66)) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) 29 (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2331 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2216 (($ (-656 |#4|)) NIL)) (-2940 (((-3 $ "failed") $) 45)) (-3164 ((|#4| |#4| $) 69)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3316 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2705 ((|#4| |#4| $) NIL)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) NIL)) (-3062 (((-112) |#4| $) NIL)) (-3278 (((-112) |#4| $) NIL)) (-2445 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4130 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-1873 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2977 ((|#3| $) 38)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2466 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-4172 (((-656 |#3|) $) NIL)) (-1820 (((-112) |#3| $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 110)) (-3338 (((-3 |#4| "failed") $) 42)) (-2196 (((-656 $) |#4| $) 93)) (-3036 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3318 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-2116 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-3187 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3200 (((-656 |#4|) $) NIL)) (-3103 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1992 ((|#4| |#4| $) NIL)) (-3320 (((-112) $ $) NIL)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-3 |#4| "failed") $) 40)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2452 (((-3 $ "failed") $ |#4|) 59)) (-3167 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 14)) (-2782 (((-783) $) NIL)) (-3954 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) 13)) (-1846 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 22)) (-3888 (($ $ |#3|) 52)) (-1572 (($ $ |#3|) 54)) (-4104 (($ $) NIL)) (-2051 (($ $ |#3|) NIL)) (-2956 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3364 (((-783) $) NIL (|has| |#3| (-379)))) (-2617 (((-112) $ $) NIL)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2526 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) NIL)) (-4300 (((-112) |#4| $) NIL)) (-3684 (((-112) |#3| $) 65)) (-2991 (((-112) $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1045 |#1| |#2| |#3| |#4|) (-13 (-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3187 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2116 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4130 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1045))
+((-3187 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3)) (-4 *3 (-1083 *5 *6 *7)))) (-3809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-3809 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-2116 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1045 *5 *6 *7 *8))))) (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(-13 (-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3187 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2116 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4130 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)))))
+((-3820 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-2776 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937)) 63) (((-701 |#1|) (-701 |#1|) (-937)) 62)) (-3827 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-921 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-921 (-576)) (-576)) 75)) (-3742 (((-701 (-968 |#1|)) (-783)) 95)) (-2079 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937)) 49 (|has| |#1| (-6 (-4463 "*")))) (((-701 |#1|) (-701 |#1|) (-937)) 47 (|has| |#1| (-6 (-4463 "*"))))))
+(((-1046 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2079 ((-701 |#1|) (-701 |#1|) (-937))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2079 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) |%noBranch|) (-15 -3742 ((-701 (-968 |#1|)) (-783))) (-15 -2776 ((-701 |#1|) (-701 |#1|) (-937))) (-15 -2776 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) (-15 -3820 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3820 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3820 ((-701 |#1|) (-701 |#1|))) (-15 -3820 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3827 ((-701 (-576)) (-921 (-576)) (-576))) (-15 -3827 ((-701 (-576)) (-656 (-576)))) (-15 -3827 ((-656 (-701 (-576))) (-656 (-921 (-576))) (-576))) (-15 -3827 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1067)) (T -1046))
+((-3827 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-921 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1046 *5)) (-4 *5 (-1067)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))) (-2776 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-2776 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-968 *4))) (-5 *1 (-1046 *4)) (-4 *4 (-1067)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2079 ((-701 |#1|) (-701 |#1|) (-937))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -2079 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) |%noBranch|) (-15 -3742 ((-701 (-968 |#1|)) (-783))) (-15 -2776 ((-701 |#1|) (-701 |#1|) (-937))) (-15 -2776 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-937))) (-15 -3820 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3820 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3820 ((-701 |#1|) (-701 |#1|))) (-15 -3820 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3827 ((-701 (-576)) (-921 (-576)) (-576))) (-15 -3827 ((-701 (-576)) (-656 (-576)))) (-15 -3827 ((-656 (-701 (-576))) (-656 (-921 (-576))) (-576))) (-15 -3827 ((-656 (-701 (-576))) (-656 (-656 (-576))))))
+((-2974 (((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)) 70 (|has| |#1| (-317)))) (-4368 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|)) 117 (|has| |#1| (-374)))) (-3804 (((-1286 |#1|) (-656 (-1286 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2037 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-3007 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-1737 (((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|)) 67 (|has| |#1| (-317)))) (-2185 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-1611 (((-701 |#1|) (-1286 (-1286 |#1|))) 40)) (-2871 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374)))))
+(((-1047 |#1|) (-10 -7 (-15 -1611 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -2185 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -1737 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2974 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -3007 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -3007 ((-112) (-656 (-701 |#1|)))) (-15 -4368 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -4368 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937))) (-15 -3804 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1067)) (T -1047))
+((-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5)) (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-2037 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1067)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1047 *4)) (-5 *3 (-656 (-701 *4))))) (-2037 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1067)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1047 *6)) (-5 *3 (-656 (-701 *6))))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5)) (-5 *3 (-656 (-701 *5))))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *5)))) (-2871 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-1067)))) (-2871 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4)) (-4 *4 (-374)) (-4 *4 (-1067)))) (-2871 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1047 *6)) (-4 *6 (-374)) (-4 *6 (-1067)))) (-2974 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317)) (-4 *5 (-1067)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1067)) (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1047 *5)) (-5 *4 (-1286 *5)))) (-2185 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1047 *4)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1067)) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4)))))
+(-10 -7 (-15 -1611 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -2185 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -1737 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2974 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2871 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -3007 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -3007 ((-112) (-656 (-701 |#1|)))) (-15 -4368 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -4368 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2037 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-937))) (-15 -3804 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|))
+((-1710 ((|#1| (-937) |#1|) 18)))
+(((-1048 |#1|) (-10 -7 (-15 -1710 (|#1| (-937) |#1|))) (-13 (-1118) (-10 -8 (-15 -3081 ($ $ $))))) (T -1048))
+((-1710 (*1 *2 *3 *2) (-12 (-5 *3 (-937)) (-5 *1 (-1048 *2)) (-4 *2 (-13 (-1118) (-10 -8 (-15 -3081 ($ $ $))))))))
+(-10 -7 (-15 -1710 (|#1| (-937) |#1|)))
+((-2296 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576))))) 67)) (-1728 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576))))) 52)) (-2278 (((-656 (-326 (-576))) (-701 (-419 (-968 (-576))))) 45)) (-2284 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576))))) 85)) (-2931 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-3752 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-2913 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576))))) 82)))
+(((-1049) (-10 -7 (-15 -2296 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576)))))) (-15 -1728 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576)))))) (-15 -2278 ((-656 (-326 (-576))) (-701 (-419 (-968 (-576)))))) (-15 -2913 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576)))))) (-15 -2931 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3752 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2284 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576)))))))) (T -1049))
+((-2284 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))) (-2913 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1049)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)) (-5 *3 (-326 (-576))))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1049)))))
+(-10 -7 (-15 -2296 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-968 (-576)))))) (-15 -1728 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-968 (-576)))))) (-15 -2278 ((-656 (-326 (-576))) (-701 (-419 (-968 (-576)))))) (-15 -2913 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-968 (-576)))))) (-15 -2931 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3752 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2284 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-968 (-576)))))))
+((-3615 ((|#1| |#1| (-937)) 18)))
+(((-1050 |#1|) (-10 -7 (-15 -3615 (|#1| |#1| (-937)))) (-13 (-1118) (-10 -8 (-15 * ($ $ $))))) (T -1050))
+((-3615 (*1 *2 *2 *3) (-12 (-5 *3 (-937)) (-5 *1 (-1050 *2)) (-4 *2 (-13 (-1118) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3615 (|#1| |#1| (-937))))
+((-2956 ((|#1| (-322)) 11) (((-1291) |#1|) 9)))
+(((-1051 |#1|) (-10 -7 (-15 -2956 ((-1291) |#1|)) (-15 -2956 (|#1| (-322)))) (-1236)) (T -1051))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1051 *2)) (-4 *2 (-1236)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1051 *3)) (-4 *3 (-1236)))))
+(-10 -7 (-15 -2956 ((-1291) |#1|)) (-15 -2956 (|#1| (-322))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-2887 (($ |#4|) 25)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-2874 ((|#4| $) 27)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3423 (((-783)) 43 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 23 T CONST)) (-2991 (((-112) $ $) 40)) (-3096 (($ $) 31) (($ $ $) NIL)) (-3081 (($ $ $) 29)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1052 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2887 ($ |#4|)) (-15 -2956 ($ |#4|)) (-15 -2874 (|#4| $)))) (-374) (-805) (-862) (-965 |#1| |#2| |#3|) (-656 |#4|)) (T -1052))
+((-2887 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2956 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2874 (*1 *2 *1) (-12 (-4 *2 (-965 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2)))))
+(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2887 ($ |#4|)) (-15 -2956 ($ |#4|)) (-15 -2874 (|#4| $))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-3526 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-1434 (((-112) (-112)) 43)) (-3900 (((-112) (-112)) 42)) (-3140 (((-52) $ (-1195) (-52)) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 (-52) "failed") (-1195) $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-3710 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3316 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2481 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-2405 (((-52) $ (-1195)) NIL)) (-1873 (((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2186 (((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-1475 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-1773 (((-656 (-1195)) $) 37)) (-2499 (((-112) (-1195) $) NIL)) (-2138 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL)) (-2504 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL)) (-2961 (((-656 (-1195)) $) NIL)) (-4254 (((-112) (-1195) $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-2930 (((-52) $) NIL (|has| (-1195) (-862)))) (-2922 (((-3 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL)) (-4211 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-4274 (((-656 (-52)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 (((-52) $ (-1195)) 39) (((-52) $ (-1195) (-52)) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-2956 (((-874) $) 41 (-2838 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1053) (-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -1434 ((-112) (-112))) (-15 -3900 ((-112) (-112))) (-6 -4461)))) (T -1053))
+((-1434 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053)))))
+(-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -1434 ((-112) (-112))) (-15 -3900 ((-112) (-112))) (-6 -4461)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 9)) (-2956 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1054) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $))))) (T -1054))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1054)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $))))
((-2216 ((|#2| $) 10)))
-(((-1053 |#1| |#2|) (-10 -8 (-15 -2216 (|#2| |#1|))) (-1054 |#2|) (-1234)) (T -1053))
+(((-1055 |#1| |#2|) (-10 -8 (-15 -2216 (|#2| |#1|))) (-1056 |#2|) (-1236)) (T -1055))
NIL
(-10 -8 (-15 -2216 (|#2| |#1|)))
-((-1704 (((-3 |#1| "failed") $) 9)) (-2216 ((|#1| $) 8)) (-2951 (($ |#1|) 6)))
-(((-1054 |#1|) (-141) (-1234)) (T -1054))
-((-1704 (*1 *2 *1) (|partial| -12 (-4 *1 (-1054 *2)) (-4 *2 (-1234)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1234)))))
-(-13 (-626 |t#1|) (-10 -8 (-15 -1704 ((-3 |t#1| "failed") $)) (-15 -2216 (|t#1| $))))
-(((-626 |#1|) . T))
-((-4179 (((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193))) 38)))
-(((-1055 |#1| |#2|) (-10 -7 (-15 -4179 ((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193))))) (-566) (-13 (-566) (-1054 |#1|))) (T -1055))
-((-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-13 (-566) (-1054 *5))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *6)))))) (-5 *1 (-1055 *5 *6)))))
-(-10 -7 (-15 -4179 ((-654 (-654 (-302 (-417 (-966 |#2|))))) (-654 (-966 |#2|)) (-654 (-1193)))))
-((-4163 (((-388)) 17)) (-1700 (((-1 (-388)) (-388) (-388)) 22)) (-2150 (((-1 (-388)) (-781)) 48)) (-2749 (((-388)) 37)) (-1367 (((-1 (-388)) (-388) (-388)) 38)) (-3448 (((-388)) 29)) (-1417 (((-1 (-388)) (-388)) 30)) (-1506 (((-388) (-781)) 43)) (-3914 (((-1 (-388)) (-781)) 44)) (-1396 (((-1 (-388)) (-781) (-781)) 47)) (-2636 (((-1 (-388)) (-781) (-781)) 45)))
-(((-1056) (-10 -7 (-15 -4163 ((-388))) (-15 -2749 ((-388))) (-15 -3448 ((-388))) (-15 -1506 ((-388) (-781))) (-15 -1700 ((-1 (-388)) (-388) (-388))) (-15 -1367 ((-1 (-388)) (-388) (-388))) (-15 -1417 ((-1 (-388)) (-388))) (-15 -3914 ((-1 (-388)) (-781))) (-15 -2636 ((-1 (-388)) (-781) (-781))) (-15 -1396 ((-1 (-388)) (-781) (-781))) (-15 -2150 ((-1 (-388)) (-781))))) (T -1056))
-((-2150 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-2636 (*1 *2 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-1367 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-1700 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1056)))) (-3448 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))) (-2749 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))) (-4163 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))))
-(-10 -7 (-15 -4163 ((-388))) (-15 -2749 ((-388))) (-15 -3448 ((-388))) (-15 -1506 ((-388) (-781))) (-15 -1700 ((-1 (-388)) (-388) (-388))) (-15 -1367 ((-1 (-388)) (-388) (-388))) (-15 -1417 ((-1 (-388)) (-388))) (-15 -3914 ((-1 (-388)) (-781))) (-15 -2636 ((-1 (-388)) (-781) (-781))) (-15 -1396 ((-1 (-388)) (-781) (-781))) (-15 -2150 ((-1 (-388)) (-781))))
-((-4201 (((-428 |#1|) |#1|) 33)))
-(((-1057 |#1|) (-10 -7 (-15 -4201 ((-428 |#1|) |#1|))) (-1260 (-417 (-966 (-574))))) (T -1057))
-((-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-1260 (-417 (-966 (-574))))))))
-(-10 -7 (-15 -4201 ((-428 |#1|) |#1|)))
-((-3888 (((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|))) 14)))
-(((-1058 |#1|) (-10 -7 (-15 -3888 ((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|))))) (-315)) (T -1058))
-((-3888 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-315)) (-5 *2 (-417 (-428 (-966 *4)))) (-5 *1 (-1058 *4)))))
-(-10 -7 (-15 -3888 ((-417 (-428 (-966 |#1|))) (-417 (-966 |#1|)))))
-((-4350 (((-654 (-1193)) (-417 (-966 |#1|))) 17)) (-4172 (((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193)) 24)) (-4339 (((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193)) 26)) (-3444 (((-3 (-1193) "failed") (-417 (-966 |#1|))) 20)) (-2661 (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|))))) 32) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|)))) 33) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|)))) 28) (((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|))) 29)) (-2951 (((-417 (-966 |#1|)) |#1|) 11)))
-(((-1059 |#1|) (-10 -7 (-15 -4350 ((-654 (-1193)) (-417 (-966 |#1|)))) (-15 -3444 ((-3 (-1193) "failed") (-417 (-966 |#1|)))) (-15 -4172 ((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -4339 ((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2951 ((-417 (-966 |#1|)) |#1|))) (-566)) (T -1059))
-((-2951 (*1 *2 *3) (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-566)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-5 *2 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-5 *2 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-2661 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-5 *4 (-654 (-417 (-966 *5)))) (-5 *2 (-417 (-966 *5))) (-4 *5 (-566)) (-5 *1 (-1059 *5)))) (-2661 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-1059 *4)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-1189 (-417 (-966 *5))))) (-5 *4 (-1193)) (-5 *2 (-417 (-966 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-566)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-417 (-1189 (-417 (-966 *5))))) (-5 *1 (-1059 *5)) (-5 *3 (-417 (-966 *5))))) (-3444 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-1193)) (-5 *1 (-1059 *4)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1193))) (-5 *1 (-1059 *4)))))
-(-10 -7 (-15 -4350 ((-654 (-1193)) (-417 (-966 |#1|)))) (-15 -3444 ((-3 (-1193) "failed") (-417 (-966 |#1|)))) (-15 -4172 ((-417 (-1189 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -4339 ((-417 (-966 |#1|)) (-417 (-1189 (-417 (-966 |#1|)))) (-1193))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-1193)) (-654 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-302 (-417 (-966 |#1|))))) (-15 -2661 ((-417 (-966 |#1|)) (-417 (-966 |#1|)) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2951 ((-417 (-966 |#1|)) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1430 (($) 18 T CONST)) (-2599 ((|#1| $) 23)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3886 ((|#1| $) 22)) (-3556 ((|#1|) 20 T CONST)) (-2951 (((-872) $) 12)) (-4246 ((|#1| $) 21)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16)))
-(((-1060 |#1|) (-141) (-23)) (T -1060))
-((-2599 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))) (-3556 (*1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2599 (|t#1| $)) (-15 -3886 (|t#1| $)) (-15 -4246 (|t#1| $)) (-15 -3556 (|t#1|) -1714)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3370 (($) 25 T CONST)) (-1430 (($) 18 T CONST)) (-2599 ((|#1| $) 23)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3886 ((|#1| $) 22)) (-3556 ((|#1|) 20 T CONST)) (-2951 (((-872) $) 12)) (-4246 ((|#1| $) 21)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16)))
-(((-1061 |#1|) (-141) (-23)) (T -1061))
-((-3370 (*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
-(-13 (-1060 |t#1|) (-10 -8 (-15 -3370 ($) -1714)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-623 (-872)) . T) ((-1060 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 (-790 |#1| (-874 |#2|)))))) (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-3291 (((-654 $) (-654 (-790 |#1| (-874 |#2|)))) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)) NIL)) (-4350 (((-654 (-874 |#2|)) $) NIL)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2494 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-4279 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2684 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ (-874 |#2|)) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 (-790 |#1| (-874 |#2|)) "failed") $ (-874 |#2|)) NIL)) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) NIL (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-2245 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3688 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-2492 (((-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2216 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-2935 (((-3 $ "failed") $) NIL)) (-2581 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-3311 (($ (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-3709 (((-112) (-790 |#1| (-874 |#2|)) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3129 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2882 (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $ (-790 |#1| (-874 |#2|))) NIL (|has| $ (-6 -4459))) (((-790 |#1| (-874 |#2|)) (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3721 (((-2 (|:| -1390 (-654 (-790 |#1| (-874 |#2|)))) (|:| -1683 (-654 (-790 |#1| (-874 |#2|))))) $) NIL)) (-2235 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-2261 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-4327 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1871 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2821 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-4063 (((-874 |#2|) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-2462 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) $) NIL)) (-2089 (((-654 (-874 |#2|)) $) NIL)) (-1726 (((-112) (-874 |#2|) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-2916 (((-3 (-790 |#1| (-874 |#2|)) (-654 $)) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3521 (((-654 (-2 (|:| |val| (-790 |#1| (-874 |#2|))) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3334 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-2423 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL)) (-2570 (((-3 (-112) (-654 $)) (-790 |#1| (-874 |#2|)) $) NIL)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-3655 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL)) (-1608 (($ (-790 |#1| (-874 |#2|)) $) NIL) (($ (-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2252 (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-2897 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-3184 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-1624 (((-112) $ $) NIL)) (-3745 (((-2 (|:| |num| (-790 |#1| (-874 |#2|))) (|:| |den| |#1|)) (-790 |#1| (-874 |#2|)) $) NIL (|has| |#1| (-566)))) (-1848 (((-112) (-790 |#1| (-874 |#2|)) $) NIL) (((-112) $) NIL)) (-1857 (((-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 (-790 |#1| (-874 |#2|)) "failed") $) NIL)) (-3748 (((-3 (-790 |#1| (-874 |#2|)) "failed") (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL)) (-4014 (((-3 $ "failed") $ (-790 |#1| (-874 |#2|))) NIL)) (-2249 (($ $ (-790 |#1| (-874 |#2|))) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-1731 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-790 |#1| (-874 |#2|))) (-654 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-302 (-790 |#1| (-874 |#2|)))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (($ $ (-654 (-302 (-790 |#1| (-874 |#2|))))) NIL (-12 (|has| (-790 |#1| (-874 |#2|)) (-317 (-790 |#1| (-874 |#2|)))) (|has| (-790 |#1| (-874 |#2|)) (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-3735 (((-781) $) NIL)) (-3949 (((-781) (-790 |#1| (-874 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-790 |#1| (-874 |#2|)) (-1116)))) (((-781) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-790 |#1| (-874 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-790 |#1| (-874 |#2|)))) NIL)) (-4216 (($ $ (-874 |#2|)) NIL)) (-2490 (($ $ (-874 |#2|)) NIL)) (-3615 (($ $) NIL)) (-3476 (($ $ (-874 |#2|)) NIL)) (-2951 (((-872) $) NIL) (((-654 (-790 |#1| (-874 |#2|))) $) NIL)) (-4292 (((-781) $) NIL (|has| (-874 |#2|) (-377)))) (-2981 (((-112) $ $) NIL)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 (-790 |#1| (-874 |#2|))))) "failed") (-654 (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|))) (-1 (-112) (-790 |#1| (-874 |#2|)) (-790 |#1| (-874 |#2|)))) NIL)) (-3876 (((-112) $ (-1 (-112) (-790 |#1| (-874 |#2|)) (-654 (-790 |#1| (-874 |#2|))))) NIL)) (-3708 (((-654 $) (-790 |#1| (-874 |#2|)) $) NIL) (((-654 $) (-790 |#1| (-874 |#2|)) (-654 $)) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) $) NIL) (((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-654 $)) NIL)) (-2859 (((-112) (-1 (-112) (-790 |#1| (-874 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-3463 (((-654 (-874 |#2|)) $) NIL)) (-3510 (((-112) (-790 |#1| (-874 |#2|)) $) NIL)) (-4194 (((-112) (-874 |#2|) $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1062 |#1| |#2|) (-13 (-1087 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3291 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112))))) (-462) (-654 (-1193))) (T -1062))
-((-3291 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462)) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1062 *5 *6)))))
-(-13 (-1087 |#1| (-541 (-874 |#2|)) (-874 |#2|) (-790 |#1| (-874 |#2|))) (-10 -8 (-15 -3291 ((-654 $) (-654 (-790 |#1| (-874 |#2|))) (-112) (-112)))))
-((-1700 (((-1 (-574)) (-1110 (-574))) 32)) (-3810 (((-574) (-574) (-574) (-574) (-574)) 29)) (-4422 (((-1 (-574)) |RationalNumber|) NIL)) (-2158 (((-1 (-574)) |RationalNumber|) NIL)) (-3751 (((-1 (-574)) (-574) |RationalNumber|) NIL)))
-(((-1063) (-10 -7 (-15 -1700 ((-1 (-574)) (-1110 (-574)))) (-15 -3751 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -4422 ((-1 (-574)) |RationalNumber|)) (-15 -2158 ((-1 (-574)) |RationalNumber|)) (-15 -3810 ((-574) (-574) (-574) (-574) (-574))))) (T -1063))
-((-3810 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1063)))) (-2158 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))) (-4422 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))) (-3751 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)) (-5 *3 (-574)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-1110 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))))
-(-10 -7 (-15 -1700 ((-1 (-574)) (-1110 (-574)))) (-15 -3751 ((-1 (-574)) (-574) |RationalNumber|)) (-15 -4422 ((-1 (-574)) |RationalNumber|)) (-15 -2158 ((-1 (-574)) |RationalNumber|)) (-15 -3810 ((-574) (-574) (-574) (-574) (-574))))
-((-2951 (((-872) $) NIL) (($ (-574)) 10)))
-(((-1064 |#1|) (-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1065)) (T -1064))
-NIL
-(-10 -8 (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-1065) (-141)) (T -1065))
-((-3070 (*1 *2) (-12 (-4 *1 (-1065)) (-5 *2 (-781)))))
-(-13 (-1074) (-736) (-658 $) (-626 (-574)) (-10 -7 (-15 -3070 ((-781)) -1714) (-6 -4456)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-574)) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-736) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2034 (((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)) 54)))
-(((-1066 |#1| |#2|) (-10 -7 (-15 -2034 ((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781)))) (-1193) (-372)) (T -1066))
-((-2034 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372)) (-5 *2 (-417 (-966 *6))) (-5 *1 (-1066 *5 *6)) (-14 *5 (-1193)))))
-(-10 -7 (-15 -2034 ((-417 (-966 |#2|)) (-654 |#2|) (-654 |#2|) (-781) (-781))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 15)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1067 |#1|) (-141) (-1128)) (T -1067))
-((-2141 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1128)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128)))))
-(-13 (-1116) (-10 -8 (-15 (-2141) ($) -1714) (-15 -4311 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2406 (((-112) $) 38)) (-1836 (((-112) $) 17)) (-2197 (((-781) $) 13)) (-2206 (((-781) $) 14)) (-2783 (((-112) $) 30)) (-2465 (((-112) $) 40)))
-(((-1068 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2206 ((-781) |#1|)) (-15 -2197 ((-781) |#1|)) (-15 -2465 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -1836 ((-112) |#1|))) (-1069 |#2| |#3| |#4| |#5| |#6|) (-781) (-781) (-1065) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1068))
-NIL
-(-10 -8 (-15 -2206 ((-781) |#1|)) (-15 -2197 ((-781) |#1|)) (-15 -2465 ((-112) |#1|)) (-15 -2406 ((-112) |#1|)) (-15 -2783 ((-112) |#1|)) (-15 -1836 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2406 (((-112) $) 56)) (-3290 (((-3 $ "failed") $ $) 20)) (-1836 (((-112) $) 58)) (-2832 (((-112) $ (-781)) 66)) (-1430 (($) 18 T CONST)) (-4300 (($ $) 39 (|has| |#3| (-315)))) (-2273 ((|#4| $ (-574)) 44)) (-3558 (((-781) $) 38 (|has| |#3| (-566)))) (-2400 ((|#3| $ (-574) (-574)) 46)) (-1871 (((-654 |#3|) $) 73 (|has| $ (-6 -4459)))) (-3026 (((-781) $) 37 (|has| |#3| (-566)))) (-3580 (((-654 |#5|) $) 36 (|has| |#3| (-566)))) (-2197 (((-781) $) 50)) (-2206 (((-781) $) 49)) (-3814 (((-112) $ (-781)) 65)) (-4075 (((-574) $) 54)) (-1351 (((-574) $) 52)) (-1764 (((-654 |#3|) $) 74 (|has| $ (-6 -4459)))) (-2333 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1116)) (|has| $ (-6 -4459))))) (-3183 (((-574) $) 53)) (-2759 (((-574) $) 51)) (-2924 (($ (-654 (-654 |#3|))) 59)) (-2462 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2796 (((-654 (-654 |#3|)) $) 48)) (-2302 (((-112) $ (-781)) 64)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-566)))) (-1731 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#3|) (-654 |#3|)) 80 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) 78 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 (-302 |#3|))) 77 (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-3788 (((-112) $ $) 60)) (-2265 (((-112) $) 63)) (-3014 (($) 62)) (-2207 ((|#3| $ (-574) (-574)) 47) ((|#3| $ (-574) (-574) |#3|) 45)) (-2783 (((-112) $) 57)) (-3949 (((-781) |#3| $) 75 (-12 (|has| |#3| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4459)))) (-3157 (($ $) 61)) (-4239 ((|#5| $ (-574)) 43)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2859 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4459)))) (-2465 (((-112) $) 55)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#3|) 40 (|has| |#3| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2877 (((-781) $) 67 (|has| $ (-6 -4459)))))
-(((-1069 |#1| |#2| |#3| |#4| |#5|) (-141) (-781) (-781) (-1065) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1069))
-((-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1065)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5))))) (-2207 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))) (-2400 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))) (-2207 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *2 (-1065)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-2273 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *2 *7)) (-4 *6 (-1065)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *7 *2)) (-4 *6 (-1065)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2853 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372)))) (-4300 (*1 *1 *1) (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-781)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566)) (-5 *2 (-654 *7)))))
-(-13 (-111 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4459) (IF (|has| |t#3| (-174)) (-6 (-727 |t#3|)) |%noBranch|) (-15 -2924 ($ (-654 (-654 |t#3|)))) (-15 -1836 ((-112) $)) (-15 -2783 ((-112) $)) (-15 -2406 ((-112) $)) (-15 -2465 ((-112) $)) (-15 -4075 ((-574) $)) (-15 -3183 ((-574) $)) (-15 -1351 ((-574) $)) (-15 -2759 ((-574) $)) (-15 -2197 ((-781) $)) (-15 -2206 ((-781) $)) (-15 -2796 ((-654 (-654 |t#3|)) $)) (-15 -2207 (|t#3| $ (-574) (-574))) (-15 -2400 (|t#3| $ (-574) (-574))) (-15 -2207 (|t#3| $ (-574) (-574) |t#3|)) (-15 -2273 (|t#4| $ (-574))) (-15 -4239 (|t#5| $ (-574))) (-15 -1785 ($ (-1 |t#3| |t#3|) $)) (-15 -1785 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-566)) (-15 -2853 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-372)) (-15 -3099 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-315)) (-15 -4300 ($ $)) |%noBranch|) (IF (|has| |t#3| (-566)) (PROGN (-15 -3558 ((-781) $)) (-15 -3026 ((-781) $)) (-15 -3580 ((-654 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-623 (-872)) . T) ((-317 |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))) ((-499 |#3|) . T) ((-524 |#3| |#3|) -12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))) ((-656 (-574)) . T) ((-656 |#3|) . T) ((-658 |#3|) . T) ((-650 |#3|) |has| |#3| (-174)) ((-727 |#3|) |has| |#3| (-174)) ((-1067 |#3|) . T) ((-1072 |#3|) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2406 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1836 (((-112) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-4300 (($ $) 47 (|has| |#3| (-315)))) (-2273 (((-246 |#2| |#3|) $ (-574)) 36)) (-3108 (($ (-699 |#3|)) 45)) (-3558 (((-781) $) 49 (|has| |#3| (-566)))) (-2400 ((|#3| $ (-574) (-574)) NIL)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-3026 (((-781) $) 51 (|has| |#3| (-566)))) (-3580 (((-654 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-566)))) (-2197 (((-781) $) NIL)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#3|))) 31)) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2796 (((-654 (-654 |#3|)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-566)))) (-1731 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#3| $ (-574) (-574)) NIL) ((|#3| $ (-574) (-574) |#3|) NIL)) (-2732 (((-135)) 59 (|has| |#3| (-372)))) (-2783 (((-112) $) NIL)) (-3949 (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116)))) (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 65 (|has| |#3| (-624 (-546))))) (-4239 (((-246 |#1| |#3|) $ (-574)) 40)) (-2951 (((-872) $) 19) (((-699 |#3|) $) 42)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2141 (($) 16 T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1070 |#1| |#2| |#3|) (-13 (-1069 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1291 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -3108 ($ (-699 |#3|))))) (-781) (-781) (-1065)) (T -1070))
-((-3108 (*1 *1 *2) (-12 (-5 *2 (-699 *5)) (-4 *5 (-1065)) (-5 *1 (-1070 *3 *4 *5)) (-14 *3 (-781)) (-14 *4 (-781)))))
-(-13 (-1069 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-623 (-699 |#3|)) (-10 -8 (IF (|has| |#3| (-372)) (-6 (-1291 |#3|)) |%noBranch|) (IF (|has| |#3| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|) (-15 -3108 ($ (-699 |#3|)))))
-((-2882 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1785 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1071 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1785 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2882 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-781) (-781) (-1065) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1069 |#1| |#2| |#3| |#4| |#5|) (-1065) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1069 |#1| |#2| |#7| |#8| |#9|)) (T -1071))
-((-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1065)) (-4 *2 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *12 (-1069 *5 *6 *2 *10 *11)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1065)) (-4 *10 (-1065)) (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1069 *5 *6 *10 *11 *12)) (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10)))))
-(-10 -7 (-15 -1785 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2882 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ |#1|) 27)))
-(((-1072 |#1|) (-141) (-1074)) (T -1072))
-NIL
-(-13 (-21) (-1067 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1067 |#1|) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-1498 (((-1193) $) 11)) (-3225 ((|#1| $) 12)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2707 (($ (-1193) |#1|) 10)) (-2951 (((-872) $) 22 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 17 (|has| |#1| (-1116)))))
-(((-1073 |#1| |#2|) (-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) |#1|)) (-15 -1498 ((-1193) $)) (-15 -3225 (|#1| $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1109 |#2|) (-1234)) (T -1073))
-((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-4 *4 (-1234)) (-5 *1 (-1073 *3 *4)) (-4 *3 (-1109 *4)))) (-1498 (*1 *2 *1) (-12 (-4 *4 (-1234)) (-5 *2 (-1193)) (-5 *1 (-1073 *3 *4)) (-4 *3 (-1109 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *2 (-1109 *3)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) |#1|)) (-15 -1498 ((-1193) $)) (-15 -3225 (|#1| $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-1074) (-141)) (T -1074))
-NIL
-(-13 (-21) (-1128))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-1128) . T) ((-1116) . T))
-((-2991 (($ $) 17)) (-3274 (($ $) 25)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 55)) (-2608 (($ $) 27)) (-3577 (($ $) 12)) (-3229 (($ $) 43)) (-1844 (((-388) $) NIL) (((-227) $) NIL) (((-903 (-388)) $) 36)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL) (($ (-417 (-574))) 31) (($ (-574)) NIL) (($ (-417 (-574))) 31)) (-3070 (((-781)) 9)) (-3941 (($ $) 45)))
-(((-1075 |#1|) (-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -3229 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1076)) (T -1075))
-((-3070 (*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1075 *3)) (-4 *3 (-1076)))))
-(-10 -8 (-15 -3274 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -3229 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -1821 ((-900 (-388) |#1|) |#1| (-903 (-388)) (-900 (-388) |#1|))) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 -1844 ((-227) |#1|)) (-15 -1844 ((-388) |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| |#1|)) (-15 -3070 ((-781))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4356 (((-574) $) 97)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-2991 (($ $) 95)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-4212 (($ $) 105)) (-1374 (((-112) $ $) 65)) (-1370 (((-574) $) 122)) (-1430 (($) 18 T CONST)) (-3274 (($ $) 94)) (-1704 (((-3 (-574) "failed") $) 110) (((-3 (-417 (-574)) "failed") $) 107)) (-2216 (((-574) $) 111) (((-417 (-574)) $) 108)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-3342 (((-112) $) 79)) (-2516 (((-112) $) 120)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 101)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 104)) (-2608 (($ $) 100)) (-1935 (((-112) $) 121)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-3634 (($ $ $) 119)) (-2976 (($ $ $) 118)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-3577 (($ $) 96)) (-3229 (($ $) 98)) (-4201 (((-428 $) $) 82)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1844 (((-388) $) 113) (((-227) $) 112) (((-903 (-388)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ (-574)) 109) (($ (-417 (-574))) 106)) (-3070 (((-781)) 32 T CONST)) (-3941 (($ $) 99)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-4107 (($ $) 123)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3042 (((-112) $ $) 116)) (-3020 (((-112) $ $) 115)) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 117)) (-3009 (((-112) $ $) 114)) (-3099 (($ $ $) 73)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77) (($ $ (-417 (-574))) 103)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75)))
+((-1706 (((-3 |#1| "failed") $) 9)) (-2216 ((|#1| $) 8)) (-2956 (($ |#1|) 6)))
+(((-1056 |#1|) (-141) (-1236)) (T -1056))
+((-1706 (*1 *2 *1) (|partial| -12 (-4 *1 (-1056 *2)) (-4 *2 (-1236)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-1236)))))
+(-13 (-628 |t#1|) (-10 -8 (-15 -1706 ((-3 |t#1| "failed") $)) (-15 -2216 (|t#1| $))))
+(((-628 |#1|) . T))
+((-1607 (((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195))) 38)))
+(((-1057 |#1| |#2|) (-10 -7 (-15 -1607 ((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195))))) (-568) (-13 (-568) (-1056 |#1|))) (T -1057))
+((-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-13 (-568) (-1056 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *6)))))) (-5 *1 (-1057 *5 *6)))))
+(-10 -7 (-15 -1607 ((-656 (-656 (-304 (-419 (-968 |#2|))))) (-656 (-968 |#2|)) (-656 (-1195)))))
+((-1448 (((-390)) 17)) (-1616 (((-1 (-390)) (-390) (-390)) 22)) (-2153 (((-1 (-390)) (-783)) 48)) (-2244 (((-390)) 37)) (-1369 (((-1 (-390)) (-390) (-390)) 38)) (-1752 (((-390)) 29)) (-4187 (((-1 (-390)) (-390)) 30)) (-1502 (((-390) (-783)) 43)) (-3932 (((-1 (-390)) (-783)) 44)) (-1398 (((-1 (-390)) (-783) (-783)) 47)) (-2381 (((-1 (-390)) (-783) (-783)) 45)))
+(((-1058) (-10 -7 (-15 -1448 ((-390))) (-15 -2244 ((-390))) (-15 -1752 ((-390))) (-15 -1502 ((-390) (-783))) (-15 -1616 ((-1 (-390)) (-390) (-390))) (-15 -1369 ((-1 (-390)) (-390) (-390))) (-15 -4187 ((-1 (-390)) (-390))) (-15 -3932 ((-1 (-390)) (-783))) (-15 -2381 ((-1 (-390)) (-783) (-783))) (-15 -1398 ((-1 (-390)) (-783) (-783))) (-15 -2153 ((-1 (-390)) (-783))))) (T -1058))
+((-2153 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-1398 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-2381 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))) (-4187 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-1369 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-1616 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1058)))) (-1752 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))) (-2244 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))) (-1448 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))))
+(-10 -7 (-15 -1448 ((-390))) (-15 -2244 ((-390))) (-15 -1752 ((-390))) (-15 -1502 ((-390) (-783))) (-15 -1616 ((-1 (-390)) (-390) (-390))) (-15 -1369 ((-1 (-390)) (-390) (-390))) (-15 -4187 ((-1 (-390)) (-390))) (-15 -3932 ((-1 (-390)) (-783))) (-15 -2381 ((-1 (-390)) (-783) (-783))) (-15 -1398 ((-1 (-390)) (-783) (-783))) (-15 -2153 ((-1 (-390)) (-783))))
+((-4205 (((-430 |#1|) |#1|) 33)))
+(((-1059 |#1|) (-10 -7 (-15 -4205 ((-430 |#1|) |#1|))) (-1262 (-419 (-968 (-576))))) (T -1059))
+((-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1059 *3)) (-4 *3 (-1262 (-419 (-968 (-576))))))))
+(-10 -7 (-15 -4205 ((-430 |#1|) |#1|)))
+((-3660 (((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|))) 14)))
+(((-1060 |#1|) (-10 -7 (-15 -3660 ((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|))))) (-317)) (T -1060))
+((-3660 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-968 *4)))) (-5 *1 (-1060 *4)))))
+(-10 -7 (-15 -3660 ((-419 (-430 (-968 |#1|))) (-419 (-968 |#1|)))))
+((-4352 (((-656 (-1195)) (-419 (-968 |#1|))) 17)) (-4174 (((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195)) 24)) (-4341 (((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195)) 26)) (-1712 (((-3 (-1195) "failed") (-419 (-968 |#1|))) 20)) (-2666 (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|))))) 32) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|)))) 33) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|)))) 28) (((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|))) 29)) (-2956 (((-419 (-968 |#1|)) |#1|) 11)))
+(((-1061 |#1|) (-10 -7 (-15 -4352 ((-656 (-1195)) (-419 (-968 |#1|)))) (-15 -1712 ((-3 (-1195) "failed") (-419 (-968 |#1|)))) (-15 -4174 ((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -4341 ((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|))))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2956 ((-419 (-968 |#1|)) |#1|))) (-568)) (T -1061))
+((-2956 (*1 *2 *3) (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-568)))) (-2666 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-5 *2 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-2666 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-5 *2 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-2666 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-968 *5)))) (-5 *2 (-419 (-968 *5))) (-4 *5 (-568)) (-5 *1 (-1061 *5)))) (-2666 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-1061 *4)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 (-419 (-968 *5))))) (-5 *4 (-1195)) (-5 *2 (-419 (-968 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-568)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-419 (-1191 (-419 (-968 *5))))) (-5 *1 (-1061 *5)) (-5 *3 (-419 (-968 *5))))) (-1712 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-1195)) (-5 *1 (-1061 *4)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195))) (-5 *1 (-1061 *4)))))
+(-10 -7 (-15 -4352 ((-656 (-1195)) (-419 (-968 |#1|)))) (-15 -1712 ((-3 (-1195) "failed") (-419 (-968 |#1|)))) (-15 -4174 ((-419 (-1191 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -4341 ((-419 (-968 |#1|)) (-419 (-1191 (-419 (-968 |#1|)))) (-1195))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-1195)) (-656 (-419 (-968 |#1|))))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-304 (-419 (-968 |#1|))))) (-15 -2666 ((-419 (-968 |#1|)) (-419 (-968 |#1|)) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2956 ((-419 (-968 |#1|)) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4335 (($) 18 T CONST)) (-3317 ((|#1| $) 23)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3641 ((|#1| $) 22)) (-1648 ((|#1|) 20 T CONST)) (-2956 (((-874) $) 12)) (-4148 ((|#1| $) 21)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16)))
+(((-1062 |#1|) (-141) (-23)) (T -1062))
+((-3317 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))) (-1648 (*1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3317 (|t#1| $)) (-15 -3641 (|t#1| $)) (-15 -4148 (|t#1| $)) (-15 -1648 (|t#1|) -1716)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3409 (($) 25 T CONST)) (-4335 (($) 18 T CONST)) (-3317 ((|#1| $) 23)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3641 ((|#1| $) 22)) (-1648 ((|#1|) 20 T CONST)) (-2956 (((-874) $) 12)) (-4148 ((|#1| $) 21)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16)))
+(((-1063 |#1|) (-141) (-23)) (T -1063))
+((-3409 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
+(-13 (-1062 |t#1|) (-10 -8 (-15 -3409 ($) -1716)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1062 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 (-792 |#1| (-876 |#2|)))))) (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-3809 (((-656 $) (-656 (-792 |#1| (-876 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)) NIL)) (-4352 (((-656 (-876 |#2|)) $) NIL)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-1618 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3276 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2879 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4071 $))) (-792 |#1| (-876 |#2|)) $) NIL)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ (-876 |#2|)) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 (-792 |#1| (-876 |#2|)) "failed") $ (-876 |#2|)) NIL)) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) NIL (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-3134 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2331 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1595 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2216 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2940 (((-3 $ "failed") $) NIL)) (-3164 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-3316 (($ (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-2540 (((-112) (-792 |#1| (-876 |#2|)) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2705 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2887 (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2648 (((-2 (|:| -1392 (-656 (-792 |#1| (-876 |#2|)))) (|:| -1685 (-656 (-792 |#1| (-876 |#2|))))) $) NIL)) (-3062 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3278 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-2445 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1873 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3670 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2977 (((-876 |#2|) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-2466 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL)) (-4172 (((-656 (-876 |#2|)) $) NIL)) (-1820 (((-112) (-876 |#2|) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3302 (((-3 (-792 |#1| (-876 |#2|)) (-656 $)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-4419 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4071 $))) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3338 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-2196 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL)) (-3036 (((-3 (-112) (-656 $)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3318 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL)) (-3187 (($ (-792 |#1| (-876 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3200 (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3103 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1992 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3320 (((-112) $ $) NIL)) (-2891 (((-2 (|:| |num| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-3661 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3748 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-2922 (((-3 (-792 |#1| (-876 |#2|)) "failed") (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL)) (-2452 (((-3 $ "failed") $ (-792 |#1| (-876 |#2|))) NIL)) (-3167 (($ $ (-792 |#1| (-876 |#2|))) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-1875 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-304 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (($ $ (-656 (-304 (-792 |#1| (-876 |#2|))))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2782 (((-783) $) NIL)) (-3954 (((-783) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1118)))) (((-783) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-792 |#1| (-876 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-3888 (($ $ (-876 |#2|)) NIL)) (-1572 (($ $ (-876 |#2|)) NIL)) (-4104 (($ $) NIL)) (-2051 (($ $ (-876 |#2|)) NIL)) (-2956 (((-874) $) NIL) (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3364 (((-783) $) NIL (|has| (-876 |#2|) (-379)))) (-2617 (((-112) $ $) NIL)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-1644 (((-112) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-656 (-792 |#1| (-876 |#2|))))) NIL)) (-2526 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-3972 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1916 (((-656 (-876 |#2|)) $) NIL)) (-4300 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3684 (((-112) (-876 |#2|) $) NIL)) (-2991 (((-112) $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1064 |#1| |#2|) (-13 (-1089 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -3809 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) (-464) (-656 (-1195))) (T -1064))
+((-3809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1064 *5 *6)))))
+(-13 (-1089 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -3809 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)))))
+((-1616 (((-1 (-576)) (-1112 (-576))) 32)) (-2223 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2173 (((-1 (-576)) |RationalNumber|) NIL)) (-3582 (((-1 (-576)) |RationalNumber|) NIL)) (-2959 (((-1 (-576)) (-576) |RationalNumber|) NIL)))
+(((-1065) (-10 -7 (-15 -1616 ((-1 (-576)) (-1112 (-576)))) (-15 -2959 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2173 ((-1 (-576)) |RationalNumber|)) (-15 -3582 ((-1 (-576)) |RationalNumber|)) (-15 -2223 ((-576) (-576) (-576) (-576) (-576))))) (T -1065))
+((-2223 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1065)))) (-3582 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))) (-2173 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)) (-5 *3 (-576)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1112 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))))
+(-10 -7 (-15 -1616 ((-1 (-576)) (-1112 (-576)))) (-15 -2959 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2173 ((-1 (-576)) |RationalNumber|)) (-15 -3582 ((-1 (-576)) |RationalNumber|)) (-15 -2223 ((-576) (-576) (-576) (-576) (-576))))
+((-2956 (((-874) $) NIL) (($ (-576)) 10)))
+(((-1066 |#1|) (-10 -8 (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-1067)) (T -1066))
+NIL
+(-10 -8 (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-1067) (-141)) (T -1067))
+((-3423 (*1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-783)))))
+(-13 (-1076) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -3423 ((-783)) -1716) (-6 -4458)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-1776 (((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54)))
+(((-1068 |#1| |#2|) (-10 -7 (-15 -1776 ((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1195) (-374)) (T -1068))
+((-1776 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-968 *6))) (-5 *1 (-1068 *5 *6)) (-14 *5 (-1195)))))
+(-10 -7 (-15 -1776 ((-419 (-968 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 15)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 16 T CONST)) (-2991 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1069 |#1|) (-141) (-1130)) (T -1069))
+((-2143 (*1 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130)))))
+(-13 (-1118) (-10 -8 (-15 (-2143) ($) -1716) (-15 -3549 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2052 (((-112) $) 38)) (-3562 (((-112) $) 17)) (-2199 (((-783) $) 13)) (-2208 (((-783) $) 14)) (-1415 (((-112) $) 30)) (-1335 (((-112) $) 40)))
+(((-1070 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2208 ((-783) |#1|)) (-15 -2199 ((-783) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2052 ((-112) |#1|)) (-15 -1415 ((-112) |#1|)) (-15 -3562 ((-112) |#1|))) (-1071 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1067) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1070))
+NIL
+(-10 -8 (-15 -2208 ((-783) |#1|)) (-15 -2199 ((-783) |#1|)) (-15 -1335 ((-112) |#1|)) (-15 -2052 ((-112) |#1|)) (-15 -1415 ((-112) |#1|)) (-15 -3562 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2052 (((-112) $) 56)) (-3798 (((-3 $ "failed") $ $) 20)) (-3562 (((-112) $) 58)) (-3762 (((-112) $ (-783)) 66)) (-4335 (($) 18 T CONST)) (-3446 (($ $) 39 (|has| |#3| (-317)))) (-3389 ((|#4| $ (-576)) 44)) (-3563 (((-783) $) 38 (|has| |#3| (-568)))) (-2405 ((|#3| $ (-576) (-576)) 46)) (-1873 (((-656 |#3|) $) 73 (|has| $ (-6 -4461)))) (-2954 (((-783) $) 37 (|has| |#3| (-568)))) (-3772 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-2199 (((-783) $) 50)) (-2208 (((-783) $) 49)) (-2266 (((-112) $ (-783)) 65)) (-1823 (((-576) $) 54)) (-1780 (((-576) $) 52)) (-2186 (((-656 |#3|) $) 74 (|has| $ (-6 -4461)))) (-2653 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1118)) (|has| $ (-6 -4461))))) (-1982 (((-576) $) 53)) (-4259 (((-576) $) 51)) (-2929 (($ (-656 (-656 |#3|))) 59)) (-2466 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1538 (((-656 (-656 |#3|)) $) 48)) (-2356 (((-112) $ (-783)) 64)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-1875 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2001 (((-112) $ $) 60)) (-3321 (((-112) $) 63)) (-2953 (($) 62)) (-2209 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-1415 (((-112) $) 57)) (-3954 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4461)))) (-3162 (($ $) 61)) (-4087 ((|#5| $ (-576)) 43)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3972 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4461)))) (-1335 (((-112) $) 55)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2882 (((-783) $) 67 (|has| $ (-6 -4461)))))
+(((-1071 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1067) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1071))
+((-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1067)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))) (-2405 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))) (-2209 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *2 (-1067)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-3389 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *2 *7)) (-4 *6 (-1067)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-4087 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *7 *2)) (-4 *6 (-1067)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2858 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-568)))) (-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-374)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-317)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7)))))
+(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4461) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -2929 ($ (-656 (-656 |t#3|)))) (-15 -3562 ((-112) $)) (-15 -1415 ((-112) $)) (-15 -2052 ((-112) $)) (-15 -1335 ((-112) $)) (-15 -1823 ((-576) $)) (-15 -1982 ((-576) $)) (-15 -1780 ((-576) $)) (-15 -4259 ((-576) $)) (-15 -2199 ((-783) $)) (-15 -2208 ((-783) $)) (-15 -1538 ((-656 (-656 |t#3|)) $)) (-15 -2209 (|t#3| $ (-576) (-576))) (-15 -2405 (|t#3| $ (-576) (-576))) (-15 -2209 (|t#3| $ (-576) (-576) |t#3|)) (-15 -3389 (|t#4| $ (-576))) (-15 -4087 (|t#5| $ (-576))) (-15 -1787 ($ (-1 |t#3| |t#3|) $)) (-15 -1787 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -2858 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3108 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -3446 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3563 ((-783) $)) (-15 -2954 ((-783) $)) (-15 -3772 ((-656 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-874)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1069 |#3|) . T) ((-1074 |#3|) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2052 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3562 (((-112) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-3446 (($ $) 47 (|has| |#3| (-317)))) (-3389 (((-246 |#2| |#3|) $ (-576)) 36)) (-2467 (($ (-701 |#3|)) 45)) (-3563 (((-783) $) 49 (|has| |#3| (-568)))) (-2405 ((|#3| $ (-576) (-576)) NIL)) (-1873 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2954 (((-783) $) 51 (|has| |#3| (-568)))) (-3772 (((-656 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2199 (((-783) $) NIL)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2929 (($ (-656 (-656 |#3|))) 31)) (-2466 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1538 (((-656 (-656 |#3|)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-1875 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-2068 (((-135)) 59 (|has| |#3| (-374)))) (-1415 (((-112) $) NIL)) (-3954 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-4087 (((-246 |#1| |#3|) $ (-576)) 40)) (-2956 (((-874) $) 19) (((-701 |#3|) $) 42)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-2143 (($) 16 T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1072 |#1| |#2| |#3|) (-13 (-1071 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2467 ($ (-701 |#3|))))) (-783) (-783) (-1067)) (T -1072))
+((-2467 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1067)) (-5 *1 (-1072 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)))))
+(-13 (-1071 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2467 ($ (-701 |#3|)))))
+((-2887 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1787 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1073 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1787 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2887 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1067) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1071 |#1| |#2| |#3| |#4| |#5|) (-1067) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1071 |#1| |#2| |#7| |#8| |#9|)) (T -1073))
+((-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1067)) (-4 *2 (-1067)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *12 (-1071 *5 *6 *2 *10 *11)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1067)) (-4 *10 (-1067)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1071 *5 *6 *10 *11 *12)) (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10)))))
+(-10 -7 (-15 -1787 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2887 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27)))
+(((-1074 |#1|) (-141) (-1076)) (T -1074))
+NIL
+(-13 (-21) (-1069 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1069 |#1|) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-1500 (((-1195) $) 11)) (-3230 ((|#1| $) 12)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2712 (($ (-1195) |#1|) 10)) (-2956 (((-874) $) 22 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2991 (((-112) $ $) 17 (|has| |#1| (-1118)))))
+(((-1075 |#1| |#2|) (-13 (-1236) (-10 -8 (-15 -2712 ($ (-1195) |#1|)) (-15 -1500 ((-1195) $)) (-15 -3230 (|#1| $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1111 |#2|) (-1236)) (T -1075))
+((-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1075 *3 *4)) (-4 *3 (-1111 *4)))) (-1500 (*1 *2 *1) (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1075 *3 *4)) (-4 *3 (-1111 *4)))) (-3230 (*1 *2 *1) (-12 (-4 *2 (-1111 *3)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -2712 ($ (-1195) |#1|)) (-15 -1500 ((-1195) $)) (-15 -3230 (|#1| $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-1076) (-141)) (T -1076))
-((-4107 (*1 *1 *1) (-4 *1 (-1076))) (-2608 (*1 *1 *1) (-4 *1 (-1076))) (-3941 (*1 *1 *1) (-4 *1 (-1076))) (-3229 (*1 *1 *1) (-4 *1 (-1076))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-574)))) (-3577 (*1 *1 *1) (-4 *1 (-1076))) (-2991 (*1 *1 *1) (-4 *1 (-1076))) (-3274 (*1 *1 *1) (-4 *1 (-1076))))
-(-13 (-372) (-858) (-1038) (-1054 (-574)) (-1054 (-417 (-574))) (-1018) (-624 (-903 (-388))) (-897 (-388)) (-148) (-10 -8 (-15 -2608 ($ $)) (-15 -3941 ($ $)) (-15 -3229 ($ $)) (-15 -4356 ((-574) $)) (-15 -3577 ($ $)) (-15 -2991 ($ $)) (-15 -3274 ($ $)) (-15 -4107 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-624 (-227)) . T) ((-624 (-388)) . T) ((-624 (-903 (-388))) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 $) . T) ((-736) . T) ((-801) . T) ((-802) . T) ((-804) . T) ((-805) . T) ((-858) . T) ((-860) . T) ((-897 (-388)) . T) ((-934) . T) ((-1018) . T) ((-1038) . T) ((-1054 (-417 (-574))) . T) ((-1054 (-574)) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) |#2| $) 26)) (-1496 ((|#1| $) 10)) (-1370 (((-574) |#2| $) 116)) (-2231 (((-3 $ "failed") |#2| (-935)) 75)) (-3878 ((|#1| $) 31)) (-3422 ((|#1| |#2| $ |#1|) 40)) (-1432 (($ $) 28)) (-3612 (((-3 |#2| "failed") |#2| $) 111)) (-2516 (((-112) |#2| $) NIL)) (-1935 (((-112) |#2| $) NIL)) (-4164 (((-112) |#2| $) 27)) (-2583 ((|#1| $) 117)) (-3865 ((|#1| $) 30)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2966 ((|#2| $) 102)) (-2951 (((-872) $) 92)) (-2981 (((-112) $ $) NIL)) (-3525 ((|#1| |#2| $ |#1|) 41)) (-4259 (((-654 $) |#2|) 77)) (-2986 (((-112) $ $) 97)))
-(((-1077 |#1| |#2|) (-13 (-1084 |#1| |#2|) (-10 -8 (-15 -3865 (|#1| $)) (-15 -3878 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -2583 (|#1| $)) (-15 -1432 ($ $)) (-15 -4164 ((-112) |#2| $)) (-15 -3422 (|#1| |#2| $ |#1|)))) (-13 (-858) (-372)) (-1260 |#1|)) (T -1077))
-((-3422 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-3865 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-1496 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-2583 (*1 *2 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-1432 (*1 *1 *1) (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3)) (-4 *3 (-1260 *2)))) (-4164 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1260 *4)))))
-(-13 (-1084 |#1| |#2|) (-10 -8 (-15 -3865 (|#1| $)) (-15 -3878 (|#1| $)) (-15 -1496 (|#1| $)) (-15 -2583 (|#1| $)) (-15 -1432 ($ $)) (-15 -4164 ((-112) |#2| $)) (-15 -3422 (|#1| |#2| $ |#1|))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3954 (($ $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2998 (($ $ $ $) NIL)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1370 (((-574) $) NIL)) (-3933 (($ $ $) NIL)) (-1430 (($) NIL T CONST)) (-1900 (($ (-1193)) 10) (($ (-574)) 7)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2801 (($ $ $) NIL)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL)) (-4391 (((-112) $) NIL)) (-3805 (((-417 (-574)) $) NIL)) (-2835 (($) NIL) (($ $) NIL)) (-2812 (($ $ $) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-4050 (($ $ $ $) NIL)) (-2303 (($ $ $) NIL)) (-2516 (((-112) $) NIL)) (-1371 (($ $ $) NIL)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-3943 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-2081 (((-3 $ "failed") $) NIL)) (-1935 (((-112) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2391 (($ $ $ $) NIL)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-3781 (($ $) NIL)) (-4109 (($ $) NIL)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-2397 (($ $ $) NIL)) (-3792 (($) NIL T CONST)) (-1613 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) NIL) (($ (-654 $)) NIL)) (-2035 (($ $) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) NIL)) (-3157 (($ $) NIL)) (-1844 (((-574) $) 16) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL) (($ (-1193)) 9)) (-2951 (((-872) $) 23) (($ (-574)) 6) (($ $) NIL) (($ (-574)) 6)) (-3070 (((-781)) NIL T CONST)) (-2539 (((-112) $ $) NIL)) (-3751 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2644 (($) NIL)) (-3750 (((-112) $ $) NIL)) (-4412 (($ $ $ $) NIL)) (-4107 (($ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-3090 (($ $) 22) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ (-574) $) NIL)))
-(((-1078) (-13 (-555) (-628 (-1193)) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -1900 ($ (-1193))) (-15 -1900 ($ (-574)))))) (T -1078))
-((-1900 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1078)))) (-1900 (*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1078)))))
-(-13 (-555) (-628 (-1193)) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -1900 ($ (-1193))) (-15 -1900 ($ (-574)))))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2620 (((-1289) $ (-1193) (-1193)) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-1963 (($) 9)) (-3135 (((-52) $ (-1193) (-52)) NIL)) (-2525 (($ $) 32)) (-2374 (($ $) 30)) (-3771 (($ $) 29)) (-2307 (($ $) 31)) (-3361 (($ $) 35)) (-2750 (($ $) 36)) (-3400 (($ $) 28)) (-2502 (($ $) 33)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) 27 (|has| $ (-6 -4459)))) (-2170 (((-3 (-52) "failed") (-1193) $) 43)) (-1430 (($) NIL T CONST)) (-2720 (($) 7)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2175 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) 53 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-3 (-52) "failed") (-1193) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459)))) (-3875 (((-3 (-1175) "failed") $ (-1175) (-574)) 72)) (-2473 (((-52) $ (-1193) (-52)) NIL (|has| $ (-6 -4460)))) (-2400 (((-52) $ (-1193)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-1193) $) NIL (|has| (-1193) (-860)))) (-1764 (((-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) 38 (|has| $ (-6 -4459))) (((-654 (-52)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2790 (((-1193) $) NIL (|has| (-1193) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-1772 (((-654 (-1193)) $) NIL)) (-2968 (((-112) (-1193) $) NIL)) (-1759 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-3705 (($ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) 46)) (-1583 (((-654 (-1193)) $) NIL)) (-1470 (((-112) (-1193) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-1833 (((-388) $ (-1193)) 52)) (-3462 (((-654 (-1175)) $ (-1175)) 74)) (-2925 (((-52) $) NIL (|has| (-1193) (-860)))) (-3748 (((-3 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) "failed") (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL)) (-1465 (($ $ (-52)) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL (-12 (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-317 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (($ $ (-654 (-52)) (-654 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-302 (-52))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116)))) (($ $ (-654 (-302 (-52)))) NIL (-12 (|has| (-52) (-317 (-52))) (|has| (-52) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116))))) (-2445 (((-654 (-52)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 (((-52) $ (-1193)) NIL) (((-52) $ (-1193) (-52)) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-3104 (($ $ (-1193)) 54)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116)))) (((-781) (-52) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-52) (-1116)))) (((-781) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) 40)) (-4132 (($ $ $) 41)) (-2951 (((-872) $) NIL (-2833 (|has| (-52) (-623 (-872))) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-623 (-872)))))) (-2160 (($ $ (-1193) (-388)) 50)) (-1775 (($ $ (-1193) (-388)) 51)) (-2981 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 (-1193)) (|:| -1916 (-52)))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-52) (-1116)) (|has| (-2 (|:| -3667 (-1193)) (|:| -1916 (-52))) (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1079) (-13 (-1210 (-1193) (-52)) (-10 -8 (-15 -4132 ($ $ $)) (-15 -2720 ($)) (-15 -3400 ($ $)) (-15 -3771 ($ $)) (-15 -2374 ($ $)) (-15 -2307 ($ $)) (-15 -2502 ($ $)) (-15 -2525 ($ $)) (-15 -3361 ($ $)) (-15 -2750 ($ $)) (-15 -2160 ($ $ (-1193) (-388))) (-15 -1775 ($ $ (-1193) (-388))) (-15 -1833 ((-388) $ (-1193))) (-15 -3462 ((-654 (-1175)) $ (-1175))) (-15 -3104 ($ $ (-1193))) (-15 -1963 ($)) (-15 -3875 ((-3 (-1175) "failed") $ (-1175) (-574))) (-6 -4459)))) (T -1079))
-((-4132 (*1 *1 *1 *1) (-5 *1 (-1079))) (-2720 (*1 *1) (-5 *1 (-1079))) (-3400 (*1 *1 *1) (-5 *1 (-1079))) (-3771 (*1 *1 *1) (-5 *1 (-1079))) (-2374 (*1 *1 *1) (-5 *1 (-1079))) (-2307 (*1 *1 *1) (-5 *1 (-1079))) (-2502 (*1 *1 *1) (-5 *1 (-1079))) (-2525 (*1 *1 *1) (-5 *1 (-1079))) (-3361 (*1 *1 *1) (-5 *1 (-1079))) (-2750 (*1 *1 *1) (-5 *1 (-1079))) (-2160 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))) (-1775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))) (-1833 (*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-388)) (-5 *1 (-1079)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1079)) (-5 *3 (-1175)))) (-3104 (*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1079)))) (-1963 (*1 *1) (-5 *1 (-1079))) (-3875 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-1079)))))
-(-13 (-1210 (-1193) (-52)) (-10 -8 (-15 -4132 ($ $ $)) (-15 -2720 ($)) (-15 -3400 ($ $)) (-15 -3771 ($ $)) (-15 -2374 ($ $)) (-15 -2307 ($ $)) (-15 -2502 ($ $)) (-15 -2525 ($ $)) (-15 -3361 ($ $)) (-15 -2750 ($ $)) (-15 -2160 ($ $ (-1193) (-388))) (-15 -1775 ($ $ (-1193) (-388))) (-15 -1833 ((-388) $ (-1193))) (-15 -3462 ((-654 (-1175)) $ (-1175))) (-15 -3104 ($ $ (-1193))) (-15 -1963 ($)) (-15 -3875 ((-3 (-1175) "failed") $ (-1175) (-574))) (-6 -4459)))
-((-1978 (($ $) 46)) (-3591 (((-112) $ $) 82)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-966 (-417 (-574)))) 251) (((-3 $ "failed") (-966 (-574))) 250) (((-3 $ "failed") (-966 |#2|)) 253)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL) ((|#4| $) NIL) (($ (-966 (-417 (-574)))) 239) (($ (-966 (-574))) 235) (($ (-966 |#2|)) 255)) (-1402 (($ $) NIL) (($ $ |#4|) 44)) (-3709 (((-112) $ $) 131) (((-112) $ (-654 $)) 135)) (-1580 (((-112) $) 60)) (-3959 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 125)) (-2669 (($ $) 160)) (-1931 (($ $) 156)) (-2449 (($ $) 155)) (-1784 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2892 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2821 (((-112) $ $) 143) (((-112) $ (-654 $)) 144)) (-4063 ((|#4| $) 32)) (-1420 (($ $ $) 128)) (-2102 (((-112) $) 59)) (-2019 (((-781) $) 35)) (-2949 (($ $) 174)) (-1326 (($ $) 171)) (-3561 (((-654 $) $) 72)) (-2300 (($ $) 62)) (-3712 (($ $) 167)) (-2723 (((-654 $) $) 69)) (-1399 (($ $) 64)) (-1378 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2091 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4128 (-781))) $ $) 130)) (-3351 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $) 126) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $ |#4|) 127)) (-4431 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $) 121) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $ |#4|) 123)) (-2003 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2190 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3950 (((-654 $) $) 54)) (-2897 (((-112) $ $) 140) (((-112) $ (-654 $)) 141)) (-3184 (($ $ $) 116)) (-3792 (($ $) 37)) (-1624 (((-112) $ $) 80)) (-1848 (((-112) $ $) 136) (((-112) $ (-654 $)) 138)) (-1857 (($ $ $) 112)) (-4046 (($ $) 41)) (-2887 ((|#2| |#2| $) 164) (($ (-654 $)) NIL) (($ $ $) NIL)) (-1338 (($ $ |#2|) NIL) (($ $ $) 153)) (-2201 (($ $ |#2|) 148) (($ $ $) 151)) (-3021 (($ $) 49)) (-3761 (($ $) 55)) (-1844 (((-903 (-388)) $) NIL) (((-903 (-574)) $) NIL) (((-546) $) NIL) (($ (-966 (-417 (-574)))) 241) (($ (-966 (-574))) 237) (($ (-966 |#2|)) 252) (((-1175) $) 279) (((-966 |#2|) $) 184)) (-2951 (((-872) $) 29) (($ (-574)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-966 |#2|) $) 185) (($ (-417 (-574))) NIL) (($ $) NIL)) (-1760 (((-3 (-112) "failed") $ $) 79)))
-(((-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 ((-966 |#2|) |#1|)) (-15 -1844 ((-966 |#2|) |#1|)) (-15 -1844 ((-1175) |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2887 (|#2| |#2| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -2201 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#2|)) (-15 -2201 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -1844 (|#1| (-966 |#2|))) (-15 -2216 (|#1| (-966 |#2|))) (-15 -1704 ((-3 |#1| "failed") (-966 |#2|))) (-15 -1844 (|#1| (-966 (-574)))) (-15 -2216 (|#1| (-966 (-574)))) (-15 -1704 ((-3 |#1| "failed") (-966 (-574)))) (-15 -1844 (|#1| (-966 (-417 (-574))))) (-15 -2216 (|#1| (-966 (-417 (-574))))) (-15 -1704 ((-3 |#1| "failed") (-966 (-417 (-574))))) (-15 -3184 (|#1| |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -2091 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4128 (-781))) |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -3959 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -4431 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -4431 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#1| |#4|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#1|)) (-15 -2892 (|#1| |#1| |#1| |#4|)) (-15 -1784 (|#1| |#1| |#1| |#4|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -2821 ((-112) |#1| (-654 |#1|))) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| (-654 |#1|))) (-15 -2897 ((-112) |#1| |#1|)) (-15 -1848 ((-112) |#1| (-654 |#1|))) (-15 -1848 ((-112) |#1| |#1|)) (-15 -3709 ((-112) |#1| (-654 |#1|))) (-15 -3709 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#1| |#1|)) (-15 -1624 ((-112) |#1| |#1|)) (-15 -1760 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3561 ((-654 |#1|) |#1|)) (-15 -2723 ((-654 |#1|) |#1|)) (-15 -1399 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1402 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -3761 (|#1| |#1|)) (-15 -3950 ((-654 |#1|) |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -2019 ((-781) |#1|)) (-15 -4063 (|#4| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1081 |#2| |#3| |#4|) (-1065) (-803) (-860)) (T -1080))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -2887 (|#1| (-654 |#1|))) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 ((-966 |#2|) |#1|)) (-15 -1844 ((-966 |#2|) |#1|)) (-15 -1844 ((-1175) |#1|)) (-15 -2949 (|#1| |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3712 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -2887 (|#2| |#2| |#1|)) (-15 -1338 (|#1| |#1| |#1|)) (-15 -2201 (|#1| |#1| |#1|)) (-15 -1338 (|#1| |#1| |#2|)) (-15 -2201 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -1844 (|#1| (-966 |#2|))) (-15 -2216 (|#1| (-966 |#2|))) (-15 -1704 ((-3 |#1| "failed") (-966 |#2|))) (-15 -1844 (|#1| (-966 (-574)))) (-15 -2216 (|#1| (-966 (-574)))) (-15 -1704 ((-3 |#1| "failed") (-966 (-574)))) (-15 -1844 (|#1| (-966 (-417 (-574))))) (-15 -2216 (|#1| (-966 (-417 (-574))))) (-15 -1704 ((-3 |#1| "failed") (-966 (-417 (-574))))) (-15 -3184 (|#1| |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -2091 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4128 (-781))) |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -3959 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -3351 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -4431 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3919 |#1|)) |#1| |#1| |#4|)) (-15 -4431 ((-2 (|:| -1866 |#1|) (|:| |gap| (-781)) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -2190 (|#1| |#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#1| |#4|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2003 (|#1| |#1| |#1|)) (-15 -2892 (|#1| |#1| |#1| |#4|)) (-15 -1784 (|#1| |#1| |#1| |#4|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -1784 (|#1| |#1| |#1|)) (-15 -2821 ((-112) |#1| (-654 |#1|))) (-15 -2821 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| (-654 |#1|))) (-15 -2897 ((-112) |#1| |#1|)) (-15 -1848 ((-112) |#1| (-654 |#1|))) (-15 -1848 ((-112) |#1| |#1|)) (-15 -3709 ((-112) |#1| (-654 |#1|))) (-15 -3709 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#1| |#1|)) (-15 -1624 ((-112) |#1| |#1|)) (-15 -1760 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3561 ((-654 |#1|) |#1|)) (-15 -2723 ((-654 |#1|) |#1|)) (-15 -1399 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -1580 ((-112) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1402 (|#1| |#1| |#4|)) (-15 -1378 (|#1| |#1| |#4|)) (-15 -3761 (|#1| |#1|)) (-15 -3950 ((-654 |#1|) |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -4046 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -2019 ((-781) |#1|)) (-15 -4063 (|#4| |#1|)) (-15 -1844 ((-546) |#1|)) (-15 -1844 ((-903 (-574)) |#1|)) (-15 -1844 ((-903 (-388)) |#1|)) (-15 -2951 (|#1| |#4|)) (-15 -1704 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1378 (|#2| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 |#3|) $) 113)) (-4172 (((-1189 $) $ |#3|) 128) (((-1189 |#1|) $) 127)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-4141 (($ $) 91 (|has| |#1| (-566)))) (-2475 (((-112) $) 93 (|has| |#1| (-566)))) (-3654 (((-781) $) 115) (((-781) $ (-654 |#3|)) 114)) (-1978 (($ $) 276)) (-3591 (((-112) $ $) 262)) (-3290 (((-3 $ "failed") $ $) 20)) (-2982 (($ $ $) 221 (|has| |#1| (-566)))) (-2676 (((-654 $) $ $) 216 (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2684 (($ $) 101 (|has| |#1| (-462)))) (-3171 (((-428 $) $) 100 (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-966 (-417 (-574)))) 236 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (((-3 $ "failed") (-966 (-574))) 233 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (((-3 $ "failed") (-966 |#1|)) 230 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-555))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-1008 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))))) (-2216 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) ((|#3| $) 142) (($ (-966 (-417 (-574)))) 235 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (($ (-966 (-574))) 232 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (($ (-966 |#1|)) 229 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (-2084 (|has| |#1| (-38 (-574)))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-555))) (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (-2084 (|has| |#1| (-1008 (-574)))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))))) (-4047 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-566)))) (-1402 (($ $) 159) (($ $ |#3|) 271)) (-1557 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-3709 (((-112) $ $) 261) (((-112) $ (-654 $)) 260)) (-3612 (((-3 $ "failed") $) 37)) (-1580 (((-112) $) 269)) (-3959 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 241)) (-2669 (($ $) 210 (|has| |#1| (-462)))) (-4135 (($ $) 181 (|has| |#1| (-462))) (($ $ |#3|) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3342 (((-112) $) 99 (|has| |#1| (-923)))) (-1931 (($ $) 226 (|has| |#1| (-566)))) (-2449 (($ $) 227 (|has| |#1| (-566)))) (-1784 (($ $ $) 253) (($ $ $ |#3|) 251)) (-2892 (($ $ $) 252) (($ $ $ |#3|) 250)) (-3637 (($ $ |#1| |#2| $) 177)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| |#3| (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| |#3| (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-3943 (((-112) $) 35)) (-2993 (((-781) $) 174)) (-2821 (((-112) $ $) 255) (((-112) $ (-654 $)) 254)) (-3793 (($ $ $ $ $) 212 (|has| |#1| (-566)))) (-4063 ((|#3| $) 280)) (-4339 (($ (-1189 |#1|) |#3|) 120) (($ (-1189 $) |#3|) 119)) (-2306 (((-654 $) $) 129)) (-3873 (((-112) $) 157)) (-4328 (($ |#1| |#2|) 158) (($ $ |#3| (-781)) 122) (($ $ (-654 |#3|) (-654 (-781))) 121)) (-1420 (($ $ $) 240)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#3|) 123)) (-2102 (((-112) $) 270)) (-2043 ((|#2| $) 175) (((-781) $ |#3|) 125) (((-654 (-781)) $ (-654 |#3|)) 124)) (-2019 (((-781) $) 279)) (-3431 (($ (-1 |#2| |#2|) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-3444 (((-3 |#3| "failed") $) 126)) (-2949 (($ $) 207 (|has| |#1| (-462)))) (-1326 (($ $) 208 (|has| |#1| (-462)))) (-3561 (((-654 $) $) 265)) (-2300 (($ $) 268)) (-3712 (($ $) 209 (|has| |#1| (-462)))) (-2723 (((-654 $) $) 266)) (-1399 (($ $) 267)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153) (($ $ |#3|) 272)) (-2845 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-2091 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4128 (-781))) $ $) 239)) (-3351 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $) 243) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $ |#3|) 242)) (-4431 (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $) 245) (((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $ |#3|) 244)) (-2003 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2190 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4420 (((-1175) $) 10)) (-3521 (($ $ $) 215 (|has| |#1| (-566)))) (-3950 (((-654 $) $) 274)) (-1730 (((-3 (-654 $) "failed") $) 117)) (-4245 (((-3 (-654 $) "failed") $) 118)) (-4436 (((-3 (-2 (|:| |var| |#3|) (|:| -2754 (-781))) "failed") $) 116)) (-2897 (((-112) $ $) 257) (((-112) $ (-654 $)) 256)) (-3184 (($ $ $) 237)) (-3792 (($ $) 278)) (-1624 (((-112) $ $) 263)) (-1848 (((-112) $ $) 259) (((-112) $ (-654 $)) 258)) (-1857 (($ $ $) 238)) (-4046 (($ $) 277)) (-3940 (((-1136) $) 11)) (-1766 (((-2 (|:| -2887 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-566)))) (-4156 (((-2 (|:| -2887 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-566)))) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 ((|#1| |#1| $) 211 (|has| |#1| (-462))) (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 102 (|has| |#1| (-923)))) (-2939 (((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-566)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-1338 (($ $ |#1|) 224 (|has| |#1| (-566))) (($ $ $) 222 (|has| |#1| (-566)))) (-2201 (($ $ |#1|) 225 (|has| |#1| (-566))) (($ $ $) 223 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-654 |#3|) (-654 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-654 |#3|) (-654 $)) 143)) (-1924 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#3|) (-654 (-781))) 44) (($ $ |#3| (-781)) 43) (($ $ (-654 |#3|)) 42) (($ $ |#3|) 40)) (-3735 ((|#2| $) 155) (((-781) $ |#3|) 133) (((-654 (-781)) $ (-654 |#3|)) 132)) (-3021 (($ $) 275)) (-3761 (($ $) 273)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| |#3| (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| |#3| (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| |#3| (-624 (-546))) (|has| |#1| (-624 (-546))))) (($ (-966 (-417 (-574)))) 234 (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193))))) (($ (-966 (-574))) 231 (-2833 (-12 (-2084 (|has| |#1| (-38 (-417 (-574))))) (|has| |#1| (-38 (-574))) (|has| |#3| (-624 (-1193)))) (-12 (|has| |#1| (-38 (-417 (-574)))) (|has| |#3| (-624 (-1193)))))) (($ (-966 |#1|)) 228 (|has| |#3| (-624 (-1193)))) (((-1175) $) 206 (-12 (|has| |#1| (-1054 (-574))) (|has| |#3| (-624 (-1193))))) (((-966 |#1|) $) 205 (|has| |#3| (-624 (-1193))))) (-1732 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ |#3|) 109 (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-966 |#1|) $) 204 (|has| |#3| (-624 (-1193)))) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) 173)) (-1788 ((|#1| $ |#2|) 160) (($ $ |#3| (-781)) 131) (($ $ (-654 |#3|) (-654 (-781))) 130)) (-2705 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 32 T CONST)) (-3245 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-1760 (((-3 (-112) "failed") $ $) 264)) (-2153 (($) 34 T CONST)) (-2217 (($ $ $ $ (-781)) 213 (|has| |#1| (-566)))) (-3971 (($ $ $ (-781)) 214 (|has| |#1| (-566)))) (-3585 (($ $ (-654 |#3|) (-654 (-781))) 47) (($ $ |#3| (-781)) 46) (($ $ (-654 |#3|)) 45) (($ $ |#3|) 41)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-1081 |#1| |#2| |#3|) (-141) (-1065) (-803) (-860)) (T -1081))
-((-4063 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2019 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-781)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-4046 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3950 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-3761 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1378 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-1402 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1399 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2723 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-3561 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-1760 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1624 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3591 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3709 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-1848 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-1848 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2897 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-2821 (*1 *2 *1 *1) (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)))) (-1784 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2892 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1784 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2892 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2003 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2190 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2003 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-2190 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *2 (-860)))) (-4431 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3919 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-4431 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3919 *1))) (-4 *1 (-1081 *4 *5 *3)))) (-3351 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-3351 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1081 *4 *5 *3)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1081 *3 *4 *5)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-2091 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4128 (-781)))) (-4 *1 (-1081 *3 *4 *5)))) (-1857 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-3184 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)))) (-1704 (*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))) (-1704 (*1 *1 *2) (|partial| -2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1844 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5)) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1704 (*1 *1 *2) (|partial| -2833 (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-2216 (*1 *1 *2) (-2833 (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))) (-12 (-5 *2 (-966 *3)) (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803)) (-4 *5 (-860))))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *5 (-624 (-1193))) (-4 *4 (-803)) (-4 *5 (-860)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1338 (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2201 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-1338 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2939 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-4156 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-1766 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2887 *1) (|:| |coef2| *1))) (-4 *1 (-1081 *3 *4 *5)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2676 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-3971 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-2217 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))) (-3793 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-566)))) (-2887 (*1 *2 *2 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2669 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-3712 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-1326 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))) (-2949 (*1 *1 *1) (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-462)))))
-(-13 (-963 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4063 (|t#3| $)) (-15 -2019 ((-781) $)) (-15 -3792 ($ $)) (-15 -4046 ($ $)) (-15 -1978 ($ $)) (-15 -3021 ($ $)) (-15 -3950 ((-654 $) $)) (-15 -3761 ($ $)) (-15 -1378 ($ $ |t#3|)) (-15 -1402 ($ $ |t#3|)) (-15 -2102 ((-112) $)) (-15 -1580 ((-112) $)) (-15 -2300 ($ $)) (-15 -1399 ($ $)) (-15 -2723 ((-654 $) $)) (-15 -3561 ((-654 $) $)) (-15 -1760 ((-3 (-112) "failed") $ $)) (-15 -1624 ((-112) $ $)) (-15 -3591 ((-112) $ $)) (-15 -3709 ((-112) $ $)) (-15 -3709 ((-112) $ (-654 $))) (-15 -1848 ((-112) $ $)) (-15 -1848 ((-112) $ (-654 $))) (-15 -2897 ((-112) $ $)) (-15 -2897 ((-112) $ (-654 $))) (-15 -2821 ((-112) $ $)) (-15 -2821 ((-112) $ (-654 $))) (-15 -1784 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -1784 ($ $ $ |t#3|)) (-15 -2892 ($ $ $ |t#3|)) (-15 -2003 ($ $ $)) (-15 -2190 ($ $ $)) (-15 -2003 ($ $ $ |t#3|)) (-15 -2190 ($ $ $ |t#3|)) (-15 -4431 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $)) (-15 -4431 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3919 $)) $ $ |t#3|)) (-15 -3351 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -3351 ((-2 (|:| -1866 $) (|:| |gap| (-781)) (|:| -3758 $) (|:| -3919 $)) $ $ |t#3|)) (-15 -3959 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -1420 ($ $ $)) (-15 -2091 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4128 (-781))) $ $)) (-15 -1857 ($ $ $)) (-15 -3184 ($ $ $)) (IF (|has| |t#3| (-624 (-1193))) (PROGN (-6 (-623 (-966 |t#1|))) (-6 (-624 (-966 |t#1|))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -1704 ((-3 $ "failed") (-966 (-417 (-574))))) (-15 -2216 ($ (-966 (-417 (-574))))) (-15 -1844 ($ (-966 (-417 (-574))))) (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2216 ($ (-966 (-574)))) (-15 -1844 ($ (-966 (-574)))) (IF (|has| |t#1| (-1008 (-574))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2216 ($ (-966 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 (-574)))) (-15 -2216 ($ (-966 (-574)))) (-15 -1844 ($ (-966 (-574)))) (IF (|has| |t#1| (-555)) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2216 ($ (-966 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-574))) |%noBranch| (IF (|has| |t#1| (-38 (-417 (-574)))) |%noBranch| (PROGN (-15 -1704 ((-3 $ "failed") (-966 |t#1|))) (-15 -2216 ($ (-966 |t#1|)))))) (-15 -1844 ($ (-966 |t#1|))) (IF (|has| |t#1| (-1054 (-574))) (-6 (-624 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-15 -2449 ($ $)) (-15 -1931 ($ $)) (-15 -2201 ($ $ |t#1|)) (-15 -1338 ($ $ |t#1|)) (-15 -2201 ($ $ $)) (-15 -1338 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2939 ((-2 (|:| -2887 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4156 ((-2 (|:| -2887 $) (|:| |coef1| $)) $ $)) (-15 -1766 ((-2 (|:| -2887 $) (|:| |coef2| $)) $ $)) (-15 -4047 ($ $ $)) (-15 -2676 ((-654 $) $ $)) (-15 -3521 ($ $ $)) (-15 -3971 ($ $ $ (-781))) (-15 -2217 ($ $ $ $ (-781))) (-15 -3793 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (PROGN (-15 -2887 (|t#1| |t#1| $)) (-15 -2669 ($ $)) (-15 -3712 ($ $)) (-15 -1326 ($ $)) (-15 -2949 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 |#3|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-623 (-872)) . T) ((-623 (-966 |#1|)) |has| |#3| (-624 (-1193))) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| |#1| (-624 (-546))) (|has| |#3| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#3| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#3| (-624 (-903 (-574))))) ((-624 (-966 |#1|)) |has| |#3| (-624 (-1193))) ((-624 (-1175)) -12 (|has| |#1| (-1054 (-574))) (|has| |#3| (-624 (-1193)))) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-317 $) . T) ((-334 |#1| |#2|) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462))) ((-524 |#3| |#1|) . T) ((-524 |#3| $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 #1=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-649 #1#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462))) ((-736) . T) ((-907 $ |#3|) . T) ((-912 |#3|) . T) ((-914 |#3|) . T) ((-897 (-388)) -12 (|has| |#1| (-897 (-388))) (|has| |#3| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-897 (-574))) (|has| |#3| (-897 (-574)))) ((-963 |#1| |#2| |#3|) . T) ((-923) |has| |#1| (-923)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 |#1|) . T) ((-1054 |#3|) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T) ((-1238) |has| |#1| (-923)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-1508 (((-654 (-1151)) $) 18)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 27) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-1151) $) 20)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1082) (-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2051 ((-1151) $))))) (T -1082))
-((-1508 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1082)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1082)))))
-(-13 (-1099) (-10 -8 (-15 -1508 ((-654 (-1151)) $)) (-15 -2051 ((-1151) $))))
-((-4311 (((-112) |#3| $) 15)) (-2231 (((-3 $ "failed") |#3| (-935)) 29)) (-3612 (((-3 |#3| "failed") |#3| $) 45)) (-2516 (((-112) |#3| $) 19)) (-1935 (((-112) |#3| $) 17)))
-(((-1083 |#1| |#2| |#3|) (-10 -8 (-15 -2231 ((-3 |#1| "failed") |#3| (-935))) (-15 -3612 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2516 ((-112) |#3| |#1|)) (-15 -1935 ((-112) |#3| |#1|)) (-15 -4311 ((-112) |#3| |#1|))) (-1084 |#2| |#3|) (-13 (-858) (-372)) (-1260 |#2|)) (T -1083))
-NIL
-(-10 -8 (-15 -2231 ((-3 |#1| "failed") |#3| (-935))) (-15 -3612 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2516 ((-112) |#3| |#1|)) (-15 -1935 ((-112) |#3| |#1|)) (-15 -4311 ((-112) |#3| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) |#2| $) 22)) (-1370 (((-574) |#2| $) 23)) (-2231 (((-3 $ "failed") |#2| (-935)) 16)) (-3422 ((|#1| |#2| $ |#1|) 14)) (-3612 (((-3 |#2| "failed") |#2| $) 19)) (-2516 (((-112) |#2| $) 20)) (-1935 (((-112) |#2| $) 21)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2966 ((|#2| $) 18)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-3525 ((|#1| |#2| $ |#1|) 15)) (-4259 (((-654 $) |#2|) 17)) (-2986 (((-112) $ $) 6)))
-(((-1084 |#1| |#2|) (-141) (-13 (-858) (-372)) (-1260 |t#1|)) (T -1084))
-((-1370 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-574)))) (-4311 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-1935 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-2516 (*1 *2 *3 *1) (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-112)))) (-3612 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1260 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372))) (-4 *2 (-1260 *3)))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-654 *1)) (-4 *1 (-1084 *4 *3)))) (-2231 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-935)) (-4 *4 (-13 (-858) (-372))) (-4 *1 (-1084 *4 *2)) (-4 *2 (-1260 *4)))) (-3525 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1260 *2)))) (-3422 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372))) (-4 *3 (-1260 *2)))))
-(-13 (-1116) (-10 -8 (-15 -1370 ((-574) |t#2| $)) (-15 -4311 ((-112) |t#2| $)) (-15 -1935 ((-112) |t#2| $)) (-15 -2516 ((-112) |t#2| $)) (-15 -3612 ((-3 |t#2| "failed") |t#2| $)) (-15 -2966 (|t#2| $)) (-15 -4259 ((-654 $) |t#2|)) (-15 -2231 ((-3 $ "failed") |t#2| (-935))) (-15 -3525 (|t#1| |t#2| $ |t#1|)) (-15 -3422 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-1959 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781)) 114)) (-3406 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 63)) (-3644 (((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)) 99)) (-3647 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2221 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 65) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112)) 67)) (-3320 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 87)) (-1844 (((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 92)) (-1941 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112)) 62)) (-3197 (((-781) (-654 |#4|) (-654 |#5|)) 21)))
-(((-1085 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3197 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -3647 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1941 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1085))
-((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) (-5 *1 (-1085 *4 *5 *6 *7 *8)))) (-1959 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1085 *7 *8 *9 *10 *11)))) (-3320 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3320 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2221 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-2221 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3197 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -3647 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1941 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-112))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781))))
-((-2235 (((-112) |#5| $) 26)) (-2261 (((-112) |#5| $) 29)) (-4327 (((-112) |#5| $) 18) (((-112) $) 52)) (-3655 (((-654 $) |#5| $) NIL) (((-654 $) (-654 |#5|) $) 94) (((-654 $) (-654 |#5|) (-654 $)) 92) (((-654 $) |#5| (-654 $)) 95)) (-2249 (($ $ |#5|) NIL) (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 73) (((-654 $) (-654 |#5|) $) 75) (((-654 $) (-654 |#5|) (-654 $)) 77)) (-3708 (((-654 $) |#5| $) NIL) (((-654 $) |#5| (-654 $)) 64) (((-654 $) (-654 |#5|) $) 69) (((-654 $) (-654 |#5|) (-654 $)) 71)) (-3510 (((-112) |#5| $) 32)))
-(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2249 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2249 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2249 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2249 ((-654 |#1|) |#5| |#1|)) (-15 -3708 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3708 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3708 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3708 ((-654 |#1|) |#5| |#1|)) (-15 -3655 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3655 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3655 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3655 ((-654 |#1|) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -3510 ((-112) |#5| |#1|)) (-15 -2235 ((-112) |#5| |#1|)) (-15 -4327 ((-112) |#5| |#1|)) (-15 -2249 (|#1| |#1| |#5|))) (-1087 |#2| |#3| |#4| |#5|) (-462) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -1086))
-NIL
-(-10 -8 (-15 -2249 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -2249 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -2249 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -2249 ((-654 |#1|) |#5| |#1|)) (-15 -3708 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3708 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3708 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3708 ((-654 |#1|) |#5| |#1|)) (-15 -3655 ((-654 |#1|) |#5| (-654 |#1|))) (-15 -3655 ((-654 |#1|) (-654 |#5|) (-654 |#1|))) (-15 -3655 ((-654 |#1|) (-654 |#5|) |#1|)) (-15 -3655 ((-654 |#1|) |#5| |#1|)) (-15 -2261 ((-112) |#5| |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -3510 ((-112) |#5| |#1|)) (-15 -2235 ((-112) |#5| |#1|)) (-15 -4327 ((-112) |#5| |#1|)) (-15 -2249 (|#1| |#1| |#5|)))
-((-2864 (((-112) $ $) 7)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) 86)) (-3291 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2581 ((|#4| |#4| $) 90)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3129 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) 106)) (-2235 (((-112) |#4| $) 137)) (-2261 (((-112) |#4| $) 134)) (-4327 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) 105) (((-112) $) 104)) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-2423 (((-654 $) |#4| $) 130)) (-2570 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3655 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1608 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-2252 (((-654 |#4|) $) 108)) (-2897 (((-112) |#4| $) 100) (((-112) $) 96)) (-3184 ((|#4| |#4| $) 91)) (-1624 (((-112) $ $) 111)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) 101) (((-112) $) 97)) (-1857 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4014 (((-3 $ "failed") $ |#4|) 79)) (-2249 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3735 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3615 (($ $) 89)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4292 (((-781) $) 77 (|has| |#3| (-377)))) (-2981 (((-112) $ $) 9)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3708 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) 82)) (-3510 (((-112) |#4| $) 136)) (-4194 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-1087 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1087))
-((-4327 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2235 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3510 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-2261 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2570 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2950 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2950 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2423 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2916 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3521 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2684 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1)))) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-3708 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-3708 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-3708 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-1608 (*1 *1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-1608 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *6)) (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)))) (-2249 (*1 *2 *3 *1) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)))) (-2249 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *7)))) (-2249 (*1 *2 *3 *2) (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1087 *5 *6 *7 *8)))))
-(-13 (-1227 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4327 ((-112) |t#4| $)) (-15 -2235 ((-112) |t#4| $)) (-15 -3510 ((-112) |t#4| $)) (-15 -4327 ((-112) $)) (-15 -2261 ((-112) |t#4| $)) (-15 -2570 ((-3 (-112) (-654 $)) |t#4| $)) (-15 -2950 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |t#4| $)) (-15 -2950 ((-112) |t#4| $)) (-15 -2423 ((-654 $) |t#4| $)) (-15 -2916 ((-3 |t#4| (-654 $)) |t#4| |t#4| $)) (-15 -3521 ((-654 (-2 (|:| |val| |t#4|) (|:| -4068 $))) |t#4| |t#4| $)) (-15 -2684 ((-654 (-2 (|:| |val| |t#4|) (|:| -4068 $))) |t#4| $)) (-15 -3655 ((-654 $) |t#4| $)) (-15 -3655 ((-654 $) (-654 |t#4|) $)) (-15 -3655 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3655 ((-654 $) |t#4| (-654 $))) (-15 -3708 ((-654 $) |t#4| $)) (-15 -3708 ((-654 $) |t#4| (-654 $))) (-15 -3708 ((-654 $) (-654 |t#4|) $)) (-15 -3708 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -1608 ($ |t#4| $)) (-15 -1608 ($ (-654 |t#4|) $)) (-15 -2249 ((-654 $) |t#4| $)) (-15 -2249 ((-654 $) |t#4| (-654 $))) (-15 -2249 ((-654 $) (-654 |t#4|) $)) (-15 -2249 ((-654 $) (-654 |t#4|) (-654 $))) (-15 -3291 ((-654 $) (-654 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T))
-((-3057 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 86)) (-3782 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 127)) (-1347 (((-654 |#5|) |#4| |#5|) 74)) (-3964 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3550 (((-1289)) 36)) (-2969 (((-1289)) 25)) (-1728 (((-1289) (-1175) (-1175) (-1175)) 32)) (-2988 (((-1289) (-1175) (-1175) (-1175)) 21)) (-4078 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|) 107)) (-2037 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112)) 118) (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2161 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2988 ((-1289) (-1175) (-1175) (-1175))) (-15 -2969 ((-1289))) (-15 -1728 ((-1289) (-1175) (-1175) (-1175))) (-15 -3550 ((-1289))) (-15 -4078 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2037 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2037 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -2161 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3782 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3964 ((-112) |#4| |#5|)) (-15 -3964 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1347 ((-654 |#5|) |#4| |#5|)) (-15 -3057 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1088))
-((-3057 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3964 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3964 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2161 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) (-5 *1 (-1088 *6 *7 *4 *8 *9)))) (-2037 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-4078 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3550 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-1728 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2969 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2988 ((-1289) (-1175) (-1175) (-1175))) (-15 -2969 ((-1289))) (-15 -1728 ((-1289) (-1175) (-1175) (-1175))) (-15 -3550 ((-1289))) (-15 -4078 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2037 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2037 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -2161 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3782 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -3964 ((-112) |#4| |#5|)) (-15 -3964 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1347 ((-654 |#5|) |#4| |#5|)) (-15 -3057 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)))
-((-2864 (((-112) $ $) NIL)) (-2350 (((-1233) $) 13)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3990 (((-1151) $) 10)) (-2951 (((-872) $) 20) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1089) (-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))) (T -1089))
-((-3990 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1089)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1089)))))
-(-13 (-1099) (-10 -8 (-15 -3990 ((-1151) $)) (-15 -2350 ((-1233) $))))
-((-4097 (((-112) $ $) 7)))
-(((-1090) (-13 (-1234) (-10 -8 (-15 -4097 ((-112) $ $))))) (T -1090))
-((-4097 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1090)))))
-(-13 (-1234) (-10 -8 (-15 -4097 ((-112) $ $))))
-((-2864 (((-112) $ $) NIL)) (-2039 (((-1193) $) 8)) (-4420 (((-1175) $) 17)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 14)))
-(((-1091 |#1|) (-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $)))) (-1193)) (T -1091))
-((-2039 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1091 *3)) (-14 *3 *2))))
-(-13 (-1116) (-10 -8 (-15 -2039 ((-1193) $))))
-((-2864 (((-112) $ $) NIL)) (-2586 (($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|))) 34)) (-3816 (($ |#3| |#3|) 23) (($ |#3| |#3| (-654 (-1193))) 21)) (-1816 ((|#3| $) 13)) (-1704 (((-3 (-302 |#3|) "failed") $) 60)) (-2216 (((-302 |#3|) $) NIL)) (-4361 (((-654 (-1193)) $) 16)) (-2129 (((-903 |#1|) $) 11)) (-1804 ((|#3| $) 12)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-935)) 41)) (-2951 (((-872) $) 89) (($ (-302 |#3|)) 22)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 38)))
-(((-1092 |#1| |#2| |#3|) (-13 (-1116) (-294 |#3| |#3|) (-1054 (-302 |#3|)) (-10 -8 (-15 -3816 ($ |#3| |#3|)) (-15 -3816 ($ |#3| |#3| (-654 (-1193)))) (-15 -2586 ($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|)))) (-15 -2129 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1816 (|#3| $)) (-15 -2207 (|#3| $ |#3| (-935))) (-15 -4361 ((-654 (-1193)) $)))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1092))
-((-3816 (*1 *1 *2 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-3816 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-2586 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1 (-112) (-654 *6))) (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *6)))) (-2129 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 *2))) (-5 *2 (-903 *3)) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) (-1816 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1092 *3 *4 *2)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))))) (-2207 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1092 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))) (-4361 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1193))) (-5 *1 (-1092 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
-(-13 (-1116) (-294 |#3| |#3|) (-1054 (-302 |#3|)) (-10 -8 (-15 -3816 ($ |#3| |#3|)) (-15 -3816 ($ |#3| |#3| (-654 (-1193)))) (-15 -2586 ($ $ (-654 (-1193)) (-1 (-112) (-654 |#3|)))) (-15 -2129 ((-903 |#1|) $)) (-15 -1804 (|#3| $)) (-15 -1816 (|#3| $)) (-15 -2207 (|#3| $ |#3| (-935))) (-15 -4361 ((-654 (-1193)) $))))
-((-2864 (((-112) $ $) NIL)) (-2550 (($ (-654 (-1092 |#1| |#2| |#3|))) 14)) (-2004 (((-654 (-1092 |#1| |#2| |#3|)) $) 21)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2207 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-935)) 27)) (-2951 (((-872) $) 17)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 20)))
-(((-1093 |#1| |#2| |#3|) (-13 (-1116) (-294 |#3| |#3|) (-10 -8 (-15 -2550 ($ (-654 (-1092 |#1| |#2| |#3|)))) (-15 -2004 ((-654 (-1092 |#1| |#2| |#3|)) $)) (-15 -2207 (|#3| $ |#3| (-935))))) (-1116) (-13 (-1065) (-897 |#1|) (-624 (-903 |#1|))) (-13 (-440 |#2|) (-897 |#1|) (-624 (-903 |#1|)))) (T -1093))
-((-2550 (*1 *1 *2) (-12 (-5 *2 (-654 (-1092 *3 *4 *5))) (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))) (-5 *1 (-1093 *3 *4 *5)))) (-2004 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3)))) (-5 *2 (-654 (-1092 *3 *4 *5))) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))) (-2207 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-935)) (-4 *4 (-1116)) (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))))
-(-13 (-1116) (-294 |#3| |#3|) (-10 -8 (-15 -2550 ($ (-654 (-1092 |#1| |#2| |#3|)))) (-15 -2004 ((-654 (-1092 |#1| |#2| |#3|)) $)) (-15 -2207 (|#3| $ |#3| (-935)))))
-((-1342 (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)) 88) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|))) 92) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112)) 90)))
-(((-1094 |#1| |#2|) (-10 -7 (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)))) (-13 (-315) (-148)) (-654 (-1193))) (T -1094))
-((-1342 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5)))))) (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))))) (-1342 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4)))))) (-5 *1 (-1094 *4 *5)) (-5 *3 (-654 (-966 *4))) (-14 *5 (-654 (-1193))))) (-1342 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5)))))) (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))))))
-(-10 -7 (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -1342 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112))))
-((-4201 (((-428 |#3|) |#3|) 18)))
-(((-1095 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-428 |#3|) |#3|))) (-1260 (-417 (-574))) (-13 (-372) (-148) (-734 (-417 (-574)) |#1|)) (-1260 |#2|)) (T -1095))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1095 *4 *5 *3)) (-4 *3 (-1260 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#3|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 136)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-372)))) (-4141 (($ $) NIL (|has| |#1| (-372)))) (-2475 (((-112) $) NIL (|has| |#1| (-372)))) (-4348 (((-699 |#1|) (-1284 $)) NIL) (((-699 |#1|)) 121)) (-1644 ((|#1| $) 125)) (-3210 (((-1206 (-935) (-781)) (-574)) NIL (|has| |#1| (-358)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-1496 (((-781)) 43 (|has| |#1| (-377)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-3114 (($ (-1284 |#1|) (-1284 $)) NIL) (($ (-1284 |#1|)) 46)) (-1334 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-358)))) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-2375 (((-699 |#1|) $ (-1284 $)) NIL) (((-699 |#1|) $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 113) (((-699 |#1|) (-699 $)) 108) (((-699 |#1|) (-1284 $)) NIL)) (-2882 (($ |#2|) 65) (((-3 $ "failed") (-417 |#2|)) NIL (|has| |#1| (-372)))) (-3612 (((-3 $ "failed") $) NIL)) (-3558 (((-935)) 84)) (-2835 (($) 47 (|has| |#1| (-377)))) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-1615 (($) NIL (|has| |#1| (-358)))) (-3502 (((-112) $) NIL (|has| |#1| (-358)))) (-2613 (($ $ (-781)) NIL (|has| |#1| (-358))) (($ $) NIL (|has| |#1| (-358)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1518 (((-935) $) NIL (|has| |#1| (-358))) (((-843 (-935)) $) NIL (|has| |#1| (-358)))) (-3943 (((-112) $) NIL)) (-2608 ((|#1| $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3446 ((|#2| $) 91 (|has| |#1| (-372)))) (-3507 (((-935) $) 145 (|has| |#1| (-377)))) (-2869 ((|#2| $) 62)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3792 (($) NIL (|has| |#1| (-358)) CONST)) (-2591 (($ (-935)) 135 (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-2975 (($) 127)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-1541 (((-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))) NIL (|has| |#1| (-358)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-1924 ((|#1| (-1284 $)) NIL) ((|#1|) 117)) (-1532 (((-781) $) NIL (|has| |#1| (-358))) (((-3 (-781) "failed") $ $) NIL (|has| |#1| (-358)))) (-3879 (($ $ (-781)) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-3898 (((-699 |#1|) (-1284 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2966 ((|#2|) 81)) (-3951 (($) NIL (|has| |#1| (-358)))) (-2282 (((-1284 |#1|) $ (-1284 $)) 96) (((-699 |#1|) (-1284 $) (-1284 $)) NIL) (((-1284 |#1|) $) 75) (((-699 |#1|) (-1284 $)) 92)) (-1844 (((-1284 |#1|) $) NIL) (($ (-1284 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (|has| |#1| (-358)))) (-2951 (((-872) $) 61) (($ (-574)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-372))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-372)) (|has| |#1| (-1054 (-417 (-574))))))) (-2705 (($ $) NIL (|has| |#1| (-358))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2451 ((|#2| $) 89)) (-3070 (((-781)) 83 T CONST)) (-2981 (((-112) $ $) NIL)) (-1895 (((-1284 $)) 88)) (-3750 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2141 (($) 32 T CONST)) (-2153 (($) 19 T CONST)) (-3585 (($ $ (-781)) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $) NIL (-2833 (-12 (|has| |#1| (-239)) (|has| |#1| (-372))) (|has| |#1| (-358)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1193)) NIL (-12 (|has| |#1| (-372)) (|has| |#1| (-912 (-1193))))) (($ $ (-1 |#1| |#1|) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-372)))) (-2986 (((-112) $ $) 67)) (-3099 (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) 71) (($ $ $) NIL)) (-3074 (($ $ $) 69)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-417 (-574)) $) NIL (|has| |#1| (-372))) (($ $ (-417 (-574))) NIL (|has| |#1| (-372)))))
-(((-1096 |#1| |#2| |#3|) (-734 |#1| |#2|) (-174) (-1260 |#1|) |#2|) (T -1096))
-NIL
-(-734 |#1| |#2|)
-((-4201 (((-428 |#3|) |#3|) 19)))
-(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-428 |#3|) |#3|))) (-1260 (-417 (-966 (-574)))) (-13 (-372) (-148) (-734 (-417 (-966 (-574))) |#1|)) (-1260 |#2|)) (T -1097))
-((-4201 (*1 *2 *3) (-12 (-4 *4 (-1260 (-417 (-966 (-574))))) (-4 *5 (-13 (-372) (-148) (-734 (-417 (-966 (-574))) *4))) (-5 *2 (-428 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1260 *5)))))
-(-10 -7 (-15 -4201 ((-428 |#3|) |#3|)))
-((-2864 (((-112) $ $) NIL)) (-3634 (($ $ $) 16)) (-2976 (($ $ $) 17)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1628 (($) 6)) (-1844 (((-1193) $) 20)) (-2951 (((-872) $) 13)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 9)))
-(((-1098) (-13 (-860) (-624 (-1193)) (-10 -8 (-15 -1628 ($))))) (T -1098))
-((-1628 (*1 *1) (-5 *1 (-1098))))
-(-13 (-860) (-624 (-1193)) (-10 -8 (-15 -1628 ($))))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-1099) (-141)) (T -1099))
+NIL
+(-13 (-21) (-1130))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1130) . T) ((-1118) . T))
+((-2725 (($ $) 17)) (-3629 (($ $) 25)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 55)) (-3404 (($ $) 27)) (-3739 (($ $) 12)) (-4371 (($ $) 43)) (-1846 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) 36)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-3423 (((-783)) 9)) (-4175 (($ $) 45)))
+(((-1077 |#1|) (-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| |#1|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-1078)) (T -1077))
+((-3423 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1077 *3)) (-4 *3 (-1078)))))
+(-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 -3739 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -1487 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 -1846 ((-227) |#1|)) (-15 -1846 ((-390) |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| |#1|)) (-15 -3423 ((-783))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2742 (((-576) $) 97)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-2725 (($ $) 95)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-4214 (($ $) 105)) (-1323 (((-112) $ $) 65)) (-2627 (((-576) $) 122)) (-4335 (($) 18 T CONST)) (-3629 (($ $) 94)) (-1706 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-2216 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3124 (((-112) $) 79)) (-3730 (((-112) $) 120)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 104)) (-3404 (($ $) 100)) (-3327 (((-112) $) 121)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3639 (($ $ $) 119)) (-2571 (($ $ $) 118)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-3739 (($ $) 96)) (-4371 (($ $) 98)) (-4205 (((-430 $) $) 82)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-1846 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-3423 (((-783)) 32 T CONST)) (-4175 (($ $) 99)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2130 (($ $) 123)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3047 (((-112) $ $) 116)) (-3024 (((-112) $ $) 115)) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 117)) (-3014 (((-112) $ $) 114)) (-3108 (($ $ $) 73)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-1078) (-141)) (T -1078))
+((-2130 (*1 *1 *1) (-4 *1 (-1078))) (-3404 (*1 *1 *1) (-4 *1 (-1078))) (-4175 (*1 *1 *1) (-4 *1 (-1078))) (-4371 (*1 *1 *1) (-4 *1 (-1078))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-576)))) (-3739 (*1 *1 *1) (-4 *1 (-1078))) (-2725 (*1 *1 *1) (-4 *1 (-1078))) (-3629 (*1 *1 *1) (-4 *1 (-1078))))
+(-13 (-374) (-860) (-1040) (-1056 (-576)) (-1056 (-419 (-576))) (-1020) (-626 (-905 (-390))) (-899 (-390)) (-148) (-10 -8 (-15 -3404 ($ $)) (-15 -4175 ($ $)) (-15 -4371 ($ $)) (-15 -2742 ((-576) $)) (-15 -3739 ($ $)) (-15 -2725 ($ $)) (-15 -3629 ($ $)) (-15 -2130 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-936) . T) ((-1020) . T) ((-1040) . T) ((-1056 (-419 (-576))) . T) ((-1056 (-576)) . T) ((-1069 #0#) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) |#2| $) 26)) (-1499 ((|#1| $) 10)) (-2627 (((-576) |#2| $) 116)) (-3028 (((-3 $ "failed") |#2| (-937)) 75)) (-3883 ((|#1| $) 31)) (-2723 ((|#1| |#2| $ |#1|) 40)) (-4358 (($ $) 28)) (-4077 (((-3 |#2| "failed") |#2| $) 111)) (-3730 (((-112) |#2| $) NIL)) (-3327 (((-112) |#2| $) NIL)) (-1459 (((-112) |#2| $) 27)) (-3174 ((|#1| $) 117)) (-3870 ((|#1| $) 30)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2477 ((|#2| $) 102)) (-2956 (((-874) $) 92)) (-2617 (((-112) $ $) NIL)) (-3530 ((|#1| |#2| $ |#1|) 41)) (-3082 (((-656 $) |#2|) 77)) (-2991 (((-112) $ $) 97)))
+(((-1079 |#1| |#2|) (-13 (-1086 |#1| |#2|) (-10 -8 (-15 -3870 (|#1| $)) (-15 -3883 (|#1| $)) (-15 -1499 (|#1| $)) (-15 -3174 (|#1| $)) (-15 -4358 ($ $)) (-15 -1459 ((-112) |#2| $)) (-15 -2723 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1262 |#1|)) (T -1079))
+((-2723 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-3870 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-3883 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-1499 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-4358 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1262 *2)))) (-1459 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1262 *4)))))
+(-13 (-1086 |#1| |#2|) (-10 -8 (-15 -3870 (|#1| $)) (-15 -3883 (|#1| $)) (-15 -1499 (|#1| $)) (-15 -3174 (|#1| $)) (-15 -4358 ($ $)) (-15 -1459 ((-112) |#2| $)) (-15 -2723 (|#1| |#2| $ |#1|))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3115 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $ $ $) NIL)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-2627 (((-576) $) NIL)) (-3938 (($ $ $) NIL)) (-4335 (($) NIL T CONST)) (-2955 (($ (-1195)) 10) (($ (-576)) 7)) (-1706 (((-3 (-576) "failed") $) NIL)) (-2216 (((-576) $) NIL)) (-2806 (($ $ $) NIL)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL)) (-1874 (((-112) $) NIL)) (-2183 (((-419 (-576)) $) NIL)) (-2840 (($) NIL) (($ $) NIL)) (-2818 (($ $ $) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-2834 (($ $ $ $) NIL)) (-2364 (($ $ $) NIL)) (-3730 (((-112) $) NIL)) (-2636 (($ $ $) NIL)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-4192 (((-112) $) NIL)) (-4314 (((-112) $) NIL)) (-2211 (((-3 $ "failed") $) NIL)) (-3327 (((-112) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1925 (($ $ $ $) NIL)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-3790 (($ $) NIL)) (-4114 (($ $) NIL)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1987 (($ $ $) NIL)) (-3796 (($) NIL T CONST)) (-1615 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1786 (($ $) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2314 (($ $) NIL)) (-3162 (($ $) NIL)) (-1846 (((-576) $) 16) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1195)) 9)) (-2956 (((-874) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-3423 (((-783)) NIL T CONST)) (-3925 (((-112) $ $) NIL)) (-2959 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-2650 (($) NIL)) (-2946 (((-112) $ $) NIL)) (-2069 (($ $ $ $) NIL)) (-2130 (($ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3096 (($ $) 22) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL)))
+(((-1080) (-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2955 ($ (-1195))) (-15 -2955 ($ (-576)))))) (T -1080))
+((-2955 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1080)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1080)))))
+(-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2955 ($ (-1195))) (-15 -2955 ($ (-576)))))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-3526 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-2340 (($) 9)) (-3140 (((-52) $ (-1195) (-52)) NIL)) (-3814 (($ $) 32)) (-1783 (($ $) 30)) (-1872 (($ $) 29)) (-2410 (($ $) 31)) (-3310 (($ $) 35)) (-2256 (($ $) 36)) (-2463 (($ $) 28)) (-3606 (($ $) 33)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) 27 (|has| $ (-6 -4461)))) (-2172 (((-3 (-52) "failed") (-1195) $) 43)) (-4335 (($) NIL T CONST)) (-1960 (($) 7)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-3710 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) 53 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3316 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-1636 (((-3 (-1177) "failed") $ (-1177) (-576)) 72)) (-2481 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-2405 (((-52) $ (-1195)) NIL)) (-1873 (((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2186 (((-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) 38 (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-1475 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-1773 (((-656 (-1195)) $) NIL)) (-2499 (((-112) (-1195) $) NIL)) (-2138 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL)) (-2504 (($ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) 46)) (-2961 (((-656 (-1195)) $) NIL)) (-4254 (((-112) (-1195) $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-3535 (((-390) $ (-1195)) 52)) (-1905 (((-656 (-1177)) $ (-1177)) 74)) (-2930 (((-52) $) NIL (|has| (-1195) (-862)))) (-2922 (((-3 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) "failed") (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL)) (-4211 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-304 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL (-12 (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-319 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118))))) (-4274 (((-656 (-52)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 (((-52) $ (-1195)) NIL) (((-52) $ (-1195) (-52)) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-2415 (($ $ (-1195)) 54)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1118)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) 40)) (-4136 (($ $ $) 41)) (-2956 (((-874) $) NIL (-2838 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-625 (-874)))))) (-3593 (($ $ (-1195) (-390)) 50)) (-4194 (($ $ (-1195) (-390)) 51)) (-2617 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 (-1195)) (|:| -1918 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-52) (-1118)) (|has| (-2 (|:| -3672 (-1195)) (|:| -1918 (-52))) (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1081) (-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -4136 ($ $ $)) (-15 -1960 ($)) (-15 -2463 ($ $)) (-15 -1872 ($ $)) (-15 -1783 ($ $)) (-15 -2410 ($ $)) (-15 -3606 ($ $)) (-15 -3814 ($ $)) (-15 -3310 ($ $)) (-15 -2256 ($ $)) (-15 -3593 ($ $ (-1195) (-390))) (-15 -4194 ($ $ (-1195) (-390))) (-15 -3535 ((-390) $ (-1195))) (-15 -1905 ((-656 (-1177)) $ (-1177))) (-15 -2415 ($ $ (-1195))) (-15 -2340 ($)) (-15 -1636 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461)))) (T -1081))
+((-4136 (*1 *1 *1 *1) (-5 *1 (-1081))) (-1960 (*1 *1) (-5 *1 (-1081))) (-2463 (*1 *1 *1) (-5 *1 (-1081))) (-1872 (*1 *1 *1) (-5 *1 (-1081))) (-1783 (*1 *1 *1) (-5 *1 (-1081))) (-2410 (*1 *1 *1) (-5 *1 (-1081))) (-3606 (*1 *1 *1) (-5 *1 (-1081))) (-3814 (*1 *1 *1) (-5 *1 (-1081))) (-3310 (*1 *1 *1) (-5 *1 (-1081))) (-2256 (*1 *1 *1) (-5 *1 (-1081))) (-3593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))) (-4194 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))) (-3535 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1081)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1081)) (-5 *3 (-1177)))) (-2415 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081)))) (-2340 (*1 *1) (-5 *1 (-1081))) (-1636 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1081)))))
+(-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -4136 ($ $ $)) (-15 -1960 ($)) (-15 -2463 ($ $)) (-15 -1872 ($ $)) (-15 -1783 ($ $)) (-15 -2410 ($ $)) (-15 -3606 ($ $)) (-15 -3814 ($ $)) (-15 -3310 ($ $)) (-15 -2256 ($ $)) (-15 -3593 ($ $ (-1195) (-390))) (-15 -4194 ($ $ (-1195) (-390))) (-15 -3535 ((-390) $ (-1195))) (-15 -1905 ((-656 (-1177)) $ (-1177))) (-15 -2415 ($ $ (-1195))) (-15 -2340 ($)) (-15 -1636 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461)))
+((-1980 (($ $) 46)) (-3874 (((-112) $ $) 82)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-968 (-419 (-576)))) 251) (((-3 $ "failed") (-968 (-576))) 250) (((-3 $ "failed") (-968 |#2|)) 253)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-968 (-419 (-576)))) 239) (($ (-968 (-576))) 235) (($ (-968 |#2|)) 255)) (-1404 (($ $) NIL) (($ $ |#4|) 44)) (-2540 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-2938 (((-112) $) 60)) (-3170 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 125)) (-2707 (($ $) 160)) (-3283 (($ $) 156)) (-4322 (($ $) 155)) (-4286 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3054 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3670 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2977 ((|#4| $) 32)) (-4218 (($ $ $) 128)) (-4294 (((-112) $) 59)) (-2890 (((-783) $) 35)) (-3585 (($ $) 174)) (-1603 (($ $) 171)) (-3616 (((-656 $) $) 72)) (-2347 (($ $) 62)) (-2563 (($ $) 167)) (-1983 (((-656 $) $) 69)) (-3477 (($ $) 64)) (-1380 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4191 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2318 (-783))) $ $) 130)) (-3212 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $) 126) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $ |#4|) 127)) (-2247 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $) 121) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $ |#4|) 123)) (-2749 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3858 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3074 (((-656 $) $) 54)) (-3103 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-1992 (($ $ $) 116)) (-3796 (($ $) 37)) (-3320 (((-112) $ $) 80)) (-3661 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3748 (($ $ $) 112)) (-2788 (($ $) 41)) (-2892 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-1674 (($ $ |#2|) NIL) (($ $ $) 153)) (-3962 (($ $ |#2|) 148) (($ $ $) 151)) (-3008 (($ $) 49)) (-1779 (($ $) 55)) (-1846 (((-905 (-390)) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (($ (-968 (-419 (-576)))) 241) (($ (-968 (-576))) 237) (($ (-968 |#2|)) 252) (((-1177) $) 279) (((-968 |#2|) $) 184)) (-2956 (((-874) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-968 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2151 (((-3 (-112) "failed") $ $) 79)))
+(((-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 ((-968 |#2|) |#1|)) (-15 -1846 ((-968 |#2|) |#1|)) (-15 -1846 ((-1177) |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -2892 (|#2| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3283 (|#1| |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1846 (|#1| (-968 |#2|))) (-15 -2216 (|#1| (-968 |#2|))) (-15 -1706 ((-3 |#1| "failed") (-968 |#2|))) (-15 -1846 (|#1| (-968 (-576)))) (-15 -2216 (|#1| (-968 (-576)))) (-15 -1706 ((-3 |#1| "failed") (-968 (-576)))) (-15 -1846 (|#1| (-968 (-419 (-576))))) (-15 -2216 (|#1| (-968 (-419 (-576))))) (-15 -1706 ((-3 |#1| "failed") (-968 (-419 (-576))))) (-15 -1992 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -4191 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2318 (-783))) |#1| |#1|)) (-15 -4218 (|#1| |#1| |#1|)) (-15 -3170 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2247 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -2247 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1| |#4|)) (-15 -2749 (|#1| |#1| |#1| |#4|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2749 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1| |#4|)) (-15 -4286 (|#1| |#1| |#1| |#4|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -4286 (|#1| |#1| |#1|)) (-15 -3670 ((-112) |#1| (-656 |#1|))) (-15 -3670 ((-112) |#1| |#1|)) (-15 -3103 ((-112) |#1| (-656 |#1|))) (-15 -3103 ((-112) |#1| |#1|)) (-15 -3661 ((-112) |#1| (-656 |#1|))) (-15 -3661 ((-112) |#1| |#1|)) (-15 -2540 ((-112) |#1| (-656 |#1|))) (-15 -2540 ((-112) |#1| |#1|)) (-15 -3874 ((-112) |#1| |#1|)) (-15 -3320 ((-112) |#1| |#1|)) (-15 -2151 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3616 ((-656 |#1|) |#1|)) (-15 -1983 ((-656 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2938 ((-112) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -1404 (|#1| |#1| |#4|)) (-15 -1380 (|#1| |#1| |#4|)) (-15 -1779 (|#1| |#1|)) (-15 -3074 ((-656 |#1|) |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2788 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2890 ((-783) |#1|)) (-15 -2977 (|#4| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -2956 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -1404 (|#1| |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-1083 |#2| |#3| |#4|) (-1067) (-805) (-862)) (T -1082))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2892 (|#1| |#1| |#1|)) (-15 -2892 (|#1| (-656 |#1|))) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 ((-968 |#2|) |#1|)) (-15 -1846 ((-968 |#2|) |#1|)) (-15 -1846 ((-1177) |#1|)) (-15 -3585 (|#1| |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -2892 (|#2| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3283 (|#1| |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1846 (|#1| (-968 |#2|))) (-15 -2216 (|#1| (-968 |#2|))) (-15 -1706 ((-3 |#1| "failed") (-968 |#2|))) (-15 -1846 (|#1| (-968 (-576)))) (-15 -2216 (|#1| (-968 (-576)))) (-15 -1706 ((-3 |#1| "failed") (-968 (-576)))) (-15 -1846 (|#1| (-968 (-419 (-576))))) (-15 -2216 (|#1| (-968 (-419 (-576))))) (-15 -1706 ((-3 |#1| "failed") (-968 (-419 (-576))))) (-15 -1992 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -4191 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2318 (-783))) |#1| |#1|)) (-15 -4218 (|#1| |#1| |#1|)) (-15 -3170 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -3212 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2247 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -3983 |#1|)) |#1| |#1| |#4|)) (-15 -2247 ((-2 (|:| -1868 |#1|) (|:| |gap| (-783)) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1| |#4|)) (-15 -2749 (|#1| |#1| |#1| |#4|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2749 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1| |#4|)) (-15 -4286 (|#1| |#1| |#1| |#4|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -4286 (|#1| |#1| |#1|)) (-15 -3670 ((-112) |#1| (-656 |#1|))) (-15 -3670 ((-112) |#1| |#1|)) (-15 -3103 ((-112) |#1| (-656 |#1|))) (-15 -3103 ((-112) |#1| |#1|)) (-15 -3661 ((-112) |#1| (-656 |#1|))) (-15 -3661 ((-112) |#1| |#1|)) (-15 -2540 ((-112) |#1| (-656 |#1|))) (-15 -2540 ((-112) |#1| |#1|)) (-15 -3874 ((-112) |#1| |#1|)) (-15 -3320 ((-112) |#1| |#1|)) (-15 -2151 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3616 ((-656 |#1|) |#1|)) (-15 -1983 ((-656 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2938 ((-112) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -1404 (|#1| |#1| |#4|)) (-15 -1380 (|#1| |#1| |#4|)) (-15 -1779 (|#1| |#1|)) (-15 -3074 ((-656 |#1|) |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -2788 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2890 ((-783) |#1|)) (-15 -2977 (|#4| |#1|)) (-15 -1846 ((-548) |#1|)) (-15 -1846 ((-905 (-576)) |#1|)) (-15 -1846 ((-905 (-390)) |#1|)) (-15 -2956 (|#1| |#4|)) (-15 -1706 ((-3 |#4| "failed") |#1|)) (-15 -2216 (|#4| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -1404 (|#1| |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 |#3|) $) 113)) (-4174 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4334 (($ $) 91 (|has| |#1| (-568)))) (-1428 (((-112) $) 93 (|has| |#1| (-568)))) (-3306 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1980 (($ $) 276)) (-3874 (((-112) $ $) 262)) (-3798 (((-3 $ "failed") $ $) 20)) (-2628 (($ $ $) 221 (|has| |#1| (-568)))) (-2781 (((-656 $) $ $) 216 (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2879 (($ $) 101 (|has| |#1| (-464)))) (-1870 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-968 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (((-3 $ "failed") (-968 (-576))) 233 (-2838 (-12 (-2085 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (((-3 $ "failed") (-968 |#1|)) 230 (-2838 (-12 (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-2085 (|has| |#1| (-557))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-2085 (|has| |#1| (-1010 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-2216 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) ((|#3| $) 142) (($ (-968 (-419 (-576)))) 235 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-968 (-576))) 232 (-2838 (-12 (-2085 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-968 |#1|)) 229 (-2838 (-12 (-2085 (|has| |#1| (-38 (-419 (-576))))) (-2085 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-2085 (|has| |#1| (-557))) (-2085 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-2085 (|has| |#1| (-1010 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-2799 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-568)))) (-1404 (($ $) 159) (($ $ |#3|) 271)) (-3928 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-2540 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-4077 (((-3 $ "failed") $) 37)) (-2938 (((-112) $) 269)) (-3170 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 241)) (-2707 (($ $) 210 (|has| |#1| (-464)))) (-4290 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1391 (((-656 $) $) 112)) (-3124 (((-112) $) 99 (|has| |#1| (-925)))) (-3283 (($ $) 226 (|has| |#1| (-568)))) (-4322 (($ $) 227 (|has| |#1| (-568)))) (-4286 (($ $ $) 253) (($ $ $ |#3|) 251)) (-3054 (($ $ $) 252) (($ $ $ |#3|) 250)) (-3130 (($ $ |#1| |#2| $) 177)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-4192 (((-112) $) 35)) (-2747 (((-783) $) 174)) (-3670 (((-112) $ $) 255) (((-112) $ (-656 $)) 254)) (-2047 (($ $ $ $ $) 212 (|has| |#1| (-568)))) (-2977 ((|#3| $) 280)) (-4341 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-2397 (((-656 $) $) 129)) (-1614 (((-112) $) 157)) (-4330 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4218 (($ $ $) 240)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#3|) 123)) (-4294 (((-112) $) 270)) (-1859 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2890 (((-783) $) 279)) (-2819 (($ (-1 |#2| |#2|) $) 176)) (-1787 (($ (-1 |#1| |#1|) $) 156)) (-1712 (((-3 |#3| "failed") $) 126)) (-3585 (($ $) 207 (|has| |#1| (-464)))) (-1603 (($ $) 208 (|has| |#1| (-464)))) (-3616 (((-656 $) $) 265)) (-2347 (($ $) 268)) (-2563 (($ $) 209 (|has| |#1| (-464)))) (-1983 (((-656 $) $) 266)) (-3477 (($ $) 267)) (-1368 (($ $) 154)) (-1380 ((|#1| $) 153) (($ $ |#3|) 272)) (-2850 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-4191 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2318 (-783))) $ $) 239)) (-3212 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $) 243) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $ |#3|) 242)) (-2247 (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $) 245) (((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $ |#3|) 244)) (-2749 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3858 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2148 (((-1177) $) 10)) (-4419 (($ $ $) 215 (|has| |#1| (-568)))) (-3074 (((-656 $) $) 274)) (-1864 (((-3 (-656 $) "failed") $) 117)) (-4139 (((-3 (-656 $) "failed") $) 118)) (-2302 (((-3 (-2 (|:| |var| |#3|) (|:| -2300 (-783))) "failed") $) 116)) (-3103 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-1992 (($ $ $) 237)) (-3796 (($ $) 278)) (-3320 (((-112) $ $) 263)) (-3661 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3748 (($ $ $) 238)) (-2788 (($ $) 277)) (-3945 (((-1138) $) 11)) (-4113 (((-2 (|:| -2892 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-568)))) (-1374 (((-2 (|:| -2892 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-568)))) (-1345 (((-112) $) 171)) (-1357 ((|#1| $) 172)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-2892 ((|#1| |#1| $) 211 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 102 (|has| |#1| (-925)))) (-3493 (((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2858 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1674 (($ $ |#1|) 224 (|has| |#1| (-568))) (($ $ $) 222 (|has| |#1| (-568)))) (-3962 (($ $ |#1|) 225 (|has| |#1| (-568))) (($ $ $) 223 (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-3206 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2782 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-3008 (($ $) 275)) (-1779 (($ $) 273)) (-1846 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-968 (-419 (-576)))) 234 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-968 (-576))) 231 (-2838 (-12 (-2085 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-968 |#1|)) 228 (|has| |#3| (-626 (-1195)))) (((-1177) $) 206 (-12 (|has| |#1| (-1056 (-576))) (|has| |#3| (-626 (-1195))))) (((-968 |#1|) $) 205 (|has| |#3| (-626 (-1195))))) (-1885 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2096 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-968 |#1|) $) 204 (|has| |#3| (-626 (-1195)))) (($ (-419 (-576))) 81 (-2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) 173)) (-4309 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-1817 (((-3 $ "failed") $) 82 (-2838 (-2096 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 32 T CONST)) (-1412 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2151 (((-3 (-112) "failed") $ $) 264)) (-2155 (($) 34 T CONST)) (-4089 (($ $ $ $ (-783)) 213 (|has| |#1| (-568)))) (-3301 (($ $ $ (-783)) 214 (|has| |#1| (-568)))) (-3590 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-1083 |#1| |#2| |#3|) (-141) (-1067) (-805) (-862)) (T -1083))
+((-2977 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2788 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3074 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-1779 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1380 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1404 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2347 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1983 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-2151 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3320 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3874 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2540 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3661 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3103 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3103 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3670 (*1 *2 *1 *1) (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3670 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4286 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3054 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4286 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3054 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3858 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2749 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3858 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2247 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -3983 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-2247 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -3983 *1))) (-4 *1 (-1083 *4 *5 *3)))) (-3212 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-3212 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1083 *4 *5 *3)))) (-3170 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4218 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2318 (-783)))) (-4 *1 (-1083 *3 *4 *5)))) (-3748 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1992 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1706 (*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))) (-1706 (*1 *1 *2) (|partial| -2838 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2216 (*1 *1 *2) (-2838 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1846 (*1 *1 *2) (-2838 (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1706 (*1 *1 *2) (|partial| -2838 (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-2085 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-557))) (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2216 (*1 *1 *2) (-2838 (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-2085 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-557))) (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-968 *3)) (-12 (-2085 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862)))) (-4322 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3283 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1674 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3962 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1674 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2628 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3493 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2892 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-1374 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2892 *1) (|:| |coef1| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-4113 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2892 *1) (|:| |coef2| *1))) (-4 *1 (-1083 *3 *4 *5)))) (-2799 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2781 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))) (-4419 (*1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3301 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-4089 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-2047 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2892 (*1 *2 *2 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2707 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2563 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1603 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3585 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))))
+(-13 (-965 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2977 (|t#3| $)) (-15 -2890 ((-783) $)) (-15 -3796 ($ $)) (-15 -2788 ($ $)) (-15 -1980 ($ $)) (-15 -3008 ($ $)) (-15 -3074 ((-656 $) $)) (-15 -1779 ($ $)) (-15 -1380 ($ $ |t#3|)) (-15 -1404 ($ $ |t#3|)) (-15 -4294 ((-112) $)) (-15 -2938 ((-112) $)) (-15 -2347 ($ $)) (-15 -3477 ($ $)) (-15 -1983 ((-656 $) $)) (-15 -3616 ((-656 $) $)) (-15 -2151 ((-3 (-112) "failed") $ $)) (-15 -3320 ((-112) $ $)) (-15 -3874 ((-112) $ $)) (-15 -2540 ((-112) $ $)) (-15 -2540 ((-112) $ (-656 $))) (-15 -3661 ((-112) $ $)) (-15 -3661 ((-112) $ (-656 $))) (-15 -3103 ((-112) $ $)) (-15 -3103 ((-112) $ (-656 $))) (-15 -3670 ((-112) $ $)) (-15 -3670 ((-112) $ (-656 $))) (-15 -4286 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -4286 ($ $ $ |t#3|)) (-15 -3054 ($ $ $ |t#3|)) (-15 -2749 ($ $ $)) (-15 -3858 ($ $ $)) (-15 -2749 ($ $ $ |t#3|)) (-15 -3858 ($ $ $ |t#3|)) (-15 -2247 ((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $)) (-15 -2247 ((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -3983 $)) $ $ |t#3|)) (-15 -3212 ((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -3212 ((-2 (|:| -1868 $) (|:| |gap| (-783)) (|:| -1758 $) (|:| -3983 $)) $ $ |t#3|)) (-15 -3170 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -4218 ($ $ $)) (-15 -4191 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2318 (-783))) $ $)) (-15 -3748 ($ $ $)) (-15 -1992 ($ $ $)) (IF (|has| |t#3| (-626 (-1195))) (PROGN (-6 (-625 (-968 |t#1|))) (-6 (-626 (-968 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1706 ((-3 $ "failed") (-968 (-419 (-576))))) (-15 -2216 ($ (-968 (-419 (-576))))) (-15 -1846 ($ (-968 (-419 (-576))))) (-15 -1706 ((-3 $ "failed") (-968 (-576)))) (-15 -2216 ($ (-968 (-576)))) (-15 -1846 ($ (-968 (-576)))) (IF (|has| |t#1| (-1010 (-576))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-968 |t#1|))) (-15 -2216 ($ (-968 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-968 (-576)))) (-15 -2216 ($ (-968 (-576)))) (-15 -1846 ($ (-968 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-968 |t#1|))) (-15 -2216 ($ (-968 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1706 ((-3 $ "failed") (-968 |t#1|))) (-15 -2216 ($ (-968 |t#1|)))))) (-15 -1846 ($ (-968 |t#1|))) (IF (|has| |t#1| (-1056 (-576))) (-6 (-626 (-1177))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4322 ($ $)) (-15 -3283 ($ $)) (-15 -3962 ($ $ |t#1|)) (-15 -1674 ($ $ |t#1|)) (-15 -3962 ($ $ $)) (-15 -1674 ($ $ $)) (-15 -2628 ($ $ $)) (-15 -3493 ((-2 (|:| -2892 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1374 ((-2 (|:| -2892 $) (|:| |coef1| $)) $ $)) (-15 -4113 ((-2 (|:| -2892 $) (|:| |coef2| $)) $ $)) (-15 -2799 ($ $ $)) (-15 -2781 ((-656 $) $ $)) (-15 -4419 ($ $ $)) (-15 -3301 ($ $ $ (-783))) (-15 -4089 ($ $ $ $ (-783))) (-15 -2047 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -2892 (|t#1| |t#1| $)) (-15 -2707 ($ $)) (-15 -2563 ($ $)) (-15 -1603 ($ $)) (-15 -3585 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-625 (-968 |#1|)) |has| |#3| (-626 (-1195))) ((-174) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-626 (-968 |#1|)) |has| |#3| (-626 (-1195))) ((-626 (-1177)) -12 (|has| |#1| (-1056 (-576))) (|has| |#3| (-626 (-1195)))) ((-300) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-925)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-914 |#3|) . T) ((-916 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-965 |#1| |#2| |#3|) . T) ((-925) |has| |#1| (-925)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 |#1|) . T) ((-1056 |#3|) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T) ((-1240) |has| |#1| (-925)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-1510 (((-656 (-1153)) $) 18)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-1153) $) 20)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1084) (-13 (-1101) (-10 -8 (-15 -1510 ((-656 (-1153)) $)) (-15 -2053 ((-1153) $))))) (T -1084))
+((-1510 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1084)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1084)))))
+(-13 (-1101) (-10 -8 (-15 -1510 ((-656 (-1153)) $)) (-15 -2053 ((-1153) $))))
+((-3549 (((-112) |#3| $) 15)) (-3028 (((-3 $ "failed") |#3| (-937)) 29)) (-4077 (((-3 |#3| "failed") |#3| $) 45)) (-3730 (((-112) |#3| $) 19)) (-3327 (((-112) |#3| $) 17)))
+(((-1085 |#1| |#2| |#3|) (-10 -8 (-15 -3028 ((-3 |#1| "failed") |#3| (-937))) (-15 -4077 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3730 ((-112) |#3| |#1|)) (-15 -3327 ((-112) |#3| |#1|)) (-15 -3549 ((-112) |#3| |#1|))) (-1086 |#2| |#3|) (-13 (-860) (-374)) (-1262 |#2|)) (T -1085))
+NIL
+(-10 -8 (-15 -3028 ((-3 |#1| "failed") |#3| (-937))) (-15 -4077 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3730 ((-112) |#3| |#1|)) (-15 -3327 ((-112) |#3| |#1|)) (-15 -3549 ((-112) |#3| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) |#2| $) 22)) (-2627 (((-576) |#2| $) 23)) (-3028 (((-3 $ "failed") |#2| (-937)) 16)) (-2723 ((|#1| |#2| $ |#1|) 14)) (-4077 (((-3 |#2| "failed") |#2| $) 19)) (-3730 (((-112) |#2| $) 20)) (-3327 (((-112) |#2| $) 21)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2477 ((|#2| $) 18)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-3530 ((|#1| |#2| $ |#1|) 15)) (-3082 (((-656 $) |#2|) 17)) (-2991 (((-112) $ $) 6)))
+(((-1086 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1262 |t#1|)) (T -1086))
+((-2627 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-576)))) (-3549 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-3327 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-3730 (*1 *2 *3 *1) (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-4077 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1086 *4 *3)))) (-3028 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1086 *4 *2)) (-4 *2 (-1262 *4)))) (-3530 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2)))) (-2723 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2)))))
+(-13 (-1118) (-10 -8 (-15 -2627 ((-576) |t#2| $)) (-15 -3549 ((-112) |t#2| $)) (-15 -3327 ((-112) |t#2| $)) (-15 -3730 ((-112) |t#2| $)) (-15 -4077 ((-3 |t#2| "failed") |t#2| $)) (-15 -2477 (|t#2| $)) (-15 -3082 ((-656 $) |t#2|)) (-15 -3028 ((-3 $ "failed") |t#2| (-937))) (-15 -3530 (|t#1| |t#2| $ |t#1|)) (-15 -2723 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2309 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783)) 114)) (-2532 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783)) 63)) (-3649 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783)) 99)) (-3227 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4131 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-4090 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-1846 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) 92)) (-3393 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-112)) 62)) (-2134 (((-783) (-656 |#4|) (-656 |#5|)) 21)))
+(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2134 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3393 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-112))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2309 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783))) (-15 -1846 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -3649 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1087))
+((-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9)))) (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1087 *4 *5 *6 *7 *8)))) (-2309 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4071 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4071 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) (-4 *11 (-1089 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1087 *7 *8 *9 *10 *11)))) (-4090 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-4090 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-4131 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-4131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1089 *7 *8 *9 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-2532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-3393 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2134 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3393 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-112))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2309 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783))) (-15 -1846 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -3649 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783))))
+((-3062 (((-112) |#5| $) 26)) (-3278 (((-112) |#5| $) 29)) (-2445 (((-112) |#5| $) 18) (((-112) $) 52)) (-3318 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-3167 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-2526 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-4300 (((-112) |#5| $) 32)))
+(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3167 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3167 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3167 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3167 ((-656 |#1|) |#5| |#1|)) (-15 -2526 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2526 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2526 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2526 ((-656 |#1|) |#5| |#1|)) (-15 -3318 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3318 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3318 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3318 ((-656 |#1|) |#5| |#1|)) (-15 -3278 ((-112) |#5| |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -4300 ((-112) |#5| |#1|)) (-15 -3062 ((-112) |#5| |#1|)) (-15 -2445 ((-112) |#5| |#1|)) (-15 -3167 (|#1| |#1| |#5|))) (-1089 |#2| |#3| |#4| |#5|) (-464) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -1088))
+NIL
+(-10 -8 (-15 -3167 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3167 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3167 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3167 ((-656 |#1|) |#5| |#1|)) (-15 -2526 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2526 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2526 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2526 ((-656 |#1|) |#5| |#1|)) (-15 -3318 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3318 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3318 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3318 ((-656 |#1|) |#5| |#1|)) (-15 -3278 ((-112) |#5| |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -4300 ((-112) |#5| |#1|)) (-15 -3062 ((-112) |#5| |#1|)) (-15 -2445 ((-112) |#5| |#1|)) (-15 -3167 (|#1| |#1| |#5|)))
+((-2869 (((-112) $ $) 7)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) 86)) (-3809 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) 102) (((-112) $) 98)) (-3276 ((|#4| |#4| $) 93)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 127)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-2940 (((-3 $ "failed") $) 83)) (-3164 ((|#4| |#4| $) 90)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2705 ((|#4| |#4| $) 88)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) 106)) (-3062 (((-112) |#4| $) 137)) (-3278 (((-112) |#4| $) 134)) (-2445 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) 105) (((-112) $) 104)) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 128)) (-3338 (((-3 |#4| "failed") $) 84)) (-2196 (((-656 $) |#4| $) 130)) (-3036 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3318 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3187 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3200 (((-656 |#4|) $) 108)) (-3103 (((-112) |#4| $) 100) (((-112) $) 96)) (-1992 ((|#4| |#4| $) 91)) (-3320 (((-112) $ $) 111)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-3945 (((-1138) $) 11)) (-2930 (((-3 |#4| "failed") $) 85)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2452 (((-3 $ "failed") $ |#4|) 79)) (-3167 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-2782 (((-783) $) 107)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-4104 (($ $) 89)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3364 (((-783) $) 77 (|has| |#3| (-379)))) (-2617 (((-112) $ $) 9)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2526 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) 82)) (-4300 (((-112) |#4| $) 136)) (-3684 (((-112) |#3| $) 81)) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-1089 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1089))
+((-2445 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3062 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-4300 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3278 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3036 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-2196 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3302 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-4419 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-2879 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *1)))) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3318 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3318 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-2526 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-2526 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-3187 (*1 *1 *2 *1) (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3187 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)))) (-3167 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)))) (-3167 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)))) (-3167 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *7)))) (-3167 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1089 *5 *6 *7 *8)))))
+(-13 (-1229 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2445 ((-112) |t#4| $)) (-15 -3062 ((-112) |t#4| $)) (-15 -4300 ((-112) |t#4| $)) (-15 -2445 ((-112) $)) (-15 -3278 ((-112) |t#4| $)) (-15 -3036 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -3596 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |t#4| $)) (-15 -3596 ((-112) |t#4| $)) (-15 -2196 ((-656 $) |t#4| $)) (-15 -3302 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -4419 ((-656 (-2 (|:| |val| |t#4|) (|:| -4071 $))) |t#4| |t#4| $)) (-15 -2879 ((-656 (-2 (|:| |val| |t#4|) (|:| -4071 $))) |t#4| $)) (-15 -3318 ((-656 $) |t#4| $)) (-15 -3318 ((-656 $) (-656 |t#4|) $)) (-15 -3318 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3318 ((-656 $) |t#4| (-656 $))) (-15 -2526 ((-656 $) |t#4| $)) (-15 -2526 ((-656 $) |t#4| (-656 $))) (-15 -2526 ((-656 $) (-656 |t#4|) $)) (-15 -2526 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3187 ($ |t#4| $)) (-15 -3187 ($ (-656 |t#4|) $)) (-15 -3167 ((-656 $) |t#4| $)) (-15 -3167 ((-656 $) |t#4| (-656 $))) (-15 -3167 ((-656 $) (-656 |t#4|) $)) (-15 -3167 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3809 ((-656 $) (-656 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T))
+((-3284 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|) 86)) (-1940 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|) 127)) (-1740 (((-656 |#5|) |#4| |#5|) 74)) (-3223 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1582 (((-1291)) 36)) (-2510 (((-1291)) 25)) (-1841 (((-1291) (-1177) (-1177) (-1177)) 32)) (-2689 (((-1291) (-1177) (-1177) (-1177)) 21)) (-1857 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|) 107)) (-1815 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3599 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2689 ((-1291) (-1177) (-1177) (-1177))) (-15 -2510 ((-1291))) (-15 -1841 ((-1291) (-1177) (-1177) (-1177))) (-15 -1582 ((-1291))) (-15 -1857 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -1815 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1815 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112))) (-15 -3599 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -1940 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3223 ((-112) |#4| |#5|)) (-15 -3223 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1740 ((-656 |#5|) |#4| |#5|)) (-15 -3284 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1090))
+((-3284 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1740 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1940 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3599 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9)))) (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4071 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9)))) (-1815 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-1857 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1582 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-1841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-2510 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-2689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2689 ((-1291) (-1177) (-1177) (-1177))) (-15 -2510 ((-1291))) (-15 -1841 ((-1291) (-1177) (-1177) (-1177))) (-15 -1582 ((-1291))) (-15 -1857 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -1815 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1815 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112))) (-15 -3599 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -1940 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3223 ((-112) |#4| |#5|)) (-15 -3223 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1740 ((-656 |#5|) |#4| |#5|)) (-15 -3284 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|)))
+((-2869 (((-112) $ $) NIL)) (-2355 (((-1235) $) 13)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3995 (((-1153) $) 10)) (-2956 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1091) (-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))) (T -1091))
+((-3995 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1091)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1091)))))
+(-13 (-1101) (-10 -8 (-15 -3995 ((-1153) $)) (-15 -2355 ((-1235) $))))
+((-4102 (((-112) $ $) 7)))
+(((-1092) (-13 (-1236) (-10 -8 (-15 -4102 ((-112) $ $))))) (T -1092))
+((-4102 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1092)))))
+(-13 (-1236) (-10 -8 (-15 -4102 ((-112) $ $))))
+((-2869 (((-112) $ $) NIL)) (-2041 (((-1195) $) 8)) (-2148 (((-1177) $) 17)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 11)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 14)))
+(((-1093 |#1|) (-13 (-1118) (-10 -8 (-15 -2041 ((-1195) $)))) (-1195)) (T -1093))
+((-2041 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1093 *3)) (-14 *3 *2))))
+(-13 (-1118) (-10 -8 (-15 -2041 ((-1195) $))))
+((-2869 (((-112) $ $) NIL)) (-2590 (($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|))) 34)) (-3821 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1195))) 21)) (-1818 ((|#3| $) 13)) (-1706 (((-3 (-304 |#3|) "failed") $) 60)) (-2216 (((-304 |#3|) $) NIL)) (-2794 (((-656 (-1195)) $) 16)) (-2131 (((-905 |#1|) $) 11)) (-1806 ((|#3| $) 12)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2209 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-937)) 41)) (-2956 (((-874) $) 89) (($ (-304 |#3|)) 22)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 38)))
+(((-1094 |#1| |#2| |#3|) (-13 (-1118) (-296 |#3| |#3|) (-1056 (-304 |#3|)) (-10 -8 (-15 -3821 ($ |#3| |#3|)) (-15 -3821 ($ |#3| |#3| (-656 (-1195)))) (-15 -2590 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -2131 ((-905 |#1|) $)) (-15 -1806 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2209 (|#3| $ |#3| (-937))) (-15 -2794 ((-656 (-1195)) $)))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1094))
+((-3821 (*1 *1 *2 *2) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-3821 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2590 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *6)))) (-2131 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1094 *3 *4 *2)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))))) (-2209 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2794 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1195))) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(-13 (-1118) (-296 |#3| |#3|) (-1056 (-304 |#3|)) (-10 -8 (-15 -3821 ($ |#3| |#3|)) (-15 -3821 ($ |#3| |#3| (-656 (-1195)))) (-15 -2590 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -2131 ((-905 |#1|) $)) (-15 -1806 (|#3| $)) (-15 -1818 (|#3| $)) (-15 -2209 (|#3| $ |#3| (-937))) (-15 -2794 ((-656 (-1195)) $))))
+((-2869 (((-112) $ $) NIL)) (-2555 (($ (-656 (-1094 |#1| |#2| |#3|))) 14)) (-2006 (((-656 (-1094 |#1| |#2| |#3|)) $) 21)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2209 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-937)) 27)) (-2956 (((-874) $) 17)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 20)))
+(((-1095 |#1| |#2| |#3|) (-13 (-1118) (-296 |#3| |#3|) (-10 -8 (-15 -2555 ($ (-656 (-1094 |#1| |#2| |#3|)))) (-15 -2006 ((-656 (-1094 |#1| |#2| |#3|)) $)) (-15 -2209 (|#3| $ |#3| (-937))))) (-1118) (-13 (-1067) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1095))
+((-2555 (*1 *1 *2) (-12 (-5 *2 (-656 (-1094 *3 *4 *5))) (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *5)))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1094 *3 *4 *5))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-2209 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1118)) (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))))
+(-13 (-1118) (-296 |#3| |#3|) (-10 -8 (-15 -2555 ($ (-656 (-1094 |#1| |#2| |#3|)))) (-15 -2006 ((-656 (-1094 |#1| |#2| |#3|)) $)) (-15 -2209 (|#3| $ |#3| (-937)))))
+((-1709 (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|))) 92) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112)) 90)))
+(((-1096 |#1| |#2|) (-10 -7 (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1195))) (T -1096))
+((-1709 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5)))))) (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))))) (-1709 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4)))))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-656 (-968 *4))) (-14 *5 (-656 (-1195))))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5)))))) (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))))))
+(-10 -7 (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -1709 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112))))
+((-4205 (((-430 |#3|) |#3|) 18)))
+(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -4205 ((-430 |#3|) |#3|))) (-1262 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1262 |#2|)) (T -1097))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1262 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#3|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 136)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-4334 (($ $) NIL (|has| |#1| (-374)))) (-1428 (((-112) $) NIL (|has| |#1| (-374)))) (-2674 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) 121)) (-1646 ((|#1| $) 125)) (-4171 (((-1208 (-937) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1499 (((-783)) 43 (|has| |#1| (-379)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-2524 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) 46)) (-1642 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1796 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 113) (((-701 |#1|) (-701 $)) 108) (((-701 |#1|) (-1286 $)) NIL)) (-2887 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-4077 (((-3 $ "failed") $) NIL)) (-3563 (((-937)) 84)) (-2840 (($) 47 (|has| |#1| (-379)))) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3243 (($) NIL (|has| |#1| (-360)))) (-4208 (((-112) $) NIL (|has| |#1| (-360)))) (-3454 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-3540 (((-937) $) NIL (|has| |#1| (-360))) (((-845 (-937)) $) NIL (|has| |#1| (-360)))) (-4192 (((-112) $) NIL)) (-3404 ((|#1| $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1733 ((|#2| $) 91 (|has| |#1| (-374)))) (-4261 (((-937) $) 145 (|has| |#1| (-379)))) (-2874 ((|#2| $) 62)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-3796 (($) NIL (|has| |#1| (-360)) CONST)) (-2596 (($ (-937)) 135 (|has| |#1| (-379)))) (-3945 (((-1138) $) NIL)) (-2981 (($) 127)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3763 (((-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))) NIL (|has| |#1| (-360)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3206 ((|#1| (-1286 $)) NIL) ((|#1|) 117)) (-3665 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-3884 (($ $ (-783)) NIL (-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3767 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2477 ((|#2|) 81)) (-3087 (($) NIL (|has| |#1| (-360)))) (-3458 (((-1286 |#1|) $ (-1286 $)) 96) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 75) (((-701 |#1|) (-1286 $)) 92)) (-1846 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-2956 (((-874) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-374)) (|has| |#1| (-1056 (-419 (-576))))))) (-1817 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4343 ((|#2| $) 89)) (-3423 (((-783)) 83 T CONST)) (-2617 (((-112) $ $) NIL)) (-4093 (((-1286 $)) 88)) (-2946 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2143 (($) 32 T CONST)) (-2155 (($) 19 T CONST)) (-3590 (($ $ (-783)) NIL (-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2838 (-12 (|has| |#1| (-239)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-914 (-1195))))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2991 (((-112) $ $) 67)) (-3108 (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) 71) (($ $ $) NIL)) (-3081 (($ $ $) 69)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374)))))
+(((-1098 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1262 |#1|) |#2|) (T -1098))
+NIL
+(-736 |#1| |#2|)
+((-4205 (((-430 |#3|) |#3|) 19)))
+(((-1099 |#1| |#2| |#3|) (-10 -7 (-15 -4205 ((-430 |#3|) |#3|))) (-1262 (-419 (-968 (-576)))) (-13 (-374) (-148) (-736 (-419 (-968 (-576))) |#1|)) (-1262 |#2|)) (T -1099))
+((-4205 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-968 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-968 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5)))))
+(-10 -7 (-15 -4205 ((-430 |#3|) |#3|)))
+((-2869 (((-112) $ $) NIL)) (-3639 (($ $ $) 16)) (-2571 (($ $ $) 17)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3354 (($) 6)) (-1846 (((-1195) $) 20)) (-2956 (((-874) $) 13)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 15)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 9)))
+(((-1100) (-13 (-862) (-626 (-1195)) (-10 -8 (-15 -3354 ($))))) (T -1100))
+((-3354 (*1 *1) (-5 *1 (-1100))))
+(-13 (-862) (-626 (-1195)) (-10 -8 (-15 -3354 ($))))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-1101) (-141)) (T -1101))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T))
-((-1897 ((|#1| |#1| (-1 (-574) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3081 (((-1289)) 21)) (-1713 (((-654 |#1|)) 13)))
-(((-1100 |#1|) (-10 -7 (-15 -3081 ((-1289))) (-15 -1713 ((-654 |#1|))) (-15 -1897 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1897 (|#1| |#1| (-1 (-574) |#1| |#1|)))) (-133)) (T -1100))
-((-1897 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))) (-1897 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))) (-1713 (*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-133)))) (-3081 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1100 *3)) (-4 *3 (-133)))))
-(-10 -7 (-15 -3081 ((-1289))) (-15 -1713 ((-654 |#1|))) (-15 -1897 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1897 (|#1| |#1| (-1 (-574) |#1| |#1|))))
-((-4264 (($ (-109) $) 20)) (-2342 (((-701 (-109)) (-516) $) 19)) (-3014 (($) 7)) (-3428 (($) 21)) (-1560 (($) 22)) (-3255 (((-654 (-177)) $) 10)) (-2951 (((-872) $) 25)))
-(((-1101) (-13 (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -3255 ((-654 (-177)) $)) (-15 -2342 ((-701 (-109)) (-516) $)) (-15 -4264 ($ (-109) $)) (-15 -3428 ($)) (-15 -1560 ($))))) (T -1101))
-((-3014 (*1 *1) (-5 *1 (-1101))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1101)))) (-2342 (*1 *2 *3 *1) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1101)))) (-4264 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1101)))) (-3428 (*1 *1) (-5 *1 (-1101))) (-1560 (*1 *1) (-5 *1 (-1101))))
-(-13 (-623 (-872)) (-10 -8 (-15 -3014 ($)) (-15 -3255 ((-654 (-177)) $)) (-15 -2342 ((-701 (-109)) (-516) $)) (-15 -4264 ($ (-109) $)) (-15 -3428 ($)) (-15 -1560 ($))))
-((-1955 (((-1284 (-699 |#1|)) (-654 (-699 |#1|))) 45) (((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|))) 75) (((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|)))) 92)) (-2282 (((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|))) 39)))
-(((-1102 |#1|) (-10 -7 (-15 -1955 ((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|))))) (-15 -1955 ((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|)))) (-15 -1955 ((-1284 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2282 ((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|))))) (-372)) (T -1102))
-((-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372)) (-5 *2 (-1284 *5)) (-5 *1 (-1102 *5)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-1102 *4)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) (-5 *2 (-1284 (-699 (-966 *5)))) (-5 *1 (-1102 *5)) (-5 *4 (-699 (-966 *5))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372)) (-5 *2 (-1284 (-699 (-417 (-966 *5))))) (-5 *1 (-1102 *5)) (-5 *4 (-699 (-417 (-966 *5)))))))
-(-10 -7 (-15 -1955 ((-1284 (-699 (-417 (-966 |#1|)))) (-654 (-1193)) (-699 (-417 (-966 |#1|))))) (-15 -1955 ((-1284 (-699 (-966 |#1|))) (-654 (-1193)) (-699 (-966 |#1|)))) (-15 -1955 ((-1284 (-699 |#1|)) (-654 (-699 |#1|)))) (-15 -2282 ((-1284 |#1|) (-699 |#1|) (-654 (-699 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3555 (((-654 (-781)) $) NIL) (((-654 (-781)) $ (-1193)) NIL)) (-3716 (((-781) $) NIL) (((-781) $ (-1193)) NIL)) (-4350 (((-654 (-1104 (-1193))) $) NIL)) (-4172 (((-1189 $) $ (-1104 (-1193))) NIL) (((-1189 |#1|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1104 (-1193)))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3632 (($ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1104 (-1193)) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL) (((-3 (-1141 |#1| (-1193)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1104 (-1193)) $) NIL) (((-1193) $) NIL) (((-1141 |#1| (-1193)) $) NIL)) (-4047 (($ $ $ (-1104 (-1193))) NIL (|has| |#1| (-174)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ (-1104 (-1193))) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-541 (-1104 (-1193))) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1104 (-1193)) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1104 (-1193)) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ (-1193)) NIL) (((-781) $) NIL)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-4339 (($ (-1189 |#1|) (-1104 (-1193))) NIL) (($ (-1189 $) (-1104 (-1193))) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-541 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1104 (-1193))) NIL)) (-2043 (((-541 (-1104 (-1193))) $) NIL) (((-781) $ (-1104 (-1193))) NIL) (((-654 (-781)) $ (-654 (-1104 (-1193)))) NIL)) (-3431 (($ (-1 (-541 (-1104 (-1193))) (-541 (-1104 (-1193)))) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-4071 (((-1 $ (-781)) (-1193)) NIL) (((-1 $ (-781)) $) NIL (|has| |#1| (-239)))) (-3444 (((-3 (-1104 (-1193)) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-3680 (((-1104 (-1193)) $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-1966 (((-112) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1104 (-1193))) (|:| -2754 (-781))) "failed") $) NIL)) (-2606 (($ $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1104 (-1193)) |#1|) NIL) (($ $ (-654 (-1104 (-1193))) (-654 |#1|)) NIL) (($ $ (-1104 (-1193)) $) NIL) (($ $ (-654 (-1104 (-1193))) (-654 $)) NIL) (($ $ (-1193) $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 $)) NIL (|has| |#1| (-239))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 |#1|)) NIL (|has| |#1| (-239)))) (-1924 (($ $ (-1104 (-1193))) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1593 (((-654 (-1193)) $) NIL)) (-3735 (((-541 (-1104 (-1193))) $) NIL) (((-781) $ (-1104 (-1193))) NIL) (((-654 (-781)) $ (-654 (-1104 (-1193)))) NIL) (((-781) $ (-1193)) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1104 (-1193)) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) NIL (|has| |#1| (-462))) (($ $ (-1104 (-1193))) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-1104 (-1193))) NIL) (($ (-1193)) NIL) (($ (-1141 |#1| (-1193))) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-541 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-1104 (-1193))) (-654 (-781))) NIL) (($ $ (-1104 (-1193)) (-781)) NIL) (($ $ (-654 (-1104 (-1193)))) NIL) (($ $ (-1104 (-1193))) NIL) (($ $ (-781)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1103 |#1|) (-13 (-260 |#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) (-1054 (-1141 |#1| (-1193)))) (-1065)) (T -1103))
-NIL
-(-13 (-260 |#1| (-1193) (-1104 (-1193)) (-541 (-1104 (-1193)))) (-1054 (-1141 |#1| (-1193))))
-((-2864 (((-112) $ $) NIL)) (-3716 (((-781) $) NIL)) (-1498 ((|#1| $) 10)) (-1704 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-1518 (((-781) $) 11)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-4071 (($ |#1| (-781)) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3879 (($ $ (-781)) NIL) (($ $) NIL)) (-2951 (((-872) $) NIL) (($ |#1|) NIL)) (-2981 (((-112) $ $) NIL)) (-3585 (($ $ (-781)) NIL) (($ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 16)))
-(((-1104 |#1|) (-273 |#1|) (-860)) (T -1104))
-NIL
-(-273 |#1|)
-((-1785 (((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 29 (|has| |#1| (-858))) (((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 14)))
-(((-1105 |#1| |#2|) (-10 -7 (-15 -1785 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) |%noBranch|)) (-1234) (-1234)) (T -1105))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-858)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-1105 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1110 *6)) (-5 *1 (-1105 *5 *6)))))
-(-10 -7 (-15 -1785 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-654 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 16) (($ (-1198)) NIL) (((-1198) $) NIL)) (-3942 (((-654 (-1151)) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1106) (-13 (-1099) (-10 -8 (-15 -3942 ((-654 (-1151)) $))))) (T -1106))
-((-3942 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1106)))))
-(-13 (-1099) (-10 -8 (-15 -3942 ((-654 (-1151)) $))))
-((-1785 (((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)) 19)))
-(((-1107 |#1| |#2|) (-10 -7 (-15 -1785 ((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|)))) (-1234) (-1234)) (T -1107))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1108 *6)) (-5 *1 (-1107 *5 *6)))))
-(-10 -7 (-15 -1785 ((-1108 |#2|) (-1 |#2| |#1|) (-1108 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116)))) (-1498 (((-1193) $) NIL)) (-3225 (((-1110 |#1|) $) NIL)) (-4420 (((-1175) $) NIL (|has| (-1110 |#1|) (-1116)))) (-3940 (((-1136) $) NIL (|has| (-1110 |#1|) (-1116)))) (-2707 (($ (-1193) (-1110 |#1|)) NIL)) (-2951 (((-872) $) NIL (|has| (-1110 |#1|) (-1116)))) (-2981 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116)))) (-2986 (((-112) $ $) NIL (|has| (-1110 |#1|) (-1116)))))
-(((-1108 |#1|) (-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) (-1110 |#1|))) (-15 -1498 ((-1193) $)) (-15 -3225 ((-1110 |#1|) $)) (IF (|has| (-1110 |#1|) (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1108))
-((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1110 *4)) (-4 *4 (-1234)) (-5 *1 (-1108 *4)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1108 *3)) (-4 *3 (-1234)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1234)))))
-(-13 (-1234) (-10 -8 (-15 -2707 ($ (-1193) (-1110 |#1|))) (-15 -1498 ((-1193) $)) (-15 -3225 ((-1110 |#1|) $)) (IF (|has| (-1110 |#1|) (-1116)) (-6 (-1116)) |%noBranch|)))
-((-3225 (($ |#1| |#1|) 8)) (-3456 ((|#1| $) 11)) (-2831 ((|#1| $) 13)) (-1961 (((-574) $) 9)) (-1953 ((|#1| $) 10)) (-1974 ((|#1| $) 12)) (-1844 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2748 (($ $ (-574)) 14)))
-(((-1109 |#1|) (-141) (-1234)) (T -1109))
-((-4266 (*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-2748 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1109 *3)) (-4 *3 (-1234)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))) (-3225 (*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))))
-(-13 (-628 |t#1|) (-10 -8 (-15 -4266 ($ |t#1| |t#1|)) (-15 -2748 ($ $ (-574))) (-15 -2831 (|t#1| $)) (-15 -1974 (|t#1| $)) (-15 -3456 (|t#1| $)) (-15 -1953 (|t#1| $)) (-15 -1961 ((-574) $)) (-15 -3225 ($ |t#1| |t#1|))))
-(((-628 |#1|) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3225 (($ |#1| |#1|) 16)) (-1785 (((-654 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-858)))) (-3456 ((|#1| $) 12)) (-2831 ((|#1| $) 11)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1961 (((-574) $) 15)) (-1953 ((|#1| $) 14)) (-1974 ((|#1| $) 13)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2136 (((-654 |#1|) $) 44 (|has| |#1| (-858))) (((-654 |#1|) (-654 $)) 43 (|has| |#1| (-858)))) (-1844 (($ |#1|) 29)) (-2951 (((-872) $) 28 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4266 (($ |#1| |#1|) 10)) (-2748 (($ $ (-574)) 17)) (-2986 (((-112) $ $) 22 (|has| |#1| (-1116)))))
-(((-1110 |#1|) (-13 (-1109 |#1|) (-10 -7 (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-654 |#1|))) |%noBranch|))) (-1234)) (T -1110))
-NIL
-(-13 (-1109 |#1|) (-10 -7 (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-654 |#1|))) |%noBranch|)))
-((-3225 (($ |#1| |#1|) 8)) (-1785 ((|#2| (-1 |#1| |#1|) $) 16)) (-3456 ((|#1| $) 11)) (-2831 ((|#1| $) 13)) (-1961 (((-574) $) 9)) (-1953 ((|#1| $) 10)) (-1974 ((|#1| $) 12)) (-2136 ((|#2| (-654 $)) 18) ((|#2| $) 17)) (-1844 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2748 (($ $ (-574)) 14)))
-(((-1111 |#1| |#2|) (-141) (-858) (-1165 |t#1|)) (T -1111))
-((-2136 (*1 *2 *3) (-12 (-5 *3 (-654 *1)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1165 *4)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1165 *3)))) (-1785 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1165 *4)))))
-(-13 (-1109 |t#1|) (-10 -8 (-15 -2136 (|t#2| (-654 $))) (-15 -2136 (|t#2| $)) (-15 -1785 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-628 |#1|) . T) ((-1109 |#1|) . T))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3334 (((-1151) $) 12)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 18) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2051 (((-654 (-1151)) $) 10)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1112) (-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $)) (-15 -3334 ((-1151) $))))) (T -1112))
-((-2051 (*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1112)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1112)))))
-(-13 (-1099) (-10 -8 (-15 -2051 ((-654 (-1151)) $)) (-15 -3334 ((-1151) $))))
-((-4353 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3421 (($ $ $) 10)) (-3848 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1113 |#1| |#2|) (-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#1|))) (-1114 |#2|) (-1116)) (T -1113))
-NIL
-(-10 -8 (-15 -4353 (|#1| |#2| |#1|)) (-15 -4353 (|#1| |#1| |#2|)) (-15 -4353 (|#1| |#1| |#1|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4353 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3421 (($ $ $) 21)) (-3089 (((-112) $ $) 20)) (-2832 (((-112) $ (-781)) 36)) (-1515 (($) 26) (($ (-654 |#1|)) 25)) (-2173 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4459)))) (-1430 (($) 37 T CONST)) (-1573 (($ $) 60 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 59 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4459)))) (-1871 (((-654 |#1|) $) 44 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) 29)) (-3814 (((-112) $ (-781)) 35)) (-1764 (((-654 |#1|) $) 45 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 39)) (-2302 (((-112) $ (-781)) 34)) (-4420 (((-1175) $) 10)) (-3655 (($ $ $) 24)) (-3940 (((-1136) $) 11)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1731 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#1|) (-654 |#1|)) 51 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 49 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-302 |#1|))) 48 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 30)) (-2265 (((-112) $) 33)) (-3014 (($) 32)) (-3848 (($ $ $) 23) (($ $ |#1|) 22)) (-3949 (((-781) |#1| $) 46 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4459)))) (-3157 (($ $) 31)) (-1844 (((-546) $) 61 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 52)) (-2951 (((-872) $) 12)) (-4269 (($) 28) (($ (-654 |#1|)) 27)) (-2981 (((-112) $ $) 9)) (-2859 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 38 (|has| $ (-6 -4459)))))
-(((-1114 |#1|) (-141) (-1116)) (T -1114))
-((-1870 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-4269 (*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) (-1515 (*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-3848 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-3421 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-3089 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))) (-4353 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4353 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))) (-4353 (*1 *1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(-13 (-1116) (-152 |t#1|) (-10 -8 (-6 -4449) (-15 -1870 ((-112) $ $)) (-15 -4269 ($)) (-15 -4269 ($ (-654 |t#1|))) (-15 -1515 ($)) (-15 -1515 ($ (-654 |t#1|))) (-15 -3655 ($ $ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $ |t#1|)) (-15 -3421 ($ $ $)) (-15 -3089 ((-112) $ $)) (-15 -4353 ($ $ $)) (-15 -4353 ($ $ |t#1|)) (-15 -4353 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) . T) ((-1234) . T))
-((-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 8)) (-2981 (((-112) $ $) 12)))
-(((-1115 |#1|) (-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -4420 ((-1175) |#1|)) (-15 -3940 ((-1136) |#1|))) (-1116)) (T -1115))
-NIL
-(-10 -8 (-15 -2981 ((-112) |#1| |#1|)) (-15 -4420 ((-1175) |#1|)) (-15 -3940 ((-1136) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-1116) (-141)) (T -1116))
-((-3940 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1136)))) (-4420 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1175)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-112)))))
-(-13 (-102) (-623 (-872)) (-10 -8 (-15 -3940 ((-1136) $)) (-15 -4420 ((-1175) $)) (-15 -2981 ((-112) $ $))))
-(((-102) . T) ((-623 (-872)) . T))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 36)) (-2179 (($ (-654 (-935))) 70)) (-3313 (((-3 $ "failed") $ (-935) (-935)) 81)) (-2835 (($) 40)) (-2333 (((-112) (-935) $) 42)) (-3507 (((-935) $) 64)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) 39)) (-2577 (((-3 $ "failed") $ (-935)) 77)) (-3940 (((-1136) $) NIL)) (-3918 (((-1284 $)) 47)) (-2593 (((-654 (-935)) $) 27)) (-2083 (((-781) $ (-935) (-935)) 78)) (-2951 (((-872) $) 32)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 24)))
-(((-1117 |#1| |#2|) (-13 (-377) (-10 -8 (-15 -2577 ((-3 $ "failed") $ (-935))) (-15 -3313 ((-3 $ "failed") $ (-935) (-935))) (-15 -2593 ((-654 (-935)) $)) (-15 -2179 ($ (-654 (-935)))) (-15 -3918 ((-1284 $))) (-15 -2333 ((-112) (-935) $)) (-15 -2083 ((-781) $ (-935) (-935))))) (-935) (-935)) (T -1117))
-((-2577 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3313 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-3918 (*1 *2) (-12 (-5 *2 (-1284 (-1117 *3 *4))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935)))) (-2333 (*1 *2 *3 *1) (-12 (-5 *3 (-935)) (-5 *2 (-112)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-781)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-377) (-10 -8 (-15 -2577 ((-3 $ "failed") $ (-935))) (-15 -3313 ((-3 $ "failed") $ (-935) (-935))) (-15 -2593 ((-654 (-935)) $)) (-15 -2179 ($ (-654 (-935)))) (-15 -3918 ((-1284 $))) (-15 -2333 ((-112) (-935) $)) (-15 -2083 ((-781) $ (-935) (-935)))))
-((-2864 (((-112) $ $) NIL)) (-2791 (($) NIL (|has| |#1| (-377)))) (-4353 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3421 (($ $ $) 81)) (-3089 (((-112) $ $) 82)) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#1| (-377)))) (-1515 (($ (-654 |#1|)) NIL) (($) 13)) (-3155 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2175 (($ |#1| $) 74 (|has| $ (-6 -4459))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4459)))) (-2835 (($) NIL (|has| |#1| (-377)))) (-1871 (((-654 |#1|) $) 19 (|has| $ (-6 -4459)))) (-1870 (((-112) $ $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-3634 ((|#1| $) 55 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2976 ((|#1| $) 53 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 34)) (-3507 (((-935) $) NIL (|has| |#1| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3655 (($ $ $) 79)) (-1759 ((|#1| $) 25)) (-3705 (($ |#1| $) 69)) (-2591 (($ (-935)) NIL (|has| |#1| (-377)))) (-3940 (((-1136) $) NIL)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2098 ((|#1| $) 27)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 21)) (-3014 (($) 11)) (-3848 (($ $ |#1|) NIL) (($ $ $) 80)) (-1734 (($) NIL) (($ (-654 |#1|)) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 16)) (-1844 (((-546) $) 50 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 62)) (-2351 (($ $) NIL (|has| |#1| (-377)))) (-2951 (((-872) $) NIL)) (-1561 (((-781) $) NIL)) (-4269 (($ (-654 |#1|)) NIL) (($) 12)) (-2981 (((-112) $ $) NIL)) (-3703 (($ (-654 |#1|)) NIL)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 52)) (-2877 (((-781) $) 10 (|has| $ (-6 -4459)))))
-(((-1118 |#1|) (-435 |#1|) (-1116)) (T -1118))
-NIL
-(-435 |#1|)
-((-2864 (((-112) $ $) 7)) (-3331 (((-112) $) 33)) (-3979 ((|#2| $) 28)) (-2100 (((-112) $) 34)) (-3232 ((|#1| $) 29)) (-2995 (((-112) $) 36)) (-4354 (((-112) $) 38)) (-4217 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3085 (((-112) $) 32)) (-4000 ((|#3| $) 27)) (-3940 (((-1136) $) 11)) (-1650 (((-112) $) 31)) (-2399 ((|#4| $) 26)) (-1456 ((|#5| $) 25)) (-4097 (((-112) $ $) 39)) (-2207 (($ $ (-574)) 41) (($ $ (-654 (-574))) 40)) (-4282 (((-654 $) $) 30)) (-1844 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-654 $)) 42)) (-2951 (((-872) $) 12)) (-3608 (($ $) 23)) (-1408 (($ $) 24)) (-2981 (((-112) $ $) 9)) (-2370 (((-112) $) 37)) (-2986 (((-112) $ $) 6)) (-2877 (((-574) $) 22)))
-(((-1119 |#1| |#2| |#3| |#4| |#5|) (-141) (-1116) (-1116) (-1116) (-1116) (-1116)) (T -1119))
-((-4097 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))) (-4282 (*1 *2 *1) (-12 (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-1119 *3 *4 *5 *6 *7)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *2 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *2 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *2 *6)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-1456 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *2)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))) (-1408 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-574)))))
-(-13 (-1116) (-628 |t#1|) (-628 |t#2|) (-628 |t#3|) (-628 |t#4|) (-628 |t#4|) (-628 |t#5|) (-628 (-654 $)) (-294 (-574) $) (-294 (-654 (-574)) $) (-10 -8 (-15 -4097 ((-112) $ $)) (-15 -4354 ((-112) $)) (-15 -2370 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -3085 ((-112) $)) (-15 -1650 ((-112) $)) (-15 -4282 ((-654 $) $)) (-15 -3232 (|t#1| $)) (-15 -3979 (|t#2| $)) (-15 -4000 (|t#3| $)) (-15 -2399 (|t#4| $)) (-15 -1456 (|t#5| $)) (-15 -1408 ($ $)) (-15 -3608 ($ $)) (-15 -2877 ((-574) $))))
-(((-102) . T) ((-623 (-872)) . T) ((-628 (-654 $)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 |#4|) . T) ((-628 |#5|) . T) ((-294 (-574) $) . T) ((-294 (-654 (-574)) $) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-3331 (((-112) $) NIL)) (-3979 (((-1193) $) NIL)) (-2100 (((-112) $) NIL)) (-3232 (((-1175) $) NIL)) (-2995 (((-112) $) NIL)) (-4354 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-3085 (((-112) $) NIL)) (-4000 (((-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-1650 (((-112) $) NIL)) (-2399 (((-227) $) NIL)) (-1456 (((-872) $) NIL)) (-4097 (((-112) $ $) NIL)) (-2207 (($ $ (-574)) NIL) (($ $ (-654 (-574))) NIL)) (-4282 (((-654 $) $) NIL)) (-1844 (($ (-1175)) NIL) (($ (-1193)) NIL) (($ (-574)) NIL) (($ (-227)) NIL) (($ (-872)) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL)) (-3608 (($ $) NIL)) (-1408 (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2370 (((-112) $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-574) $) NIL)))
-(((-1120) (-1119 (-1175) (-1193) (-574) (-227) (-872))) (T -1120))
-NIL
-(-1119 (-1175) (-1193) (-574) (-227) (-872))
-((-2864 (((-112) $ $) NIL)) (-3331 (((-112) $) 45)) (-3979 ((|#2| $) 48)) (-2100 (((-112) $) 20)) (-3232 ((|#1| $) 21)) (-2995 (((-112) $) 42)) (-4354 (((-112) $) 14)) (-4217 (((-112) $) 44)) (-4420 (((-1175) $) NIL)) (-3085 (((-112) $) 46)) (-4000 ((|#3| $) 50)) (-3940 (((-1136) $) NIL)) (-1650 (((-112) $) 47)) (-2399 ((|#4| $) 49)) (-1456 ((|#5| $) 51)) (-4097 (((-112) $ $) 41)) (-2207 (($ $ (-574)) 62) (($ $ (-654 (-574))) 64)) (-4282 (((-654 $) $) 27)) (-1844 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-654 $)) 52)) (-2951 (((-872) $) 28)) (-3608 (($ $) 26)) (-1408 (($ $) 58)) (-2981 (((-112) $ $) NIL)) (-2370 (((-112) $) 23)) (-2986 (((-112) $ $) 40)) (-2877 (((-574) $) 60)))
-(((-1121 |#1| |#2| |#3| |#4| |#5|) (-1119 |#1| |#2| |#3| |#4| |#5|) (-1116) (-1116) (-1116) (-1116) (-1116)) (T -1121))
-NIL
-(-1119 |#1| |#2| |#3| |#4| |#5|)
-((-3742 (((-1289) $) 22)) (-3715 (($ (-1193) (-444) |#2|) 11)) (-2951 (((-872) $) 16)))
-(((-1122 |#1| |#2|) (-13 (-405) (-10 -8 (-15 -3715 ($ (-1193) (-444) |#2|)))) (-1116) (-440 |#1|)) (T -1122))
-((-3715 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1193)) (-5 *3 (-444)) (-4 *5 (-1116)) (-5 *1 (-1122 *5 *4)) (-4 *4 (-440 *5)))))
-(-13 (-405) (-10 -8 (-15 -3715 ($ (-1193) (-444) |#2|))))
-((-3398 (((-112) |#5| |#5|) 44)) (-1589 (((-112) |#5| |#5|) 59)) (-1925 (((-112) |#5| (-654 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2517 (((-112) (-654 |#4|) (-654 |#4|)) 65)) (-1744 (((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 70)) (-3506 (((-1289)) 32)) (-2001 (((-1289) (-1175) (-1175) (-1175)) 28)) (-1587 (((-654 |#5|) (-654 |#5|)) 101)) (-1807 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) 93)) (-4322 (((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112)) 123)) (-3669 (((-112) |#5| |#5|) 53)) (-3454 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4379 (((-112) (-654 |#4|) (-654 |#4|)) 64)) (-4074 (((-112) (-654 |#4|) (-654 |#4|)) 66)) (-1624 (((-112) (-654 |#4|) (-654 |#4|)) 67)) (-2061 (((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2227 (((-654 |#5|) (-654 |#5|)) 49)))
-(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2001 ((-1289) (-1175) (-1175) (-1175))) (-15 -3506 ((-1289))) (-15 -3398 ((-112) |#5| |#5|)) (-15 -2227 ((-654 |#5|) (-654 |#5|))) (-15 -3669 ((-112) |#5| |#5|)) (-15 -1589 ((-112) |#5| |#5|)) (-15 -2517 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4379 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4074 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1624 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3454 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1925 ((-112) |#5| |#5|)) (-15 -1925 ((-112) |#5| (-654 |#5|))) (-15 -1587 ((-654 |#5|) (-654 |#5|))) (-15 -1744 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -1807 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -4322 ((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2061 ((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1123))
-((-2061 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| -4097 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9)))) (-5 *1 (-1123 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9)) (-4 *4 (-1087 *6 *7 *8 *9)))) (-4322 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| -4097 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9))))) (-5 *1 (-1123 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))) (-1807 (*1 *2 *2) (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7)))) (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *8 *3)))) (-1925 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3454 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-1624 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4074 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-4379 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2517 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3669 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))) (-3398 (*1 *2 *3 *3) (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))) (-3506 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2001 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2001 ((-1289) (-1175) (-1175) (-1175))) (-15 -3506 ((-1289))) (-15 -3398 ((-112) |#5| |#5|)) (-15 -2227 ((-654 |#5|) (-654 |#5|))) (-15 -3669 ((-112) |#5| |#5|)) (-15 -1589 ((-112) |#5| |#5|)) (-15 -2517 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4379 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -4074 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -1624 ((-112) (-654 |#4|) (-654 |#4|))) (-15 -3454 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1925 ((-112) |#5| |#5|)) (-15 -1925 ((-112) |#5| (-654 |#5|))) (-15 -1587 ((-654 |#5|) (-654 |#5|))) (-15 -1744 ((-112) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -1807 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-15 -4322 ((-654 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|)))) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -2061 ((-3 (-2 (|:| -4097 (-654 |#4|)) (|:| -4068 |#5|) (|:| |ineq| (-654 |#4|))) "failed") (-654 |#4|) |#5| (-654 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1642 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|) 108)) (-3131 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|) 80)) (-1622 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 102)) (-4076 (((-654 |#5|) |#4| |#5|) 124)) (-1362 (((-654 |#5|) |#4| |#5|) 131)) (-1360 (((-654 |#5|) |#4| |#5|) 132)) (-3003 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 109)) (-3378 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 130)) (-2954 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4218 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112)) 92) (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3173 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|) 87)) (-3550 (((-1289)) 36)) (-2969 (((-1289)) 25)) (-1728 (((-1289) (-1175) (-1175) (-1175)) 32)) (-2988 (((-1289) (-1175) (-1175) (-1175)) 21)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2988 ((-1289) (-1175) (-1175) (-1175))) (-15 -2969 ((-1289))) (-15 -1728 ((-1289) (-1175) (-1175) (-1175))) (-15 -3550 ((-1289))) (-15 -3131 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -4218 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4218 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -3173 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1622 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2954 ((-112) |#4| |#5|)) (-15 -3003 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -4076 ((-654 |#5|) |#4| |#5|)) (-15 -3378 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1362 ((-654 |#5|) |#4| |#5|)) (-15 -2954 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1360 ((-654 |#5|) |#4| |#5|)) (-15 -1642 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3| |#4|)) (T -1124))
-((-1642 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1360 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2954 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1362 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3378 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-4076 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3003 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-2954 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-1622 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3173 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860)) (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9)))) (-5 *1 (-1124 *6 *7 *4 *8 *9)))) (-4218 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3)))) (-3131 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))) (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))) (-3550 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-1728 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))) (-2969 (*1 *2) (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))) (-2988 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2988 ((-1289) (-1175) (-1175) (-1175))) (-15 -2969 ((-1289))) (-15 -1728 ((-1289) (-1175) (-1175) (-1175))) (-15 -3550 ((-1289))) (-15 -3131 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -4218 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4218 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) |#3| (-112))) (-15 -3173 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -1622 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#4| |#5|)) (-15 -2954 ((-112) |#4| |#5|)) (-15 -3003 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -4076 ((-654 |#5|) |#4| |#5|)) (-15 -3378 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1362 ((-654 |#5|) |#4| |#5|)) (-15 -2954 ((-654 (-2 (|:| |val| (-112)) (|:| -4068 |#5|))) |#4| |#5|)) (-15 -1360 ((-654 |#5|) |#4| |#5|)) (-15 -1642 ((-654 (-2 (|:| |val| |#4|) (|:| -4068 |#5|))) |#4| |#5|)))
-((-2864 (((-112) $ $) 7)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) 86)) (-3291 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2581 ((|#4| |#4| $) 90)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3129 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) 106)) (-2235 (((-112) |#4| $) 137)) (-2261 (((-112) |#4| $) 134)) (-4327 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) 105) (((-112) $) 104)) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-2423 (((-654 $) |#4| $) 130)) (-2570 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3655 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1608 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-2252 (((-654 |#4|) $) 108)) (-2897 (((-112) |#4| $) 100) (((-112) $) 96)) (-3184 ((|#4| |#4| $) 91)) (-1624 (((-112) $ $) 111)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) 101) (((-112) $) 97)) (-1857 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4014 (((-3 $ "failed") $ |#4|) 79)) (-2249 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3735 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3615 (($ $) 89)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4292 (((-781) $) 77 (|has| |#3| (-377)))) (-2981 (((-112) $ $) 9)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3708 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) 82)) (-3510 (((-112) |#4| $) 136)) (-4194 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-1125 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1125))
-NIL
-(-13 (-1087 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T))
-((-2433 (((-654 (-574)) (-574) (-574) (-574)) 38)) (-2714 (((-654 (-574)) (-574) (-574) (-574)) 28)) (-2012 (((-654 (-574)) (-574) (-574) (-574)) 33)) (-3522 (((-574) (-574) (-574)) 21)) (-2692 (((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574)) 76) (((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574)) 71)) (-4193 (((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112)) 54)) (-4236 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 75)) (-1970 (((-699 (-574)) (-654 (-935)) (-654 (-574))) 59)) (-4381 (((-654 (-699 (-574))) (-654 (-935))) 64)) (-2962 (((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574))) 79)) (-2372 (((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574))) 89)))
-(((-1126) (-10 -7 (-15 -2372 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -2962 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -4381 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -1970 ((-699 (-574)) (-654 (-935)) (-654 (-574)))) (-15 -4236 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -4193 ((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112))) (-15 -2692 ((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574))) (-15 -2692 ((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574))) (-15 -3522 ((-574) (-574) (-574))) (-15 -2012 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2714 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2433 ((-654 (-574)) (-574) (-574) (-574))))) (T -1126))
-((-2433 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-2714 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-2012 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))) (-3522 (*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1126)))) (-2692 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574)) (-5 *1 (-1126)))) (-2692 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-574)) (-5 *1 (-1126)))) (-4193 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-935))) (-5 *4 (-112)) (-5 *1 (-1126)))) (-4236 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1126)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-1126)))) (-2962 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1126)))) (-2372 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126)))))
-(-10 -7 (-15 -2372 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-654 (-574)))) (-15 -2962 ((-654 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -4381 ((-654 (-699 (-574))) (-654 (-935)))) (-15 -1970 ((-699 (-574)) (-654 (-935)) (-654 (-574)))) (-15 -4236 ((-699 (-574)) (-654 (-574)) (-654 (-574)) (-699 (-574)))) (-15 -4193 ((-654 (-574)) (-654 (-935)) (-654 (-574)) (-112))) (-15 -2692 ((-1284 (-574)) (-1284 (-574)) (-1284 (-574)) (-574))) (-15 -2692 ((-1284 (-574)) (-654 (-574)) (-1284 (-574)) (-574))) (-15 -3522 ((-574) (-574) (-574))) (-15 -2012 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2714 ((-654 (-574)) (-574) (-574) (-574))) (-15 -2433 ((-654 (-574)) (-574) (-574) (-574))))
-((** (($ $ (-935)) 10)))
-(((-1127 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-935)))) (-1128)) (T -1127))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-935))))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)) (** (($ $ (-935)) 14)) (* (($ $ $) 15)))
-(((-1128) (-141)) (T -1128))
-((* (*1 *1 *1 *1) (-4 *1 (-1128))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1128)) (-5 *2 (-935)))))
-(-13 (-1116) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-935)))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-4311 (((-112) $) NIL (-2833 (|has| |#3| (-132)) (|has| |#3| (-736))))) (-3472 (($ (-935)) NIL (|has| |#3| (-1065)))) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-2354 (($ $ $) NIL (|has| |#3| (-803)))) (-3290 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2832 (((-112) $ (-781)) NIL)) (-1496 (((-781)) NIL (|has| |#3| (-377)))) (-3135 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1116)))) (-2216 (((-574) $) NIL (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116)))) (((-417 (-574)) $) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) ((|#3| $) NIL (|has| |#3| (-1116)))) (-1557 (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#3| (-649 (-574))) (|has| |#3| (-1065)))) (((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-699 $)) NIL (|has| |#3| (-1065))) (((-699 |#3|) (-1284 $)) NIL (|has| |#3| (-1065)))) (-3612 (((-3 $ "failed") $) NIL (|has| |#3| (-1065)))) (-2835 (($) NIL (|has| |#3| (-377)))) (-2473 ((|#3| $ (-574) |#3|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#3| $ (-574)) 12)) (-1871 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL (|has| |#3| (-1065)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#3| (-860)))) (-1764 (((-654 |#3|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#3| (-860)))) (-2462 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#3| |#3|) $) NIL)) (-3507 (((-935) $) NIL (|has| |#3| (-377)))) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#3| (-1116)))) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-2591 (($ (-935)) NIL (|has| |#3| (-377)))) (-3940 (((-1136) $) NIL (|has| |#3| (-1116)))) (-2925 ((|#3| $) NIL (|has| (-574) (-860)))) (-1465 (($ $ |#3|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#3|))) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-302 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116)))) (($ $ (-654 |#3|) (-654 |#3|)) NIL (-12 (|has| |#3| (-317 |#3|)) (|has| |#3| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-2445 (((-654 |#3|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#3| $ (-574) |#3|) NIL) ((|#3| $ (-574)) NIL)) (-3936 ((|#3| $ $) NIL (|has| |#3| (-1065)))) (-4247 (($ (-1284 |#3|)) NIL)) (-2732 (((-135)) NIL (|has| |#3| (-372)))) (-3879 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065)))) (-3949 (((-781) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459))) (((-781) |#3| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#3| (-1116))))) (-3157 (($ $) NIL)) (-2951 (((-1284 |#3|) $) NIL) (($ (-574)) NIL (-2833 (-12 (|has| |#3| (-1054 (-574))) (|has| |#3| (-1116))) (|has| |#3| (-1065)))) (($ (-417 (-574))) NIL (-12 (|has| |#3| (-1054 (-417 (-574)))) (|has| |#3| (-1116)))) (($ |#3|) NIL (|has| |#3| (-1116))) (((-872) $) NIL (|has| |#3| (-623 (-872))))) (-3070 (((-781)) NIL (|has| |#3| (-1065)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-2859 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4459)))) (-2141 (($) NIL (-2833 (|has| |#3| (-132)) (|has| |#3| (-736))) CONST)) (-2153 (($) NIL (|has| |#3| (-1065)) CONST)) (-3585 (($ $ (-781)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1065)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1193)) NIL (-12 (|has| |#3| (-912 (-1193))) (|has| |#3| (-1065)))) (($ $ (-1 |#3| |#3|) (-781)) NIL (|has| |#3| (-1065))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1065)))) (-3042 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#3| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#3| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#3| (-860)))) (-3009 (((-112) $ $) 24 (|has| |#3| (-860)))) (-3099 (($ $ |#3|) NIL (|has| |#3| (-372)))) (-3090 (($ $ $) NIL (|has| |#3| (-1065))) (($ $) NIL (|has| |#3| (-1065)))) (-3074 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-781)) NIL (|has| |#3| (-1065))) (($ $ (-935)) NIL (|has| |#3| (-1065)))) (* (($ (-574) $) NIL (|has| |#3| (-1065))) (($ $ $) NIL (|has| |#3| (-1065))) (($ $ |#3|) NIL (|has| |#3| (-736))) (($ |#3| $) NIL (|has| |#3| (-736))) (($ (-781) $) NIL (|has| |#3| (-132))) (($ (-935) $) NIL (|has| |#3| (-25)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1129 |#1| |#2| |#3|) (-244 |#1| |#3|) (-781) (-781) (-803)) (T -1129))
+(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T))
+((-2921 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3086 (((-1291)) 21)) (-1715 (((-656 |#1|)) 13)))
+(((-1102 |#1|) (-10 -7 (-15 -3086 ((-1291))) (-15 -1715 ((-656 |#1|))) (-15 -2921 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2921 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1102))
+((-2921 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))) (-2921 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))) (-1715 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-133)))) (-3086 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1102 *3)) (-4 *3 (-133)))))
+(-10 -7 (-15 -3086 ((-1291))) (-15 -1715 ((-656 |#1|))) (-15 -2921 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2921 (|#1| |#1| (-1 (-576) |#1| |#1|))))
+((-3143 (($ (-109) $) 20)) (-2735 (((-703 (-109)) (-518) $) 19)) (-2953 (($) 7)) (-2785 (($) 21)) (-3960 (($) 22)) (-1514 (((-656 (-177)) $) 10)) (-2956 (((-874) $) 25)))
+(((-1103) (-13 (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -1514 ((-656 (-177)) $)) (-15 -2735 ((-703 (-109)) (-518) $)) (-15 -3143 ($ (-109) $)) (-15 -2785 ($)) (-15 -3960 ($))))) (T -1103))
+((-2953 (*1 *1) (-5 *1 (-1103))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1103)))) (-2735 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1103)))) (-3143 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1103)))) (-2785 (*1 *1) (-5 *1 (-1103))) (-3960 (*1 *1) (-5 *1 (-1103))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2953 ($)) (-15 -1514 ((-656 (-177)) $)) (-15 -2735 ((-703 (-109)) (-518) $)) (-15 -3143 ($ (-109) $)) (-15 -2785 ($)) (-15 -3960 ($))))
+((-2264 (((-1286 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|))) 75) (((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|)))) 92)) (-3458 (((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39)))
+(((-1104 |#1|) (-10 -7 (-15 -2264 ((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|))))) (-15 -2264 ((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|)))) (-15 -2264 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3458 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1104))
+((-3458 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1286 *5)) (-5 *1 (-1104 *5)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1104 *4)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-968 *5)))) (-5 *1 (-1104 *5)) (-5 *4 (-701 (-968 *5))))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-419 (-968 *5))))) (-5 *1 (-1104 *5)) (-5 *4 (-701 (-419 (-968 *5)))))))
+(-10 -7 (-15 -2264 ((-1286 (-701 (-419 (-968 |#1|)))) (-656 (-1195)) (-701 (-419 (-968 |#1|))))) (-15 -2264 ((-1286 (-701 (-968 |#1|))) (-656 (-1195)) (-701 (-968 |#1|)))) (-15 -2264 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3458 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1638 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-2599 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-4352 (((-656 (-1106 (-1195))) $) NIL)) (-4174 (((-1191 $) $ (-1106 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1106 (-1195)))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-3077 (($ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1106 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1143 |#1| (-1195)) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1106 (-1195)) $) NIL) (((-1195) $) NIL) (((-1143 |#1| (-1195)) $) NIL)) (-2799 (($ $ $ (-1106 (-1195))) NIL (|has| |#1| (-174)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1106 (-1195))) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-543 (-1106 (-1195))) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1106 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1106 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-4341 (($ (-1191 |#1|) (-1106 (-1195))) NIL) (($ (-1191 $) (-1106 (-1195))) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-543 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1106 (-1195))) NIL)) (-1859 (((-543 (-1106 (-1195))) $) NIL) (((-783) $ (-1106 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1106 (-1195)))) NIL)) (-2819 (($ (-1 (-543 (-1106 (-1195))) (-543 (-1106 (-1195)))) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1775 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-239)))) (-1712 (((-3 (-1106 (-1195)) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-3685 (((-1106 (-1195)) $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2368 (((-112) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1106 (-1195))) (|:| -2300 (-783))) "failed") $) NIL)) (-2612 (($ $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1106 (-1195)) |#1|) NIL) (($ $ (-656 (-1106 (-1195))) (-656 |#1|)) NIL) (($ $ (-1106 (-1195)) $) NIL) (($ $ (-656 (-1106 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-239))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-239)))) (-3206 (($ $ (-1106 (-1195))) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3050 (((-656 (-1195)) $) NIL)) (-2782 (((-543 (-1106 (-1195))) $) NIL) (((-783) $ (-1106 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1106 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1106 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1106 (-1195))) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1106 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1143 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-543 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-1106 (-1195))) (-656 (-783))) NIL) (($ $ (-1106 (-1195)) (-783)) NIL) (($ $ (-656 (-1106 (-1195)))) NIL) (($ $ (-1106 (-1195))) NIL) (($ $ (-783)) NIL (|has| |#1| (-239))) (($ $) NIL (|has| |#1| (-239))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1105 |#1|) (-13 (-260 |#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) (-1056 (-1143 |#1| (-1195)))) (-1067)) (T -1105))
+NIL
+(-13 (-260 |#1| (-1195) (-1106 (-1195)) (-543 (-1106 (-1195)))) (-1056 (-1143 |#1| (-1195))))
+((-2869 (((-112) $ $) NIL)) (-2599 (((-783) $) NIL)) (-1500 ((|#1| $) 10)) (-1706 (((-3 |#1| "failed") $) NIL)) (-2216 ((|#1| $) NIL)) (-3540 (((-783) $) 11)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1775 (($ |#1| (-783)) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3884 (($ $ (-783)) NIL) (($ $) NIL)) (-2956 (((-874) $) NIL) (($ |#1|) NIL)) (-2617 (((-112) $ $) NIL)) (-3590 (($ $ (-783)) NIL) (($ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 16)))
+(((-1106 |#1|) (-275 |#1|) (-862)) (T -1106))
+NIL
+(-275 |#1|)
+((-1787 (((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 29 (|has| |#1| (-860))) (((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 14)))
+(((-1107 |#1| |#2|) (-10 -7 (-15 -1787 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) (IF (|has| |#1| (-860)) (-15 -1787 ((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1107))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-1107 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1112 *6)) (-5 *1 (-1107 *5 *6)))))
+(-10 -7 (-15 -1787 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) (IF (|has| |#1| (-860)) (-15 -1787 ((-656 |#2|) (-1 |#2| |#1|) (-1112 |#1|))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-4183 (((-656 (-1153)) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1108) (-13 (-1101) (-10 -8 (-15 -4183 ((-656 (-1153)) $))))) (T -1108))
+((-4183 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1108)))))
+(-13 (-1101) (-10 -8 (-15 -4183 ((-656 (-1153)) $))))
+((-1787 (((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 19)))
+(((-1109 |#1| |#2|) (-10 -7 (-15 -1787 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)))) (-1236) (-1236)) (T -1109))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1110 *6)) (-5 *1 (-1109 *5 *6)))))
+(-10 -7 (-15 -1787 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118)))) (-1500 (((-1195) $) NIL)) (-3230 (((-1112 |#1|) $) NIL)) (-2148 (((-1177) $) NIL (|has| (-1112 |#1|) (-1118)))) (-3945 (((-1138) $) NIL (|has| (-1112 |#1|) (-1118)))) (-2712 (($ (-1195) (-1112 |#1|)) NIL)) (-2956 (((-874) $) NIL (|has| (-1112 |#1|) (-1118)))) (-2617 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118)))) (-2991 (((-112) $ $) NIL (|has| (-1112 |#1|) (-1118)))))
+(((-1110 |#1|) (-13 (-1236) (-10 -8 (-15 -2712 ($ (-1195) (-1112 |#1|))) (-15 -1500 ((-1195) $)) (-15 -3230 ((-1112 |#1|) $)) (IF (|has| (-1112 |#1|) (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1110))
+((-2712 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1112 *4)) (-4 *4 (-1236)) (-5 *1 (-1110 *4)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1110 *3)) (-4 *3 (-1236)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1112 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-1236)))))
+(-13 (-1236) (-10 -8 (-15 -2712 ($ (-1195) (-1112 |#1|))) (-15 -1500 ((-1195) $)) (-15 -3230 ((-1112 |#1|) $)) (IF (|has| (-1112 |#1|) (-1118)) (-6 (-1118)) |%noBranch|)))
+((-3230 (($ |#1| |#1|) 8)) (-1843 ((|#1| $) 11)) (-2836 ((|#1| $) 13)) (-1964 (((-576) $) 9)) (-3517 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-1846 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2753 (($ $ (-576)) 14)))
+(((-1111 |#1|) (-141) (-1236)) (T -1111))
+((-4266 (*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1111 *3)) (-4 *3 (-1236)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-3230 (*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))))
+(-13 (-630 |t#1|) (-10 -8 (-15 -4266 ($ |t#1| |t#1|)) (-15 -2753 ($ $ (-576))) (-15 -2836 (|t#1| $)) (-15 -1975 (|t#1| $)) (-15 -1843 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -1964 ((-576) $)) (-15 -3230 ($ |t#1| |t#1|))))
+(((-630 |#1|) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3230 (($ |#1| |#1|) 16)) (-1787 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-1843 ((|#1| $) 12)) (-2836 ((|#1| $) 11)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1964 (((-576) $) 15)) (-3517 ((|#1| $) 14)) (-1975 ((|#1| $) 13)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2139 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-1846 (($ |#1|) 29)) (-2956 (((-874) $) 28 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4266 (($ |#1| |#1|) 10)) (-2753 (($ $ (-576)) 17)) (-2991 (((-112) $ $) 22 (|has| |#1| (-1118)))))
+(((-1112 |#1|) (-13 (-1111 |#1|) (-10 -7 (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-656 |#1|))) |%noBranch|))) (-1236)) (T -1112))
+NIL
+(-13 (-1111 |#1|) (-10 -7 (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-656 |#1|))) |%noBranch|)))
+((-3230 (($ |#1| |#1|) 8)) (-1787 ((|#2| (-1 |#1| |#1|) $) 16)) (-1843 ((|#1| $) 11)) (-2836 ((|#1| $) 13)) (-1964 (((-576) $) 9)) (-3517 ((|#1| $) 10)) (-1975 ((|#1| $) 12)) (-2139 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-1846 (($ |#1|) 6)) (-4266 (($ |#1| |#1|) 15)) (-2753 (($ $ (-576)) 14)))
+(((-1113 |#1| |#2|) (-141) (-860) (-1167 |t#1|)) (T -1113))
+((-2139 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1167 *4)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1167 *3)))) (-1787 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1167 *4)))))
+(-13 (-1111 |t#1|) (-10 -8 (-15 -2139 (|t#2| (-656 $))) (-15 -2139 (|t#2| $)) (-15 -1787 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-630 |#1|) . T) ((-1111 |#1|) . T))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3338 (((-1153) $) 12)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2053 (((-656 (-1153)) $) 10)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1114) (-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $)) (-15 -3338 ((-1153) $))))) (T -1114))
+((-2053 (*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1114)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1114)))))
+(-13 (-1101) (-10 -8 (-15 -2053 ((-656 (-1153)) $)) (-15 -3338 ((-1153) $))))
+((-4356 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2711 (($ $ $) 10)) (-1403 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1115 |#1| |#2|) (-10 -8 (-15 -4356 (|#1| |#2| |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#2|)) (-15 -1403 (|#1| |#1| |#1|))) (-1116 |#2|) (-1118)) (T -1115))
+NIL
+(-10 -8 (-15 -4356 (|#1| |#2| |#1|)) (-15 -4356 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2711 (|#1| |#1| |#1|)) (-15 -1403 (|#1| |#1| |#2|)) (-15 -1403 (|#1| |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-4356 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2711 (($ $ $) 21)) (-2297 (((-112) $ $) 20)) (-3762 (((-112) $ (-783)) 36)) (-1517 (($) 26) (($ (-656 |#1|)) 25)) (-2174 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4461)))) (-4335 (($) 37 T CONST)) (-4060 (($ $) 60 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 59 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4461)))) (-1873 (((-656 |#1|) $) 44 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) 29)) (-2266 (((-112) $ (-783)) 35)) (-2186 (((-656 |#1|) $) 45 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 39)) (-2356 (((-112) $ (-783)) 34)) (-2148 (((-1177) $) 10)) (-3318 (($ $ $) 24)) (-3945 (((-1138) $) 11)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1875 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 30)) (-3321 (((-112) $) 33)) (-2953 (($) 32)) (-1403 (($ $ $) 23) (($ $ |#1|) 22)) (-3954 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4461)))) (-3162 (($ $) 31)) (-1846 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 52)) (-2956 (((-874) $) 12)) (-4271 (($) 28) (($ (-656 |#1|)) 27)) (-2617 (((-112) $ $) 9)) (-3972 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 38 (|has| $ (-6 -4461)))))
+(((-1116 |#1|) (-141) (-1118)) (T -1116))
+((-3872 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-4271 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-4271 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) (-1517 (*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3)))) (-3318 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1403 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-1403 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-2711 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-2297 (*1 *2 *1 *1) (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-4356 (*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))) (-4356 (*1 *1 *2 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(-13 (-1118) (-152 |t#1|) (-10 -8 (-6 -4451) (-15 -3872 ((-112) $ $)) (-15 -4271 ($)) (-15 -4271 ($ (-656 |t#1|))) (-15 -1517 ($)) (-15 -1517 ($ (-656 |t#1|))) (-15 -3318 ($ $ $)) (-15 -1403 ($ $ $)) (-15 -1403 ($ $ |t#1|)) (-15 -2711 ($ $ $)) (-15 -2297 ((-112) $ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ $ |t#1|)) (-15 -4356 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) . T) ((-1236) . T))
+((-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 8)) (-2617 (((-112) $ $) 12)))
+(((-1117 |#1|) (-10 -8 (-15 -2617 ((-112) |#1| |#1|)) (-15 -2148 ((-1177) |#1|)) (-15 -3945 ((-1138) |#1|))) (-1118)) (T -1117))
+NIL
+(-10 -8 (-15 -2617 ((-112) |#1| |#1|)) (-15 -2148 ((-1177) |#1|)) (-15 -3945 ((-1138) |#1|)))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-1118) (-141)) (T -1118))
+((-3945 (*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1138)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1177)))) (-2617 (*1 *2 *1 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-112)))))
+(-13 (-102) (-625 (-874)) (-10 -8 (-15 -3945 ((-1138) $)) (-15 -2148 ((-1177) $)) (-15 -2617 ((-112) $ $))))
+(((-102) . T) ((-625 (-874)) . T))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) 36)) (-3743 (($ (-656 (-937))) 70)) (-4022 (((-3 $ "failed") $ (-937) (-937)) 81)) (-2840 (($) 40)) (-2653 (((-112) (-937) $) 42)) (-4261 (((-937) $) 64)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) 39)) (-3120 (((-3 $ "failed") $ (-937)) 77)) (-3945 (((-1138) $) NIL)) (-3973 (((-1286 $)) 47)) (-3251 (((-656 (-937)) $) 27)) (-2084 (((-783) $ (-937) (-937)) 78)) (-2956 (((-874) $) 32)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 24)))
+(((-1119 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -3120 ((-3 $ "failed") $ (-937))) (-15 -4022 ((-3 $ "failed") $ (-937) (-937))) (-15 -3251 ((-656 (-937)) $)) (-15 -3743 ($ (-656 (-937)))) (-15 -3973 ((-1286 $))) (-15 -2653 ((-112) (-937) $)) (-15 -2084 ((-783) $ (-937) (-937))))) (-937) (-937)) (T -1119))
+((-3120 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4022 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3973 (*1 *2) (-12 (-5 *2 (-1286 (-1119 *3 *4))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-2653 (*1 *2 *3 *1) (-12 (-5 *3 (-937)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-783)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-379) (-10 -8 (-15 -3120 ((-3 $ "failed") $ (-937))) (-15 -4022 ((-3 $ "failed") $ (-937) (-937))) (-15 -3251 ((-656 (-937)) $)) (-15 -3743 ($ (-656 (-937)))) (-15 -3973 ((-1286 $))) (-15 -2653 ((-112) (-937) $)) (-15 -2084 ((-783) $ (-937) (-937)))))
+((-2869 (((-112) $ $) NIL)) (-1485 (($) NIL (|has| |#1| (-379)))) (-4356 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2711 (($ $ $) 81)) (-2297 (((-112) $ $) 82)) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#1| (-379)))) (-1517 (($ (-656 |#1|)) NIL) (($) 13)) (-1707 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3710 (($ |#1| $) 74 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4461)))) (-2840 (($) NIL (|has| |#1| (-379)))) (-1873 (((-656 |#1|) $) 19 (|has| $ (-6 -4461)))) (-3872 (((-112) $ $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3639 ((|#1| $) 55 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2571 ((|#1| $) 53 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 34)) (-4261 (((-937) $) NIL (|has| |#1| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3318 (($ $ $) 79)) (-2138 ((|#1| $) 25)) (-2504 (($ |#1| $) 69)) (-2596 (($ (-937)) NIL (|has| |#1| (-379)))) (-3945 (((-1138) $) NIL)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4256 ((|#1| $) 27)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 21)) (-2953 (($) 11)) (-1403 (($ $ |#1|) NIL) (($ $ $) 80)) (-1904 (($) NIL) (($ (-656 |#1|)) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 16)) (-1846 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 62)) (-2807 (($ $) NIL (|has| |#1| (-379)))) (-2956 (((-874) $) NIL)) (-3969 (((-783) $) NIL)) (-4271 (($ (-656 |#1|)) NIL) (($) 12)) (-2617 (((-112) $ $) NIL)) (-2478 (($ (-656 |#1|)) NIL)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 52)) (-2882 (((-783) $) 10 (|has| $ (-6 -4461)))))
+(((-1120 |#1|) (-437 |#1|) (-1118)) (T -1120))
+NIL
+(-437 |#1|)
+((-2869 (((-112) $ $) 7)) (-3018 (((-112) $) 33)) (-3984 ((|#2| $) 28)) (-4281 (((-112) $) 34)) (-3237 ((|#1| $) 29)) (-2768 (((-112) $) 36)) (-2720 (((-112) $) 38)) (-3899 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-2265 (((-112) $) 32)) (-4005 ((|#3| $) 27)) (-3945 (((-1138) $) 11)) (-2303 (((-112) $) 31)) (-2404 ((|#4| $) 26)) (-1458 ((|#5| $) 25)) (-4102 (((-112) $ $) 39)) (-2209 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-4284 (((-656 $) $) 30)) (-1846 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-2956 (((-874) $) 12)) (-4037 (($ $) 23)) (-1435 (($ $) 24)) (-2617 (((-112) $ $) 9)) (-1744 (((-112) $) 37)) (-2991 (((-112) $ $) 6)) (-2882 (((-576) $) 22)))
+(((-1121 |#1| |#2| |#3| |#4| |#5|) (-141) (-1118) (-1118) (-1118) (-1118) (-1118)) (T -1121))
+((-4102 (*1 *2 *1 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))) (-4284 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-1121 *3 *4 *5 *6 *7)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *2 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *2 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2 *6)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *2)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))) (-1435 (*1 *1 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-4037 (*1 *1 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-576)))))
+(-13 (-1118) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -4102 ((-112) $ $)) (-15 -2720 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -3899 ((-112) $)) (-15 -4281 ((-112) $)) (-15 -3018 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -2303 ((-112) $)) (-15 -4284 ((-656 $) $)) (-15 -3237 (|t#1| $)) (-15 -3984 (|t#2| $)) (-15 -4005 (|t#3| $)) (-15 -2404 (|t#4| $)) (-15 -1458 (|t#5| $)) (-15 -1435 ($ $)) (-15 -4037 ($ $)) (-15 -2882 ((-576) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3018 (((-112) $) NIL)) (-3984 (((-1195) $) NIL)) (-4281 (((-112) $) NIL)) (-3237 (((-1177) $) NIL)) (-2768 (((-112) $) NIL)) (-2720 (((-112) $) NIL)) (-3899 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-2265 (((-112) $) NIL)) (-4005 (((-576) $) NIL)) (-3945 (((-1138) $) NIL)) (-2303 (((-112) $) NIL)) (-2404 (((-227) $) NIL)) (-1458 (((-874) $) NIL)) (-4102 (((-112) $ $) NIL)) (-2209 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-4284 (((-656 $) $) NIL)) (-1846 (($ (-1177)) NIL) (($ (-1195)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-874)) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL)) (-4037 (($ $) NIL)) (-1435 (($ $) NIL)) (-2617 (((-112) $ $) NIL)) (-1744 (((-112) $) NIL)) (-2991 (((-112) $ $) NIL)) (-2882 (((-576) $) NIL)))
+(((-1122) (-1121 (-1177) (-1195) (-576) (-227) (-874))) (T -1122))
+NIL
+(-1121 (-1177) (-1195) (-576) (-227) (-874))
+((-2869 (((-112) $ $) NIL)) (-3018 (((-112) $) 45)) (-3984 ((|#2| $) 48)) (-4281 (((-112) $) 20)) (-3237 ((|#1| $) 21)) (-2768 (((-112) $) 42)) (-2720 (((-112) $) 14)) (-3899 (((-112) $) 44)) (-2148 (((-1177) $) NIL)) (-2265 (((-112) $) 46)) (-4005 ((|#3| $) 50)) (-3945 (((-1138) $) NIL)) (-2303 (((-112) $) 47)) (-2404 ((|#4| $) 49)) (-1458 ((|#5| $) 51)) (-4102 (((-112) $ $) 41)) (-2209 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-4284 (((-656 $) $) 27)) (-1846 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-2956 (((-874) $) 28)) (-4037 (($ $) 26)) (-1435 (($ $) 58)) (-2617 (((-112) $ $) NIL)) (-1744 (((-112) $) 23)) (-2991 (((-112) $ $) 40)) (-2882 (((-576) $) 60)))
+(((-1123 |#1| |#2| |#3| |#4| |#5|) (-1121 |#1| |#2| |#3| |#4| |#5|) (-1118) (-1118) (-1118) (-1118) (-1118)) (T -1123))
+NIL
+(-1121 |#1| |#2| |#3| |#4| |#5|)
+((-3747 (((-1291) $) 22)) (-3720 (($ (-1195) (-446) |#2|) 11)) (-2956 (((-874) $) 16)))
+(((-1124 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -3720 ($ (-1195) (-446) |#2|)))) (-1118) (-442 |#1|)) (T -1124))
+((-3720 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1118)) (-5 *1 (-1124 *5 *4)) (-4 *4 (-442 *5)))))
+(-13 (-407) (-10 -8 (-15 -3720 ($ (-1195) (-446) |#2|))))
+((-2435 (((-112) |#5| |#5|) 44)) (-3017 (((-112) |#5| |#5|) 59)) (-3216 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3740 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1997 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) 70)) (-4252 (((-1291)) 32)) (-2727 (((-1291) (-1177) (-1177) (-1177)) 28)) (-3004 (((-656 |#5|) (-656 |#5|)) 101)) (-1370 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) 93)) (-3645 (((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3435 (((-112) |#5| |#5|) 53)) (-1822 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3003 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-1811 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3320 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-2013 (((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2983 (((-656 |#5|) (-656 |#5|)) 49)))
+(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2727 ((-1291) (-1177) (-1177) (-1177))) (-15 -4252 ((-1291))) (-15 -2435 ((-112) |#5| |#5|)) (-15 -2983 ((-656 |#5|) (-656 |#5|))) (-15 -3435 ((-112) |#5| |#5|)) (-15 -3017 ((-112) |#5| |#5|)) (-15 -3740 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3003 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1811 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3320 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1822 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3216 ((-112) |#5| |#5|)) (-15 -3216 ((-112) |#5| (-656 |#5|))) (-15 -3004 ((-656 |#5|) (-656 |#5|))) (-15 -1997 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -1370 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-15 -3645 ((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2013 ((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1125))
+((-2013 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| -4102 (-656 *9)) (|:| -4071 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1125 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1089 *6 *7 *8 *9)))) (-3645 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -4102 (-656 *9)) (|:| -4071 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1125 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4071 *7)))) (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *8 *3)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-1822 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-1811 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3003 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3740 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-3017 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-3435 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))) (-2435 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))) (-4252 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-2727 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2727 ((-1291) (-1177) (-1177) (-1177))) (-15 -4252 ((-1291))) (-15 -2435 ((-112) |#5| |#5|)) (-15 -2983 ((-656 |#5|) (-656 |#5|))) (-15 -3435 ((-112) |#5| |#5|)) (-15 -3017 ((-112) |#5| |#5|)) (-15 -3740 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3003 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1811 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3320 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1822 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3216 ((-112) |#5| |#5|)) (-15 -3216 ((-112) |#5| (-656 |#5|))) (-15 -3004 ((-656 |#5|) (-656 |#5|))) (-15 -1997 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -1370 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-15 -3645 ((-656 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2013 ((-3 (-2 (|:| -4102 (-656 |#4|)) (|:| -4071 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2227 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|) 108)) (-2728 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|) 80)) (-3298 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|) 102)) (-1833 (((-656 |#5|) |#4| |#5|) 124)) (-2168 (((-656 |#5|) |#4| |#5|) 131)) (-1942 (((-656 |#5|) |#4| |#5|) 132)) (-2861 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|) 109)) (-3491 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|) 130)) (-3613 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3909 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1890 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|) 87)) (-1582 (((-1291)) 36)) (-2510 (((-1291)) 25)) (-1841 (((-1291) (-1177) (-1177) (-1177)) 32)) (-2689 (((-1291) (-1177) (-1177) (-1177)) 21)))
+(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2689 ((-1291) (-1177) (-1177) (-1177))) (-15 -2510 ((-1291))) (-15 -1841 ((-1291) (-1177) (-1177) (-1177))) (-15 -1582 ((-1291))) (-15 -2728 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3909 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3909 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112))) (-15 -1890 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3298 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3613 ((-112) |#4| |#5|)) (-15 -2861 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1833 ((-656 |#5|) |#4| |#5|)) (-15 -3491 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -2168 ((-656 |#5|) |#4| |#5|)) (-15 -3613 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1942 ((-656 |#5|) |#4| |#5|)) (-15 -2227 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3| |#4|)) (T -1126))
+((-2227 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1942 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-2168 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3491 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1833 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-2861 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1890 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-3909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9)))) (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4071 *9)))) (-5 *1 (-1126 *6 *7 *4 *8 *9)))) (-3909 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1126 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3)))) (-2728 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))) (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))) (-1582 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-1841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))) (-2510 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))) (-2689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2689 ((-1291) (-1177) (-1177) (-1177))) (-15 -2510 ((-1291))) (-15 -1841 ((-1291) (-1177) (-1177) (-1177))) (-15 -1582 ((-1291))) (-15 -2728 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3909 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3909 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) |#3| (-112))) (-15 -1890 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3298 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#4| |#5|)) (-15 -3613 ((-112) |#4| |#5|)) (-15 -2861 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1833 ((-656 |#5|) |#4| |#5|)) (-15 -3491 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -2168 ((-656 |#5|) |#4| |#5|)) (-15 -3613 ((-656 (-2 (|:| |val| (-112)) (|:| -4071 |#5|))) |#4| |#5|)) (-15 -1942 ((-656 |#5|) |#4| |#5|)) (-15 -2227 ((-656 (-2 (|:| |val| |#4|) (|:| -4071 |#5|))) |#4| |#5|)))
+((-2869 (((-112) $ $) 7)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) 86)) (-3809 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) 102) (((-112) $) 98)) (-3276 ((|#4| |#4| $) 93)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 127)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-2940 (((-3 $ "failed") $) 83)) (-3164 ((|#4| |#4| $) 90)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2705 ((|#4| |#4| $) 88)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) 106)) (-3062 (((-112) |#4| $) 137)) (-3278 (((-112) |#4| $) 134)) (-2445 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) 105) (((-112) $) 104)) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 128)) (-3338 (((-3 |#4| "failed") $) 84)) (-2196 (((-656 $) |#4| $) 130)) (-3036 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3318 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3187 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3200 (((-656 |#4|) $) 108)) (-3103 (((-112) |#4| $) 100) (((-112) $) 96)) (-1992 ((|#4| |#4| $) 91)) (-3320 (((-112) $ $) 111)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-3945 (((-1138) $) 11)) (-2930 (((-3 |#4| "failed") $) 85)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2452 (((-3 $ "failed") $ |#4|) 79)) (-3167 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-2782 (((-783) $) 107)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-4104 (($ $) 89)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3364 (((-783) $) 77 (|has| |#3| (-379)))) (-2617 (((-112) $ $) 9)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2526 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) 82)) (-4300 (((-112) |#4| $) 136)) (-3684 (((-112) |#3| $) 81)) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-1127 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1127))
+NIL
+(-13 (-1089 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T))
+((-4186 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-1902 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2813 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-4430 (((-576) (-576) (-576)) 21)) (-2947 (((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576)) 76) (((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576)) 71)) (-3675 (((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112)) 54)) (-4059 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 75)) (-2416 (((-701 (-576)) (-656 (-937)) (-656 (-576))) 59)) (-3026 (((-656 (-701 (-576))) (-656 (-937))) 64)) (-2438 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 79)) (-1763 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 89)))
+(((-1128) (-10 -7 (-15 -1763 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -2438 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3026 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -2416 ((-701 (-576)) (-656 (-937)) (-656 (-576)))) (-15 -4059 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3675 ((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112))) (-15 -2947 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -2947 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -4430 ((-576) (-576) (-576))) (-15 -2813 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1902 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4186 ((-656 (-576)) (-576) (-576) (-576))))) (T -1128))
+((-4186 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-1902 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-2813 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))) (-4430 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1128)))) (-2947 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1128)))) (-2947 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1128)))) (-3675 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-937))) (-5 *4 (-112)) (-5 *1 (-1128)))) (-4059 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1128)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1128)))) (-2438 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1128)))) (-1763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128)))))
+(-10 -7 (-15 -1763 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -2438 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3026 ((-656 (-701 (-576))) (-656 (-937)))) (-15 -2416 ((-701 (-576)) (-656 (-937)) (-656 (-576)))) (-15 -4059 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3675 ((-656 (-576)) (-656 (-937)) (-656 (-576)) (-112))) (-15 -2947 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -2947 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -4430 ((-576) (-576) (-576))) (-15 -2813 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1902 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4186 ((-656 (-576)) (-576) (-576) (-576))))
+((** (($ $ (-937)) 10)))
+(((-1129 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-937)))) (-1130)) (T -1129))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-937))))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)) (** (($ $ (-937)) 14)) (* (($ $ $) 15)))
+(((-1130) (-141)) (T -1130))
+((* (*1 *1 *1 *1) (-4 *1 (-1130))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1130)) (-5 *2 (-937)))))
+(-13 (-1118) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-937)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-3549 (((-112) $) NIL (-2838 (|has| |#3| (-23)) (|has| |#3| (-738))))) (-2010 (($ (-937)) NIL (|has| |#3| (-1067)))) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2847 (($ $ $) NIL (|has| |#3| (-805)))) (-3798 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3762 (((-112) $ (-783)) NIL)) (-1499 (((-783)) NIL (|has| |#3| (-379)))) (-3140 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1118)))) (-2216 (((-576) $) NIL (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) ((|#3| $) NIL (|has| |#3| (-1118)))) (-3928 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1067)))) (((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1067))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1067)))) (-4077 (((-3 $ "failed") $) NIL (|has| |#3| (-1067)))) (-2840 (($) NIL (|has| |#3| (-379)))) (-2481 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#3| $ (-576)) 12)) (-1873 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL (|has| |#3| (-1067)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#3| (-862)))) (-2186 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#3| (-862)))) (-2466 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#3| |#3|) $) NIL)) (-4261 (((-937) $) NIL (|has| |#3| (-379)))) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#3| (-1118)))) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-2596 (($ (-937)) NIL (|has| |#3| (-379)))) (-3945 (((-1138) $) NIL (|has| |#3| (-1118)))) (-2930 ((|#3| $) NIL (|has| (-576) (-862)))) (-4211 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-4274 (((-656 |#3|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-4144 ((|#3| $ $) NIL (|has| |#3| (-1067)))) (-4249 (($ (-1286 |#3|)) NIL)) (-2068 (((-135)) NIL (|has| |#3| (-374)))) (-3884 (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067)))) (-3954 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1118))))) (-3162 (($ $) NIL)) (-2956 (((-1286 |#3|) $) NIL) (($ (-576)) NIL (-2838 (-12 (|has| |#3| (-1056 (-576))) (|has| |#3| (-1118))) (|has| |#3| (-1067)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1056 (-419 (-576)))) (|has| |#3| (-1118)))) (($ |#3|) NIL (|has| |#3| (-1118))) (((-874) $) NIL (|has| |#3| (-625 (-874))))) (-3423 (((-783)) NIL (|has| |#3| (-1067)) CONST)) (-2617 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-3972 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2143 (($) NIL (-2838 (|has| |#3| (-23)) (|has| |#3| (-738))) CONST)) (-2155 (($) NIL (|has| |#3| (-1067)) CONST)) (-3590 (($ $ (-783)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1067)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-914 (-1195))) (|has| |#3| (-1067)))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1067))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1067)))) (-3047 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#3| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3014 (((-112) $ $) 24 (|has| |#3| (-862)))) (-3108 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3096 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3081 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1067))) (($ $ (-937)) NIL (|has| |#3| (-1067)))) (* (($ $ $) NIL (|has| |#3| (-1067))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-937) $) NIL (|has| |#3| (-25)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1131 |#1| |#2| |#3|) (-244 |#1| |#3|) (-783) (-783) (-805)) (T -1131))
NIL
(-244 |#1| |#3|)
-((-2504 (((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 50)) (-4091 (((-574) (-1257 |#2| |#1|)) 94 (|has| |#1| (-462)))) (-4186 (((-574) (-1257 |#2| |#1|)) 76)) (-3789 (((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 58)) (-3145 (((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 93 (|has| |#1| (-462)))) (-1701 (((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 61)) (-3429 (((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 75)))
-(((-1130 |#1| |#2|) (-10 -7 (-15 -2504 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3789 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -1701 ((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3429 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4186 ((-574) (-1257 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3145 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4091 ((-574) (-1257 |#2| |#1|)))) |%noBranch|)) (-830) (-1193)) (T -1130))
-((-4091 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-3145 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-3429 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))) (-1701 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 *4)) (-5 *1 (-1130 *4 *5)))) (-3789 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4))) (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4)))))
-(-10 -7 (-15 -2504 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3789 ((-654 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -1701 ((-654 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3429 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4186 ((-574) (-1257 |#2| |#1|))) (IF (|has| |#1| (-462)) (PROGN (-15 -3145 ((-574) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -4091 ((-574) (-1257 |#2| |#1|)))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-1563 (($ (-516) (-1134)) 13)) (-3132 (((-1134) $) 19)) (-2039 (((-516) $) 16)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 26) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1131) (-13 (-1099) (-10 -8 (-15 -1563 ($ (-516) (-1134))) (-15 -2039 ((-516) $)) (-15 -3132 ((-1134) $))))) (T -1131))
-((-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-1131)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1131)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1131)))))
-(-13 (-1099) (-10 -8 (-15 -1563 ($ (-516) (-1134))) (-15 -2039 ((-516) $)) (-15 -3132 ((-1134) $))))
-((-1370 (((-3 (-574) "failed") |#2| (-1193) |#2| (-1175)) 19) (((-3 (-574) "failed") |#2| (-1193) (-853 |#2|)) 17) (((-3 (-574) "failed") |#2|) 60)))
-(((-1132 |#1| |#2|) (-10 -7 (-15 -1370 ((-3 (-574) "failed") |#2|)) (-15 -1370 ((-3 (-574) "failed") |#2| (-1193) (-853 |#2|))) (-15 -1370 ((-3 (-574) "failed") |#2| (-1193) |#2| (-1175)))) (-13 (-566) (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|))) (T -1132))
-((-1370 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-1175)) (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *6 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))))) (-1370 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6))) (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *6 *3)))) (-1370 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574)) (-5 *1 (-1132 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))))
-(-10 -7 (-15 -1370 ((-3 (-574) "failed") |#2|)) (-15 -1370 ((-3 (-574) "failed") |#2| (-1193) (-853 |#2|))) (-15 -1370 ((-3 (-574) "failed") |#2| (-1193) |#2| (-1175))))
-((-1370 (((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175)) 38) (((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|)))) 33) (((-3 (-574) "failed") (-417 (-966 |#1|))) 14)))
-(((-1133 |#1|) (-10 -7 (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)))) (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|))))) (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175)))) (-462)) (T -1133))
-((-1370 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1193)) (-5 *5 (-1175)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6)))) (-1370 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 (-417 (-966 *6)))) (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6)))) (-1370 (*1 *2 *3) (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *4)))))
-(-10 -7 (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)))) (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-853 (-417 (-966 |#1|))))) (-15 -1370 ((-3 (-574) "failed") (-417 (-966 |#1|)) (-1193) (-417 (-966 |#1|)) (-1175))))
-((-2864 (((-112) $ $) NIL)) (-2350 (((-1198) $) 12)) (-2299 (((-654 (-1198)) $) 14)) (-3132 (($ (-654 (-1198)) (-1198)) 10)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 29)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 17)))
-(((-1134) (-13 (-1116) (-10 -8 (-15 -3132 ($ (-654 (-1198)) (-1198))) (-15 -2350 ((-1198) $)) (-15 -2299 ((-654 (-1198)) $))))) (T -1134))
-((-3132 (*1 *1 *2 *3) (-12 (-5 *2 (-654 (-1198))) (-5 *3 (-1198)) (-5 *1 (-1134)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1134)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1134)))))
-(-13 (-1116) (-10 -8 (-15 -3132 ($ (-654 (-1198)) (-1198))) (-15 -2350 ((-1198) $)) (-15 -2299 ((-654 (-1198)) $))))
-((-3704 (((-324 (-574)) (-48)) 12)))
-(((-1135) (-10 -7 (-15 -3704 ((-324 (-574)) (-48))))) (T -1135))
-((-3704 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1135)))))
-(-10 -7 (-15 -3704 ((-324 (-574)) (-48))))
-((-2864 (((-112) $ $) NIL)) (-2890 (($ $) 44)) (-4311 (((-112) $) 70)) (-2117 (($ $ $) 53)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 98)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3954 (($ $ $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2998 (($ $ $ $) 81)) (-2684 (($ $) NIL)) (-3171 (((-428 $) $) NIL)) (-1374 (((-112) $ $) NIL)) (-1496 (((-781)) 83)) (-1370 (((-574) $) NIL)) (-3933 (($ $ $) 78)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL)) (-2216 (((-574) $) NIL)) (-2801 (($ $ $) 64)) (-1557 (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 92) (((-699 (-574)) (-699 $)) 32) (((-699 (-574)) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3701 (((-3 (-417 (-574)) "failed") $) NIL)) (-4391 (((-112) $) NIL)) (-3805 (((-417 (-574)) $) NIL)) (-2835 (($) 95) (($ $) 96)) (-2812 (($ $ $) 63)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL)) (-3342 (((-112) $) NIL)) (-4050 (($ $ $ $) NIL)) (-2303 (($ $ $) 93)) (-2516 (((-112) $) NIL)) (-1371 (($ $ $) NIL)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL)) (-2106 (($ $ $) 52)) (-3943 (((-112) $) 72)) (-1476 (((-112) $) 69)) (-2084 (($ $) 45)) (-2081 (((-3 $ "failed") $) NIL)) (-1935 (((-112) $) 82)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-2391 (($ $ $ $) 79)) (-3634 (($ $ $) 74) (($) 42 T CONST)) (-2976 (($ $ $) 73) (($) 41 T CONST)) (-3781 (($ $) NIL)) (-3507 (((-935) $) 88)) (-4109 (($ $) 77)) (-2845 (($ $ $) NIL) (($ (-654 $)) NIL)) (-4420 (((-1175) $) NIL)) (-2397 (($ $ $) NIL)) (-3792 (($) NIL T CONST)) (-2591 (($ (-935)) 87)) (-1613 (($ $) 57)) (-3940 (((-1136) $) 76)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL)) (-2887 (($ $ $) 67) (($ (-654 $)) NIL)) (-2035 (($ $) NIL)) (-4201 (((-428 $) $) NIL)) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL)) (-2853 (((-3 $ "failed") $ $) NIL)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL)) (-4434 (((-112) $) NIL)) (-4220 (((-781) $) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 66)) (-3879 (($ $) NIL) (($ $ (-781)) NIL)) (-2310 (($ $) 58)) (-3157 (($ $) NIL)) (-1844 (((-574) $) 17) (((-546) $) NIL) (((-903 (-574)) $) NIL) (((-388) $) NIL) (((-227) $) NIL)) (-2951 (((-872) $) 35) (($ (-574)) 94) (($ $) NIL) (($ (-574)) 94)) (-3070 (((-781)) NIL T CONST)) (-2539 (((-112) $ $) NIL)) (-3751 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2644 (($) 40)) (-3750 (((-112) $ $) NIL)) (-2095 (($ $ $) 50)) (-4412 (($ $ $ $) 80)) (-4107 (($ $) 68)) (-2934 (($ $ $) 47)) (-2141 (($) 7 T CONST)) (-2257 (($ $ $) 51)) (-2153 (($) 39 T CONST)) (-4029 (((-1175) $) 26) (((-1175) $ (-112)) 27) (((-1289) (-832) $) 28) (((-1289) (-832) $ (-112)) 29)) (-2267 (($ $) 48)) (-3585 (($ $) NIL) (($ $ (-781)) NIL)) (-2244 (($ $ $) 49)) (-3042 (((-112) $ $) 56)) (-3020 (((-112) $ $) 54)) (-2986 (((-112) $ $) 43)) (-3031 (((-112) $ $) 55)) (-3009 (((-112) $ $) 10)) (-2923 (($ $ $) 46)) (-3090 (($ $) 16) (($ $ $) 60)) (-3074 (($ $ $) 59)) (** (($ $ (-935)) NIL) (($ $ (-781)) 62)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 38) (($ $ $) 37) (($ (-574) $) 38)))
-(((-1136) (-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -2117 ($ $ $)) (-15 -2267 ($ $)) (-15 -2244 ($ $ $)) (-15 -2257 ($ $ $))))) (T -1136))
-((-2117 (*1 *1 *1 *1) (-5 *1 (-1136))) (-2267 (*1 *1 *1) (-5 *1 (-1136))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1136))) (-2257 (*1 *1 *1 *1) (-5 *1 (-1136))))
-(-13 (-555) (-854) (-113) (-671) (-838) (-10 -8 (-6 -4446) (-6 -4451) (-6 -4447) (-15 -2117 ($ $ $)) (-15 -2267 ($ $)) (-15 -2244 ($ $ $)) (-15 -2257 ($ $ $))))
+((-3625 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 50)) (-1989 (((-576) (-1259 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-1676 (((-576) (-1259 |#2| |#1|)) 76)) (-2016 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 58)) (-2863 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-1627 (((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 61)) (-2797 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 75)))
+(((-1132 |#1| |#2|) (-10 -7 (-15 -3625 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2016 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1627 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2797 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1676 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2863 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1989 ((-576) (-1259 |#2| |#1|)))) |%noBranch|)) (-832) (-1195)) (T -1132))
+((-1989 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-2863 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-2797 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))) (-1627 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 *4)) (-5 *1 (-1132 *4 *5)))) (-2016 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4)))) (-3625 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4)))))
+(-10 -7 (-15 -3625 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2016 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1627 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2797 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1676 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2863 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1989 ((-576) (-1259 |#2| |#1|)))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-3990 (($ (-518) (-1136)) 13)) (-3137 (((-1136) $) 19)) (-2041 (((-518) $) 16)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 26) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1133) (-13 (-1101) (-10 -8 (-15 -3990 ($ (-518) (-1136))) (-15 -2041 ((-518) $)) (-15 -3137 ((-1136) $))))) (T -1133))
+((-3990 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1133)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1133)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1133)))))
+(-13 (-1101) (-10 -8 (-15 -3990 ($ (-518) (-1136))) (-15 -2041 ((-518) $)) (-15 -3137 ((-1136) $))))
+((-2627 (((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)) 19) (((-3 (-576) "failed") |#2| (-1195) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60)))
+(((-1134 |#1| |#2|) (-10 -7 (-15 -2627 ((-3 (-576) "failed") |#2|)) (-15 -2627 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -2627 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)))) (-13 (-568) (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|))) (T -1134))
+((-2627 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))))) (-2627 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *6 *3)))) (-2627 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))))
+(-10 -7 (-15 -2627 ((-3 (-576) "failed") |#2|)) (-15 -2627 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -2627 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177))))
+((-2627 (((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177)) 38) (((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-968 |#1|))) 14)))
+(((-1135 |#1|) (-10 -7 (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)))) (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|))))) (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177)))) (-464)) (T -1135))
+((-2627 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6)))) (-2627 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-968 *6)))) (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6)))) (-2627 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *4)))))
+(-10 -7 (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)))) (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-855 (-419 (-968 |#1|))))) (-15 -2627 ((-3 (-576) "failed") (-419 (-968 |#1|)) (-1195) (-419 (-968 |#1|)) (-1177))))
+((-2869 (((-112) $ $) NIL)) (-2355 (((-1200) $) 12)) (-2301 (((-656 (-1200)) $) 14)) (-3137 (($ (-656 (-1200)) (-1200)) 10)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 29)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 17)))
+(((-1136) (-13 (-1118) (-10 -8 (-15 -3137 ($ (-656 (-1200)) (-1200))) (-15 -2355 ((-1200) $)) (-15 -2301 ((-656 (-1200)) $))))) (T -1136))
+((-3137 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1136)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1136)))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1136)))))
+(-13 (-1118) (-10 -8 (-15 -3137 ($ (-656 (-1200)) (-1200))) (-15 -2355 ((-1200) $)) (-15 -2301 ((-656 (-1200)) $))))
+((-2493 (((-326 (-576)) (-48)) 12)))
+(((-1137) (-10 -7 (-15 -2493 ((-326 (-576)) (-48))))) (T -1137))
+((-2493 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1137)))))
+(-10 -7 (-15 -2493 ((-326 (-576)) (-48))))
+((-2869 (((-112) $ $) NIL)) (-2895 (($ $) 44)) (-3549 (((-112) $) 70)) (-2119 (($ $ $) 53)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 98)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3115 (($ $ $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2798 (($ $ $ $) 81)) (-2879 (($ $) NIL)) (-1870 (((-430 $) $) NIL)) (-1323 (((-112) $ $) NIL)) (-1499 (((-783)) 83)) (-2627 (((-576) $) NIL)) (-3938 (($ $ $) 78)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL)) (-2216 (((-576) $) NIL)) (-2806 (($ $ $) 64)) (-3928 (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 92) (((-701 (-576)) (-701 $)) 32) (((-701 (-576)) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2456 (((-3 (-419 (-576)) "failed") $) NIL)) (-1874 (((-112) $) NIL)) (-2183 (((-419 (-576)) $) NIL)) (-2840 (($) 95) (($ $) 96)) (-2818 (($ $ $) 63)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL)) (-3124 (((-112) $) NIL)) (-2834 (($ $ $ $) NIL)) (-2364 (($ $ $) 93)) (-3730 (((-112) $) NIL)) (-2636 (($ $ $) NIL)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-2107 (($ $ $) 52)) (-4192 (((-112) $) 72)) (-4314 (((-112) $) 69)) (-2085 (($ $) 45)) (-2211 (((-3 $ "failed") $) NIL)) (-3327 (((-112) $) 82)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1925 (($ $ $ $) 79)) (-3639 (($ $ $) 74) (($) 42 T CONST)) (-2571 (($ $ $) 73) (($) 41 T CONST)) (-3790 (($ $) NIL)) (-4261 (((-937) $) 88)) (-4114 (($ $) 77)) (-2850 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2148 (((-1177) $) NIL)) (-1987 (($ $ $) NIL)) (-3796 (($) NIL T CONST)) (-2596 (($ (-937)) 87)) (-1615 (($ $) 57)) (-3945 (((-1138) $) 76)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-2892 (($ $ $) 67) (($ (-656 $)) NIL)) (-1786 (($ $) NIL)) (-4205 (((-430 $) $) NIL)) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL)) (-2858 (((-3 $ "failed") $ $) NIL)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2280 (((-112) $) NIL)) (-3927 (((-783) $) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 66)) (-3884 (($ $) NIL) (($ $ (-783)) NIL)) (-2314 (($ $) 58)) (-3162 (($ $) NIL)) (-1846 (((-576) $) 17) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-2956 (((-874) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-3423 (((-783)) NIL T CONST)) (-3925 (((-112) $ $) NIL)) (-2959 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-2650 (($) 40)) (-2946 (((-112) $ $) NIL)) (-2096 (($ $ $) 50)) (-2069 (($ $ $ $) 80)) (-2130 (($ $) 68)) (-2939 (($ $ $) 47)) (-2143 (($) 7 T CONST)) (-2258 (($ $ $) 51)) (-2155 (($) 39 T CONST)) (-2616 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-2268 (($ $) 48)) (-3590 (($ $) NIL) (($ $ (-783)) NIL)) (-2248 (($ $ $) 49)) (-3047 (((-112) $ $) 56)) (-3024 (((-112) $ $) 54)) (-2991 (((-112) $ $) 43)) (-3034 (((-112) $ $) 55)) (-3014 (((-112) $ $) 10)) (-2926 (($ $ $) 46)) (-3096 (($ $) 16) (($ $ $) 60)) (-3081 (($ $ $) 59)) (** (($ $ (-937)) NIL) (($ $ (-783)) 62)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38)))
+(((-1138) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2119 ($ $ $)) (-15 -2268 ($ $)) (-15 -2248 ($ $ $)) (-15 -2258 ($ $ $))))) (T -1138))
+((-2119 (*1 *1 *1 *1) (-5 *1 (-1138))) (-2268 (*1 *1 *1) (-5 *1 (-1138))) (-2248 (*1 *1 *1 *1) (-5 *1 (-1138))) (-2258 (*1 *1 *1 *1) (-5 *1 (-1138))))
+(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2119 ($ $ $)) (-15 -2268 ($ $)) (-15 -2248 ($ $ $)) (-15 -2258 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2010 ((|#1| $) 45)) (-2832 (((-112) $ (-781)) 8)) (-1430 (($) 7 T CONST)) (-2990 ((|#1| |#1| $) 47)) (-1763 ((|#1| $) 46)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1759 ((|#1| $) 40)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2098 ((|#1| $) 42)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-4291 (((-781) $) 44)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) 43)) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1137 |#1|) (-141) (-1234)) (T -1137))
-((-2990 (*1 *2 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4459) (-15 -2990 (|t#1| |t#1| $)) (-15 -1763 (|t#1| $)) (-15 -2010 (|t#1| $)) (-15 -4291 ((-781) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-1644 ((|#3| $) 87)) (-1704 (((-3 (-574) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2216 (((-574) $) NIL) (((-417 (-574)) $) NIL) ((|#3| $) 47)) (-1557 (((-699 (-574)) (-1284 $)) NIL) (((-699 (-574)) (-699 $)) NIL) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL) (((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 $) (-1284 $)) 84) (((-699 |#3|) (-699 $)) 76) (((-699 |#3|) (-1284 $)) NIL)) (-3879 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-781)) NIL) (($ $ (-1193)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $) NIL) (($ $ (-781)) NIL)) (-1681 ((|#3| $) 89)) (-1939 ((|#4| $) 43)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ |#3|) 25)) (** (($ $ (-935)) NIL) (($ $ (-781)) 24) (($ $ (-574)) 95)))
-(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -1681 (|#3| |#1|)) (-15 -1644 (|#3| |#1|)) (-15 -1939 (|#4| |#1|)) (-15 -1557 ((-699 |#3|) (-1284 |#1|))) (-15 -1557 ((-699 |#3|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -2951 ((-872) |#1|))) (-1139 |#2| |#3| |#4| |#5|) (-781) (-1065) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1138))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-574))) (-15 -1681 (|#3| |#1|)) (-15 -1644 (|#3| |#1|)) (-15 -1939 (|#4| |#1|)) (-15 -1557 ((-699 |#3|) (-1284 |#1|))) (-15 -1557 ((-699 |#3|) (-699 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 |#3|)) (|:| |vec| (-1284 |#3|))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 |#1|) (-1284 |#1|))) (-15 -1557 ((-699 (-574)) (-699 |#1|))) (-15 -1557 ((-699 (-574)) (-1284 |#1|))) (-15 -2951 (|#1| |#3|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|) (-781))) (-15 -3879 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1644 ((|#2| $) 79)) (-2406 (((-112) $) 121)) (-3290 (((-3 $ "failed") $ $) 20)) (-1836 (((-112) $) 119)) (-2832 (((-112) $ (-781)) 111)) (-2469 (($ |#2|) 82)) (-1430 (($) 18 T CONST)) (-4300 (($ $) 138 (|has| |#2| (-315)))) (-2273 ((|#3| $ (-574)) 133)) (-1704 (((-3 (-574) "failed") $) 96 (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) 93 (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) 90)) (-2216 (((-574) $) 95 (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) 92 (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) 91)) (-1557 (((-699 (-574)) (-1284 $)) 88 (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) 87 (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 86 (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 85) (((-699 |#2|) (-699 $)) 84) (((-699 |#2|) (-1284 $)) 83)) (-3612 (((-3 $ "failed") $) 37)) (-3558 (((-781) $) 139 (|has| |#2| (-566)))) (-2400 ((|#2| $ (-574) (-574)) 131)) (-1871 (((-654 |#2|) $) 104 (|has| $ (-6 -4459)))) (-3943 (((-112) $) 35)) (-3026 (((-781) $) 140 (|has| |#2| (-566)))) (-3580 (((-654 |#4|) $) 141 (|has| |#2| (-566)))) (-2197 (((-781) $) 127)) (-2206 (((-781) $) 128)) (-3814 (((-112) $ (-781)) 112)) (-1625 ((|#2| $) 74 (|has| |#2| (-6 (-4461 "*"))))) (-4075 (((-574) $) 123)) (-1351 (((-574) $) 125)) (-1764 (((-654 |#2|) $) 103 (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) 101 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3183 (((-574) $) 124)) (-2759 (((-574) $) 126)) (-2924 (($ (-654 (-654 |#2|))) 118)) (-2462 (($ (-1 |#2| |#2|) $) 108 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) 135) (($ (-1 |#2| |#2|) $) 109)) (-2796 (((-654 (-654 |#2|)) $) 129)) (-2302 (((-112) $ (-781)) 113)) (-4420 (((-1175) $) 10)) (-3858 (((-3 $ "failed") $) 73 (|has| |#2| (-372)))) (-3940 (((-1136) $) 11)) (-2853 (((-3 $ "failed") $ |#2|) 136 (|has| |#2| (-566)))) (-1731 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) 100 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 99 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 98 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 97 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) 117)) (-2265 (((-112) $) 114)) (-3014 (($) 115)) (-2207 ((|#2| $ (-574) (-574) |#2|) 132) ((|#2| $ (-574) (-574)) 130)) (-3879 (($ $ (-1 |#2| |#2|)) 58) (($ $ (-1 |#2| |#2|) (-781)) 57) (($ $ (-1193)) 54 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) 52 (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) 51 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 50 (|has| |#2| (-912 (-1193)))) (($ $) 46 (|has| |#2| (-239))) (($ $ (-781)) 44 (|has| |#2| (-239)))) (-1681 ((|#2| $) 78)) (-2125 (($ (-654 |#2|)) 81)) (-2783 (((-112) $) 120)) (-1939 ((|#3| $) 80)) (-2293 ((|#2| $) 75 (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4459))) (((-781) |#2| $) 102 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 116)) (-4239 ((|#4| $ (-574)) 134)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 94 (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) 89)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2859 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4459)))) (-2465 (((-112) $) 122)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-781)) 55) (($ $ (-1193)) 53 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) 49 (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) 48 (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) 47 (|has| |#2| (-912 (-1193)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-781)) 43 (|has| |#2| (-239)))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#2|) 137 (|has| |#2| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 72 (|has| |#2| (-372)))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#2|) 143) (($ |#2| $) 142) ((|#4| $ |#4|) 77) ((|#3| |#3| $) 76)) (-2877 (((-781) $) 110 (|has| $ (-6 -4459)))))
-(((-1139 |#1| |#2| |#3| |#4|) (-141) (-781) (-1065) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1139))
-((-2469 (*1 *1 *2) (-12 (-4 *2 (-1065)) (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-654 *4)) (-4 *4 (-1065)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1139 *3 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))) (-3858 (*1 *1 *1) (|partial| -12 (-4 *1 (-1139 *2 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372)))))
-(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1069 |t#1| |t#1| |t#2| |t#3| |t#4|) (-421 |t#2|) (-386 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-727 |t#2|)) |%noBranch|) (-15 -2469 ($ |t#2|)) (-15 -2125 ($ (-654 |t#2|))) (-15 -1939 (|t#3| $)) (-15 -1644 (|t#2| $)) (-15 -1681 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4461 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2293 (|t#2| $)) (-15 -1625 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-372)) (PROGN (-15 -3858 ((-3 $ "failed") $)) (-15 ** ($ $ (-574)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4461 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 #0=(-417 (-574))) |has| |#2| (-1054 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-386 |#2|) . T) ((-421 |#2|) . T) ((-499 |#2|) . T) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 #1=(-574)) |has| |#2| (-649 (-574))) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-6 (-4461 "*")))) ((-649 #1#) |has| |#2| (-649 (-574))) ((-649 |#2|) . T) ((-727 |#2|) -2833 (|has| |#2| (-174)) (|has| |#2| (-6 (-4461 "*")))) ((-736) . T) ((-907 $ #2=(-1193)) |has| |#2| (-912 (-1193))) ((-912 #2#) |has| |#2| (-912 (-1193))) ((-914 #2#) |has| |#2| (-912 (-1193))) ((-1069 |#1| |#1| |#2| |#3| |#4|) . T) ((-1054 #0#) |has| |#2| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#2| (-1054 (-574))) ((-1054 |#2|) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T))
-((-3407 ((|#4| |#4|) 81)) (-3438 ((|#4| |#4|) 76)) (-3203 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|) 91)) (-1983 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3575 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3438 (|#4| |#4|)) (-15 -3575 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3407 (|#4| |#4|)) (-15 -1983 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3203 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|))) (-315) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1140))
-((-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4)))) (-5 *1 (-1140 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))) (-3438 (*1 *2 *2) (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(-10 -7 (-15 -3438 (|#4| |#4|)) (-15 -3575 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3407 (|#4| |#4|)) (-15 -1983 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3203 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1895 (-654 |#3|))) |#4| |#3|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 18)) (-4350 (((-654 |#2|) $) 174)) (-4172 (((-1189 $) $ |#2|) 60) (((-1189 |#1|) $) 49)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 116 (|has| |#1| (-566)))) (-4141 (($ $) 118 (|has| |#1| (-566)))) (-2475 (((-112) $) 120 (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 |#2|)) 213)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) 167) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 |#2| "failed") $) NIL)) (-2216 ((|#1| $) 165) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) ((|#2| $) NIL)) (-4047 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1402 (($ $) 217)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) 90)) (-4135 (($ $) NIL (|has| |#1| (-462))) (($ $ |#2|) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-541 |#2|) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#1| (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#1| (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-3943 (((-112) $) 20)) (-2993 (((-781) $) 30)) (-4339 (($ (-1189 |#1|) |#2|) 54) (($ (-1189 $) |#2|) 71)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) 38)) (-4328 (($ |#1| (-541 |#2|)) 78) (($ $ |#2| (-781)) 58) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ |#2|) NIL)) (-2043 (((-541 |#2|) $) 205) (((-781) $ |#2|) 206) (((-654 (-781)) $ (-654 |#2|)) 207)) (-3431 (($ (-1 (-541 |#2|) (-541 |#2|)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 128)) (-3444 (((-3 |#2| "failed") $) 177)) (-1366 (($ $) 216)) (-1378 ((|#1| $) 43)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| |#2|) (|:| -2754 (-781))) "failed") $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 39)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 148 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 153 (|has| |#1| (-462))) (($ $ $) 138 (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#1| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-923)))) (-2853 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-566)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-654 |#2|) (-654 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-654 |#2|) (-654 $)) 194)) (-1924 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) 215)) (-3735 (((-541 |#2|) $) 201) (((-781) $ |#2|) 196) (((-654 (-781)) $ (-654 |#2|)) 199)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| |#1| (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| |#1| (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| |#1| (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#1| $) 134 (|has| |#1| (-462))) (($ $ |#2|) 137 (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2951 (((-872) $) 159) (($ (-574)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-3382 (((-654 |#1|) $) 162)) (-1788 ((|#1| $ (-541 |#2|)) 80) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 87 T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) 123 (|has| |#1| (-566)))) (-2141 (($) 12 T CONST)) (-2153 (($) 14 T CONST)) (-3585 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) 106)) (-3099 (($ $ |#1|) 132 (|has| |#1| (-372)))) (-3090 (($ $) 93) (($ $ $) 104)) (-3074 (($ $ $) 55)) (** (($ $ (-935)) 110) (($ $ (-781)) 109)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 96) (($ $ $) 72) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1141 |#1| |#2|) (-963 |#1| (-541 |#2|) |#2|) (-1065) (-860)) (T -1141))
-NIL
-(-963 |#1| (-541 |#2|) |#2|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 |#2|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2379 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4027 (((-966 |#1|) $ (-781)) NIL) (((-966 |#1|) $ (-781) (-781)) NIL)) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $ |#2|) NIL) (((-781) $ |#2| (-781)) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3873 (((-112) $) NIL)) (-4328 (($ $ (-654 |#2|) (-654 (-541 |#2|))) NIL) (($ $ |#2| (-541 |#2|)) NIL) (($ |#1| (-541 |#2|)) NIL) (($ $ |#2| (-781)) 63) (($ $ (-654 |#2|) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3083 (($ $ |#2|) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-3410 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $ (-781)) 16)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ |#2| $) 106) (($ $ (-654 |#2|) (-654 $)) 99) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3879 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) 109)) (-3735 (((-541 |#2|) $) NIL)) (-1415 (((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|))) 87)) (-2417 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 18)) (-2951 (((-872) $) 198) (($ (-574)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#2|) 70) (($ |#3|) 68)) (-1788 ((|#1| $ (-541 |#2|)) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|) (-654 (-781))) NIL) ((|#3| $ (-781)) 43)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 52 T CONST)) (-2153 (($) 62 T CONST)) (-3585 (($ $ (-654 |#2|) (-654 (-781))) NIL) (($ $ |#2| (-781)) NIL) (($ $ (-654 |#2|)) NIL) (($ $ |#2|) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) 200 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 66)) (** (($ $ (-935)) NIL) (($ $ (-781)) 77) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 112 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 65) (($ $ (-417 (-574))) 117 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 115 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1142 |#1| |#2| |#3|) (-13 (-750 |#1| |#2|) (-10 -8 (-15 -1788 (|#3| $ (-781))) (-15 -2951 ($ |#2|)) (-15 -2951 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1415 ((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $ |#2| |#1|)) (-15 -3410 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1065) (-860) (-963 |#1| (-541 |#2|) |#2|)) (T -1142))
-((-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *2 (-963 *4 (-541 *5) *5)) (-5 *1 (-1142 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-860)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2)))) (-2951 (*1 *1 *2) (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) (-4 *2 (-963 *3 (-541 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2)) (-4 *2 (-963 *3 (-541 *4) *4)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1173 *7))) (-4 *6 (-860)) (-4 *7 (-963 *5 (-541 *6) *6)) (-4 *5 (-1065)) (-5 *2 (-1 (-1173 *7) *7)) (-5 *1 (-1142 *5 *6 *7)))) (-3083 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2)))) (-3410 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1142 *4 *3 *5))) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *1 (-1142 *4 *3 *5)) (-4 *5 (-963 *4 (-541 *3) *3)))))
-(-13 (-750 |#1| |#2|) (-10 -8 (-15 -1788 (|#3| $ (-781))) (-15 -2951 ($ |#2|)) (-15 -2951 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1415 ((-1 (-1173 |#3|) |#3|) (-654 |#2|) (-654 (-1173 |#3|)))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $ |#2| |#1|)) (-15 -3410 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) 86)) (-3291 (((-654 $) (-654 |#4|)) 87) (((-654 $) (-654 |#4|) (-112)) 112)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 127)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2581 ((|#4| |#4| $) 90)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3129 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) 106)) (-2235 (((-112) |#4| $) 137)) (-2261 (((-112) |#4| $) 134)) (-4327 (((-112) |#4| $) 138) (((-112) $) 135)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) 105) (((-112) $) 104)) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) 129)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 128)) (-3334 (((-3 |#4| "failed") $) 84)) (-2423 (((-654 $) |#4| $) 130)) (-2570 (((-3 (-112) (-654 $)) |#4| $) 133)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3655 (((-654 $) |#4| $) 126) (((-654 $) (-654 |#4|) $) 125) (((-654 $) (-654 |#4|) (-654 $)) 124) (((-654 $) |#4| (-654 $)) 123)) (-1608 (($ |#4| $) 118) (($ (-654 |#4|) $) 117)) (-2252 (((-654 |#4|) $) 108)) (-2897 (((-112) |#4| $) 100) (((-112) $) 96)) (-3184 ((|#4| |#4| $) 91)) (-1624 (((-112) $ $) 111)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) 101) (((-112) $) 97)) (-1857 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4014 (((-3 $ "failed") $ |#4|) 79)) (-2249 (($ $ |#4|) 78) (((-654 $) |#4| $) 116) (((-654 $) |#4| (-654 $)) 115) (((-654 $) (-654 |#4|) $) 114) (((-654 $) (-654 |#4|) (-654 $)) 113)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3735 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3615 (($ $) 89)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4292 (((-781) $) 77 (|has| |#3| (-377)))) (-2981 (((-112) $ $) 9)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-3708 (((-654 $) |#4| $) 122) (((-654 $) |#4| (-654 $)) 121) (((-654 $) (-654 |#4|) $) 120) (((-654 $) (-654 |#4|) (-654 $)) 119)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) 82)) (-3510 (((-112) |#4| $) 136)) (-4194 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-1143 |#1| |#2| |#3| |#4|) (-141) (-462) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1143))
-NIL
-(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-794 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-794 |#1| |#2| |#3| |#4|) . T) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1087 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1227 |#1| |#2| |#3| |#4|) . T) ((-1234) . T))
-((-3426 (((-654 |#2|) |#1|) 15)) (-1912 (((-654 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-654 |#2|) |#1|) 61)) (-4401 (((-654 |#2|) |#2| |#2| |#2|) 45) (((-654 |#2|) |#1|) 59)) (-1954 ((|#2| |#1|) 54)) (-1917 (((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4007 (((-654 |#2|) |#2| |#2|) 42) (((-654 |#2|) |#1|) 58)) (-1791 (((-654 |#2|) |#2| |#2| |#2| |#2|) 46) (((-654 |#2|) |#1|) 60)) (-2009 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3661 ((|#2| |#2| |#2| |#2|) 51)) (-2281 ((|#2| |#2| |#2|) 50)) (-3115 ((|#2| |#2| |#2| |#2| |#2|) 52)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -3426 ((-654 |#2|) |#1|)) (-15 -1954 (|#2| |#1|)) (-15 -1917 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -4401 ((-654 |#2|) |#1|)) (-15 -1791 ((-654 |#2|) |#1|)) (-15 -1912 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -4401 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1791 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1912 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2281 (|#2| |#2| |#2|)) (-15 -3661 (|#2| |#2| |#2| |#2|)) (-15 -3115 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2009 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1260 |#2|) (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (T -1144))
-((-2009 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-3115 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-3661 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-2281 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-1912 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-1791 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-4401 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-4007 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))) (-1912 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-1791 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))) (-1917 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-2 (|:| |solns| (-654 *5)) (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1144 *3 *5)) (-4 *3 (-1260 *5)))) (-1954 (*1 *2 *3) (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574))))))) (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -3426 ((-654 |#2|) |#1|)) (-15 -1954 (|#2| |#1|)) (-15 -1917 ((-2 (|:| |solns| (-654 |#2|)) (|:| |maps| (-654 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4007 ((-654 |#2|) |#1|)) (-15 -4401 ((-654 |#2|) |#1|)) (-15 -1791 ((-654 |#2|) |#1|)) (-15 -1912 ((-654 |#2|) |#1|)) (-15 -4007 ((-654 |#2|) |#2| |#2|)) (-15 -4401 ((-654 |#2|) |#2| |#2| |#2|)) (-15 -1791 ((-654 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1912 ((-654 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2281 (|#2| |#2| |#2|)) (-15 -3661 (|#2| |#2| |#2| |#2|)) (-15 -3115 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2009 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2155 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|))))) 118) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193))) 117) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|)))) 115) (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 113) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|)))) 97) (((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193)) 98) (((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|))) 92) (((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193)) 82)) (-2297 (((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 111) (((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193)) 54)) (-2274 (((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193)) 122) (((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193)) 121)))
-(((-1145 |#1|) (-10 -7 (-15 -2155 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2297 ((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -2297 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2274 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2274 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193)))) (-13 (-315) (-148))) (T -1145))
-((-2274 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5)))) (-5 *1 (-1145 *5)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5))) (-5 *1 (-1145 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-302 (-417 (-966 *5))))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1145 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1145 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1145 *5)))))
-(-10 -7 (-15 -2155 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)) (-1193))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-417 (-966 |#1|)))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2155 ((-654 (-302 (-324 |#1|))) (-302 (-417 (-966 |#1|))))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-417 (-966 |#1|))))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -2155 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -2297 ((-654 (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -2297 ((-654 (-654 (-324 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -2274 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -2274 ((-1182 (-654 (-324 |#1|)) (-654 (-302 (-324 |#1|)))) (-417 (-966 |#1|)) (-1193))))
-((-2093 (((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574)) 36)) (-4238 (((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|)))) 48)))
-(((-1146 |#1|) (-10 -7 (-15 -4238 ((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))))) (-15 -2093 ((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574)))) (-566)) (T -1146))
-((-2093 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-417 (-1189 (-324 *5)))) (-5 *3 (-1284 (-324 *5))) (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1146 *5)))) (-4238 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-417 (-1189 (-324 *3)))) (-4 *3 (-566)) (-5 *1 (-1146 *3)))))
-(-10 -7 (-15 -4238 ((-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))) (-417 (-1189 (-324 |#1|))))) (-15 -2093 ((-417 (-1189 (-324 |#1|))) (-1284 (-324 |#1|)) (-417 (-1189 (-324 |#1|))) (-574))))
-((-3426 (((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193))) 244) (((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193)) 23) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193)) 29) (((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|))) 28) (((-654 (-302 (-324 |#1|))) (-324 |#1|)) 24)))
-(((-1147 |#1|) (-10 -7 (-15 -3426 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193))) (-15 -3426 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193))))) (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (T -1147))
-((-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1147 *5)) (-5 *3 (-654 (-302 (-324 *5)))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) (-5 *3 (-324 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5)) (-5 *3 (-302 (-324 *5))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-302 (-324 *4))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148))) (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-324 *4)))))
-(-10 -7 (-15 -3426 ((-654 (-302 (-324 |#1|))) (-324 |#1|))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-302 (-324 |#1|)) (-1193))) (-15 -3426 ((-654 (-302 (-324 |#1|))) (-324 |#1|) (-1193))) (-15 -3426 ((-654 (-654 (-302 (-324 |#1|)))) (-654 (-302 (-324 |#1|))) (-654 (-1193)))))
-((-1419 ((|#2| |#2|) 28 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1682 ((|#2| |#2|) 27 (|has| |#1| (-860))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -1682 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1419 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -1682 (|#2| |#2|)) (-15 -1419 (|#2| |#2|))) |%noBranch|)) (-1234) (-13 (-614 (-574) |#1|) (-10 -7 (-6 -4459) (-6 -4460)))) (T -1148))
-((-1419 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))) (-1419 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460)))))) (-1682 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2)) (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460)))))))
-(-10 -7 (-15 -1682 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1419 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -1682 (|#2| |#2|)) (-15 -1419 (|#2| |#2|))) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-2079 (((-1181 3 |#1|) $) 141)) (-3430 (((-112) $) 101)) (-1495 (($ $ (-654 (-957 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 104) (($ (-654 (-957 |#1|))) 103) (((-654 (-957 |#1|)) $) 102)) (-4374 (((-112) $) 72)) (-3565 (($ $ (-957 |#1|)) 76) (($ $ (-654 |#1|)) 81) (($ $ (-781)) 83) (($ (-957 |#1|)) 77) (((-957 |#1|) $) 75)) (-2629 (((-2 (|:| -3656 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 139)) (-2431 (((-781) $) 53)) (-1948 (((-781) $) 52)) (-1521 (($ $ (-781) (-957 |#1|)) 67)) (-3101 (((-112) $) 111)) (-1477 (($ $ (-654 (-654 (-957 |#1|))) (-654 (-173)) (-173)) 118) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 120) (($ $ (-654 (-654 (-957 |#1|))) (-112) (-112)) 115) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 127) (($ (-654 (-654 (-957 |#1|)))) 116) (($ (-654 (-654 (-957 |#1|))) (-112) (-112)) 117) (((-654 (-654 (-957 |#1|))) $) 114)) (-2470 (($ (-654 $)) 56) (($ $ $) 57)) (-1695 (((-654 (-173)) $) 133)) (-2940 (((-654 (-957 |#1|)) $) 130)) (-3244 (((-654 (-654 (-173))) $) 132)) (-1395 (((-654 (-654 (-654 (-957 |#1|)))) $) NIL)) (-3968 (((-654 (-654 (-654 (-781)))) $) 131)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3629 (((-781) $ (-654 (-957 |#1|))) 65)) (-3952 (((-112) $) 84)) (-2849 (($ $ (-654 (-957 |#1|))) 86) (($ $ (-654 (-654 |#1|))) 92) (($ (-654 (-957 |#1|))) 87) (((-654 (-957 |#1|)) $) 85)) (-2419 (($) 48) (($ (-1181 3 |#1|)) 49)) (-3157 (($ $) 63)) (-3692 (((-654 $) $) 62)) (-2908 (($ (-654 $)) 59)) (-2977 (((-654 $) $) 61)) (-2951 (((-872) $) 146)) (-3978 (((-112) $) 94)) (-1733 (($ $ (-654 (-957 |#1|))) 96) (($ $ (-654 (-654 |#1|))) 99) (($ (-654 (-957 |#1|))) 97) (((-654 (-957 |#1|)) $) 95)) (-2477 (($ $) 140)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1149 |#1|) (-1150 |#1|) (-1065)) (T -1149))
-NIL
-(-1150 |#1|)
-((-2864 (((-112) $ $) 7)) (-2079 (((-1181 3 |#1|) $) 14)) (-3430 (((-112) $) 30)) (-1495 (($ $ (-654 (-957 |#1|))) 34) (($ $ (-654 (-654 |#1|))) 33) (($ (-654 (-957 |#1|))) 32) (((-654 (-957 |#1|)) $) 31)) (-4374 (((-112) $) 45)) (-3565 (($ $ (-957 |#1|)) 50) (($ $ (-654 |#1|)) 49) (($ $ (-781)) 48) (($ (-957 |#1|)) 47) (((-957 |#1|) $) 46)) (-2629 (((-2 (|:| -3656 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $) 16)) (-2431 (((-781) $) 59)) (-1948 (((-781) $) 60)) (-1521 (($ $ (-781) (-957 |#1|)) 51)) (-3101 (((-112) $) 22)) (-1477 (($ $ (-654 (-654 (-957 |#1|))) (-654 (-173)) (-173)) 29) (($ $ (-654 (-654 (-654 |#1|))) (-654 (-173)) (-173)) 28) (($ $ (-654 (-654 (-957 |#1|))) (-112) (-112)) 27) (($ $ (-654 (-654 (-654 |#1|))) (-112) (-112)) 26) (($ (-654 (-654 (-957 |#1|)))) 25) (($ (-654 (-654 (-957 |#1|))) (-112) (-112)) 24) (((-654 (-654 (-957 |#1|))) $) 23)) (-2470 (($ (-654 $)) 58) (($ $ $) 57)) (-1695 (((-654 (-173)) $) 17)) (-2940 (((-654 (-957 |#1|)) $) 21)) (-3244 (((-654 (-654 (-173))) $) 18)) (-1395 (((-654 (-654 (-654 (-957 |#1|)))) $) 19)) (-3968 (((-654 (-654 (-654 (-781)))) $) 20)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3629 (((-781) $ (-654 (-957 |#1|))) 52)) (-3952 (((-112) $) 40)) (-2849 (($ $ (-654 (-957 |#1|))) 44) (($ $ (-654 (-654 |#1|))) 43) (($ (-654 (-957 |#1|))) 42) (((-654 (-957 |#1|)) $) 41)) (-2419 (($) 62) (($ (-1181 3 |#1|)) 61)) (-3157 (($ $) 53)) (-3692 (((-654 $) $) 54)) (-2908 (($ (-654 $)) 56)) (-2977 (((-654 $) $) 55)) (-2951 (((-872) $) 12)) (-3978 (((-112) $) 35)) (-1733 (($ $ (-654 (-957 |#1|))) 39) (($ $ (-654 (-654 |#1|))) 38) (($ (-654 (-957 |#1|))) 37) (((-654 (-957 |#1|)) $) 36)) (-2477 (($ $) 15)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-1150 |#1|) (-141) (-1065)) (T -1150))
-((-2951 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-872)))) (-2419 (*1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-1181 3 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-2908 (*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2977 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))) (-3692 (*1 *2 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-654 (-957 *4))) (-4 *1 (-1150 *4)) (-4 *4 (-1065)) (-5 *2 (-781)))) (-1521 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-957 *4)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-3565 (*1 *1 *2) (-12 (-5 *2 (-957 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-957 *3)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2849 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-1495 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1495 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-1477 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-957 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))) (-1477 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173))) (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))) (-1477 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-1477 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112)) (-4 *1 (-1150 *4)) (-4 *4 (-1065)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 *3)))) (-4 *3 (-1065)) (-4 *1 (-1150 *3)))) (-1477 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *4 (-1065)) (-4 *1 (-1150 *4)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-957 *3)))))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-654 (-781))))))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-654 (-957 *3))))))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-173)))))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-173))))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3656 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781)))))) (-2477 (*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-1181 3 *3)))))
-(-13 (-1116) (-10 -8 (-15 -2419 ($)) (-15 -2419 ($ (-1181 3 |t#1|))) (-15 -1948 ((-781) $)) (-15 -2431 ((-781) $)) (-15 -2470 ($ (-654 $))) (-15 -2470 ($ $ $)) (-15 -2908 ($ (-654 $))) (-15 -2977 ((-654 $) $)) (-15 -3692 ((-654 $) $)) (-15 -3157 ($ $)) (-15 -3629 ((-781) $ (-654 (-957 |t#1|)))) (-15 -1521 ($ $ (-781) (-957 |t#1|))) (-15 -3565 ($ $ (-957 |t#1|))) (-15 -3565 ($ $ (-654 |t#1|))) (-15 -3565 ($ $ (-781))) (-15 -3565 ($ (-957 |t#1|))) (-15 -3565 ((-957 |t#1|) $)) (-15 -4374 ((-112) $)) (-15 -2849 ($ $ (-654 (-957 |t#1|)))) (-15 -2849 ($ $ (-654 (-654 |t#1|)))) (-15 -2849 ($ (-654 (-957 |t#1|)))) (-15 -2849 ((-654 (-957 |t#1|)) $)) (-15 -3952 ((-112) $)) (-15 -1733 ($ $ (-654 (-957 |t#1|)))) (-15 -1733 ($ $ (-654 (-654 |t#1|)))) (-15 -1733 ($ (-654 (-957 |t#1|)))) (-15 -1733 ((-654 (-957 |t#1|)) $)) (-15 -3978 ((-112) $)) (-15 -1495 ($ $ (-654 (-957 |t#1|)))) (-15 -1495 ($ $ (-654 (-654 |t#1|)))) (-15 -1495 ($ (-654 (-957 |t#1|)))) (-15 -1495 ((-654 (-957 |t#1|)) $)) (-15 -3430 ((-112) $)) (-15 -1477 ($ $ (-654 (-654 (-957 |t#1|))) (-654 (-173)) (-173))) (-15 -1477 ($ $ (-654 (-654 (-654 |t#1|))) (-654 (-173)) (-173))) (-15 -1477 ($ $ (-654 (-654 (-957 |t#1|))) (-112) (-112))) (-15 -1477 ($ $ (-654 (-654 (-654 |t#1|))) (-112) (-112))) (-15 -1477 ($ (-654 (-654 (-957 |t#1|))))) (-15 -1477 ($ (-654 (-654 (-957 |t#1|))) (-112) (-112))) (-15 -1477 ((-654 (-654 (-957 |t#1|))) $)) (-15 -3101 ((-112) $)) (-15 -2940 ((-654 (-957 |t#1|)) $)) (-15 -3968 ((-654 (-654 (-654 (-781)))) $)) (-15 -1395 ((-654 (-654 (-654 (-957 |t#1|)))) $)) (-15 -3244 ((-654 (-654 (-173))) $)) (-15 -1695 ((-654 (-173)) $)) (-15 -2629 ((-2 (|:| -3656 (-781)) (|:| |curves| (-781)) (|:| |polygons| (-781)) (|:| |constructs| (-781))) $)) (-15 -2477 ($ $)) (-15 -2079 ((-1181 3 |t#1|) $)) (-15 -2951 ((-872) $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 184) (($ (-1198)) NIL) (((-1198) $) 7)) (-2130 (((-112) $ (|[\|\|]| (-534))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-686))) 27) (((-112) $ (|[\|\|]| (-1294))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-616))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1131))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-691))) 55) (((-112) $ (|[\|\|]| (-527))) 59) (((-112) $ (|[\|\|]| (-1082))) 63) (((-112) $ (|[\|\|]| (-1295))) 67) (((-112) $ (|[\|\|]| (-535))) 71) (((-112) $ (|[\|\|]| (-1167))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-681))) 83) (((-112) $ (|[\|\|]| (-319))) 87) (((-112) $ (|[\|\|]| (-1052))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-986))) 99) (((-112) $ (|[\|\|]| (-1089))) 103) (((-112) $ (|[\|\|]| (-1106))) 107) (((-112) $ (|[\|\|]| (-1112))) 111) (((-112) $ (|[\|\|]| (-636))) 115) (((-112) $ (|[\|\|]| (-1183))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-488))) 131) (((-112) $ (|[\|\|]| (-602))) 135) (((-112) $ (|[\|\|]| (-516))) 139) (((-112) $ (|[\|\|]| (-1175))) 143) (((-112) $ (|[\|\|]| (-574))) 147)) (-2981 (((-112) $ $) NIL)) (-1337 (((-534) $) 20) (((-220) $) 24) (((-686) $) 28) (((-1294) $) 32) (((-139) $) 36) (((-616) $) 40) (((-134) $) 44) (((-1131) $) 48) (((-96) $) 52) (((-691) $) 56) (((-527) $) 60) (((-1082) $) 64) (((-1295) $) 68) (((-535) $) 72) (((-1167) $) 76) (((-155) $) 80) (((-681) $) 84) (((-319) $) 88) (((-1052) $) 92) (((-182) $) 96) (((-986) $) 100) (((-1089) $) 104) (((-1106) $) 108) (((-1112) $) 112) (((-636) $) 116) (((-1183) $) 120) (((-157) $) 124) (((-138) $) 128) (((-488) $) 132) (((-602) $) 136) (((-516) $) 140) (((-1175) $) 144) (((-574) $) 148)) (-2986 (((-112) $ $) NIL)))
-(((-1151) (-1153)) (T -1151))
-NIL
-(-1153)
-((-3710 (((-654 (-1198)) (-1175)) 9)))
-(((-1152) (-10 -7 (-15 -3710 ((-654 (-1198)) (-1175))))) (T -1152))
-((-3710 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-1152)))))
-(-10 -7 (-15 -3710 ((-654 (-1198)) (-1175))))
-((-2864 (((-112) $ $) 7)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-1198)) 17) (((-1198) $) 16)) (-2130 (((-112) $ (|[\|\|]| (-534))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-686))) 81) (((-112) $ (|[\|\|]| (-1294))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-616))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1131))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-691))) 67) (((-112) $ (|[\|\|]| (-527))) 65) (((-112) $ (|[\|\|]| (-1082))) 63) (((-112) $ (|[\|\|]| (-1295))) 61) (((-112) $ (|[\|\|]| (-535))) 59) (((-112) $ (|[\|\|]| (-1167))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-681))) 53) (((-112) $ (|[\|\|]| (-319))) 51) (((-112) $ (|[\|\|]| (-1052))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-986))) 45) (((-112) $ (|[\|\|]| (-1089))) 43) (((-112) $ (|[\|\|]| (-1106))) 41) (((-112) $ (|[\|\|]| (-1112))) 39) (((-112) $ (|[\|\|]| (-636))) 37) (((-112) $ (|[\|\|]| (-1183))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-488))) 29) (((-112) $ (|[\|\|]| (-602))) 27) (((-112) $ (|[\|\|]| (-516))) 25) (((-112) $ (|[\|\|]| (-1175))) 23) (((-112) $ (|[\|\|]| (-574))) 21)) (-2981 (((-112) $ $) 9)) (-1337 (((-534) $) 84) (((-220) $) 82) (((-686) $) 80) (((-1294) $) 78) (((-139) $) 76) (((-616) $) 74) (((-134) $) 72) (((-1131) $) 70) (((-96) $) 68) (((-691) $) 66) (((-527) $) 64) (((-1082) $) 62) (((-1295) $) 60) (((-535) $) 58) (((-1167) $) 56) (((-155) $) 54) (((-681) $) 52) (((-319) $) 50) (((-1052) $) 48) (((-182) $) 46) (((-986) $) 44) (((-1089) $) 42) (((-1106) $) 40) (((-1112) $) 38) (((-636) $) 36) (((-1183) $) 34) (((-157) $) 32) (((-138) $) 30) (((-488) $) 28) (((-602) $) 26) (((-516) $) 24) (((-1175) $) 22) (((-574) $) 20)) (-2986 (((-112) $ $) 6)))
-(((-1153) (-141)) (T -1153))
-((-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-534)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-220)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-686)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1294)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-139)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-616)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-134)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1131)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-96)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-691)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-527)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1082)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1295)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-535)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1167)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-155)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-681)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-319)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1052)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-182)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-986)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1089)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1106)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1112)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-636)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1183)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-157)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-138)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-488)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-602)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-516)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1175)))) (-2130 (*1 *2 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-574)))))
-(-13 (-1099) (-1279) (-10 -8 (-15 -2130 ((-112) $ (|[\|\|]| (-534)))) (-15 -1337 ((-534) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-220)))) (-15 -1337 ((-220) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-686)))) (-15 -1337 ((-686) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1294)))) (-15 -1337 ((-1294) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-139)))) (-15 -1337 ((-139) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-616)))) (-15 -1337 ((-616) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-134)))) (-15 -1337 ((-134) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1131)))) (-15 -1337 ((-1131) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-96)))) (-15 -1337 ((-96) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-691)))) (-15 -1337 ((-691) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-527)))) (-15 -1337 ((-527) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1082)))) (-15 -1337 ((-1082) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1295)))) (-15 -1337 ((-1295) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-535)))) (-15 -1337 ((-535) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1167)))) (-15 -1337 ((-1167) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-155)))) (-15 -1337 ((-155) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-681)))) (-15 -1337 ((-681) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-319)))) (-15 -1337 ((-319) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1052)))) (-15 -1337 ((-1052) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-182)))) (-15 -1337 ((-182) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-986)))) (-15 -1337 ((-986) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1089)))) (-15 -1337 ((-1089) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1106)))) (-15 -1337 ((-1106) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1112)))) (-15 -1337 ((-1112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-636)))) (-15 -1337 ((-636) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1183)))) (-15 -1337 ((-1183) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-157)))) (-15 -1337 ((-157) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-138)))) (-15 -1337 ((-138) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-488)))) (-15 -1337 ((-488) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-602)))) (-15 -1337 ((-602) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -1337 ((-516) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-1175)))) (-15 -1337 ((-1175) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -1337 ((-574) $))))
-(((-93) . T) ((-102) . T) ((-626 #0=(-1198)) . T) ((-623 (-872)) . T) ((-623 #0#) . T) ((-500 #0#) . T) ((-1116) . T) ((-1099) . T) ((-1279) . T))
-((-2683 (((-1289) (-654 (-872))) 22) (((-1289) (-872)) 21)) (-3298 (((-1289) (-654 (-872))) 20) (((-1289) (-872)) 19)) (-3742 (((-1289) (-654 (-872))) 18) (((-1289) (-872)) 10) (((-1289) (-1175) (-872)) 16)))
-(((-1154) (-10 -7 (-15 -3742 ((-1289) (-1175) (-872))) (-15 -3742 ((-1289) (-872))) (-15 -3298 ((-1289) (-872))) (-15 -2683 ((-1289) (-872))) (-15 -3742 ((-1289) (-654 (-872)))) (-15 -3298 ((-1289) (-654 (-872)))) (-15 -2683 ((-1289) (-654 (-872)))))) (T -1154))
-((-2683 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154)))))
-(-10 -7 (-15 -3742 ((-1289) (-1175) (-872))) (-15 -3742 ((-1289) (-872))) (-15 -3298 ((-1289) (-872))) (-15 -2683 ((-1289) (-872))) (-15 -3742 ((-1289) (-654 (-872)))) (-15 -3298 ((-1289) (-654 (-872)))) (-15 -2683 ((-1289) (-654 (-872)))))
-((-1349 (($ $ $) 10)) (-2467 (($ $) 9)) (-3119 (($ $ $) 13)) (-1861 (($ $ $) 15)) (-1489 (($ $ $) 12)) (-4315 (($ $ $) 14)) (-4415 (($ $) 17)) (-4147 (($ $) 16)) (-4107 (($ $) 6)) (-2651 (($ $ $) 11) (($ $) 7)) (-2636 (($ $ $) 8)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2012 ((|#1| $) 45)) (-3762 (((-112) $ (-783)) 8)) (-4335 (($) 7 T CONST)) (-2714 ((|#1| |#1| $) 47)) (-2175 ((|#1| $) 46)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-2138 ((|#1| $) 40)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-4256 ((|#1| $) 42)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-4295 (((-783) $) 44)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) 43)) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1139 |#1|) (-141) (-1236)) (T -1139))
+((-2714 (*1 *2 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -2714 (|t#1| |t#1| $)) (-15 -2175 (|t#1| $)) (-15 -2012 (|t#1| $)) (-15 -4295 ((-783) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-1646 ((|#3| $) 87)) (-1706 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2216 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3928 (((-701 (-576)) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 84) (((-701 |#3|) (-701 $)) 76) (((-701 |#3|) (-1286 $)) NIL)) (-3884 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2652 ((|#3| $) 89)) (-3371 ((|#4| $) 43)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-937)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95)))
+(((-1140 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 -2652 (|#3| |#1|)) (-15 -1646 (|#3| |#1|)) (-15 -3371 (|#4| |#1|)) (-15 -3928 ((-701 |#3|) (-1286 |#1|))) (-15 -3928 ((-701 |#3|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -2956 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -2956 ((-874) |#1|))) (-1141 |#2| |#3| |#4| |#5|) (-783) (-1067) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1140))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 -2652 (|#3| |#1|)) (-15 -1646 (|#3| |#1|)) (-15 -3371 (|#4| |#1|)) (-15 -3928 ((-701 |#3|) (-1286 |#1|))) (-15 -3928 ((-701 |#3|) (-701 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3928 ((-701 (-576)) (-701 |#1|))) (-15 -3928 ((-701 (-576)) (-1286 |#1|))) (-15 -2956 (|#1| |#3|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3884 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1646 ((|#2| $) 79)) (-2052 (((-112) $) 121)) (-3798 (((-3 $ "failed") $ $) 20)) (-3562 (((-112) $) 119)) (-3762 (((-112) $ (-783)) 111)) (-1372 (($ |#2|) 82)) (-4335 (($) 18 T CONST)) (-3446 (($ $) 138 (|has| |#2| (-317)))) (-3389 ((|#3| $ (-576)) 133)) (-1706 (((-3 (-576) "failed") $) 96 (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) 93 (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) 90)) (-2216 (((-576) $) 95 (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) 92 (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) 91)) (-3928 (((-701 (-576)) (-1286 $)) 88 (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) 87 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 86 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 85) (((-701 |#2|) (-701 $)) 84) (((-701 |#2|) (-1286 $)) 83)) (-4077 (((-3 $ "failed") $) 37)) (-3563 (((-783) $) 139 (|has| |#2| (-568)))) (-2405 ((|#2| $ (-576) (-576)) 131)) (-1873 (((-656 |#2|) $) 104 (|has| $ (-6 -4461)))) (-4192 (((-112) $) 35)) (-2954 (((-783) $) 140 (|has| |#2| (-568)))) (-3772 (((-656 |#4|) $) 141 (|has| |#2| (-568)))) (-2199 (((-783) $) 127)) (-2208 (((-783) $) 128)) (-2266 (((-112) $ (-783)) 112)) (-3331 ((|#2| $) 74 (|has| |#2| (-6 (-4463 "*"))))) (-1823 (((-576) $) 123)) (-1780 (((-576) $) 125)) (-2186 (((-656 |#2|) $) 103 (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) 101 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-1982 (((-576) $) 124)) (-4259 (((-576) $) 126)) (-2929 (($ (-656 (-656 |#2|))) 118)) (-2466 (($ (-1 |#2| |#2|) $) 108 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) 135) (($ (-1 |#2| |#2|) $) 109)) (-1538 (((-656 (-656 |#2|)) $) 129)) (-2356 (((-112) $ (-783)) 113)) (-2148 (((-1177) $) 10)) (-1495 (((-3 $ "failed") $) 73 (|has| |#2| (-374)))) (-3945 (((-1138) $) 11)) (-2858 (((-3 $ "failed") $ |#2|) 136 (|has| |#2| (-568)))) (-1875 (((-112) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 99 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 98 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 97 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) 117)) (-3321 (((-112) $) 114)) (-2953 (($) 115)) (-2209 ((|#2| $ (-576) (-576) |#2|) 132) ((|#2| $ (-576) (-576)) 130)) (-3884 (($ $ (-1 |#2| |#2|)) 58) (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1195)) 54 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) 52 (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) 51 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 50 (|has| |#2| (-914 (-1195)))) (($ $) 46 (|has| |#2| (-239))) (($ $ (-783)) 44 (|has| |#2| (-239)))) (-2652 ((|#2| $) 78)) (-1388 (($ (-656 |#2|)) 81)) (-1415 (((-112) $) 120)) (-3371 ((|#3| $) 80)) (-2293 ((|#2| $) 75 (|has| |#2| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#2|) $) 105 (|has| $ (-6 -4461))) (((-783) |#2| $) 102 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 116)) (-4087 ((|#4| $ (-576)) 134)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 94 (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) 89)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-3972 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4461)))) (-1335 (((-112) $) 122)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-783)) 55) (($ $ (-1195)) 53 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) 49 (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) 48 (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 47 (|has| |#2| (-914 (-1195)))) (($ $) 45 (|has| |#2| (-239))) (($ $ (-783)) 43 (|has| |#2| (-239)))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#2|) 137 (|has| |#2| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 72 (|has| |#2| (-374)))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 143) (($ |#2| $) 142) ((|#4| $ |#4|) 77) ((|#3| |#3| $) 76)) (-2882 (((-783) $) 110 (|has| $ (-6 -4461)))))
+(((-1141 |#1| |#2| |#3| |#4|) (-141) (-783) (-1067) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1141))
+((-1372 (*1 *1 *2) (-12 (-4 *2 (-1067)) (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1067)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1141 *3 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))) (-1495 (*1 *1 *1) (|partial| -12 (-4 *1 (-1141 *2 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-374)))))
+(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1071 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -1372 ($ |t#2|)) (-15 -1388 ($ (-656 |t#2|))) (-15 -3371 (|t#3| $)) (-15 -1646 (|t#2| $)) (-15 -2652 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4463 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2293 (|t#2| $)) (-15 -3331 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -1495 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4463 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1056 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-235 $) |has| |#2| (-239)) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) |has| |#2| (-239)) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -2838 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-738) . T) ((-909 $ #2=(-1195)) |has| |#2| (-914 (-1195))) ((-914 #2#) |has| |#2| (-914 (-1195))) ((-916 #2#) |has| |#2| (-914 (-1195))) ((-1071 |#1| |#1| |#2| |#3| |#4|) . T) ((-1056 #0#) |has| |#2| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#2| (-1056 (-576))) ((-1056 |#2|) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T))
+((-2545 ((|#4| |#4|) 81)) (-2906 ((|#4| |#4|) 76)) (-2190 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|) 91)) (-2538 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3717 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1142 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2906 (|#4| |#4|)) (-15 -3717 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2545 (|#4| |#4|)) (-15 -2538 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2190 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1142))
+((-2190 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4)))) (-5 *1 (-1142 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2538 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2906 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -2906 (|#4| |#4|)) (-15 -3717 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2545 (|#4| |#4|)) (-15 -2538 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2190 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4093 (-656 |#3|))) |#4| |#3|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 18)) (-4352 (((-656 |#2|) $) 174)) (-4174 (((-1191 $) $ |#2|) 60) (((-1191 |#1|) $) 49)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-4334 (($ $) 118 (|has| |#1| (-568)))) (-1428 (((-112) $) 120 (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2216 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) ((|#2| $) NIL)) (-2799 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1404 (($ $) 217)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) 90)) (-4290 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-543 |#2|) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-4192 (((-112) $) 20)) (-2747 (((-783) $) 30)) (-4341 (($ (-1191 |#1|) |#2|) 54) (($ (-1191 $) |#2|) 71)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) 38)) (-4330 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ |#2|) NIL)) (-1859 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-2819 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 128)) (-1712 (((-3 |#2| "failed") $) 177)) (-1368 (($ $) 216)) (-1380 ((|#1| $) 43)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| |#2|) (|:| -2300 (-783))) "failed") $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) 39)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 148 (|has| |#1| (-464)))) (-2892 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-925)))) (-2858 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-3206 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3884 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-2782 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-2956 (((-874) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-3532 (((-656 |#1|) $) 162)) (-4309 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 87 T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2143 (($) 12 T CONST)) (-2155 (($) 14 T CONST)) (-3590 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2991 (((-112) $ $) 106)) (-3108 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3096 (($ $) 93) (($ $ $) 104)) (-3081 (($ $ $) 55)) (** (($ $ (-937)) 110) (($ $ (-783)) 109)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1143 |#1| |#2|) (-965 |#1| (-543 |#2|) |#2|) (-1067) (-862)) (T -1143))
+NIL
+(-965 |#1| (-543 |#2|) |#2|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 |#2|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2384 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2409 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4032 (((-968 |#1|) $ (-783)) NIL) (((-968 |#1|) $ (-783) (-783)) NIL)) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1614 (((-112) $) NIL)) (-4330 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-2254 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-2580 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3167 (($ $ (-783)) 16)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1619 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-3884 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-2782 (((-543 |#2|) $) NIL)) (-4166 (((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|))) 87)) (-2422 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 18)) (-2956 (((-874) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-4309 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2541 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 52 T CONST)) (-2155 (($) 62 T CONST)) (-3590 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 66)) (** (($ $ (-937)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1144 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -4309 (|#3| $ (-783))) (-15 -2956 ($ |#2|)) (-15 -2956 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4166 ((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $ |#2| |#1|)) (-15 -2580 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1067) (-862) (-965 |#1| (-543 |#2|) |#2|)) (T -1144))
+((-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-965 *4 (-543 *5) *5)) (-5 *1 (-1144 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-862)))) (-2956 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2)))) (-2956 (*1 *1 *2) (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) (-4 *2 (-965 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2)) (-4 *2 (-965 *3 (-543 *4) *4)))) (-4166 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1175 *7))) (-4 *6 (-862)) (-4 *7 (-965 *5 (-543 *6) *6)) (-4 *5 (-1067)) (-5 *2 (-1 (-1175 *7) *7)) (-5 *1 (-1144 *5 *6 *7)))) (-2254 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2)))) (-2580 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1144 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *1 (-1144 *4 *3 *5)) (-4 *5 (-965 *4 (-543 *3) *3)))))
+(-13 (-752 |#1| |#2|) (-10 -8 (-15 -4309 (|#3| $ (-783))) (-15 -2956 ($ |#2|)) (-15 -2956 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4166 ((-1 (-1175 |#3|) |#3|) (-656 |#2|) (-656 (-1175 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $ |#2| |#1|)) (-15 -2580 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) 86)) (-3809 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) 102) (((-112) $) 98)) (-3276 ((|#4| |#4| $) 93)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 127)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-2940 (((-3 $ "failed") $) 83)) (-3164 ((|#4| |#4| $) 90)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2705 ((|#4| |#4| $) 88)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) 106)) (-3062 (((-112) |#4| $) 137)) (-3278 (((-112) |#4| $) 134)) (-2445 (((-112) |#4| $) 138) (((-112) $) 135)) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) 105) (((-112) $) 104)) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 128)) (-3338 (((-3 |#4| "failed") $) 84)) (-2196 (((-656 $) |#4| $) 130)) (-3036 (((-3 (-112) (-656 $)) |#4| $) 133)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3318 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3187 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3200 (((-656 |#4|) $) 108)) (-3103 (((-112) |#4| $) 100) (((-112) $) 96)) (-1992 ((|#4| |#4| $) 91)) (-3320 (((-112) $ $) 111)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-3945 (((-1138) $) 11)) (-2930 (((-3 |#4| "failed") $) 85)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2452 (((-3 $ "failed") $ |#4|) 79)) (-3167 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-2782 (((-783) $) 107)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-4104 (($ $) 89)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3364 (((-783) $) 77 (|has| |#3| (-379)))) (-2617 (((-112) $ $) 9)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2526 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) 82)) (-4300 (((-112) |#4| $) 136)) (-3684 (((-112) |#3| $) 81)) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-1145 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1145))
+NIL
+(-13 (-1127 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1089 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1127 |#1| |#2| |#3| |#4|) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T))
+((-2766 (((-656 |#2|) |#1|) 15)) (-3079 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-1973 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-2253 ((|#2| |#1|) 54)) (-3128 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4013 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-4342 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-2790 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3374 ((|#2| |#2| |#2| |#2|) 51)) (-3449 ((|#2| |#2| |#2|) 50)) (-2539 ((|#2| |#2| |#2| |#2| |#2|) 52)))
+(((-1146 |#1| |#2|) (-10 -7 (-15 -2766 ((-656 |#2|) |#1|)) (-15 -2253 (|#2| |#1|)) (-15 -3128 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4013 ((-656 |#2|) |#1|)) (-15 -1973 ((-656 |#2|) |#1|)) (-15 -4342 ((-656 |#2|) |#1|)) (-15 -3079 ((-656 |#2|) |#1|)) (-15 -4013 ((-656 |#2|) |#2| |#2|)) (-15 -1973 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -4342 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3079 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3449 (|#2| |#2| |#2|)) (-15 -3374 (|#2| |#2| |#2| |#2|)) (-15 -2539 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1262 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1146))
+((-2790 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-2539 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3374 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3449 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-3079 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-4342 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-1973 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-4013 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-1973 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1146 *3 *5)) (-4 *3 (-1262 *5)))) (-2253 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -2766 ((-656 |#2|) |#1|)) (-15 -2253 (|#2| |#1|)) (-15 -3128 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4013 ((-656 |#2|) |#1|)) (-15 -1973 ((-656 |#2|) |#1|)) (-15 -4342 ((-656 |#2|) |#1|)) (-15 -3079 ((-656 |#2|) |#1|)) (-15 -4013 ((-656 |#2|) |#2| |#2|)) (-15 -1973 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -4342 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3079 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3449 (|#2| |#2| |#2|)) (-15 -3374 (|#2| |#2| |#2| |#2|)) (-15 -2539 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1624 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195)) 82)) (-2325 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 111) (((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195)) 54)) (-3399 (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195)) 122) (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195)) 121)))
+(((-1147 |#1|) (-10 -7 (-15 -1624 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2325 ((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -2325 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3399 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3399 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -1147))
+((-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1147 *5)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1147 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-968 *5))))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1147 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1147 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1147 *5)))))
+(-10 -7 (-15 -1624 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)) (-1195))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-419 (-968 |#1|)))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -1624 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-968 |#1|))))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-968 |#1|))))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -1624 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2325 ((-656 (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -2325 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -3399 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -3399 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-968 |#1|)) (-1195))))
+((-4213 (((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)) 36)) (-4078 (((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|)))) 48)))
+(((-1148 |#1|) (-10 -7 (-15 -4078 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -4213 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)))) (-568)) (T -1148))
+((-4213 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1148 *5)))) (-4078 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1148 *3)))))
+(-10 -7 (-15 -4078 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -4213 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576))))
+((-2766 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24)))
+(((-1149 |#1|) (-10 -7 (-15 -2766 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -2766 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))))) (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (T -1149))
+((-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) (-5 *3 (-326 *5)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5)) (-5 *3 (-304 (-326 *5))))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-304 (-326 *4))))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4)) (-5 *3 (-326 *4)))))
+(-10 -7 (-15 -2766 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -2766 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -2766 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195)))))
+((-4209 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2664 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1150 |#1| |#2|) (-10 -7 (-15 -2664 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4209 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -2664 (|#2| |#2|)) (-15 -4209 (|#2| |#2|))) |%noBranch|)) (-1236) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4461) (-6 -4462)))) (T -1150))
+((-4209 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-4209 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) (-2664 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))))
+(-10 -7 (-15 -2664 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4209 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -2664 (|#2| |#2|)) (-15 -4209 (|#2| |#2|))) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-2191 (((-1183 3 |#1|) $) 141)) (-2808 (((-112) $) 101)) (-1411 (($ $ (-656 (-959 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-959 |#1|))) 103) (((-656 (-959 |#1|)) $) 102)) (-2948 (((-112) $) 72)) (-3569 (($ $ (-959 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-959 |#1|)) 77) (((-959 |#1|) $) 75)) (-2634 (((-2 (|:| -3329 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-2261 (((-783) $) 53)) (-3464 (((-783) $) 52)) (-3568 (($ $ (-783) (-959 |#1|)) 67)) (-2379 (((-112) $) 111)) (-4325 (($ $ (-656 (-656 (-959 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-959 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-959 |#1|)))) 116) (($ (-656 (-656 (-959 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-959 |#1|))) $) 114)) (-1383 (($ (-656 $)) 56) (($ $ $) 57)) (-2795 (((-656 (-173)) $) 133)) (-2945 (((-656 (-959 |#1|)) $) 130)) (-1400 (((-656 (-656 (-173))) $) 132)) (-3372 (((-656 (-656 (-656 (-959 |#1|)))) $) NIL)) (-3269 (((-656 (-656 (-656 (-783)))) $) 131)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-3048 (((-783) $ (-656 (-959 |#1|))) 65)) (-3102 (((-112) $) 84)) (-3895 (($ $ (-656 (-959 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-959 |#1|))) 87) (((-656 (-959 |#1|)) $) 85)) (-2164 (($) 48) (($ (-1183 3 |#1|)) 49)) (-3162 (($ $) 63)) (-2371 (((-656 $) $) 62)) (-3224 (($ (-656 $)) 59)) (-2581 (((-656 $) $) 61)) (-2956 (((-874) $) 146)) (-3380 (((-112) $) 94)) (-1895 (($ $ (-656 (-959 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-959 |#1|))) 97) (((-656 (-959 |#1|)) $) 95)) (-1447 (($ $) 140)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1151 |#1|) (-1152 |#1|) (-1067)) (T -1151))
+NIL
+(-1152 |#1|)
+((-2869 (((-112) $ $) 7)) (-2191 (((-1183 3 |#1|) $) 14)) (-2808 (((-112) $) 30)) (-1411 (($ $ (-656 (-959 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-959 |#1|))) 32) (((-656 (-959 |#1|)) $) 31)) (-2948 (((-112) $) 45)) (-3569 (($ $ (-959 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-959 |#1|)) 47) (((-959 |#1|) $) 46)) (-2634 (((-2 (|:| -3329 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-2261 (((-783) $) 59)) (-3464 (((-783) $) 60)) (-3568 (($ $ (-783) (-959 |#1|)) 51)) (-2379 (((-112) $) 22)) (-4325 (($ $ (-656 (-656 (-959 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-959 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-959 |#1|)))) 25) (($ (-656 (-656 (-959 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-959 |#1|))) $) 23)) (-1383 (($ (-656 $)) 58) (($ $ $) 57)) (-2795 (((-656 (-173)) $) 17)) (-2945 (((-656 (-959 |#1|)) $) 21)) (-1400 (((-656 (-656 (-173))) $) 18)) (-3372 (((-656 (-656 (-656 (-959 |#1|)))) $) 19)) (-3269 (((-656 (-656 (-656 (-783)))) $) 20)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3048 (((-783) $ (-656 (-959 |#1|))) 52)) (-3102 (((-112) $) 40)) (-3895 (($ $ (-656 (-959 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-959 |#1|))) 42) (((-656 (-959 |#1|)) $) 41)) (-2164 (($) 62) (($ (-1183 3 |#1|)) 61)) (-3162 (($ $) 53)) (-2371 (((-656 $) $) 54)) (-3224 (($ (-656 $)) 56)) (-2581 (((-656 $) $) 55)) (-2956 (((-874) $) 12)) (-3380 (((-112) $) 35)) (-1895 (($ $ (-656 (-959 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-959 |#1|))) 37) (((-656 (-959 |#1|)) $) 36)) (-1447 (($ $) 15)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-1152 |#1|) (-141) (-1067)) (T -1152))
+((-2956 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-874)))) (-2164 (*1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1383 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-2581 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))) (-2371 (*1 *2 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-959 *4))) (-4 *1 (-1152 *4)) (-4 *4 (-1067)) (-5 *2 (-783)))) (-3568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-959 *4)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3569 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-959 *3)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-1895 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1895 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-1411 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1411 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-4325 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-959 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))) (-4325 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))) (-4325 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-4325 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1152 *4)) (-4 *4 (-1067)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 *3)))) (-4 *3 (-1067)) (-4 *1 (-1152 *3)))) (-4325 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *4 (-1067)) (-4 *1 (-1152 *4)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-959 *3)))))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-656 (-959 *3))))))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-173)))))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-173))))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -3329 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-1447 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-1183 3 *3)))))
+(-13 (-1118) (-10 -8 (-15 -2164 ($)) (-15 -2164 ($ (-1183 3 |t#1|))) (-15 -3464 ((-783) $)) (-15 -2261 ((-783) $)) (-15 -1383 ($ (-656 $))) (-15 -1383 ($ $ $)) (-15 -3224 ($ (-656 $))) (-15 -2581 ((-656 $) $)) (-15 -2371 ((-656 $) $)) (-15 -3162 ($ $)) (-15 -3048 ((-783) $ (-656 (-959 |t#1|)))) (-15 -3568 ($ $ (-783) (-959 |t#1|))) (-15 -3569 ($ $ (-959 |t#1|))) (-15 -3569 ($ $ (-656 |t#1|))) (-15 -3569 ($ $ (-783))) (-15 -3569 ($ (-959 |t#1|))) (-15 -3569 ((-959 |t#1|) $)) (-15 -2948 ((-112) $)) (-15 -3895 ($ $ (-656 (-959 |t#1|)))) (-15 -3895 ($ $ (-656 (-656 |t#1|)))) (-15 -3895 ($ (-656 (-959 |t#1|)))) (-15 -3895 ((-656 (-959 |t#1|)) $)) (-15 -3102 ((-112) $)) (-15 -1895 ($ $ (-656 (-959 |t#1|)))) (-15 -1895 ($ $ (-656 (-656 |t#1|)))) (-15 -1895 ($ (-656 (-959 |t#1|)))) (-15 -1895 ((-656 (-959 |t#1|)) $)) (-15 -3380 ((-112) $)) (-15 -1411 ($ $ (-656 (-959 |t#1|)))) (-15 -1411 ($ $ (-656 (-656 |t#1|)))) (-15 -1411 ($ (-656 (-959 |t#1|)))) (-15 -1411 ((-656 (-959 |t#1|)) $)) (-15 -2808 ((-112) $)) (-15 -4325 ($ $ (-656 (-656 (-959 |t#1|))) (-656 (-173)) (-173))) (-15 -4325 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -4325 ($ $ (-656 (-656 (-959 |t#1|))) (-112) (-112))) (-15 -4325 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -4325 ($ (-656 (-656 (-959 |t#1|))))) (-15 -4325 ($ (-656 (-656 (-959 |t#1|))) (-112) (-112))) (-15 -4325 ((-656 (-656 (-959 |t#1|))) $)) (-15 -2379 ((-112) $)) (-15 -2945 ((-656 (-959 |t#1|)) $)) (-15 -3269 ((-656 (-656 (-656 (-783)))) $)) (-15 -3372 ((-656 (-656 (-656 (-959 |t#1|)))) $)) (-15 -1400 ((-656 (-656 (-173))) $)) (-15 -2795 ((-656 (-173)) $)) (-15 -2634 ((-2 (|:| -3329 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -1447 ($ $)) (-15 -2191 ((-1183 3 |t#1|) $)) (-15 -2956 ((-874) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 184) (($ (-1200)) NIL) (((-1200) $) 7)) (-2132 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1296))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1133))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1084))) 63) (((-112) $ (|[\|\|]| (-1297))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1169))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1054))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-988))) 99) (((-112) $ (|[\|\|]| (-1091))) 103) (((-112) $ (|[\|\|]| (-1108))) 107) (((-112) $ (|[\|\|]| (-1114))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1185))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1177))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2617 (((-112) $ $) NIL)) (-1338 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1296) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1133) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1084) $) 64) (((-1297) $) 68) (((-537) $) 72) (((-1169) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1054) $) 92) (((-182) $) 96) (((-988) $) 100) (((-1091) $) 104) (((-1108) $) 108) (((-1114) $) 112) (((-638) $) 116) (((-1185) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1177) $) 144) (((-576) $) 148)) (-2991 (((-112) $ $) NIL)))
+(((-1153) (-1155)) (T -1153))
+NIL
+(-1155)
+((-3715 (((-656 (-1200)) (-1177)) 9)))
+(((-1154) (-10 -7 (-15 -3715 ((-656 (-1200)) (-1177))))) (T -1154))
+((-3715 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1154)))))
+(-10 -7 (-15 -3715 ((-656 (-1200)) (-1177))))
+((-2869 (((-112) $ $) 7)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-2132 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1296))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1133))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1084))) 63) (((-112) $ (|[\|\|]| (-1297))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1169))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1054))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-988))) 45) (((-112) $ (|[\|\|]| (-1091))) 43) (((-112) $ (|[\|\|]| (-1108))) 41) (((-112) $ (|[\|\|]| (-1114))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1185))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1177))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2617 (((-112) $ $) 9)) (-1338 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1296) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1133) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1084) $) 62) (((-1297) $) 60) (((-537) $) 58) (((-1169) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1054) $) 48) (((-182) $) 46) (((-988) $) 44) (((-1091) $) 42) (((-1108) $) 40) (((-1114) $) 38) (((-638) $) 36) (((-1185) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1177) $) 22) (((-576) $) 20)) (-2991 (((-112) $ $) 6)))
(((-1155) (-141)) (T -1155))
-((-4415 (*1 *1 *1) (-4 *1 (-1155))) (-4147 (*1 *1 *1) (-4 *1 (-1155))) (-1861 (*1 *1 *1 *1) (-4 *1 (-1155))) (-4315 (*1 *1 *1 *1) (-4 *1 (-1155))) (-3119 (*1 *1 *1 *1) (-4 *1 (-1155))) (-1489 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2651 (*1 *1 *1 *1) (-4 *1 (-1155))) (-1349 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2467 (*1 *1 *1) (-4 *1 (-1155))) (-2636 (*1 *1 *1 *1) (-4 *1 (-1155))) (-2651 (*1 *1 *1) (-4 *1 (-1155))) (-4107 (*1 *1 *1) (-4 *1 (-1155))))
-(-13 (-10 -8 (-15 -4107 ($ $)) (-15 -2651 ($ $)) (-15 -2636 ($ $ $)) (-15 -2467 ($ $)) (-15 -1349 ($ $ $)) (-15 -2651 ($ $ $)) (-15 -1489 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4315 ($ $ $)) (-15 -1861 ($ $ $)) (-15 -4147 ($ $)) (-15 -4415 ($ $))))
-((-2864 (((-112) $ $) 44)) (-3079 ((|#1| $) 17)) (-2510 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1964 (((-112) $) 19)) (-1570 (($ $ |#1|) 30)) (-2851 (($ $ (-112)) 32)) (-1600 (($ $) 33)) (-1980 (($ $ |#2|) 31)) (-4420 (((-1175) $) NIL)) (-3854 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3940 (((-1136) $) NIL)) (-2265 (((-112) $) 16)) (-3014 (($) 13)) (-3157 (($ $) 29)) (-2963 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) 23) (((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) 26) (((-654 $) |#1| (-654 |#2|)) 28)) (-2277 ((|#2| $) 18)) (-2951 (((-872) $) 53)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 42)))
-(((-1156 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -3014 ($)) (-15 -2265 ((-112) $)) (-15 -3079 (|#1| $)) (-15 -2277 (|#2| $)) (-15 -1964 ((-112) $)) (-15 -2963 ($ |#1| |#2| (-112))) (-15 -2963 ($ |#1| |#2|)) (-15 -2963 ($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) (-15 -2963 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))))) (-15 -2963 ((-654 $) |#1| (-654 |#2|))) (-15 -3157 ($ $)) (-15 -1570 ($ $ |#1|)) (-15 -1980 ($ $ |#2|)) (-15 -2851 ($ $ (-112))) (-15 -1600 ($ $)) (-15 -3854 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2510 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1116) (-34)) (-13 (-1116) (-34))) (T -1156))
-((-3014 (*1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *2 *3)) (-4 *3 (-13 (-1116) (-34))))) (-2277 (*1 *2 *1) (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34))))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4068 *4))) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *4)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4068 *5)))) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-654 (-1156 *4 *5))) (-5 *1 (-1156 *4 *5)))) (-2963 (*1 *2 *3 *4) (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-654 (-1156 *3 *5))) (-5 *1 (-1156 *3 *5)) (-4 *3 (-13 (-1116) (-34))))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-1570 (*1 *1 *1 *2) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-1980 (*1 *1 *1 *2) (-12 (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34))) (-4 *2 (-13 (-1116) (-34))))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-3854 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *5 *6)))) (-2510 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34))))))
-(-13 (-1116) (-10 -8 (-15 -3014 ($)) (-15 -2265 ((-112) $)) (-15 -3079 (|#1| $)) (-15 -2277 (|#2| $)) (-15 -1964 ((-112) $)) (-15 -2963 ($ |#1| |#2| (-112))) (-15 -2963 ($ |#1| |#2|)) (-15 -2963 ($ (-2 (|:| |val| |#1|) (|:| -4068 |#2|)))) (-15 -2963 ((-654 $) (-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))))) (-15 -2963 ((-654 $) |#1| (-654 |#2|))) (-15 -3157 ($ $)) (-15 -1570 ($ $ |#1|)) (-15 -1980 ($ $ |#2|)) (-15 -2851 ($ $ (-112))) (-15 -1600 ($ $)) (-15 -3854 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2510 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2864 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3079 (((-1156 |#1| |#2|) $) 27)) (-1616 (($ $) 91)) (-2343 (((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2967 (($ $ $ (-654 (-1156 |#1| |#2|))) 108) (($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2832 (((-112) $ (-781)) NIL)) (-2234 (((-1156 |#1| |#2|) $ (-1156 |#1| |#2|)) 46 (|has| $ (-6 -4460)))) (-3135 (((-1156 |#1| |#2|) $ "value" (-1156 |#1| |#2|)) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 44 (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-4045 (((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $) 95)) (-2175 (($ (-1156 |#1| |#2|) $) 42)) (-3311 (($ (-1156 |#1| |#2|) $) 34)) (-1871 (((-654 (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 54)) (-2700 (((-112) (-1156 |#1| |#2|) $) 97)) (-3514 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 (-1156 |#1| |#2|)) $) 58 (|has| $ (-6 -4459)))) (-2333 (((-112) (-1156 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-1156 |#1| |#2|) (-1116))))) (-2462 (($ (-1 (-1156 |#1| |#2|) (-1156 |#1| |#2|)) $) 50 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-1156 |#1| |#2|) (-1156 |#1| |#2|)) $) 49)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 (-1156 |#1| |#2|)) $) 56)) (-2899 (((-112) $) 45)) (-4420 (((-1175) $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3940 (((-1136) $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-3416 (((-3 $ "failed") $) 89)) (-1731 (((-112) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-1156 |#1| |#2|)))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-302 (-1156 |#1| |#2|))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-1156 |#1| |#2|) (-1156 |#1| |#2|)) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116)))) (($ $ (-654 (-1156 |#1| |#2|)) (-654 (-1156 |#1| |#2|))) NIL (-12 (|has| (-1156 |#1| |#2|) (-317 (-1156 |#1| |#2|))) (|has| (-1156 |#1| |#2|) (-1116))))) (-3788 (((-112) $ $) 53)) (-2265 (((-112) $) 24)) (-3014 (($) 26)) (-2207 (((-1156 |#1| |#2|) $ "value") NIL)) (-4072 (((-574) $ $) NIL)) (-3864 (((-112) $) 47)) (-3949 (((-781) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459))) (((-781) (-1156 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-1156 |#1| |#2|) (-1116))))) (-3157 (($ $) 52)) (-2963 (($ (-1156 |#1| |#2|)) 10) (($ |#1| |#2| (-654 $)) 13) (($ |#1| |#2| (-654 (-1156 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-654 |#2|)) 18)) (-2685 (((-654 |#2|) $) 96)) (-2951 (((-872) $) 87 (|has| (-1156 |#1| |#2|) (-623 (-872))))) (-1418 (((-654 $) $) 31)) (-3779 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-2981 (((-112) $ $) NIL (|has| (-1156 |#1| |#2|) (-1116)))) (-2859 (((-112) (-1 (-112) (-1156 |#1| |#2|)) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 70 (|has| (-1156 |#1| |#2|) (-1116)))) (-2877 (((-781) $) 64 (|has| $ (-6 -4459)))))
-(((-1157 |#1| |#2|) (-13 (-1026 (-1156 |#1| |#2|)) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3416 ((-3 $ "failed") $)) (-15 -1616 ($ $)) (-15 -2963 ($ (-1156 |#1| |#2|))) (-15 -2963 ($ |#1| |#2| (-654 $))) (-15 -2963 ($ |#1| |#2| (-654 (-1156 |#1| |#2|)))) (-15 -2963 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2685 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $)) (-15 -2700 ((-112) (-1156 |#1| |#2|) $)) (-15 -2343 ((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3311 ($ (-1156 |#1| |#2|) $)) (-15 -2175 ($ (-1156 |#1| |#2|) $)) (-15 -2967 ($ $ $ (-654 (-1156 |#1| |#2|)))) (-15 -2967 ($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1116) (-34)) (-13 (-1116) (-34))) (T -1157))
-((-3416 (*1 *1 *1) (|partial| -12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1157 *2 *3))) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))))) (-2963 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-654 (-1156 *2 *3))) (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3)))) (-2963 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34))))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-654 *4)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4)))) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))) (-2700 (*1 *2 *3 *1) (-12 (-5 *3 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)))) (-2343 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1156 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))) (-3311 (*1 *1 *2 *1) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2175 (*1 *1 *2 *1) (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2967 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-654 (-1156 *3 *4))) (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))) (-2967 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-1156 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34))) (-5 *1 (-1157 *4 *5)))))
-(-13 (-1026 (-1156 |#1| |#2|)) (-10 -8 (-6 -4460) (-6 -4459) (-15 -3416 ((-3 $ "failed") $)) (-15 -1616 ($ $)) (-15 -2963 ($ (-1156 |#1| |#2|))) (-15 -2963 ($ |#1| |#2| (-654 $))) (-15 -2963 ($ |#1| |#2| (-654 (-1156 |#1| |#2|)))) (-15 -2963 ($ |#1| |#2| |#1| (-654 |#2|))) (-15 -2685 ((-654 |#2|) $)) (-15 -4045 ((-654 (-2 (|:| |val| |#1|) (|:| -4068 |#2|))) $)) (-15 -2700 ((-112) (-1156 |#1| |#2|) $)) (-15 -2343 ((-112) (-1156 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3311 ($ (-1156 |#1| |#2|) $)) (-15 -2175 ($ (-1156 |#1| |#2|) $)) (-15 -2967 ($ $ $ (-654 (-1156 |#1| |#2|)))) (-15 -2967 ($ $ $ (-654 (-1156 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2622 (($ $) NIL)) (-1644 ((|#2| $) NIL)) (-2406 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2660 (($ (-699 |#2|)) 56)) (-1836 (((-112) $) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2469 (($ |#2|) 14)) (-1430 (($) NIL T CONST)) (-4300 (($ $) 69 (|has| |#2| (-315)))) (-2273 (((-246 |#1| |#2|) $ (-574)) 42)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) ((|#2| $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) 83)) (-3558 (((-781) $) 71 (|has| |#2| (-566)))) (-2400 ((|#2| $ (-574) (-574)) NIL)) (-1871 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3943 (((-112) $) NIL)) (-3026 (((-781) $) 73 (|has| |#2| (-566)))) (-3580 (((-654 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-566)))) (-2197 (((-781) $) NIL)) (-3764 (($ |#2|) 25)) (-2206 (((-781) $) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-1625 ((|#2| $) 67 (|has| |#2| (-6 (-4461 "*"))))) (-4075 (((-574) $) NIL)) (-1351 (((-574) $) NIL)) (-1764 (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3183 (((-574) $) NIL)) (-2759 (((-574) $) NIL)) (-2924 (($ (-654 (-654 |#2|))) 37)) (-2462 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2796 (((-654 (-654 |#2|)) $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3858 (((-3 $ "failed") $) 80 (|has| |#2| (-372)))) (-3940 (((-1136) $) NIL)) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566)))) (-1731 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ (-574) (-574) |#2|) NIL) ((|#2| $ (-574) (-574)) NIL)) (-3879 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-1681 ((|#2| $) NIL)) (-2125 (($ (-654 |#2|)) 50)) (-2783 (((-112) $) NIL)) (-1939 (((-246 |#1| |#2|) $) NIL)) (-2293 ((|#2| $) 65 (|has| |#2| (-6 (-4461 "*"))))) (-3949 (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 89 (|has| |#2| (-624 (-546))))) (-4239 (((-246 |#1| |#2|) $ (-574)) 44)) (-2951 (((-872) $) 47) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#2| (-1054 (-417 (-574))))) (($ |#2|) NIL) (((-699 |#2|) $) 52)) (-3070 (((-781)) 23 T CONST)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2465 (((-112) $) NIL)) (-2141 (($) 16 T CONST)) (-2153 (($) 21 T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-781)) NIL (|has| |#2| (-239)))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) 63) (($ $ (-574)) 82 (|has| |#2| (-372)))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1158 |#1| |#2|) (-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -2622 ($ $)) (-15 -2660 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4461 "*"))) (-6 -4448) |%noBranch|) (IF (|has| |#2| (-6 (-4461 "*"))) (IF (|has| |#2| (-6 -4456)) (-6 -4456) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|))) (-781) (-1065)) (T -1158))
-((-3764 (*1 *1 *2) (-12 (-5 *1 (-1158 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1065)))) (-2622 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1065)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-781)))))
-(-13 (-1139 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-623 (-699 |#2|)) (-10 -8 (-15 -3764 ($ |#2|)) (-15 -2622 ($ $)) (-15 -2660 ($ (-699 |#2|))) (IF (|has| |#2| (-6 (-4461 "*"))) (-6 -4448) |%noBranch|) (IF (|has| |#2| (-6 (-4461 "*"))) (IF (|has| |#2| (-6 -4456)) (-6 -4456) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-624 (-546))) (-6 (-624 (-546))) |%noBranch|)))
-((-4385 (($ $) 19)) (-3763 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3707 (((-112) $ $) 24)) (-2230 (($ $) 17)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (($ $ $) 31)) (-2951 (($ (-145)) 29) (((-872) $) NIL)))
-(((-1159 |#1|) (-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -3763 (|#1| |#1| (-142))) (-15 -3763 (|#1| |#1| (-145))) (-15 -2951 (|#1| (-145))) (-15 -3707 ((-112) |#1| |#1|)) (-15 -4385 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2207 ((-145) |#1| (-574))) (-15 -2207 ((-145) |#1| (-574) (-145)))) (-1160)) (T -1159))
-NIL
-(-10 -8 (-15 -2951 ((-872) |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -3763 (|#1| |#1| (-142))) (-15 -3763 (|#1| |#1| (-145))) (-15 -2951 (|#1| (-145))) (-15 -3707 ((-112) |#1| |#1|)) (-15 -4385 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -2207 ((-145) |#1| (-574))) (-15 -2207 ((-145) |#1| (-574) (-145))))
-((-2864 (((-112) $ $) 19 (|has| (-145) (-1116)))) (-4286 (($ $) 123)) (-4385 (($ $) 124)) (-3763 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3686 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-1433 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-1492 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4287 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2632 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1354 (($ $ (-1251 (-574)) $) 117)) (-1573 (($ $) 80 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-145) $) 79 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) 52)) (-3707 (((-112) $ $) 122)) (-1452 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1871 (((-654 (-145)) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| (-145) (-860)))) (-2470 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1764 (((-654 (-145)) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 118)) (-2698 (((-781) $ $ (-145)) 119)) (-2462 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2017 (($ $) 125)) (-2230 (($ $) 126)) (-2302 (((-112) $ (-781)) 10)) (-2646 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4420 (((-1175) $) 22 (|has| (-145) (-1116)))) (-1602 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| (-145) (-1116)))) (-2925 (((-145) $) 43 (|has| (-574) (-860)))) (-3748 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1465 (($ $ (-145)) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2445 (((-654 (-145)) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1251 (-574))) 71) (($ $ $) 105)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4459))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) 72)) (-4132 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (($ (-145)) 114) (((-872) $) 18 (|has| (-145) (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| (-145) (-1116)))) (-2859 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3020 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2986 (((-112) $ $) 20 (|has| (-145) (-1116)))) (-3031 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1160) (-141)) (T -1160))
-((-2230 (*1 *1 *1) (-4 *1 (-1160))) (-2017 (*1 *1 *1) (-4 *1 (-1160))) (-4385 (*1 *1 *1) (-4 *1 (-1160))) (-4286 (*1 *1 *1) (-4 *1 (-1160))) (-3707 (*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))) (-3664 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-574)) (-5 *2 (-112)))) (-2698 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-781)))) (-1330 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-112)))) (-1354 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-1251 (-574))))) (-1452 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)))) (-1452 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)) (-5 *3 (-142)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1160)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2646 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-2646 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2632 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))) (-2632 (*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142)))) (-2207 (*1 *1 *1 *1) (-4 *1 (-1160))))
-(-13 (-19 (-145)) (-10 -8 (-15 -2230 ($ $)) (-15 -2017 ($ $)) (-15 -4385 ($ $)) (-15 -4286 ($ $)) (-15 -3707 ((-112) $ $)) (-15 -3686 ((-112) $ $)) (-15 -3664 ((-112) $ $ (-574))) (-15 -2698 ((-781) $ $ (-145))) (-15 -1330 ((-112) $ $ (-145))) (-15 -1354 ($ $ (-1251 (-574)) $)) (-15 -1452 ((-574) $ $ (-574))) (-15 -1452 ((-574) (-142) $ (-574))) (-15 -2951 ($ (-145))) (-15 -1433 ((-654 $) $ (-145))) (-15 -1433 ((-654 $) $ (-142))) (-15 -3763 ($ $ (-145))) (-15 -3763 ($ $ (-142))) (-15 -2646 ($ $ (-145))) (-15 -2646 ($ $ (-142))) (-15 -2632 ($ $ (-145))) (-15 -2632 ($ $ (-142))) (-15 -2207 ($ $ $))))
-(((-34) . T) ((-102) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860))) ((-623 (-872)) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860)) (|has| (-145) (-623 (-872)))) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-661 #0#) . T) ((-19 #0#) . T) ((-860) |has| (-145) (-860)) ((-1116) -2833 (|has| (-145) (-1116)) (|has| (-145) (-860))) ((-1234) . T))
-((-1959 (((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781)) 112)) (-3406 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 61)) (-3644 (((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)) 97)) (-3647 (((-781) (-654 |#4|) (-654 |#5|)) 30)) (-2221 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781)) 63) (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112)) 65)) (-3320 (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112)) 85)) (-1844 (((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) 90)) (-1941 (((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|) 60)) (-3197 (((-781) (-654 |#4|) (-654 |#5|)) 21)))
-(((-1161 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3197 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -3647 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1941 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781)))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|) (-1125 |#1| |#2| |#3| |#4|)) (T -1161))
-((-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9)))) (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8))) (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1125 *4 *5 *6 *7)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175)) (-5 *1 (-1161 *4 *5 *6 *7 *8)))) (-1959 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-654 *11)) (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11)))))) (-5 *6 (-781)) (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11)))) (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9)) (-4 *11 (-1125 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-5 *1 (-1161 *7 *8 *9 *10 *11)))) (-3320 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-3320 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-2221 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) (-2221 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803)) (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *7 *8 *9 *3 *4)) (-4 *4 (-1125 *7 *8 *9 *3)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-3406 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *3 (-1081 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-654 *4)) (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4)))))) (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3197 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -3647 ((-781) (-654 |#4|) (-654 |#5|))) (-15 -1941 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -3406 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781) (-112))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5| (-781))) (-15 -2221 ((-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) |#4| |#5|)) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112))) (-15 -3320 ((-654 |#5|) (-654 |#4|) (-654 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1959 ((-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-654 |#4|) (-654 |#5|) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-2 (|:| |done| (-654 |#5|)) (|:| |todo| (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))))) (-781))) (-15 -1844 ((-1175) (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|)))) (-15 -3644 ((-1289) (-654 (-2 (|:| |val| (-654 |#4|)) (|:| -4068 |#5|))) (-781))))
-((-2864 (((-112) $ $) NIL)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3291 (((-654 $) (-654 |#4|)) 124) (((-654 $) (-654 |#4|) (-112)) 125) (((-654 $) (-654 |#4|) (-112) (-112)) 123) (((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4350 (((-654 |#3|) $) NIL)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2684 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| $) 97)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 75)) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) 29 (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3688 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 45)) (-2581 ((|#4| |#4| $) 78)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) NIL)) (-2235 (((-112) |#4| $) NIL)) (-2261 (((-112) |#4| $) NIL)) (-4327 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1454 (((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)) 139)) (-1871 (((-654 |#4|) $) 18 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4063 ((|#3| $) 38)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#4|) $) 19 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-2462 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 23)) (-2089 (((-654 |#3|) $) NIL)) (-1726 (((-112) |#3| $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-2916 (((-3 |#4| (-654 $)) |#4| |#4| $) NIL)) (-3521 (((-654 (-2 (|:| |val| |#4|) (|:| -4068 $))) |#4| |#4| $) 117)) (-3334 (((-3 |#4| "failed") $) 42)) (-2423 (((-654 $) |#4| $) 102)) (-2570 (((-3 (-112) (-654 $)) |#4| $) NIL)) (-2950 (((-654 (-2 (|:| |val| (-112)) (|:| -4068 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3655 (((-654 $) |#4| $) 121) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 122) (((-654 $) |#4| (-654 $)) NIL)) (-3483 (((-654 $) (-654 |#4|) (-112) (-112) (-112)) 134)) (-1608 (($ |#4| $) 88) (($ (-654 |#4|) $) 89) (((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2252 (((-654 |#4|) $) NIL)) (-2897 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3184 ((|#4| |#4| $) NIL)) (-1624 (((-112) $ $) NIL)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1857 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 40)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4014 (((-3 $ "failed") $ |#4|) 59)) (-2249 (($ $ |#4|) NIL) (((-654 $) |#4| $) 104) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) 99)) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 17)) (-3014 (($) 14)) (-3735 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 22)) (-4216 (($ $ |#3|) 52)) (-2490 (($ $ |#3|) 54)) (-3615 (($ $) NIL)) (-3476 (($ $ |#3|) NIL)) (-2951 (((-872) $) 35) (((-654 |#4|) $) 46)) (-4292 (((-781) $) NIL (|has| |#3| (-377)))) (-2981 (((-112) $ $) NIL)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-3708 (((-654 $) |#4| $) 66) (((-654 $) |#4| (-654 $)) NIL) (((-654 $) (-654 |#4|) $) NIL) (((-654 $) (-654 |#4|) (-654 $)) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) NIL)) (-3510 (((-112) |#4| $) NIL)) (-4194 (((-112) |#3| $) 74)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1162 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1608 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3483 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1454 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112))))) (-462) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1162))
-((-1608 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *3))) (-5 *1 (-1162 *5 *6 *7 *3)) (-4 *3 (-1081 *5 *6 *7)))) (-3291 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-3291 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))) (-1454 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-654 *8)) (|:| |towers| (-654 (-1162 *5 *6 *7 *8))))) (-5 *1 (-1162 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
-(-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1608 ((-654 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112))) (-15 -3291 ((-654 $) (-654 |#4|) (-112) (-112) (-112) (-112))) (-15 -3483 ((-654 $) (-654 |#4|) (-112) (-112) (-112))) (-15 -1454 ((-2 (|:| |val| (-654 |#4|)) (|:| |towers| (-654 $))) (-654 |#4|) (-112) (-112)))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2010 ((|#1| $) 37)) (-4064 (($ (-654 |#1|)) 45)) (-2832 (((-112) $ (-781)) NIL)) (-1430 (($) NIL T CONST)) (-2990 ((|#1| |#1| $) 40)) (-1763 ((|#1| $) 35)) (-1871 (((-654 |#1|) $) 18 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 22)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1759 ((|#1| $) 38)) (-3705 (($ |#1| $) 41)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2098 ((|#1| $) 36)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 32)) (-3014 (($) 43)) (-4291 (((-781) $) 30)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 27)) (-2951 (((-872) $) 14 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3703 (($ (-654 |#1|)) NIL)) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 17 (|has| |#1| (-1116)))) (-2877 (((-781) $) 31 (|has| $ (-6 -4459)))))
-(((-1163 |#1|) (-13 (-1137 |#1|) (-10 -8 (-15 -4064 ($ (-654 |#1|))))) (-1234)) (T -1163))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1163 *3)))))
-(-13 (-1137 |#1|) (-10 -8 (-15 -4064 ($ (-654 |#1|)))))
-((-3135 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1251 (-574)) |#2|) 53) ((|#2| $ (-574) |#2|) 50)) (-1648 (((-112) $) 12)) (-2462 (($ (-1 |#2| |#2|) $) 48)) (-2925 ((|#2| $) NIL) (($ $ (-781)) 17)) (-1465 (($ $ |#2|) 49)) (-3388 (((-112) $) 11)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1251 (-574))) 36) ((|#2| $ (-574)) 26) ((|#2| $ (-574) |#2|) NIL)) (-2589 (($ $ $) 56) (($ $ |#2|) NIL)) (-4132 (($ $ $) 38) (($ |#2| $) NIL) (($ (-654 $)) 45) (($ $ |#2|) NIL)))
-(((-1164 |#1| |#2|) (-10 -8 (-15 -1648 ((-112) |#1|)) (-15 -3388 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -1465 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -4132 (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2589 (|#1| |#1| |#2|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| "last")) (-15 -2207 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|))) (-1165 |#2|) (-1234)) (T -1164))
-NIL
-(-10 -8 (-15 -1648 ((-112) |#1|)) (-15 -3388 ((-112) |#1|)) (-15 -3135 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574) |#2|)) (-15 -2207 (|#2| |#1| (-574))) (-15 -1465 (|#1| |#1| |#2|)) (-15 -2207 (|#1| |#1| (-1251 (-574)))) (-15 -4132 (|#1| |#1| |#2|)) (-15 -4132 (|#1| (-654 |#1|))) (-15 -3135 (|#2| |#1| (-1251 (-574)) |#2|)) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -2589 (|#1| |#1| |#2|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| "last")) (-15 -2207 (|#1| |#1| "rest")) (-15 -2925 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "first")) (-15 -2925 (|#2| |#1|)) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -2207 (|#2| |#1| "value")) (-15 -2462 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2620 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3373 (($ $ $) 57 (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 119 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 88 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4459)))) (-2408 ((|#1| $) 67)) (-1430 (($) 7 T CONST)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-1573 (($ $) 101 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4459))) (($ |#1| $) 102 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2473 ((|#1| $ (-574) |#1|) 87 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 89)) (-1648 (((-112) $) 85)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) 111)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 97 (|has| (-574) (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 96 (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-1602 (($ $ $ (-574)) 118) (($ |#1| $ (-574)) 117)) (-1583 (((-654 (-574)) $) 94)) (-1470 (((-112) (-574) $) 93)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1465 (($ $ |#1|) 98 (|has| $ (-6 -4460)))) (-3388 (((-112) $) 86)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 92)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1251 (-574))) 110) ((|#1| $ (-574)) 91) ((|#1| $ (-574) |#1|) 90)) (-4072 (((-574) $ $) 45)) (-2855 (($ $ (-1251 (-574))) 116) (($ $ (-574)) 115)) (-3864 (((-112) $) 47)) (-3333 (($ $) 63)) (-1823 (($ $) 60 (|has| $ (-6 -4460)))) (-1984 (((-781) $) 64)) (-1852 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-1844 (((-546) $) 100 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 109)) (-2589 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78) (($ (-654 $)) 113) (($ $ |#1|) 112)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1165 |#1|) (-141) (-1234)) (T -1165))
-((-3388 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
-(-13 (-1272 |t#1|) (-661 |t#1|) (-10 -8 (-15 -3388 ((-112) $)) (-15 -1648 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T) ((-1272 |#1|) . T))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) NIL)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1166 |#1| |#2| |#3|) (-1210 |#1| |#2|) (-1116) (-1116) |#2|) (T -1166))
-NIL
-(-1210 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-2653 (((-701 (-1151)) $) 27)) (-4121 (((-1151) $) 15)) (-3497 (((-1151) $) 17)) (-4420 (((-1175) $) NIL)) (-1412 (((-516) $) 13)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 37) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1167) (-13 (-1099) (-10 -8 (-15 -1412 ((-516) $)) (-15 -3497 ((-1151) $)) (-15 -2653 ((-701 (-1151)) $)) (-15 -4121 ((-1151) $))))) (T -1167))
-((-1412 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1167)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-701 (-1151))) (-5 *1 (-1167)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167)))))
-(-13 (-1099) (-10 -8 (-15 -1412 ((-516) $)) (-15 -3497 ((-1151) $)) (-15 -2653 ((-701 (-1151)) $)) (-15 -4121 ((-1151) $))))
-((-2864 (((-112) $ $) 7)) (-2081 (((-3 $ "failed") $) 14)) (-4420 (((-1175) $) 10)) (-3792 (($) 15 T CONST)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2986 (((-112) $ $) 6)))
-(((-1168) (-141)) (T -1168))
-((-3792 (*1 *1) (-4 *1 (-1168))) (-2081 (*1 *1 *1) (|partial| -4 *1 (-1168))))
-(-13 (-1116) (-10 -8 (-15 -3792 ($) -1714) (-15 -2081 ((-3 $ "failed") $))))
-(((-102) . T) ((-623 (-872)) . T) ((-1116) . T))
-((-3299 (((-1173 |#1|) (-1173 |#1|)) 17)) (-3179 (((-1173 |#1|) (-1173 |#1|)) 13)) (-4204 (((-1173 |#1|) (-1173 |#1|) (-574) (-574)) 20)) (-3459 (((-1173 |#1|) (-1173 |#1|)) 15)))
-(((-1169 |#1|) (-10 -7 (-15 -3179 ((-1173 |#1|) (-1173 |#1|))) (-15 -3459 ((-1173 |#1|) (-1173 |#1|))) (-15 -3299 ((-1173 |#1|) (-1173 |#1|))) (-15 -4204 ((-1173 |#1|) (-1173 |#1|) (-574) (-574)))) (-13 (-566) (-148))) (T -1169))
-((-4204 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1169 *4)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3)))) (-3459 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1169 *3)))))
-(-10 -7 (-15 -3179 ((-1173 |#1|) (-1173 |#1|))) (-15 -3459 ((-1173 |#1|) (-1173 |#1|))) (-15 -3299 ((-1173 |#1|) (-1173 |#1|))) (-15 -4204 ((-1173 |#1|) (-1173 |#1|) (-574) (-574))))
-((-4132 (((-1173 |#1|) (-1173 (-1173 |#1|))) 15)))
-(((-1170 |#1|) (-10 -7 (-15 -4132 ((-1173 |#1|) (-1173 (-1173 |#1|))))) (-1234)) (T -1170))
-((-4132 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-1234)))))
-(-10 -7 (-15 -4132 ((-1173 |#1|) (-1173 (-1173 |#1|)))))
-((-1904 (((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)) 25)) (-2882 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)) 26)) (-1785 (((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)) 16)))
-(((-1171 |#1| |#2|) (-10 -7 (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -1904 ((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|))) (-15 -2882 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|)))) (-1234) (-1234)) (T -1171))
-((-2882 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-1171 *5 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1173 *6)) (-4 *6 (-1234)) (-4 *3 (-1234)) (-5 *2 (-1173 *3)) (-5 *1 (-1171 *6 *3)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6)))))
-(-10 -7 (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -1904 ((-1173 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|))) (-15 -2882 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1173 |#1|))))
-((-1785 (((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|)) 21)))
-(((-1172 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|)))) (-1234) (-1234) (-1234)) (T -1172))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-1173 *7)) (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8)) (-5 *1 (-1172 *6 *7 *8)))))
-(-10 -7 (-15 -1785 ((-1173 |#3|) (-1 |#3| |#1| |#2|) (-1173 |#1|) (-1173 |#2|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) NIL)) (-2421 ((|#1| $) NIL)) (-1978 (($ $) 67)) (-2620 (((-1289) $ (-574) (-574)) 99 (|has| $ (-6 -4460)))) (-2289 (($ $ (-574)) 128 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-2069 (((-872) $) 56 (|has| |#1| (-1116)))) (-3860 (((-112)) 55 (|has| |#1| (-1116)))) (-2234 ((|#1| $ |#1|) NIL (|has| $ (-6 -4460)))) (-3373 (($ $ $) 115 (|has| $ (-6 -4460))) (($ $ (-574) $) 141)) (-3755 ((|#1| $ |#1|) 125 (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 120 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4460))) (($ $ "rest" $) 124 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 112 (|has| $ (-6 -4460))) ((|#1| $ (-574) |#1|) 77 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 80)) (-2408 ((|#1| $) NIL)) (-1430 (($) NIL T CONST)) (-2621 (($ $) 14)) (-2935 (($ $) 40) (($ $ (-781)) 111)) (-2232 (((-112) (-654 |#1|) $) 134 (|has| |#1| (-1116)))) (-3137 (($ (-654 |#1|)) 130)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) 79)) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1648 (((-112) $) NIL)) (-1871 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3231 (((-1289) (-574) $) 140 (|has| |#1| (-1116)))) (-4299 (((-781) $) 137)) (-4345 (((-654 $) $) NIL)) (-3514 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2302 (((-112) $ (-781)) NIL)) (-3482 (((-654 |#1|) $) NIL)) (-2899 (((-112) $) NIL)) (-2514 (($ $) 113)) (-3367 (((-112) $) 13)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3334 ((|#1| $) NIL) (($ $ (-781)) NIL)) (-1602 (($ $ $ (-574)) NIL) (($ |#1| $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) 96)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2101 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2305 ((|#1| $) 10)) (-2925 ((|#1| $) 39) (($ $ (-781)) 65)) (-3930 (((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $) 34)) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2149 (($ (-1 (-112) |#1|) $) 145)) (-2159 (($ (-1 (-112) |#1|) $) 146)) (-1465 (($ $ |#1|) 90 (|has| $ (-6 -4460)))) (-2249 (($ $ (-574)) 45)) (-3388 (((-112) $) 94)) (-2412 (((-112) $) 12)) (-2933 (((-112) $) 136)) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 30)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) 20)) (-3014 (($) 60)) (-2207 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1251 (-574))) NIL) ((|#1| $ (-574)) 75) ((|#1| $ (-574) |#1|) NIL)) (-4072 (((-574) $ $) 64)) (-2855 (($ $ (-1251 (-574))) NIL) (($ $ (-574)) NIL)) (-2388 (($ (-1 $)) 63)) (-3864 (((-112) $) 91)) (-3333 (($ $) 92)) (-1823 (($ $) 116 (|has| $ (-6 -4460)))) (-1984 (((-781) $) NIL)) (-1852 (($ $) NIL)) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 59)) (-1844 (((-546) $) NIL (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 73)) (-2233 (($ |#1| $) 114)) (-2589 (($ $ $) 118 (|has| $ (-6 -4460))) (($ $ |#1|) 119 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 101) (($ |#1| $) 61) (($ (-654 $)) 106) (($ $ |#1|) 100)) (-3263 (($ $) 66)) (-2951 (($ (-654 |#1|)) 129) (((-872) $) 57 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) NIL)) (-3779 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 132 (|has| |#1| (-1116)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1173 |#1|) (-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4460) (-15 -3137 ($ (-654 |#1|))) (IF (|has| |#1| (-1116)) (-15 -2232 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3930 ((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2388 ($ (-1 $))) (-15 -2233 ($ |#1| $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3231 ((-1289) (-574) $)) (-15 -2069 ((-872) $)) (-15 -3860 ((-112)))) |%noBranch|) (-15 -3373 ($ $ (-574) $)) (-15 -2101 ($ (-1 |#1|))) (-15 -2101 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2159 ($ (-1 (-112) |#1|) $)))) (-1234)) (T -1173))
-((-3137 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2232 (*1 *2 *3 *1) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112)) (-5 *1 (-1173 *4)))) (-3930 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781)))) (-5 *1 (-1173 *4)) (-4 *4 (-1234)) (-5 *3 (-781)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-1173 *3))) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))) (-2233 (*1 *1 *2 *1) (-12 (-5 *1 (-1173 *2)) (-4 *2 (-1234)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1173 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)))) (-3860 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1116)) (-4 *3 (-1234)))) (-3373 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2101 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))) (-2159 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))))
-(-13 (-684 |#1|) (-626 (-654 |#1|)) (-10 -8 (-6 -4460) (-15 -3137 ($ (-654 |#1|))) (IF (|has| |#1| (-1116)) (-15 -2232 ((-112) (-654 |#1|) $)) |%noBranch|) (-15 -3930 ((-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))) (-781) $)) (-15 -2388 ($ (-1 $))) (-15 -2233 ($ |#1| $)) (IF (|has| |#1| (-1116)) (PROGN (-15 -3231 ((-1289) (-574) $)) (-15 -2069 ((-872) $)) (-15 -3860 ((-112)))) |%noBranch|) (-15 -3373 ($ $ (-574) $)) (-15 -2101 ($ (-1 |#1|))) (-15 -2101 ($ (-1 |#1| |#1|) |#1|)) (-15 -2149 ($ (-1 (-112) |#1|) $)) (-15 -2159 ($ (-1 (-112) |#1|) $))))
-((-2864 (((-112) $ $) 19)) (-4286 (($ $) 123)) (-4385 (($ $) 124)) (-3763 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-3686 (((-112) $ $) 121)) (-3664 (((-112) $ $ (-574)) 120)) (-3232 (($ (-574)) 130)) (-1433 (((-654 $) $ (-145)) 113) (((-654 $) $ (-142)) 112)) (-1492 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-860)))) (-4287 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| (-145) (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 (((-145) $ (-574) (-145)) 53 (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2632 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1354 (($ $ (-1251 (-574)) $) 117)) (-1573 (($ $) 80 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ (-145) $) 79 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) 54 (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) 52)) (-3707 (((-112) $ $) 122)) (-1452 (((-574) (-1 (-112) (-145)) $) 100) (((-574) (-145) $) 99 (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) 98 (|has| (-145) (-1116))) (((-574) $ $ (-574)) 116) (((-574) (-142) $ (-574)) 115)) (-1871 (((-654 (-145)) $) 31 (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| (-145) (-860)))) (-2470 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-860)))) (-1764 (((-654 (-145)) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) 118)) (-2698 (((-781) $ $ (-145)) 119)) (-2462 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2017 (($ $) 125)) (-2230 (($ $) 126)) (-2302 (((-112) $ (-781)) 10)) (-2646 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4420 (((-1175) $) 22)) (-1602 (($ (-145) $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21)) (-2925 (((-145) $) 43 (|has| (-574) (-860)))) (-3748 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1465 (($ $ (-145)) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) 27 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) 26 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) 24 (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2445 (((-654 (-145)) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 (((-145) $ (-574) (-145)) 51) (((-145) $ (-574)) 50) (($ $ (-1251 (-574))) 71) (($ $ $) 105)) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-3949 (((-781) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4459))) (((-781) (-145) $) 29 (-12 (|has| (-145) (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) 72)) (-4132 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (($ (-145)) 114) (((-872) $) 18)) (-2981 (((-112) $ $) 23)) (-2859 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4459)))) (-4029 (((-1175) $) 134) (((-1175) $ (-112)) 133) (((-1289) (-832) $) 132) (((-1289) (-832) $ (-112)) 131)) (-3042 (((-112) $ $) 87 (|has| (-145) (-860)))) (-3020 (((-112) $ $) 86 (|has| (-145) (-860)))) (-2986 (((-112) $ $) 20)) (-3031 (((-112) $ $) 88 (|has| (-145) (-860)))) (-3009 (((-112) $ $) 85 (|has| (-145) (-860)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1174) (-141)) (T -1174))
-((-3232 (*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1174)))))
-(-13 (-1160) (-1116) (-838) (-10 -8 (-15 -3232 ($ (-574)))))
-(((-34) . T) ((-102) . T) ((-623 (-872)) . T) ((-152 #0=(-145)) . T) ((-624 (-546)) |has| (-145) (-624 (-546))) ((-294 #1=(-574) #0#) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #1# #0#) . T) ((-317 #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-382 #0#) . T) ((-499 #0#) . T) ((-614 #1# #0#) . T) ((-524 #0# #0#) -12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))) ((-661 #0#) . T) ((-19 #0#) . T) ((-838) . T) ((-860) |has| (-145) (-860)) ((-1116) . T) ((-1160) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4286 (($ $) NIL)) (-4385 (($ $) NIL)) (-3763 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-3686 (((-112) $ $) NIL)) (-3664 (((-112) $ $ (-574)) NIL)) (-3232 (($ (-574)) 8)) (-1433 (((-654 $) $ (-145)) NIL) (((-654 $) $ (-142)) NIL)) (-1492 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-860)))) (-4287 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-860))))) (-2786 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460))) (((-145) $ (-1251 (-574)) (-145)) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2632 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1354 (($ $ (-1251 (-574)) $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-3311 (($ (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4459))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2473 (((-145) $ (-574) (-145)) NIL (|has| $ (-6 -4460)))) (-2400 (((-145) $ (-574)) NIL)) (-3707 (((-112) $ $) NIL)) (-1452 (((-574) (-1 (-112) (-145)) $) NIL) (((-574) (-145) $) NIL (|has| (-145) (-1116))) (((-574) (-145) $ (-574)) NIL (|has| (-145) (-1116))) (((-574) $ $ (-574)) NIL) (((-574) (-142) $ (-574)) NIL)) (-1871 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-3764 (($ (-781) (-145)) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| (-145) (-860)))) (-2470 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-860)))) (-1764 (((-654 (-145)) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2790 (((-574) $) NIL (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| (-145) (-860)))) (-1330 (((-112) $ $ (-145)) NIL)) (-2698 (((-781) $ $ (-145)) NIL)) (-2462 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2017 (($ $) NIL)) (-2230 (($ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-2646 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4420 (((-1175) $) NIL)) (-1602 (($ (-145) $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-145) $) NIL (|has| (-574) (-860)))) (-3748 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1465 (($ $ (-145)) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-145)))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-302 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116)))) (($ $ (-654 (-145)) (-654 (-145))) NIL (-12 (|has| (-145) (-317 (-145))) (|has| (-145) (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2445 (((-654 (-145)) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 (((-145) $ (-574) (-145)) NIL) (((-145) $ (-574)) NIL) (($ $ (-1251 (-574))) NIL) (($ $ $) NIL)) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3949 (((-781) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459))) (((-781) (-145) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-145) (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-145) (-624 (-546))))) (-2963 (($ (-654 (-145))) NIL)) (-4132 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (($ (-145)) NIL) (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2859 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4459)))) (-4029 (((-1175) $) 19) (((-1175) $ (-112)) 21) (((-1289) (-832) $) 22) (((-1289) (-832) $ (-112)) 23)) (-3042 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3020 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (|has| (-145) (-860)))) (-3009 (((-112) $ $) NIL (|has| (-145) (-860)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1175) (-1174)) (T -1175))
-NIL
-(-1174)
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2620 (((-1289) $ (-1175) (-1175)) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-1175) |#1|) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#1| "failed") (-1175) $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#1| "failed") (-1175) $) NIL)) (-3311 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-1175) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-1175)) NIL)) (-1871 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-1175) $) NIL (|has| (-1175) (-860)))) (-1764 (((-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-1175) $) NIL (|has| (-1175) (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-1772 (((-654 (-1175)) $) NIL)) (-2968 (((-112) (-1175) $) NIL)) (-1759 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1583 (((-654 (-1175)) $) NIL)) (-1470 (((-112) (-1175) $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-2925 ((|#1| $) NIL (|has| (-1175) (-860)))) (-3748 (((-3 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) "failed") (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL (-12 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-317 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-1175)) NIL) ((|#1| $ (-1175) |#1|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-623 (-872))) (|has| |#1| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 (-1175)) (|:| -1916 |#1|)) (-1116)) (|has| |#1| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1176 |#1|) (-13 (-1210 (-1175) |#1|) (-10 -7 (-6 -4459))) (-1116)) (T -1176))
-NIL
-(-13 (-1210 (-1175) |#1|) (-10 -7 (-6 -4459)))
-((-3563 (((-1173 |#1|) (-1173 |#1|)) 83)) (-3612 (((-3 (-1173 |#1|) "failed") (-1173 |#1|)) 39)) (-3857 (((-1173 |#1|) (-417 (-574)) (-1173 |#1|)) 133 (|has| |#1| (-38 (-417 (-574)))))) (-4128 (((-1173 |#1|) |#1| (-1173 |#1|)) 139 (|has| |#1| (-372)))) (-2731 (((-1173 |#1|) (-1173 |#1|)) 97)) (-2763 (((-1173 (-574)) (-574)) 63)) (-3324 (((-1173 |#1|) (-1173 (-1173 |#1|))) 116 (|has| |#1| (-38 (-417 (-574)))))) (-3794 (((-1173 |#1|) (-574) (-574) (-1173 |#1|)) 102)) (-3806 (((-1173 |#1|) |#1| (-574)) 51)) (-2811 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 66)) (-2610 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 136 (|has| |#1| (-372)))) (-1393 (((-1173 |#1|) |#1| (-1 (-1173 |#1|))) 115 (|has| |#1| (-38 (-417 (-574)))))) (-4424 (((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|))) 137 (|has| |#1| (-372)))) (-3567 (((-1173 |#1|) (-1173 |#1|)) 96)) (-4101 (((-1173 |#1|) (-1173 |#1|)) 82)) (-2866 (((-1173 |#1|) (-574) (-574) (-1173 |#1|)) 103)) (-3083 (((-1173 |#1|) |#1| (-1173 |#1|)) 112 (|has| |#1| (-38 (-417 (-574)))))) (-1653 (((-1173 (-574)) (-574)) 62)) (-3087 (((-1173 |#1|) |#1|) 65)) (-3268 (((-1173 |#1|) (-1173 |#1|) (-574) (-574)) 99)) (-2497 (((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|)) 72)) (-2853 (((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|)) 37)) (-3907 (((-1173 |#1|) (-1173 |#1|)) 98)) (-2661 (((-1173 |#1|) (-1173 |#1|) |#1|) 77)) (-2411 (((-1173 |#1|) (-1173 |#1|)) 68)) (-3824 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 78)) (-2951 (((-1173 |#1|) |#1|) 73)) (-2565 (((-1173 |#1|) (-1173 (-1173 |#1|))) 88)) (-3099 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 38)) (-3090 (((-1173 |#1|) (-1173 |#1|)) 21) (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 23)) (-3074 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 17)) (* (((-1173 |#1|) (-1173 |#1|) |#1|) 29) (((-1173 |#1|) |#1| (-1173 |#1|)) 26) (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 27)))
-(((-1177 |#1|) (-10 -7 (-15 -3074 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -2853 ((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|))) (-15 -3099 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3612 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -3806 ((-1173 |#1|) |#1| (-574))) (-15 -1653 ((-1173 (-574)) (-574))) (-15 -2763 ((-1173 (-574)) (-574))) (-15 -3087 ((-1173 |#1|) |#1|)) (-15 -2811 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2411 ((-1173 |#1|) (-1173 |#1|))) (-15 -2497 ((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|))) (-15 -2951 ((-1173 |#1|) |#1|)) (-15 -2661 ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -3824 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4101 ((-1173 |#1|) (-1173 |#1|))) (-15 -3563 ((-1173 |#1|) (-1173 |#1|))) (-15 -2565 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -3567 ((-1173 |#1|) (-1173 |#1|))) (-15 -2731 ((-1173 |#1|) (-1173 |#1|))) (-15 -3907 ((-1173 |#1|) (-1173 |#1|))) (-15 -3268 ((-1173 |#1|) (-1173 |#1|) (-574) (-574))) (-15 -3794 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (-15 -2866 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 -1393 ((-1173 |#1|) |#1| (-1 (-1173 |#1|)))) (-15 -3324 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -3857 ((-1173 |#1|) (-417 (-574)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2610 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4424 ((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|)))) (-15 -4128 ((-1173 |#1|) |#1| (-1173 |#1|)))) |%noBranch|)) (-1065)) (T -1177))
-((-4128 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1173 *4))) (-4 *4 (-372)) (-4 *4 (-1065)) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)))) (-2610 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3857 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1065)) (-5 *3 (-417 (-574))) (-5 *1 (-1177 *4)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1173 *3))) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))) (-3083 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2866 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-3794 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-3268 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2731 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3567 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1065)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-4101 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3824 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-2497 (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1065)) (-5 *1 (-1177 *4)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2811 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3087 (*1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-2763 (*1 *2 *3) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) (-5 *3 (-574)))) (-1653 (*1 *2 *3) (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065)) (-5 *3 (-574)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))) (-3612 (*1 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-2853 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
-(-10 -7 (-15 -3074 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3090 ((-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 * ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 * ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -2853 ((-3 (-1173 |#1|) "failed") (-1173 |#1|) (-1173 |#1|))) (-15 -3099 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3612 ((-3 (-1173 |#1|) "failed") (-1173 |#1|))) (-15 -3806 ((-1173 |#1|) |#1| (-574))) (-15 -1653 ((-1173 (-574)) (-574))) (-15 -2763 ((-1173 (-574)) (-574))) (-15 -3087 ((-1173 |#1|) |#1|)) (-15 -2811 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2411 ((-1173 |#1|) (-1173 |#1|))) (-15 -2497 ((-1173 |#1|) (-1 |#1| (-574)) (-1173 |#1|))) (-15 -2951 ((-1173 |#1|) |#1|)) (-15 -2661 ((-1173 |#1|) (-1173 |#1|) |#1|)) (-15 -3824 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4101 ((-1173 |#1|) (-1173 |#1|))) (-15 -3563 ((-1173 |#1|) (-1173 |#1|))) (-15 -2565 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -3567 ((-1173 |#1|) (-1173 |#1|))) (-15 -2731 ((-1173 |#1|) (-1173 |#1|))) (-15 -3907 ((-1173 |#1|) (-1173 |#1|))) (-15 -3268 ((-1173 |#1|) (-1173 |#1|) (-574) (-574))) (-15 -3794 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (-15 -2866 ((-1173 |#1|) (-574) (-574) (-1173 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ((-1173 |#1|) |#1| (-1173 |#1|))) (-15 -1393 ((-1173 |#1|) |#1| (-1 (-1173 |#1|)))) (-15 -3324 ((-1173 |#1|) (-1173 (-1173 |#1|)))) (-15 -3857 ((-1173 |#1|) (-417 (-574)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-372)) (PROGN (-15 -2610 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4424 ((-1173 |#1|) (-1 |#1| (-574)) |#1| (-1 (-1173 |#1|)))) (-15 -4128 ((-1173 |#1|) |#1| (-1173 |#1|)))) |%noBranch|))
-((-2379 (((-1173 |#1|) (-1173 |#1|)) 60)) (-2258 (((-1173 |#1|) (-1173 |#1|)) 42)) (-2358 (((-1173 |#1|) (-1173 |#1|)) 56)) (-2236 (((-1173 |#1|) (-1173 |#1|)) 38)) (-2404 (((-1173 |#1|) (-1173 |#1|)) 63)) (-2280 (((-1173 |#1|) (-1173 |#1|)) 45)) (-3113 (((-1173 |#1|) (-1173 |#1|)) 34)) (-1617 (((-1173 |#1|) (-1173 |#1|)) 29)) (-2417 (((-1173 |#1|) (-1173 |#1|)) 64)) (-2288 (((-1173 |#1|) (-1173 |#1|)) 46)) (-2390 (((-1173 |#1|) (-1173 |#1|)) 61)) (-2269 (((-1173 |#1|) (-1173 |#1|)) 43)) (-2368 (((-1173 |#1|) (-1173 |#1|)) 58)) (-2247 (((-1173 |#1|) (-1173 |#1|)) 40)) (-2456 (((-1173 |#1|) (-1173 |#1|)) 68)) (-2320 (((-1173 |#1|) (-1173 |#1|)) 50)) (-2429 (((-1173 |#1|) (-1173 |#1|)) 66)) (-2301 (((-1173 |#1|) (-1173 |#1|)) 48)) (-2480 (((-1173 |#1|) (-1173 |#1|)) 71)) (-2340 (((-1173 |#1|) (-1173 |#1|)) 53)) (-2536 (((-1173 |#1|) (-1173 |#1|)) 72)) (-2349 (((-1173 |#1|) (-1173 |#1|)) 54)) (-2468 (((-1173 |#1|) (-1173 |#1|)) 70)) (-2330 (((-1173 |#1|) (-1173 |#1|)) 52)) (-2443 (((-1173 |#1|) (-1173 |#1|)) 69)) (-2312 (((-1173 |#1|) (-1173 |#1|)) 51)) (** (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 36)))
-(((-1178 |#1|) (-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2236 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2288 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) (-38 (-417 (-574)))) (T -1178))
-((-2536 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1178 *3)))))
-(-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2236 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2288 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|))))
-((-2379 (((-1173 |#1|) (-1173 |#1|)) 102)) (-2258 (((-1173 |#1|) (-1173 |#1|)) 61)) (-2070 (((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|)) 98)) (-2358 (((-1173 |#1|) (-1173 |#1|)) 99)) (-3508 (((-2 (|:| -2236 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|)) 54)) (-2236 (((-1173 |#1|) (-1173 |#1|)) 55)) (-2404 (((-1173 |#1|) (-1173 |#1|)) 104)) (-2280 (((-1173 |#1|) (-1173 |#1|)) 68)) (-3113 (((-1173 |#1|) (-1173 |#1|)) 40)) (-1617 (((-1173 |#1|) (-1173 |#1|)) 37)) (-2417 (((-1173 |#1|) (-1173 |#1|)) 105)) (-2288 (((-1173 |#1|) (-1173 |#1|)) 69)) (-2390 (((-1173 |#1|) (-1173 |#1|)) 103)) (-2269 (((-1173 |#1|) (-1173 |#1|)) 64)) (-2368 (((-1173 |#1|) (-1173 |#1|)) 100)) (-2247 (((-1173 |#1|) (-1173 |#1|)) 56)) (-2456 (((-1173 |#1|) (-1173 |#1|)) 113)) (-2320 (((-1173 |#1|) (-1173 |#1|)) 88)) (-2429 (((-1173 |#1|) (-1173 |#1|)) 107)) (-2301 (((-1173 |#1|) (-1173 |#1|)) 84)) (-2480 (((-1173 |#1|) (-1173 |#1|)) 117)) (-2340 (((-1173 |#1|) (-1173 |#1|)) 92)) (-2536 (((-1173 |#1|) (-1173 |#1|)) 119)) (-2349 (((-1173 |#1|) (-1173 |#1|)) 94)) (-2468 (((-1173 |#1|) (-1173 |#1|)) 115)) (-2330 (((-1173 |#1|) (-1173 |#1|)) 90)) (-2443 (((-1173 |#1|) (-1173 |#1|)) 109)) (-2312 (((-1173 |#1|) (-1173 |#1|)) 86)) (** (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 41)))
-(((-1179 |#1|) (-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3508 ((-2 (|:| -2236 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|))) (-15 -2236 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2288 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2070 ((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|)))) (-38 (-417 (-574)))) (T -1179))
-((-2536 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2417 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2358 (-1173 *4)) (|:| -2368 (-1173 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-2 (|:| -2236 (-1173 *4)) (|:| -2247 (-1173 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1179 *3)))))
-(-10 -7 (-15 -1617 ((-1173 |#1|) (-1173 |#1|))) (-15 -3113 ((-1173 |#1|) (-1173 |#1|))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -3508 ((-2 (|:| -2236 (-1173 |#1|)) (|:| -2247 (-1173 |#1|))) (-1173 |#1|))) (-15 -2236 ((-1173 |#1|) (-1173 |#1|))) (-15 -2247 ((-1173 |#1|) (-1173 |#1|))) (-15 -2258 ((-1173 |#1|) (-1173 |#1|))) (-15 -2269 ((-1173 |#1|) (-1173 |#1|))) (-15 -2280 ((-1173 |#1|) (-1173 |#1|))) (-15 -2288 ((-1173 |#1|) (-1173 |#1|))) (-15 -2301 ((-1173 |#1|) (-1173 |#1|))) (-15 -2312 ((-1173 |#1|) (-1173 |#1|))) (-15 -2320 ((-1173 |#1|) (-1173 |#1|))) (-15 -2330 ((-1173 |#1|) (-1173 |#1|))) (-15 -2340 ((-1173 |#1|) (-1173 |#1|))) (-15 -2349 ((-1173 |#1|) (-1173 |#1|))) (-15 -2070 ((-2 (|:| -2358 (-1173 |#1|)) (|:| -2368 (-1173 |#1|))) (-1173 |#1|))) (-15 -2358 ((-1173 |#1|) (-1173 |#1|))) (-15 -2368 ((-1173 |#1|) (-1173 |#1|))) (-15 -2379 ((-1173 |#1|) (-1173 |#1|))) (-15 -2390 ((-1173 |#1|) (-1173 |#1|))) (-15 -2404 ((-1173 |#1|) (-1173 |#1|))) (-15 -2417 ((-1173 |#1|) (-1173 |#1|))) (-15 -2429 ((-1173 |#1|) (-1173 |#1|))) (-15 -2443 ((-1173 |#1|) (-1173 |#1|))) (-15 -2456 ((-1173 |#1|) (-1173 |#1|))) (-15 -2468 ((-1173 |#1|) (-1173 |#1|))) (-15 -2480 ((-1173 |#1|) (-1173 |#1|))) (-15 -2536 ((-1173 |#1|) (-1173 |#1|))))
-((-3974 (((-972 |#2|) |#2| |#2|) 50)) (-4135 ((|#2| |#2| |#1|) 19 (|has| |#1| (-315)))))
-(((-1180 |#1| |#2|) (-10 -7 (-15 -3974 ((-972 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -4135 (|#2| |#2| |#1|)) |%noBranch|)) (-566) (-1260 |#1|)) (T -1180))
-((-4135 (*1 *2 *2 *3) (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1180 *3 *2)) (-4 *2 (-1260 *3)))) (-3974 (*1 *2 *3 *3) (-12 (-4 *4 (-566)) (-5 *2 (-972 *3)) (-5 *1 (-1180 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -3974 ((-972 |#2|) |#2| |#2|)) (IF (|has| |#1| (-315)) (-15 -4135 (|#2| |#2| |#1|)) |%noBranch|))
-((-2864 (((-112) $ $) NIL)) (-2562 (($ $ (-654 (-781))) 79)) (-2079 (($) 33)) (-3213 (($ $) 51)) (-2822 (((-654 $) $) 60)) (-2548 (((-112) $) 19)) (-1438 (((-654 (-957 |#2|)) $) 86)) (-3552 (($ $) 80)) (-3987 (((-781) $) 47)) (-3764 (($) 32)) (-3853 (($ $ (-654 (-781)) (-957 |#2|)) 72) (($ $ (-654 (-781)) (-781)) 73) (($ $ (-781) (-957 |#2|)) 75)) (-2470 (($ $ $) 57) (($ (-654 $)) 59)) (-4313 (((-781) $) 87)) (-2899 (((-112) $) 15)) (-4420 (((-1175) $) NIL)) (-3287 (((-112) $) 22)) (-3940 (((-1136) $) NIL)) (-3094 (((-173) $) 85)) (-3593 (((-957 |#2|) $) 81)) (-2045 (((-781) $) 82)) (-4168 (((-112) $) 84)) (-2254 (($ $ (-654 (-781)) (-173)) 78)) (-4367 (($ $) 52)) (-2951 (((-872) $) 99)) (-1845 (($ $ (-654 (-781)) (-112)) 77)) (-1418 (((-654 $) $) 11)) (-3282 (($ $ (-781)) 46)) (-3756 (($ $) 43)) (-2981 (((-112) $ $) NIL)) (-3812 (($ $ $ (-957 |#2|) (-781)) 68)) (-2295 (($ $ (-957 |#2|)) 67)) (-3195 (($ $ (-654 (-781)) (-957 |#2|)) 66) (($ $ (-654 (-781)) (-781)) 70) (((-781) $ (-957 |#2|)) 71)) (-2986 (((-112) $ $) 92)))
-(((-1181 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -2899 ((-112) $)) (-15 -2548 ((-112) $)) (-15 -3287 ((-112) $)) (-15 -3764 ($)) (-15 -2079 ($)) (-15 -3756 ($ $)) (-15 -3282 ($ $ (-781))) (-15 -1418 ((-654 $) $)) (-15 -3987 ((-781) $)) (-15 -3213 ($ $)) (-15 -4367 ($ $)) (-15 -2470 ($ $ $)) (-15 -2470 ($ (-654 $))) (-15 -2822 ((-654 $) $)) (-15 -3195 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -2295 ($ $ (-957 |#2|))) (-15 -3812 ($ $ $ (-957 |#2|) (-781))) (-15 -3853 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -3195 ($ $ (-654 (-781)) (-781))) (-15 -3853 ($ $ (-654 (-781)) (-781))) (-15 -3195 ((-781) $ (-957 |#2|))) (-15 -3853 ($ $ (-781) (-957 |#2|))) (-15 -1845 ($ $ (-654 (-781)) (-112))) (-15 -2254 ($ $ (-654 (-781)) (-173))) (-15 -2562 ($ $ (-654 (-781)))) (-15 -3593 ((-957 |#2|) $)) (-15 -2045 ((-781) $)) (-15 -4168 ((-112) $)) (-15 -3094 ((-173) $)) (-15 -4313 ((-781) $)) (-15 -3552 ($ $)) (-15 -1438 ((-654 (-957 |#2|)) $)))) (-935) (-1065)) (T -1181))
-((-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2548 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3764 (*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-2079 (*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-4367 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-2470 (*1 *1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-2470 (*1 *1 *2) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-2295 (*1 *1 *1 *2) (-12 (-5 *2 (-957 *4)) (-4 *4 (-1065)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)))) (-3812 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-957 *5)) (-5 *3 (-781)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-3853 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-3853 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-3195 (*1 *2 *1 *3) (-12 (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *2 (-781)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-3853 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))) (-1845 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-2254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)) (-4 *5 (-1065)))) (-2562 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-957 *4)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))) (-3552 (*1 *1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-654 (-957 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935)) (-4 *4 (-1065)))))
-(-13 (-1116) (-10 -8 (-15 -2899 ((-112) $)) (-15 -2548 ((-112) $)) (-15 -3287 ((-112) $)) (-15 -3764 ($)) (-15 -2079 ($)) (-15 -3756 ($ $)) (-15 -3282 ($ $ (-781))) (-15 -1418 ((-654 $) $)) (-15 -3987 ((-781) $)) (-15 -3213 ($ $)) (-15 -4367 ($ $)) (-15 -2470 ($ $ $)) (-15 -2470 ($ (-654 $))) (-15 -2822 ((-654 $) $)) (-15 -3195 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -2295 ($ $ (-957 |#2|))) (-15 -3812 ($ $ $ (-957 |#2|) (-781))) (-15 -3853 ($ $ (-654 (-781)) (-957 |#2|))) (-15 -3195 ($ $ (-654 (-781)) (-781))) (-15 -3853 ($ $ (-654 (-781)) (-781))) (-15 -3195 ((-781) $ (-957 |#2|))) (-15 -3853 ($ $ (-781) (-957 |#2|))) (-15 -1845 ($ $ (-654 (-781)) (-112))) (-15 -2254 ($ $ (-654 (-781)) (-173))) (-15 -2562 ($ $ (-654 (-781)))) (-15 -3593 ((-957 |#2|) $)) (-15 -2045 ((-781) $)) (-15 -4168 ((-112) $)) (-15 -3094 ((-173) $)) (-15 -4313 ((-781) $)) (-15 -3552 ($ $)) (-15 -1438 ((-654 (-957 |#2|)) $))))
-((-2864 (((-112) $ $) NIL)) (-1816 ((|#2| $) 11)) (-1804 ((|#1| $) 10)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2963 (($ |#1| |#2|) 9)) (-2951 (((-872) $) 16)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1182 |#1| |#2|) (-13 (-1116) (-10 -8 (-15 -2963 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1816 (|#2| $)))) (-1116) (-1116)) (T -1182))
-((-2963 (*1 *1 *2 *3) (-12 (-5 *1 (-1182 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-1804 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *2 *3)) (-4 *3 (-1116)))) (-1816 (*1 *2 *1) (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1116)))))
-(-13 (-1116) (-10 -8 (-15 -2963 ($ |#1| |#2|)) (-15 -1804 (|#1| $)) (-15 -1816 (|#2| $))))
-((-2864 (((-112) $ $) NIL)) (-2530 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1183) (-13 (-1099) (-10 -8 (-15 -2530 ((-1151) $))))) (T -1183))
-((-2530 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1183)))))
-(-13 (-1099) (-10 -8 (-15 -2530 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4141 (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2475 (((-112) $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2991 (($ $ (-574)) NIL) (($ $ (-574) (-574)) 75)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-1474 (((-1191 |#1| |#2| |#3|) $) 42)) (-2682 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 32)) (-4402 (((-1191 |#1| |#2| |#3|) $) 33)) (-2379 (($ $) 116 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 92 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 112 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 88 (|has| |#1| (-38 (-417 (-574)))))) (-1370 (((-574) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) 120 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 96 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1193) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-2216 (((-1191 |#1| |#2| |#3|) $) 140) (((-1193) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-3358 (($ $) 37) (($ (-574) $) 38)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-1191 |#1| |#2| |#3|)) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 (-1191 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-1191 |#1| |#2| |#3|))) (|:| |vec| (-1284 (-1191 |#1| |#2| |#3|)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3612 (((-3 $ "failed") $) 54)) (-1659 (((-417 (-966 |#1|)) $ (-574)) 74 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 76 (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-2516 (((-112) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-1674 (((-112) $) 28)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-1518 (((-574) $) NIL) (((-574) $ (-574)) 26)) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1191 |#1| |#2| |#3|) $) 44 (|has| |#1| (-372)))) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2081 (((-3 $ "failed") $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))))) (-1935 (((-112) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3209 (($ $ (-935)) NIL)) (-4408 (($ (-1 |#1| (-574)) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 19) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2976 (($ $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) 81 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) (-1191 |#1| |#2| |#3|)) 36)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) 79 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 80 (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3577 (($ $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3229 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-574)) 158)) (-2853 (((-3 $ "failed") $ $) 55 (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 82 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-524 (-1193) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1191 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1191 |#1| |#2| |#3|)) (-654 (-1191 |#1| |#2| |#3|))) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-317 (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) NIL) (($ $ $) 61 (|has| (-574) (-1128))) (($ $ (-1191 |#1| |#2| |#3|)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-294 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1280 |#2|)) 57) (($ $) 56 (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-1611 (($ $) NIL (|has| |#1| (-372)))) (-2980 (((-1191 |#1| |#2| |#3|) $) 46 (|has| |#1| (-372)))) (-3735 (((-574) $) 43)) (-2417 (($ $) 122 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 98 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 118 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 94 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 114 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 90 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-546) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) 162) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1191 |#1| |#2| |#3|)) 30) (($ (-1280 |#2|)) 25) (($ (-1193)) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-1788 ((|#1| $ (-574)) 77)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-3941 (((-1191 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 128 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 104 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2429 (($ $) 124 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 100 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 108 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 110 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 130 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 106 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 126 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 102 (|has| |#1| (-38 (-417 (-574)))))) (-4107 (($ $) NIL (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2141 (($) 21 T CONST)) (-2153 (($) 16 T CONST)) (-3585 (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2833 (-12 (|has| (-1191 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1191 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 49 (|has| |#1| (-372))) (($ (-1191 |#1| |#2| |#3|) (-1191 |#1| |#2| |#3|)) 50 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 23)) (** (($ $ (-935)) NIL) (($ $ (-781)) 60) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) 83 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 137 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1191 |#1| |#2| |#3|)) 48 (|has| |#1| (-372))) (($ (-1191 |#1| |#2| |#3|) $) 47 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1184 |#1| |#2| |#3|) (-13 (-1246 |#1| (-1191 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1184))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1246 |#1| (-1191 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-3535 ((|#2| |#2| (-1108 |#2|)) 26) ((|#2| |#2| (-1193)) 28)))
-(((-1185 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| |#2| (-1193))) (-15 -3535 (|#2| |#2| (-1108 |#2|)))) (-13 (-566) (-1054 (-574)) (-649 (-574))) (-13 (-440 |#1|) (-161) (-27) (-1219))) (T -1185))
-((-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219))) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1185 *4 *2)))) (-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219))))))
-(-10 -7 (-15 -3535 (|#2| |#2| (-1193))) (-15 -3535 (|#2| |#2| (-1108 |#2|))))
-((-3535 (((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|)))) 31) (((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|))) 44) (((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193)) 33) (((-417 (-966 |#1|)) (-966 |#1|) (-1193)) 36)))
-(((-1186 |#1|) (-10 -7 (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1193))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|)))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|)))))) (-13 (-566) (-1054 (-574)))) (T -1186))
-((-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5))) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 *3 (-324 *5))) (-5 *1 (-1186 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1108 (-966 *5))) (-5 *3 (-966 *5)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 *3)) (-5 *1 (-1186 *5)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 (-417 (-966 *5)) (-324 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-417 (-966 *5))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-966 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-966 *5)))))
-(-10 -7 (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1193))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1193))) (-15 -3535 ((-417 (-966 |#1|)) (-966 |#1|) (-1108 (-966 |#1|)))) (-15 -3535 ((-3 (-417 (-966 |#1|)) (-324 |#1|)) (-417 (-966 |#1|)) (-1108 (-417 (-966 |#1|))))))
-((-1785 (((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|)) 13)))
-(((-1187 |#1| |#2|) (-10 -7 (-15 -1785 ((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|)))) (-1065) (-1065)) (T -1187))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-1187 *5 *6)))))
-(-10 -7 (-15 -1785 ((-1189 |#2|) (-1 |#2| |#1|) (-1189 |#1|))))
-((-3171 (((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))) 51)) (-4201 (((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))) 52)))
-(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|)))) (-15 -3171 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|))))) (-803) (-860) (-462) (-963 |#3| |#1| |#2|)) (T -1188))
-((-3171 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7))))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462)) (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7)))) (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7))))))
-(-10 -7 (-15 -4201 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|)))) (-15 -3171 ((-428 (-1189 (-417 |#4|))) (-1189 (-417 |#4|)))))
-((-2864 (((-112) $ $) 171)) (-4311 (((-112) $) 43)) (-4052 (((-1284 |#1|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-3391 (($ (-1189 |#1|)) NIL)) (-4172 (((-1189 $) $ (-1098)) 82) (((-1189 |#1|) $) 71)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) 164 (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ $) 158 (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) 95 (|has| |#1| (-923)))) (-2684 (($ $) NIL (|has| |#1| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 115 (|has| |#1| (-923)))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2027 (($ $ (-781)) 61)) (-2145 (($ $ (-781)) 63)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-462)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#1| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-1098) $) NIL)) (-4047 (($ $ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) 80)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) NIL) (((-699 |#1|) (-699 $)) NIL) (((-699 |#1|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2617 (($ $ $) 131)) (-1891 (($ $ $) NIL (|has| |#1| (-566)))) (-3959 (((-2 (|:| -1866 |#1|) (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-4135 (($ $) 165 (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-781) $) 69)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-2573 (((-872) $ (-872)) 148)) (-1518 (((-781) $ $) NIL (|has| |#1| (-566)))) (-3943 (((-112) $) 48)) (-2993 (((-781) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) 73) (($ (-1189 $) (-1098)) 89)) (-3209 (($ $ (-781)) 51)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 87) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1098)) NIL) (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 153)) (-2043 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-3431 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2143 (((-1189 |#1|) $) NIL)) (-3444 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) 76)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) NIL (|has| |#1| (-462)))) (-4420 (((-1175) $) NIL)) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) 60)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1098)) (|:| -2754 (-781))) "failed") $) NIL)) (-3083 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) NIL (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) 50)) (-1355 ((|#1| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 103 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-462))) (($ $ $) 167 (|has| |#1| (-462)))) (-2753 (($ $ (-781) |#1| $) 123)) (-3235 (((-428 (-1189 $)) (-1189 $)) 101 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 100 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 108 (|has| |#1| (-923)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#1|) NIL) (($ $ (-654 (-1098)) (-654 |#1|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) NIL (|has| |#1| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#1| (-566)))) (-4293 (((-3 $ "failed") $ (-781)) 54)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 172 (|has| |#1| (-372)))) (-1924 (($ $ (-1098)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3735 (((-781) $) 78) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) 162 (|has| |#1| (-462))) (($ $ (-1098)) NIL (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-923))))) (-2908 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#1| (-566)))) (-2951 (((-872) $) 149) (($ (-574)) NIL) (($ |#1|) 77) (($ (-1098)) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) 41 (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 17 T CONST)) (-2153 (($) 19 T CONST)) (-3585 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2986 (((-112) $ $) 120)) (-3099 (($ $ |#1|) 173 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 90)) (** (($ $ (-935)) 14) (($ $ (-781)) 12)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 39) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1189 |#1|) (-13 (-1260 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-872))) (-15 -2753 ($ $ (-781) |#1| $)))) (-1065)) (T -1189))
-((-2573 (*1 *2 *1 *2) (-12 (-5 *2 (-872)) (-5 *1 (-1189 *3)) (-4 *3 (-1065)))) (-2753 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1189 *3)) (-4 *3 (-1065)))))
-(-13 (-1260 |#1|) (-10 -8 (-15 -2573 ((-872) $ (-872))) (-15 -2753 ($ $ (-781) |#1| $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1191 |#1| |#2| |#3|) "failed") $) 36)) (-2216 (((-1184 |#1| |#2| |#3|) $) NIL) (((-1191 |#1| |#2| |#3|) $) NIL)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2654 (((-417 (-574)) $) 59)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) (-1184 |#1| |#2| |#3|)) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 20) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3928 (((-1184 |#1| |#2| |#3|) $) 41)) (-3706 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) NIL)) (-4414 (((-1184 |#1| |#2| |#3|) $) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 38)) (-3735 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) 62) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1184 |#1| |#2| |#3|)) 30) (($ (-1191 |#1| |#2| |#3|)) 31) (($ (-1280 |#2|)) 26) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 22 T CONST)) (-2153 (($) 16 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 24)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1190 |#1| |#2| |#3|) (-13 (-1267 |#1| (-1184 |#1| |#2| |#3|)) (-1054 (-1191 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1190))
-((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1267 |#1| (-1184 |#1| |#2| |#3|)) (-1054 (-1191 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 129)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 119)) (-3384 (((-1257 |#2| |#1|) $ (-781)) 69)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-781)) 85) (($ $ (-781) (-781)) 82)) (-2424 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 105)) (-2379 (($ $) 173 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 169 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 118) (($ (-1173 |#1|)) 113)) (-2404 (($ $) 177 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) 25)) (-2894 (($ $) 28)) (-4027 (((-966 |#1|) $ (-781)) 81) (((-966 |#1|) $ (-781) (-781)) 83)) (-1674 (((-112) $) 124)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $) 126) (((-781) $ (-781)) 128)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) NIL)) (-4408 (($ (-1 |#1| (-574)) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 13) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3083 (($ $) 133 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2249 (($ $ (-781)) 15)) (-2853 (((-3 $ "failed") $ $) 26 (|has| |#1| (-566)))) (-1617 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 122) (($ $ $) 132 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1280 |#2|)) 31)) (-3735 (((-781) $) NIL)) (-2417 (($ $) 179 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 175 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 171 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) 206) (($ (-574)) NIL) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1257 |#2| |#1|)) 55) (($ (-1280 |#2|)) 36)) (-3382 (((-1173 |#1|) $) 101)) (-1788 ((|#1| $ (-781)) 121)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 58)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 185 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 161 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 181 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 189 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 165 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 191 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 167 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 187 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 163 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 183 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 159 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 17 T CONST)) (-2153 (($) 20 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 198)) (-3074 (($ $ $) 35)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 203 (|has| |#1| (-372))) (($ $ $) 138 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 141 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1191 |#1| |#2| |#3|) (-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -3384 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1191))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-1191 *3 *4 *5)))) (-3384 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1191 *4 *5 *6)) (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -3384 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-2951 (((-872) $) 33) (($ (-1193)) 35)) (-2833 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 46)) (-2820 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 39) (($ $) 40)) (-2533 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 41)) (-2522 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 43)) (-2511 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 42)) (-2498 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 44)) (-2085 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $))) 45)))
-(((-1192) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2533 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2511 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2498 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2833 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ $))))) (T -1192))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1192)))) (-2533 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2511 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2522 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2498 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2833 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192)))) (-5 *1 (-1192)))) (-2820 (*1 *1 *1) (-5 *1 (-1192))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2951 ($ (-1193))) (-15 -2533 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2511 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2522 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2498 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2833 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2085 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)) (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388))) (|:| CF (-324 (-171 (-388)))) (|:| |switch| $)))) (-15 -2820 ($ $))))
-((-2864 (((-112) $ $) NIL)) (-1612 (($ $ (-654 (-872))) 62)) (-3504 (($ $ (-654 (-872))) 60)) (-3232 (((-1175) $) 101)) (-4122 (((-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872)))) $) 108)) (-1428 (((-112) $) 23)) (-3840 (($ $ (-654 (-654 (-872)))) 59) (($ $ (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872))))) 99)) (-1430 (($) 163 T CONST)) (-1679 (((-1289)) 135)) (-1821 (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 69) (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 76)) (-3764 (($) 122) (($ $) 131)) (-2039 (($ $) 100)) (-3634 (($ $ $) NIL)) (-2976 (($ $ $) NIL)) (-1795 (((-654 $) $) 136)) (-4420 (((-1175) $) 114)) (-3940 (((-1136) $) NIL)) (-2207 (($ $ (-654 (-872))) 61)) (-1844 (((-546) $) 48) (((-1193) $) 49) (((-903 (-574)) $) 80) (((-903 (-388)) $) 78)) (-2951 (((-872) $) 55) (($ (-1175)) 50)) (-2981 (((-112) $ $) NIL)) (-1693 (($ $ (-654 (-872))) 63)) (-4029 (((-1175) $) 34) (((-1175) $ (-112)) 35) (((-1289) (-832) $) 36) (((-1289) (-832) $ (-112)) 37)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 51)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 52)))
-(((-1193) (-13 (-860) (-624 (-546)) (-838) (-624 (-1193)) (-626 (-1175)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -1679 ((-1289))) (-15 -2039 ($ $)) (-15 -1428 ((-112) $)) (-15 -4122 ((-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3840 ($ $ (-654 (-654 (-872))))) (-15 -3840 ($ $ (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3504 ($ $ (-654 (-872)))) (-15 -1612 ($ $ (-654 (-872)))) (-15 -1693 ($ $ (-654 (-872)))) (-15 -2207 ($ $ (-654 (-872)))) (-15 -3232 ((-1175) $)) (-15 -1795 ((-654 $) $)) (-15 -1430 ($) -1714)))) (T -1193))
-((-3764 (*1 *1) (-5 *1 (-1193))) (-3764 (*1 *1 *1) (-5 *1 (-1193))) (-1679 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1193)))) (-2039 (*1 *1 *1) (-5 *1 (-1193))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1193)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1193)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872))))) (-5 *1 (-1193)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-1693 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1193)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1193)))) (-1430 (*1 *1) (-5 *1 (-1193))))
-(-13 (-860) (-624 (-546)) (-838) (-624 (-1193)) (-626 (-1175)) (-624 (-903 (-574))) (-624 (-903 (-388))) (-897 (-574)) (-897 (-388)) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ $)) (-15 -1679 ((-1289))) (-15 -2039 ($ $)) (-15 -1428 ((-112) $)) (-15 -4122 ((-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872)))) $)) (-15 -3840 ($ $ (-654 (-654 (-872))))) (-15 -3840 ($ $ (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872))) (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872))) (|:| |args| (-654 (-872)))))) (-15 -3504 ($ $ (-654 (-872)))) (-15 -1612 ($ $ (-654 (-872)))) (-15 -1693 ($ $ (-654 (-872)))) (-15 -2207 ($ $ (-654 (-872)))) (-15 -3232 ((-1175) $)) (-15 -1795 ((-654 $) $)) (-15 -1430 ($) -1714)))
-((-2014 (((-1284 |#1|) |#1| (-935)) 18) (((-1284 |#1|) (-654 |#1|)) 25)))
-(((-1194 |#1|) (-10 -7 (-15 -2014 ((-1284 |#1|) (-654 |#1|))) (-15 -2014 ((-1284 |#1|) |#1| (-935)))) (-1065)) (T -1194))
-((-2014 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-1284 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-1065)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4)) (-5 *1 (-1194 *4)))))
-(-10 -7 (-15 -2014 ((-1284 |#1|) (-654 |#1|))) (-15 -2014 ((-1284 |#1|) |#1| (-935))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| |#1| (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#1| (-1054 (-417 (-574))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-574) $) NIL (|has| |#1| (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| |#1| (-1054 (-417 (-574))))) ((|#1| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-462)))) (-3637 (($ $ |#1| (-987) $) NIL)) (-3943 (((-112) $) 17)) (-2993 (((-781) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-987)) NIL)) (-2043 (((-987) $) NIL)) (-3431 (($ (-1 (-987) (-987)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#1| $) NIL)) (-2753 (($ $ (-987) |#1| $) NIL (-12 (|has| (-987) (-132)) (|has| |#1| (-566))))) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-566)))) (-3735 (((-987) $) NIL)) (-1732 ((|#1| $) NIL (|has| |#1| (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) NIL) (($ (-417 (-574))) NIL (-2833 (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-1054 (-417 (-574))))))) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ (-987)) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#1| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2141 (($) 10 T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 21)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1195 |#1|) (-13 (-334 |#1| (-987)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-987) (-132)) (-15 -2753 ($ $ (-987) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065)) (T -1195))
-((-2753 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-987)) (-4 *2 (-132)) (-5 *1 (-1195 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))))
-(-13 (-334 |#1| (-987)) (-10 -8 (IF (|has| |#1| (-566)) (IF (|has| (-987) (-132)) (-15 -2753 ($ $ (-987) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|)))
-((-2850 (((-1197) (-1193) $) 25)) (-4260 (($) 29)) (-3726 (((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $) 22)) (-3520 (((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $) 41) (((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) 42) (((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) 43)) (-1449 (((-1289) (-1193)) 58)) (-4117 (((-1289) (-1193) $) 55) (((-1289) (-1193)) 56) (((-1289)) 57)) (-2097 (((-1289) (-1193)) 37)) (-2152 (((-1193)) 36)) (-3014 (($) 34)) (-3149 (((-447) (-1193) (-447) (-1193) $) 45) (((-447) (-654 (-1193)) (-447) (-1193) $) 49) (((-447) (-1193) (-447)) 46) (((-447) (-1193) (-447) (-1193)) 50)) (-2901 (((-1193)) 35)) (-2951 (((-872) $) 28)) (-2742 (((-1289)) 30) (((-1289) (-1193)) 33)) (-1847 (((-654 (-1193)) (-1193) $) 24)) (-2712 (((-1289) (-1193) (-654 (-1193)) $) 38) (((-1289) (-1193) (-654 (-1193))) 39) (((-1289) (-654 (-1193))) 40)))
-(((-1196) (-13 (-623 (-872)) (-10 -8 (-15 -4260 ($)) (-15 -2742 ((-1289))) (-15 -2742 ((-1289) (-1193))) (-15 -3149 ((-447) (-1193) (-447) (-1193) $)) (-15 -3149 ((-447) (-654 (-1193)) (-447) (-1193) $)) (-15 -3149 ((-447) (-1193) (-447))) (-15 -3149 ((-447) (-1193) (-447) (-1193))) (-15 -2097 ((-1289) (-1193))) (-15 -2901 ((-1193))) (-15 -2152 ((-1193))) (-15 -2712 ((-1289) (-1193) (-654 (-1193)) $)) (-15 -2712 ((-1289) (-1193) (-654 (-1193)))) (-15 -2712 ((-1289) (-654 (-1193)))) (-15 -3520 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3520 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -3520 ((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -4117 ((-1289) (-1193) $)) (-15 -4117 ((-1289) (-1193))) (-15 -4117 ((-1289))) (-15 -1449 ((-1289) (-1193))) (-15 -3014 ($)) (-15 -3726 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $)) (-15 -1847 ((-654 (-1193)) (-1193) $)) (-15 -2850 ((-1197) (-1193) $))))) (T -1196))
-((-4260 (*1 *1) (-5 *1 (-1196))) (-2742 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *4 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-3149 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2901 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))) (-2152 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))) (-2712 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3520 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1193)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-4117 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-4117 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))) (-3014 (*1 *1) (-5 *1 (-1196))) (-3726 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-1196)))) (-1847 (*1 *2 *3 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1196)) (-5 *3 (-1193)))) (-2850 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1197)) (-5 *1 (-1196)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -4260 ($)) (-15 -2742 ((-1289))) (-15 -2742 ((-1289) (-1193))) (-15 -3149 ((-447) (-1193) (-447) (-1193) $)) (-15 -3149 ((-447) (-654 (-1193)) (-447) (-1193) $)) (-15 -3149 ((-447) (-1193) (-447))) (-15 -3149 ((-447) (-1193) (-447) (-1193))) (-15 -2097 ((-1289) (-1193))) (-15 -2901 ((-1193))) (-15 -2152 ((-1193))) (-15 -2712 ((-1289) (-1193) (-654 (-1193)) $)) (-15 -2712 ((-1289) (-1193) (-654 (-1193)))) (-15 -2712 ((-1289) (-654 (-1193)))) (-15 -3520 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")) $)) (-15 -3520 ((-1289) (-1193) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -3520 ((-1289) (-3 (|:| |fst| (-444)) (|:| -2441 "void")))) (-15 -4117 ((-1289) (-1193) $)) (-15 -4117 ((-1289) (-1193))) (-15 -4117 ((-1289))) (-15 -1449 ((-1289) (-1193))) (-15 -3014 ($)) (-15 -3726 ((-3 (|:| |fst| (-444)) (|:| -2441 "void")) (-1193) $)) (-15 -1847 ((-654 (-1193)) (-1193) $)) (-15 -2850 ((-1197) (-1193) $))))
-((-2151 (((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $) 66)) (-4131 (((-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $) 47)) (-3697 (($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))) 17)) (-1449 (((-1289) $) 73)) (-3778 (((-654 (-1193)) $) 22)) (-1903 (((-1120) $) 60)) (-2596 (((-447) (-1193) $) 27)) (-2848 (((-654 (-1193)) $) 30)) (-3014 (($) 19)) (-3149 (((-447) (-654 (-1193)) (-447) $) 25) (((-447) (-1193) (-447) $) 24)) (-2951 (((-872) $) 9) (((-1206 (-1193) (-447)) $) 13)))
-(((-1197) (-13 (-623 (-872)) (-10 -8 (-15 -2951 ((-1206 (-1193) (-447)) $)) (-15 -3014 ($)) (-15 -3149 ((-447) (-654 (-1193)) (-447) $)) (-15 -3149 ((-447) (-1193) (-447) $)) (-15 -2596 ((-447) (-1193) $)) (-15 -3778 ((-654 (-1193)) $)) (-15 -4131 ((-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $)) (-15 -2848 ((-654 (-1193)) $)) (-15 -2151 ((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $)) (-15 -1903 ((-1120) $)) (-15 -1449 ((-1289) $)) (-15 -3697 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))))))) (T -1197))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-1206 (-1193) (-447))) (-5 *1 (-1197)))) (-3014 (*1 *1) (-5 *1 (-1197))) (-3149 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *1 (-1197)))) (-3149 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1197)))) (-2596 (*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-447)) (-5 *1 (-1197)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))) (-4131 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) (-5 *1 (-1197)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))))) (-5 *1 (-1197)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1197)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1197)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))) (-5 *1 (-1197)))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2951 ((-1206 (-1193) (-447)) $)) (-15 -3014 ($)) (-15 -3149 ((-447) (-654 (-1193)) (-447) $)) (-15 -3149 ((-447) (-1193) (-447) $)) (-15 -2596 ((-447) (-1193) $)) (-15 -3778 ((-654 (-1193)) $)) (-15 -4131 ((-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))) (-444) $)) (-15 -2848 ((-654 (-1193)) $)) (-15 -2151 ((-654 (-654 (-3 (|:| -2039 (-1193)) (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))) $)) (-15 -1903 ((-1120) $)) (-15 -1449 ((-1289) $)) (-15 -3697 ($ (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447))))))))
-((-2864 (((-112) $ $) NIL)) (-1704 (((-3 (-574) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-516) "failed") $) 43) (((-3 (-1175) "failed") $) 47)) (-2216 (((-574) $) 30) (((-227) $) 36) (((-516) $) 40) (((-1175) $) 48)) (-3008 (((-112) $) 53)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2347 (((-3 (-574) (-227) (-516) (-1175) $) $) 55)) (-3396 (((-654 $) $) 57)) (-1844 (((-1120) $) 24) (($ (-1120)) 25)) (-3250 (((-112) $) 56)) (-2951 (((-872) $) 23) (($ (-574)) 26) (($ (-227)) 32) (($ (-516)) 38) (($ (-1175)) 44) (((-546) $) 59) (((-574) $) 31) (((-227) $) 37) (((-516) $) 41) (((-1175) $) 49)) (-2130 (((-112) $ (|[\|\|]| (-574))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-516))) 19) (((-112) $ (|[\|\|]| (-1175))) 16)) (-3059 (($ (-516) (-654 $)) 51) (($ $ (-654 $)) 52)) (-2981 (((-112) $ $) NIL)) (-1337 (((-574) $) 27) (((-227) $) 33) (((-516) $) 39) (((-1175) $) 45)) (-2986 (((-112) $ $) 7)))
-(((-1198) (-13 (-1279) (-1116) (-1054 (-574)) (-1054 (-227)) (-1054 (-516)) (-1054 (-1175)) (-623 (-546)) (-10 -8 (-15 -1844 ((-1120) $)) (-15 -1844 ($ (-1120))) (-15 -2951 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2951 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2951 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2951 ((-1175) $)) (-15 -1337 ((-1175) $)) (-15 -3059 ($ (-516) (-654 $))) (-15 -3059 ($ $ (-654 $))) (-15 -3008 ((-112) $)) (-15 -2347 ((-3 (-574) (-227) (-516) (-1175) $) $)) (-15 -3396 ((-654 $) $)) (-15 -3250 ((-112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -2130 ((-112) $ (|[\|\|]| (-227)))) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -2130 ((-112) $ (|[\|\|]| (-1175))))))) (T -1198))
-((-1844 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198)))) (-3059 (*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1198))) (-5 *1 (-1198)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1175) (-1198))) (-5 *1 (-1198)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1198)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-1198)))))
-(-13 (-1279) (-1116) (-1054 (-574)) (-1054 (-227)) (-1054 (-516)) (-1054 (-1175)) (-623 (-546)) (-10 -8 (-15 -1844 ((-1120) $)) (-15 -1844 ($ (-1120))) (-15 -2951 ((-574) $)) (-15 -1337 ((-574) $)) (-15 -2951 ((-227) $)) (-15 -1337 ((-227) $)) (-15 -2951 ((-516) $)) (-15 -1337 ((-516) $)) (-15 -2951 ((-1175) $)) (-15 -1337 ((-1175) $)) (-15 -3059 ($ (-516) (-654 $))) (-15 -3059 ($ $ (-654 $))) (-15 -3008 ((-112) $)) (-15 -2347 ((-3 (-574) (-227) (-516) (-1175) $) $)) (-15 -3396 ((-654 $) $)) (-15 -3250 ((-112) $)) (-15 -2130 ((-112) $ (|[\|\|]| (-574)))) (-15 -2130 ((-112) $ (|[\|\|]| (-227)))) (-15 -2130 ((-112) $ (|[\|\|]| (-516)))) (-15 -2130 ((-112) $ (|[\|\|]| (-1175))))))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) 22)) (-1430 (($) 12 T CONST)) (-2835 (($) 26)) (-3634 (($ $ $) NIL) (($) 19 T CONST)) (-2976 (($ $ $) NIL) (($) 20 T CONST)) (-3507 (((-935) $) 24)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) 23)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1199 |#1|) (-13 (-854) (-10 -8 (-15 -1430 ($) -1714))) (-935)) (T -1199))
-((-1430 (*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-935)))))
-(-13 (-854) (-10 -8 (-15 -1430 ($) -1714)))
+((-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-536)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-220)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-688)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1296)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-139)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-618)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-134)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1133)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-96)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-693)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-529)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1084)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1297)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-537)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1169)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-155)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-683)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-321)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1054)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-182)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-988))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-988)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1091)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1108)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1114)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-638)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1185)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-157)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-138)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-490)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-604)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-518)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1177)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-576)))))
+(-13 (-1101) (-1281) (-10 -8 (-15 -2132 ((-112) $ (|[\|\|]| (-536)))) (-15 -1338 ((-536) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-220)))) (-15 -1338 ((-220) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-688)))) (-15 -1338 ((-688) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1296)))) (-15 -1338 ((-1296) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-139)))) (-15 -1338 ((-139) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-618)))) (-15 -1338 ((-618) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-134)))) (-15 -1338 ((-134) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1133)))) (-15 -1338 ((-1133) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-96)))) (-15 -1338 ((-96) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-693)))) (-15 -1338 ((-693) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-529)))) (-15 -1338 ((-529) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1084)))) (-15 -1338 ((-1084) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1297)))) (-15 -1338 ((-1297) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-537)))) (-15 -1338 ((-537) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1169)))) (-15 -1338 ((-1169) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-155)))) (-15 -1338 ((-155) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-683)))) (-15 -1338 ((-683) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-321)))) (-15 -1338 ((-321) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1054)))) (-15 -1338 ((-1054) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-182)))) (-15 -1338 ((-182) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-988)))) (-15 -1338 ((-988) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1091)))) (-15 -1338 ((-1091) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1108)))) (-15 -1338 ((-1108) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1114)))) (-15 -1338 ((-1114) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-638)))) (-15 -1338 ((-638) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1185)))) (-15 -1338 ((-1185) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-157)))) (-15 -1338 ((-157) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-138)))) (-15 -1338 ((-138) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-490)))) (-15 -1338 ((-490) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-604)))) (-15 -1338 ((-604) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-518)))) (-15 -1338 ((-518) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-1177)))) (-15 -1338 ((-1177) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-576)))) (-15 -1338 ((-576) $))))
+(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1118) . T) ((-1101) . T) ((-1281) . T))
+((-2866 (((-1291) (-656 (-874))) 22) (((-1291) (-874)) 21)) (-3880 (((-1291) (-656 (-874))) 20) (((-1291) (-874)) 19)) (-3747 (((-1291) (-656 (-874))) 18) (((-1291) (-874)) 10) (((-1291) (-1177) (-874)) 16)))
+(((-1156) (-10 -7 (-15 -3747 ((-1291) (-1177) (-874))) (-15 -3747 ((-1291) (-874))) (-15 -3880 ((-1291) (-874))) (-15 -2866 ((-1291) (-874))) (-15 -3747 ((-1291) (-656 (-874)))) (-15 -3880 ((-1291) (-656 (-874)))) (-15 -2866 ((-1291) (-656 (-874)))))) (T -1156))
+((-2866 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156)))))
+(-10 -7 (-15 -3747 ((-1291) (-1177) (-874))) (-15 -3747 ((-1291) (-874))) (-15 -3880 ((-1291) (-874))) (-15 -2866 ((-1291) (-874))) (-15 -3747 ((-1291) (-656 (-874)))) (-15 -3880 ((-1291) (-656 (-874)))) (-15 -2866 ((-1291) (-656 (-874)))))
+((-1760 (($ $ $) 10)) (-1360 (($ $) 9)) (-2584 (($ $ $) 13)) (-3792 (($ $ $) 15)) (-1340 (($ $ $) 12)) (-3578 (($ $ $) 14)) (-2091 (($ $) 17)) (-4398 (($ $) 16)) (-2130 (($ $) 6)) (-2527 (($ $ $) 11) (($ $) 7)) (-2381 (($ $ $) 8)))
+(((-1157) (-141)) (T -1157))
+((-2091 (*1 *1 *1) (-4 *1 (-1157))) (-4398 (*1 *1 *1) (-4 *1 (-1157))) (-3792 (*1 *1 *1 *1) (-4 *1 (-1157))) (-3578 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2584 (*1 *1 *1 *1) (-4 *1 (-1157))) (-1340 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2527 (*1 *1 *1 *1) (-4 *1 (-1157))) (-1760 (*1 *1 *1 *1) (-4 *1 (-1157))) (-1360 (*1 *1 *1) (-4 *1 (-1157))) (-2381 (*1 *1 *1 *1) (-4 *1 (-1157))) (-2527 (*1 *1 *1) (-4 *1 (-1157))) (-2130 (*1 *1 *1) (-4 *1 (-1157))))
+(-13 (-10 -8 (-15 -2130 ($ $)) (-15 -2527 ($ $)) (-15 -2381 ($ $ $)) (-15 -1360 ($ $)) (-15 -1760 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3578 ($ $ $)) (-15 -3792 ($ $ $)) (-15 -4398 ($ $)) (-15 -2091 ($ $))))
+((-2869 (((-112) $ $) 44)) (-3084 ((|#1| $) 17)) (-3683 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2350 (((-112) $) 19)) (-4039 (($ $ |#1|) 30)) (-3913 (($ $ (-112)) 32)) (-3122 (($ $) 33)) (-2502 (($ $ |#2|) 31)) (-2148 (((-1177) $) NIL)) (-1453 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3945 (((-1138) $) NIL)) (-3321 (((-112) $) 16)) (-2953 (($) 13)) (-3162 (($ $) 29)) (-2968 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4071 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-2279 ((|#2| $) 18)) (-2956 (((-874) $) 53)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 42)))
+(((-1158 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -2953 ($)) (-15 -3321 ((-112) $)) (-15 -3084 (|#1| $)) (-15 -2279 (|#2| $)) (-15 -2350 ((-112) $)) (-15 -2968 ($ |#1| |#2| (-112))) (-15 -2968 ($ |#1| |#2|)) (-15 -2968 ($ (-2 (|:| |val| |#1|) (|:| -4071 |#2|)))) (-15 -2968 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|))))) (-15 -2968 ((-656 $) |#1| (-656 |#2|))) (-15 -3162 ($ $)) (-15 -4039 ($ $ |#1|)) (-15 -2502 ($ $ |#2|)) (-15 -3913 ($ $ (-112))) (-15 -3122 ($ $)) (-15 -1453 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3683 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1118) (-34)) (-13 (-1118) (-34))) (T -1158))
+((-2953 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-3084 (*1 *2 *1) (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *2 *3)) (-4 *3 (-13 (-1118) (-34))))) (-2279 (*1 *2 *1) (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34))))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-2968 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2968 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4071 *4))) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *4)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4071 *5)))) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-656 (-1158 *4 *5))) (-5 *1 (-1158 *4 *5)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-656 (-1158 *3 *5))) (-5 *1 (-1158 *3 *5)) (-4 *3 (-13 (-1118) (-34))))) (-3162 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-4039 (*1 *1 *1 *2) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2502 (*1 *1 *1 *2) (-12 (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34))) (-4 *2 (-13 (-1118) (-34))))) (-3913 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-1453 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))) (-3683 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34))))))
+(-13 (-1118) (-10 -8 (-15 -2953 ($)) (-15 -3321 ((-112) $)) (-15 -3084 (|#1| $)) (-15 -2279 (|#2| $)) (-15 -2350 ((-112) $)) (-15 -2968 ($ |#1| |#2| (-112))) (-15 -2968 ($ |#1| |#2|)) (-15 -2968 ($ (-2 (|:| |val| |#1|) (|:| -4071 |#2|)))) (-15 -2968 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|))))) (-15 -2968 ((-656 $) |#1| (-656 |#2|))) (-15 -3162 ($ $)) (-15 -4039 ($ $ |#1|)) (-15 -2502 ($ $ |#2|)) (-15 -3913 ($ $ (-112))) (-15 -3122 ($ $)) (-15 -1453 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3683 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2869 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-3084 (((-1158 |#1| |#2|) $) 27)) (-3253 (($ $) 91)) (-2745 (((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2489 (($ $ $ (-656 (-1158 |#1| |#2|))) 108) (($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3762 (((-112) $ (-783)) NIL)) (-3052 (((-1158 |#1| |#2|) $ (-1158 |#1| |#2|)) 46 (|has| $ (-6 -4462)))) (-3140 (((-1158 |#1| |#2|) $ "value" (-1158 |#1| |#2|)) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 44 (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-4051 (((-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|))) $) 95)) (-3710 (($ (-1158 |#1| |#2|) $) 42)) (-3316 (($ (-1158 |#1| |#2|) $) 34)) (-1873 (((-656 (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 54)) (-1759 (((-112) (-1158 |#1| |#2|) $) 97)) (-4344 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 (-1158 |#1| |#2|)) $) 58 (|has| $ (-6 -4461)))) (-2653 (((-112) (-1158 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1158 |#1| |#2|) (-1118))))) (-2466 (($ (-1 (-1158 |#1| |#2|) (-1158 |#1| |#2|)) $) 50 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-1158 |#1| |#2|) (-1158 |#1| |#2|)) $) 49)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 (-1158 |#1| |#2|)) $) 56)) (-3126 (((-112) $) 45)) (-2148 (((-1177) $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-3945 (((-1138) $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2654 (((-3 $ "failed") $) 89)) (-1875 (((-112) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-1158 |#1| |#2|)))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-304 (-1158 |#1| |#2|))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-1158 |#1| |#2|) (-1158 |#1| |#2|)) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118)))) (($ $ (-656 (-1158 |#1| |#2|)) (-656 (-1158 |#1| |#2|))) NIL (-12 (|has| (-1158 |#1| |#2|) (-319 (-1158 |#1| |#2|))) (|has| (-1158 |#1| |#2|) (-1118))))) (-2001 (((-112) $ $) 53)) (-3321 (((-112) $) 24)) (-2953 (($) 26)) (-2209 (((-1158 |#1| |#2|) $ "value") NIL)) (-1785 (((-576) $ $) NIL)) (-1558 (((-112) $) 47)) (-3954 (((-783) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461))) (((-783) (-1158 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1158 |#1| |#2|) (-1118))))) (-3162 (($ $) 52)) (-2968 (($ (-1158 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1158 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-2690 (((-656 |#2|) $) 96)) (-2956 (((-874) $) 87 (|has| (-1158 |#1| |#2|) (-625 (-874))))) (-4197 (((-656 $) $) 31)) (-1931 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-2617 (((-112) $ $) NIL (|has| (-1158 |#1| |#2|) (-1118)))) (-3972 (((-112) (-1 (-112) (-1158 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 70 (|has| (-1158 |#1| |#2|) (-1118)))) (-2882 (((-783) $) 64 (|has| $ (-6 -4461)))))
+(((-1159 |#1| |#2|) (-13 (-1028 (-1158 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2654 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -2968 ($ (-1158 |#1| |#2|))) (-15 -2968 ($ |#1| |#2| (-656 $))) (-15 -2968 ($ |#1| |#2| (-656 (-1158 |#1| |#2|)))) (-15 -2968 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -2690 ((-656 |#2|) $)) (-15 -4051 ((-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|))) $)) (-15 -1759 ((-112) (-1158 |#1| |#2|) $)) (-15 -2745 ((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3316 ($ (-1158 |#1| |#2|) $)) (-15 -3710 ($ (-1158 |#1| |#2|) $)) (-15 -2489 ($ $ $ (-656 (-1158 |#1| |#2|)))) (-15 -2489 ($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1118) (-34)) (-13 (-1118) (-34))) (T -1159))
+((-2654 (*1 *1 *1) (|partial| -12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-3253 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2968 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1159 *2 *3))) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))))) (-2968 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1158 *2 *3))) (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3)))) (-2968 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34))))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4)))) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))) (-1759 (*1 *2 *3 *1) (-12 (-5 *3 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)))) (-2745 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1158 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))) (-3316 (*1 *1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2489 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1158 *3 *4))) (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))) (-2489 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1158 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34))) (-5 *1 (-1159 *4 *5)))))
+(-13 (-1028 (-1158 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2654 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -2968 ($ (-1158 |#1| |#2|))) (-15 -2968 ($ |#1| |#2| (-656 $))) (-15 -2968 ($ |#1| |#2| (-656 (-1158 |#1| |#2|)))) (-15 -2968 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -2690 ((-656 |#2|) $)) (-15 -4051 ((-656 (-2 (|:| |val| |#1|) (|:| -4071 |#2|))) $)) (-15 -1759 ((-112) (-1158 |#1| |#2|) $)) (-15 -2745 ((-112) (-1158 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3316 ($ (-1158 |#1| |#2|) $)) (-15 -3710 ($ (-1158 |#1| |#2|) $)) (-15 -2489 ($ $ $ (-656 (-1158 |#1| |#2|)))) (-15 -2489 ($ $ $ (-656 (-1158 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3548 (($ $) NIL)) (-1646 ((|#2| $) NIL)) (-2052 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2620 (($ (-701 |#2|)) 56)) (-3562 (((-112) $) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-1372 (($ |#2|) 14)) (-4335 (($) NIL T CONST)) (-3446 (($ $) 69 (|has| |#2| (-317)))) (-3389 (((-246 |#1| |#2|) $ (-576)) 42)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) ((|#2| $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) 83)) (-3563 (((-783) $) 71 (|has| |#2| (-568)))) (-2405 ((|#2| $ (-576) (-576)) NIL)) (-1873 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-4192 (((-112) $) NIL)) (-2954 (((-783) $) 73 (|has| |#2| (-568)))) (-3772 (((-656 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2199 (((-783) $) NIL)) (-3769 (($ |#2|) 25)) (-2208 (((-783) $) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-3331 ((|#2| $) 67 (|has| |#2| (-6 (-4463 "*"))))) (-1823 (((-576) $) NIL)) (-1780 (((-576) $) NIL)) (-2186 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1982 (((-576) $) NIL)) (-4259 (((-576) $) NIL)) (-2929 (($ (-656 (-656 |#2|))) 37)) (-2466 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1538 (((-656 (-656 |#2|)) $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-1495 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3945 (((-1138) $) NIL)) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1875 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-3884 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2652 ((|#2| $) NIL)) (-1388 (($ (-656 |#2|)) 50)) (-1415 (((-112) $) NIL)) (-3371 (((-246 |#1| |#2|) $) NIL)) (-2293 ((|#2| $) 65 (|has| |#2| (-6 (-4463 "*"))))) (-3954 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-3162 (($ $) NIL)) (-1846 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-4087 (((-246 |#1| |#2|) $ (-576)) 44)) (-2956 (((-874) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1056 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-3423 (((-783)) 23 T CONST)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1335 (((-112) $) NIL)) (-2143 (($) 16 T CONST)) (-2155 (($) 21 T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $) NIL (|has| |#2| (-239))) (($ $ (-783)) NIL (|has| |#2| (-239)))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1160 |#1| |#2|) (-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -3769 ($ |#2|)) (-15 -3548 ($ $)) (-15 -2620 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1067)) (T -1160))
+((-3769 (*1 *1 *2) (-12 (-5 *1 (-1160 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1067)))) (-3548 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1067)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1160 *3 *4)) (-14 *3 (-783)))))
+(-13 (-1141 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -3769 ($ |#2|)) (-15 -3548 ($ $)) (-15 -2620 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+((-1805 (($ $) 19)) (-1791 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3708 (((-112) $ $) 24)) (-3019 (($ $) 17)) (-2209 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) 31)) (-2956 (($ (-145)) 29) (((-874) $) NIL)))
+(((-1161 |#1|) (-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| (-142))) (-15 -1791 (|#1| |#1| (-145))) (-15 -2956 (|#1| (-145))) (-15 -3708 ((-112) |#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2209 ((-145) |#1| (-576))) (-15 -2209 ((-145) |#1| (-576) (-145)))) (-1162)) (T -1161))
+NIL
+(-10 -8 (-15 -2956 ((-874) |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| (-142))) (-15 -1791 (|#1| |#1| (-145))) (-15 -2956 (|#1| (-145))) (-15 -3708 ((-112) |#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -2209 ((-145) |#1| (-576))) (-15 -2209 ((-145) |#1| (-576) (-145))))
+((-2869 (((-112) $ $) 19 (|has| (-145) (-1118)))) (-3319 (($ $) 123)) (-1805 (($ $) 124)) (-1791 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3690 (((-112) $ $) 121)) (-3669 (((-112) $ $ (-576)) 120)) (-4368 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1375 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-3330 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2637 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-1819 (($ $ (-1253 (-576)) $) 117)) (-4060 (($ $) 80 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ (-145) $) 79 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4461)))) (-2887 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4461)))) (-2481 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4462)))) (-2405 (((-145) $ (-576)) 52)) (-3708 (((-112) $ $) 122)) (-1454 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-1873 (((-656 (-145)) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) (-145)) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| (-145) (-862)))) (-1383 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-2186 (((-656 (-145)) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| (-145) (-862)))) (-1332 (((-112) $ $ (-145)) 118)) (-2703 (((-783) $ $ (-145)) 119)) (-2466 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2864 (($ $) 125)) (-3019 (($ $) 126)) (-2356 (((-112) $ (-783)) 10)) (-2651 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2148 (((-1177) $) 22 (|has| (-145) (-1118)))) (-1604 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| (-145) (-1118)))) (-2930 (((-145) $) 43 (|has| (-576) (-862)))) (-2922 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4211 (($ $ (-145)) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-4274 (((-656 (-145)) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1253 (-576))) 71) (($ $ $) 105)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4461))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2968 (($ (-656 (-145))) 72)) (-4136 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| (-145) (-1118)))) (-3972 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3024 (((-112) $ $) 86 (|has| (-145) (-862)))) (-2991 (((-112) $ $) 20 (|has| (-145) (-1118)))) (-3034 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3014 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1162) (-141)) (T -1162))
+((-3019 (*1 *1 *1) (-4 *1 (-1162))) (-2864 (*1 *1 *1) (-4 *1 (-1162))) (-1805 (*1 *1 *1) (-4 *1 (-1162))) (-3319 (*1 *1 *1) (-4 *1 (-1162))) (-3708 (*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))) (-3690 (*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))) (-3669 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-576)) (-5 *2 (-112)))) (-2703 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-783)))) (-1332 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-112)))) (-1819 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1253 (-576))))) (-1454 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)))) (-1454 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)) (-5 *3 (-142)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1162)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))) (-4368 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))) (-1791 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-1791 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142)))) (-2209 (*1 *1 *1 *1) (-4 *1 (-1162))))
+(-13 (-19 (-145)) (-10 -8 (-15 -3019 ($ $)) (-15 -2864 ($ $)) (-15 -1805 ($ $)) (-15 -3319 ($ $)) (-15 -3708 ((-112) $ $)) (-15 -3690 ((-112) $ $)) (-15 -3669 ((-112) $ $ (-576))) (-15 -2703 ((-783) $ $ (-145))) (-15 -1332 ((-112) $ $ (-145))) (-15 -1819 ($ $ (-1253 (-576)) $)) (-15 -1454 ((-576) $ $ (-576))) (-15 -1454 ((-576) (-142) $ (-576))) (-15 -2956 ($ (-145))) (-15 -4368 ((-656 $) $ (-145))) (-15 -4368 ((-656 $) $ (-142))) (-15 -1791 ($ $ (-145))) (-15 -1791 ($ $ (-142))) (-15 -2651 ($ $ (-145))) (-15 -2651 ($ $ (-142))) (-15 -2637 ($ $ (-145))) (-15 -2637 ($ $ (-142))) (-15 -2209 ($ $ $))))
+(((-34) . T) ((-102) -2838 (|has| (-145) (-1118)) (|has| (-145) (-862))) ((-625 (-874)) -2838 (|has| (-145) (-1118)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-663 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-1118) -2838 (|has| (-145) (-1118)) (|has| (-145) (-862))) ((-1236) . T))
+((-2309 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783)) 112)) (-2532 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783)) 61)) (-3649 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783)) 97)) (-3227 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4131 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-4090 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-1846 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) 90)) (-3393 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|) 60)) (-2134 (((-783) (-656 |#4|) (-656 |#5|)) 21)))
+(((-1163 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2134 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3393 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2309 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783))) (-15 -1846 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -3649 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783)))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|) (-1127 |#1| |#2| |#3| |#4|)) (T -1163))
+((-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9)))) (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8))) (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1127 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1163 *4 *5 *6 *7 *8)))) (-2309 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4071 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4071 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9)) (-4 *11 (-1127 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1163 *7 *8 *9 *10 *11)))) (-4090 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-4090 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-4131 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) (-4131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *7 *8 *9 *3 *4)) (-4 *4 (-1127 *7 *8 *9 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-2532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1083 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3)))) (-3393 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4)))))) (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2134 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3227 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -3393 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -2532 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5| (-783))) (-15 -4131 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) |#4| |#5|)) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -4090 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2309 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))))) (-783))) (-15 -1846 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|)))) (-15 -3649 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4071 |#5|))) (-783))))
+((-2869 (((-112) $ $) NIL)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3809 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4352 (((-656 |#3|) $) NIL)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3276 ((|#4| |#4| $) NIL)) (-2879 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| $) 97)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 75)) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) 29 (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2331 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2216 (($ (-656 |#4|)) NIL)) (-2940 (((-3 $ "failed") $) 45)) (-3164 ((|#4| |#4| $) 78)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3316 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2705 ((|#4| |#4| $) NIL)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) NIL)) (-3062 (((-112) |#4| $) NIL)) (-3278 (((-112) |#4| $) NIL)) (-2445 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4130 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-1873 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2977 ((|#3| $) 38)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-2466 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 23)) (-4172 (((-656 |#3|) $) NIL)) (-1820 (((-112) |#3| $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3302 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4419 (((-656 (-2 (|:| |val| |#4|) (|:| -4071 $))) |#4| |#4| $) 117)) (-3338 (((-3 |#4| "failed") $) 42)) (-2196 (((-656 $) |#4| $) 102)) (-3036 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-3596 (((-656 (-2 (|:| |val| (-112)) (|:| -4071 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3318 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-2116 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-3187 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3200 (((-656 |#4|) $) NIL)) (-3103 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1992 ((|#4| |#4| $) NIL)) (-3320 (((-112) $ $) NIL)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-3 |#4| "failed") $) 40)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2452 (((-3 $ "failed") $ |#4|) 59)) (-3167 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 17)) (-2953 (($) 14)) (-2782 (((-783) $) NIL)) (-3954 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) 13)) (-1846 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 22)) (-3888 (($ $ |#3|) 52)) (-1572 (($ $ |#3|) 54)) (-4104 (($ $) NIL)) (-2051 (($ $ |#3|) NIL)) (-2956 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3364 (((-783) $) NIL (|has| |#3| (-379)))) (-2617 (((-112) $ $) NIL)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2526 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) NIL)) (-4300 (((-112) |#4| $) NIL)) (-3684 (((-112) |#3| $) 74)) (-2991 (((-112) $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1164 |#1| |#2| |#3| |#4|) (-13 (-1127 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3187 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2116 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4130 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1164))
+((-3187 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *3))) (-5 *1 (-1164 *5 *6 *7 *3)) (-4 *3 (-1083 *5 *6 *7)))) (-3809 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-3809 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-2116 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1164 *5 *6 *7 *8))))) (-5 *1 (-1164 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(-13 (-1127 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3187 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -3809 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -2116 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -4130 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2012 ((|#1| $) 37)) (-4069 (($ (-656 |#1|)) 45)) (-3762 (((-112) $ (-783)) NIL)) (-4335 (($) NIL T CONST)) (-2714 ((|#1| |#1| $) 40)) (-2175 ((|#1| $) 35)) (-1873 (((-656 |#1|) $) 18 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 22)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-2138 ((|#1| $) 38)) (-2504 (($ |#1| $) 41)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-4256 ((|#1| $) 36)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 32)) (-2953 (($) 43)) (-4295 (((-783) $) 30)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 27)) (-2956 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2478 (($ (-656 |#1|)) NIL)) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 17 (|has| |#1| (-1118)))) (-2882 (((-783) $) 31 (|has| $ (-6 -4461)))))
+(((-1165 |#1|) (-13 (-1139 |#1|) (-10 -8 (-15 -4069 ($ (-656 |#1|))))) (-1236)) (T -1165))
+((-4069 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1165 *3)))))
+(-13 (-1139 |#1|) (-10 -8 (-15 -4069 ($ (-656 |#1|)))))
+((-3140 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-2281 (((-112) $) 12)) (-2466 (($ (-1 |#2| |#2|) $) 48)) (-2930 ((|#2| $) NIL) (($ $ (-783)) 17)) (-4211 (($ $ |#2|) 49)) (-2326 (((-112) $) 11)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1253 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-3228 (($ $ $) 56) (($ $ |#2|) NIL)) (-4136 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL)))
+(((-1166 |#1| |#2|) (-10 -8 (-15 -2281 ((-112) |#1|)) (-15 -2326 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -4211 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -4136 (|#1| |#1| |#2|)) (-15 -4136 (|#1| (-656 |#1|))) (-15 -3140 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -3228 (|#1| |#1| |#2|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| "last")) (-15 -2209 (|#1| |#1| "rest")) (-15 -2930 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "first")) (-15 -2930 (|#2| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#1|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2209 (|#2| |#1| "value")) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|))) (-1167 |#2|) (-1236)) (T -1166))
+NIL
+(-10 -8 (-15 -2281 ((-112) |#1|)) (-15 -2326 ((-112) |#1|)) (-15 -3140 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576) |#2|)) (-15 -2209 (|#2| |#1| (-576))) (-15 -4211 (|#1| |#1| |#2|)) (-15 -2209 (|#1| |#1| (-1253 (-576)))) (-15 -4136 (|#1| |#1| |#2|)) (-15 -4136 (|#1| (-656 |#1|))) (-15 -3140 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -3228 (|#1| |#1| |#2|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| "last")) (-15 -2209 (|#1| |#1| "rest")) (-15 -2930 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "first")) (-15 -2930 (|#2| |#1|)) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#1|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -2209 (|#2| |#1| "value")) (-15 -2466 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-2426 ((|#1| $) 66)) (-1980 (($ $) 68)) (-3526 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3439 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2413 ((|#1| $) 67)) (-4335 (($) 7 T CONST)) (-2940 (($ $) 74) (($ $ (-783)) 72)) (-4060 (($ $) 101 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2481 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 89)) (-2281 (((-112) $) 85)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) 111)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 97 (|has| (-576) (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 96 (|has| (-576) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3338 ((|#1| $) 71) (($ $ (-783)) 69)) (-1604 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2961 (((-656 (-576)) $) 94)) (-4254 (((-112) (-576) $) 93)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 77) (($ $ (-783)) 75)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4211 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-2326 (((-112) $) 86)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 92)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-1785 (((-576) $ $) 45)) (-2860 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-1558 (((-112) $) 47)) (-3029 (($ $) 63)) (-1508 (($ $) 60 (|has| $ (-6 -4462)))) (-2550 (((-783) $) 64)) (-3704 (($ $) 65)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-1846 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 109)) (-3228 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-4136 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1167 |#1|) (-141) (-1236)) (T -1167))
+((-2326 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-2281 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
+(-13 (-1274 |t#1|) (-663 |t#1|) (-10 -8 (-15 -2326 ((-112) $)) (-15 -2281 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T) ((-1274 |#1|) . T))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) NIL)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1168 |#1| |#2| |#3|) (-1212 |#1| |#2|) (-1118) (-1118) |#2|) (T -1168))
+NIL
+(-1212 |#1| |#2|)
+((-2869 (((-112) $ $) NIL)) (-2536 (((-703 (-1153)) $) 27)) (-4125 (((-1153) $) 15)) (-2262 (((-1153) $) 17)) (-2148 (((-1177) $) NIL)) (-3080 (((-518) $) 13)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 37) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1169) (-13 (-1101) (-10 -8 (-15 -3080 ((-518) $)) (-15 -2262 ((-1153) $)) (-15 -2536 ((-703 (-1153)) $)) (-15 -4125 ((-1153) $))))) (T -1169))
+((-3080 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1169)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-703 (-1153))) (-5 *1 (-1169)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169)))))
+(-13 (-1101) (-10 -8 (-15 -3080 ((-518) $)) (-15 -2262 ((-1153) $)) (-15 -2536 ((-703 (-1153)) $)) (-15 -4125 ((-1153) $))))
+((-2869 (((-112) $ $) 7)) (-2211 (((-3 $ "failed") $) 14)) (-2148 (((-1177) $) 10)) (-3796 (($) 15 T CONST)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2991 (((-112) $ $) 6)))
+(((-1170) (-141)) (T -1170))
+((-3796 (*1 *1) (-4 *1 (-1170))) (-2211 (*1 *1 *1) (|partial| -4 *1 (-1170))))
+(-13 (-1118) (-10 -8 (-15 -3796 ($) -1716) (-15 -2211 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1118) . T))
+((-3893 (((-1175 |#1|) (-1175 |#1|)) 17)) (-1938 (((-1175 |#1|) (-1175 |#1|)) 13)) (-3773 (((-1175 |#1|) (-1175 |#1|) (-576) (-576)) 20)) (-1877 (((-1175 |#1|) (-1175 |#1|)) 15)))
+(((-1171 |#1|) (-10 -7 (-15 -1938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1877 ((-1175 |#1|) (-1175 |#1|))) (-15 -3893 ((-1175 |#1|) (-1175 |#1|))) (-15 -3773 ((-1175 |#1|) (-1175 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1171))
+((-3773 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1171 *4)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3)))) (-1877 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3)))) (-1938 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1171 *3)))))
+(-10 -7 (-15 -1938 ((-1175 |#1|) (-1175 |#1|))) (-15 -1877 ((-1175 |#1|) (-1175 |#1|))) (-15 -3893 ((-1175 |#1|) (-1175 |#1|))) (-15 -3773 ((-1175 |#1|) (-1175 |#1|) (-576) (-576))))
+((-4136 (((-1175 |#1|) (-1175 (-1175 |#1|))) 15)))
+(((-1172 |#1|) (-10 -7 (-15 -4136 ((-1175 |#1|) (-1175 (-1175 |#1|))))) (-1236)) (T -1172))
+((-4136 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1236)))))
+(-10 -7 (-15 -4136 ((-1175 |#1|) (-1175 (-1175 |#1|)))))
+((-3000 (((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 25)) (-2887 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 26)) (-1787 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 16)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -1787 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))) (-15 -3000 ((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))) (-15 -2887 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)))) (-1236) (-1236)) (T -1173))
+((-2887 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1173 *5 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1236)) (-4 *3 (-1236)) (-5 *2 (-1175 *3)) (-5 *1 (-1173 *6 *3)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6)))))
+(-10 -7 (-15 -1787 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))) (-15 -3000 ((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))) (-15 -2887 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))))
+((-1787 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)) 21)))
+(((-1174 |#1| |#2| |#3|) (-10 -7 (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)))) (-1236) (-1236) (-1236)) (T -1174))
+((-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8)) (-5 *1 (-1174 *6 *7 *8)))))
+(-10 -7 (-15 -1787 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) NIL)) (-2426 ((|#1| $) NIL)) (-1980 (($ $) 67)) (-3526 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-3523 (($ $ (-576)) 128 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-2098 (((-874) $) 56 (|has| |#1| (-1118)))) (-1515 (((-112)) 55 (|has| |#1| (-1118)))) (-3052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3439 (($ $ $) 115 (|has| $ (-6 -4462))) (($ $ (-576) $) 141)) (-1730 ((|#1| $ |#1|) 125 (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 120 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4462))) (($ $ "rest" $) 124 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 112 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 80)) (-2413 ((|#1| $) NIL)) (-4335 (($) NIL T CONST)) (-3536 (($ $) 14)) (-2940 (($ $) 40) (($ $ (-783)) 111)) (-3040 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1118)))) (-2770 (($ (-656 |#1|)) 130)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) 79)) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-2281 (((-112) $) NIL)) (-1873 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3236 (((-1291) (-576) $) 140 (|has| |#1| (-1118)))) (-3436 (((-783) $) 137)) (-2635 (((-656 $) $) NIL)) (-4344 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2356 (((-112) $ (-783)) NIL)) (-3488 (((-656 |#1|) $) NIL)) (-3126 (((-112) $) NIL)) (-3705 (($ $) 113)) (-3378 (((-112) $) 13)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3338 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1604 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) 96)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2102 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2385 ((|#1| $) 10)) (-2930 ((|#1| $) 39) (($ $ (-783)) 65)) (-4092 (((-2 (|:| |cycle?| (-112)) (|:| -4199 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2150 (($ (-1 (-112) |#1|) $) 145)) (-2162 (($ (-1 (-112) |#1|) $) 146)) (-4211 (($ $ |#1|) 90 (|has| $ (-6 -4462)))) (-3167 (($ $ (-576)) 45)) (-2326 (((-112) $) 94)) (-2093 (((-112) $) 12)) (-3450 (((-112) $) 136)) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 30)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) 20)) (-2953 (($) 60)) (-2209 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-1785 (((-576) $ $) 64)) (-2860 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1906 (($ (-1 $)) 63)) (-1558 (((-112) $) 91)) (-3029 (($ $) 92)) (-1508 (($ $) 116 (|has| $ (-6 -4462)))) (-2550 (((-783) $) NIL)) (-3704 (($ $) NIL)) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 59)) (-1846 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 73)) (-2237 (($ |#1| $) 114)) (-3228 (($ $ $) 118 (|has| $ (-6 -4462))) (($ $ |#1|) 119 (|has| $ (-6 -4462)))) (-4136 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-1588 (($ $) 66)) (-2956 (($ (-656 |#1|)) 129) (((-874) $) 57 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) NIL)) (-1931 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 132 (|has| |#1| (-1118)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1175 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -2770 ($ (-656 |#1|))) (IF (|has| |#1| (-1118)) (-15 -3040 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -4092 ((-2 (|:| |cycle?| (-112)) (|:| -4199 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1906 ($ (-1 $))) (-15 -2237 ($ |#1| $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -3236 ((-1291) (-576) $)) (-15 -2098 ((-874) $)) (-15 -1515 ((-112)))) |%noBranch|) (-15 -3439 ($ $ (-576) $)) (-15 -2102 ($ (-1 |#1|))) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $)))) (-1236)) (T -1175))
+((-2770 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-3040 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112)) (-5 *1 (-1175 *4)))) (-4092 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4199 (-783)) (|:| |period| (-783)))) (-5 *1 (-1175 *4)) (-4 *4 (-1236)) (-5 *3 (-783)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1236)))) (-3236 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1175 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)))) (-1515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-1118)) (-4 *3 (-1236)))) (-3439 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-2102 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-2150 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))) (-2162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))))
+(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -2770 ($ (-656 |#1|))) (IF (|has| |#1| (-1118)) (-15 -3040 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -4092 ((-2 (|:| |cycle?| (-112)) (|:| -4199 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -1906 ($ (-1 $))) (-15 -2237 ($ |#1| $)) (IF (|has| |#1| (-1118)) (PROGN (-15 -3236 ((-1291) (-576) $)) (-15 -2098 ((-874) $)) (-15 -1515 ((-112)))) |%noBranch|) (-15 -3439 ($ $ (-576) $)) (-15 -2102 ($ (-1 |#1|))) (-15 -2102 ($ (-1 |#1| |#1|) |#1|)) (-15 -2150 ($ (-1 (-112) |#1|) $)) (-15 -2162 ($ (-1 (-112) |#1|) $))))
+((-2869 (((-112) $ $) 19)) (-3319 (($ $) 123)) (-1805 (($ $) 124)) (-1791 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3690 (((-112) $ $) 121)) (-3669 (((-112) $ $ (-576)) 120)) (-3237 (($ (-576)) 130)) (-4368 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-1375 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-3330 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2637 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-1819 (($ $ (-1253 (-576)) $) 117)) (-4060 (($ $) 80 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ (-145) $) 79 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4461)))) (-2887 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4461)))) (-2481 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4462)))) (-2405 (((-145) $ (-576)) 52)) (-3708 (((-112) $ $) 122)) (-1454 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1118))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-1873 (((-656 (-145)) $) 31 (|has| $ (-6 -4461)))) (-3769 (($ (-783) (-145)) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| (-145) (-862)))) (-1383 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-2186 (((-656 (-145)) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| (-145) (-862)))) (-1332 (((-112) $ $ (-145)) 118)) (-2703 (((-783) $ $ (-145)) 119)) (-2466 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2864 (($ $) 125)) (-3019 (($ $) 126)) (-2356 (((-112) $ (-783)) 10)) (-2651 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2148 (((-1177) $) 22)) (-1604 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21)) (-2930 (((-145) $) 43 (|has| (-576) (-862)))) (-2922 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4211 (($ $ (-145)) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-4274 (((-656 (-145)) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1253 (-576))) 71) (($ $ $) 105)) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3954 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4461))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2968 (($ (-656 (-145))) 72)) (-4136 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (($ (-145)) 114) (((-874) $) 18)) (-2617 (((-112) $ $) 23)) (-3972 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4461)))) (-2616 (((-1177) $) 134) (((-1177) $ (-112)) 133) (((-1291) (-834) $) 132) (((-1291) (-834) $ (-112)) 131)) (-3047 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3024 (((-112) $ $) 86 (|has| (-145) (-862)))) (-2991 (((-112) $ $) 20)) (-3034 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3014 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1176) (-141)) (T -1176))
+((-3237 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1176)))))
+(-13 (-1162) (-1118) (-840) (-10 -8 (-15 -3237 ($ (-576)))))
+(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))) ((-663 #0#) . T) ((-19 #0#) . T) ((-840) . T) ((-862) |has| (-145) (-862)) ((-1118) . T) ((-1162) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3319 (($ $) NIL)) (-1805 (($ $) NIL)) (-1791 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-3690 (((-112) $ $) NIL)) (-3669 (((-112) $ $ (-576)) NIL)) (-3237 (($ (-576)) 8)) (-4368 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-1375 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3330 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-2791 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2637 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-1819 (($ $ (-1253 (-576)) $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-3316 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2481 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-2405 (((-145) $ (-576)) NIL)) (-3708 (((-112) $ $) NIL)) (-1454 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1118))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1118))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-1873 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-3769 (($ (-783) (-145)) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| (-145) (-862)))) (-1383 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2186 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-1475 (((-576) $) NIL (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| (-145) (-862)))) (-1332 (((-112) $ $ (-145)) NIL)) (-2703 (((-783) $ $ (-145)) NIL)) (-2466 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2864 (($ $) NIL)) (-3019 (($ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2651 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2148 (((-1177) $) NIL)) (-1604 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-145) $) NIL (|has| (-576) (-862)))) (-2922 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4211 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-4274 (((-656 (-145)) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) NIL)) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3954 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2968 (($ (-656 (-145))) NIL)) (-4136 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (($ (-145)) NIL) (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3972 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2616 (((-1177) $) 19) (((-1177) $ (-112)) 21) (((-1291) (-834) $) 22) (((-1291) (-834) $ (-112)) 23)) (-3047 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3014 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1177) (-1176)) (T -1177))
+NIL
+(-1176)
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-3526 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-1177) |#1|) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#1| "failed") (-1177) $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#1| "failed") (-1177) $) NIL)) (-3316 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-1177)) NIL)) (-1873 (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2186 (((-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-1773 (((-656 (-1177)) $) NIL)) (-2499 (((-112) (-1177) $) NIL)) (-2138 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-2961 (((-656 (-1177)) $) NIL)) (-4254 (((-112) (-1177) $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2930 ((|#1| $) NIL (|has| (-1177) (-862)))) (-2922 (((-3 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) "failed") (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL (-12 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-319 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-1177)) NIL) ((|#1| $ (-1177) |#1|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-625 (-874))) (|has| |#1| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 (-1177)) (|:| -1918 |#1|)) (-1118)) (|has| |#1| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1178 |#1|) (-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461))) (-1118)) (T -1178))
+NIL
+(-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461)))
+((-3634 (((-1175 |#1|) (-1175 |#1|)) 83)) (-4077 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 39)) (-1486 (((-1175 |#1|) (-419 (-576)) (-1175 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2318 (((-1175 |#1|) |#1| (-1175 |#1|)) 139 (|has| |#1| (-374)))) (-2058 (((-1175 |#1|) (-1175 |#1|)) 97)) (-4308 (((-1175 (-576)) (-576)) 63)) (-4132 (((-1175 |#1|) (-1175 (-1175 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2057 (((-1175 |#1|) (-576) (-576) (-1175 |#1|)) 102)) (-3811 (((-1175 |#1|) |#1| (-576)) 51)) (-1673 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 66)) (-3425 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 136 (|has| |#1| (-374)))) (-1590 (((-1175 |#1|) |#1| (-1 (-1175 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2194 (((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|))) 137 (|has| |#1| (-374)))) (-3663 (((-1175 |#1|) (-1175 |#1|)) 96)) (-2083 (((-1175 |#1|) (-1175 |#1|)) 82)) (-4034 (((-1175 |#1|) (-576) (-576) (-1175 |#1|)) 103)) (-2254 (((-1175 |#1|) |#1| (-1175 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2334 (((-1175 (-576)) (-576)) 62)) (-3092 (((-1175 |#1|) |#1|) 65)) (-3570 (((-1175 |#1|) (-1175 |#1|) (-576) (-576)) 99)) (-1649 (((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|)) 72)) (-2858 (((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|)) 37)) (-3860 (((-1175 |#1|) (-1175 |#1|)) 98)) (-2666 (((-1175 |#1|) (-1175 |#1|) |#1|) 77)) (-2082 (((-1175 |#1|) (-1175 |#1|)) 68)) (-4270 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 78)) (-2956 (((-1175 |#1|) |#1|) 73)) (-4168 (((-1175 |#1|) (-1175 (-1175 |#1|))) 88)) (-3108 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 38)) (-3096 (((-1175 |#1|) (-1175 |#1|)) 21) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 23)) (-3081 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 17)) (* (((-1175 |#1|) (-1175 |#1|) |#1|) 29) (((-1175 |#1|) |#1| (-1175 |#1|)) 26) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 27)))
+(((-1179 |#1|) (-10 -7 (-15 -3081 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3096 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3096 ((-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2858 ((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|))) (-15 -3108 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4077 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3811 ((-1175 |#1|) |#1| (-576))) (-15 -2334 ((-1175 (-576)) (-576))) (-15 -4308 ((-1175 (-576)) (-576))) (-15 -3092 ((-1175 |#1|) |#1|)) (-15 -1673 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2082 ((-1175 |#1|) (-1175 |#1|))) (-15 -1649 ((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|))) (-15 -2956 ((-1175 |#1|) |#1|)) (-15 -2666 ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -4270 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2083 ((-1175 |#1|) (-1175 |#1|))) (-15 -3634 ((-1175 |#1|) (-1175 |#1|))) (-15 -4168 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -3663 ((-1175 |#1|) (-1175 |#1|))) (-15 -2058 ((-1175 |#1|) (-1175 |#1|))) (-15 -3860 ((-1175 |#1|) (-1175 |#1|))) (-15 -3570 ((-1175 |#1|) (-1175 |#1|) (-576) (-576))) (-15 -2057 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (-15 -4034 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 -1590 ((-1175 |#1|) |#1| (-1 (-1175 |#1|)))) (-15 -4132 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -1486 ((-1175 |#1|) (-419 (-576)) (-1175 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3425 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2194 ((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|)))) (-15 -2318 ((-1175 |#1|) |#1| (-1175 |#1|)))) |%noBranch|)) (-1067)) (T -1179))
+((-2318 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-374)) (-4 *4 (-1067)) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)))) (-3425 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1486 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1067)) (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))) (-2254 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4034 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-2057 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-3570 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3663 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1067)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-4270 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2666 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-1649 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1067)) (-5 *1 (-1179 *4)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-1673 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3092 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-4308 (*1 *2 *3) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) (-5 *3 (-576)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067)) (-5 *3 (-576)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))) (-4077 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-2858 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3096 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))) (-3081 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
+(-10 -7 (-15 -3081 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3096 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3096 ((-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -2858 ((-3 (-1175 |#1|) "failed") (-1175 |#1|) (-1175 |#1|))) (-15 -3108 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4077 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -3811 ((-1175 |#1|) |#1| (-576))) (-15 -2334 ((-1175 (-576)) (-576))) (-15 -4308 ((-1175 (-576)) (-576))) (-15 -3092 ((-1175 |#1|) |#1|)) (-15 -1673 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2082 ((-1175 |#1|) (-1175 |#1|))) (-15 -1649 ((-1175 |#1|) (-1 |#1| (-576)) (-1175 |#1|))) (-15 -2956 ((-1175 |#1|) |#1|)) (-15 -2666 ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -4270 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2083 ((-1175 |#1|) (-1175 |#1|))) (-15 -3634 ((-1175 |#1|) (-1175 |#1|))) (-15 -4168 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -3663 ((-1175 |#1|) (-1175 |#1|))) (-15 -2058 ((-1175 |#1|) (-1175 |#1|))) (-15 -3860 ((-1175 |#1|) (-1175 |#1|))) (-15 -3570 ((-1175 |#1|) (-1175 |#1|) (-576) (-576))) (-15 -2057 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (-15 -4034 ((-1175 |#1|) (-576) (-576) (-1175 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 -1590 ((-1175 |#1|) |#1| (-1 (-1175 |#1|)))) (-15 -4132 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -1486 ((-1175 |#1|) (-419 (-576)) (-1175 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3425 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2194 ((-1175 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1175 |#1|)))) (-15 -2318 ((-1175 |#1|) |#1| (-1175 |#1|)))) |%noBranch|))
+((-2384 (((-1175 |#1|) (-1175 |#1|)) 60)) (-2260 (((-1175 |#1|) (-1175 |#1|)) 42)) (-2363 (((-1175 |#1|) (-1175 |#1|)) 56)) (-2238 (((-1175 |#1|) (-1175 |#1|)) 38)) (-2409 (((-1175 |#1|) (-1175 |#1|)) 63)) (-2282 (((-1175 |#1|) (-1175 |#1|)) 45)) (-3118 (((-1175 |#1|) (-1175 |#1|)) 34)) (-1619 (((-1175 |#1|) (-1175 |#1|)) 29)) (-2422 (((-1175 |#1|) (-1175 |#1|)) 64)) (-2291 (((-1175 |#1|) (-1175 |#1|)) 46)) (-2394 (((-1175 |#1|) (-1175 |#1|)) 61)) (-2270 (((-1175 |#1|) (-1175 |#1|)) 43)) (-2373 (((-1175 |#1|) (-1175 |#1|)) 58)) (-2249 (((-1175 |#1|) (-1175 |#1|)) 40)) (-2461 (((-1175 |#1|) (-1175 |#1|)) 68)) (-2324 (((-1175 |#1|) (-1175 |#1|)) 50)) (-2434 (((-1175 |#1|) (-1175 |#1|)) 66)) (-2304 (((-1175 |#1|) (-1175 |#1|)) 48)) (-2485 (((-1175 |#1|) (-1175 |#1|)) 71)) (-2345 (((-1175 |#1|) (-1175 |#1|)) 53)) (-2541 (((-1175 |#1|) (-1175 |#1|)) 72)) (-2354 (((-1175 |#1|) (-1175 |#1|)) 54)) (-2473 (((-1175 |#1|) (-1175 |#1|)) 70)) (-2335 (((-1175 |#1|) (-1175 |#1|)) 52)) (-2447 (((-1175 |#1|) (-1175 |#1|)) 69)) (-2315 (((-1175 |#1|) (-1175 |#1|)) 51)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 36)))
+(((-1180 |#1|) (-10 -7 (-15 -1619 ((-1175 |#1|) (-1175 |#1|))) (-15 -3118 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2238 ((-1175 |#1|) (-1175 |#1|))) (-15 -2249 ((-1175 |#1|) (-1175 |#1|))) (-15 -2260 ((-1175 |#1|) (-1175 |#1|))) (-15 -2270 ((-1175 |#1|) (-1175 |#1|))) (-15 -2282 ((-1175 |#1|) (-1175 |#1|))) (-15 -2291 ((-1175 |#1|) (-1175 |#1|))) (-15 -2304 ((-1175 |#1|) (-1175 |#1|))) (-15 -2315 ((-1175 |#1|) (-1175 |#1|))) (-15 -2324 ((-1175 |#1|) (-1175 |#1|))) (-15 -2335 ((-1175 |#1|) (-1175 |#1|))) (-15 -2345 ((-1175 |#1|) (-1175 |#1|))) (-15 -2354 ((-1175 |#1|) (-1175 |#1|))) (-15 -2363 ((-1175 |#1|) (-1175 |#1|))) (-15 -2373 ((-1175 |#1|) (-1175 |#1|))) (-15 -2384 ((-1175 |#1|) (-1175 |#1|))) (-15 -2394 ((-1175 |#1|) (-1175 |#1|))) (-15 -2409 ((-1175 |#1|) (-1175 |#1|))) (-15 -2422 ((-1175 |#1|) (-1175 |#1|))) (-15 -2434 ((-1175 |#1|) (-1175 |#1|))) (-15 -2447 ((-1175 |#1|) (-1175 |#1|))) (-15 -2461 ((-1175 |#1|) (-1175 |#1|))) (-15 -2473 ((-1175 |#1|) (-1175 |#1|))) (-15 -2485 ((-1175 |#1|) (-1175 |#1|))) (-15 -2541 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-576)))) (T -1180))
+((-2541 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2394 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2282 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))))
+(-10 -7 (-15 -1619 ((-1175 |#1|) (-1175 |#1|))) (-15 -3118 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -2238 ((-1175 |#1|) (-1175 |#1|))) (-15 -2249 ((-1175 |#1|) (-1175 |#1|))) (-15 -2260 ((-1175 |#1|) (-1175 |#1|))) (-15 -2270 ((-1175 |#1|) (-1175 |#1|))) (-15 -2282 ((-1175 |#1|) (-1175 |#1|))) (-15 -2291 ((-1175 |#1|) (-1175 |#1|))) (-15 -2304 ((-1175 |#1|) (-1175 |#1|))) (-15 -2315 ((-1175 |#1|) (-1175 |#1|))) (-15 -2324 ((-1175 |#1|) (-1175 |#1|))) (-15 -2335 ((-1175 |#1|) (-1175 |#1|))) (-15 -2345 ((-1175 |#1|) (-1175 |#1|))) (-15 -2354 ((-1175 |#1|) (-1175 |#1|))) (-15 -2363 ((-1175 |#1|) (-1175 |#1|))) (-15 -2373 ((-1175 |#1|) (-1175 |#1|))) (-15 -2384 ((-1175 |#1|) (-1175 |#1|))) (-15 -2394 ((-1175 |#1|) (-1175 |#1|))) (-15 -2409 ((-1175 |#1|) (-1175 |#1|))) (-15 -2422 ((-1175 |#1|) (-1175 |#1|))) (-15 -2434 ((-1175 |#1|) (-1175 |#1|))) (-15 -2447 ((-1175 |#1|) (-1175 |#1|))) (-15 -2461 ((-1175 |#1|) (-1175 |#1|))) (-15 -2473 ((-1175 |#1|) (-1175 |#1|))) (-15 -2485 ((-1175 |#1|) (-1175 |#1|))) (-15 -2541 ((-1175 |#1|) (-1175 |#1|))))
+((-2384 (((-1175 |#1|) (-1175 |#1|)) 102)) (-2260 (((-1175 |#1|) (-1175 |#1|)) 61)) (-2108 (((-2 (|:| -2363 (-1175 |#1|)) (|:| -2373 (-1175 |#1|))) (-1175 |#1|)) 98)) (-2363 (((-1175 |#1|) (-1175 |#1|)) 99)) (-4275 (((-2 (|:| -2238 (-1175 |#1|)) (|:| -2249 (-1175 |#1|))) (-1175 |#1|)) 54)) (-2238 (((-1175 |#1|) (-1175 |#1|)) 55)) (-2409 (((-1175 |#1|) (-1175 |#1|)) 104)) (-2282 (((-1175 |#1|) (-1175 |#1|)) 68)) (-3118 (((-1175 |#1|) (-1175 |#1|)) 40)) (-1619 (((-1175 |#1|) (-1175 |#1|)) 37)) (-2422 (((-1175 |#1|) (-1175 |#1|)) 105)) (-2291 (((-1175 |#1|) (-1175 |#1|)) 69)) (-2394 (((-1175 |#1|) (-1175 |#1|)) 103)) (-2270 (((-1175 |#1|) (-1175 |#1|)) 64)) (-2373 (((-1175 |#1|) (-1175 |#1|)) 100)) (-2249 (((-1175 |#1|) (-1175 |#1|)) 56)) (-2461 (((-1175 |#1|) (-1175 |#1|)) 113)) (-2324 (((-1175 |#1|) (-1175 |#1|)) 88)) (-2434 (((-1175 |#1|) (-1175 |#1|)) 107)) (-2304 (((-1175 |#1|) (-1175 |#1|)) 84)) (-2485 (((-1175 |#1|) (-1175 |#1|)) 117)) (-2345 (((-1175 |#1|) (-1175 |#1|)) 92)) (-2541 (((-1175 |#1|) (-1175 |#1|)) 119)) (-2354 (((-1175 |#1|) (-1175 |#1|)) 94)) (-2473 (((-1175 |#1|) (-1175 |#1|)) 115)) (-2335 (((-1175 |#1|) (-1175 |#1|)) 90)) (-2447 (((-1175 |#1|) (-1175 |#1|)) 109)) (-2315 (((-1175 |#1|) (-1175 |#1|)) 86)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 41)))
+(((-1181 |#1|) (-10 -7 (-15 -1619 ((-1175 |#1|) (-1175 |#1|))) (-15 -3118 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4275 ((-2 (|:| -2238 (-1175 |#1|)) (|:| -2249 (-1175 |#1|))) (-1175 |#1|))) (-15 -2238 ((-1175 |#1|) (-1175 |#1|))) (-15 -2249 ((-1175 |#1|) (-1175 |#1|))) (-15 -2260 ((-1175 |#1|) (-1175 |#1|))) (-15 -2270 ((-1175 |#1|) (-1175 |#1|))) (-15 -2282 ((-1175 |#1|) (-1175 |#1|))) (-15 -2291 ((-1175 |#1|) (-1175 |#1|))) (-15 -2304 ((-1175 |#1|) (-1175 |#1|))) (-15 -2315 ((-1175 |#1|) (-1175 |#1|))) (-15 -2324 ((-1175 |#1|) (-1175 |#1|))) (-15 -2335 ((-1175 |#1|) (-1175 |#1|))) (-15 -2345 ((-1175 |#1|) (-1175 |#1|))) (-15 -2354 ((-1175 |#1|) (-1175 |#1|))) (-15 -2108 ((-2 (|:| -2363 (-1175 |#1|)) (|:| -2373 (-1175 |#1|))) (-1175 |#1|))) (-15 -2363 ((-1175 |#1|) (-1175 |#1|))) (-15 -2373 ((-1175 |#1|) (-1175 |#1|))) (-15 -2384 ((-1175 |#1|) (-1175 |#1|))) (-15 -2394 ((-1175 |#1|) (-1175 |#1|))) (-15 -2409 ((-1175 |#1|) (-1175 |#1|))) (-15 -2422 ((-1175 |#1|) (-1175 |#1|))) (-15 -2434 ((-1175 |#1|) (-1175 |#1|))) (-15 -2447 ((-1175 |#1|) (-1175 |#1|))) (-15 -2461 ((-1175 |#1|) (-1175 |#1|))) (-15 -2473 ((-1175 |#1|) (-1175 |#1|))) (-15 -2485 ((-1175 |#1|) (-1175 |#1|))) (-15 -2541 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-576)))) (T -1181))
+((-2541 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2394 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2363 (-1175 *4)) (|:| -2373 (-1175 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2282 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-4275 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2238 (-1175 *4)) (|:| -2249 (-1175 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))))
+(-10 -7 (-15 -1619 ((-1175 |#1|) (-1175 |#1|))) (-15 -3118 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4275 ((-2 (|:| -2238 (-1175 |#1|)) (|:| -2249 (-1175 |#1|))) (-1175 |#1|))) (-15 -2238 ((-1175 |#1|) (-1175 |#1|))) (-15 -2249 ((-1175 |#1|) (-1175 |#1|))) (-15 -2260 ((-1175 |#1|) (-1175 |#1|))) (-15 -2270 ((-1175 |#1|) (-1175 |#1|))) (-15 -2282 ((-1175 |#1|) (-1175 |#1|))) (-15 -2291 ((-1175 |#1|) (-1175 |#1|))) (-15 -2304 ((-1175 |#1|) (-1175 |#1|))) (-15 -2315 ((-1175 |#1|) (-1175 |#1|))) (-15 -2324 ((-1175 |#1|) (-1175 |#1|))) (-15 -2335 ((-1175 |#1|) (-1175 |#1|))) (-15 -2345 ((-1175 |#1|) (-1175 |#1|))) (-15 -2354 ((-1175 |#1|) (-1175 |#1|))) (-15 -2108 ((-2 (|:| -2363 (-1175 |#1|)) (|:| -2373 (-1175 |#1|))) (-1175 |#1|))) (-15 -2363 ((-1175 |#1|) (-1175 |#1|))) (-15 -2373 ((-1175 |#1|) (-1175 |#1|))) (-15 -2384 ((-1175 |#1|) (-1175 |#1|))) (-15 -2394 ((-1175 |#1|) (-1175 |#1|))) (-15 -2409 ((-1175 |#1|) (-1175 |#1|))) (-15 -2422 ((-1175 |#1|) (-1175 |#1|))) (-15 -2434 ((-1175 |#1|) (-1175 |#1|))) (-15 -2447 ((-1175 |#1|) (-1175 |#1|))) (-15 -2461 ((-1175 |#1|) (-1175 |#1|))) (-15 -2473 ((-1175 |#1|) (-1175 |#1|))) (-15 -2485 ((-1175 |#1|) (-1175 |#1|))) (-15 -2541 ((-1175 |#1|) (-1175 |#1|))))
+((-3335 (((-974 |#2|) |#2| |#2|) 50)) (-4290 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317)))))
+(((-1182 |#1| |#2|) (-10 -7 (-15 -3335 ((-974 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -4290 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1262 |#1|)) (T -1182))
+((-4290 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2)) (-4 *2 (-1262 *3)))) (-3335 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-974 *3)) (-5 *1 (-1182 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -3335 ((-974 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -4290 (|#2| |#2| |#1|)) |%noBranch|))
+((-2869 (((-112) $ $) NIL)) (-4138 (($ $ (-656 (-783))) 79)) (-2191 (($) 33)) (-4202 (($ $) 51)) (-3680 (((-656 $) $) 60)) (-4018 (((-112) $) 19)) (-4421 (((-656 (-959 |#2|)) $) 86)) (-1606 (($ $) 80)) (-3461 (((-783) $) 47)) (-3769 (($) 32)) (-1444 (($ $ (-656 (-783)) (-959 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-959 |#2|)) 75)) (-1383 (($ $ $) 57) (($ (-656 $)) 59)) (-4315 (((-783) $) 87)) (-3126 (((-112) $) 15)) (-2148 (((-1177) $) NIL)) (-3766 (((-112) $) 22)) (-3945 (((-1138) $) NIL)) (-2341 (((-173) $) 85)) (-3897 (((-959 |#2|) $) 81)) (-1881 (((-783) $) 82)) (-1501 (((-112) $) 84)) (-3222 (($ $ (-656 (-783)) (-173)) 78)) (-2867 (($ $) 52)) (-2956 (((-874) $) 99)) (-3642 (($ $ (-656 (-783)) (-112)) 77)) (-4197 (((-656 $) $) 11)) (-3711 (($ $ (-783)) 46)) (-1739 (($ $) 43)) (-2617 (((-112) $ $) NIL)) (-2245 (($ $ $ (-959 |#2|) (-783)) 68)) (-2317 (($ $ (-959 |#2|)) 67)) (-2109 (($ $ (-656 (-783)) (-959 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-959 |#2|)) 71)) (-2991 (((-112) $ $) 92)))
+(((-1183 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -3126 ((-112) $)) (-15 -4018 ((-112) $)) (-15 -3766 ((-112) $)) (-15 -3769 ($)) (-15 -2191 ($)) (-15 -1739 ($ $)) (-15 -3711 ($ $ (-783))) (-15 -4197 ((-656 $) $)) (-15 -3461 ((-783) $)) (-15 -4202 ($ $)) (-15 -2867 ($ $)) (-15 -1383 ($ $ $)) (-15 -1383 ($ (-656 $))) (-15 -3680 ((-656 $) $)) (-15 -2109 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -2317 ($ $ (-959 |#2|))) (-15 -2245 ($ $ $ (-959 |#2|) (-783))) (-15 -1444 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -2109 ($ $ (-656 (-783)) (-783))) (-15 -1444 ($ $ (-656 (-783)) (-783))) (-15 -2109 ((-783) $ (-959 |#2|))) (-15 -1444 ($ $ (-783) (-959 |#2|))) (-15 -3642 ($ $ (-656 (-783)) (-112))) (-15 -3222 ($ $ (-656 (-783)) (-173))) (-15 -4138 ($ $ (-656 (-783)))) (-15 -3897 ((-959 |#2|) $)) (-15 -1881 ((-783) $)) (-15 -1501 ((-112) $)) (-15 -2341 ((-173) $)) (-15 -4315 ((-783) $)) (-15 -1606 ($ $)) (-15 -4421 ((-656 (-959 |#2|)) $)))) (-937) (-1067)) (T -1183))
+((-3126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-3769 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-2191 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-1739 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4202 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-2867 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-1383 (*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-2317 (*1 *1 *1 *2) (-12 (-5 *2 (-959 *4)) (-4 *4 (-1067)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)))) (-2245 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-959 *5)) (-5 *3 (-783)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-2109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *2 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-1444 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))) (-3642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-3222 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1067)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-959 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))) (-1606 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))) (-4421 (*1 *2 *1) (-12 (-5 *2 (-656 (-959 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1067)))))
+(-13 (-1118) (-10 -8 (-15 -3126 ((-112) $)) (-15 -4018 ((-112) $)) (-15 -3766 ((-112) $)) (-15 -3769 ($)) (-15 -2191 ($)) (-15 -1739 ($ $)) (-15 -3711 ($ $ (-783))) (-15 -4197 ((-656 $) $)) (-15 -3461 ((-783) $)) (-15 -4202 ($ $)) (-15 -2867 ($ $)) (-15 -1383 ($ $ $)) (-15 -1383 ($ (-656 $))) (-15 -3680 ((-656 $) $)) (-15 -2109 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -2317 ($ $ (-959 |#2|))) (-15 -2245 ($ $ $ (-959 |#2|) (-783))) (-15 -1444 ($ $ (-656 (-783)) (-959 |#2|))) (-15 -2109 ($ $ (-656 (-783)) (-783))) (-15 -1444 ($ $ (-656 (-783)) (-783))) (-15 -2109 ((-783) $ (-959 |#2|))) (-15 -1444 ($ $ (-783) (-959 |#2|))) (-15 -3642 ($ $ (-656 (-783)) (-112))) (-15 -3222 ($ $ (-656 (-783)) (-173))) (-15 -4138 ($ $ (-656 (-783)))) (-15 -3897 ((-959 |#2|) $)) (-15 -1881 ((-783) $)) (-15 -1501 ((-112) $)) (-15 -2341 ((-173) $)) (-15 -4315 ((-783) $)) (-15 -1606 ($ $)) (-15 -4421 ((-656 (-959 |#2|)) $))))
+((-2869 (((-112) $ $) NIL)) (-1818 ((|#2| $) 11)) (-1806 ((|#1| $) 10)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2968 (($ |#1| |#2|) 9)) (-2956 (((-874) $) 16)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1184 |#1| |#2|) (-13 (-1118) (-10 -8 (-15 -2968 ($ |#1| |#2|)) (-15 -1806 (|#1| $)) (-15 -1818 (|#2| $)))) (-1118) (-1118)) (T -1184))
+((-2968 (*1 *1 *2 *3) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-1806 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1118)))) (-1818 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1118)))))
+(-13 (-1118) (-10 -8 (-15 -2968 ($ |#1| |#2|)) (-15 -1806 (|#1| $)) (-15 -1818 (|#2| $))))
+((-2869 (((-112) $ $) NIL)) (-2535 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1185) (-13 (-1101) (-10 -8 (-15 -2535 ((-1153) $))))) (T -1185))
+((-2535 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1185)))))
+(-13 (-1101) (-10 -8 (-15 -2535 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 11)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4334 (($ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1428 (((-112) $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2725 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-4304 (((-1193 |#1| |#2| |#3|) $) 42)) (-2855 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 32)) (-4404 (((-1193 |#1| |#2| |#3|) $) 33)) (-2384 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-2627 (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-2216 (((-1193 |#1| |#2| |#3|) $) 140) (((-1195) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-3279 (($ $) 37) (($ (-576) $) 38)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-1193 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 (-1193 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-1193 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1193 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-4077 (((-3 $ "failed") $) 54)) (-2395 (((-419 (-968 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-2840 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-3730 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2567 (((-112) $) 28)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-3540 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL (|has| |#1| (-374)))) (-2976 (((-1193 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2211 (((-3 $ "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))))) (-3327 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4162 (($ $ (-937)) NIL)) (-2028 (($ (-1 |#1| (-576)) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-576)) 19) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-3639 (($ $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2571 (($ $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3118 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4416 (($ (-576) (-1193 |#1| |#2| |#3|)) 36)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3739 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4371 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-576)) 158)) (-2858 (((-3 $ "failed") $ $) 55 (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1193 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1193 |#1| |#2| |#3|)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1130))) (($ $ (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 57) (($ $) 56 (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3210 (($ $) NIL (|has| |#1| (-374)))) (-2987 (((-1193 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-2782 (((-576) $) 43)) (-2422 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1846 (((-548) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1193 |#1| |#2| |#3|)) 30) (($ (-1282 |#2|)) 25) (($ (-1195)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4309 ((|#1| $ (-576)) 77)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 12)) (-4175 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2434 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2130 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2143 (($) 21 T CONST)) (-2155 (($) 16 T CONST)) (-3590 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3047 (((-112) $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3024 (((-112) $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3014 (((-112) $ $) NIL (-2838 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 23)) (** (($ $ (-937)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1193 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1186 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1186))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-3539 ((|#2| |#2| (-1110 |#2|)) 26) ((|#2| |#2| (-1195)) 28)))
+(((-1187 |#1| |#2|) (-10 -7 (-15 -3539 (|#2| |#2| (-1195))) (-15 -3539 (|#2| |#2| (-1110 |#2|)))) (-13 (-568) (-1056 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1221))) (T -1187))
+((-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)))) (-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))))))
+(-10 -7 (-15 -3539 (|#2| |#2| (-1195))) (-15 -3539 (|#2| |#2| (-1110 |#2|))))
+((-3539 (((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|)))) 31) (((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|))) 44) (((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195)) 33) (((-419 (-968 |#1|)) (-968 |#1|) (-1195)) 36)))
+(((-1188 |#1|) (-10 -7 (-15 -3539 ((-419 (-968 |#1|)) (-968 |#1|) (-1195))) (-15 -3539 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -3539 ((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|)))) (-15 -3539 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|)))))) (-13 (-568) (-1056 (-576)))) (T -1188))
+((-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5))) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1188 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-968 *5))) (-5 *3 (-968 *5)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1188 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 (-419 (-968 *5)) (-326 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-419 (-968 *5))))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-968 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-968 *5)))))
+(-10 -7 (-15 -3539 ((-419 (-968 |#1|)) (-968 |#1|) (-1195))) (-15 -3539 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1195))) (-15 -3539 ((-419 (-968 |#1|)) (-968 |#1|) (-1110 (-968 |#1|)))) (-15 -3539 ((-3 (-419 (-968 |#1|)) (-326 |#1|)) (-419 (-968 |#1|)) (-1110 (-419 (-968 |#1|))))))
+((-1787 (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 13)))
+(((-1189 |#1| |#2|) (-10 -7 (-15 -1787 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) (-1067) (-1067)) (T -1189))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6)))))
+(-10 -7 (-15 -1787 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|))))
+((-1870 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 51)) (-4205 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 52)))
+(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4205 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -1870 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) (-805) (-862) (-464) (-965 |#3| |#1| |#2|)) (T -1190))
+((-1870 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))))
+(-10 -7 (-15 -4205 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -1870 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))))
+((-2869 (((-112) $ $) 171)) (-3549 (((-112) $) 43)) (-2862 (((-1286 |#1|) $ (-783)) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-2357 (($ (-1191 |#1|)) NIL)) (-4174 (((-1191 $) $ (-1100)) 82) (((-1191 |#1|) $) 71)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) 164 (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2628 (($ $ $) 158 (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) 95 (|has| |#1| (-925)))) (-2879 (($ $) NIL (|has| |#1| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 115 (|has| |#1| (-925)))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1708 (($ $ (-783)) 61)) (-1546 (($ $ (-783)) 63)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-2216 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-1100) $) NIL)) (-2799 (($ $ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) 80)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-3497 (($ $ $) 131)) (-4055 (($ $ $) NIL (|has| |#1| (-568)))) (-3170 (((-2 (|:| -1868 |#1|) (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-4290 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-783) $) 69)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3069 (((-874) $ (-874)) 148)) (-3540 (((-783) $ $) NIL (|has| |#1| (-568)))) (-4192 (((-112) $) 48)) (-2747 (((-783) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#1| (-1170)))) (-4341 (($ (-1191 |#1|) (-1100)) 73) (($ (-1191 $) (-1100)) 89)) (-4162 (($ $ (-783)) 51)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) 87) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1100)) NIL) (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 153)) (-1859 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2819 (($ (-1 (-783) (-783)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1525 (((-1191 |#1|) $) NIL)) (-1712 (((-3 (-1100) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) 76)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2148 (((-1177) $) NIL)) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) 60)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1100)) (|:| -2300 (-783))) "failed") $) NIL)) (-2254 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) NIL (|has| |#1| (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) 50)) (-1357 ((|#1| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 103 (|has| |#1| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-2288 (($ $ (-783) |#1| $) 123)) (-4412 (((-430 (-1191 $)) (-1191 $)) 101 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 100 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 108 (|has| |#1| (-925)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#1|) NIL) (($ $ (-656 (-1100)) (-656 |#1|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-3375 (((-3 $ "failed") $ (-783)) 54)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 172 (|has| |#1| (-374)))) (-3206 (($ $ (-1100)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2782 (((-783) $) 78) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1100)) NIL (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-925))))) (-3224 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2956 (((-874) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1100)) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 17 T CONST)) (-2155 (($) 19 T CONST)) (-3590 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2991 (((-112) $ $) 120)) (-3108 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 90)) (** (($ $ (-937)) 14) (($ $ (-783)) 12)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1191 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-874))) (-15 -2288 ($ $ (-783) |#1| $)))) (-1067)) (T -1191))
+((-3069 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1067)))) (-2288 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1067)))))
+(-13 (-1262 |#1|) (-10 -8 (-15 -3069 ((-874) $ (-874))) (-15 -2288 ($ $ (-783) |#1| $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 11)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 36)) (-2216 (((-1186 |#1| |#2| |#3|) $) NIL) (((-1193 |#1| |#2| |#3|) $) NIL)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2552 (((-419 (-576)) $) 59)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-4428 (($ (-419 (-576)) (-1186 |#1| |#2| |#3|)) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-419 (-576))) 20) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4074 (((-1186 |#1| |#2| |#3|) $) 41)) (-2516 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) NIL)) (-4416 (((-1186 |#1| |#2| |#3|) $) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-2782 (((-419 (-576)) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1186 |#1| |#2| |#3|)) 30) (($ (-1193 |#1| |#2| |#3|)) 31) (($ (-1282 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 12)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 22 T CONST)) (-2155 (($) 16 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 24)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1192 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-1056 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1192))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-1056 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 129)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 119)) (-3552 (((-1259 |#2| |#1|) $ (-783)) 69)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-2206 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-2384 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1175 |#1|)) 113)) (-2409 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) 25)) (-3075 (($ $) 28)) (-4032 (((-968 |#1|) $ (-783)) 81) (((-968 |#1|) $ (-783) (-783)) 83)) (-2567 (((-112) $) 124)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $) 126) (((-783) $ (-783)) 128)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) NIL)) (-2028 (($ (-1 |#1| (-576)) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) 13) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-2254 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-3167 (($ $ (-783)) 15)) (-2858 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-1619 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2209 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1130)))) (-3884 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 31)) (-2782 (((-783) $) NIL)) (-2422 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 55) (($ (-1282 |#2|)) 36)) (-3532 (((-1175 |#1|) $) 101)) (-4309 ((|#1| $ (-783)) 121)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 58)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 17 T CONST)) (-2155 (($) 20 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) 198)) (-3081 (($ $ $) 35)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1193 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-10 -8 (-15 -2956 ($ (-1259 |#2| |#1|))) (-15 -3552 ((-1259 |#2| |#1|) $ (-783))) (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1193))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5)))) (-3552 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6)) (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1277 |#1|) (-10 -8 (-15 -2956 ($ (-1259 |#2| |#1|))) (-15 -3552 ((-1259 |#2| |#1|) $ (-783))) (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-2956 (((-874) $) 33) (($ (-1195)) 35)) (-2838 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2825 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-2537 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-2528 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-2515 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-2503 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2086 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45)))
+(((-1194) (-13 (-625 (-874)) (-10 -8 (-15 -2956 ($ (-1195))) (-15 -2537 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2515 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2528 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2503 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2838 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2086 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2825 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2825 ($ $))))) (T -1194))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194)))) (-2537 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2515 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2528 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2503 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2838 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2086 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2825 (*1 *1 *1) (-5 *1 (-1194))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2956 ($ (-1195))) (-15 -2537 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2515 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2528 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2503 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2838 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2086 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2825 ($ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2825 ($ $))))
+((-2869 (((-112) $ $) NIL)) (-3220 (($ $ (-656 (-874))) 62)) (-4228 (($ $ (-656 (-874))) 60)) (-3237 (((-1177) $) 101)) (-4126 (((-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874)))) $) 108)) (-4313 (((-112) $) 23)) (-3845 (($ $ (-656 (-656 (-874)))) 59) (($ $ (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874))))) 99)) (-4335 (($) 163 T CONST)) (-2624 (((-1291)) 135)) (-1487 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 69) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 76)) (-3769 (($) 122) (($ $) 131)) (-2041 (($ $) 100)) (-3639 (($ $ $) NIL)) (-2571 (($ $ $) NIL)) (-1798 (((-656 $) $) 136)) (-2148 (((-1177) $) 114)) (-3945 (((-1138) $) NIL)) (-2209 (($ $ (-656 (-874))) 61)) (-1846 (((-548) $) 48) (((-1195) $) 49) (((-905 (-576)) $) 80) (((-905 (-390)) $) 78)) (-2956 (((-874) $) 55) (($ (-1177)) 50)) (-2617 (((-112) $ $) NIL)) (-2774 (($ $ (-656 (-874))) 63)) (-2616 (((-1177) $) 34) (((-1177) $ (-112)) 35) (((-1291) (-834) $) 36) (((-1291) (-834) $ (-112)) 37)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 51)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 52)))
+(((-1195) (-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -3769 ($)) (-15 -3769 ($ $)) (-15 -2624 ((-1291))) (-15 -2041 ($ $)) (-15 -4313 ((-112) $)) (-15 -4126 ((-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -3845 ($ $ (-656 (-656 (-874))))) (-15 -3845 ($ $ (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -4228 ($ $ (-656 (-874)))) (-15 -3220 ($ $ (-656 (-874)))) (-15 -2774 ($ $ (-656 (-874)))) (-15 -2209 ($ $ (-656 (-874)))) (-15 -3237 ((-1177) $)) (-15 -1798 ((-656 $) $)) (-15 -4335 ($) -1716)))) (T -1195))
+((-3769 (*1 *1) (-5 *1 (-1195))) (-3769 (*1 *1 *1) (-5 *1 (-1195))) (-2624 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195)))) (-2041 (*1 *1 *1) (-5 *1 (-1195))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195)))) (-4335 (*1 *1) (-5 *1 (-1195))))
+(-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -3769 ($)) (-15 -3769 ($ $)) (-15 -2624 ((-1291))) (-15 -2041 ($ $)) (-15 -4313 ((-112) $)) (-15 -4126 ((-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -3845 ($ $ (-656 (-656 (-874))))) (-15 -3845 ($ $ (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -4228 ($ $ (-656 (-874)))) (-15 -3220 ($ $ (-656 (-874)))) (-15 -2774 ($ $ (-656 (-874)))) (-15 -2209 ($ $ (-656 (-874)))) (-15 -3237 ((-1177) $)) (-15 -1798 ((-656 $) $)) (-15 -4335 ($) -1716)))
+((-2839 (((-1286 |#1|) |#1| (-937)) 18) (((-1286 |#1|) (-656 |#1|)) 25)))
+(((-1196 |#1|) (-10 -7 (-15 -2839 ((-1286 |#1|) (-656 |#1|))) (-15 -2839 ((-1286 |#1|) |#1| (-937)))) (-1067)) (T -1196))
+((-2839 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3)) (-4 *3 (-1067)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4)) (-5 *1 (-1196 *4)))))
+(-10 -7 (-15 -2839 ((-1286 |#1|) (-656 |#1|))) (-15 -2839 ((-1286 |#1|) |#1| (-937))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1056 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2216 (((-576) $) NIL (|has| |#1| (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1056 (-419 (-576))))) ((|#1| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4290 (($ $) NIL (|has| |#1| (-464)))) (-3130 (($ $ |#1| (-989) $) NIL)) (-4192 (((-112) $) 17)) (-2747 (((-783) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-989)) NIL)) (-1859 (((-989) $) NIL)) (-2819 (($ (-1 (-989) (-989)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#1| $) NIL)) (-2288 (($ $ (-989) |#1| $) NIL (-12 (|has| (-989) (-132)) (|has| |#1| (-568))))) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2782 (((-989) $) NIL)) (-1885 ((|#1| $) NIL (|has| |#1| (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2838 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1056 (-419 (-576))))))) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ (-989)) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2143 (($) 10 T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 21)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1197 |#1|) (-13 (-336 |#1| (-989)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-989) (-132)) (-15 -2288 ($ $ (-989) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067)) (T -1197))
+((-2288 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-989)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))))
+(-13 (-336 |#1| (-989)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-989) (-132)) (-15 -2288 ($ $ (-989) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|)))
+((-3905 (((-1199) (-1195) $) 25)) (-3097 (($) 29)) (-2694 (((-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-1195) $) 22)) (-4408 (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")) $) 41) (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) 42) (((-1291) (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) 43)) (-4088 (((-1291) (-1195)) 58)) (-2219 (((-1291) (-1195) $) 55) (((-1291) (-1195)) 56) (((-1291)) 57)) (-4246 (((-1291) (-1195)) 37)) (-1600 (((-1195)) 36)) (-2953 (($) 34)) (-3154 (((-449) (-1195) (-449) (-1195) $) 45) (((-449) (-656 (-1195)) (-449) (-1195) $) 49) (((-449) (-1195) (-449)) 46) (((-449) (-1195) (-449) (-1195)) 50)) (-3147 (((-1195)) 35)) (-2956 (((-874) $) 28)) (-2184 (((-1291)) 30) (((-1291) (-1195)) 33)) (-3652 (((-656 (-1195)) (-1195) $) 24)) (-1882 (((-1291) (-1195) (-656 (-1195)) $) 38) (((-1291) (-1195) (-656 (-1195))) 39) (((-1291) (-656 (-1195))) 40)))
+(((-1198) (-13 (-625 (-874)) (-10 -8 (-15 -3097 ($)) (-15 -2184 ((-1291))) (-15 -2184 ((-1291) (-1195))) (-15 -3154 ((-449) (-1195) (-449) (-1195) $)) (-15 -3154 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -3154 ((-449) (-1195) (-449))) (-15 -3154 ((-449) (-1195) (-449) (-1195))) (-15 -4246 ((-1291) (-1195))) (-15 -3147 ((-1195))) (-15 -1600 ((-1195))) (-15 -1882 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -1882 ((-1291) (-1195) (-656 (-1195)))) (-15 -1882 ((-1291) (-656 (-1195)))) (-15 -4408 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")) $)) (-15 -4408 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")))) (-15 -4408 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2446 "void")))) (-15 -2219 ((-1291) (-1195) $)) (-15 -2219 ((-1291) (-1195))) (-15 -2219 ((-1291))) (-15 -4088 ((-1291) (-1195))) (-15 -2953 ($)) (-15 -2694 ((-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-1195) $)) (-15 -3652 ((-656 (-1195)) (-1195) $)) (-15 -3905 ((-1199) (-1195) $))))) (T -1198))
+((-3097 (*1 *1) (-5 *1 (-1198))) (-2184 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3154 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-3154 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195)) (-5 *1 (-1198)))) (-3154 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-3154 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3147 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-1600 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-1882 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1882 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4408 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4408 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4408 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2219 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2219 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2953 (*1 *1) (-5 *1 (-1198))) (-2694 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *1 (-1198)))) (-3652 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195)))) (-3905 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3097 ($)) (-15 -2184 ((-1291))) (-15 -2184 ((-1291) (-1195))) (-15 -3154 ((-449) (-1195) (-449) (-1195) $)) (-15 -3154 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -3154 ((-449) (-1195) (-449))) (-15 -3154 ((-449) (-1195) (-449) (-1195))) (-15 -4246 ((-1291) (-1195))) (-15 -3147 ((-1195))) (-15 -1600 ((-1195))) (-15 -1882 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -1882 ((-1291) (-1195) (-656 (-1195)))) (-15 -1882 ((-1291) (-656 (-1195)))) (-15 -4408 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")) $)) (-15 -4408 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2446 "void")))) (-15 -4408 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2446 "void")))) (-15 -2219 ((-1291) (-1195) $)) (-15 -2219 ((-1291) (-1195))) (-15 -2219 ((-1291))) (-15 -4088 ((-1291) (-1195))) (-15 -2953 ($)) (-15 -2694 ((-3 (|:| |fst| (-446)) (|:| -2446 "void")) (-1195) $)) (-15 -3652 ((-656 (-1195)) (-1195) $)) (-15 -3905 ((-1199) (-1195) $))))
+((-1589 (((-656 (-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $) 66)) (-2348 (((-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $) 47)) (-3702 (($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-449))))) 17)) (-4088 (((-1291) $) 73)) (-1922 (((-656 (-1195)) $) 22)) (-2989 (((-1122) $) 60)) (-3286 (((-449) (-1195) $) 27)) (-3882 (((-656 (-1195)) $) 30)) (-2953 (($) 19)) (-3154 (((-449) (-656 (-1195)) (-449) $) 25) (((-449) (-1195) (-449) $) 24)) (-2956 (((-874) $) 9) (((-1208 (-1195) (-449)) $) 13)))
+(((-1199) (-13 (-625 (-874)) (-10 -8 (-15 -2956 ((-1208 (-1195) (-449)) $)) (-15 -2953 ($)) (-15 -3154 ((-449) (-656 (-1195)) (-449) $)) (-15 -3154 ((-449) (-1195) (-449) $)) (-15 -3286 ((-449) (-1195) $)) (-15 -1922 ((-656 (-1195)) $)) (-15 -2348 ((-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $)) (-15 -3882 ((-656 (-1195)) $)) (-15 -1589 ((-656 (-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $)) (-15 -2989 ((-1122) $)) (-15 -4088 ((-1291) $)) (-15 -3702 ($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-449))))))))) (T -1199))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199)))) (-2953 (*1 *1) (-5 *1 (-1199))) (-3154 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199)))) (-3154 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199)))) (-3286 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-2348 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) (-5 *1 (-1199)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))))) (-5 *1 (-1199)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1199)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-449))))) (-5 *1 (-1199)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2956 ((-1208 (-1195) (-449)) $)) (-15 -2953 ($)) (-15 -3154 ((-449) (-656 (-1195)) (-449) $)) (-15 -3154 ((-449) (-1195) (-449) $)) (-15 -3286 ((-449) (-1195) $)) (-15 -1922 ((-656 (-1195)) $)) (-15 -2348 ((-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))) (-446) $)) (-15 -3882 ((-656 (-1195)) $)) (-15 -1589 ((-656 (-656 (-3 (|:| -2041 (-1195)) (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))) $)) (-15 -2989 ((-1122) $)) (-15 -4088 ((-1291) $)) (-15 -3702 ($ (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-449))))))))
+((-2869 (((-112) $ $) NIL)) (-1706 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1177) "failed") $) 47)) (-2216 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1177) $) 48)) (-2898 (((-112) $) 53)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2786 (((-3 (-576) (-227) (-518) (-1177) $) $) 55)) (-2411 (((-656 $) $) 57)) (-1846 (((-1122) $) 24) (($ (-1122)) 25)) (-1462 (((-112) $) 56)) (-2956 (((-874) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1177)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1177) $) 49)) (-2132 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1177))) 16)) (-3304 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-2617 (((-112) $ $) NIL)) (-1338 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1177) $) 45)) (-2991 (((-112) $ $) 7)))
+(((-1200) (-13 (-1281) (-1118) (-1056 (-576)) (-1056 (-227)) (-1056 (-518)) (-1056 (-1177)) (-625 (-548)) (-10 -8 (-15 -1846 ((-1122) $)) (-15 -1846 ($ (-1122))) (-15 -2956 ((-576) $)) (-15 -1338 ((-576) $)) (-15 -2956 ((-227) $)) (-15 -1338 ((-227) $)) (-15 -2956 ((-518) $)) (-15 -1338 ((-518) $)) (-15 -2956 ((-1177) $)) (-15 -1338 ((-1177) $)) (-15 -3304 ($ (-518) (-656 $))) (-15 -3304 ($ $ (-656 $))) (-15 -2898 ((-112) $)) (-15 -2786 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -2411 ((-656 $) $)) (-15 -1462 ((-112) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-576)))) (-15 -2132 ((-112) $ (|[\|\|]| (-227)))) (-15 -2132 ((-112) $ (|[\|\|]| (-518)))) (-15 -2132 ((-112) $ (|[\|\|]| (-1177))))))) (T -1200))
+((-1846 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1200)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-3304 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200)))) (-3304 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200))) (-5 *1 (-1200)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2132 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200)))))
+(-13 (-1281) (-1118) (-1056 (-576)) (-1056 (-227)) (-1056 (-518)) (-1056 (-1177)) (-625 (-548)) (-10 -8 (-15 -1846 ((-1122) $)) (-15 -1846 ($ (-1122))) (-15 -2956 ((-576) $)) (-15 -1338 ((-576) $)) (-15 -2956 ((-227) $)) (-15 -1338 ((-227) $)) (-15 -2956 ((-518) $)) (-15 -1338 ((-518) $)) (-15 -2956 ((-1177) $)) (-15 -1338 ((-1177) $)) (-15 -3304 ($ (-518) (-656 $))) (-15 -3304 ($ $ (-656 $))) (-15 -2898 ((-112) $)) (-15 -2786 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -2411 ((-656 $) $)) (-15 -1462 ((-112) $)) (-15 -2132 ((-112) $ (|[\|\|]| (-576)))) (-15 -2132 ((-112) $ (|[\|\|]| (-227)))) (-15 -2132 ((-112) $ (|[\|\|]| (-518)))) (-15 -2132 ((-112) $ (|[\|\|]| (-1177))))))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) 22)) (-4335 (($) 12 T CONST)) (-2840 (($) 26)) (-3639 (($ $ $) NIL) (($) 19 T CONST)) (-2571 (($ $ $) NIL) (($) 20 T CONST)) (-4261 (((-937) $) 24)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) 23)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1201 |#1|) (-13 (-856) (-10 -8 (-15 -4335 ($) -1716))) (-937)) (T -1201))
+((-4335 (*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-937)))))
+(-13 (-856) (-10 -8 (-15 -4335 ($) -1716)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) 19 T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) 12 T CONST)) (-2976 (($ $ $) NIL) (($) 18 T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) 21)) (-1750 (($ $ $) 20)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1200 |#1|) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714))) (-935)) (T -1200))
-((-1750 (*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) (-1762 (*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))) (-1430 (*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935)))))
-(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) 19 T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) 12 T CONST)) (-2571 (($ $ $) NIL) (($) 18 T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1764 (($ $ $) 21)) (-1753 (($ $ $) 20)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716))) (-937)) (T -1202))
+((-1753 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) (-1764 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))) (-4335 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937)))))
+(-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 9)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 7)))
-(((-1201) (-1116)) (T -1201))
-NIL
-(-1116)
-((-1664 (((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 69)) (-3426 (((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|)))) 80) (((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|))) 76) (((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193)) 81) (((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193)) 75) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|))))) 106) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|)))) 105) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193))) 107) (((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193))) 104)))
-(((-1202 |#1|) (-10 -7 (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))))) (-15 -1664 ((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193))))) (-566)) (T -1202))
-((-1664 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-966 *5)))) (-5 *1 (-1202 *5)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) (-5 *1 (-1202 *4)) (-5 *3 (-302 (-417 (-966 *4)))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4))))) (-5 *1 (-1202 *4)) (-5 *3 (-417 (-966 *4))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) (-5 *3 (-302 (-417 (-966 *5)))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1193)) (-4 *5 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5)) (-5 *3 (-417 (-966 *5))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4)) (-5 *3 (-654 (-302 (-417 (-966 *4))))))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5)) (-5 *3 (-654 (-302 (-417 (-966 *5))))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193))) (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5)))))
-(-10 -7 (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))) (-654 (-1193)))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-417 (-966 |#1|))))) (-15 -3426 ((-654 (-654 (-302 (-417 (-966 |#1|))))) (-654 (-302 (-417 (-966 |#1|)))))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)) (-1193))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))) (-1193))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-417 (-966 |#1|)))) (-15 -3426 ((-654 (-302 (-417 (-966 |#1|)))) (-302 (-417 (-966 |#1|))))) (-15 -1664 ((-654 (-654 (-966 |#1|))) (-654 (-417 (-966 |#1|))) (-654 (-1193)))))
-((-1705 (((-1175)) 7)) (-1834 (((-1175)) 11 T CONST)) (-3698 (((-1289) (-1175)) 13)) (-2309 (((-1175)) 8 T CONST)) (-1544 (((-131)) 10 T CONST)))
-(((-1203) (-13 (-1234) (-10 -7 (-15 -1705 ((-1175))) (-15 -2309 ((-1175)) -1714) (-15 -1544 ((-131)) -1714) (-15 -1834 ((-1175)) -1714) (-15 -3698 ((-1289) (-1175)))))) (T -1203))
-((-1705 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-2309 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-1544 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1203)))) (-1834 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1203)))))
-(-13 (-1234) (-10 -7 (-15 -1705 ((-1175))) (-15 -2309 ((-1175)) -1714) (-15 -1544 ((-131)) -1714) (-15 -1834 ((-1175)) -1714) (-15 -3698 ((-1289) (-1175)))))
-((-3846 (((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 56)) (-1467 (((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|))) 38)) (-1688 (((-1205 (-654 |#1|)) (-654 |#1|)) 49)) (-1946 (((-654 (-654 |#1|)) (-654 |#1|)) 45)) (-4253 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))) 53)) (-1746 (((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|)))) 52)) (-3867 (((-654 (-654 |#1|)) (-654 (-654 |#1|))) 43)) (-3858 (((-654 |#1|) (-654 |#1|)) 46)) (-4160 (((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 32)) (-4095 (((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|)))) 29)) (-2364 (((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|))) 24)) (-2425 (((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|)))) 58)) (-4389 (((-654 (-654 |#1|)) (-1205 (-654 |#1|))) 60)))
-(((-1204 |#1|) (-10 -7 (-15 -2364 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -4095 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -4160 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3846 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2425 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -4389 ((-654 (-654 |#1|)) (-1205 (-654 |#1|)))) (-15 -1467 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1688 ((-1205 (-654 |#1|)) (-654 |#1|))) (-15 -3867 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1946 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3858 ((-654 |#1|) (-654 |#1|))) (-15 -1746 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4253 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|)))))) (-860)) (T -1204))
-((-4253 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4)))) (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4)))))) (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 (-654 *4)))))) (-1746 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5) (|:| |f4| (-654 *5)))) (-5 *1 (-1204 *6)) (-5 *4 (-654 *5)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1204 *3)))) (-1946 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)) (-5 *3 (-654 *4)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1204 *3)))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1205 (-654 *4))) (-5 *1 (-1204 *4)) (-5 *3 (-654 *4)))) (-1467 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4)))) (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 *4))))) (-4389 (*1 *2 *3) (-12 (-5 *3 (-1205 (-654 *4))) (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)) (-4 *4 (-860)))) (-3846 (*1 *2 *2 *3) (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4))) (-4 *4 (-860)) (-5 *1 (-1204 *4)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *1 (-1204 *4)))) (-4095 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1204 *5)))) (-2364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4)))) (-5 *1 (-1204 *6)) (-5 *5 (-654 *4)))))
-(-10 -7 (-15 -2364 ((-2 (|:| |fs| (-112)) (|:| |sd| (-654 |#1|)) (|:| |td| (-654 (-654 |#1|)))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 |#1|)))) (-15 -4095 ((-654 (-654 (-654 |#1|))) (-1 (-112) |#1| |#1|) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -4160 ((-654 (-654 (-654 |#1|))) (-654 |#1|) (-654 (-654 (-654 |#1|))))) (-15 -3846 ((-654 (-654 |#1|)) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -2425 ((-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))))) (-15 -4389 ((-654 (-654 |#1|)) (-1205 (-654 |#1|)))) (-15 -1467 ((-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)))) (-15 -1688 ((-1205 (-654 |#1|)) (-654 |#1|))) (-15 -3867 ((-654 (-654 |#1|)) (-654 (-654 |#1|)))) (-15 -1946 ((-654 (-654 |#1|)) (-654 |#1|))) (-15 -3858 ((-654 |#1|) (-654 |#1|))) (-15 -1746 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 |#1|) (-654 (-654 (-654 |#1|))) (-654 (-654 |#1|)) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))) (-654 (-654 (-654 |#1|))))) (-15 -4253 ((-2 (|:| |f1| (-654 |#1|)) (|:| |f2| (-654 (-654 (-654 |#1|)))) (|:| |f3| (-654 (-654 |#1|))) (|:| |f4| (-654 (-654 (-654 |#1|))))) (-654 (-654 (-654 |#1|))))))
-((-4059 (($ (-654 (-654 |#1|))) 10)) (-2796 (((-654 (-654 |#1|)) $) 11)) (-2951 (((-872) $) 33)))
-(((-1205 |#1|) (-10 -8 (-15 -4059 ($ (-654 (-654 |#1|)))) (-15 -2796 ((-654 (-654 |#1|)) $)) (-15 -2951 ((-872) $))) (-1116)) (T -1205))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-1205 *3)))))
-(-10 -8 (-15 -4059 ($ (-654 (-654 |#1|)))) (-15 -2796 ((-654 (-654 |#1|)) $)) (-15 -2951 ((-872) $)))
-((-2864 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3752 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2620 (((-1289) $ |#1| |#1|) NIL (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#2| $ |#1| |#2|) NIL)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) NIL)) (-1430 (($) NIL T CONST)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) NIL)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) NIL)) (-2761 ((|#1| $) NIL (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-654 |#2|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2790 ((|#1| $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-1772 (((-654 |#1|) $) NIL)) (-2968 (((-112) |#1| $) NIL)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1583 (((-654 |#1|) $) NIL)) (-1470 (((-112) |#1| $) NIL)) (-3940 (((-1136) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2925 ((|#2| $) NIL (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL)) (-1465 (($ $ |#2|) NIL (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1734 (($) NIL) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) NIL (-12 (|has| $ (-6 -4459)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (((-781) |#2| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116)))) (((-781) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2951 (((-872) $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872))) (|has| |#2| (-623 (-872)))))) (-2981 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) NIL)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) NIL (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) NIL (-2833 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| |#2| (-1116))))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1206 |#1| |#2|) (-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459))) (-1116) (-1116)) (T -1206))
-NIL
-(-13 (-1210 |#1| |#2|) (-10 -7 (-6 -4459)))
-((-2864 (((-112) $ $) NIL)) (-4150 (($ |#1| (-55)) 10)) (-2039 ((|#1| $) 12)) (-4420 (((-1175) $) NIL)) (-1575 (((-112) $ |#1|) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-2981 (((-112) $ $) NIL)) (-4069 (((-55) $) 14)) (-2986 (((-112) $ $) NIL)))
-(((-1207 |#1|) (-13 (-845 |#1|) (-10 -8 (-15 -4150 ($ |#1| (-55))))) (-1116)) (T -1207))
-((-4150 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1207 *2)) (-4 *2 (-1116)))))
-(-13 (-845 |#1|) (-10 -8 (-15 -4150 ($ |#1| (-55)))))
-((-4170 ((|#1| (-654 |#1|)) 46)) (-4224 ((|#1| |#1| (-574)) 24)) (-2137 (((-1189 |#1|) |#1| (-935)) 20)))
-(((-1208 |#1|) (-10 -7 (-15 -4170 (|#1| (-654 |#1|))) (-15 -2137 ((-1189 |#1|) |#1| (-935))) (-15 -4224 (|#1| |#1| (-574)))) (-372)) (T -1208))
-((-4224 (*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1208 *2)) (-4 *2 (-372)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *4 (-935)) (-5 *2 (-1189 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-372)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-372)))))
-(-10 -7 (-15 -4170 (|#1| (-654 |#1|))) (-15 -2137 ((-1189 |#1|) |#1| (-935))) (-15 -4224 (|#1| |#1| (-574))))
-((-3752 (($) 10) (($ (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)))) 14)) (-2175 (($ (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1871 (((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 39) (((-654 |#3|) $) 41)) (-2462 (($ (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1785 (($ (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1759 (((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 60)) (-3705 (($ (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 16)) (-1583 (((-654 |#2|) $) 19)) (-1470 (((-112) |#2| $) 65)) (-3748 (((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) 64)) (-2098 (((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) 69)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2445 (((-654 |#3|) $) 43)) (-2207 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) $) NIL) (((-781) |#3| $) NIL) (((-781) (-1 (-112) |#3|) $) 79)) (-2951 (((-872) $) 27)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2986 (((-112) $ $) 51)))
-(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3752 (|#1| (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))))) (-15 -3752 (|#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1871 ((-654 |#3|) |#1|)) (-15 -3949 ((-781) |#3| |#1|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2445 ((-654 |#3|) |#1|)) (-15 -1470 ((-112) |#2| |#1|)) (-15 -1583 ((-654 |#2|) |#1|)) (-15 -2175 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2175 (|#1| (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2175 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3748 ((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1759 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3705 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -2098 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3949 ((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -1871 ((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3949 ((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1731 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2859 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2462 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1785 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|))) (-1210 |#2| |#3|) (-1116) (-1116)) (T -1209))
-NIL
-(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2951 ((-872) |#1|)) (-15 -1785 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3752 (|#1| (-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))))) (-15 -3752 (|#1|)) (-15 -1785 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2462 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2859 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1731 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3949 ((-781) (-1 (-112) |#3|) |#1|)) (-15 -1871 ((-654 |#3|) |#1|)) (-15 -3949 ((-781) |#3| |#1|)) (-15 -2207 (|#3| |#1| |#2| |#3|)) (-15 -2207 (|#3| |#1| |#2|)) (-15 -2445 ((-654 |#3|) |#1|)) (-15 -1470 ((-112) |#2| |#1|)) (-15 -1583 ((-654 |#2|) |#1|)) (-15 -2175 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2175 (|#1| (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2175 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3748 ((-3 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) "failed") (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1759 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3705 (|#1| (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -2098 ((-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -3949 ((-781) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) |#1|)) (-15 -1871 ((-654 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -3949 ((-781) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1731 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2859 ((-112) (-1 (-112) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -2462 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)) (-15 -1785 (|#1| (-1 (-2 (|:| -3667 |#2|) (|:| -1916 |#3|)) (-2 (|:| -3667 |#2|) (|:| -1916 |#3|))) |#1|)))
-((-2864 (((-112) $ $) 19 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3752 (($) 73) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 72)) (-2620 (((-1289) $ |#1| |#1|) 100 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#2| $ |#1| |#2|) 74)) (-3155 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 46 (|has| $ (-6 -4459)))) (-2173 (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 56 (|has| $ (-6 -4459)))) (-2170 (((-3 |#2| "failed") |#1| $) 62)) (-1430 (($) 7 T CONST)) (-1573 (($ $) 59 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459))))) (-2175 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 48 (|has| $ (-6 -4459))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 47 (|has| $ (-6 -4459))) (((-3 |#2| "failed") |#1| $) 63)) (-3311 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 55 (|has| $ (-6 -4459)))) (-2882 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 57 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 54 (|has| $ (-6 -4459))) (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 53 (|has| $ (-6 -4459)))) (-2473 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4460)))) (-2400 ((|#2| $ |#1|) 89)) (-1871 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 31 (|has| $ (-6 -4459))) (((-654 |#2|) $) 80 (|has| $ (-6 -4459)))) (-3814 (((-112) $ (-781)) 9)) (-2761 ((|#1| $) 97 (|has| |#1| (-860)))) (-1764 (((-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 30 (|has| $ (-6 -4459))) (((-654 |#2|) $) 81 (|has| $ (-6 -4459)))) (-2333 (((-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459))))) (-2790 ((|#1| $) 96 (|has| |#1| (-860)))) (-2462 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 35 (|has| $ (-6 -4460))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4460)))) (-1785 (($ (-1 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2302 (((-112) $ (-781)) 10)) (-4420 (((-1175) $) 22 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-1772 (((-654 |#1|) $) 64)) (-2968 (((-112) |#1| $) 65)) (-1759 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 40)) (-3705 (($ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 41)) (-1583 (((-654 |#1|) $) 94)) (-1470 (((-112) |#1| $) 93)) (-3940 (((-1136) $) 21 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2925 ((|#2| $) 98 (|has| |#1| (-860)))) (-3748 (((-3 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) "failed") (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 52)) (-1465 (($ $ |#2|) 99 (|has| $ (-6 -4460)))) (-2098 (((-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 42)) (-1731 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 33 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))))) 27 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-302 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 26 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) 25 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 24 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)))) (($ $ (-654 |#2|) (-654 |#2|)) 87 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-302 |#2|)) 85 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116)))) (($ $ (-654 (-302 |#2|))) 84 (-12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4459)) (|has| |#2| (-1116))))) (-2445 (((-654 |#2|) $) 92)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1734 (($) 50) (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 49)) (-3949 (((-781) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 32 (|has| $ (-6 -4459))) (((-781) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| $ (-6 -4459)))) (((-781) |#2| $) 82 (-12 (|has| |#2| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4459)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 60 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))))) (-2963 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 51)) (-2951 (((-872) $) 18 (-2833 (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))))) (-2981 (((-112) $ $) 23 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-3703 (($ (-654 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) 43)) (-2859 (((-112) (-1 (-112) (-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) $) 34 (|has| $ (-6 -4459))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (-2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1210 |#1| |#2|) (-141) (-1116) (-1116)) (T -1210))
-((-3135 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))) (-3752 (*1 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-654 (-2 (|:| -3667 *3) (|:| -1916 *4)))) (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *1 (-1210 *3 *4)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))))
-(-13 (-620 |t#1| |t#2|) (-614 |t#1| |t#2|) (-10 -8 (-15 -3135 (|t#2| $ |t#1| |t#2|)) (-15 -3752 ($)) (-15 -3752 ($ (-654 (-2 (|:| -3667 |t#1|) (|:| -1916 |t#2|))))) (-15 -1785 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3667 |#1|) (|:| -1916 |#2|))) . T) ((-102) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-623 (-872)) -2833 (|has| |#2| (-1116)) (|has| |#2| (-623 (-872))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-623 (-872)))) ((-152 #0#) . T) ((-624 (-546)) |has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-624 (-546))) ((-231 #0#) . T) ((-241 #0#) . T) ((-294 |#1| |#2|) . T) ((-296 |#1| |#2|) . T) ((-317 #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-317 |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-499 #0#) . T) ((-499 |#2|) . T) ((-614 |#1| |#2|) . T) ((-524 #0# #0#) -12 (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-317 (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)))) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-524 |#2| |#2|) -12 (|has| |#2| (-317 |#2|)) (|has| |#2| (-1116))) ((-620 |#1| |#2|) . T) ((-1116) -2833 (|has| |#2| (-1116)) (|has| (-2 (|:| -3667 |#1|) (|:| -1916 |#2|)) (-1116))) ((-1234) . T))
-((-3786 (((-112)) 29)) (-2322 (((-1289) (-1175)) 31)) (-1711 (((-112)) 41)) (-4352 (((-1289)) 39)) (-1358 (((-1289) (-1175) (-1175)) 30)) (-1862 (((-112)) 42)) (-3705 (((-1289) |#1| |#2|) 53)) (-3234 (((-1289)) 26)) (-1484 (((-3 |#2| "failed") |#1|) 51)) (-1918 (((-1289)) 40)))
-(((-1211 |#1| |#2|) (-10 -7 (-15 -3234 ((-1289))) (-15 -1358 ((-1289) (-1175) (-1175))) (-15 -2322 ((-1289) (-1175))) (-15 -4352 ((-1289))) (-15 -1918 ((-1289))) (-15 -3786 ((-112))) (-15 -1711 ((-112))) (-15 -1862 ((-112))) (-15 -1484 ((-3 |#2| "failed") |#1|)) (-15 -3705 ((-1289) |#1| |#2|))) (-1116) (-1116)) (T -1211))
-((-3705 (*1 *2 *3 *4) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1484 (*1 *2 *3) (|partial| -12 (-4 *2 (-1116)) (-5 *1 (-1211 *3 *2)) (-4 *3 (-1116)))) (-1862 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1711 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-3786 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-1918 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-4352 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)))) (-1358 (*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116)))) (-3234 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116)))))
-(-10 -7 (-15 -3234 ((-1289))) (-15 -1358 ((-1289) (-1175) (-1175))) (-15 -2322 ((-1289) (-1175))) (-15 -4352 ((-1289))) (-15 -1918 ((-1289))) (-15 -3786 ((-112))) (-15 -1711 ((-112))) (-15 -1862 ((-112))) (-15 -1484 ((-3 |#2| "failed") |#1|)) (-15 -3705 ((-1289) |#1| |#2|)))
-((-2178 (((-1175) (-1175)) 22)) (-1512 (((-52) (-1175)) 25)))
-(((-1212) (-10 -7 (-15 -1512 ((-52) (-1175))) (-15 -2178 ((-1175) (-1175))))) (T -1212))
-((-2178 (*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1212)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-1212)))))
-(-10 -7 (-15 -1512 ((-52) (-1175))) (-15 -2178 ((-1175) (-1175))))
-((-2951 (((-1214) |#1|) 11)))
-(((-1213 |#1|) (-10 -7 (-15 -2951 ((-1214) |#1|))) (-1116)) (T -1213))
-((-2951 (*1 *2 *3) (-12 (-5 *2 (-1214)) (-5 *1 (-1213 *3)) (-4 *3 (-1116)))))
-(-10 -7 (-15 -2951 ((-1214) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-3871 (((-654 (-1175)) $) 39)) (-2450 (((-654 (-1175)) $ (-654 (-1175))) 42)) (-2195 (((-654 (-1175)) $ (-654 (-1175))) 41)) (-2186 (((-654 (-1175)) $ (-654 (-1175))) 43)) (-4336 (((-654 (-1175)) $) 38)) (-3764 (($) 28)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1335 (((-654 (-1175)) $) 40)) (-1414 (((-1289) $ (-574)) 35) (((-1289) $) 36)) (-1844 (($ (-872) (-574)) 33) (($ (-872) (-574) (-872)) NIL)) (-2951 (((-872) $) 49) (($ (-872)) 32)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1214) (-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1844 ($ (-872) (-574) (-872))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -1335 ((-654 (-1175)) $)) (-15 -3871 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -4336 ((-654 (-1175)) $)) (-15 -2186 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2450 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2195 ((-654 (-1175)) $ (-654 (-1175))))))) (T -1214))
-((-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) (-1844 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214)))) (-1414 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1214)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1214)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-3764 (*1 *1) (-5 *1 (-1214))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-2186 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-2450 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))) (-2195 (*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(-13 (-1116) (-626 (-872)) (-10 -8 (-15 -1844 ($ (-872) (-574))) (-15 -1844 ($ (-872) (-574) (-872))) (-15 -1414 ((-1289) $ (-574))) (-15 -1414 ((-1289) $)) (-15 -1335 ((-654 (-1175)) $)) (-15 -3871 ((-654 (-1175)) $)) (-15 -3764 ($)) (-15 -4336 ((-654 (-1175)) $)) (-15 -2186 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2450 ((-654 (-1175)) $ (-654 (-1175)))) (-15 -2195 ((-654 (-1175)) $ (-654 (-1175))))))
-((-2864 (((-112) $ $) NIL)) (-3246 (((-1175) $ (-1175)) 17) (((-1175) $) 16)) (-2772 (((-1175) $ (-1175)) 15)) (-1426 (($ $ (-1175)) NIL)) (-4015 (((-3 (-1175) "failed") $) 11)) (-2180 (((-1175) $) 8)) (-1348 (((-3 (-1175) "failed") $) 12)) (-3455 (((-1175) $) 9)) (-1683 (($ (-398)) NIL) (($ (-398) (-1175)) NIL)) (-2039 (((-398) $) NIL)) (-4420 (((-1175) $) NIL)) (-2188 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-4344 (((-112) $) 21)) (-2951 (((-872) $) NIL)) (-1839 (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1215) (-13 (-373 (-398) (-1175)) (-10 -8 (-15 -3246 ((-1175) $ (-1175))) (-15 -3246 ((-1175) $)) (-15 -2180 ((-1175) $)) (-15 -4015 ((-3 (-1175) "failed") $)) (-15 -1348 ((-3 (-1175) "failed") $)) (-15 -4344 ((-112) $))))) (T -1215))
-((-3246 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-4015 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-1348 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215)))))
-(-13 (-373 (-398) (-1175)) (-10 -8 (-15 -3246 ((-1175) $ (-1175))) (-15 -3246 ((-1175) $)) (-15 -2180 ((-1175) $)) (-15 -4015 ((-3 (-1175) "failed") $)) (-15 -1348 ((-3 (-1175) "failed") $)) (-15 -4344 ((-112) $))))
-((-1370 (((-3 (-574) "failed") |#1|) 19)) (-1875 (((-3 (-574) "failed") |#1|) 14)) (-4429 (((-574) (-1175)) 33)))
-(((-1216 |#1|) (-10 -7 (-15 -1370 ((-3 (-574) "failed") |#1|)) (-15 -1875 ((-3 (-574) "failed") |#1|)) (-15 -4429 ((-574) (-1175)))) (-1065)) (T -1216))
-((-4429 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-1216 *4)) (-4 *4 (-1065)))) (-1875 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065)))) (-1370 (*1 *2 *3) (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065)))))
-(-10 -7 (-15 -1370 ((-3 (-574) "failed") |#1|)) (-15 -1875 ((-3 (-574) "failed") |#1|)) (-15 -4429 ((-574) (-1175))))
-((-4203 (((-1149 (-227))) 9)))
-(((-1217) (-10 -7 (-15 -4203 ((-1149 (-227)))))) (T -1217))
-((-4203 (*1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1217)))))
-(-10 -7 (-15 -4203 ((-1149 (-227)))))
-((-3004 (($) 12)) (-2456 (($ $) 36)) (-2429 (($ $) 34)) (-2301 (($ $) 26)) (-2480 (($ $) 18)) (-2536 (($ $) 16)) (-2468 (($ $) 20)) (-2330 (($ $) 31)) (-2443 (($ $) 35)) (-2312 (($ $) 30)))
-(((-1218 |#1|) (-10 -8 (-15 -3004 (|#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2312 (|#1| |#1|))) (-1219)) (T -1218))
-NIL
-(-10 -8 (-15 -3004 (|#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)))
-((-2379 (($ $) 26)) (-2258 (($ $) 11)) (-2358 (($ $) 27)) (-2236 (($ $) 10)) (-2404 (($ $) 28)) (-2280 (($ $) 9)) (-3004 (($) 16)) (-3113 (($ $) 19)) (-1617 (($ $) 18)) (-2417 (($ $) 29)) (-2288 (($ $) 8)) (-2390 (($ $) 30)) (-2269 (($ $) 7)) (-2368 (($ $) 31)) (-2247 (($ $) 6)) (-2456 (($ $) 20)) (-2320 (($ $) 32)) (-2429 (($ $) 21)) (-2301 (($ $) 33)) (-2480 (($ $) 22)) (-2340 (($ $) 34)) (-2536 (($ $) 23)) (-2349 (($ $) 35)) (-2468 (($ $) 24)) (-2330 (($ $) 36)) (-2443 (($ $) 25)) (-2312 (($ $) 37)) (** (($ $ $) 17)))
-(((-1219) (-141)) (T -1219))
-((-3004 (*1 *1) (-4 *1 (-1219))))
-(-13 (-1222) (-95) (-503) (-35) (-292) (-10 -8 (-15 -3004 ($))))
-(((-35) . T) ((-95) . T) ((-292) . T) ((-503) . T) ((-1222) . T))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3079 ((|#1| $) 19)) (-2590 (($ |#1| (-654 $)) 28) (($ (-654 |#1|)) 35) (($ |#1|) 30)) (-2832 (((-112) $ (-781)) 72)) (-2234 ((|#1| $ |#1|) 14 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 13 (|has| $ (-6 -4460)))) (-1430 (($) NIL T CONST)) (-1871 (((-654 |#1|) $) 77 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 64)) (-3514 (((-112) $ $) 50 (|has| |#1| (-1116)))) (-3814 (((-112) $ (-781)) 62)) (-1764 (((-654 |#1|) $) 78 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2462 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 27)) (-2302 (((-112) $ (-781)) 60)) (-3482 (((-654 |#1|) $) 55)) (-2899 (((-112) $) 53)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-1731 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 107)) (-2265 (((-112) $) 9)) (-3014 (($) 10)) (-2207 ((|#1| $ "value") NIL)) (-4072 (((-574) $ $) 48)) (-2612 (((-654 $) $) 89)) (-4008 (((-112) $ $) 110)) (-1404 (((-654 $) $) 105)) (-2680 (($ $) 106)) (-3864 (((-112) $) 84)) (-3949 (((-781) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4459))) (((-781) |#1| $) 17 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3157 (($ $) 88)) (-2951 (((-872) $) 91 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 12)) (-3779 (((-112) $ $) 39 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 37 (|has| |#1| (-1116)))) (-2877 (((-781) $) 58 (|has| $ (-6 -4459)))))
-(((-1220 |#1|) (-13 (-1026 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2590 ($ |#1| (-654 $))) (-15 -2590 ($ (-654 |#1|))) (-15 -2590 ($ |#1|)) (-15 -3864 ((-112) $)) (-15 -2680 ($ $)) (-15 -1404 ((-654 $) $)) (-15 -4008 ((-112) $ $)) (-15 -2612 ((-654 $) $)))) (-1116)) (T -1220))
-((-3864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-2590 (*1 *1 *2 *3) (-12 (-5 *3 (-654 (-1220 *2))) (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1220 *3)))) (-2590 (*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-2680 (*1 *1 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-4008 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))))
-(-13 (-1026 |#1|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -2590 ($ |#1| (-654 $))) (-15 -2590 ($ (-654 |#1|))) (-15 -2590 ($ |#1|)) (-15 -3864 ((-112) $)) (-15 -2680 ($ $)) (-15 -1404 ((-654 $) $)) (-15 -4008 ((-112) $ $)) (-15 -2612 ((-654 $) $))))
-((-2258 (($ $) 15)) (-2280 (($ $) 12)) (-2288 (($ $) 10)) (-2269 (($ $) 17)))
-(((-1221 |#1|) (-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2258 (|#1| |#1|))) (-1222)) (T -1221))
-NIL
-(-10 -8 (-15 -2269 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2258 (|#1| |#1|)))
-((-2258 (($ $) 11)) (-2236 (($ $) 10)) (-2280 (($ $) 9)) (-2288 (($ $) 8)) (-2269 (($ $) 7)) (-2247 (($ $) 6)))
-(((-1222) (-141)) (T -1222))
-((-2258 (*1 *1 *1) (-4 *1 (-1222))) (-2236 (*1 *1 *1) (-4 *1 (-1222))) (-2280 (*1 *1 *1) (-4 *1 (-1222))) (-2288 (*1 *1 *1) (-4 *1 (-1222))) (-2269 (*1 *1 *1) (-4 *1 (-1222))) (-2247 (*1 *1 *1) (-4 *1 (-1222))))
-(-13 (-10 -8 (-15 -2247 ($ $)) (-15 -2269 ($ $)) (-15 -2288 ($ $)) (-15 -2280 ($ $)) (-15 -2236 ($ $)) (-15 -2258 ($ $))))
-((-2134 ((|#2| |#2|) 98)) (-2463 (((-112) |#2|) 29)) (-4223 ((|#2| |#2|) 33)) (-4234 ((|#2| |#2|) 35)) (-1460 ((|#2| |#2| (-1193)) 92) ((|#2| |#2|) 93)) (-3110 (((-171 |#2|) |#2|) 31)) (-2366 ((|#2| |#2| (-1193)) 94) ((|#2| |#2|) 95)))
-(((-1223 |#1| |#2|) (-10 -7 (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1193))) (-15 -2366 (|#2| |#2|)) (-15 -2366 (|#2| |#2| (-1193))) (-15 -2134 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -2463 ((-112) |#2|)) (-15 -3110 ((-171 |#2|) |#2|))) (-13 (-462) (-1054 (-574)) (-649 (-574))) (-13 (-27) (-1219) (-440 |#1|))) (T -1223))
-((-3110 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-171 *3)) (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))) (-4234 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-4223 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-2366 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))))
-(-10 -7 (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1193))) (-15 -2366 (|#2| |#2|)) (-15 -2366 (|#2| |#2| (-1193))) (-15 -2134 (|#2| |#2|)) (-15 -4223 (|#2| |#2|)) (-15 -4234 (|#2| |#2|)) (-15 -2463 ((-112) |#2|)) (-15 -3110 ((-171 |#2|) |#2|)))
-((-1352 ((|#4| |#4| |#1|) 31)) (-3186 ((|#4| |#4| |#1|) 32)))
-(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1352 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|))) (-566) (-382 |#1|) (-382 |#1|) (-697 |#1| |#2| |#3|)) (T -1224))
-((-3186 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))) (-1352 (*1 *2 *2 *3) (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(-10 -7 (-15 -1352 (|#4| |#4| |#1|)) (-15 -3186 (|#4| |#4| |#1|)))
-((-1898 ((|#2| |#2|) 148)) (-1601 ((|#2| |#2|) 145)) (-3408 ((|#2| |#2|) 136)) (-3684 ((|#2| |#2|) 133)) (-3180 ((|#2| |#2|) 141)) (-1504 ((|#2| |#2|) 129)) (-2187 ((|#2| |#2|) 44)) (-3639 ((|#2| |#2|) 105)) (-3704 ((|#2| |#2|) 88)) (-2979 ((|#2| |#2|) 143)) (-1647 ((|#2| |#2|) 131)) (-3586 ((|#2| |#2|) 153)) (-2139 ((|#2| |#2|) 151)) (-1767 ((|#2| |#2|) 152)) (-3833 ((|#2| |#2|) 150)) (-4099 ((|#2| |#2|) 163)) (-3819 ((|#2| |#2|) 30 (-12 (|has| |#2| (-624 (-903 |#1|))) (|has| |#2| (-897 |#1|)) (|has| |#1| (-624 (-903 |#1|))) (|has| |#1| (-897 |#1|))))) (-3010 ((|#2| |#2|) 89)) (-3127 ((|#2| |#2|) 154)) (-2136 ((|#2| |#2|) 155)) (-3651 ((|#2| |#2|) 142)) (-1786 ((|#2| |#2|) 130)) (-1672 ((|#2| |#2|) 149)) (-3285 ((|#2| |#2|) 147)) (-2744 ((|#2| |#2|) 137)) (-2032 ((|#2| |#2|) 135)) (-3281 ((|#2| |#2|) 139)) (-3673 ((|#2| |#2|) 127)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -2136 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3127 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3281 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3819 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-462) (-13 (-440 |#1|) (-1219))) (T -1225))
-((-3819 (*1 *2 *2) (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3586 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1786 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3281 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3127 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3010 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))) (-2136 (*1 *2 *2) (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-440 *3) (-1219))))))
-(-10 -7 (-15 -2136 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3127 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3281 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -3180 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3586 (|#2| |#2|)) (IF (|has| |#1| (-897 |#1|)) (IF (|has| |#1| (-624 (-903 |#1|))) (IF (|has| |#2| (-624 (-903 |#1|))) (IF (|has| |#2| (-897 |#1|)) (-15 -3819 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2494 (((-112) |#5| $) 68) (((-112) $) 110)) (-4279 ((|#5| |#5| $) 83)) (-2173 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2245 (((-654 |#5|) (-654 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1704 (((-3 $ "failed") (-654 |#5|)) 135)) (-2935 (((-3 $ "failed") $) 120)) (-2581 ((|#5| |#5| $) 102)) (-3709 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3129 ((|#5| |#5| $) 106)) (-2882 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3721 (((-2 (|:| -1390 (-654 |#5|)) (|:| -1683 (-654 |#5|))) $) 63)) (-2821 (((-112) |#5| $) 66) (((-112) $) 111)) (-4063 ((|#4| $) 116)) (-3334 (((-3 |#5| "failed") $) 118)) (-2252 (((-654 |#5|) $) 55)) (-2897 (((-112) |#5| $) 75) (((-112) $) 115)) (-3184 ((|#5| |#5| $) 89)) (-1624 (((-112) $ $) 29)) (-1848 (((-112) |#5| $) 71) (((-112) $) 113)) (-1857 ((|#5| |#5| $) 86)) (-2925 (((-3 |#5| "failed") $) 117)) (-2249 (($ $ |#5|) 136)) (-3735 (((-781) $) 60)) (-2963 (($ (-654 |#5|)) 133)) (-4216 (($ $ |#4|) 131)) (-2490 (($ $ |#4|) 129)) (-3615 (($ $) 128)) (-2951 (((-872) $) NIL) (((-654 |#5|) $) 121)) (-4292 (((-781) $) 140)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3876 (((-112) $ (-1 (-112) |#5| (-654 |#5|))) 108)) (-3463 (((-654 |#4|) $) 123)) (-4194 (((-112) |#4| $) 126)) (-2986 (((-112) $ $) 20)))
-(((-1226 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4292 ((-781) |#1|)) (-15 -2249 (|#1| |#1| |#5|)) (-15 -2173 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4194 ((-112) |#4| |#1|)) (-15 -3463 ((-654 |#4|) |#1|)) (-15 -2935 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#5| "failed") |#1|)) (-15 -2925 ((-3 |#5| "failed") |#1|)) (-15 -3129 (|#5| |#5| |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -2581 (|#5| |#5| |#1|)) (-15 -3184 (|#5| |#5| |#1|)) (-15 -1857 (|#5| |#5| |#1|)) (-15 -4279 (|#5| |#5| |#1|)) (-15 -2245 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2882 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2897 ((-112) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -2494 ((-112) |#1|)) (-15 -3876 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2897 ((-112) |#5| |#1|)) (-15 -1848 ((-112) |#5| |#1|)) (-15 -2494 ((-112) |#5| |#1|)) (-15 -3709 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2821 ((-112) |#1|)) (-15 -2821 ((-112) |#5| |#1|)) (-15 -3721 ((-2 (|:| -1390 (-654 |#5|)) (|:| -1683 (-654 |#5|))) |#1|)) (-15 -3735 ((-781) |#1|)) (-15 -2252 ((-654 |#5|) |#1|)) (-15 -3927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1624 ((-112) |#1| |#1|)) (-15 -4216 (|#1| |#1| |#4|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -4063 (|#4| |#1|)) (-15 -1704 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2951 ((-654 |#5|) |#1|)) (-15 -2963 (|#1| (-654 |#5|))) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2173 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|))) (-1227 |#2| |#3| |#4| |#5|) (-566) (-803) (-860) (-1081 |#2| |#3| |#4|)) (T -1226))
-NIL
-(-10 -8 (-15 -4292 ((-781) |#1|)) (-15 -2249 (|#1| |#1| |#5|)) (-15 -2173 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4194 ((-112) |#4| |#1|)) (-15 -3463 ((-654 |#4|) |#1|)) (-15 -2935 ((-3 |#1| "failed") |#1|)) (-15 -3334 ((-3 |#5| "failed") |#1|)) (-15 -2925 ((-3 |#5| "failed") |#1|)) (-15 -3129 (|#5| |#5| |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -2581 (|#5| |#5| |#1|)) (-15 -3184 (|#5| |#5| |#1|)) (-15 -1857 (|#5| |#5| |#1|)) (-15 -4279 (|#5| |#5| |#1|)) (-15 -2245 ((-654 |#5|) (-654 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2882 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2897 ((-112) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -2494 ((-112) |#1|)) (-15 -3876 ((-112) |#1| (-1 (-112) |#5| (-654 |#5|)))) (-15 -2897 ((-112) |#5| |#1|)) (-15 -1848 ((-112) |#5| |#1|)) (-15 -2494 ((-112) |#5| |#1|)) (-15 -3709 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2821 ((-112) |#1|)) (-15 -2821 ((-112) |#5| |#1|)) (-15 -3721 ((-2 (|:| -1390 (-654 |#5|)) (|:| -1683 (-654 |#5|))) |#1|)) (-15 -3735 ((-781) |#1|)) (-15 -2252 ((-654 |#5|) |#1|)) (-15 -3927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2010 (-654 |#5|))) "failed") (-654 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1624 ((-112) |#1| |#1|)) (-15 -4216 (|#1| |#1| |#4|)) (-15 -2490 (|#1| |#1| |#4|)) (-15 -4063 (|#4| |#1|)) (-15 -1704 ((-3 |#1| "failed") (-654 |#5|))) (-15 -2951 ((-654 |#5|) |#1|)) (-15 -2963 (|#1| (-654 |#5|))) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2173 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2882 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2951 ((-872) |#1|)) (-15 -2986 ((-112) |#1| |#1|)))
-((-2864 (((-112) $ $) 7)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) 86)) (-3291 (((-654 $) (-654 |#4|)) 87)) (-4350 (((-654 |#3|) $) 34)) (-4376 (((-112) $) 27)) (-3683 (((-112) $) 18 (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) 102) (((-112) $) 98)) (-4279 ((|#4| |#4| $) 93)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) 28)) (-2832 (((-112) $ (-781)) 45)) (-2173 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) 80)) (-1430 (($) 46 T CONST)) (-2604 (((-112) $) 23 (|has| |#1| (-566)))) (-3890 (((-112) $ $) 25 (|has| |#1| (-566)))) (-3887 (((-112) $ $) 24 (|has| |#1| (-566)))) (-3611 (((-112) $) 26 (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3688 (((-654 |#4|) (-654 |#4|) $) 19 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) 20 (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) 37)) (-2216 (($ (-654 |#4|)) 36)) (-2935 (((-3 $ "failed") $) 83)) (-2581 ((|#4| |#4| $) 90)) (-1573 (($ $) 69 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#4| $) 68 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3129 ((|#4| |#4| $) 88)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) 106)) (-1871 (((-654 |#4|) $) 53 (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) 105) (((-112) $) 104)) (-4063 ((|#3| $) 35)) (-3814 (((-112) $ (-781)) 44)) (-1764 (((-654 |#4|) $) 54 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) 48)) (-2089 (((-654 |#3|) $) 33)) (-1726 (((-112) |#3| $) 32)) (-2302 (((-112) $ (-781)) 43)) (-4420 (((-1175) $) 10)) (-3334 (((-3 |#4| "failed") $) 84)) (-2252 (((-654 |#4|) $) 108)) (-2897 (((-112) |#4| $) 100) (((-112) $) 96)) (-3184 ((|#4| |#4| $) 91)) (-1624 (((-112) $ $) 111)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) 101) (((-112) $) 97)) (-1857 ((|#4| |#4| $) 92)) (-3940 (((-1136) $) 11)) (-2925 (((-3 |#4| "failed") $) 85)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4014 (((-3 $ "failed") $ |#4|) 79)) (-2249 (($ $ |#4|) 78)) (-1731 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) 60 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) 58 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) 57 (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) 39)) (-2265 (((-112) $) 42)) (-3014 (($) 41)) (-3735 (((-781) $) 107)) (-3949 (((-781) |#4| $) 55 (-12 (|has| |#4| (-1116)) (|has| $ (-6 -4459)))) (((-781) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4459)))) (-3157 (($ $) 40)) (-1844 (((-546) $) 70 (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) 61)) (-4216 (($ $ |#3|) 29)) (-2490 (($ $ |#3|) 31)) (-3615 (($ $) 89)) (-3476 (($ $ |#3|) 30)) (-2951 (((-872) $) 12) (((-654 |#4|) $) 38)) (-4292 (((-781) $) 77 (|has| |#3| (-377)))) (-2981 (((-112) $ $) 9)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) 99)) (-2859 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) 82)) (-4194 (((-112) |#3| $) 81)) (-2986 (((-112) $ $) 6)) (-2877 (((-781) $) 47 (|has| $ (-6 -4459)))))
-(((-1227 |#1| |#2| |#3| |#4|) (-141) (-566) (-803) (-860) (-1081 |t#1| |t#2| |t#3|)) (T -1227))
-((-1624 (*1 *2 *1 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3927 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *8)))) (-5 *3 (-654 *8)) (-4 *1 (-1227 *5 *6 *7 *8)))) (-3927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *9)))) (-5 *3 (-654 *9)) (-4 *1 (-1227 *6 *7 *8 *9)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *6)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-781)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-2 (|:| -1390 (-654 *6)) (|:| -1683 (-654 *6)))))) (-2821 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-3709 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1227 *5 *6 *7 *3)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)))) (-2494 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-1848 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2897 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1227 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))) (-2882 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1227 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *2 (-1081 *5 *6 *7)))) (-2245 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1227 *5 *6 *7 *8)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)))) (-4279 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-1857 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3184 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2581 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3615 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))) (-3129 (*1 *2 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1)) (-4 *1 (-1227 *4 *5 *6 *7)))) (-2304 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-654 (-2 (|:| -1390 *1) (|:| -1683 (-654 *7))))) (-5 *3 (-654 *7)) (-4 *1 (-1227 *4 *5 *6 *7)))) (-2925 (*1 *2 *1) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-3334 (*1 *2 *1) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2935 (*1 *1 *1) (|partial| -12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))) (-4194 (*1 *2 *3 *1) (-12 (-4 *1 (-1227 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))) (-2173 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1227 *4 *5 *3 *2)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1081 *4 *5 *3)))) (-4014 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-2249 (*1 *1 *1 *2) (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *5 (-377)) (-5 *2 (-781)))))
-(-13 (-992 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4459) (-6 -4460) (-15 -1624 ((-112) $ $)) (-15 -3927 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3927 ((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |t#4|))) "failed") (-654 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2252 ((-654 |t#4|) $)) (-15 -3735 ((-781) $)) (-15 -3721 ((-2 (|:| -1390 (-654 |t#4|)) (|:| -1683 (-654 |t#4|))) $)) (-15 -2821 ((-112) |t#4| $)) (-15 -2821 ((-112) $)) (-15 -3709 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2494 ((-112) |t#4| $)) (-15 -1848 ((-112) |t#4| $)) (-15 -2897 ((-112) |t#4| $)) (-15 -3876 ((-112) $ (-1 (-112) |t#4| (-654 |t#4|)))) (-15 -2494 ((-112) $)) (-15 -1848 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2882 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2245 ((-654 |t#4|) (-654 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4279 (|t#4| |t#4| $)) (-15 -1857 (|t#4| |t#4| $)) (-15 -3184 (|t#4| |t#4| $)) (-15 -2581 (|t#4| |t#4| $)) (-15 -3615 ($ $)) (-15 -3129 (|t#4| |t#4| $)) (-15 -3291 ((-654 $) (-654 |t#4|))) (-15 -2304 ((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |t#4|)))) (-654 |t#4|))) (-15 -2925 ((-3 |t#4| "failed") $)) (-15 -3334 ((-3 |t#4| "failed") $)) (-15 -2935 ((-3 $ "failed") $)) (-15 -3463 ((-654 |t#3|) $)) (-15 -4194 ((-112) |t#3| $)) (-15 -2173 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4014 ((-3 $ "failed") $ |t#4|)) (-15 -2249 ($ $ |t#4|)) (IF (|has| |t#3| (-377)) (-15 -4292 ((-781) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-623 (-654 |#4|)) . T) ((-623 (-872)) . T) ((-152 |#4|) . T) ((-624 (-546)) |has| |#4| (-624 (-546))) ((-317 |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-499 |#4|) . T) ((-524 |#4| |#4|) -12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))) ((-992 |#1| |#2| |#3| |#4|) . T) ((-1116) . T) ((-1234) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1193)) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-4027 (((-966 |#1|) $ (-781)) 17) (((-966 |#1|) $ (-781) (-781)) NIL)) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $ (-1193)) NIL) (((-781) $ (-1193) (-781)) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3873 (((-112) $) NIL)) (-4328 (($ $ (-654 (-1193)) (-654 (-541 (-1193)))) NIL) (($ $ (-1193) (-541 (-1193))) NIL) (($ |#1| (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3083 (($ $ (-1193)) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-3410 (($ (-1 $) (-1193) |#1|) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2249 (($ $ (-781)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (($ $ (-1193) $) NIL) (($ $ (-654 (-1193)) (-654 $)) NIL) (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL)) (-3879 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-3735 (((-541 (-1193)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-566))) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-1193)) NIL) (($ (-966 |#1|)) NIL)) (-1788 ((|#1| $ (-541 (-1193))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (((-966 |#1|) $ (-781)) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-3585 (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1228 |#1|) (-13 (-750 |#1| (-1193)) (-10 -8 (-15 -1788 ((-966 |#1|) $ (-781))) (-15 -2951 ($ (-1193))) (-15 -2951 ($ (-966 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $ (-1193) |#1|)) (-15 -3410 ($ (-1 $) (-1193) |#1|))) |%noBranch|))) (-1065)) (T -1228))
-((-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-966 *4)) (-5 *1 (-1228 *4)) (-4 *4 (-1065)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-1065)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-5 *1 (-1228 *3)))) (-3083 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))) (-3410 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1228 *4))) (-5 *3 (-1193)) (-5 *1 (-1228 *4)) (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)))))
-(-13 (-750 |#1| (-1193)) (-10 -8 (-15 -1788 ((-966 |#1|) $ (-781))) (-15 -2951 ($ (-1193))) (-15 -2951 ($ (-966 |#1|))) (IF (|has| |#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $ (-1193) |#1|)) (-15 -3410 ($ (-1 $) (-1193) |#1|))) |%noBranch|)))
-((-2376 (($ |#1| (-654 (-654 (-957 (-227)))) (-112)) 19)) (-4056 (((-112) $ (-112)) 18)) (-4189 (((-112) $) 17)) (-1384 (((-654 (-654 (-957 (-227)))) $) 13)) (-3841 ((|#1| $) 8)) (-3271 (((-112) $) 15)))
-(((-1229 |#1|) (-10 -8 (-15 -3841 (|#1| $)) (-15 -1384 ((-654 (-654 (-957 (-227)))) $)) (-15 -3271 ((-112) $)) (-15 -4189 ((-112) $)) (-15 -4056 ((-112) $ (-112))) (-15 -2376 ($ |#1| (-654 (-654 (-957 (-227)))) (-112)))) (-990)) (T -1229))
-((-2376 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-112)) (-5 *1 (-1229 *2)) (-4 *2 (-990)))) (-4056 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-1229 *3)) (-4 *3 (-990)))) (-3841 (*1 *2 *1) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-990)))))
-(-10 -8 (-15 -3841 (|#1| $)) (-15 -1384 ((-654 (-654 (-957 (-227)))) $)) (-15 -3271 ((-112) $)) (-15 -4189 ((-112) $)) (-15 -4056 ((-112) $ (-112))) (-15 -2376 ($ |#1| (-654 (-654 (-957 (-227)))) (-112))))
-((-3472 (((-957 (-227)) (-957 (-227))) 31)) (-3565 (((-957 (-227)) (-227) (-227) (-227) (-227)) 10)) (-4113 (((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227)))) 56)) (-3936 (((-227) (-957 (-227)) (-957 (-227))) 27)) (-2523 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 28)) (-2595 (((-654 (-654 (-227))) (-574)) 44)) (-3090 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 26)) (-3074 (((-957 (-227)) (-957 (-227)) (-957 (-227))) 24)) (* (((-957 (-227)) (-227) (-957 (-227))) 22)))
-(((-1230) (-10 -7 (-15 -3565 ((-957 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-957 (-227)) (-227) (-957 (-227)))) (-15 -3074 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3090 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3936 ((-227) (-957 (-227)) (-957 (-227)))) (-15 -2523 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3472 ((-957 (-227)) (-957 (-227)))) (-15 -2595 ((-654 (-654 (-227))) (-574))) (-15 -4113 ((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227))))))) (T -1230))
-((-4113 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 (-957 *4))) (-5 *1 (-1230)) (-5 *3 (-957 *4)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1230)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-2523 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-3936 (*1 *2 *3 *3) (-12 (-5 *3 (-957 (-227))) (-5 *2 (-227)) (-5 *1 (-1230)))) (-3090 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-957 (-227))) (-5 *3 (-227)) (-5 *1 (-1230)))) (-3565 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)) (-5 *3 (-227)))))
-(-10 -7 (-15 -3565 ((-957 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-957 (-227)) (-227) (-957 (-227)))) (-15 -3074 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3090 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3936 ((-227) (-957 (-227)) (-957 (-227)))) (-15 -2523 ((-957 (-227)) (-957 (-227)) (-957 (-227)))) (-15 -3472 ((-957 (-227)) (-957 (-227)))) (-15 -2595 ((-654 (-654 (-227))) (-574))) (-15 -4113 ((-654 (-957 (-227))) (-957 (-227)) (-957 (-227)) (-957 (-227)) (-227) (-654 (-654 (-227))))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2173 ((|#1| $ (-781)) 18)) (-4109 (((-781) $) 13)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2951 (((-972 |#1|) $) 12) (($ (-972 |#1|)) 11) (((-872) $) 29 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2986 (((-112) $ $) 22 (|has| |#1| (-1116)))))
-(((-1231 |#1|) (-13 (-500 (-972 |#1|)) (-10 -8 (-15 -2173 (|#1| $ (-781))) (-15 -4109 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|))) (-1234)) (T -1231))
-((-2173 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-1231 *2)) (-4 *2 (-1234)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1231 *3)) (-4 *3 (-1234)))))
-(-13 (-500 (-972 |#1|)) (-10 -8 (-15 -2173 (|#1| $ (-781))) (-15 -4109 ((-781) $)) (IF (|has| |#1| (-623 (-872))) (-6 (-623 (-872))) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|)))
-((-2509 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574)) 94)) (-3493 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|))) 86)) (-1528 (((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|))) 70)))
-(((-1232 |#1|) (-10 -7 (-15 -3493 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -1528 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -2509 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574)))) (-358)) (T -1232))
-((-2509 (*1 *2 *3 *4) (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1189 (-1189 *5)))) (-5 *1 (-1232 *5)) (-5 *3 (-1189 (-1189 *5))))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4))))) (-3493 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4)))) (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4))))))
-(-10 -7 (-15 -3493 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -1528 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)))) (-15 -2509 ((-428 (-1189 (-1189 |#1|))) (-1189 (-1189 |#1|)) (-574))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 9) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1233) (-1099)) (T -1233))
-NIL
-(-1099)
-NIL
-(((-1234) (-141)) (T -1234))
-NIL
-(-13 (-10 -7 (-6 -3495)))
-((-2108 (((-112)) 18)) (-3163 (((-1289) (-654 |#1|) (-654 |#1|)) 22) (((-1289) (-654 |#1|)) 23)) (-3814 (((-112) |#1| |#1|) 37 (|has| |#1| (-860)))) (-2302 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1497 ((|#1| (-654 |#1|)) 38 (|has| |#1| (-860))) ((|#1| (-654 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1860 (((-2 (|:| -3456 (-654 |#1|)) (|:| -1953 (-654 |#1|)))) 20)))
-(((-1235 |#1|) (-10 -7 (-15 -3163 ((-1289) (-654 |#1|))) (-15 -3163 ((-1289) (-654 |#1|) (-654 |#1|))) (-15 -1860 ((-2 (|:| -3456 (-654 |#1|)) (|:| -1953 (-654 |#1|))))) (-15 -2302 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2302 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1497 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2108 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -1497 (|#1| (-654 |#1|))) (-15 -3814 ((-112) |#1| |#1|))) |%noBranch|)) (-1116)) (T -1235))
-((-3814 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-860)) (-4 *3 (-1116)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-860)) (-5 *1 (-1235 *2)))) (-2108 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1235 *2)) (-4 *2 (-1116)))) (-2302 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1116)) (-5 *2 (-112)) (-5 *1 (-1235 *3)))) (-2302 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-1860 (*1 *2) (-12 (-5 *2 (-2 (|:| -3456 (-654 *3)) (|:| -1953 (-654 *3)))) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))) (-3163 (*1 *2 *3 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) (-5 *1 (-1235 *4)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289)) (-5 *1 (-1235 *4)))))
-(-10 -7 (-15 -3163 ((-1289) (-654 |#1|))) (-15 -3163 ((-1289) (-654 |#1|) (-654 |#1|))) (-15 -1860 ((-2 (|:| -3456 (-654 |#1|)) (|:| -1953 (-654 |#1|))))) (-15 -2302 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2302 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1497 (|#1| (-654 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2108 ((-112))) (IF (|has| |#1| (-860)) (PROGN (-15 -1497 (|#1| (-654 |#1|))) (-15 -3814 ((-112) |#1| |#1|))) |%noBranch|))
-((-1888 (((-1289) (-654 (-1193)) (-654 (-1193))) 14) (((-1289) (-654 (-1193))) 12)) (-2987 (((-1289)) 16)) (-2755 (((-2 (|:| -1953 (-654 (-1193))) (|:| -3456 (-654 (-1193))))) 20)))
-(((-1236) (-10 -7 (-15 -1888 ((-1289) (-654 (-1193)))) (-15 -1888 ((-1289) (-654 (-1193)) (-654 (-1193)))) (-15 -2755 ((-2 (|:| -1953 (-654 (-1193))) (|:| -3456 (-654 (-1193)))))) (-15 -2987 ((-1289))))) (T -1236))
-((-2987 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1236)))) (-2755 (*1 *2) (-12 (-5 *2 (-2 (|:| -1953 (-654 (-1193))) (|:| -3456 (-654 (-1193))))) (-5 *1 (-1236)))) (-1888 (*1 *2 *3 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236)))))
-(-10 -7 (-15 -1888 ((-1289) (-654 (-1193)))) (-15 -1888 ((-1289) (-654 (-1193)) (-654 (-1193)))) (-15 -2755 ((-2 (|:| -1953 (-654 (-1193))) (|:| -3456 (-654 (-1193)))))) (-15 -2987 ((-1289))))
-((-2684 (($ $) 17)) (-3342 (((-112) $) 28)))
-(((-1237 |#1|) (-10 -8 (-15 -2684 (|#1| |#1|)) (-15 -3342 ((-112) |#1|))) (-1238)) (T -1237))
-NIL
-(-10 -8 (-15 -2684 (|#1| |#1|)) (-15 -3342 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 57)) (-3171 (((-428 $) $) 58)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3342 (((-112) $) 59)) (-3943 (((-112) $) 35)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4201 (((-428 $) $) 56)) (-2853 (((-3 $ "failed") $ $) 48)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27)))
-(((-1238) (-141)) (T -1238))
-((-3342 (*1 *2 *1) (-12 (-4 *1 (-1238)) (-5 *2 (-112)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238)))) (-2684 (*1 *1 *1) (-4 *1 (-1238))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238)))))
-(-13 (-462) (-10 -8 (-15 -3342 ((-112) $)) (-15 -3171 ((-428 $) $)) (-15 -2684 ($ $)) (-15 -4201 ((-428 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-298) . T) ((-462) . T) ((-566) . T) ((-656 (-574)) . T) ((-656 $) . T) ((-658 $) . T) ((-650 $) . T) ((-727 $) . T) ((-736) . T) ((-1067 $) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1239) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))) (T -1239))
-((-1750 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1239))) (-1430 (*1 *1) (-5 *1 (-1239))))
-(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 9)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 7)))
+(((-1203) (-1118)) (T -1203))
+NIL
+(-1118)
+((-2448 (((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 69)) (-2766 (((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|)))) 80) (((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|))) 76) (((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195)) 81) (((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195)) 75) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195))) 107) (((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195))) 104)))
+(((-1204 |#1|) (-10 -7 (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))))) (-15 -2448 ((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195))))) (-568)) (T -1204))
+((-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-968 *5)))) (-5 *1 (-1204 *5)))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-968 *4)))))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-419 (-968 *4))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-304 (-419 (-968 *5)))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-419 (-968 *5))))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-968 *4))))))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5)) (-5 *3 (-656 (-304 (-419 (-968 *5))))))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5)))))
+(-10 -7 (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))) (-656 (-1195)))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-419 (-968 |#1|))))) (-15 -2766 ((-656 (-656 (-304 (-419 (-968 |#1|))))) (-656 (-304 (-419 (-968 |#1|)))))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)) (-1195))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))) (-1195))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-419 (-968 |#1|)))) (-15 -2766 ((-656 (-304 (-419 (-968 |#1|)))) (-304 (-419 (-968 |#1|))))) (-15 -2448 ((-656 (-656 (-968 |#1|))) (-656 (-419 (-968 |#1|))) (-656 (-1195)))))
+((-1645 (((-1177)) 7)) (-3546 (((-1177)) 11 T CONST)) (-3703 (((-1291) (-1177)) 13)) (-2436 (((-1177)) 8 T CONST)) (-3797 (((-131)) 10 T CONST)))
+(((-1205) (-13 (-1236) (-10 -7 (-15 -1645 ((-1177))) (-15 -2436 ((-1177)) -1716) (-15 -3797 ((-131)) -1716) (-15 -3546 ((-1177)) -1716) (-15 -3703 ((-1291) (-1177)))))) (T -1205))
+((-1645 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-2436 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-3797 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205)))) (-3546 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205)))))
+(-13 (-1236) (-10 -7 (-15 -1645 ((-1177))) (-15 -2436 ((-1177)) -1716) (-15 -3797 ((-131)) -1716) (-15 -3546 ((-1177)) -1716) (-15 -3703 ((-1291) (-1177)))))
+((-1379 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-4231 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-2721 (((-1207 (-656 |#1|)) (-656 |#1|)) 49)) (-3442 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-4255 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-2019 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-1567 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-1495 (((-656 |#1|) (-656 |#1|)) 46)) (-1420 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-2032 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-1694 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-2217 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1851 (((-656 (-656 |#1|)) (-1207 (-656 |#1|))) 60)))
+(((-1206 |#1|) (-10 -7 (-15 -1694 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2032 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1420 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1379 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2217 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1851 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -4231 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2721 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -1567 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3442 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -1495 ((-656 |#1|) (-656 |#1|))) (-15 -2019 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4255 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-862)) (T -1206))
+((-4255 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-2019 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1206 *6)) (-5 *4 (-656 *5)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-2721 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-4 *4 (-862)))) (-1379 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-1420 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-2032 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5)))) (-1694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1206 *6)) (-5 *5 (-656 *4)))))
+(-10 -7 (-15 -1694 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2032 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1420 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -1379 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -2217 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1851 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -4231 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2721 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -1567 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3442 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -1495 ((-656 |#1|) (-656 |#1|))) (-15 -2019 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4255 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|))))))
+((-2932 (($ (-656 (-656 |#1|))) 10)) (-1538 (((-656 (-656 |#1|)) $) 11)) (-2956 (((-874) $) 33)))
+(((-1207 |#1|) (-10 -8 (-15 -2932 ($ (-656 (-656 |#1|)))) (-15 -1538 ((-656 (-656 |#1|)) $)) (-15 -2956 ((-874) $))) (-1118)) (T -1207))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-1207 *3)))))
+(-10 -8 (-15 -2932 ($ (-656 (-656 |#1|)))) (-15 -1538 ((-656 (-656 |#1|)) $)) (-15 -2956 ((-874) $)))
+((-2869 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-3757 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3526 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#2| $ |#1| |#2|) NIL)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) NIL)) (-4335 (($) NIL T CONST)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) NIL)) (-4280 ((|#1| $) NIL (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-1475 ((|#1| $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-1773 (((-656 |#1|) $) NIL)) (-2499 (((-112) |#1| $) NIL)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-2961 (((-656 |#1|) $) NIL)) (-4254 (((-112) |#1| $) NIL)) (-3945 (((-1138) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2930 ((|#2| $) NIL (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL)) (-4211 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1904 (($) NIL) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-2956 (((-874) $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2617 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) NIL)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) NIL (-2838 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| |#2| (-1118))))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1208 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1118) (-1118)) (T -1208))
+NIL
+(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))
+((-2869 (((-112) $ $) NIL)) (-4153 (($ |#1| (-55)) 10)) (-2041 ((|#1| $) 12)) (-2148 (((-1177) $) NIL)) (-2881 (((-112) $ |#1|) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-2617 (((-112) $ $) NIL)) (-1755 (((-55) $) 14)) (-2991 (((-112) $ $) NIL)))
+(((-1209 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -4153 ($ |#1| (-55))))) (-1118)) (T -1209))
+((-4153 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1118)))))
+(-13 (-847 |#1|) (-10 -8 (-15 -4153 ($ |#1| (-55)))))
+((-1521 ((|#1| (-656 |#1|)) 46)) (-3959 ((|#1| |#1| (-576)) 24)) (-1474 (((-1191 |#1|) |#1| (-937)) 20)))
+(((-1210 |#1|) (-10 -7 (-15 -1521 (|#1| (-656 |#1|))) (-15 -1474 ((-1191 |#1|) |#1| (-937))) (-15 -3959 (|#1| |#1| (-576)))) (-374)) (T -1210))
+((-3959 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3)) (-4 *3 (-374)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))))
+(-10 -7 (-15 -1521 (|#1| (-656 |#1|))) (-15 -1474 ((-1191 |#1|) |#1| (-937))) (-15 -3959 (|#1| |#1| (-576))))
+((-3757 (($) 10) (($ (-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)))) 14)) (-3710 (($ (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1873 (((-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-2466 (($ (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1787 (($ (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2138 (((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) 60)) (-2504 (($ (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) 16)) (-2961 (((-656 |#2|) $) 19)) (-4254 (((-112) |#2| $) 65)) (-2922 (((-3 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) 64)) (-4256 (((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) 69)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4274 (((-656 |#3|) $) 43)) (-2209 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) NIL) (((-783) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-2956 (((-874) $) 27)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2991 (((-112) $ $) 51)))
+(((-1211 |#1| |#2| |#3|) (-10 -8 (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3757 (|#1| (-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))))) (-15 -3757 (|#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2466 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -1873 ((-656 |#3|) |#1|)) (-15 -3954 ((-783) |#3| |#1|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -4274 ((-656 |#3|) |#1|)) (-15 -4254 ((-112) |#2| |#1|)) (-15 -2961 ((-656 |#2|) |#1|)) (-15 -3710 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3710 (|#1| (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3710 (|#1| (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2922 ((-3 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2138 ((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2504 (|#1| (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -4256 ((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -3954 ((-783) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1873 ((-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3954 ((-783) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1875 ((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3972 ((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2466 (|#1| (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1787 (|#1| (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|))) (-1212 |#2| |#3|) (-1118) (-1118)) (T -1211))
+NIL
+(-10 -8 (-15 -2991 ((-112) |#1| |#1|)) (-15 -2956 ((-874) |#1|)) (-15 -1787 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3757 (|#1| (-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))))) (-15 -3757 (|#1|)) (-15 -1787 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2466 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3972 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1875 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3954 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -1873 ((-656 |#3|) |#1|)) (-15 -3954 ((-783) |#3| |#1|)) (-15 -2209 (|#3| |#1| |#2| |#3|)) (-15 -2209 (|#3| |#1| |#2|)) (-15 -4274 ((-656 |#3|) |#1|)) (-15 -4254 ((-112) |#2| |#1|)) (-15 -2961 ((-656 |#2|) |#1|)) (-15 -3710 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3710 (|#1| (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3710 (|#1| (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2922 ((-3 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) "failed") (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2138 ((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -2504 (|#1| (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -4256 ((-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -3954 ((-783) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) |#1|)) (-15 -1873 ((-656 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3954 ((-783) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1875 ((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -3972 ((-112) (-1 (-112) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -2466 (|#1| (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)) (-15 -1787 (|#1| (-1 (-2 (|:| -3672 |#2|) (|:| -1918 |#3|)) (-2 (|:| -3672 |#2|) (|:| -1918 |#3|))) |#1|)))
+((-2869 (((-112) $ $) 19 (-2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-3757 (($) 73) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 72)) (-3526 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#2| $ |#1| |#2|) 74)) (-1707 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-2174 (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-2172 (((-3 |#2| "failed") |#1| $) 62)) (-4335 (($) 7 T CONST)) (-4060 (($ $) 59 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461))))) (-3710 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3316 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2887 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 57 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-2481 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462)))) (-2405 ((|#2| $ |#1|) 89)) (-1873 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461)))) (-2266 (((-112) $ (-783)) 9)) (-4280 ((|#1| $) 97 (|has| |#1| (-862)))) (-2186 (((-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461)))) (-2653 (((-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461))))) (-1475 ((|#1| $) 96 (|has| |#1| (-862)))) (-2466 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462)))) (-1787 (($ (-1 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2356 (((-112) $ (-783)) 10)) (-2148 (((-1177) $) 22 (-2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-1773 (((-656 |#1|) $) 64)) (-2499 (((-112) |#1| $) 65)) (-2138 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 40)) (-2504 (($ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 41)) (-2961 (((-656 |#1|) $) 94)) (-4254 (((-112) |#1| $) 93)) (-3945 (((-1138) $) 21 (-2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2930 ((|#2| $) 98 (|has| |#1| (-862)))) (-2922 (((-3 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) "failed") (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 52)) (-4211 (($ $ |#2|) 99 (|has| $ (-6 -4462)))) (-4256 (((-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 42)) (-1875 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))))) 27 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-304 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 26 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) 25 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 24 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1118))))) (-4274 (((-656 |#2|) $) 92)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1904 (($) 50) (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 49)) (-3954 (((-783) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 60 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))))) (-2968 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 51)) (-2956 (((-874) $) 18 (-2838 (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874)))))) (-2617 (((-112) $ $) 23 (-2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2478 (($ (-656 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) 43)) (-3972 (((-112) (-1 (-112) (-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (-2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1212 |#1| |#2|) (-141) (-1118) (-1118)) (T -1212))
+((-3140 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))) (-3757 (*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-3757 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3672 *3) (|:| -1918 *4)))) (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *1 (-1212 *3 *4)))) (-1787 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))))
+(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3140 (|t#2| $ |t#1| |t#2|)) (-15 -3757 ($)) (-15 -3757 ($ (-656 (-2 (|:| -3672 |t#1|) (|:| -1918 |t#2|))))) (-15 -1787 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -3672 |#1|) (|:| -1918 |#2|))) . T) ((-102) -2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-625 (-874)) -2838 (|has| |#2| (-1118)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-241 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-319 (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)))) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1118))) ((-622 |#1| |#2|) . T) ((-1118) -2838 (|has| |#2| (-1118)) (|has| (-2 (|:| -3672 |#1|) (|:| -1918 |#2|)) (-1118))) ((-1236) . T))
+((-1984 (((-112)) 29)) (-2546 (((-1291) (-1177)) 31)) (-1692 (((-112)) 41)) (-2708 (((-1291)) 39)) (-1852 (((-1291) (-1177) (-1177)) 30)) (-3802 (((-112)) 42)) (-2504 (((-1291) |#1| |#2|) 53)) (-4401 (((-1291)) 26)) (-4399 (((-3 |#2| "failed") |#1|) 51)) (-3139 (((-1291)) 40)))
+(((-1213 |#1| |#2|) (-10 -7 (-15 -4401 ((-1291))) (-15 -1852 ((-1291) (-1177) (-1177))) (-15 -2546 ((-1291) (-1177))) (-15 -2708 ((-1291))) (-15 -3139 ((-1291))) (-15 -1984 ((-112))) (-15 -1692 ((-112))) (-15 -3802 ((-112))) (-15 -4399 ((-3 |#2| "failed") |#1|)) (-15 -2504 ((-1291) |#1| |#2|))) (-1118) (-1118)) (T -1213))
+((-2504 (*1 *2 *3 *4) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-4399 (*1 *2 *3) (|partial| -12 (-4 *2 (-1118)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1118)))) (-3802 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-1692 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-1984 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-3139 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-2708 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)))) (-1852 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118)))) (-4401 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))))
+(-10 -7 (-15 -4401 ((-1291))) (-15 -1852 ((-1291) (-1177) (-1177))) (-15 -2546 ((-1291) (-1177))) (-15 -2708 ((-1291))) (-15 -3139 ((-1291))) (-15 -1984 ((-112))) (-15 -1692 ((-112))) (-15 -3802 ((-112))) (-15 -4399 ((-3 |#2| "failed") |#1|)) (-15 -2504 ((-1291) |#1| |#2|)))
+((-3734 (((-1177) (-1177)) 22)) (-1554 (((-52) (-1177)) 25)))
+(((-1214) (-10 -7 (-15 -1554 ((-52) (-1177))) (-15 -3734 ((-1177) (-1177))))) (T -1214))
+((-3734 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214)))))
+(-10 -7 (-15 -1554 ((-52) (-1177))) (-15 -3734 ((-1177) (-1177))))
+((-2956 (((-1216) |#1|) 11)))
+(((-1215 |#1|) (-10 -7 (-15 -2956 ((-1216) |#1|))) (-1118)) (T -1215))
+((-2956 (*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1118)))))
+(-10 -7 (-15 -2956 ((-1216) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3876 (((-656 (-1177)) $) 39)) (-4333 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-3912 (((-656 (-1177)) $ (-656 (-1177))) 41)) (-3819 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-2542 (((-656 (-1177)) $) 38)) (-3769 (($) 28)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1655 (((-656 (-1177)) $) 40)) (-1416 (((-1291) $ (-576)) 35) (((-1291) $) 36)) (-1846 (($ (-874) (-576)) 33) (($ (-874) (-576) (-874)) NIL)) (-2956 (((-874) $) 49) (($ (-874)) 32)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1216) (-13 (-1118) (-628 (-874)) (-10 -8 (-15 -1846 ($ (-874) (-576))) (-15 -1846 ($ (-874) (-576) (-874))) (-15 -1416 ((-1291) $ (-576))) (-15 -1416 ((-1291) $)) (-15 -1655 ((-656 (-1177)) $)) (-15 -3876 ((-656 (-1177)) $)) (-15 -3769 ($)) (-15 -2542 ((-656 (-1177)) $)) (-15 -3819 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -4333 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3912 ((-656 (-1177)) $ (-656 (-1177))))))) (T -1216))
+((-1846 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-1846 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-1416 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3769 (*1 *1) (-5 *1 (-1216))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-4333 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-3912 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(-13 (-1118) (-628 (-874)) (-10 -8 (-15 -1846 ($ (-874) (-576))) (-15 -1846 ($ (-874) (-576) (-874))) (-15 -1416 ((-1291) $ (-576))) (-15 -1416 ((-1291) $)) (-15 -1655 ((-656 (-1177)) $)) (-15 -3876 ((-656 (-1177)) $)) (-15 -3769 ($)) (-15 -2542 ((-656 (-1177)) $)) (-15 -3819 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -4333 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -3912 ((-656 (-1177)) $ (-656 (-1177))))))
+((-2869 (((-112) $ $) NIL)) (-1423 (((-1177) $ (-1177)) 17) (((-1177) $) 16)) (-4402 (((-1177) $ (-1177)) 15)) (-4289 (($ $ (-1177)) NIL)) (-2465 (((-3 (-1177) "failed") $) 11)) (-3754 (((-1177) $) 8)) (-1749 (((-3 (-1177) "failed") $) 12)) (-1832 (((-1177) $) 9)) (-1685 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-2041 (((-400) $) NIL)) (-2148 (((-1177) $) NIL)) (-3838 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2622 (((-112) $) 21)) (-2956 (((-874) $) NIL)) (-3597 (($ $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1217) (-13 (-375 (-400) (-1177)) (-10 -8 (-15 -1423 ((-1177) $ (-1177))) (-15 -1423 ((-1177) $)) (-15 -3754 ((-1177) $)) (-15 -2465 ((-3 (-1177) "failed") $)) (-15 -1749 ((-3 (-1177) "failed") $)) (-15 -2622 ((-112) $))))) (T -1217))
+((-1423 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-2465 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-1749 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217)))))
+(-13 (-375 (-400) (-1177)) (-10 -8 (-15 -1423 ((-1177) $ (-1177))) (-15 -1423 ((-1177) $)) (-15 -3754 ((-1177) $)) (-15 -2465 ((-3 (-1177) "failed") $)) (-15 -1749 ((-3 (-1177) "failed") $)) (-15 -2622 ((-112) $))))
+((-2627 (((-3 (-576) "failed") |#1|) 19)) (-3915 (((-3 (-576) "failed") |#1|) 14)) (-2225 (((-576) (-1177)) 33)))
+(((-1218 |#1|) (-10 -7 (-15 -2627 ((-3 (-576) "failed") |#1|)) (-15 -3915 ((-3 (-576) "failed") |#1|)) (-15 -2225 ((-576) (-1177)))) (-1067)) (T -1218))
+((-2225 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4)) (-4 *4 (-1067)))) (-3915 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067)))) (-2627 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067)))))
+(-10 -7 (-15 -2627 ((-3 (-576) "failed") |#1|)) (-15 -3915 ((-3 (-576) "failed") |#1|)) (-15 -2225 ((-576) (-1177))))
+((-3761 (((-1151 (-227))) 9)))
+(((-1219) (-10 -7 (-15 -3761 ((-1151 (-227)))))) (T -1219))
+((-3761 (*1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1219)))))
+(-10 -7 (-15 -3761 ((-1151 (-227)))))
+((-3009 (($) 12)) (-2461 (($ $) 36)) (-2434 (($ $) 34)) (-2304 (($ $) 26)) (-2485 (($ $) 18)) (-2541 (($ $) 16)) (-2473 (($ $) 20)) (-2335 (($ $) 31)) (-2447 (($ $) 35)) (-2315 (($ $) 30)))
+(((-1220 |#1|) (-10 -8 (-15 -3009 (|#1|)) (-15 -2461 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2315 (|#1| |#1|))) (-1221)) (T -1220))
+NIL
+(-10 -8 (-15 -3009 (|#1|)) (-15 -2461 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)))
+((-2384 (($ $) 26)) (-2260 (($ $) 11)) (-2363 (($ $) 27)) (-2238 (($ $) 10)) (-2409 (($ $) 28)) (-2282 (($ $) 9)) (-3009 (($) 16)) (-3118 (($ $) 19)) (-1619 (($ $) 18)) (-2422 (($ $) 29)) (-2291 (($ $) 8)) (-2394 (($ $) 30)) (-2270 (($ $) 7)) (-2373 (($ $) 31)) (-2249 (($ $) 6)) (-2461 (($ $) 20)) (-2324 (($ $) 32)) (-2434 (($ $) 21)) (-2304 (($ $) 33)) (-2485 (($ $) 22)) (-2345 (($ $) 34)) (-2541 (($ $) 23)) (-2354 (($ $) 35)) (-2473 (($ $) 24)) (-2335 (($ $) 36)) (-2447 (($ $) 25)) (-2315 (($ $) 37)) (** (($ $ $) 17)))
+(((-1221) (-141)) (T -1221))
+((-3009 (*1 *1) (-4 *1 (-1221))))
+(-13 (-1224) (-95) (-505) (-35) (-294) (-10 -8 (-15 -3009 ($))))
+(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1224) . T))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3084 ((|#1| $) 19)) (-2595 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-3762 (((-112) $ (-783)) 72)) (-3052 ((|#1| $ |#1|) 14 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 13 (|has| $ (-6 -4462)))) (-4335 (($) NIL T CONST)) (-1873 (((-656 |#1|) $) 77 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 64)) (-4344 (((-112) $ $) 50 (|has| |#1| (-1118)))) (-2266 (((-112) $ (-783)) 62)) (-2186 (((-656 |#1|) $) 78 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2466 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 27)) (-2356 (((-112) $ (-783)) 60)) (-3488 (((-656 |#1|) $) 55)) (-3126 (((-112) $) 53)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-1875 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 107)) (-3321 (((-112) $) 9)) (-2953 (($) 10)) (-2209 ((|#1| $ "value") NIL)) (-1785 (((-576) $ $) 48)) (-3445 (((-656 $) $) 89)) (-2377 (((-112) $ $) 110)) (-2582 (((-656 $) $) 105)) (-2828 (($ $) 106)) (-1558 (((-112) $) 84)) (-3954 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4461))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3162 (($ $) 88)) (-2956 (((-874) $) 91 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 12)) (-1931 (((-112) $ $) 39 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 37 (|has| |#1| (-1118)))) (-2882 (((-783) $) 58 (|has| $ (-6 -4461)))))
+(((-1222 |#1|) (-13 (-1028 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -2595 ($ |#1| (-656 $))) (-15 -2595 ($ (-656 |#1|))) (-15 -2595 ($ |#1|)) (-15 -1558 ((-112) $)) (-15 -2828 ($ $)) (-15 -2582 ((-656 $) $)) (-15 -2377 ((-112) $ $)) (-15 -3445 ((-656 $) $)))) (-1118)) (T -1222))
+((-1558 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-2595 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1222 *3)))) (-2595 (*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-2828 (*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-2377 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))))
+(-13 (-1028 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -2595 ($ |#1| (-656 $))) (-15 -2595 ($ (-656 |#1|))) (-15 -2595 ($ |#1|)) (-15 -1558 ((-112) $)) (-15 -2828 ($ $)) (-15 -2582 ((-656 $) $)) (-15 -2377 ((-112) $ $)) (-15 -3445 ((-656 $) $))))
+((-2260 (($ $) 15)) (-2282 (($ $) 12)) (-2291 (($ $) 10)) (-2270 (($ $) 17)))
+(((-1223 |#1|) (-10 -8 (-15 -2270 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2260 (|#1| |#1|))) (-1224)) (T -1223))
+NIL
+(-10 -8 (-15 -2270 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2260 (|#1| |#1|)))
+((-2260 (($ $) 11)) (-2238 (($ $) 10)) (-2282 (($ $) 9)) (-2291 (($ $) 8)) (-2270 (($ $) 7)) (-2249 (($ $) 6)))
+(((-1224) (-141)) (T -1224))
+((-2260 (*1 *1 *1) (-4 *1 (-1224))) (-2238 (*1 *1 *1) (-4 *1 (-1224))) (-2282 (*1 *1 *1) (-4 *1 (-1224))) (-2291 (*1 *1 *1) (-4 *1 (-1224))) (-2270 (*1 *1 *1) (-4 *1 (-1224))) (-2249 (*1 *1 *1) (-4 *1 (-1224))))
+(-13 (-10 -8 (-15 -2249 ($ $)) (-15 -2270 ($ $)) (-15 -2291 ($ $)) (-15 -2282 ($ $)) (-15 -2238 ($ $)) (-15 -2260 ($ $))))
+((-1451 ((|#2| |#2|) 98)) (-4431 (((-112) |#2|) 29)) (-4225 ((|#2| |#2|) 33)) (-4236 ((|#2| |#2|) 35)) (-4179 ((|#2| |#2| (-1195)) 92) ((|#2| |#2|) 93)) (-2491 (((-171 |#2|) |#2|) 31)) (-1713 ((|#2| |#2| (-1195)) 94) ((|#2| |#2|) 95)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -4179 (|#2| |#2| (-1195))) (-15 -1713 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-1195))) (-15 -1451 (|#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -4431 ((-112) |#2|)) (-15 -2491 ((-171 |#2|) |#2|))) (-13 (-464) (-1056 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -1225))
+((-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4431 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-4236 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-4225 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1713 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-4179 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))))
+(-10 -7 (-15 -4179 (|#2| |#2|)) (-15 -4179 (|#2| |#2| (-1195))) (-15 -1713 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-1195))) (-15 -1451 (|#2| |#2|)) (-15 -4225 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -4431 ((-112) |#2|)) (-15 -2491 ((-171 |#2|) |#2|)))
+((-1793 ((|#4| |#4| |#1|) 31)) (-2014 ((|#4| |#4| |#1|) 32)))
+(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1793 (|#4| |#4| |#1|)) (-15 -2014 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1226))
+((-2014 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1793 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -1793 (|#4| |#4| |#1|)) (-15 -2014 (|#4| |#4| |#1|)))
+((-2933 ((|#2| |#2|) 148)) (-3132 ((|#2| |#2|) 145)) (-2557 ((|#2| |#2|) 136)) (-3576 ((|#2| |#2|) 133)) (-1947 ((|#2| |#2|) 141)) (-1482 ((|#2| |#2|) 129)) (-3828 ((|#2| |#2|) 44)) (-3152 ((|#2| |#2|) 105)) (-2493 ((|#2| |#2|) 88)) (-2606 ((|#2| |#2|) 143)) (-2271 ((|#2| |#2|) 131)) (-3824 ((|#2| |#2|) 153)) (-1493 ((|#2| |#2|) 151)) (-4124 ((|#2| |#2|) 152)) (-4373 ((|#2| |#2|) 150)) (-2064 ((|#2| |#2|) 163)) (-2310 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-905 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-626 (-905 |#1|))) (|has| |#1| (-899 |#1|))))) (-2907 ((|#2| |#2|) 89)) (-2681 ((|#2| |#2|) 154)) (-2139 ((|#2| |#2|) 155)) (-3274 ((|#2| |#2|) 142)) (-4298 ((|#2| |#2|) 130)) (-2544 ((|#2| |#2|) 149)) (-3744 ((|#2| |#2|) 147)) (-2203 ((|#2| |#2|) 137)) (-1757 ((|#2| |#2|) 135)) (-3699 ((|#2| |#2|) 139)) (-3476 ((|#2| |#2|) 127)))
+(((-1227 |#1| |#2|) (-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -4298 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -2271 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -2310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1221))) (T -1227))
+((-2310 (*1 *2 *2) (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1493 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3132 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3576 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2933 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2544 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2203 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3699 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2681 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2064 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))))
+(-10 -7 (-15 -2139 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2064 (|#2| |#2|)) (-15 -3152 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -2681 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3699 (|#2| |#2|)) (-15 -2203 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -4298 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -2271 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -3576 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -1493 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -2310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1618 (((-112) |#5| $) 68) (((-112) $) 110)) (-3276 ((|#5| |#5| $) 83)) (-2174 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3134 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1706 (((-3 $ "failed") (-656 |#5|)) 135)) (-2940 (((-3 $ "failed") $) 120)) (-3164 ((|#5| |#5| $) 102)) (-2540 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2705 ((|#5| |#5| $) 106)) (-2887 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2648 (((-2 (|:| -1392 (-656 |#5|)) (|:| -1685 (-656 |#5|))) $) 63)) (-3670 (((-112) |#5| $) 66) (((-112) $) 111)) (-2977 ((|#4| $) 116)) (-3338 (((-3 |#5| "failed") $) 118)) (-3200 (((-656 |#5|) $) 55)) (-3103 (((-112) |#5| $) 75) (((-112) $) 115)) (-1992 ((|#5| |#5| $) 89)) (-3320 (((-112) $ $) 29)) (-3661 (((-112) |#5| $) 71) (((-112) $) 113)) (-3748 ((|#5| |#5| $) 86)) (-2930 (((-3 |#5| "failed") $) 117)) (-3167 (($ $ |#5|) 136)) (-2782 (((-783) $) 60)) (-2968 (($ (-656 |#5|)) 133)) (-3888 (($ $ |#4|) 131)) (-1572 (($ $ |#4|) 129)) (-4104 (($ $) 128)) (-2956 (((-874) $) NIL) (((-656 |#5|) $) 121)) (-3364 (((-783) $) 140)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1644 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-1916 (((-656 |#4|) $) 123)) (-3684 (((-112) |#4| $) 126)) (-2991 (((-112) $ $) 20)))
+(((-1228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3364 ((-783) |#1|)) (-15 -3167 (|#1| |#1| |#5|)) (-15 -2174 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3684 ((-112) |#4| |#1|)) (-15 -1916 ((-656 |#4|) |#1|)) (-15 -2940 ((-3 |#1| "failed") |#1|)) (-15 -3338 ((-3 |#5| "failed") |#1|)) (-15 -2930 ((-3 |#5| "failed") |#1|)) (-15 -2705 (|#5| |#5| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -3164 (|#5| |#5| |#1|)) (-15 -1992 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3276 (|#5| |#5| |#1|)) (-15 -3134 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2887 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3103 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -1618 ((-112) |#1|)) (-15 -1644 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3103 ((-112) |#5| |#1|)) (-15 -3661 ((-112) |#5| |#1|)) (-15 -1618 ((-112) |#5| |#1|)) (-15 -2540 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3670 ((-112) |#1|)) (-15 -3670 ((-112) |#5| |#1|)) (-15 -2648 ((-2 (|:| -1392 (-656 |#5|)) (|:| -1685 (-656 |#5|))) |#1|)) (-15 -2782 ((-783) |#1|)) (-15 -3200 ((-656 |#5|) |#1|)) (-15 -4064 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4064 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3320 ((-112) |#1| |#1|)) (-15 -3888 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -2977 (|#4| |#1|)) (-15 -1706 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2956 ((-656 |#5|) |#1|)) (-15 -2968 (|#1| (-656 |#5|))) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2174 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|))) (-1229 |#2| |#3| |#4| |#5|) (-568) (-805) (-862) (-1083 |#2| |#3| |#4|)) (T -1228))
+NIL
+(-10 -8 (-15 -3364 ((-783) |#1|)) (-15 -3167 (|#1| |#1| |#5|)) (-15 -2174 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3684 ((-112) |#4| |#1|)) (-15 -1916 ((-656 |#4|) |#1|)) (-15 -2940 ((-3 |#1| "failed") |#1|)) (-15 -3338 ((-3 |#5| "failed") |#1|)) (-15 -2930 ((-3 |#5| "failed") |#1|)) (-15 -2705 (|#5| |#5| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -3164 (|#5| |#5| |#1|)) (-15 -1992 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3276 (|#5| |#5| |#1|)) (-15 -3134 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2887 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3103 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -1618 ((-112) |#1|)) (-15 -1644 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3103 ((-112) |#5| |#1|)) (-15 -3661 ((-112) |#5| |#1|)) (-15 -1618 ((-112) |#5| |#1|)) (-15 -2540 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3670 ((-112) |#1|)) (-15 -3670 ((-112) |#5| |#1|)) (-15 -2648 ((-2 (|:| -1392 (-656 |#5|)) (|:| -1685 (-656 |#5|))) |#1|)) (-15 -2782 ((-783) |#1|)) (-15 -3200 ((-656 |#5|) |#1|)) (-15 -4064 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4064 ((-3 (-2 (|:| |bas| |#1|) (|:| -2012 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3320 ((-112) |#1| |#1|)) (-15 -3888 (|#1| |#1| |#4|)) (-15 -1572 (|#1| |#1| |#4|)) (-15 -2977 (|#4| |#1|)) (-15 -1706 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2956 ((-656 |#5|) |#1|)) (-15 -2968 (|#1| (-656 |#5|))) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2174 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2887 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2956 ((-874) |#1|)) (-15 -2991 ((-112) |#1| |#1|)))
+((-2869 (((-112) $ $) 7)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) 86)) (-3809 (((-656 $) (-656 |#4|)) 87)) (-4352 (((-656 |#3|) $) 34)) (-2971 (((-112) $) 27)) (-3565 (((-112) $) 18 (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) 102) (((-112) $) 98)) (-3276 ((|#4| |#4| $) 93)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) 28)) (-3762 (((-112) $ (-783)) 45)) (-2174 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-4335 (($) 46 T CONST)) (-3373 (((-112) $) 23 (|has| |#1| (-568)))) (-3679 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3651 (((-112) $ $) 24 (|has| |#1| (-568)))) (-4066 (((-112) $) 26 (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2331 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) 37)) (-2216 (($ (-656 |#4|)) 36)) (-2940 (((-3 $ "failed") $) 83)) (-3164 ((|#4| |#4| $) 90)) (-4060 (($ $) 69 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#4| $) 68 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2705 ((|#4| |#4| $) 88)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) 106)) (-1873 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) 105) (((-112) $) 104)) (-2977 ((|#3| $) 35)) (-2266 (((-112) $ (-783)) 44)) (-2186 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) 48)) (-4172 (((-656 |#3|) $) 33)) (-1820 (((-112) |#3| $) 32)) (-2356 (((-112) $ (-783)) 43)) (-2148 (((-1177) $) 10)) (-3338 (((-3 |#4| "failed") $) 84)) (-3200 (((-656 |#4|) $) 108)) (-3103 (((-112) |#4| $) 100) (((-112) $) 96)) (-1992 ((|#4| |#4| $) 91)) (-3320 (((-112) $ $) 111)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-3945 (((-1138) $) 11)) (-2930 (((-3 |#4| "failed") $) 85)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2452 (((-3 $ "failed") $ |#4|) 79)) (-3167 (($ $ |#4|) 78)) (-1875 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) 39)) (-3321 (((-112) $) 42)) (-2953 (($) 41)) (-2782 (((-783) $) 107)) (-3954 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1118)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-3162 (($ $) 40)) (-1846 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) 61)) (-3888 (($ $ |#3|) 29)) (-1572 (($ $ |#3|) 31)) (-4104 (($ $) 89)) (-2051 (($ $ |#3|) 30)) (-2956 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3364 (((-783) $) 77 (|has| |#3| (-379)))) (-2617 (((-112) $ $) 9)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3972 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) 82)) (-3684 (((-112) |#3| $) 81)) (-2991 (((-112) $ $) 6)) (-2882 (((-783) $) 47 (|has| $ (-6 -4461)))))
+(((-1229 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-862) (-1083 |t#1| |t#2| |t#3|)) (T -1229))
+((-3320 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-4064 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8)))) (-4064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *6)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-783)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-2 (|:| -1392 (-656 *6)) (|:| -1685 (-656 *6)))))) (-3670 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-2540 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)))) (-1618 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3661 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-3103 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))) (-2887 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *2 (-1083 *5 *6 *7)))) (-3134 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)))) (-3276 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3748 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-1992 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3164 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))) (-2705 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1392 *1) (|:| -1685 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-2930 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3338 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-2940 (*1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))) (-3684 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))) (-2174 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1083 *4 *5 *3)))) (-2452 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3167 (*1 *1 *1 *2) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783)))))
+(-13 (-994 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -3320 ((-112) $ $)) (-15 -4064 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4064 ((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3200 ((-656 |t#4|) $)) (-15 -2782 ((-783) $)) (-15 -2648 ((-2 (|:| -1392 (-656 |t#4|)) (|:| -1685 (-656 |t#4|))) $)) (-15 -3670 ((-112) |t#4| $)) (-15 -3670 ((-112) $)) (-15 -2540 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1618 ((-112) |t#4| $)) (-15 -3661 ((-112) |t#4| $)) (-15 -3103 ((-112) |t#4| $)) (-15 -1644 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -1618 ((-112) $)) (-15 -3661 ((-112) $)) (-15 -3103 ((-112) $)) (-15 -2887 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3134 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3276 (|t#4| |t#4| $)) (-15 -3748 (|t#4| |t#4| $)) (-15 -1992 (|t#4| |t#4| $)) (-15 -3164 (|t#4| |t#4| $)) (-15 -4104 ($ $)) (-15 -2705 (|t#4| |t#4| $)) (-15 -3809 ((-656 $) (-656 |t#4|))) (-15 -2375 ((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |t#4|)))) (-656 |t#4|))) (-15 -2930 ((-3 |t#4| "failed") $)) (-15 -3338 ((-3 |t#4| "failed") $)) (-15 -2940 ((-3 $ "failed") $)) (-15 -1916 ((-656 |t#3|) $)) (-15 -3684 ((-112) |t#3| $)) (-15 -2174 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2452 ((-3 $ "failed") $ |t#4|)) (-15 -3167 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3364 ((-783) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))) ((-994 |#1| |#2| |#3| |#4|) . T) ((-1118) . T) ((-1236) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1195)) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-4032 (((-968 |#1|) $ (-783)) 17) (((-968 |#1|) $ (-783) (-783)) NIL)) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $ (-1195)) NIL) (((-783) $ (-1195) (-783)) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1614 (((-112) $) NIL)) (-4330 (($ $ (-656 (-1195)) (-656 (-543 (-1195)))) NIL) (($ $ (-1195) (-543 (-1195))) NIL) (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-2254 (($ $ (-1195)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-2580 (($ (-1 $) (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3167 (($ $ (-783)) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-3884 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2782 (((-543 (-1195)) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1195)) NIL) (($ (-968 |#1|)) NIL)) (-4309 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (((-968 |#1|) $ (-783)) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-3590 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1230 |#1|) (-13 (-752 |#1| (-1195)) (-10 -8 (-15 -4309 ((-968 |#1|) $ (-783))) (-15 -2956 ($ (-1195))) (-15 -2956 ($ (-968 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $ (-1195) |#1|)) (-15 -2580 ($ (-1 $) (-1195) |#1|))) |%noBranch|))) (-1067)) (T -1230))
+((-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-968 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1067)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1067)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-5 *1 (-1230 *3)))) (-2254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))) (-2580 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)))))
+(-13 (-752 |#1| (-1195)) (-10 -8 (-15 -4309 ((-968 |#1|) $ (-783))) (-15 -2956 ($ (-1195))) (-15 -2956 ($ (-968 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $ (-1195) |#1|)) (-15 -2580 ($ (-1 $) (-1195) |#1|))) |%noBranch|)))
+((-1809 (($ |#1| (-656 (-656 (-959 (-227)))) (-112)) 19)) (-2899 (((-112) $ (-112)) 18)) (-1704 (((-112) $) 17)) (-3992 (((-656 (-656 (-959 (-227)))) $) 13)) (-4438 ((|#1| $) 8)) (-3601 (((-112) $) 15)))
+(((-1231 |#1|) (-10 -8 (-15 -4438 (|#1| $)) (-15 -3992 ((-656 (-656 (-959 (-227)))) $)) (-15 -3601 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -2899 ((-112) $ (-112))) (-15 -1809 ($ |#1| (-656 (-656 (-959 (-227)))) (-112)))) (-992)) (T -1231))
+((-1809 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-112)) (-5 *1 (-1231 *2)) (-4 *2 (-992)))) (-2899 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-1231 *3)) (-4 *3 (-992)))) (-4438 (*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-992)))))
+(-10 -8 (-15 -4438 (|#1| $)) (-15 -3992 ((-656 (-656 (-959 (-227)))) $)) (-15 -3601 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -2899 ((-112) $ (-112))) (-15 -1809 ($ |#1| (-656 (-656 (-959 (-227)))) (-112))))
+((-2010 (((-959 (-227)) (-959 (-227))) 31)) (-3569 (((-959 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2189 (((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-4144 (((-227) (-959 (-227)) (-959 (-227))) 27)) (-3794 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 28)) (-3275 (((-656 (-656 (-227))) (-576)) 44)) (-3096 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 26)) (-3081 (((-959 (-227)) (-959 (-227)) (-959 (-227))) 24)) (* (((-959 (-227)) (-227) (-959 (-227))) 22)))
+(((-1232) (-10 -7 (-15 -3569 ((-959 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-959 (-227)) (-227) (-959 (-227)))) (-15 -3081 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -3096 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -4144 ((-227) (-959 (-227)) (-959 (-227)))) (-15 -3794 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -2010 ((-959 (-227)) (-959 (-227)))) (-15 -3275 ((-656 (-656 (-227))) (-576))) (-15 -2189 ((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227))))))) (T -1232))
+((-2189 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-959 *4))) (-5 *1 (-1232)) (-5 *3 (-959 *4)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-4144 (*1 *2 *3 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-1232)))) (-3096 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (-3081 (*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-959 (-227))) (-5 *3 (-227)) (-5 *1 (-1232)))) (-3569 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)) (-5 *3 (-227)))))
+(-10 -7 (-15 -3569 ((-959 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-959 (-227)) (-227) (-959 (-227)))) (-15 -3081 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -3096 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -4144 ((-227) (-959 (-227)) (-959 (-227)))) (-15 -3794 ((-959 (-227)) (-959 (-227)) (-959 (-227)))) (-15 -2010 ((-959 (-227)) (-959 (-227)))) (-15 -3275 ((-656 (-656 (-227))) (-576))) (-15 -2189 ((-656 (-959 (-227))) (-959 (-227)) (-959 (-227)) (-959 (-227)) (-227) (-656 (-656 (-227))))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2174 ((|#1| $ (-783)) 18)) (-4114 (((-783) $) 13)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2956 (((-974 |#1|) $) 12) (($ (-974 |#1|)) 11) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2991 (((-112) $ $) 22 (|has| |#1| (-1118)))))
+(((-1233 |#1|) (-13 (-502 (-974 |#1|)) (-10 -8 (-15 -2174 (|#1| $ (-783))) (-15 -4114 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|))) (-1236)) (T -1233))
+((-2174 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236)))))
+(-13 (-502 (-974 |#1|)) (-10 -8 (-15 -2174 (|#1| $ (-783))) (-15 -4114 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|)))
+((-3674 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)) 94)) (-2229 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 86)) (-3637 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 70)))
+(((-1234 |#1|) (-10 -7 (-15 -2229 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3637 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3674 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)))) (-360)) (T -1234))
+((-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5)))) (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5))))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))) (-2229 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))))
+(-10 -7 (-15 -2229 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3637 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3674 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 9) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1235) (-1101)) (T -1235))
+NIL
+(-1101)
+NIL
+(((-1236) (-141)) (T -1236))
+NIL
+(-13 (-10 -7 (-6 -3500)))
+((-4349 (((-112)) 18)) (-1777 (((-1291) (-656 |#1|) (-656 |#1|)) 22) (((-1291) (-656 |#1|)) 23)) (-2266 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-2356 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1421 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3781 (((-2 (|:| -1843 (-656 |#1|)) (|:| -3517 (-656 |#1|)))) 20)))
+(((-1237 |#1|) (-10 -7 (-15 -1777 ((-1291) (-656 |#1|))) (-15 -1777 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -3781 ((-2 (|:| -1843 (-656 |#1|)) (|:| -3517 (-656 |#1|))))) (-15 -2356 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2356 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1421 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4349 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -1421 (|#1| (-656 |#1|))) (-15 -2266 ((-112) |#1| |#1|))) |%noBranch|)) (-1118)) (T -1237))
+((-2266 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862)) (-4 *3 (-1118)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-862)) (-5 *1 (-1237 *2)))) (-4349 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2)) (-4 *2 (-1118)))) (-2356 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1118)) (-5 *2 (-112)) (-5 *1 (-1237 *3)))) (-2356 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-3781 (*1 *2) (-12 (-5 *2 (-2 (|:| -1843 (-656 *3)) (|:| -3517 (-656 *3)))) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))) (-1777 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) (-5 *1 (-1237 *4)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291)) (-5 *1 (-1237 *4)))))
+(-10 -7 (-15 -1777 ((-1291) (-656 |#1|))) (-15 -1777 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -3781 ((-2 (|:| -1843 (-656 |#1|)) (|:| -3517 (-656 |#1|))))) (-15 -2356 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2356 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1421 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4349 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -1421 (|#1| (-656 |#1|))) (-15 -2266 ((-112) |#1| |#1|))) |%noBranch|))
+((-4035 (((-1291) (-656 (-1195)) (-656 (-1195))) 14) (((-1291) (-656 (-1195))) 12)) (-2679 (((-1291)) 16)) (-2311 (((-2 (|:| -3517 (-656 (-1195))) (|:| -1843 (-656 (-1195))))) 20)))
+(((-1238) (-10 -7 (-15 -4035 ((-1291) (-656 (-1195)))) (-15 -4035 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2311 ((-2 (|:| -3517 (-656 (-1195))) (|:| -1843 (-656 (-1195)))))) (-15 -2679 ((-1291))))) (T -1238))
+((-2679 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238)))) (-2311 (*1 *2) (-12 (-5 *2 (-2 (|:| -3517 (-656 (-1195))) (|:| -1843 (-656 (-1195))))) (-5 *1 (-1238)))) (-4035 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))))
+(-10 -7 (-15 -4035 ((-1291) (-656 (-1195)))) (-15 -4035 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2311 ((-2 (|:| -3517 (-656 (-1195))) (|:| -1843 (-656 (-1195)))))) (-15 -2679 ((-1291))))
+((-2879 (($ $) 17)) (-3124 (((-112) $) 28)))
+(((-1239 |#1|) (-10 -8 (-15 -2879 (|#1| |#1|)) (-15 -3124 ((-112) |#1|))) (-1240)) (T -1239))
+NIL
+(-10 -8 (-15 -2879 (|#1| |#1|)) (-15 -3124 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 57)) (-1870 (((-430 $) $) 58)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-3124 (((-112) $) 59)) (-4192 (((-112) $) 35)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4205 (((-430 $) $) 56)) (-2858 (((-3 $ "failed") $ $) 48)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-1240) (-141)) (T -1240))
+((-3124 (*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112)))) (-1870 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) (-2879 (*1 *1 *1) (-4 *1 (-1240))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))))
+(-13 (-464) (-10 -8 (-15 -3124 ((-112) $)) (-15 -1870 ((-430 $) $)) (-15 -2879 ($ $)) (-15 -4205 ((-430 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1069 $) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1241) (-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))) (T -1241))
+((-1753 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1241))) (-4335 (*1 *1) (-5 *1 (-1241))))
+(-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1240) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))) (T -1240))
-((-1750 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1430 (*1 *1) (-5 *1 (-1240))))
-(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1242) (-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))) (T -1242))
+((-1753 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1242))) (-4335 (*1 *1) (-5 *1 (-1242))))
+(-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1241) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))) (T -1241))
-((-1750 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1430 (*1 *1) (-5 *1 (-1241))))
-(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1243) (-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))) (T -1243))
+((-1753 (*1 *1 *1 *1) (-5 *1 (-1243))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4335 (*1 *1) (-5 *1 (-1243))))
+(-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2864 (((-112) $ $) NIL)) (-1496 (((-781)) NIL)) (-1430 (($) NIL T CONST)) (-2835 (($) NIL)) (-3634 (($ $ $) NIL) (($) NIL T CONST)) (-2976 (($ $ $) NIL) (($) NIL T CONST)) (-3507 (((-935) $) NIL)) (-4420 (((-1175) $) NIL)) (-2591 (($ (-935)) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) NIL)) (-1762 (($ $ $) NIL)) (-1750 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-3042 (((-112) $ $) NIL)) (-3020 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)))
-(((-1242) (-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))) (T -1242))
-((-1750 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1762 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1430 (*1 *1) (-5 *1 (-1242))))
-(-13 (-854) (-10 -8 (-15 -1750 ($ $ $)) (-15 -1762 ($ $ $)) (-15 -1430 ($) -1714)))
+((-2869 (((-112) $ $) NIL)) (-1499 (((-783)) NIL)) (-4335 (($) NIL T CONST)) (-2840 (($) NIL)) (-3639 (($ $ $) NIL) (($) NIL T CONST)) (-2571 (($ $ $) NIL) (($) NIL T CONST)) (-4261 (((-937) $) NIL)) (-2148 (((-1177) $) NIL)) (-2596 (($ (-937)) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) NIL)) (-1764 (($ $ $) NIL)) (-1753 (($ $ $) NIL)) (-2617 (((-112) $ $) NIL)) (-3047 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)))
+(((-1244) (-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))) (T -1244))
+((-1753 (*1 *1 *1 *1) (-5 *1 (-1244))) (-1764 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4335 (*1 *1) (-5 *1 (-1244))))
+(-13 (-856) (-10 -8 (-15 -1753 ($ $ $)) (-15 -1764 ($ $ $)) (-15 -4335 ($) -1716)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-1785 (((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)) 23)))
-(((-1243 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 ((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)))) (-1065) (-1065) (-1193) (-1193) |#1| |#2|) (T -1243))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1243 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1193)))))
-(-10 -7 (-15 -1785 ((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ (-574)) 113) (($ $ (-574) (-574)) 112)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 177 (|has| |#1| (-372)))) (-3171 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 188)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-2801 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-1659 (((-417 (-966 |#1|)) $ (-574)) 186 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 185 (|has| |#1| (-566)))) (-2812 (($ $ $) 171 (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3342 (((-112) $) 179 (|has| |#1| (-372)))) (-1674 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-574) $) 115) (((-574) $ (-574)) 114)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) 116)) (-4408 (($ (-1 |#1| (-574)) $) 187)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-3873 (((-112) $) 74)) (-4328 (($ |#1| (-574)) 73) (($ $ (-1098) (-574)) 88) (($ $ (-654 (-1098)) (-654 (-574))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2845 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3083 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4201 (((-428 $) $) 176 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2249 (($ $ (-574)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-574)))))) (-4220 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 120) (($ $ $) 96 (|has| (-574) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-3735 (((-574) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-1788 ((|#1| $ (-574)) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-574) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1244 |#1|) (-141) (-1065)) (T -1244))
-((-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3)))) (-4 *3 (-1065)) (-4 *1 (-1244 *3)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1244 *3)) (-4 *3 (-1065)))) (-1659 (*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) (-5 *2 (-417 (-966 *4))))) (-1659 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566)) (-5 *2 (-417 (-966 *4))))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3083 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
-(-13 (-1262 |t#1| (-574)) (-10 -8 (-15 -3597 ($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |t#1|))))) (-15 -4408 ($ (-1 |t#1| (-574)) $)) (IF (|has| |t#1| (-566)) (PROGN (-15 -1659 ((-417 (-966 |t#1|)) $ (-574))) (-15 -1659 ((-417 (-966 |t#1|)) $ (-574) (-574)))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $)) (IF (|has| |t#1| (-15 -3083 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-574) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-574) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T))
-((-4311 (((-112) $) 12)) (-1704 (((-3 |#3| "failed") $) 17) (((-3 (-1193) "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL)) (-2216 ((|#3| $) 14) (((-1193) $) NIL) (((-417 (-574)) $) NIL) (((-574) $) NIL)))
-(((-1245 |#1| |#2| |#3|) (-10 -8 (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -4311 ((-112) |#1|))) (-1246 |#2| |#3|) (-1065) (-1275 |#2|)) (T -1245))
-NIL
-(-10 -8 (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -1704 ((-3 (-1193) "failed") |#1|)) (-15 -2216 ((-1193) |#1|)) (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -4311 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4356 ((|#2| $) 247 (-2095 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ (-574)) 113) (($ $ (-574) (-574)) 112)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 119)) (-1474 ((|#2| $) 283)) (-2682 (((-3 |#2| "failed") $) 279)) (-4402 ((|#2| $) 280)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-1517 (((-428 (-1189 $)) (-1189 $)) 256 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-2684 (($ $) 177 (|has| |#1| (-372)))) (-3171 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 253 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-1374 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-1370 (((-574) $) 265 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 188)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 286) (((-3 (-574) "failed") $) 276 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) 274 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-1193) "failed") $) 258 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 287) (((-574) $) 275 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) 273 (-2095 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-1193) $) 257 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-3358 (($ $) 282) (($ (-574) $) 281)) (-2801 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-1557 (((-699 |#2|) (-1284 $)) 237 (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) 236 (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) 235 (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 234 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) 233 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) 232 (-2095 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3612 (((-3 $ "failed") $) 37)) (-1659 (((-417 (-966 |#1|)) $ (-574)) 186 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 185 (|has| |#1| (-566)))) (-2835 (($) 249 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2812 (($ $ $) 171 (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3342 (((-112) $) 179 (|has| |#1| (-372)))) (-2516 (((-112) $) 263 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-1674 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 241 (-2095 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 240 (-2095 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-1518 (((-574) $) 115) (((-574) $ (-574)) 114)) (-3943 (((-112) $) 35)) (-2447 (($ $) 245 (|has| |#1| (-372)))) (-2970 ((|#2| $) 243 (|has| |#1| (-372)))) (-4439 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-2081 (((-3 $ "failed") $) 277 (-2095 (|has| |#2| (-1168)) (|has| |#1| (-372))))) (-1935 (((-112) $) 264 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3209 (($ $ (-935)) 116)) (-4408 (($ (-1 |#1| (-574)) $) 187)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-3873 (((-112) $) 74)) (-4328 (($ |#1| (-574)) 73) (($ $ (-1098) (-574)) 88) (($ $ (-654 (-1098)) (-654 (-574))) 87)) (-3634 (($ $ $) 267 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2976 (($ $ $) 268 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1785 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 227 (|has| |#1| (-372)))) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2845 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-4414 (($ (-574) |#2|) 284)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3083 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3792 (($) 278 (-2095 (|has| |#2| (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-3577 (($ $) 248 (-2095 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3229 ((|#2| $) 251 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3235 (((-428 (-1189 $)) (-1189 $)) 254 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3000 (((-428 (-1189 $)) (-1189 $)) 255 (-2095 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-4201 (((-428 $) $) 176 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2249 (($ $ (-574)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) |#2|) 226 (-2095 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 |#2|)) 225 (-2095 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) 224 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) 223 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) 222 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) 221 (-2095 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-4220 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 120) (($ $ $) 96 (|has| (-574) (-1128))) (($ $ |#2|) 220 (-2095 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 230 (|has| |#1| (-372))) (($ $) 100 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 98 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 108 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193))) 106 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1193) (-781)) 105 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-1611 (($ $) 246 (|has| |#1| (-372)))) (-2980 ((|#2| $) 244 (|has| |#1| (-372)))) (-3735 (((-574) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-227) $) 262 (-2095 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-388) $) 261 (-2095 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-546) $) 260 (-2095 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) 239 (-2095 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) 238 (-2095 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 252 (-2095 (-2095 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#1| (-372))))) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 285) (($ (-1193)) 259 (-2095 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372)))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-1788 ((|#1| $ (-574)) 71)) (-2705 (((-3 $ "failed") $) 60 (-2833 (-2095 (-2833 (|has| |#2| (-146)) (-2095 (|has| $ (-146)) (|has| |#2| (-923)))) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-3941 ((|#2| $) 250 (-2095 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-4107 (($ $) 266 (-2095 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) 228 (|has| |#1| (-372))) (($ $) 99 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) 97 (-2833 (-2095 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 107 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193))) 103 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-1193) (-781)) 102 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-2833 (-2095 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))))) (-3042 (((-112) $ $) 270 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3020 (((-112) $ $) 271 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2986 (((-112) $ $) 6)) (-3031 (((-112) $ $) 269 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) 272 (-2095 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372))) (($ |#2| |#2|) 242 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 219 (|has| |#1| (-372))) (($ |#2| $) 218 (|has| |#1| (-372))) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1246 |#1| |#2|) (-141) (-1065) (-1275 |t#1|)) (T -1246))
-((-3735 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3)) (-5 *2 (-574)))) (-4414 (*1 *1 *2 *3) (-12 (-5 *2 (-574)) (-4 *4 (-1065)) (-4 *1 (-1246 *4 *3)) (-4 *3 (-1275 *4)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-1246 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1275 *2)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))) (-2682 (*1 *2 *1) (|partial| -12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))))
-(-13 (-1244 |t#1|) (-1054 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4414 ($ (-574) |t#2|)) (-15 -3735 ((-574) $)) (-15 -1474 (|t#2| $)) (-15 -3358 ($ $)) (-15 -3358 ($ (-574) $)) (-15 -4402 (|t#2| $)) (-15 -2682 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-372)) (-6 (-1008 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-574)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-372)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-372)) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1193)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-227)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-624 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-624 (-546)) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-624 (-903 (-574))))) ((-235 $) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-233 |#2|) |has| |#1| (-372)) ((-239) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-238) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-574) |#1|)))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 |#2| $) -12 (|has| |#1| (-372)) (|has| |#2| (-294 |#2| |#2|))) ((-294 $ $) |has| (-574) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-372) |has| |#1| (-372)) ((-347 |#2|) |has| |#1| (-372)) ((-386 |#2|) |has| |#1| (-372)) ((-410 |#2|) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-524 (-1193) |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-524 (-1193) |#2|))) ((-524 |#2| |#2|) -12 (|has| |#1| (-372)) (|has| |#2| (-317 |#2|))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-372)) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 #3=(-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-372)) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 |#2|) |has| |#1| (-372)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-649 #3#) -12 (|has| |#1| (-372)) (|has| |#2| (-649 (-574)))) ((-649 |#2|) |has| |#1| (-372)) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 |#2|) |has| |#1| (-372)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-801) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-802) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-804) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-805) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-830) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-858) -12 (|has| |#1| (-372)) (|has| |#2| (-830))) ((-860) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-860))) (-12 (|has| |#1| (-372)) (|has| |#2| (-830)))) ((-907 $ #4=(-1193)) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-912 #4#) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-914 #4#) -2833 (-12 (|has| |#1| (-372)) (|has| |#2| (-912 (-1193)))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))) ((-897 (-388)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-388)))) ((-897 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-897 (-574)))) ((-895 |#2|) |has| |#1| (-372)) ((-923) -12 (|has| |#1| (-372)) (|has| |#2| (-923))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1008 |#2|) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1038) -12 (|has| |#1| (-372)) (|has| |#2| (-1038))) ((-1054 (-417 (-574))) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) ((-1054 (-574)) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-574)))) ((-1054 #2#) -12 (|has| |#1| (-372)) (|has| |#2| (-1054 (-1193)))) ((-1054 |#2|) . T) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 |#2|) |has| |#1| (-372)) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-372)) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) -12 (|has| |#1| (-372)) (|has| |#2| (-1168))) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1244 |#1|) . T) ((-1262 |#1| #0#) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 81)) (-4356 ((|#2| $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 100)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-574)) 109) (($ $ (-574) (-574)) 111)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) 51)) (-1474 ((|#2| $) 11)) (-2682 (((-3 |#2| "failed") $) 35)) (-4402 ((|#2| $) 36)) (-2379 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-1370 (((-574) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) 59)) (-2404 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) 157) (((-3 (-574) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-1193) "failed") $) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-2216 ((|#2| $) 156) (((-574) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| |#2| (-1054 (-574))) (|has| |#1| (-372)))) (((-1193) $) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372))))) (-3358 (($ $) 65) (($ (-574) $) 28)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1557 (((-699 |#2|) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 |#2|) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| |#2| (-649 (-574))) (|has| |#1| (-372))))) (-3612 (((-3 $ "failed") $) 88)) (-1659 (((-417 (-966 |#1|)) $ (-574)) 124 (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) 126 (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-2516 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-1674 (((-112) $) 74)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| |#2| (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| |#2| (-897 (-574))) (|has| |#1| (-372))))) (-1518 (((-574) $) 105) (((-574) $ (-574)) 107)) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL (|has| |#1| (-372)))) (-2970 ((|#2| $) 165 (|has| |#1| (-372)))) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2081 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1168)) (|has| |#1| (-372))))) (-1935 (((-112) $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-3209 (($ $ (-935)) 148)) (-4408 (($ (-1 |#1| (-574)) $) 144)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 20) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2976 (($ $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-1785 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) |#2|) 10)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 159 (|has| |#1| (-372)))) (-3083 (($ $) 228 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 233 (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3792 (($) NIL (-12 (|has| |#2| (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3577 (($ $) NIL (-12 (|has| |#2| (-315)) (|has| |#1| (-372))))) (-3229 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| |#2| (-923)) (|has| |#1| (-372))))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-574)) 138)) (-2853 (((-3 $ "failed") $ $) 128 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) |#2|) NIL (-12 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 |#2|)) NIL (-12 (|has| |#2| (-524 (-1193) |#2|)) (|has| |#1| (-372)))) (($ $ (-654 (-302 |#2|))) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-302 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372)))) (($ $ (-654 |#2|) (-654 |#2|)) NIL (-12 (|has| |#2| (-317 |#2|)) (|has| |#1| (-372))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) 103) (($ $ $) 90 (|has| (-574) (-1128))) (($ $ |#2|) NIL (-12 (|has| |#2| (-294 |#2| |#2|)) (|has| |#1| (-372))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) 149 (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) 153 (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-1611 (($ $) NIL (|has| |#1| (-372)))) (-2980 ((|#2| $) 166 (|has| |#1| (-372)))) (-3735 (((-574) $) 12)) (-2417 (($ $) 212 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-227) $) NIL (-12 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| |#2| (-1038)) (|has| |#1| (-372)))) (((-546) $) NIL (-12 (|has| |#2| (-624 (-546))) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| |#2| (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| |#2| (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923)) (|has| |#1| (-372))))) (-3263 (($ $) 136)) (-2951 (((-872) $) 266) (($ (-574)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1193)) NIL (-12 (|has| |#2| (-1054 (-1193))) (|has| |#1| (-372)))) (($ (-417 (-574))) 169 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-574)) 85)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923)) (|has| |#1| (-372))) (-12 (|has| |#2| (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3070 (((-781)) 155 T CONST)) (-3332 ((|#1| $) 102)) (-3941 ((|#2| $) NIL (-12 (|has| |#2| (-555)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 218 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 214 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 222 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 224 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 220 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 216 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-4107 (($ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-372))))) (-2141 (($) 13 T CONST)) (-2153 (($) 18 T CONST)) (-3585 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-372))) (($ $ (-1 |#2| |#2|) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| |#2| (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| |#2| (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3020 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-2986 (((-112) $ $) 72)) (-3031 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3009 (((-112) $ $) NIL (-12 (|has| |#2| (-860)) (|has| |#1| (-372))))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372))) (($ |#2| |#2|) 164 (|has| |#1| (-372)))) (-3090 (($ $) 227) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-935)) NIL) (($ $ (-781)) 84) (($ $ (-574)) 160 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 172 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-372))) (($ |#2| $) 161 (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1247 |#1| |#2|) (-1246 |#1| |#2|) (-1065) (-1275 |#1|)) (T -1247))
-NIL
-(-1246 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4356 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 10)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-4141 (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2475 (((-112) $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2991 (($ $ (-574)) NIL) (($ $ (-574) (-574)) NIL)) (-2424 (((-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|))) $) NIL)) (-1474 (((-1276 |#1| |#2| |#3|) $) NIL)) (-2682 (((-3 (-1276 |#1| |#2| |#3|) "failed") $) NIL)) (-4402 (((-1276 |#1| |#2| |#3|) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1370 (((-574) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3597 (($ (-1173 (-2 (|:| |k| (-574)) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-1276 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1193) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-3 (-417 (-574)) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-3 (-574) "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-2216 (((-1276 |#1| |#2| |#3|) $) NIL) (((-1193) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (((-417 (-574)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372)))) (((-574) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))))) (-3358 (($ $) NIL) (($ (-574) $) NIL)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-1276 |#1| |#2| |#3|)) (-1284 $)) NIL (|has| |#1| (-372))) (((-699 (-1276 |#1| |#2| |#3|)) (-699 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-1276 |#1| |#2| |#3|))) (|:| |vec| (-1284 (-1276 |#1| |#2| |#3|)))) (-699 $) (-1284 $)) NIL (|has| |#1| (-372))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-699 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372)))) (((-699 (-574)) (-1284 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-649 (-574))) (|has| |#1| (-372))))) (-3612 (((-3 $ "failed") $) NIL)) (-1659 (((-417 (-966 |#1|)) $ (-574)) NIL (|has| |#1| (-566))) (((-417 (-966 |#1|)) $ (-574) (-574)) NIL (|has| |#1| (-566)))) (-2835 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-2516 (((-112) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-897 (-388))) (|has| |#1| (-372)))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-897 (-574))) (|has| |#1| (-372))))) (-1518 (((-574) $) NIL) (((-574) $ (-574)) NIL)) (-3943 (((-112) $) NIL)) (-2447 (($ $) NIL (|has| |#1| (-372)))) (-2970 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2081 (((-3 $ "failed") $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))))) (-1935 (((-112) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-3209 (($ $ (-935)) NIL)) (-4408 (($ (-1 |#1| (-574)) $) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-574)) 18) (($ $ (-1098) (-574)) NIL) (($ $ (-654 (-1098)) (-654 (-574))) NIL)) (-3634 (($ $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2976 (($ $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-372)))) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4414 (($ (-574) (-1276 |#1| |#2| |#3|)) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) 27 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 28 (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1168)) (|has| |#1| (-372))) CONST)) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3577 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-315)) (|has| |#1| (-372))))) (-3229 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-574)) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-574))))) (($ $ (-1193) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1193)) (-654 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-524 (-1193) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-302 (-1276 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-302 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372)))) (($ $ (-654 (-1276 |#1| |#2| |#3|)) (-654 (-1276 |#1| |#2| |#3|))) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-317 (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-574)) NIL) (($ $ $) NIL (|has| (-574) (-1128))) (($ $ (-1276 |#1| |#2| |#3|)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-294 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) (|has| |#1| (-372))))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $ (-1280 |#2|)) 26) (($ $) 25 (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-1611 (($ $) NIL (|has| |#1| (-372)))) (-2980 (((-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372)))) (-3735 (((-574) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1844 (((-546) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-546))) (|has| |#1| (-372)))) (((-388) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-227) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1038)) (|has| |#1| (-372)))) (((-903 (-388)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-903 (-388)))) (|has| |#1| (-372)))) (((-903 (-574)) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-624 (-903 (-574)))) (|has| |#1| (-372))))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1276 |#1| |#2| |#3|)) NIL) (($ (-1280 |#2|)) 24) (($ (-1193)) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-1193))) (|has| |#1| (-372)))) (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566)))) (($ (-417 (-574))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-1054 (-574))) (|has| |#1| (-372))) (|has| |#1| (-38 (-417 (-574))))))) (-1788 ((|#1| $ (-574)) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-146)) (|has| |#1| (-372))) (|has| |#1| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 11)) (-3941 (((-1276 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-555)) (|has| |#1| (-372))))) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-923)) (|has| |#1| (-372))) (|has| |#1| (-566))))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-574)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-574)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-4107 (($ $) NIL (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))))) (-2141 (($) 20 T CONST)) (-2153 (($) 15 T CONST)) (-3585 (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|))) NIL (|has| |#1| (-372))) (($ $ (-1 (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) (-781)) NIL (|has| |#1| (-372))) (($ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-239)) (|has| |#1| (-372))) (|has| |#1| (-15 * (|#1| (-574) |#1|))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-1193) (-781)) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193)))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-912 (-1193))) (|has| |#1| (-372))) (-12 (|has| |#1| (-15 * (|#1| (-574) |#1|))) (|has| |#1| (-912 (-1193))))))) (-3042 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3020 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-2986 (((-112) $ $) NIL)) (-3031 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3009 (((-112) $ $) NIL (-2833 (-12 (|has| (-1276 |#1| |#2| |#3|) (-830)) (|has| |#1| (-372))) (-12 (|has| (-1276 |#1| |#2| |#3|) (-860)) (|has| |#1| (-372)))))) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372))) (($ (-1276 |#1| |#2| |#3|) (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 22)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1276 |#1| |#2| |#3|)) NIL (|has| |#1| (-372))) (($ (-1276 |#1| |#2| |#3|) $) NIL (|has| |#1| (-372))) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1248 |#1| |#2| |#3|) (-13 (-1246 |#1| (-1276 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1248))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1246 |#1| (-1276 |#1| |#2| |#3|)) (-10 -8 (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-2861 (((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112)) 13)) (-3037 (((-428 |#1|) |#1|) 26)) (-4201 (((-428 |#1|) |#1|) 24)))
-(((-1249 |#1|) (-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1|)) (-15 -2861 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112)))) (-1260 (-574))) (T -1249))
-((-2861 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574))))))) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))) (-3037 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))))
-(-10 -7 (-15 -4201 ((-428 |#1|) |#1|)) (-15 -3037 ((-428 |#1|) |#1|)) (-15 -2861 ((-2 (|:| |contp| (-574)) (|:| -3996 (-654 (-2 (|:| |irr| |#1|) (|:| -1545 (-574)))))) |#1| (-112))))
-((-1785 (((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|)) 23 (|has| |#1| (-858))) (((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|)) 17)))
-(((-1250 |#1| |#2|) (-10 -7 (-15 -1785 ((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) |%noBranch|)) (-1234) (-1234)) (T -1250))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-858)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1250 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1251 *6)) (-5 *1 (-1250 *5 *6)))))
-(-10 -7 (-15 -1785 ((-1251 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) (IF (|has| |#1| (-858)) (-15 -1785 ((-1173 |#2|) (-1 |#2| |#1|) (-1251 |#1|))) |%noBranch|))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3225 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1785 (((-1173 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-858)))) (-3456 ((|#1| $) 15)) (-2831 ((|#1| $) 12)) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1961 (((-574) $) 19)) (-1953 ((|#1| $) 18)) (-1974 ((|#1| $) 13)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2931 (((-112) $) 17)) (-2136 (((-1173 |#1|) $) 41 (|has| |#1| (-858))) (((-1173 |#1|) (-654 $)) 40 (|has| |#1| (-858)))) (-1844 (($ |#1|) 26)) (-2951 (($ (-1110 |#1|)) 25) (((-872) $) 37 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-4266 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2748 (($ $ (-574)) 14)) (-2986 (((-112) $ $) 30 (|has| |#1| (-1116)))))
-(((-1251 |#1|) (-13 (-1109 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3225 ($ |#1|)) (-15 -2951 ($ (-1110 |#1|))) (-15 -2931 ((-112) $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-1173 |#1|))) |%noBranch|))) (-1234)) (T -1251))
-((-4266 (*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))) (-3225 (*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1234)) (-5 *1 (-1251 *3)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3)) (-4 *3 (-1234)))))
-(-13 (-1109 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3225 ($ |#1|)) (-15 -2951 ($ (-1110 |#1|))) (-15 -2931 ((-112) $)) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-858)) (-6 (-1111 |#1| (-1173 |#1|))) |%noBranch|)))
-((-1785 (((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)) 15)))
-(((-1252 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 ((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)))) (-1193) (-1065) (-1193) (-1065)) (T -1252))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1193)) (-4 *6 (-1065)) (-4 *8 (-1065)) (-5 *2 (-1257 *7 *8)) (-5 *1 (-1252 *5 *6 *7 *8)) (-14 *7 (-1193)))))
-(-10 -7 (-15 -1785 ((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|))))
-((-2212 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3994 ((|#1| |#3|) 13)) (-2191 ((|#3| |#3|) 19)))
-(((-1253 |#1| |#2| |#3|) (-10 -7 (-15 -3994 (|#1| |#3|)) (-15 -2191 (|#3| |#3|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-566) (-1008 |#1|) (-1260 |#2|)) (T -1253))
-((-2212 (*1 *2 *3) (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1253 *4 *5 *3)) (-4 *3 (-1260 *5)))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-1253 *3 *4 *2)) (-4 *2 (-1260 *4)))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-1253 *2 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -3994 (|#1| |#3|)) (-15 -2191 (|#3| |#3|)) (-15 -2212 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3922 (((-3 |#2| "failed") |#2| (-781) |#1|) 35)) (-2127 (((-3 |#2| "failed") |#2| (-781)) 36)) (-2679 (((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|) 50)) (-2566 (((-654 |#2|) |#2|) 52)) (-3392 (((-3 |#2| "failed") |#2| |#2|) 46)))
-(((-1254 |#1| |#2|) (-10 -7 (-15 -2127 ((-3 |#2| "failed") |#2| (-781))) (-15 -3922 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -3392 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2679 ((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|)) (-15 -2566 ((-654 |#2|) |#2|))) (-13 (-566) (-148)) (-1260 |#1|)) (T -1254))
-((-2566 (*1 *2 *3) (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3)) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4)))) (-2679 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4)))) (-3392 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1254 *3 *2)) (-4 *2 (-1260 *3)))) (-3922 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4)))) (-2127 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4)))))
-(-10 -7 (-15 -2127 ((-3 |#2| "failed") |#2| (-781))) (-15 -3922 ((-3 |#2| "failed") |#2| (-781) |#1|)) (-15 -3392 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2679 ((-3 (-2 (|:| -3865 |#2|) (|:| -3878 |#2|)) "failed") |#2|)) (-15 -2566 ((-654 |#2|) |#2|)))
-((-4275 (((-3 (-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1255 |#1| |#2|) (-10 -7 (-15 -4275 ((-3 (-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) "failed") |#2| |#2|))) (-566) (-1260 |#1|)) (T -1255))
-((-4275 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1260 *4)))))
-(-10 -7 (-15 -4275 ((-3 (-2 (|:| -3758 |#2|) (|:| -3919 |#2|)) "failed") |#2| |#2|)))
-((-4019 ((|#2| |#2| |#2|) 22)) (-1446 ((|#2| |#2| |#2|) 36)) (-3375 ((|#2| |#2| |#2| (-781) (-781)) 44)))
-(((-1256 |#1| |#2|) (-10 -7 (-15 -4019 (|#2| |#2| |#2|)) (-15 -1446 (|#2| |#2| |#2|)) (-15 -3375 (|#2| |#2| |#2| (-781) (-781)))) (-1065) (-1260 |#1|)) (T -1256))
-((-3375 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1260 *4)))) (-1446 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3)))) (-4019 (*1 *2 *2 *2) (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3)))))
-(-10 -7 (-15 -4019 (|#2| |#2| |#2|)) (-15 -1446 (|#2| |#2| |#2|)) (-15 -3375 (|#2| |#2| |#2| (-781) (-781))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4052 (((-1284 |#2|) $ (-781)) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-3391 (($ (-1189 |#2|)) NIL)) (-4172 (((-1189 $) $ (-1098)) NIL) (((-1189 |#2|) $) NIL)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#2| (-566)))) (-4141 (($ $) NIL (|has| |#2| (-566)))) (-2475 (((-112) $) NIL (|has| |#2| (-566)))) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1098))) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-2982 (($ $ $) NIL (|has| |#2| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-2684 (($ $) NIL (|has| |#2| (-462)))) (-3171 (((-428 $) $) NIL (|has| |#2| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-1374 (((-112) $ $) NIL (|has| |#2| (-372)))) (-2027 (($ $ (-781)) NIL)) (-2145 (($ $ (-781)) NIL)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-462)))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL) (((-3 (-417 (-574)) "failed") $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) NIL (|has| |#2| (-1054 (-574)))) (((-3 (-1098) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-417 (-574)) $) NIL (|has| |#2| (-1054 (-417 (-574))))) (((-574) $) NIL (|has| |#2| (-1054 (-574)))) (((-1098) $) NIL)) (-4047 (($ $ $ (-1098)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2801 (($ $ $) NIL (|has| |#2| (-372)))) (-1402 (($ $) NIL)) (-1557 (((-699 (-574)) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-699 (-574)) (-699 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) NIL (|has| |#2| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#2|)) (|:| |vec| (-1284 |#2|))) (-699 $) (-1284 $)) NIL) (((-699 |#2|) (-699 $)) NIL) (((-699 |#2|) (-1284 $)) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2812 (($ $ $) NIL (|has| |#2| (-372)))) (-2617 (($ $ $) NIL)) (-1891 (($ $ $) NIL (|has| |#2| (-566)))) (-3959 (((-2 (|:| -1866 |#2|) (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#2| (-372)))) (-4135 (($ $) NIL (|has| |#2| (-462))) (($ $ (-1098)) NIL (|has| |#2| (-462)))) (-1389 (((-654 $) $) NIL)) (-3342 (((-112) $) NIL (|has| |#2| (-923)))) (-3637 (($ $ |#2| (-781) $) NIL)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) NIL (-12 (|has| (-1098) (-897 (-388))) (|has| |#2| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) NIL (-12 (|has| (-1098) (-897 (-574))) (|has| |#2| (-897 (-574)))))) (-1518 (((-781) $ $) NIL (|has| |#2| (-566)))) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2081 (((-3 $ "failed") $) NIL (|has| |#2| (-1168)))) (-4339 (($ (-1189 |#2|) (-1098)) NIL) (($ (-1189 $) (-1098)) NIL)) (-3209 (($ $ (-781)) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-4328 (($ |#2| (-781)) 18) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1098)) NIL) (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL)) (-2043 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-3431 (($ (-1 (-781) (-781)) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2143 (((-1189 |#2|) $) NIL)) (-3444 (((-3 (-1098) "failed") $) NIL)) (-1366 (($ $) NIL)) (-1378 ((|#2| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-4420 (((-1175) $) NIL)) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) NIL)) (-1730 (((-3 (-654 $) "failed") $) NIL)) (-4245 (((-3 (-654 $) "failed") $) NIL)) (-4436 (((-3 (-2 (|:| |var| (-1098)) (|:| -2754 (-781))) "failed") $) NIL)) (-3083 (($ $) NIL (|has| |#2| (-38 (-417 (-574)))))) (-3792 (($) NIL (|has| |#2| (-1168)) CONST)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 ((|#2| $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#2| (-462)))) (-2887 (($ (-654 $)) NIL (|has| |#2| (-462))) (($ $ $) NIL (|has| |#2| (-462)))) (-2753 (($ $ (-781) |#2| $) NIL)) (-3235 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) NIL (|has| |#2| (-923)))) (-4201 (((-428 $) $) NIL (|has| |#2| (-923)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#2| (-372)))) (-2853 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-566))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#2| (-372)))) (-2661 (($ $ (-654 (-302 $))) NIL) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#2|) NIL) (($ $ (-654 (-1098)) (-654 |#2|)) NIL) (($ $ (-1098) $) NIL) (($ $ (-654 (-1098)) (-654 $)) NIL)) (-4220 (((-781) $) NIL (|has| |#2| (-372)))) (-2207 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) NIL (|has| |#2| (-566))) ((|#2| (-417 $) |#2|) NIL (|has| |#2| (-372))) (((-417 $) $ (-417 $)) NIL (|has| |#2| (-566)))) (-4293 (((-3 $ "failed") $ (-781)) NIL)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#2| (-372)))) (-1924 (($ $ (-1098)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3735 (((-781) $) NIL) (((-781) $ (-1098)) NIL) (((-654 (-781)) $ (-654 (-1098))) NIL)) (-1844 (((-903 (-388)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#2| (-624 (-903 (-388)))))) (((-903 (-574)) $) NIL (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#2| (-624 (-903 (-574)))))) (((-546) $) NIL (-12 (|has| (-1098) (-624 (-546))) (|has| |#2| (-624 (-546)))))) (-1732 ((|#2| $) NIL (|has| |#2| (-462))) (($ $ (-1098)) NIL (|has| |#2| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-923))))) (-2908 (((-3 $ "failed") $ $) NIL (|has| |#2| (-566))) (((-3 (-417 $) "failed") (-417 $) $) NIL (|has| |#2| (-566)))) (-2951 (((-872) $) 13) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1098)) NIL) (($ (-1280 |#1|)) 20) (($ (-417 (-574))) NIL (-2833 (|has| |#2| (-38 (-417 (-574)))) (|has| |#2| (-1054 (-417 (-574)))))) (($ $) NIL (|has| |#2| (-566)))) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-781)) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-2705 (((-3 $ "failed") $) NIL (-2833 (-12 (|has| $ (-146)) (|has| |#2| (-923))) (|has| |#2| (-146))))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| |#2| (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL (|has| |#2| (-566)))) (-2141 (($) NIL T CONST)) (-2153 (($) 14 T CONST)) (-3585 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) NIL) (($ $) NIL) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193) (-781)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-654 (-1193))) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1193)) NIL (|has| |#2| (-912 (-1193)))) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#2|) NIL (|has| |#2| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-417 (-574))) NIL (|has| |#2| (-38 (-417 (-574))))) (($ (-417 (-574)) $) NIL (|has| |#2| (-38 (-417 (-574))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1257 |#1| |#2|) (-13 (-1260 |#2|) (-626 (-1280 |#1|)) (-10 -8 (-15 -2753 ($ $ (-781) |#2| $)))) (-1193) (-1065)) (T -1257))
-((-2753 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1193)) (-4 *3 (-1065)))))
-(-13 (-1260 |#2|) (-626 (-1280 |#1|)) (-10 -8 (-15 -2753 ($ $ (-781) |#2| $))))
-((-1785 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|))) (-1065) (-1260 |#1|) (-1065) (-1260 |#3|)) (T -1258))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *4 *6 *2)) (-4 *4 (-1260 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4052 (((-1284 |#2|) $ (-781)) 129)) (-4350 (((-654 (-1098)) $) 16)) (-3391 (($ (-1189 |#2|)) 80)) (-3654 (((-781) $) NIL) (((-781) $ (-654 (-1098))) 21)) (-1517 (((-428 (-1189 $)) (-1189 $)) 204)) (-2684 (($ $) 194)) (-3171 (((-428 $) $) 192)) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 95)) (-2027 (($ $ (-781)) 84)) (-2145 (($ $ (-781)) 86)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1704 (((-3 |#2| "failed") $) 132) (((-3 (-417 (-574)) "failed") $) NIL) (((-3 (-574) "failed") $) NIL) (((-3 (-1098) "failed") $) NIL)) (-2216 ((|#2| $) 130) (((-417 (-574)) $) NIL) (((-574) $) NIL) (((-1098) $) NIL)) (-1891 (($ $ $) 170)) (-3959 (((-2 (|:| -1866 |#2|) (|:| -3758 $) (|:| -3919 $)) $ $) 172)) (-1518 (((-781) $ $) 189)) (-2081 (((-3 $ "failed") $) 138)) (-4328 (($ |#2| (-781)) NIL) (($ $ (-1098) (-781)) 59) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-2043 (((-781) $) NIL) (((-781) $ (-1098)) 54) (((-654 (-781)) $ (-654 (-1098))) 55)) (-2143 (((-1189 |#2|) $) 72)) (-3444 (((-3 (-1098) "failed") $) 52)) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) 83)) (-3083 (($ $) 219)) (-3792 (($) 134)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 201)) (-3235 (((-428 (-1189 $)) (-1189 $)) 101)) (-3000 (((-428 (-1189 $)) (-1189 $)) 99)) (-4201 (((-428 $) $) 120)) (-2661 (($ $ (-654 (-302 $))) 51) (($ $ (-302 $)) NIL) (($ $ $ $) NIL) (($ $ (-654 $) (-654 $)) NIL) (($ $ (-1098) |#2|) 39) (($ $ (-654 (-1098)) (-654 |#2|)) 36) (($ $ (-1098) $) 32) (($ $ (-654 (-1098)) (-654 $)) 30)) (-4220 (((-781) $) 207)) (-2207 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-417 $) (-417 $) (-417 $)) 164) ((|#2| (-417 $) |#2|) 206) (((-417 $) $ (-417 $)) 188)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 212)) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) NIL) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098))) NIL) (($ $ (-1098)) 157) (($ $) 155) (($ $ (-781)) NIL) (($ $ (-654 (-1193)) (-654 (-781))) NIL) (($ $ (-1193) (-781)) NIL) (($ $ (-654 (-1193))) NIL) (($ $ (-1193)) NIL) (($ $ (-1 |#2| |#2|) (-781)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3735 (((-781) $) NIL) (((-781) $ (-1098)) 17) (((-654 (-781)) $ (-654 (-1098))) 23)) (-1732 ((|#2| $) NIL) (($ $ (-1098)) 140)) (-2908 (((-3 $ "failed") $ $) 180) (((-3 (-417 $) "failed") (-417 $) $) 176)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#2|) NIL) (($ (-1098)) 64) (($ (-417 (-574))) NIL) (($ $) NIL)))
-(((-1259 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -2207 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -4220 ((-781) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2207 (|#2| (-417 |#1|) |#2|)) (-15 -2822 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3959 ((-2 (|:| -1866 |#2|) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -2908 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2908 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1518 ((-781) |#1| |#1|)) (-15 -2207 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2145 (|#1| |#1| (-781))) (-15 -2027 (|#1| |#1| (-781))) (-15 -2298 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| (-781))) (-15 -3391 (|#1| (-1189 |#2|))) (-15 -2143 ((-1189 |#2|) |#1|)) (-15 -4052 ((-1284 |#2|) |#1| (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| |#2|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -1517 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -1732 (|#1| |#1| (-1098))) (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -3654 ((-781) |#1| (-654 (-1098)))) (-15 -3654 ((-781) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -4328 (|#1| |#1| (-1098) (-781))) (-15 -2043 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -2043 ((-781) |#1| (-1098))) (-15 -3444 ((-3 (-1098) "failed") |#1|)) (-15 -3735 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3735 ((-781) |#1| (-1098))) (-15 -2951 (|#1| (-1098))) (-15 -1704 ((-3 (-1098) "failed") |#1|)) (-15 -2216 ((-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1098) |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3735 ((-781) |#1|)) (-15 -4328 (|#1| |#2| (-781))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2043 ((-781) |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -3879 (|#1| |#1| (-1098))) (-15 -3879 (|#1| |#1| (-654 (-1098)))) (-15 -3879 (|#1| |#1| (-1098) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|))) (-1260 |#2|) (-1065)) (T -1259))
-NIL
-(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2064 ((-1189 |#1|) (-1189 |#1|) (-1189 |#1|))) (-15 -3171 ((-428 |#1|) |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -3792 (|#1|)) (-15 -2081 ((-3 |#1| "failed") |#1|)) (-15 -2207 ((-417 |#1|) |#1| (-417 |#1|))) (-15 -4220 ((-781) |#1|)) (-15 -2472 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -3083 (|#1| |#1|)) (-15 -2207 (|#2| (-417 |#1|) |#2|)) (-15 -2822 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3959 ((-2 (|:| -1866 |#2|) (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -2908 ((-3 (-417 |#1|) "failed") (-417 |#1|) |#1|)) (-15 -2908 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1518 ((-781) |#1| |#1|)) (-15 -2207 ((-417 |#1|) (-417 |#1|) (-417 |#1|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2145 (|#1| |#1| (-781))) (-15 -2027 (|#1| |#1| (-781))) (-15 -2298 ((-2 (|:| -3758 |#1|) (|:| -3919 |#1|)) |#1| (-781))) (-15 -3391 (|#1| (-1189 |#2|))) (-15 -2143 ((-1189 |#2|) |#1|)) (-15 -4052 ((-1284 |#2|) |#1| (-781))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3879 (|#1| |#1| (-1 |#2| |#2|) (-781))) (-15 -3879 (|#1| |#1| (-1193))) (-15 -3879 (|#1| |#1| (-654 (-1193)))) (-15 -3879 (|#1| |#1| (-1193) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1193)) (-654 (-781)))) (-15 -3879 (|#1| |#1| (-781))) (-15 -3879 (|#1| |#1|)) (-15 -2207 (|#1| |#1| |#1|)) (-15 -2207 (|#2| |#1| |#2|)) (-15 -4201 ((-428 |#1|) |#1|)) (-15 -1517 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3000 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3235 ((-428 (-1189 |#1|)) (-1189 |#1|))) (-15 -3571 ((-3 (-654 (-1189 |#1|)) "failed") (-654 (-1189 |#1|)) (-1189 |#1|))) (-15 -1732 (|#1| |#1| (-1098))) (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -3654 ((-781) |#1| (-654 (-1098)))) (-15 -3654 ((-781) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -4328 (|#1| |#1| (-1098) (-781))) (-15 -2043 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -2043 ((-781) |#1| (-1098))) (-15 -3444 ((-3 (-1098) "failed") |#1|)) (-15 -3735 ((-654 (-781)) |#1| (-654 (-1098)))) (-15 -3735 ((-781) |#1| (-1098))) (-15 -2951 (|#1| (-1098))) (-15 -1704 ((-3 (-1098) "failed") |#1|)) (-15 -2216 ((-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#1|))) (-15 -2661 (|#1| |#1| (-1098) |#1|)) (-15 -2661 (|#1| |#1| (-654 (-1098)) (-654 |#2|))) (-15 -2661 (|#1| |#1| (-1098) |#2|)) (-15 -2661 (|#1| |#1| (-654 |#1|) (-654 |#1|))) (-15 -2661 (|#1| |#1| |#1| |#1|)) (-15 -2661 (|#1| |#1| (-302 |#1|))) (-15 -2661 (|#1| |#1| (-654 (-302 |#1|)))) (-15 -3735 ((-781) |#1|)) (-15 -4328 (|#1| |#2| (-781))) (-15 -1704 ((-3 (-574) "failed") |#1|)) (-15 -2216 ((-574) |#1|)) (-15 -1704 ((-3 (-417 (-574)) "failed") |#1|)) (-15 -2216 ((-417 (-574)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1704 ((-3 |#2| "failed") |#1|)) (-15 -2951 (|#1| |#2|)) (-15 -2043 ((-781) |#1|)) (-15 -1732 (|#2| |#1|)) (-15 -3879 (|#1| |#1| (-1098))) (-15 -3879 (|#1| |#1| (-654 (-1098)))) (-15 -3879 (|#1| |#1| (-1098) (-781))) (-15 -3879 (|#1| |#1| (-654 (-1098)) (-654 (-781)))) (-15 -2951 (|#1| (-574))) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4052 (((-1284 |#1|) $ (-781)) 245)) (-4350 (((-654 (-1098)) $) 113)) (-3391 (($ (-1189 |#1|)) 243)) (-4172 (((-1189 $) $ (-1098)) 128) (((-1189 |#1|) $) 127)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 90 (|has| |#1| (-566)))) (-4141 (($ $) 91 (|has| |#1| (-566)))) (-2475 (((-112) $) 93 (|has| |#1| (-566)))) (-3654 (((-781) $) 115) (((-781) $ (-654 (-1098))) 114)) (-3290 (((-3 $ "failed") $ $) 20)) (-2982 (($ $ $) 230 (|has| |#1| (-566)))) (-1517 (((-428 (-1189 $)) (-1189 $)) 103 (|has| |#1| (-923)))) (-2684 (($ $) 101 (|has| |#1| (-462)))) (-3171 (((-428 $) $) 100 (|has| |#1| (-462)))) (-3571 (((-3 (-654 (-1189 $)) "failed") (-654 (-1189 $)) (-1189 $)) 106 (|has| |#1| (-923)))) (-1374 (((-112) $ $) 215 (|has| |#1| (-372)))) (-2027 (($ $ (-781)) 238)) (-2145 (($ $ (-781)) 237)) (-2822 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 225 (|has| |#1| (-462)))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 169) (((-3 (-417 (-574)) "failed") $) 166 (|has| |#1| (-1054 (-417 (-574))))) (((-3 (-574) "failed") $) 164 (|has| |#1| (-1054 (-574)))) (((-3 (-1098) "failed") $) 141)) (-2216 ((|#1| $) 168) (((-417 (-574)) $) 167 (|has| |#1| (-1054 (-417 (-574))))) (((-574) $) 165 (|has| |#1| (-1054 (-574)))) (((-1098) $) 142)) (-4047 (($ $ $ (-1098)) 111 (|has| |#1| (-174))) ((|#1| $ $) 233 (|has| |#1| (-174)))) (-2801 (($ $ $) 219 (|has| |#1| (-372)))) (-1402 (($ $) 159)) (-1557 (((-699 (-574)) (-1284 $)) 139 (|has| |#1| (-649 (-574)))) (((-699 (-574)) (-699 $)) 138 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 (-574))) (|:| |vec| (-1284 (-574)))) (-699 $) (-1284 $)) 137 (|has| |#1| (-649 (-574)))) (((-2 (|:| -3479 (-699 |#1|)) (|:| |vec| (-1284 |#1|))) (-699 $) (-1284 $)) 136) (((-699 |#1|) (-699 $)) 135) (((-699 |#1|) (-1284 $)) 134)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 218 (|has| |#1| (-372)))) (-2617 (($ $ $) 236)) (-1891 (($ $ $) 227 (|has| |#1| (-566)))) (-3959 (((-2 (|:| -1866 |#1|) (|:| -3758 $) (|:| -3919 $)) $ $) 226 (|has| |#1| (-566)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 213 (|has| |#1| (-372)))) (-4135 (($ $) 181 (|has| |#1| (-462))) (($ $ (-1098)) 108 (|has| |#1| (-462)))) (-1389 (((-654 $) $) 112)) (-3342 (((-112) $) 99 (|has| |#1| (-923)))) (-3637 (($ $ |#1| (-781) $) 177)) (-1821 (((-900 (-388) $) $ (-903 (-388)) (-900 (-388) $)) 87 (-12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388))))) (((-900 (-574) $) $ (-903 (-574)) (-900 (-574) $)) 86 (-12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))))) (-1518 (((-781) $ $) 231 (|has| |#1| (-566)))) (-3943 (((-112) $) 35)) (-2993 (((-781) $) 174)) (-2081 (((-3 $ "failed") $) 211 (|has| |#1| (-1168)))) (-4339 (($ (-1189 |#1|) (-1098)) 120) (($ (-1189 $) (-1098)) 119)) (-3209 (($ $ (-781)) 242)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 222 (|has| |#1| (-372)))) (-2306 (((-654 $) $) 129)) (-3873 (((-112) $) 157)) (-4328 (($ |#1| (-781)) 158) (($ $ (-1098) (-781)) 122) (($ $ (-654 (-1098)) (-654 (-781))) 121)) (-4057 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $ (-1098)) 123) (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 240)) (-2043 (((-781) $) 175) (((-781) $ (-1098)) 125) (((-654 (-781)) $ (-654 (-1098))) 124)) (-3431 (($ (-1 (-781) (-781)) $) 176)) (-1785 (($ (-1 |#1| |#1|) $) 156)) (-2143 (((-1189 |#1|) $) 244)) (-3444 (((-3 (-1098) "failed") $) 126)) (-1366 (($ $) 154)) (-1378 ((|#1| $) 153)) (-2845 (($ (-654 $)) 97 (|has| |#1| (-462))) (($ $ $) 96 (|has| |#1| (-462)))) (-4420 (((-1175) $) 10)) (-2298 (((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781)) 239)) (-1730 (((-3 (-654 $) "failed") $) 117)) (-4245 (((-3 (-654 $) "failed") $) 118)) (-4436 (((-3 (-2 (|:| |var| (-1098)) (|:| -2754 (-781))) "failed") $) 116)) (-3083 (($ $) 223 (|has| |#1| (-38 (-417 (-574)))))) (-3792 (($) 210 (|has| |#1| (-1168)) CONST)) (-3940 (((-1136) $) 11)) (-1343 (((-112) $) 171)) (-1355 ((|#1| $) 172)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 98 (|has| |#1| (-462)))) (-2887 (($ (-654 $)) 95 (|has| |#1| (-462))) (($ $ $) 94 (|has| |#1| (-462)))) (-3235 (((-428 (-1189 $)) (-1189 $)) 105 (|has| |#1| (-923)))) (-3000 (((-428 (-1189 $)) (-1189 $)) 104 (|has| |#1| (-923)))) (-4201 (((-428 $) $) 102 (|has| |#1| (-923)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 221 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 220 (|has| |#1| (-372)))) (-2853 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-566))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 214 (|has| |#1| (-372)))) (-2661 (($ $ (-654 (-302 $))) 150) (($ $ (-302 $)) 149) (($ $ $ $) 148) (($ $ (-654 $) (-654 $)) 147) (($ $ (-1098) |#1|) 146) (($ $ (-654 (-1098)) (-654 |#1|)) 145) (($ $ (-1098) $) 144) (($ $ (-654 (-1098)) (-654 $)) 143)) (-4220 (((-781) $) 216 (|has| |#1| (-372)))) (-2207 ((|#1| $ |#1|) 263) (($ $ $) 262) (((-417 $) (-417 $) (-417 $)) 232 (|has| |#1| (-566))) ((|#1| (-417 $) |#1|) 224 (|has| |#1| (-372))) (((-417 $) $ (-417 $)) 212 (|has| |#1| (-566)))) (-4293 (((-3 $ "failed") $ (-781)) 241)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 217 (|has| |#1| (-372)))) (-1924 (($ $ (-1098)) 110 (|has| |#1| (-174))) ((|#1| $) 234 (|has| |#1| (-174)))) (-3879 (($ $ (-654 (-1098)) (-654 (-781))) 44) (($ $ (-1098) (-781)) 43) (($ $ (-654 (-1098))) 42) (($ $ (-1098)) 40) (($ $) 261) (($ $ (-781)) 259) (($ $ (-654 (-1193)) (-654 (-781))) 254 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 253 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 252 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 250 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 247) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) $) 235)) (-3735 (((-781) $) 155) (((-781) $ (-1098)) 133) (((-654 (-781)) $ (-654 (-1098))) 132)) (-1844 (((-903 (-388)) $) 85 (-12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388)))))) (((-903 (-574)) $) 84 (-12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574)))))) (((-546) $) 83 (-12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))))) (-1732 ((|#1| $) 180 (|has| |#1| (-462))) (($ $ (-1098)) 109 (|has| |#1| (-462)))) (-2263 (((-3 (-1284 $) "failed") (-699 $)) 107 (-2095 (|has| $ (-146)) (|has| |#1| (-923))))) (-2908 (((-3 $ "failed") $ $) 229 (|has| |#1| (-566))) (((-3 (-417 $) "failed") (-417 $) $) 228 (|has| |#1| (-566)))) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 170) (($ (-1098)) 140) (($ (-417 (-574))) 81 (-2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574)))))) (($ $) 88 (|has| |#1| (-566)))) (-3382 (((-654 |#1|) $) 173)) (-1788 ((|#1| $ (-781)) 160) (($ $ (-1098) (-781)) 131) (($ $ (-654 (-1098)) (-654 (-781))) 130)) (-2705 (((-3 $ "failed") $) 82 (-2833 (-2095 (|has| $ (-146)) (|has| |#1| (-923))) (|has| |#1| (-146))))) (-3070 (((-781)) 32 T CONST)) (-3245 (($ $ $ (-781)) 178 (|has| |#1| (-174)))) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 92 (|has| |#1| (-566)))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-654 (-1098)) (-654 (-781))) 47) (($ $ (-1098) (-781)) 46) (($ $ (-654 (-1098))) 45) (($ $ (-1098)) 41) (($ $) 260) (($ $ (-781)) 258) (($ $ (-654 (-1193)) (-654 (-781))) 257 (|has| |#1| (-912 (-1193)))) (($ $ (-1193) (-781)) 256 (|has| |#1| (-912 (-1193)))) (($ $ (-654 (-1193))) 255 (|has| |#1| (-912 (-1193)))) (($ $ (-1193)) 251 (|has| |#1| (-912 (-1193)))) (($ $ (-1 |#1| |#1|) (-781)) 249) (($ $ (-1 |#1| |#1|)) 248)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 161 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 163 (|has| |#1| (-38 (-417 (-574))))) (($ (-417 (-574)) $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-1260 |#1|) (-141) (-1065)) (T -1260))
-((-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1260 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-5 *2 (-1189 *3)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-1065)) (-4 *1 (-1260 *3)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-4293 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1260 *3)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1260 *4)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-2145 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-2617 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)))) (-3879 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))) (-2207 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)))) (-1518 (*1 *2 *1 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)) (-5 *2 (-781)))) (-2982 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-2908 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-2908 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566)))) (-1891 (*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| -1866 *3) (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1260 *3)))) (-2822 (*1 *2 *1 *1) (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1260 *3)))) (-2207 (*1 *2 *3 *2) (-12 (-5 *3 (-417 *1)) (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))))
-(-13 (-963 |t#1| (-781) (-1098)) (-294 |t#1| |t#1|) (-294 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -4052 ((-1284 |t#1|) $ (-781))) (-15 -2143 ((-1189 |t#1|) $)) (-15 -3391 ($ (-1189 |t#1|))) (-15 -3209 ($ $ (-781))) (-15 -4293 ((-3 $ "failed") $ (-781))) (-15 -4057 ((-2 (|:| -3758 $) (|:| -3919 $)) $ $)) (-15 -2298 ((-2 (|:| -3758 $) (|:| -3919 $)) $ (-781))) (-15 -2027 ($ $ (-781))) (-15 -2145 ($ $ (-781))) (-15 -2617 ($ $ $)) (-15 -3879 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1168)) (-6 (-1168)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1924 (|t#1| $)) (-15 -4047 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-566)) (PROGN (-6 (-294 (-417 $) (-417 $))) (-15 -2207 ((-417 $) (-417 $) (-417 $))) (-15 -1518 ((-781) $ $)) (-15 -2982 ($ $ $)) (-15 -2908 ((-3 $ "failed") $ $)) (-15 -2908 ((-3 (-417 $) "failed") (-417 $) $)) (-15 -1891 ($ $ $)) (-15 -3959 ((-2 (|:| -1866 |t#1|) (|:| -3758 $) (|:| -3919 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-462)) (-15 -2822 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-372)) (PROGN (-6 (-315)) (-6 -4455) (-15 -2207 (|t#1| (-417 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (-15 -3083 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-1054 (-417 (-574)))) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 #2=(-1098)) . T) ((-626 |#1|) . T) ((-626 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-624 (-546)) -12 (|has| (-1098) (-624 (-546))) (|has| |#1| (-624 (-546)))) ((-624 (-903 (-388))) -12 (|has| (-1098) (-624 (-903 (-388)))) (|has| |#1| (-624 (-903 (-388))))) ((-624 (-903 (-574))) -12 (|has| (-1098) (-624 (-903 (-574)))) (|has| |#1| (-624 (-903 (-574))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-294 (-417 $) (-417 $)) |has| |#1| (-566)) ((-294 |#1| |#1|) . T) ((-294 $ $) . T) ((-298) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-317 $) . T) ((-334 |#1| #0#) . T) ((-386 |#1|) . T) ((-421 |#1|) . T) ((-462) -2833 (|has| |#1| (-923)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-524 #2# |#1|) . T) ((-524 #2# $) . T) ((-524 $ $) . T) ((-566) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 #3=(-574)) |has| |#1| (-649 (-574))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-649 #3#) |has| |#1| (-649 (-574))) ((-649 |#1|) . T) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2#) . T) ((-907 $ #4=(-1193)) |has| |#1| (-912 (-1193))) ((-912 #2#) . T) ((-912 #4#) |has| |#1| (-912 (-1193))) ((-914 #2#) . T) ((-914 #4#) |has| |#1| (-912 (-1193))) ((-897 (-388)) -12 (|has| (-1098) (-897 (-388))) (|has| |#1| (-897 (-388)))) ((-897 (-574)) -12 (|has| (-1098) (-897 (-574))) (|has| |#1| (-897 (-574)))) ((-963 |#1| #0# #2#) . T) ((-923) |has| |#1| (-923)) ((-934) |has| |#1| (-372)) ((-1054 (-417 (-574))) |has| |#1| (-1054 (-417 (-574)))) ((-1054 (-574)) |has| |#1| (-1054 (-574))) ((-1054 #2#) . T) ((-1054 |#1|) . T) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-923)) (|has| |#1| (-566)) (|has| |#1| (-462)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1168) |has| |#1| (-1168)) ((-1234) . T) ((-1238) |has| |#1| (-923)))
-((-4350 (((-654 (-1098)) $) 34)) (-1402 (($ $) 31)) (-4328 (($ |#2| |#3|) NIL) (($ $ (-1098) |#3|) 28) (($ $ (-654 (-1098)) (-654 |#3|)) 27)) (-1366 (($ $) 14)) (-1378 ((|#2| $) 12)) (-3735 ((|#3| $) 10)))
-(((-1261 |#1| |#2| |#3|) (-10 -8 (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 |#3|))) (-15 -4328 (|#1| |#1| (-1098) |#3|)) (-15 -1402 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#3|)) (-15 -3735 (|#3| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1378 (|#2| |#1|))) (-1262 |#2| |#3|) (-1065) (-802)) (T -1261))
-NIL
-(-10 -8 (-15 -4350 ((-654 (-1098)) |#1|)) (-15 -4328 (|#1| |#1| (-654 (-1098)) (-654 |#3|))) (-15 -4328 (|#1| |#1| (-1098) |#3|)) (-15 -1402 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#3|)) (-15 -3735 (|#3| |#1|)) (-15 -1366 (|#1| |#1|)) (-15 -1378 (|#2| |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-2424 (((-1173 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-1674 (((-112) $) 85)) (-1518 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-3943 (((-112) $) 35)) (-3209 (($ $ (-935)) 116)) (-3873 (((-112) $) 74)) (-4328 (($ |#1| |#2|) 73) (($ $ (-1098) |#2|) 88) (($ $ (-654 (-1098)) (-654 |#2|)) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2249 (($ $ |#2|) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2207 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3735 ((|#2| $) 76)) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1788 ((|#1| $ |#2|) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-3525 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1262 |#1| |#2|) (-141) (-1065) (-802)) (T -1262))
-((-2424 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-1173 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (-5 *2 (-1193)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-1518 (*1 *2 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-2991 (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-2991 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-3525 (*1 *2 *1 *3) (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2951 (*2 (-1193)))) (-4 *2 (-1065)))) (-2249 (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))) (-2661 (*1 *2 *1 *3) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1173 *3)))))
-(-13 (-989 |t#1| |t#2| (-1098)) (-294 |t#2| |t#1|) (-10 -8 (-15 -2424 ((-1173 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1498 ((-1193) $)) (-15 -3332 (|t#1| $)) (-15 -3209 ($ $ (-935))) (-15 -1518 (|t#2| $)) (-15 -1518 (|t#2| $ |t#2|)) (-15 -2991 ($ $ |t#2|)) (-15 -2991 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2951 (|t#1| (-1193)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3525 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2249 ($ $ |t#2|)) (IF (|has| |t#2| (-1128)) (-6 (-294 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-912 (-1193))) (-6 (-912 (-1193))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2661 ((-1173 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #0#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-294 |#2| |#1|) . T) ((-294 $ $) |has| |#2| (-1128)) ((-298) |has| |#1| (-566)) ((-566) |has| |#1| (-566)) ((-656 #0#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #0#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ #1=(-1193)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| |#2| (-1098)) . T) ((-1067 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #0#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1234) . T))
-((-2684 ((|#2| |#2|) 12)) (-3171 (((-428 |#2|) |#2|) 14)) (-2488 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))) 30)))
-(((-1263 |#1| |#2|) (-10 -7 (-15 -3171 ((-428 |#2|) |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -2488 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574)))))) (-566) (-13 (-1260 |#1|) (-566) (-10 -8 (-15 -2887 ($ $ $))))) (T -1263))
-((-2488 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-574)))) (-4 *4 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))) (-4 *3 (-566)) (-5 *1 (-1263 *3 *4)))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-566)) (-5 *1 (-1263 *3 *2)) (-4 *2 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))))) (-3171 (*1 *2 *3) (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1263 *4 *3)) (-4 *3 (-13 (-1260 *4) (-566) (-10 -8 (-15 -2887 ($ $ $))))))))
-(-10 -7 (-15 -3171 ((-428 |#2|) |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -2488 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-574))))))
-((-1785 (((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)) 24)))
-(((-1264 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1785 ((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)))) (-1065) (-1065) (-1193) (-1193) |#1| |#2|) (T -1264))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1264 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1193)))))
-(-10 -7 (-15 -1785 ((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) 113) (($ $ (-417 (-574)) (-417 (-574))) 112)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 177 (|has| |#1| (-372)))) (-3171 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 186)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-2801 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 171 (|has| |#1| (-372)))) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3342 (((-112) $) 179 (|has| |#1| (-372)))) (-1674 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) 115) (((-417 (-574)) $ (-417 (-574))) 114)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) 116) (($ $ (-417 (-574))) 185)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-3873 (((-112) $) 74)) (-4328 (($ |#1| (-417 (-574))) 73) (($ $ (-1098) (-417 (-574))) 88) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2845 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-4420 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3083 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4201 (((-428 $) $) 176 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 120) (($ $ $) 96 (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3735 (((-417 (-574)) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1265 |#1|) (-141) (-1065)) (T -1265))
-((-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))) (-4 *4 (-1065)) (-4 *1 (-1265 *4)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1265 *3)) (-4 *3 (-1065)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3083 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
-(-13 (-1262 |t#1| (-417 (-574))) (-10 -8 (-15 -3597 ($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |t#1|))))) (-15 -3209 ($ $ (-417 (-574)))) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $)) (IF (|has| |t#1| (-15 -3083 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T))
-((-4311 (((-112) $) 12)) (-1704 (((-3 |#3| "failed") $) 17)) (-2216 ((|#3| $) 14)))
-(((-1266 |#1| |#2| |#3|) (-10 -8 (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -4311 ((-112) |#1|))) (-1267 |#2| |#3|) (-1065) (-1244 |#2|)) (T -1266))
-NIL
-(-10 -8 (-15 -1704 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -4311 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) 113) (($ $ (-417 (-574)) (-417 (-574))) 112)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 177 (|has| |#1| (-372)))) (-3171 (((-428 $) $) 178 (|has| |#1| (-372)))) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) 168 (|has| |#1| (-372)))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 186)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#2| "failed") $) 197)) (-2216 ((|#2| $) 198)) (-2801 (($ $ $) 172 (|has| |#1| (-372)))) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-2654 (((-417 (-574)) $) 194)) (-2812 (($ $ $) 171 (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) |#2|) 195)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 166 (|has| |#1| (-372)))) (-3342 (((-112) $) 179 (|has| |#1| (-372)))) (-1674 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) 115) (((-417 (-574)) $ (-417 (-574))) 114)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) 116) (($ $ (-417 (-574))) 185)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 175 (|has| |#1| (-372)))) (-3873 (((-112) $) 74)) (-4328 (($ |#1| (-417 (-574))) 73) (($ $ (-1098) (-417 (-574))) 88) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-2845 (($ (-654 $)) 164 (|has| |#1| (-372))) (($ $ $) 163 (|has| |#1| (-372)))) (-3928 ((|#2| $) 193)) (-3706 (((-3 |#2| "failed") $) 191)) (-4414 ((|#2| $) 192)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 180 (|has| |#1| (-372)))) (-3083 (($ $) 184 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 183 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 165 (|has| |#1| (-372)))) (-2887 (($ (-654 $)) 162 (|has| |#1| (-372))) (($ $ $) 161 (|has| |#1| (-372)))) (-4201 (((-428 $) $) 176 (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 173 (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 167 (|has| |#1| (-372)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) 169 (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 120) (($ $ $) 96 (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 170 (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3735 (((-417 (-574)) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372))) (($ $ $) 182 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 181 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1267 |#1| |#2|) (-141) (-1065) (-1244 |t#1|)) (T -1267))
-((-3735 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) (-5 *2 (-417 (-574))))) (-4426 (*1 *1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1065)) (-4 *1 (-1267 *4 *3)) (-4 *3 (-1244 *4)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3)) (-5 *2 (-417 (-574))))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))) (-3706 (*1 *2 *1) (|partial| -12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))))
-(-13 (-1265 |t#1|) (-1054 |t#2|) (-626 |t#2|) (-10 -8 (-15 -4426 ($ (-417 (-574)) |t#2|)) (-15 -2654 ((-417 (-574)) $)) (-15 -3928 (|t#2| $)) (-15 -3735 ((-417 (-574)) $)) (-15 -4414 (|t#2| $)) (-15 -3706 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-417 (-574))) . T) ((-25) . T) ((-38 #1=(-417 (-574))) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 |#2|) . T) ((-626 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) ((-249) |has| |#1| (-372)) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-417 (-574)) (-1128)) ((-298) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-315) |has| |#1| (-372)) ((-372) |has| |#1| (-372)) ((-462) |has| |#1| (-372)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-656 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-727 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372))) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-934) |has| |#1| (-372)) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1054 |#2|) . T) ((-1067 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1072 #1#) -2833 (|has| |#1| (-372)) (|has| |#1| (-38 (-417 (-574))))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-372)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1238) |has| |#1| (-372)) ((-1262 |#1| #0#) . T) ((-1265 |#1|) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 104)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) 116) (($ $ (-417 (-574)) (-417 (-574))) 118)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) 54)) (-2379 (($ $) 192 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 168 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) 188 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 164 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) 65)) (-2404 (($ $) 196 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 172 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) 85)) (-2654 (((-417 (-574)) $) 13)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) |#2|) 11)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1674 (((-112) $) 74)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) 113) (((-417 (-574)) $ (-417 (-574))) 114)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) 130) (($ $ (-417 (-574))) 128)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 33) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 125)) (-3113 (($ $) 162 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3928 ((|#2| $) 12)) (-3706 (((-3 |#2| "failed") $) 44)) (-4414 ((|#2| $) 45)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) 101 (|has| |#1| (-372)))) (-3083 (($ $) 146 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 151 (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219)))))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) 122)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) 160 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) 108) (($ $ $) 94 (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) 138 (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-3735 (((-417 (-574)) $) 16)) (-2417 (($ $) 198 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 174 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 194 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 170 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 190 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 166 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 120)) (-2951 (((-872) $) NIL) (($ (-574)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-417 (-574))) 139 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) 107)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) 127 T CONST)) (-3332 ((|#1| $) 106)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) 204 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 180 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) 200 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 176 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 208 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 184 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 210 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 186 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 206 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 182 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 202 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 178 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 21 T CONST)) (-2153 (($) 17 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) 72)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) 100 (|has| |#1| (-372)))) (-3090 (($ $) 142) (($ $ $) 78)) (-3074 (($ $ $) 76)) (** (($ $ (-935)) NIL) (($ $ (-781)) 82) (($ $ (-574)) 157 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 158 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1268 |#1| |#2|) (-1267 |#1| |#2|) (-1065) (-1244 |#1|)) (T -1268))
-NIL
-(-1267 |#1| |#2|)
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 11)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) NIL (|has| |#1| (-566)))) (-2991 (($ $ (-417 (-574))) NIL) (($ $ (-417 (-574)) (-417 (-574))) NIL)) (-2424 (((-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|))) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-2684 (($ $) NIL (|has| |#1| (-372)))) (-3171 (((-428 $) $) NIL (|has| |#1| (-372)))) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1374 (((-112) $ $) NIL (|has| |#1| (-372)))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-781) (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#1|)))) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1276 |#1| |#2| |#3|) "failed") $) 22)) (-2216 (((-1248 |#1| |#2| |#3|) $) NIL) (((-1276 |#1| |#2| |#3|) $) NIL)) (-2801 (($ $ $) NIL (|has| |#1| (-372)))) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2654 (((-417 (-574)) $) 69)) (-2812 (($ $ $) NIL (|has| |#1| (-372)))) (-4426 (($ (-417 (-574)) (-1248 |#1| |#2| |#3|)) NIL)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) NIL (|has| |#1| (-372)))) (-3342 (((-112) $) NIL (|has| |#1| (-372)))) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-417 (-574)) $) NIL) (((-417 (-574)) $ (-417 (-574))) NIL)) (-3943 (((-112) $) NIL)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) NIL) (($ $ (-417 (-574))) NIL)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-417 (-574))) 30) (($ $ (-1098) (-417 (-574))) NIL) (($ $ (-654 (-1098)) (-654 (-417 (-574)))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-2845 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3928 (((-1248 |#1| |#2| |#3|) $) 72)) (-3706 (((-3 (-1248 |#1| |#2| |#3|) "failed") $) NIL)) (-4414 (((-1248 |#1| |#2| |#3|) $) NIL)) (-4420 (((-1175) $) NIL)) (-1328 (($ $) NIL (|has| |#1| (-372)))) (-3083 (($ $) 39 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) NIL (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 40 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) NIL (|has| |#1| (-372)))) (-2887 (($ (-654 $)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-4201 (((-428 $) $) NIL (|has| |#1| (-372)))) (-3238 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-372))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) NIL (|has| |#1| (-372)))) (-2249 (($ $ (-417 (-574))) NIL)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1987 (((-3 (-654 $) "failed") (-654 $) $) NIL (|has| |#1| (-372)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))))) (-4220 (((-781) $) NIL (|has| |#1| (-372)))) (-2207 ((|#1| $ (-417 (-574))) NIL) (($ $ $) NIL (|has| (-417 (-574)) (-1128)))) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) NIL (|has| |#1| (-372)))) (-3879 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-1280 |#2|)) 38)) (-3735 (((-417 (-574)) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) NIL)) (-2951 (((-872) $) 107) (($ (-574)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1248 |#1| |#2| |#3|)) 16) (($ (-1276 |#1| |#2| |#3|)) 17) (($ (-1280 |#2|)) 36) (($ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566)))) (-1788 ((|#1| $ (-417 (-574))) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 12)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-417 (-574))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-417 (-574))))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 32 T CONST)) (-2153 (($) 26 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-417 (-574)) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 34)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ (-574)) NIL (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1269 |#1| |#2| |#3|) (-13 (-1267 |#1| (-1248 |#1| |#2| |#3|)) (-1054 (-1276 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1269))
-((-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1267 |#1| (-1248 |#1| |#2| |#3|)) (-1054 (-1276 |#1| |#2| |#3|)) (-626 (-1280 |#2|)) (-10 -8 (-15 -3879 ($ $ (-1280 |#2|))) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 37)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL)) (-4141 (($ $) NIL)) (-2475 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 (-574) "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-574)))) (((-3 (-417 (-574)) "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))) (((-3 (-1269 |#2| |#3| |#4|) "failed") $) 22)) (-2216 (((-574) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-574)))) (((-417 (-574)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))) (((-1269 |#2| |#3| |#4|) $) NIL)) (-1402 (($ $) 41)) (-3612 (((-3 $ "failed") $) 27)) (-4135 (($ $) NIL (|has| (-1269 |#2| |#3| |#4|) (-462)))) (-3637 (($ $ (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|) $) NIL)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) 11)) (-3873 (((-112) $) NIL)) (-4328 (($ (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) 25)) (-2043 (((-327 |#2| |#3| |#4|) $) NIL)) (-3431 (($ (-1 (-327 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) $) NIL)) (-1785 (($ (-1 (-1269 |#2| |#3| |#4|) (-1269 |#2| |#3| |#4|)) $) NIL)) (-2541 (((-3 (-853 |#2|) "failed") $) 90)) (-1366 (($ $) NIL)) (-1378 (((-1269 |#2| |#3| |#4|) $) 20)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1343 (((-112) $) NIL)) (-1355 (((-1269 |#2| |#3| |#4|) $) NIL)) (-2853 (((-3 $ "failed") $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-566))) (((-3 $ "failed") $ $) NIL)) (-2099 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $) 74)) (-3735 (((-327 |#2| |#3| |#4|) $) 17)) (-1732 (((-1269 |#2| |#3| |#4|) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-462)))) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ (-1269 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-417 (-574))) NIL (-2833 (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574)))) (|has| (-1269 |#2| |#3| |#4|) (-1054 (-417 (-574))))))) (-3382 (((-654 (-1269 |#2| |#3| |#4|)) $) NIL)) (-1788 (((-1269 |#2| |#3| |#4|) $ (-327 |#2| |#3| |#4|)) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| (-1269 |#2| |#3| |#4|) (-146)))) (-3070 (((-781)) NIL T CONST)) (-3245 (($ $ $ (-781)) NIL (|has| (-1269 |#2| |#3| |#4|) (-174)))) (-2981 (((-112) $ $) NIL)) (-3750 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ (-1269 |#2| |#3| |#4|)) NIL) (($ (-1269 |#2| |#3| |#4|) $) NIL) (($ (-417 (-574)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-417 (-574)))))))
-(((-1270 |#1| |#2| |#3| |#4|) (-13 (-334 (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2541 ((-3 (-853 |#2|) "failed") $)) (-15 -2099 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $)))) (-13 (-1054 (-574)) (-649 (-574)) (-462)) (-13 (-27) (-1219) (-440 |#1|)) (-1193) |#2|) (T -1270))
-((-2541 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-853 *4)) (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4))) (-2099 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 *4 *5 *6)) (|:| |%expon| (-327 *4 *5 *6)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4)))))) (|:| |%type| (-1175)))) (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193)) (-14 *6 *4))))
-(-13 (-334 (-1269 |#2| |#3| |#4|) (-327 |#2| |#3| |#4|)) (-566) (-10 -8 (-15 -2541 ((-3 (-853 |#2|) "failed") $)) (-15 -2099 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-327 |#2| |#3| |#4|)) (|:| |%expTerms| (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| |#2|)))))) (|:| |%type| (-1175))) "failed") $))))
-((-3079 ((|#2| $) 34)) (-2421 ((|#2| $) 18)) (-1978 (($ $) 53)) (-2289 (($ $ (-574)) 85)) (-2832 (((-112) $ (-781)) 46)) (-2234 ((|#2| $ |#2|) 82)) (-3755 ((|#2| $ |#2|) 78)) (-3135 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1777 (($ $ (-654 $)) 81)) (-2408 ((|#2| $) 17)) (-2935 (($ $) NIL) (($ $ (-781)) 59)) (-4345 (((-654 $) $) 31)) (-3514 (((-112) $ $) 69)) (-3814 (((-112) $ (-781)) 45)) (-2302 (((-112) $ (-781)) 43)) (-2899 (((-112) $) 33)) (-3334 ((|#2| $) 25) (($ $ (-781)) 64)) (-2207 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3864 (((-112) $) 23)) (-3333 (($ $) 56)) (-1823 (($ $) 86)) (-1984 (((-781) $) 58)) (-1852 (($ $) 57)) (-4132 (($ $ $) 77) (($ |#2| $) NIL)) (-1418 (((-654 $) $) 32)) (-2986 (((-112) $ $) 67)) (-2877 (((-781) $) 52)))
-(((-1271 |#1| |#2|) (-10 -8 (-15 -2289 (|#1| |#1| (-574))) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#2| |#1| |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1984 ((-781) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2421 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2207 (|#2| |#1| "first")) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2234 (|#2| |#1| |#2|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -1777 (|#1| |#1| (-654 |#1|))) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781)))) (-1272 |#2|) (-1234)) (T -1271))
-NIL
-(-10 -8 (-15 -2289 (|#1| |#1| (-574))) (-15 -3135 (|#2| |#1| "last" |#2|)) (-15 -3755 (|#2| |#1| |#2|)) (-15 -3135 (|#1| |#1| "rest" |#1|)) (-15 -3135 (|#2| |#1| "first" |#2|)) (-15 -1823 (|#1| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1984 ((-781) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -2421 (|#2| |#1|)) (-15 -2408 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -3334 (|#1| |#1| (-781))) (-15 -2207 (|#2| |#1| "last")) (-15 -3334 (|#2| |#1|)) (-15 -2935 (|#1| |#1| (-781))) (-15 -2207 (|#1| |#1| "rest")) (-15 -2935 (|#1| |#1|)) (-15 -2207 (|#2| |#1| "first")) (-15 -4132 (|#1| |#2| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2234 (|#2| |#1| |#2|)) (-15 -3135 (|#2| |#1| "value" |#2|)) (-15 -1777 (|#1| |#1| (-654 |#1|))) (-15 -3514 ((-112) |#1| |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2207 (|#2| |#1| "value")) (-15 -3079 (|#2| |#1|)) (-15 -2899 ((-112) |#1|)) (-15 -4345 ((-654 |#1|) |#1|)) (-15 -1418 ((-654 |#1|) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2877 ((-781) |#1|)) (-15 -2832 ((-112) |#1| (-781))) (-15 -3814 ((-112) |#1| (-781))) (-15 -2302 ((-112) |#1| (-781))))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-3079 ((|#1| $) 49)) (-2421 ((|#1| $) 66)) (-1978 (($ $) 68)) (-2289 (($ $ (-574)) 53 (|has| $ (-6 -4460)))) (-2832 (((-112) $ (-781)) 8)) (-2234 ((|#1| $ |#1|) 40 (|has| $ (-6 -4460)))) (-3373 (($ $ $) 57 (|has| $ (-6 -4460)))) (-3755 ((|#1| $ |#1|) 55 (|has| $ (-6 -4460)))) (-3784 ((|#1| $ |#1|) 59 (|has| $ (-6 -4460)))) (-3135 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4460))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4460))) (($ $ "rest" $) 56 (|has| $ (-6 -4460))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4460)))) (-1777 (($ $ (-654 $)) 42 (|has| $ (-6 -4460)))) (-2408 ((|#1| $) 67)) (-1430 (($) 7 T CONST)) (-2935 (($ $) 74) (($ $ (-781)) 72)) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-4345 (((-654 $) $) 51)) (-3514 (((-112) $ $) 43 (|has| |#1| (-1116)))) (-3814 (((-112) $ (-781)) 9)) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36)) (-2302 (((-112) $ (-781)) 10)) (-3482 (((-654 |#1|) $) 46)) (-2899 (((-112) $) 50)) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-3334 ((|#1| $) 71) (($ $ (-781)) 69)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 77) (($ $ (-781)) 75)) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4072 (((-574) $ $) 45)) (-3864 (((-112) $) 47)) (-3333 (($ $) 63)) (-1823 (($ $) 60 (|has| $ (-6 -4460)))) (-1984 (((-781) $) 64)) (-1852 (($ $) 65)) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3157 (($ $) 13)) (-2589 (($ $ $) 62 (|has| $ (-6 -4460))) (($ $ |#1|) 61 (|has| $ (-6 -4460)))) (-4132 (($ $ $) 79) (($ |#1| $) 78)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-1418 (((-654 $) $) 52)) (-3779 (((-112) $ $) 44 (|has| |#1| (-1116)))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1272 |#1|) (-141) (-1234)) (T -1272))
-((-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-4132 (*1 *1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-2935 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2207 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-1852 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))) (-3333 (*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2589 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2589 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-1823 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3784 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3373 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))) (-3755 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-3135 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3)) (-4 *3 (-1234)))))
-(-13 (-1026 |t#1|) (-10 -8 (-15 -4132 ($ $ $)) (-15 -4132 ($ |t#1| $)) (-15 -2925 (|t#1| $)) (-15 -2207 (|t#1| $ "first")) (-15 -2925 ($ $ (-781))) (-15 -2935 ($ $)) (-15 -2207 ($ $ "rest")) (-15 -2935 ($ $ (-781))) (-15 -3334 (|t#1| $)) (-15 -2207 (|t#1| $ "last")) (-15 -3334 ($ $ (-781))) (-15 -1978 ($ $)) (-15 -2408 (|t#1| $)) (-15 -2421 (|t#1| $)) (-15 -1852 ($ $)) (-15 -1984 ((-781) $)) (-15 -3333 ($ $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2589 ($ $ $)) (-15 -2589 ($ $ |t#1|)) (-15 -1823 ($ $)) (-15 -3784 (|t#1| $ |t#1|)) (-15 -3135 (|t#1| $ "first" |t#1|)) (-15 -3373 ($ $ $)) (-15 -3135 ($ $ "rest" $)) (-15 -3755 (|t#1| $ |t#1|)) (-15 -3135 (|t#1| $ "last" |t#1|)) (-15 -2289 ($ $ (-574)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1116)) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-623 (-872)))) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-499 |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-1026 |#1|) . T) ((-1116) |has| |#1| (-1116)) ((-1234) . T))
-((-1785 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|))) (-1065) (-1065) (-1275 |#1|) (-1275 |#2|)) (T -1273))
-((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065)) (-4 *2 (-1275 *6)) (-5 *1 (-1273 *5 *6 *4 *2)) (-4 *4 (-1275 *5)))))
-(-10 -7 (-15 -1785 (|#4| (-1 |#2| |#1|) |#3|)))
-((-4311 (((-112) $) 17)) (-2379 (($ $) 105)) (-2258 (($ $) 81)) (-2358 (($ $) 101)) (-2236 (($ $) 77)) (-2404 (($ $) 109)) (-2280 (($ $) 85)) (-3113 (($ $) 75)) (-1617 (($ $) 73)) (-2417 (($ $) 111)) (-2288 (($ $) 87)) (-2390 (($ $) 107)) (-2269 (($ $) 83)) (-2368 (($ $) 103)) (-2247 (($ $) 79)) (-2951 (((-872) $) 61) (($ (-574)) NIL) (($ (-417 (-574))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2456 (($ $) 117)) (-2320 (($ $) 93)) (-2429 (($ $) 113)) (-2301 (($ $) 89)) (-2480 (($ $) 121)) (-2340 (($ $) 97)) (-2536 (($ $) 123)) (-2349 (($ $) 99)) (-2468 (($ $) 119)) (-2330 (($ $) 95)) (-2443 (($ $) 115)) (-2312 (($ $) 91)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-417 (-574))) 71)))
-(((-1274 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2258 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -4311 ((-112) |#1|)) (-15 -2951 ((-872) |#1|))) (-1275 |#2|) (-1065)) (T -1274))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-417 (-574)))) (-15 -2258 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2247 (|#1| |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2951 (|#1| |#2|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-417 (-574)))) (-15 -2951 (|#1| (-574))) (-15 ** (|#1| |#1| (-781))) (-15 ** (|#1| |#1| (-935))) (-15 -4311 ((-112) |#1|)) (-15 -2951 ((-872) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-4350 (((-654 (-1098)) $) 86)) (-1498 (((-1193) $) 118)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 63 (|has| |#1| (-566)))) (-4141 (($ $) 64 (|has| |#1| (-566)))) (-2475 (((-112) $) 66 (|has| |#1| (-566)))) (-2991 (($ $ (-781)) 113) (($ $ (-781) (-781)) 112)) (-2424 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 119)) (-2379 (($ $) 150 (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) 133 (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) 20)) (-4212 (($ $) 132 (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) 149 (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) 134 (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 170) (($ (-1173 |#1|)) 168)) (-2404 (($ $) 148 (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) 135 (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) 18 T CONST)) (-1402 (($ $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-2894 (($ $) 167)) (-4027 (((-966 |#1|) $ (-781)) 165) (((-966 |#1|) $ (-781) (-781)) 164)) (-1674 (((-112) $) 85)) (-3004 (($) 160 (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $) 115) (((-781) $ (-781)) 114)) (-3943 (((-112) $) 35)) (-4439 (($ $ (-574)) 131 (|has| |#1| (-38 (-417 (-574)))))) (-3209 (($ $ (-935)) 116)) (-4408 (($ (-1 |#1| (-574)) $) 166)) (-3873 (((-112) $) 74)) (-4328 (($ |#1| (-781)) 73) (($ $ (-1098) (-781)) 88) (($ $ (-654 (-1098)) (-654 (-781))) 87)) (-1785 (($ (-1 |#1| |#1|) $) 75)) (-3113 (($ $) 157 (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) 77)) (-1378 ((|#1| $) 78)) (-4420 (((-1175) $) 10)) (-3083 (($ $) 162 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 161 (-2833 (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-973)) (|has| |#1| (-1219)) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-38 (-417 (-574)))))))) (-3940 (((-1136) $) 11)) (-2249 (($ $ (-781)) 110)) (-2853 (((-3 $ "failed") $ $) 62 (|has| |#1| (-566)))) (-1617 (($ $) 158 (|has| |#1| (-38 (-417 (-574)))))) (-2661 (((-1173 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 120) (($ $ $) 96 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193))) 106 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1193) (-781)) 105 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 104 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 98 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-3735 (((-781) $) 76)) (-2417 (($ $) 147 (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) 136 (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) 146 (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) 137 (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) 145 (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) 138 (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 84)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ (-417 (-574))) 69 (|has| |#1| (-38 (-417 (-574))))) (($ $) 61 (|has| |#1| (-566))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3382 (((-1173 |#1|) $) 169)) (-1788 ((|#1| $ (-781)) 71)) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3070 (((-781)) 32 T CONST)) (-3332 ((|#1| $) 117)) (-2981 (((-112) $ $) 9)) (-2456 (($ $) 156 (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) 144 (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) 65 (|has| |#1| (-566)))) (-2429 (($ $) 155 (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) 143 (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) 154 (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) 142 (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) 153 (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) 141 (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) 152 (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) 140 (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) 151 (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) 139 (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-3585 (($ $ (-1193)) 107 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193))) 103 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-1193) (-781)) 102 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $ (-654 (-1193)) (-654 (-781))) 101 (-12 (|has| |#1| (-912 (-1193))) (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) 97 (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 70 (|has| |#1| (-372)))) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ |#1|) 163 (|has| |#1| (-372))) (($ $ $) 159 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 130 (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-417 (-574)) $) 68 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) 67 (|has| |#1| (-38 (-417 (-574)))))))
-(((-1275 |#1|) (-141) (-1065)) (T -1275))
-((-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 (-2 (|:| |k| (-781)) (|:| |c| *3)))) (-4 *3 (-1065)) (-4 *1 (-1275 *3)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-5 *2 (-1173 *3)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-4 *1 (-1275 *3)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)))) (-4408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1275 *3)) (-4 *3 (-1065)))) (-4027 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) (-5 *2 (-966 *4)))) (-4027 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065)) (-5 *2 (-966 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))) (-3083 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574)))))) (-3083 (*1 *1 *1 *2) (-2833 (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219)) (-4 *3 (-38 (-417 (-574)))))) (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-12 (|has| *3 (-15 -4350 ((-654 *2) *3))) (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574)))))))))
-(-13 (-1262 |t#1| (-781)) (-10 -8 (-15 -3597 ($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |t#1|))))) (-15 -3382 ((-1173 |t#1|) $)) (-15 -3597 ($ (-1173 |t#1|))) (-15 -2894 ($ $)) (-15 -4408 ($ (-1 |t#1| (-574)) $)) (-15 -4027 ((-966 |t#1|) $ (-781))) (-15 -4027 ((-966 |t#1|) $ (-781) (-781))) (IF (|has| |t#1| (-372)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-417 (-574)))) (PROGN (-15 -3083 ($ $)) (IF (|has| |t#1| (-15 -3083 (|t#1| |t#1| (-1193)))) (IF (|has| |t#1| (-15 -4350 ((-654 (-1193)) |t#1|))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1219)) (IF (|has| |t#1| (-973)) (IF (|has| |t#1| (-29 (-574))) (-15 -3083 ($ $ (-1193))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1018)) (-6 (-1219))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-781)) . T) ((-25) . T) ((-38 #1=(-417 (-574))) |has| |#1| (-38 (-417 (-574)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-566)) ((-35) |has| |#1| (-38 (-417 (-574)))) ((-95) |has| |#1| (-38 (-417 (-574)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-417 (-574)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-626 #1#) |has| |#1| (-38 (-417 (-574)))) ((-626 (-574)) . T) ((-626 |#1|) |has| |#1| (-174)) ((-626 $) |has| |#1| (-566)) ((-623 (-872)) . T) ((-174) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-781) |#1|))) ((-292) |has| |#1| (-38 (-417 (-574)))) ((-294 #0# |#1|) . T) ((-294 $ $) |has| (-781) (-1128)) ((-298) |has| |#1| (-566)) ((-503) |has| |#1| (-38 (-417 (-574)))) ((-566) |has| |#1| (-566)) ((-656 #1#) |has| |#1| (-38 (-417 (-574)))) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #1#) |has| |#1| (-38 (-417 (-574)))) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #1#) |has| |#1| (-38 (-417 (-574)))) ((-650 |#1|) |has| |#1| (-174)) ((-650 $) |has| |#1| (-566)) ((-727 #1#) |has| |#1| (-38 (-417 (-574)))) ((-727 |#1|) |has| |#1| (-174)) ((-727 $) |has| |#1| (-566)) ((-736) . T) ((-907 $ #2=(-1193)) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-912 #2#) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193)))) ((-989 |#1| #0# (-1098)) . T) ((-1018) |has| |#1| (-38 (-417 (-574)))) ((-1067 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1067 |#1|) . T) ((-1067 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1072 #1#) |has| |#1| (-38 (-417 (-574)))) ((-1072 |#1|) . T) ((-1072 $) -2833 (|has| |#1| (-566)) (|has| |#1| (-174))) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1219) |has| |#1| (-38 (-417 (-574)))) ((-1222) |has| |#1| (-38 (-417 (-574)))) ((-1234) . T) ((-1262 |#1| #0#) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-4350 (((-654 (-1098)) $) NIL)) (-1498 (((-1193) $) 90)) (-3384 (((-1257 |#2| |#1|) $ (-781)) 73)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) NIL (|has| |#1| (-566)))) (-4141 (($ $) NIL (|has| |#1| (-566)))) (-2475 (((-112) $) 142 (|has| |#1| (-566)))) (-2991 (($ $ (-781)) 127) (($ $ (-781) (-781)) 130)) (-2424 (((-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|))) $) 43)) (-2379 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2258 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3290 (((-3 $ "failed") $ $) NIL)) (-4212 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3597 (($ (-1173 (-2 (|:| |k| (-781)) (|:| |c| |#1|)))) 52) (($ (-1173 |#1|)) NIL)) (-2404 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2280 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1430 (($) NIL T CONST)) (-3563 (($ $) 134)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-2894 (($ $) 140)) (-4027 (((-966 |#1|) $ (-781)) 63) (((-966 |#1|) $ (-781) (-781)) 65)) (-1674 (((-112) $) NIL)) (-3004 (($) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1518 (((-781) $) NIL) (((-781) $ (-781)) NIL)) (-3943 (((-112) $) NIL)) (-2731 (($ $) 117)) (-4439 (($ $ (-574)) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3794 (($ (-574) (-574) $) 136)) (-3209 (($ $ (-935)) 139)) (-4408 (($ (-1 |#1| (-574)) $) 111)) (-3873 (((-112) $) NIL)) (-4328 (($ |#1| (-781)) 16) (($ $ (-1098) (-781)) NIL) (($ $ (-654 (-1098)) (-654 (-781))) NIL)) (-1785 (($ (-1 |#1| |#1|) $) 98)) (-3113 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-1366 (($ $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3567 (($ $) 115)) (-4101 (($ $) 113)) (-2866 (($ (-574) (-574) $) 138)) (-3083 (($ $) 150 (|has| |#1| (-38 (-417 (-574))))) (($ $ (-1193)) 156 (-2833 (-12 (|has| |#1| (-15 -3083 (|#1| |#1| (-1193)))) (|has| |#1| (-15 -4350 ((-654 (-1193)) |#1|))) (|has| |#1| (-38 (-417 (-574))))) (-12 (|has| |#1| (-29 (-574))) (|has| |#1| (-38 (-417 (-574)))) (|has| |#1| (-973)) (|has| |#1| (-1219))))) (($ $ (-1280 |#2|)) 151 (|has| |#1| (-38 (-417 (-574)))))) (-3940 (((-1136) $) NIL)) (-3268 (($ $ (-574) (-574)) 121)) (-2249 (($ $ (-781)) 123)) (-2853 (((-3 $ "failed") $ $) NIL (|has| |#1| (-566)))) (-1617 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3907 (($ $) 119)) (-2661 (((-1173 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-781)))))) (-2207 ((|#1| $ (-781)) 95) (($ $ $) 132 (|has| (-781) (-1128)))) (-3879 (($ $ (-1193)) 108 (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-1280 |#2|)) 103)) (-3735 (((-781) $) NIL)) (-2417 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2288 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2390 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2269 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2247 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3263 (($ $) 125)) (-2951 (((-872) $) NIL) (($ (-574)) 26) (($ (-417 (-574))) 148 (|has| |#1| (-38 (-417 (-574))))) (($ $) NIL (|has| |#1| (-566))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1257 |#2| |#1|)) 81) (($ (-1280 |#2|)) 22)) (-3382 (((-1173 |#1|) $) NIL)) (-1788 ((|#1| $ (-781)) 94)) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3070 (((-781)) NIL T CONST)) (-3332 ((|#1| $) 91)) (-2981 (((-112) $ $) NIL)) (-2456 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2320 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3750 (((-112) $ $) NIL (|has| |#1| (-566)))) (-2429 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2301 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2480 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2340 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-3525 ((|#1| $ (-781)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-781)))) (|has| |#1| (-15 -2951 (|#1| (-1193))))))) (-2536 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2349 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2468 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2330 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2443 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2312 (($ $) NIL (|has| |#1| (-38 (-417 (-574)))))) (-2141 (($) 18 T CONST)) (-2153 (($) 13 T CONST)) (-3585 (($ $ (-1193)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-1193) (-781)) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $ (-654 (-1193)) (-654 (-781))) NIL (-12 (|has| |#1| (-15 * (|#1| (-781) |#1|))) (|has| |#1| (-912 (-1193))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|)))) (($ $ (-781)) NIL (|has| |#1| (-15 * (|#1| (-781) |#1|))))) (-2986 (((-112) $ $) NIL)) (-3099 (($ $ |#1|) NIL (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) 107)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL) (($ $ |#1|) 145 (|has| |#1| (-372))) (($ $ $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-417 (-574)) $) NIL (|has| |#1| (-38 (-417 (-574))))) (($ $ (-417 (-574))) NIL (|has| |#1| (-38 (-417 (-574)))))))
-(((-1276 |#1| |#2| |#3|) (-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -3384 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (-15 -4101 ($ $)) (-15 -3567 ($ $)) (-15 -2731 ($ $)) (-15 -3907 ($ $)) (-15 -3268 ($ $ (-574) (-574))) (-15 -3563 ($ $)) (-15 -3794 ($ (-574) (-574) $)) (-15 -2866 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|))) (-1065) (-1193) |#1|) (T -1276))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3) (-5 *1 (-1276 *3 *4 *5)))) (-3384 (*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1276 *4 *5 *6)) (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *5 *3))) (-4101 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-3567 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-2731 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-3268 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193)) (-14 *4 *2))) (-3794 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-2866 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193)) (-14 *5 *3))) (-3083 (*1 *1 *1 *2) (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(-13 (-1275 |#1|) (-10 -8 (-15 -2951 ($ (-1257 |#2| |#1|))) (-15 -3384 ((-1257 |#2| |#1|) $ (-781))) (-15 -2951 ($ (-1280 |#2|))) (-15 -3879 ($ $ (-1280 |#2|))) (-15 -4101 ($ $)) (-15 -3567 ($ $)) (-15 -2731 ($ $)) (-15 -3907 ($ $)) (-15 -3268 ($ $ (-574) (-574))) (-15 -3563 ($ $)) (-15 -3794 ($ (-574) (-574) $)) (-15 -2866 ($ (-574) (-574) $)) (IF (|has| |#1| (-38 (-417 (-574)))) (-15 -3083 ($ $ (-1280 |#2|))) |%noBranch|)))
-((-1445 (((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|))) 24)) (-3167 (((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3544 (((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|)) 13)) (-3739 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3719 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3347 ((|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|)) 60)) (-3772 (((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))) 66)) (-4251 ((|#2| |#2| |#2|) 43)))
-(((-1277 |#1| |#2|) (-10 -7 (-15 -3544 ((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|))) (-15 -3167 ((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1445 ((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -4251 (|#2| |#2| |#2|)) (-15 -3719 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3347 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3772 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|)))))) (-38 (-417 (-574))) (-1275 |#1|)) (T -1277))
-((-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6)))) (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1275 *5)) (-5 *2 (-654 *6)) (-5 *1 (-1277 *5 *6)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5)) (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1275 *5)) (-5 *1 (-1277 *5 *2)))) (-3739 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2)) (-4 *4 (-38 (-417 (-574)))))) (-4251 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1277 *3 *2)) (-4 *2 (-1275 *3)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-654 (-1173 *4)))) (-5 *1 (-1277 *4 *5)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4)) (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5)))))
-(-10 -7 (-15 -3544 ((-1 (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2|))) (-15 -3167 ((-1 (-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1445 ((-1 (-1173 |#1|) (-654 (-1173 |#1|))) (-1 |#2| (-654 |#2|)))) (-15 -4251 (|#2| |#2| |#2|)) (-15 -3719 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3347 (|#2| (-1 |#2| (-654 |#2|)) (-654 |#1|))) (-15 -3772 ((-654 |#2|) (-654 |#1|) (-654 (-1 |#2| (-654 |#2|))))))
-((-2974 ((|#2| |#4| (-781)) 31)) (-2112 ((|#4| |#2|) 26)) (-2666 ((|#4| (-417 |#2|)) 49 (|has| |#1| (-566)))) (-1838 (((-1 |#4| (-654 |#4|)) |#3|) 43)))
-(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2112 (|#4| |#2|)) (-15 -2974 (|#2| |#4| (-781))) (-15 -1838 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2666 (|#4| (-417 |#2|))) |%noBranch|)) (-1065) (-1260 |#1|) (-666 |#2|) (-1275 |#1|)) (T -1278))
-((-2666 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-566)) (-4 *4 (-1065)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *5 *6 *2)) (-4 *6 (-666 *5)))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *5 (-1260 *4)) (-5 *2 (-1 *6 (-654 *6))) (-5 *1 (-1278 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1275 *4)))) (-2974 (*1 *2 *3 *4) (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-1278 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1275 *5)))) (-2112 (*1 *2 *3) (-12 (-4 *4 (-1065)) (-4 *3 (-1260 *4)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *3 *5 *2)) (-4 *5 (-666 *3)))))
-(-10 -7 (-15 -2112 (|#4| |#2|)) (-15 -2974 (|#2| |#4| (-781))) (-15 -1838 ((-1 |#4| (-654 |#4|)) |#3|)) (IF (|has| |#1| (-566)) (-15 -2666 (|#4| (-417 |#2|))) |%noBranch|))
-NIL
-(((-1279) (-141)) (T -1279))
-NIL
-(-13 (-10 -7 (-6 -3495)))
-((-2864 (((-112) $ $) NIL)) (-1498 (((-1193)) 12)) (-4420 (((-1175) $) 18)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 11) (((-1193) $) 8)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 15)))
-(((-1280 |#1|) (-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2951 ((-1193) $)) (-15 -1498 ((-1193))))) (-1193)) (T -1280))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2))) (-1498 (*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2))))
-(-13 (-1116) (-623 (-1193)) (-10 -8 (-15 -2951 ((-1193) $)) (-15 -1498 ((-1193)))))
-((-2224 (($ (-781)) 19)) (-3872 (((-699 |#2|) $ $) 41)) (-1901 ((|#2| $) 51)) (-4109 ((|#2| $) 50)) (-3936 ((|#2| $ $) 36)) (-2523 (($ $ $) 47)) (-3090 (($ $) 23) (($ $ $) 29)) (-3074 (($ $ $) 15)) (* (($ (-574) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1281 |#1| |#2|) (-10 -8 (-15 -1901 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -3936 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2224 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|))) (-1282 |#2|) (-1234)) (T -1281))
-NIL
-(-10 -8 (-15 -1901 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -3872 ((-699 |#2|) |#1| |#1|)) (-15 -3936 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-574) |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2224 (|#1| (-781))) (-15 -3074 (|#1| |#1| |#1|)))
-((-2864 (((-112) $ $) 19 (|has| |#1| (-1116)))) (-2224 (($ (-781)) 115 (|has| |#1| (-23)))) (-2620 (((-1289) $ (-574) (-574)) 41 (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4460))) (($ $) 91 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4460))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) 8)) (-3135 ((|#1| $ (-574) |#1|) 53 (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) 60 (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4459)))) (-1430 (($) 7 T CONST)) (-2060 (($ $) 93 (|has| $ (-6 -4460)))) (-4425 (($ $) 103)) (-1573 (($ $) 80 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-3311 (($ |#1| $) 79 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) 54 (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) 52)) (-1452 (((-574) (-1 (-112) |#1|) $) 100) (((-574) |#1| $) 99 (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) 98 (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 31 (|has| $ (-6 -4459)))) (-3872 (((-699 |#1|) $ $) 108 (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) 70)) (-3814 (((-112) $ (-781)) 9)) (-2761 (((-574) $) 44 (|has| (-574) (-860)))) (-3634 (($ $ $) 90 (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) 30 (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2790 (((-574) $) 45 (|has| (-574) (-860)))) (-2976 (($ $ $) 89 (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1901 ((|#1| $) 105 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-2302 (((-112) $ (-781)) 10)) (-4109 ((|#1| $) 106 (-12 (|has| |#1| (-1065)) (|has| |#1| (-1018))))) (-4420 (((-1175) $) 22 (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) 62) (($ $ $ (-574)) 61)) (-1583 (((-654 (-574)) $) 47)) (-1470 (((-112) (-574) $) 48)) (-3940 (((-1136) $) 21 (|has| |#1| (-1116)))) (-2925 ((|#1| $) 43 (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1465 (($ $ |#1|) 42 (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) 27 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) 26 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) 24 (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) 14)) (-3542 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) 49)) (-2265 (((-112) $) 11)) (-3014 (($) 12)) (-2207 ((|#1| $ (-574) |#1|) 51) ((|#1| $ (-574)) 50) (($ $ (-1251 (-574))) 71)) (-3936 ((|#1| $ $) 109 (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) 64) (($ $ (-1251 (-574))) 63)) (-2523 (($ $ $) 107 (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4459))) (((-781) |#1| $) 29 (-12 (|has| |#1| (-1116)) (|has| $ (-6 -4459))))) (-2663 (($ $ $ (-574)) 94 (|has| $ (-6 -4460)))) (-3157 (($ $) 13)) (-1844 (((-546) $) 81 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 72)) (-4132 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-654 $)) 66)) (-2951 (((-872) $) 18 (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) 23 (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) 87 (|has| |#1| (-860)))) (-3020 (((-112) $ $) 86 (|has| |#1| (-860)))) (-2986 (((-112) $ $) 20 (|has| |#1| (-1116)))) (-3031 (((-112) $ $) 88 (|has| |#1| (-860)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-860)))) (-3090 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3074 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-574) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-736))) (($ $ |#1|) 110 (|has| |#1| (-736)))) (-2877 (((-781) $) 6 (|has| $ (-6 -4459)))))
-(((-1282 |#1|) (-141) (-1234)) (T -1282))
-((-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-25)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1282 *3)) (-4 *3 (-23)) (-4 *3 (-1234)))) (-3090 (*1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))) (-3872 (*1 *2 *1 *1) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-1065)) (-5 *2 (-699 *3)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) (-4 *2 (-1065)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018)) (-4 *2 (-1065)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3074 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2224 ($ (-781))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3090 ($ $)) (-15 -3090 ($ $ $)) (-15 * ($ (-574) $))) |%noBranch|) (IF (|has| |t#1| (-736)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1065)) (PROGN (-15 -3936 (|t#1| $ $)) (-15 -3872 ((-699 |t#1|) $ $)) (-15 -2523 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1018)) (IF (|has| |t#1| (-1065)) (PROGN (-15 -4109 (|t#1| $)) (-15 -1901 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-623 (-872)) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860)) (|has| |#1| (-623 (-872)))) ((-152 |#1|) . T) ((-624 (-546)) |has| |#1| (-624 (-546))) ((-294 #0=(-574) |#1|) . T) ((-294 (-1251 (-574)) $) . T) ((-296 #0# |#1|) . T) ((-317 |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-382 |#1|) . T) ((-499 |#1|) . T) ((-614 #0# |#1|) . T) ((-524 |#1| |#1|) -12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))) ((-661 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-1116) -2833 (|has| |#1| (-1116)) (|has| |#1| (-860))) ((-1234) . T))
-((-1904 (((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|) 13)) (-2882 ((|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|) 15)) (-1785 (((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|)) 30) (((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|)) 18)))
-(((-1283 |#1| |#2|) (-10 -7 (-15 -1904 ((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -1785 ((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|))) (-15 -1785 ((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|)))) (-1234) (-1234)) (T -1283))
-((-1785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6)))) (-2882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1284 *5)) (-4 *5 (-1234)) (-4 *2 (-1234)) (-5 *1 (-1283 *5 *2)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1284 *6)) (-4 *6 (-1234)) (-4 *5 (-1234)) (-5 *2 (-1284 *5)) (-5 *1 (-1283 *6 *5)))))
-(-10 -7 (-15 -1904 ((-1284 |#2|) (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -2882 (|#2| (-1 |#2| |#1| |#2|) (-1284 |#1|) |#2|)) (-15 -1785 ((-1284 |#2|) (-1 |#2| |#1|) (-1284 |#1|))) (-15 -1785 ((-3 (-1284 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1284 |#1|))))
-((-2864 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2224 (($ (-781)) NIL (|has| |#1| (-23)))) (-3866 (($ (-654 |#1|)) 11)) (-2620 (((-1289) $ (-574) (-574)) NIL (|has| $ (-6 -4460)))) (-1492 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-860)))) (-4287 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4460))) (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-860))))) (-2786 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-860)))) (-2832 (((-112) $ (-781)) NIL)) (-3135 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460))) ((|#1| $ (-1251 (-574)) |#1|) NIL (|has| $ (-6 -4460)))) (-2173 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-1430 (($) NIL T CONST)) (-2060 (($ $) NIL (|has| $ (-6 -4460)))) (-4425 (($ $) NIL)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-3311 (($ |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2882 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4459))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4459)))) (-2473 ((|#1| $ (-574) |#1|) NIL (|has| $ (-6 -4460)))) (-2400 ((|#1| $ (-574)) NIL)) (-1452 (((-574) (-1 (-112) |#1|) $) NIL) (((-574) |#1| $) NIL (|has| |#1| (-1116))) (((-574) |#1| $ (-574)) NIL (|has| |#1| (-1116)))) (-1871 (((-654 |#1|) $) 16 (|has| $ (-6 -4459)))) (-3872 (((-699 |#1|) $ $) NIL (|has| |#1| (-1065)))) (-3764 (($ (-781) |#1|) NIL)) (-3814 (((-112) $ (-781)) NIL)) (-2761 (((-574) $) NIL (|has| (-574) (-860)))) (-3634 (($ $ $) NIL (|has| |#1| (-860)))) (-2470 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-860)))) (-1764 (((-654 |#1|) $) NIL (|has| $ (-6 -4459)))) (-2333 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2790 (((-574) $) 12 (|has| (-574) (-860)))) (-2976 (($ $ $) NIL (|has| |#1| (-860)))) (-2462 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1901 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-2302 (((-112) $ (-781)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-1018)) (|has| |#1| (-1065))))) (-4420 (((-1175) $) NIL (|has| |#1| (-1116)))) (-1602 (($ |#1| $ (-574)) NIL) (($ $ $ (-574)) NIL)) (-1583 (((-654 (-574)) $) NIL)) (-1470 (((-112) (-574) $) NIL)) (-3940 (((-1136) $) NIL (|has| |#1| (-1116)))) (-2925 ((|#1| $) NIL (|has| (-574) (-860)))) (-3748 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1465 (($ $ |#1|) NIL (|has| $ (-6 -4460)))) (-1731 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 (-302 |#1|))) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-302 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116)))) (($ $ (-654 |#1|) (-654 |#1|)) NIL (-12 (|has| |#1| (-317 |#1|)) (|has| |#1| (-1116))))) (-3788 (((-112) $ $) NIL)) (-3542 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2445 (((-654 |#1|) $) NIL)) (-2265 (((-112) $) NIL)) (-3014 (($) NIL)) (-2207 ((|#1| $ (-574) |#1|) NIL) ((|#1| $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-3936 ((|#1| $ $) NIL (|has| |#1| (-1065)))) (-2855 (($ $ (-574)) NIL) (($ $ (-1251 (-574))) NIL)) (-2523 (($ $ $) NIL (|has| |#1| (-1065)))) (-3949 (((-781) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459))) (((-781) |#1| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#1| (-1116))))) (-2663 (($ $ $ (-574)) NIL (|has| $ (-6 -4460)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) 20 (|has| |#1| (-624 (-546))))) (-2963 (($ (-654 |#1|)) 10)) (-4132 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-654 $)) NIL)) (-2951 (((-872) $) NIL (|has| |#1| (-623 (-872))))) (-2981 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-2859 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4459)))) (-3042 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3020 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-1116)))) (-3031 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3074 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-574) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-736))) (($ $ |#1|) NIL (|has| |#1| (-736)))) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1284 |#1|) (-13 (-1282 |#1|) (-10 -8 (-15 -3866 ($ (-654 |#1|))))) (-1234)) (T -1284))
-((-3866 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1284 *3)))))
-(-13 (-1282 |#1|) (-10 -8 (-15 -3866 ($ (-654 |#1|)))))
-((-2864 (((-112) $ $) NIL)) (-1610 (((-1175) $ (-1175)) 107) (((-1175) $ (-1175) (-1175)) 105) (((-1175) $ (-1175) (-654 (-1175))) 104)) (-2534 (($) 69)) (-1403 (((-1289) $ (-478) (-935)) 54)) (-2005 (((-1289) $ (-935) (-1175)) 89) (((-1289) $ (-935) (-884)) 90)) (-2823 (((-1289) $ (-935) (-388) (-388)) 57)) (-3851 (((-1289) $ (-1175)) 84)) (-1626 (((-1289) $ (-935) (-1175)) 94)) (-4157 (((-1289) $ (-935) (-388) (-388)) 58)) (-1478 (((-1289) $ (-935) (-935)) 55)) (-1588 (((-1289) $) 85)) (-2094 (((-1289) $ (-935) (-1175)) 93)) (-3877 (((-1289) $ (-478) (-935)) 41)) (-3656 (((-1289) $ (-935) (-1175)) 92)) (-3199 (((-654 (-270)) $) 29) (($ $ (-654 (-270))) 30)) (-2623 (((-1289) $ (-781) (-781)) 52)) (-2054 (($ $) 70) (($ (-478) (-654 (-270))) 71)) (-4420 (((-1175) $) NIL)) (-3667 (((-574) $) 48)) (-3940 (((-1136) $) NIL)) (-3024 (((-1284 (-3 (-478) "undefined")) $) 47)) (-3912 (((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3656 (-574)) (|:| -3645 (-574)) (|:| |spline| (-574)) (|:| -3436 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $) 46)) (-3492 (((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574)) 83)) (-1689 (((-654 (-957 (-227))) $) NIL)) (-4298 (((-478) $ (-935)) 43)) (-3560 (((-1289) $ (-781) (-781) (-935) (-935)) 50)) (-3855 (((-1289) $ (-1175)) 95)) (-3645 (((-1289) $ (-935) (-1175)) 91)) (-2951 (((-872) $) 102)) (-1390 (((-1289) $) 96)) (-2981 (((-112) $ $) NIL)) (-3436 (((-1289) $ (-935) (-1175)) 87) (((-1289) $ (-935) (-884)) 88)) (-2986 (((-112) $ $) NIL)))
-(((-1285) (-13 (-1116) (-10 -8 (-15 -1689 ((-654 (-957 (-227))) $)) (-15 -2534 ($)) (-15 -2054 ($ $)) (-15 -3199 ((-654 (-270)) $)) (-15 -3199 ($ $ (-654 (-270)))) (-15 -2054 ($ (-478) (-654 (-270)))) (-15 -3492 ((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -3912 ((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3656 (-574)) (|:| -3645 (-574)) (|:| |spline| (-574)) (|:| -3436 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3024 ((-1284 (-3 (-478) "undefined")) $)) (-15 -3851 ((-1289) $ (-1175))) (-15 -3877 ((-1289) $ (-478) (-935))) (-15 -4298 ((-478) $ (-935))) (-15 -3436 ((-1289) $ (-935) (-1175))) (-15 -3436 ((-1289) $ (-935) (-884))) (-15 -2005 ((-1289) $ (-935) (-1175))) (-15 -2005 ((-1289) $ (-935) (-884))) (-15 -3656 ((-1289) $ (-935) (-1175))) (-15 -2094 ((-1289) $ (-935) (-1175))) (-15 -3645 ((-1289) $ (-935) (-1175))) (-15 -3855 ((-1289) $ (-1175))) (-15 -1390 ((-1289) $)) (-15 -3560 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4157 ((-1289) $ (-935) (-388) (-388))) (-15 -2823 ((-1289) $ (-935) (-388) (-388))) (-15 -1626 ((-1289) $ (-935) (-1175))) (-15 -2623 ((-1289) $ (-781) (-781))) (-15 -1403 ((-1289) $ (-478) (-935))) (-15 -1478 ((-1289) $ (-935) (-935))) (-15 -1610 ((-1175) $ (-1175))) (-15 -1610 ((-1175) $ (-1175) (-1175))) (-15 -1610 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1588 ((-1289) $)) (-15 -3667 ((-574) $)) (-15 -2951 ((-872) $))))) (T -1285))
-((-2951 (*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1285)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-654 (-957 (-227)))) (-5 *1 (-1285)))) (-2534 (*1 *1) (-5 *1 (-1285))) (-2054 (*1 *1 *1) (-5 *1 (-1285))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285)))) (-2054 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1285)))) (-3492 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-935)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3656 (-574)) (|:| -3645 (-574)) (|:| |spline| (-574)) (|:| -3436 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574))))) (-5 *1 (-1285)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-1284 (-3 (-478) "undefined"))) (-5 *1 (-1285)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-5 *2 (-478)) (-5 *1 (-1285)))) (-3436 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3436 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2005 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2005 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3656 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2094 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3645 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3560 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-4157 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2823 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1626 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-2623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1403 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1478 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))) (-1610 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1610 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1610 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1285)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285)))))
-(-13 (-1116) (-10 -8 (-15 -1689 ((-654 (-957 (-227))) $)) (-15 -2534 ($)) (-15 -2054 ($ $)) (-15 -3199 ((-654 (-270)) $)) (-15 -3199 ($ $ (-654 (-270)))) (-15 -2054 ($ (-478) (-654 (-270)))) (-15 -3492 ((-1289) $ (-935) (-227) (-227) (-227) (-227) (-574) (-574) (-574) (-574) (-884) (-574) (-884) (-574))) (-15 -3912 ((-1284 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3656 (-574)) (|:| -3645 (-574)) (|:| |spline| (-574)) (|:| -3436 (-574)) (|:| |axesColor| (-884)) (|:| -2005 (-574)) (|:| |unitsColor| (-884)) (|:| |showing| (-574)))) $)) (-15 -3024 ((-1284 (-3 (-478) "undefined")) $)) (-15 -3851 ((-1289) $ (-1175))) (-15 -3877 ((-1289) $ (-478) (-935))) (-15 -4298 ((-478) $ (-935))) (-15 -3436 ((-1289) $ (-935) (-1175))) (-15 -3436 ((-1289) $ (-935) (-884))) (-15 -2005 ((-1289) $ (-935) (-1175))) (-15 -2005 ((-1289) $ (-935) (-884))) (-15 -3656 ((-1289) $ (-935) (-1175))) (-15 -2094 ((-1289) $ (-935) (-1175))) (-15 -3645 ((-1289) $ (-935) (-1175))) (-15 -3855 ((-1289) $ (-1175))) (-15 -1390 ((-1289) $)) (-15 -3560 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4157 ((-1289) $ (-935) (-388) (-388))) (-15 -2823 ((-1289) $ (-935) (-388) (-388))) (-15 -1626 ((-1289) $ (-935) (-1175))) (-15 -2623 ((-1289) $ (-781) (-781))) (-15 -1403 ((-1289) $ (-478) (-935))) (-15 -1478 ((-1289) $ (-935) (-935))) (-15 -1610 ((-1175) $ (-1175))) (-15 -1610 ((-1175) $ (-1175) (-1175))) (-15 -1610 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1588 ((-1289) $)) (-15 -3667 ((-574) $)) (-15 -2951 ((-872) $))))
-((-2864 (((-112) $ $) NIL)) (-4258 (((-1289) $ (-388)) 169) (((-1289) $ (-388) (-388) (-388)) 170)) (-1610 (((-1175) $ (-1175)) 179) (((-1175) $ (-1175) (-1175)) 177) (((-1175) $ (-1175) (-654 (-1175))) 176)) (-2672 (($) 67)) (-4277 (((-1289) $ (-388) (-388) (-388) (-388) (-388)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1289) $ (-574) (-574) (-388) (-388) (-388)) 144) (((-1289) $ (-388) (-388)) 145) (((-1289) $ (-388) (-388) (-388)) 152)) (-1491 (((-388)) 122) (((-388) (-388)) 123)) (-2386 (((-388)) 117) (((-388) (-388)) 119)) (-1488 (((-388)) 120) (((-388) (-388)) 121)) (-3836 (((-388)) 126) (((-388) (-388)) 127)) (-1975 (((-388)) 124) (((-388) (-388)) 125)) (-2823 (((-1289) $ (-388) (-388)) 171)) (-3851 (((-1289) $ (-1175)) 153)) (-2079 (((-1149 (-227)) $) 68) (($ $ (-1149 (-227))) 69)) (-2162 (((-1289) $ (-1175)) 187)) (-3646 (((-1289) $ (-1175)) 188)) (-1706 (((-1289) $ (-388) (-388)) 151) (((-1289) $ (-574) (-574)) 168)) (-1478 (((-1289) $ (-935) (-935)) 160)) (-1588 (((-1289) $) 137)) (-1413 (((-1289) $ (-1175)) 186)) (-2196 (((-1289) $ (-1175)) 134)) (-3199 (((-654 (-270)) $) 70) (($ $ (-654 (-270))) 71)) (-2623 (((-1289) $ (-781) (-781)) 159)) (-1521 (((-1289) $ (-781) (-957 (-227))) 193)) (-2687 (($ $) 73) (($ (-1149 (-227)) (-1175)) 74) (($ (-1149 (-227)) (-654 (-270))) 75)) (-2619 (((-1289) $ (-388) (-388) (-388)) 131)) (-4420 (((-1175) $) NIL)) (-3667 (((-574) $) 128)) (-1571 (((-1289) $ (-388)) 174)) (-3264 (((-1289) $ (-388)) 191)) (-3940 (((-1136) $) NIL)) (-3957 (((-1289) $ (-388)) 190)) (-2560 (((-1289) $ (-1175)) 136)) (-3560 (((-1289) $ (-781) (-781) (-935) (-935)) 158)) (-1550 (((-1289) $ (-1175)) 133)) (-3855 (((-1289) $ (-1175)) 135)) (-2751 (((-1289) $ (-158) (-158)) 157)) (-2951 (((-872) $) 166)) (-1390 (((-1289) $) 138)) (-4020 (((-1289) $ (-1175)) 189)) (-2981 (((-112) $ $) NIL)) (-3436 (((-1289) $ (-1175)) 132)) (-2986 (((-112) $ $) NIL)))
-(((-1286) (-13 (-1116) (-10 -8 (-15 -2386 ((-388))) (-15 -2386 ((-388) (-388))) (-15 -1488 ((-388))) (-15 -1488 ((-388) (-388))) (-15 -1491 ((-388))) (-15 -1491 ((-388) (-388))) (-15 -1975 ((-388))) (-15 -1975 ((-388) (-388))) (-15 -3836 ((-388))) (-15 -3836 ((-388) (-388))) (-15 -2672 ($)) (-15 -2687 ($ $)) (-15 -2687 ($ (-1149 (-227)) (-1175))) (-15 -2687 ($ (-1149 (-227)) (-654 (-270)))) (-15 -2079 ((-1149 (-227)) $)) (-15 -2079 ($ $ (-1149 (-227)))) (-15 -1521 ((-1289) $ (-781) (-957 (-227)))) (-15 -3199 ((-654 (-270)) $)) (-15 -3199 ($ $ (-654 (-270)))) (-15 -2623 ((-1289) $ (-781) (-781))) (-15 -1478 ((-1289) $ (-935) (-935))) (-15 -3851 ((-1289) $ (-1175))) (-15 -3560 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4277 ((-1289) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4277 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4277 ((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4277 ((-1289) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4277 ((-1289) $ (-388) (-388))) (-15 -4277 ((-1289) $ (-388) (-388) (-388))) (-15 -3855 ((-1289) $ (-1175))) (-15 -3436 ((-1289) $ (-1175))) (-15 -1550 ((-1289) $ (-1175))) (-15 -2196 ((-1289) $ (-1175))) (-15 -2560 ((-1289) $ (-1175))) (-15 -1706 ((-1289) $ (-388) (-388))) (-15 -1706 ((-1289) $ (-574) (-574))) (-15 -4258 ((-1289) $ (-388))) (-15 -4258 ((-1289) $ (-388) (-388) (-388))) (-15 -2823 ((-1289) $ (-388) (-388))) (-15 -1413 ((-1289) $ (-1175))) (-15 -3957 ((-1289) $ (-388))) (-15 -3264 ((-1289) $ (-388))) (-15 -2162 ((-1289) $ (-1175))) (-15 -3646 ((-1289) $ (-1175))) (-15 -4020 ((-1289) $ (-1175))) (-15 -2619 ((-1289) $ (-388) (-388) (-388))) (-15 -1571 ((-1289) $ (-388))) (-15 -1588 ((-1289) $)) (-15 -2751 ((-1289) $ (-158) (-158))) (-15 -1610 ((-1175) $ (-1175))) (-15 -1610 ((-1175) $ (-1175) (-1175))) (-15 -1610 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1390 ((-1289) $)) (-15 -3667 ((-574) $))))) (T -1286))
-((-2386 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1488 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1491 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1975 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-3836 (*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))) (-2672 (*1 *1) (-5 *1 (-1286))) (-2687 (*1 *1 *1) (-5 *1 (-1286))) (-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1175)) (-5 *1 (-1286)))) (-2687 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1286)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))) (-2079 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))) (-1521 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))) (-3199 (*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))) (-2623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1478 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3560 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4277 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1286)))) (-4277 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4277 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4277 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1550 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2560 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4258 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4258 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2823 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3957 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3264 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2162 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-4020 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2619 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1571 (*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1289)) (-5 *1 (-1286)))) (-1610 (*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1610 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1610 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1286)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1286)))))
-(-13 (-1116) (-10 -8 (-15 -2386 ((-388))) (-15 -2386 ((-388) (-388))) (-15 -1488 ((-388))) (-15 -1488 ((-388) (-388))) (-15 -1491 ((-388))) (-15 -1491 ((-388) (-388))) (-15 -1975 ((-388))) (-15 -1975 ((-388) (-388))) (-15 -3836 ((-388))) (-15 -3836 ((-388) (-388))) (-15 -2672 ($)) (-15 -2687 ($ $)) (-15 -2687 ($ (-1149 (-227)) (-1175))) (-15 -2687 ($ (-1149 (-227)) (-654 (-270)))) (-15 -2079 ((-1149 (-227)) $)) (-15 -2079 ($ $ (-1149 (-227)))) (-15 -1521 ((-1289) $ (-781) (-957 (-227)))) (-15 -3199 ((-654 (-270)) $)) (-15 -3199 ($ $ (-654 (-270)))) (-15 -2623 ((-1289) $ (-781) (-781))) (-15 -1478 ((-1289) $ (-935) (-935))) (-15 -3851 ((-1289) $ (-1175))) (-15 -3560 ((-1289) $ (-781) (-781) (-935) (-935))) (-15 -4277 ((-1289) $ (-388) (-388) (-388) (-388) (-388))) (-15 -4277 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -4277 ((-1289) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -4277 ((-1289) $ (-574) (-574) (-388) (-388) (-388))) (-15 -4277 ((-1289) $ (-388) (-388))) (-15 -4277 ((-1289) $ (-388) (-388) (-388))) (-15 -3855 ((-1289) $ (-1175))) (-15 -3436 ((-1289) $ (-1175))) (-15 -1550 ((-1289) $ (-1175))) (-15 -2196 ((-1289) $ (-1175))) (-15 -2560 ((-1289) $ (-1175))) (-15 -1706 ((-1289) $ (-388) (-388))) (-15 -1706 ((-1289) $ (-574) (-574))) (-15 -4258 ((-1289) $ (-388))) (-15 -4258 ((-1289) $ (-388) (-388) (-388))) (-15 -2823 ((-1289) $ (-388) (-388))) (-15 -1413 ((-1289) $ (-1175))) (-15 -3957 ((-1289) $ (-388))) (-15 -3264 ((-1289) $ (-388))) (-15 -2162 ((-1289) $ (-1175))) (-15 -3646 ((-1289) $ (-1175))) (-15 -4020 ((-1289) $ (-1175))) (-15 -2619 ((-1289) $ (-388) (-388) (-388))) (-15 -1571 ((-1289) $ (-388))) (-15 -1588 ((-1289) $)) (-15 -2751 ((-1289) $ (-158) (-158))) (-15 -1610 ((-1175) $ (-1175))) (-15 -1610 ((-1175) $ (-1175) (-1175))) (-15 -1610 ((-1175) $ (-1175) (-654 (-1175)))) (-15 -1390 ((-1289) $)) (-15 -3667 ((-574) $))))
-((-1789 (((-654 (-1175)) (-654 (-1175))) 104) (((-654 (-1175))) 96)) (-1872 (((-654 (-1175))) 94)) (-2794 (((-654 (-935)) (-654 (-935))) 69) (((-654 (-935))) 64)) (-1936 (((-654 (-781)) (-654 (-781))) 61) (((-654 (-781))) 55)) (-2499 (((-1289)) 71)) (-1363 (((-935) (-935)) 87) (((-935)) 86)) (-3490 (((-935) (-935)) 85) (((-935)) 84)) (-4032 (((-884) (-884)) 81) (((-884)) 80)) (-3404 (((-227)) 91) (((-227) (-388)) 93)) (-2171 (((-935)) 88) (((-935) (-935)) 89)) (-2518 (((-935) (-935)) 83) (((-935)) 82)) (-1853 (((-884) (-884)) 75) (((-884)) 73)) (-1421 (((-884) (-884)) 77) (((-884)) 76)) (-3219 (((-884) (-884)) 79) (((-884)) 78)))
-(((-1287) (-10 -7 (-15 -1853 ((-884))) (-15 -1853 ((-884) (-884))) (-15 -1421 ((-884))) (-15 -1421 ((-884) (-884))) (-15 -3219 ((-884))) (-15 -3219 ((-884) (-884))) (-15 -4032 ((-884))) (-15 -4032 ((-884) (-884))) (-15 -2518 ((-935))) (-15 -2518 ((-935) (-935))) (-15 -1936 ((-654 (-781)))) (-15 -1936 ((-654 (-781)) (-654 (-781)))) (-15 -2794 ((-654 (-935)))) (-15 -2794 ((-654 (-935)) (-654 (-935)))) (-15 -2499 ((-1289))) (-15 -1789 ((-654 (-1175)))) (-15 -1789 ((-654 (-1175)) (-654 (-1175)))) (-15 -1872 ((-654 (-1175)))) (-15 -3490 ((-935))) (-15 -1363 ((-935))) (-15 -3490 ((-935) (-935))) (-15 -1363 ((-935) (-935))) (-15 -2171 ((-935) (-935))) (-15 -2171 ((-935))) (-15 -3404 ((-227) (-388))) (-15 -3404 ((-227))))) (T -1287))
-((-3404 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1287)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1287)))) (-2171 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-1363 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-3490 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-1872 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-1789 (*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))) (-2499 (*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1287)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))) (-2794 (*1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))) (-1936 (*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-2518 (*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-4032 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-3219 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-3219 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-1421 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-1421 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))) (-1853 (*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))))
-(-10 -7 (-15 -1853 ((-884))) (-15 -1853 ((-884) (-884))) (-15 -1421 ((-884))) (-15 -1421 ((-884) (-884))) (-15 -3219 ((-884))) (-15 -3219 ((-884) (-884))) (-15 -4032 ((-884))) (-15 -4032 ((-884) (-884))) (-15 -2518 ((-935))) (-15 -2518 ((-935) (-935))) (-15 -1936 ((-654 (-781)))) (-15 -1936 ((-654 (-781)) (-654 (-781)))) (-15 -2794 ((-654 (-935)))) (-15 -2794 ((-654 (-935)) (-654 (-935)))) (-15 -2499 ((-1289))) (-15 -1789 ((-654 (-1175)))) (-15 -1789 ((-654 (-1175)) (-654 (-1175)))) (-15 -1872 ((-654 (-1175)))) (-15 -3490 ((-935))) (-15 -1363 ((-935))) (-15 -3490 ((-935) (-935))) (-15 -1363 ((-935) (-935))) (-15 -2171 ((-935) (-935))) (-15 -2171 ((-935))) (-15 -3404 ((-227) (-388))) (-15 -3404 ((-227))))
-((-3671 (((-478) (-654 (-654 (-957 (-227)))) (-654 (-270))) 22) (((-478) (-654 (-654 (-957 (-227))))) 21) (((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270))) 20)) (-4112 (((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270))) 30) (((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270))) 29)) (-2951 (((-1285) (-478)) 46)))
-(((-1288) (-10 -7 (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))))) (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -4112 ((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -4112 ((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -2951 ((-1285) (-478))))) (T -1288))
-((-2951 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-4112 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-1288)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-478)) (-5 *1 (-1288)))) (-3671 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884)) (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288)))))
-(-10 -7 (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))))) (-15 -3671 ((-478) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -4112 ((-1285) (-654 (-654 (-957 (-227)))) (-884) (-884) (-935) (-654 (-270)))) (-15 -4112 ((-1285) (-654 (-654 (-957 (-227)))) (-654 (-270)))) (-15 -2951 ((-1285) (-478))))
-((-2441 (($) 6)) (-2951 (((-872) $) 9)))
-(((-1289) (-13 (-623 (-872)) (-10 -8 (-15 -2441 ($))))) (T -1289))
-((-2441 (*1 *1) (-5 *1 (-1289))))
-(-13 (-623 (-872)) (-10 -8 (-15 -2441 ($))))
-((-3099 (($ $ |#2|) 10)))
-(((-1290 |#1| |#2|) (-10 -8 (-15 -3099 (|#1| |#1| |#2|))) (-1291 |#2|) (-372)) (T -1290))
-NIL
-(-10 -8 (-15 -3099 (|#1| |#1| |#2|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2732 (((-135)) 33)) (-2951 (((-872) $) 12)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2986 (((-112) $ $) 6)) (-3099 (($ $ |#1|) 34)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1291 |#1|) (-141) (-372)) (T -1291))
-((-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-372)))) (-2732 (*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-372)) (-5 *2 (-135)))))
-(-13 (-727 |t#1|) (-10 -8 (-15 -3099 ($ $ |t#1|)) (-15 -2732 ((-135)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-658 |#1|) . T) ((-650 |#1|) . T) ((-727 |#1|) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1116) . T))
-((-1632 (((-654 (-1228 |#1|)) (-1193) (-1228 |#1|)) 83)) (-3937 (((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|))) 63)) (-1638 (((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|))) 74)) (-3356 (((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781)) 65)) (-2946 (((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193)) 32)) (-2002 (((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781)) 64)))
-(((-1292 |#1|) (-10 -7 (-15 -3356 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -2002 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -3937 ((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|)))) (-15 -2946 ((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193))) (-15 -1632 ((-654 (-1228 |#1|)) (-1193) (-1228 |#1|))) (-15 -1638 ((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|))))) (-372)) (T -1292))
-((-1638 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1228 *6)) (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1292 *6)) (-5 *5 (-1173 *4)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-654 (-1228 *5))) (-5 *1 (-1292 *5)) (-5 *4 (-1228 *5)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1 (-1189 (-966 *4)) (-966 *4))) (-5 *1 (-1292 *4)) (-4 *4 (-372)))) (-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-1173 (-1173 (-966 *5)))) (-5 *1 (-1292 *5)) (-5 *4 (-1173 (-966 *5))))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) (-5 *1 (-1292 *4)) (-4 *4 (-372)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4)))) (-5 *1 (-1292 *4)) (-4 *4 (-372)))))
-(-10 -7 (-15 -3356 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -2002 ((-1 (-1173 (-966 |#1|)) (-1173 (-966 |#1|))) (-781))) (-15 -3937 ((-1173 (-1173 (-966 |#1|))) (-1193) (-1173 (-966 |#1|)))) (-15 -2946 ((-1 (-1189 (-966 |#1|)) (-966 |#1|)) (-1193))) (-15 -1632 ((-654 (-1228 |#1|)) (-1193) (-1228 |#1|))) (-15 -1638 ((-1 (-1173 (-1228 |#1|)) (-1173 (-1228 |#1|))) (-781) (-1228 |#1|) (-1173 (-1228 |#1|)))))
-((-3001 (((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|) 80)) (-2825 (((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|)))) 79)))
-(((-1293 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|))) (-358) (-1260 |#1|) (-1260 |#2|) (-419 |#2| |#3|)) (T -1293))
-((-3001 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3)) (-5 *2 (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-699 *3)))) (-5 *1 (-1293 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))) (-2825 (*1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4)) (-5 *2 (-2 (|:| -1895 (-699 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-699 *4)))) (-5 *1 (-1293 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5)))))
-(-10 -7 (-15 -2825 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))))) (-15 -3001 ((-2 (|:| -1895 (-699 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-699 |#2|))) |#2|)))
-((-2864 (((-112) $ $) NIL)) (-3440 (((-1151) $) 11)) (-3880 (((-1151) $) 9)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 17) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1294) (-13 (-1099) (-10 -8 (-15 -3880 ((-1151) $)) (-15 -3440 ((-1151) $))))) (T -1294))
-((-3880 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294)))))
-(-13 (-1099) (-10 -8 (-15 -3880 ((-1151) $)) (-15 -3440 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2277 (((-1151) $) 9)) (-2951 (((-872) $) 15) (($ (-1198)) NIL) (((-1198) $) NIL)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)))
-(((-1295) (-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $))))) (T -1295))
-((-2277 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1295)))))
-(-13 (-1099) (-10 -8 (-15 -2277 ((-1151) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 58)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) NIL)) (-3943 (((-112) $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 81) (($ (-574)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3070 (((-781)) NIL T CONST)) (-1377 (((-1289) (-781)) 16)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 37 T CONST)) (-2153 (($) 84 T CONST)) (-2986 (((-112) $ $) 87)) (-3099 (((-3 $ "failed") $ $) NIL (|has| |#1| (-372)))) (-3090 (($ $) 89) (($ $ $) NIL)) (-3074 (($ $ $) 63)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-1296 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1065) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1377 ((-1289) (-781))))) (-1065) (-860) (-803) (-963 |#1| |#3| |#2|) (-654 |#2|) (-654 (-781)) (-781)) (T -1296))
-((-3099 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-860)) (-4 *4 (-803)) (-14 *6 (-654 *3)) (-5 *1 (-1296 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-963 *2 *4 *3)) (-14 *7 (-654 (-781))) (-14 *8 (-781)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-4 *5 (-860)) (-4 *6 (-803)) (-14 *8 (-654 *5)) (-5 *2 (-1289)) (-5 *1 (-1296 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-963 *4 *6 *5)) (-14 *9 (-654 *3)) (-14 *10 *3))))
-(-13 (-1065) (-500 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (-15 -3099 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1377 ((-1289) (-781)))))
-((-2864 (((-112) $ $) NIL)) (-2304 (((-654 (-2 (|:| -1390 $) (|:| -1683 (-654 |#4|)))) (-654 |#4|)) NIL)) (-3291 (((-654 $) (-654 |#4|)) 96)) (-4350 (((-654 |#3|) $) NIL)) (-4376 (((-112) $) NIL)) (-3683 (((-112) $) NIL (|has| |#1| (-566)))) (-2494 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4279 ((|#4| |#4| $) NIL)) (-2786 (((-2 (|:| |under| $) (|:| -3229 $) (|:| |upper| $)) $ |#3|) NIL)) (-2832 (((-112) $ (-781)) NIL)) (-2173 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1430 (($) NIL T CONST)) (-2604 (((-112) $) NIL (|has| |#1| (-566)))) (-3890 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3887 (((-112) $ $) NIL (|has| |#1| (-566)))) (-3611 (((-112) $) NIL (|has| |#1| (-566)))) (-2245 (((-654 |#4|) (-654 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3688 (((-654 |#4|) (-654 |#4|) $) 28 (|has| |#1| (-566)))) (-2492 (((-654 |#4|) (-654 |#4|) $) NIL (|has| |#1| (-566)))) (-1704 (((-3 $ "failed") (-654 |#4|)) NIL)) (-2216 (($ (-654 |#4|)) NIL)) (-2935 (((-3 $ "failed") $) 78)) (-2581 ((|#4| |#4| $) 83)) (-1573 (($ $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-3311 (($ |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3919 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-3709 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-2882 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4459))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4459))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3721 (((-2 (|:| -1390 (-654 |#4|)) (|:| -1683 (-654 |#4|))) $) NIL)) (-1871 (((-654 |#4|) $) NIL (|has| $ (-6 -4459)))) (-2821 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4063 ((|#3| $) 84)) (-3814 (((-112) $ (-781)) NIL)) (-1764 (((-654 |#4|) $) 32 (|has| $ (-6 -4459)))) (-2333 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116))))) (-1423 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-654 |#4|)) 38)) (-2462 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-1785 (($ (-1 |#4| |#4|) $) NIL)) (-2089 (((-654 |#3|) $) NIL)) (-1726 (((-112) |#3| $) NIL)) (-2302 (((-112) $ (-781)) NIL)) (-4420 (((-1175) $) NIL)) (-3334 (((-3 |#4| "failed") $) NIL)) (-2252 (((-654 |#4|) $) 54)) (-2897 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3184 ((|#4| |#4| $) 82)) (-1624 (((-112) $ $) 93)) (-3745 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-566)))) (-1848 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1857 ((|#4| |#4| $) NIL)) (-3940 (((-1136) $) NIL)) (-2925 (((-3 |#4| "failed") $) 77)) (-3748 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4014 (((-3 $ "failed") $ |#4|) NIL)) (-2249 (($ $ |#4|) NIL)) (-1731 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-2661 (($ $ (-654 |#4|) (-654 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-302 |#4|)) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116)))) (($ $ (-654 (-302 |#4|))) NIL (-12 (|has| |#4| (-317 |#4|)) (|has| |#4| (-1116))))) (-3788 (((-112) $ $) NIL)) (-2265 (((-112) $) 75)) (-3014 (($) 46)) (-3735 (((-781) $) NIL)) (-3949 (((-781) |#4| $) NIL (-12 (|has| $ (-6 -4459)) (|has| |#4| (-1116)))) (((-781) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3157 (($ $) NIL)) (-1844 (((-546) $) NIL (|has| |#4| (-624 (-546))))) (-2963 (($ (-654 |#4|)) NIL)) (-4216 (($ $ |#3|) NIL)) (-2490 (($ $ |#3|) NIL)) (-3615 (($ $) NIL)) (-3476 (($ $ |#3|) NIL)) (-2951 (((-872) $) NIL) (((-654 |#4|) $) 63)) (-4292 (((-781) $) NIL (|has| |#3| (-377)))) (-1753 (((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-654 |#4|)) 45)) (-1331 (((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-654 $) (-654 |#4|)) 74)) (-2981 (((-112) $ $) NIL)) (-3927 (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2010 (-654 |#4|))) "failed") (-654 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3876 (((-112) $ (-1 (-112) |#4| (-654 |#4|))) NIL)) (-2859 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4459)))) (-3463 (((-654 |#3|) $) NIL)) (-4194 (((-112) |#3| $) NIL)) (-2986 (((-112) $ $) NIL)) (-2877 (((-781) $) NIL (|has| $ (-6 -4459)))))
-(((-1297 |#1| |#2| |#3| |#4|) (-13 (-1227 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1423 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1423 ((-3 $ "failed") (-654 |#4|))) (-15 -1753 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1753 ((-3 $ "failed") (-654 |#4|))) (-15 -1331 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1331 ((-654 $) (-654 |#4|))))) (-566) (-803) (-860) (-1081 |#1| |#2| |#3|)) (T -1297))
-((-1423 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))) (-1423 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1297 *3 *4 *5 *6)))) (-1753 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))) (-1753 (*1 *1 *2) (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1297 *3 *4 *5 *6)))) (-1331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1297 *6 *7 *8 *9))) (-5 *1 (-1297 *6 *7 *8 *9)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1297 *4 *5 *6 *7))) (-5 *1 (-1297 *4 *5 *6 *7)))))
-(-13 (-1227 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1423 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1423 ((-3 $ "failed") (-654 |#4|))) (-15 -1753 ((-3 $ "failed") (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1753 ((-3 $ "failed") (-654 |#4|))) (-15 -1331 ((-654 $) (-654 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1331 ((-654 $) (-654 |#4|)))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-3290 (((-3 $ "failed") $ $) 20)) (-1430 (($) 18 T CONST)) (-3612 (((-3 $ "failed") $) 37)) (-3943 (((-112) $) 35)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#1|) 45)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1298 |#1|) (-141) (-1065)) (T -1298))
-NIL
-(-13 (-1065) (-111 |t#1| |t#1|) (-626 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 |#1|) |has| |#1| (-174)) ((-727 |#1|) |has| |#1| (-174)) ((-736) . T) ((-1067 |#1|) . T) ((-1072 |#1|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T))
-((-2864 (((-112) $ $) 67)) (-4311 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 52)) (-3665 (($ $ (-781)) 46)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1976 (($ $ (-781)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-1430 (($) NIL T CONST)) (-3362 (($ $ $) 70) (($ $ (-829 |#1|)) 56) (($ $ |#1|) 60)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-1402 (($ $) 39)) (-3612 (((-3 $ "failed") $) NIL)) (-3663 (((-112) $) NIL)) (-2250 (($ $) NIL)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) 38)) (-1442 (($ $) 40)) (-3029 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 12)) (-2140 (((-829 |#1|) $) NIL)) (-3328 (((-829 |#1|) $) 41)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2972 (($ $ $) 69) (($ $ (-829 |#1|)) 58) (($ $ |#1|) 62)) (-2880 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-829 |#1|) $) 35)) (-1378 ((|#2| $) 37)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3735 (((-781) $) 43)) (-3102 (((-112) $) 47)) (-1714 ((|#2| $) NIL)) (-2951 (((-872) $) NIL) (($ (-829 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-574)) NIL)) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-829 |#1|)) NIL)) (-1866 ((|#2| $ $) 76) ((|#2| $ (-829 |#1|)) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 13 T CONST)) (-2153 (($) 19 T CONST)) (-4375 (((-654 (-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2986 (((-112) $ $) 44)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 28)) (** (($ $ (-781)) NIL) (($ $ (-935)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-829 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1299 |#1| |#2|) (-13 (-391 |#2| (-829 |#1|)) (-1305 |#1| |#2|)) (-860) (-1065)) (T -1299))
-NIL
-(-13 (-391 |#2| (-829 |#1|)) (-1305 |#1| |#2|))
-((-3113 ((|#3| |#3| (-781)) 28)) (-1617 ((|#3| |#3| (-781)) 34)) (-2552 ((|#3| |#3| |#3| (-781)) 35)))
-(((-1300 |#1| |#2| |#3|) (-10 -7 (-15 -1617 (|#3| |#3| (-781))) (-15 -3113 (|#3| |#3| (-781))) (-15 -2552 (|#3| |#3| |#3| (-781)))) (-13 (-1065) (-727 (-417 (-574)))) (-860) (-1305 |#2| |#1|)) (T -1300))
-((-2552 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))) (-1617 (*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574))))) (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))))
-(-10 -7 (-15 -1617 (|#3| |#3| (-781))) (-15 -3113 (|#3| |#3| (-781))) (-15 -2552 (|#3| |#3| |#3| (-781))))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 47)) (-3290 (((-3 $ "failed") $ $) 20)) (-1976 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-1430 (($) 18 T CONST)) (-3362 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1704 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-3663 (((-112) $) 52)) (-2250 (($ $) 51)) (-3943 (((-112) $) 35)) (-3873 (((-112) $) 57)) (-3806 (($ (-829 |#1|) |#2|) 58)) (-1442 (($ $) 56)) (-3029 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2140 (((-829 |#1|) $) 68)) (-1785 (($ (-1 |#2| |#2|) $) 48)) (-2972 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3102 (((-112) $) 54)) (-1714 ((|#2| $) 53)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1866 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1301 |#1| |#2|) (-141) (-860) (-1065)) (T -1301))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-829 *3)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-829 *4)) (-4 *1 (-1301 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1065)))) (-1866 (*1 *2 *1 *1) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-2972 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3362 (*1 *1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-3362 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1301 *4 *3)) (-4 *3 (-1065)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-1442 (*1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-2951 (*1 *1 *2) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-112)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))) (-1976 (*1 *1 *1 *1) (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)) (-4 *3 (-174)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-4 *4 (-174)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-654 *3)))))
-(-13 (-1065) (-1298 |t#2|) (-1054 (-829 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2140 ((-829 |t#1|) $)) (-15 -3029 ((-2 (|:| |k| (-829 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1866 (|t#2| $ (-829 |t#1|))) (-15 -1866 (|t#2| $ $)) (-15 -2972 ($ $ |t#1|)) (-15 -2972 ($ $ (-829 |t#1|))) (-15 -2972 ($ $ $)) (-15 -3362 ($ $ |t#1|)) (-15 -3362 ($ $ (-829 |t#1|))) (-15 -3362 ($ $ $)) (-15 -3806 ($ (-829 |t#1|) |t#2|)) (-15 -3873 ((-112) $)) (-15 -1442 ($ $)) (-15 -2951 ($ |t#1|)) (-15 -3102 ((-112) $)) (-15 -1714 (|t#2| $)) (-15 -3663 ((-112) $)) (-15 -2250 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1976 ($ $ $)) (-15 -1976 ($ $ (-781)))) |%noBranch|) (-15 -1785 ($ (-1 |t#2| |t#2|) $)) (-15 -1663 ((-654 |t#1|) $)) (IF (|has| |t#2| (-6 -4452)) (-6 -4452) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1054 #0#) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1298 |#2|) . T))
-((-1738 (((-112) $) 15)) (-4194 (((-112) $) 14)) (-2535 (($ $) 19) (($ $ (-781)) 21)))
-(((-1302 |#1| |#2|) (-10 -8 (-15 -2535 (|#1| |#1| (-781))) (-15 -2535 (|#1| |#1|)) (-15 -1738 ((-112) |#1|)) (-15 -4194 ((-112) |#1|))) (-1303 |#2|) (-372)) (T -1302))
-NIL
-(-10 -8 (-15 -2535 (|#1| |#1| (-781))) (-15 -2535 (|#1| |#1|)) (-15 -1738 ((-112) |#1|)) (-15 -4194 ((-112) |#1|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-2416 (((-2 (|:| -2020 $) (|:| -4446 $) (|:| |associate| $)) $) 47)) (-4141 (($ $) 46)) (-2475 (((-112) $) 44)) (-1738 (((-112) $) 104)) (-2276 (((-781)) 100)) (-3290 (((-3 $ "failed") $ $) 20)) (-2684 (($ $) 81)) (-3171 (((-428 $) $) 80)) (-1374 (((-112) $ $) 65)) (-1430 (($) 18 T CONST)) (-1704 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2801 (($ $ $) 61)) (-3612 (((-3 $ "failed") $) 37)) (-2812 (($ $ $) 62)) (-2046 (((-2 (|:| -1866 (-654 $)) (|:| -2975 $)) (-654 $)) 57)) (-2613 (($ $ (-781)) 97 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377)))) (($ $) 96 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3342 (((-112) $) 79)) (-1518 (((-843 (-935)) $) 94 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3943 (((-112) $) 35)) (-1661 (((-3 (-654 $) "failed") (-654 $) $) 58)) (-2845 (($ $ $) 52) (($ (-654 $)) 51)) (-4420 (((-1175) $) 10)) (-1328 (($ $) 78)) (-2958 (((-112) $) 103)) (-3940 (((-1136) $) 11)) (-2064 (((-1189 $) (-1189 $) (-1189 $)) 50)) (-2887 (($ $ $) 54) (($ (-654 $)) 53)) (-4201 (((-428 $) $) 82)) (-1676 (((-843 (-935))) 101)) (-3238 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2975 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2853 (((-3 $ "failed") $ $) 48)) (-1987 (((-3 (-654 $) "failed") (-654 $) $) 56)) (-4220 (((-781) $) 64)) (-2472 (((-2 (|:| -3758 $) (|:| -3919 $)) $ $) 63)) (-1532 (((-3 (-781) "failed") $ $) 95 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-2732 (((-135)) 109)) (-3735 (((-843 (-935)) $) 102)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ $) 49) (($ (-417 (-574))) 74) (($ |#1|) 110)) (-2705 (((-3 $ "failed") $) 93 (-2833 (|has| |#1| (-146)) (|has| |#1| (-377))))) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-3750 (((-112) $ $) 45)) (-4194 (((-112) $) 105)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2535 (($ $) 99 (|has| |#1| (-377))) (($ $ (-781)) 98 (|has| |#1| (-377)))) (-2986 (((-112) $ $) 6)) (-3099 (($ $ $) 73) (($ $ |#1|) 108)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36) (($ $ (-574)) 77)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ $ (-417 (-574))) 76) (($ (-417 (-574)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1303 |#1|) (-141) (-372)) (T -1303))
-((-4194 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))) (-1676 (*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))) (-2276 (*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-781)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-1303 *2)) (-4 *2 (-372)) (-4 *2 (-377)))) (-2535 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-4 *3 (-377)))))
-(-13 (-372) (-1054 |t#1|) (-1291 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-412)) |%noBranch|) (-15 -4194 ((-112) $)) (-15 -1738 ((-112) $)) (-15 -2958 ((-112) $)) (-15 -3735 ((-843 (-935)) $)) (-15 -1676 ((-843 (-935)))) (-15 -2276 ((-781))) (IF (|has| |t#1| (-377)) (PROGN (-6 (-412)) (-15 -2535 ($ $)) (-15 -2535 ($ $ (-781)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-417 (-574))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-626 #0#) . T) ((-626 (-574)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-623 (-872)) . T) ((-174) . T) ((-249) . T) ((-298) . T) ((-315) . T) ((-372) . T) ((-412) -2833 (|has| |#1| (-377)) (|has| |#1| (-146))) ((-462) . T) ((-566) . T) ((-656 #0#) . T) ((-656 (-574)) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-658 #0#) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-727 #0#) . T) ((-727 |#1|) . T) ((-727 $) . T) ((-736) . T) ((-934) . T) ((-1054 |#1|) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1072 #0#) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1238) . T) ((-1291 |#1|) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 98)) (-3665 (($ $ (-781)) 102)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1976 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-781)) NIL (|has| |#2| (-174)))) (-1430 (($) NIL T CONST)) (-3362 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL) (((-3 (-904 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL) (((-904 |#1|) $) NIL)) (-1402 (($ $) 101)) (-3612 (((-3 $ "failed") $) NIL)) (-3663 (((-112) $) 90)) (-2250 (($ $) 93)) (-4118 (($ $ $ (-781)) 103)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) NIL) (($ (-904 |#1|) |#2|) 29)) (-1442 (($ $) 119)) (-3029 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2140 (((-829 |#1|) $) NIL)) (-3328 (((-829 |#1|) $) NIL)) (-1785 (($ (-1 |#2| |#2|) $) NIL)) (-2972 (($ $ |#1|) NIL) (($ $ (-829 |#1|)) NIL) (($ $ $) NIL)) (-3113 (($ $ (-781)) 112 (|has| |#2| (-727 (-417 (-574)))))) (-2880 (((-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1366 (((-904 |#1|) $) 83)) (-1378 ((|#2| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-1617 (($ $ (-781)) 109 (|has| |#2| (-727 (-417 (-574)))))) (-3735 (((-781) $) 99)) (-3102 (((-112) $) 84)) (-1714 ((|#2| $) 88)) (-2951 (((-872) $) 69) (($ (-574)) NIL) (($ |#2|) 60) (($ (-829 |#1|)) NIL) (($ |#1|) 71) (($ (-904 |#1|)) NIL) (($ (-674 |#1| |#2|)) 48) (((-1299 |#1| |#2|) $) 76) (((-1308 |#1| |#2|) $) 81)) (-3382 (((-654 |#2|) $) NIL)) (-1788 ((|#2| $ (-904 |#1|)) NIL)) (-1866 ((|#2| $ (-829 |#1|)) NIL) ((|#2| $ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 21 T CONST)) (-2153 (($) 28 T CONST)) (-4375 (((-654 (-2 (|:| |k| (-904 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1386 (((-3 (-674 |#1| |#2|) "failed") $) 118)) (-2986 (((-112) $ $) 77)) (-3090 (($ $) 111) (($ $ $) 110)) (-3074 (($ $ $) 20)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-904 |#1|)) NIL)))
-(((-1304 |#1| |#2|) (-13 (-1305 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2951 ($ (-674 |#1| |#2|))) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1308 |#1| |#2|) $)) (-15 -1386 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -4118 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1617 ($ $ (-781))) (-15 -3113 ($ $ (-781)))) |%noBranch|))) (-860) (-174)) (T -1304))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)) (-5 *1 (-1304 *3 *4)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1386 (*1 *2 *1) (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-4118 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
-(-13 (-1305 |#1| |#2|) (-391 |#2| (-904 |#1|)) (-10 -8 (-15 -2951 ($ (-674 |#1| |#2|))) (-15 -2951 ((-1299 |#1| |#2|) $)) (-15 -2951 ((-1308 |#1| |#2|) $)) (-15 -1386 ((-3 (-674 |#1| |#2|) "failed") $)) (-15 -4118 ($ $ $ (-781))) (IF (|has| |#2| (-727 (-417 (-574)))) (PROGN (-15 -1617 ($ $ (-781))) (-15 -3113 ($ $ (-781)))) |%noBranch|)))
-((-2864 (((-112) $ $) 7)) (-4311 (((-112) $) 17)) (-1663 (((-654 |#1|) $) 47)) (-3665 (($ $ (-781)) 80)) (-3290 (((-3 $ "failed") $ $) 20)) (-1976 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-781)) 49 (|has| |#2| (-174)))) (-1430 (($) 18 T CONST)) (-3362 (($ $ |#1|) 61) (($ $ (-829 |#1|)) 60) (($ $ $) 59)) (-1704 (((-3 (-829 |#1|) "failed") $) 71)) (-2216 (((-829 |#1|) $) 72)) (-3612 (((-3 $ "failed") $) 37)) (-3663 (((-112) $) 52)) (-2250 (($ $) 51)) (-3943 (((-112) $) 35)) (-3873 (((-112) $) 57)) (-3806 (($ (-829 |#1|) |#2|) 58)) (-1442 (($ $) 56)) (-3029 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) 67)) (-2140 (((-829 |#1|) $) 68)) (-3328 (((-829 |#1|) $) 82)) (-1785 (($ (-1 |#2| |#2|) $) 48)) (-2972 (($ $ |#1|) 64) (($ $ (-829 |#1|)) 63) (($ $ $) 62)) (-4420 (((-1175) $) 10)) (-3940 (((-1136) $) 11)) (-3735 (((-781) $) 81)) (-3102 (((-112) $) 54)) (-1714 ((|#2| $) 53)) (-2951 (((-872) $) 12) (($ (-574)) 33) (($ |#2|) 75) (($ (-829 |#1|)) 70) (($ |#1|) 55)) (-1866 ((|#2| $ (-829 |#1|)) 66) ((|#2| $ $) 65)) (-3070 (((-781)) 32 T CONST)) (-2981 (((-112) $ $) 9)) (-2141 (($) 19 T CONST)) (-2153 (($) 34 T CONST)) (-2986 (((-112) $ $) 6)) (-3090 (($ $) 23) (($ $ $) 22)) (-3074 (($ $ $) 15)) (** (($ $ (-935)) 28) (($ $ (-781)) 36)) (* (($ (-935) $) 14) (($ (-781) $) 16) (($ (-574) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1305 |#1| |#2|) (-141) (-860) (-1065)) (T -1305))
-((-3328 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-829 *3)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *2 (-781)))) (-3665 (*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))))
-(-13 (-1301 |t#1| |t#2|) (-10 -8 (-15 -3328 ((-829 |t#1|) $)) (-15 -3735 ((-781) $)) (-15 -3665 ($ $ (-781)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-574)) . T) ((-626 #0=(-829 |#1|)) . T) ((-626 |#2|) . T) ((-623 (-872)) . T) ((-656 (-574)) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-650 |#2|) |has| |#2| (-174)) ((-727 |#2|) |has| |#2| (-174)) ((-736) . T) ((-1054 #0#) . T) ((-1067 |#2|) . T) ((-1072 |#2|) . T) ((-1065) . T) ((-1074) . T) ((-1128) . T) ((-1116) . T) ((-1298 |#2|) . T) ((-1301 |#1| |#2|) . T))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-1663 (((-654 (-1193)) $) NIL)) (-4209 (($ (-1299 (-1193) |#1|)) NIL)) (-3665 (($ $ (-781)) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1976 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-781)) NIL (|has| |#1| (-174)))) (-1430 (($) NIL T CONST)) (-3362 (($ $ (-1193)) NIL) (($ $ (-829 (-1193))) NIL) (($ $ $) NIL)) (-1704 (((-3 (-829 (-1193)) "failed") $) NIL)) (-2216 (((-829 (-1193)) $) NIL)) (-3612 (((-3 $ "failed") $) NIL)) (-3663 (((-112) $) NIL)) (-2250 (($ $) NIL)) (-3943 (((-112) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ (-829 (-1193)) |#1|) NIL)) (-1442 (($ $) NIL)) (-3029 (((-2 (|:| |k| (-829 (-1193))) (|:| |c| |#1|)) $) NIL)) (-2140 (((-829 (-1193)) $) NIL)) (-3328 (((-829 (-1193)) $) NIL)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2972 (($ $ (-1193)) NIL) (($ $ (-829 (-1193))) NIL) (($ $ $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2136 (((-1299 (-1193) |#1|) $) NIL)) (-3735 (((-781) $) NIL)) (-3102 (((-112) $) NIL)) (-1714 ((|#1| $) NIL)) (-2951 (((-872) $) NIL) (($ (-574)) NIL) (($ |#1|) NIL) (($ (-829 (-1193))) NIL) (($ (-1193)) NIL)) (-1866 ((|#1| $ (-829 (-1193))) NIL) ((|#1| $ $) NIL)) (-3070 (((-781)) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) NIL T CONST)) (-2314 (((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $) NIL)) (-2153 (($) NIL T CONST)) (-2986 (((-112) $ $) NIL)) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) NIL)) (** (($ $ (-935)) NIL) (($ $ (-781)) NIL)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1193) $) NIL)))
-(((-1306 |#1|) (-13 (-1305 (-1193) |#1|) (-10 -8 (-15 -2136 ((-1299 (-1193) |#1|) $)) (-15 -4209 ($ (-1299 (-1193) |#1|))) (-15 -2314 ((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $)))) (-1065)) (T -1306))
-((-2136 (*1 *2 *1) (-12 (-5 *2 (-1299 (-1193) *3)) (-5 *1 (-1306 *3)) (-4 *3 (-1065)))) (-4209 (*1 *1 *2) (-12 (-5 *2 (-1299 (-1193) *3)) (-4 *3 (-1065)) (-5 *1 (-1306 *3)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| (-1193)) (|:| |c| (-1306 *3))))) (-5 *1 (-1306 *3)) (-4 *3 (-1065)))))
-(-13 (-1305 (-1193) |#1|) (-10 -8 (-15 -2136 ((-1299 (-1193) |#1|) $)) (-15 -4209 ($ (-1299 (-1193) |#1|))) (-15 -2314 ((-654 (-2 (|:| |k| (-1193)) (|:| |c| $))) $))))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) NIL)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1430 (($) NIL T CONST)) (-1704 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-1402 (($ $) NIL)) (-3612 (((-3 $ "failed") $) 42)) (-3663 (((-112) $) 35)) (-2250 (($ $) 37)) (-3943 (((-112) $) NIL)) (-2993 (((-781) $) NIL)) (-2306 (((-654 $) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ |#2| |#1|) NIL)) (-2140 ((|#2| $) 24)) (-3328 ((|#2| $) 22)) (-1785 (($ (-1 |#1| |#1|) $) NIL)) (-2880 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1366 ((|#2| $) NIL)) (-1378 ((|#1| $) NIL)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-3102 (((-112) $) 32)) (-1714 ((|#1| $) 33)) (-2951 (((-872) $) 65) (($ (-574)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3382 (((-654 |#1|) $) NIL)) (-1788 ((|#1| $ |#2|) NIL)) (-1866 ((|#1| $ |#2|) 28)) (-3070 (((-781)) 14 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 29 T CONST)) (-2153 (($) 11 T CONST)) (-4375 (((-654 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2986 (((-112) $ $) 30)) (-3099 (($ $ |#1|) 67 (|has| |#1| (-372)))) (-3090 (($ $) NIL) (($ $ $) NIL)) (-3074 (($ $ $) 50)) (** (($ $ (-935)) NIL) (($ $ (-781)) 52)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2877 (((-781) $) 16)))
-(((-1307 |#1| |#2|) (-13 (-1065) (-1298 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2877 ((-781) $)) (-15 -3328 (|#2| $)) (-15 -2140 (|#2| $)) (-15 -1402 ($ $)) (-15 -1866 (|#1| $ |#2|)) (-15 -3102 ((-112) $)) (-15 -1714 (|#1| $)) (-15 -3663 ((-112) $)) (-15 -2250 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3099 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|))) (-1065) (-856)) (T -1307))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-1402 (*1 *1 *1) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-856)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-3328 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))) (-2140 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))) (-1866 (*1 *2 *1 *3) (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-1714 (*1 *2 *1) (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-856)))) (-2250 (*1 *1 *1) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-856)))))
-(-13 (-1065) (-1298 |#1|) (-391 |#1| |#2|) (-626 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2877 ((-781) $)) (-15 -3328 (|#2| $)) (-15 -2140 (|#2| $)) (-15 -1402 ($ $)) (-15 -1866 (|#1| $ |#2|)) (-15 -3102 ((-112) $)) (-15 -1714 (|#1| $)) (-15 -3663 ((-112) $)) (-15 -2250 ($ $)) (-15 -1785 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-372)) (-15 -3099 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|)))
-((-2864 (((-112) $ $) 27)) (-4311 (((-112) $) NIL)) (-1663 (((-654 |#1|) $) 132)) (-4209 (($ (-1299 |#1| |#2|)) 50)) (-3665 (($ $ (-781)) 38)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1976 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-781)) 52 (|has| |#2| (-174)))) (-1430 (($) NIL T CONST)) (-3362 (($ $ |#1|) 114) (($ $ (-829 |#1|)) 115) (($ $ $) 26)) (-1704 (((-3 (-829 |#1|) "failed") $) NIL)) (-2216 (((-829 |#1|) $) NIL)) (-3612 (((-3 $ "failed") $) 122)) (-3663 (((-112) $) 117)) (-2250 (($ $) 118)) (-3943 (((-112) $) NIL)) (-3873 (((-112) $) NIL)) (-3806 (($ (-829 |#1|) |#2|) 20)) (-1442 (($ $) NIL)) (-3029 (((-2 (|:| |k| (-829 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2140 (((-829 |#1|) $) 123)) (-3328 (((-829 |#1|) $) 126)) (-1785 (($ (-1 |#2| |#2|) $) 131)) (-2972 (($ $ |#1|) 112) (($ $ (-829 |#1|)) 113) (($ $ $) 62)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2136 (((-1299 |#1| |#2|) $) 94)) (-3735 (((-781) $) 129)) (-3102 (((-112) $) 81)) (-1714 ((|#2| $) 32)) (-2951 (((-872) $) 73) (($ (-574)) 87) (($ |#2|) 85) (($ (-829 |#1|)) 18) (($ |#1|) 84)) (-1866 ((|#2| $ (-829 |#1|)) 116) ((|#2| $ $) 28)) (-3070 (((-781)) 120 T CONST)) (-2981 (((-112) $ $) NIL)) (-2141 (($) 15 T CONST)) (-2314 (((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2153 (($) 33 T CONST)) (-2986 (((-112) $ $) 14)) (-3090 (($ $) 98) (($ $ $) 101)) (-3074 (($ $ $) 61)) (** (($ $ (-935)) NIL) (($ $ (-781)) 55)) (* (($ (-935) $) NIL) (($ (-781) $) 53) (($ (-574) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1308 |#1| |#2|) (-13 (-1305 |#1| |#2|) (-10 -8 (-15 -2136 ((-1299 |#1| |#2|) $)) (-15 -4209 ($ (-1299 |#1| |#2|))) (-15 -2314 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1065)) (T -1308))
-((-2136 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))) (-4209 (*1 *1 *2) (-12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)) (-5 *1 (-1308 *3 *4)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1308 *3 *4))))) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))))
-(-13 (-1305 |#1| |#2|) (-10 -8 (-15 -2136 ((-1299 |#1| |#2|) $)) (-15 -4209 ($ (-1299 |#1| |#2|))) (-15 -2314 ((-654 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2864 (((-112) $ $) NIL)) (-2758 (($ (-654 (-935))) 10)) (-2317 (((-987) $) 12)) (-4420 (((-1175) $) NIL)) (-3940 (((-1136) $) NIL)) (-2951 (((-872) $) 25) (($ (-987)) 14) (((-987) $) 13)) (-2981 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 17)))
-(((-1309) (-13 (-1116) (-500 (-987)) (-10 -8 (-15 -2758 ($ (-654 (-935)))) (-15 -2317 ((-987) $))))) (T -1309))
-((-2758 (*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1309)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-1309)))))
-(-13 (-1116) (-500 (-987)) (-10 -8 (-15 -2758 ($ (-654 (-935)))) (-15 -2317 ((-987) $))))
-((-1889 (((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574)) 16) (((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|))) 13)))
-(((-1310 |#1|) (-10 -7 (-15 -1889 ((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|)))) (-15 -1889 ((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574)))) (-1234)) (T -1310))
-((-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-654 (-1173 *5)) (-654 (-1173 *5)))) (-5 *4 (-574)) (-5 *2 (-654 (-1173 *5))) (-5 *1 (-1310 *5)) (-4 *5 (-1234)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1 (-1173 *4) (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1310 *4)) (-4 *4 (-1234)))))
-(-10 -7 (-15 -1889 ((-1173 |#1|) (-1 (-1173 |#1|) (-1173 |#1|)))) (-15 -1889 ((-654 (-1173 |#1|)) (-1 (-654 (-1173 |#1|)) (-654 (-1173 |#1|))) (-574))))
-((-2734 (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|))) 174) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112)) 173) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112)) 172) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112)) 171) (((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-1062 |#1| |#2|)) 156)) (-1447 (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|))) 85) (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112)) 84) (((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112)) 83)) (-3171 (((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|)) 73)) (-4123 (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|))) 140) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112)) 139) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112)) 138) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112)) 137) (((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|)) 132)) (-1796 (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|))) 145) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112)) 144) (((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112)) 143) (((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|)) 142)) (-1844 (((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) 111) (((-1189 (-1040 (-417 |#1|))) (-1189 |#1|)) 102) (((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|))) 109) (((-966 (-1040 (-417 |#1|))) (-966 |#1|)) 107) (((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|))) 33)))
-(((-1311 |#1| |#2| |#3|) (-10 -7 (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112))) (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-1062 |#1| |#2|))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -3171 ((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|))) (-15 -1844 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-966 |#1|))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1844 ((-1189 (-1040 (-417 |#1|))) (-1189 |#1|))) (-15 -1844 ((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))))) (-13 (-858) (-315) (-148) (-1038)) (-654 (-1193)) (-654 (-1193))) (T -1311))
-((-1844 (*1 *2 *3) (-12 (-5 *3 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1189 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-1189 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *6))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193))) (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-790 *4 (-874 *5))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1796 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-4123 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-4123 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4)))))) (-5 *1 (-1311 *4 *5 *6)) (-5 *3 (-654 (-966 *4))) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-2734 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-2734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-2734 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5)))))) (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5))) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4)))))) (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *4 *5))) (-5 *1 (-1311 *4 *5 *6)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))) (-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))) (-1447 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038))) (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7)) (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193))))))
-(-10 -7 (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)) (-112))) (-15 -1447 ((-654 (-1062 |#1| |#2|)) (-654 (-966 |#1|)))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-1062 |#1| |#2|))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)) (-112))) (-15 -2734 ((-654 (-2 (|:| -1709 (-1189 |#1|)) (|:| -2282 (-654 (-966 |#1|))))) (-654 (-966 |#1|)))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -4123 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-1062 |#1| |#2|))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112) (-112))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)) (-112))) (-15 -1796 ((-654 (-654 (-1040 (-417 |#1|)))) (-654 (-966 |#1|)))) (-15 -3171 ((-654 (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|)))) (-1062 |#1| |#2|))) (-15 -1844 ((-790 |#1| (-874 |#3|)) (-790 |#1| (-874 |#2|)))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-966 |#1|))) (-15 -1844 ((-966 (-1040 (-417 |#1|))) (-790 |#1| (-874 |#3|)))) (-15 -1844 ((-1189 (-1040 (-417 |#1|))) (-1189 |#1|))) (-15 -1844 ((-654 (-790 |#1| (-874 |#3|))) (-1162 |#1| (-541 (-874 |#3|)) (-874 |#3|) (-790 |#1| (-874 |#3|))))))
-((-1751 (((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|) 21)) (-4338 (((-112) (-1284 |#1|)) 12)) (-3825 (((-3 (-1284 (-574)) "failed") (-1284 |#1|)) 16)))
-(((-1312 |#1|) (-10 -7 (-15 -4338 ((-112) (-1284 |#1|))) (-15 -3825 ((-3 (-1284 (-574)) "failed") (-1284 |#1|))) (-15 -1751 ((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|))) (-13 (-1065) (-649 (-574)))) (T -1312))
-((-1751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-1284 (-417 (-574)))) (-5 *1 (-1312 *4)))) (-3825 (*1 *2 *3) (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-1284 (-574))) (-5 *1 (-1312 *4)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574)))) (-5 *2 (-112)) (-5 *1 (-1312 *4)))))
-(-10 -7 (-15 -4338 ((-112) (-1284 |#1|))) (-15 -3825 ((-3 (-1284 (-574)) "failed") (-1284 |#1|))) (-15 -1751 ((-3 (-1284 (-417 (-574))) "failed") (-1284 |#1|) |#1|)))
-((-2864 (((-112) $ $) NIL)) (-4311 (((-112) $) 11)) (-3290 (((-3 $ "failed") $ $) NIL)) (-1496 (((-781)) 8)) (-1430 (($) NIL T CONST)) (-3612 (((-3 $ "failed") $) 58)) (-2835 (($) 49)) (-3943 (((-112) $) 57)) (-2081 (((-3 $ "failed") $) 40)) (-3507 (((-935) $) 15)) (-4420 (((-1175) $) NIL)) (-3792 (($) 32 T CONST)) (-2591 (($ (-935)) 50)) (-3940 (((-1136) $) NIL)) (-1844 (((-574) $) 13)) (-2951 (((-872) $) 27) (($ (-574)) 24)) (-3070 (((-781)) 9 T CONST)) (-2981 (((-112) $ $) 60)) (-2141 (($) 29 T CONST)) (-2153 (($) 31 T CONST)) (-2986 (((-112) $ $) 38)) (-3090 (($ $) 52) (($ $ $) 47)) (-3074 (($ $ $) 35)) (** (($ $ (-935)) NIL) (($ $ (-781)) 54)) (* (($ (-935) $) NIL) (($ (-781) $) NIL) (($ (-574) $) 44) (($ $ $) 43)))
-(((-1313 |#1|) (-13 (-174) (-377) (-624 (-574)) (-1168)) (-935)) (T -1313))
-NIL
-(-13 (-174) (-377) (-624 (-574)) (-1168))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3238756 3238761 3238766 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3238741 3238746 3238751 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3238726 3238731 3238736 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3238711 3238716 3238721 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1313 3237854 3238586 3238663 "ZMOD" 3238668 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1312 3236908 3237072 3237295 "ZLINDEP" 3237686 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1311 3226208 3227976 3229948 "ZDSOLVE" 3235038 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1310 3225454 3225595 3225784 "YSTREAM" 3226054 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1309 3224882 3225128 3225241 "YDIAGRAM" 3225363 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1308 3222656 3224183 3224387 "XRPOLY" 3224725 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3219209 3220527 3221102 "XPR" 3222128 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1306 3216930 3218540 3218744 "XPOLY" 3219040 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1305 3214583 3215951 3216006 "XPOLYC" 3216294 NIL XPOLYC (NIL T T) -9 NIL 3216407 NIL) (-1304 3210959 3213100 3213488 "XPBWPOLY" 3214241 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3206654 3208949 3208991 "XF" 3209612 NIL XF (NIL T) -9 NIL 3210012 NIL) (-1302 3206275 3206363 3206532 "XF-" 3206537 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1301 3201471 3202760 3202815 "XFALG" 3204987 NIL XFALG (NIL T T) -9 NIL 3205776 NIL) (-1300 3200604 3200708 3200913 "XEXPPKG" 3201363 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1299 3198713 3200454 3200550 "XDPOLY" 3200555 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3197520 3198120 3198163 "XALG" 3198168 NIL XALG (NIL T) -9 NIL 3198279 NIL) (-1297 3190962 3195497 3195991 "WUTSET" 3197112 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1296 3189218 3190014 3190337 "WP" 3190773 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1295 3188820 3189040 3189110 "WHILEAST" 3189170 T WHILEAST (NIL) -8 NIL NIL NIL) (-1294 3188292 3188537 3188631 "WHEREAST" 3188748 T WHEREAST (NIL) -8 NIL NIL NIL) (-1293 3187178 3187376 3187671 "WFFINTBS" 3188089 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1292 3185082 3185509 3185971 "WEIER" 3186750 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1291 3184128 3184578 3184620 "VSPACE" 3184756 NIL VSPACE (NIL T) -9 NIL 3184830 NIL) (-1290 3183966 3183993 3184084 "VSPACE-" 3184089 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1289 3183775 3183817 3183885 "VOID" 3183920 T VOID (NIL) -8 NIL NIL NIL) (-1288 3181911 3182270 3182676 "VIEW" 3183391 T VIEW (NIL) -7 NIL NIL NIL) (-1287 3178335 3178974 3179711 "VIEWDEF" 3181196 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1286 3167639 3169883 3172056 "VIEW3D" 3176184 T VIEW3D (NIL) -8 NIL NIL NIL) (-1285 3159890 3161550 3163129 "VIEW2D" 3166082 T VIEW2D (NIL) -8 NIL NIL NIL) (-1284 3155243 3159660 3159752 "VECTOR" 3159833 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1283 3153820 3154079 3154397 "VECTOR2" 3154973 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1282 3147262 3151571 3151614 "VECTCAT" 3152609 NIL VECTCAT (NIL T) -9 NIL 3153196 NIL) (-1281 3146276 3146530 3146920 "VECTCAT-" 3146925 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1280 3145730 3145927 3146047 "VARIABLE" 3146191 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1279 3145663 3145668 3145698 "UTYPE" 3145703 T UTYPE (NIL) -9 NIL NIL NIL) (-1278 3144493 3144647 3144909 "UTSODETL" 3145489 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1277 3141933 3142393 3142917 "UTSODE" 3144034 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1276 3133771 3139559 3140048 "UTS" 3141502 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1275 3124335 3129705 3129748 "UTSCAT" 3130860 NIL UTSCAT (NIL T) -9 NIL 3131618 NIL) (-1274 3121683 3122405 3123394 "UTSCAT-" 3123399 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1273 3121310 3121353 3121486 "UTS2" 3121634 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1272 3115536 3118148 3118191 "URAGG" 3120261 NIL URAGG (NIL T) -9 NIL 3120984 NIL) (-1271 3112475 3113338 3114461 "URAGG-" 3114466 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1270 3108184 3111110 3111575 "UPXSSING" 3112139 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1269 3100250 3107431 3107704 "UPXS" 3107969 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1268 3093323 3100154 3100226 "UPXSCONS" 3100231 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1267 3082730 3089526 3089588 "UPXSCCA" 3090162 NIL UPXSCCA (NIL T T) -9 NIL 3090395 NIL) (-1266 3082368 3082453 3082627 "UPXSCCA-" 3082632 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1265 3071627 3078196 3078239 "UPXSCAT" 3078887 NIL UPXSCAT (NIL T) -9 NIL 3079496 NIL) (-1264 3071057 3071136 3071315 "UPXS2" 3071542 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1263 3069711 3069964 3070315 "UPSQFREE" 3070800 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1262 3062919 3065979 3066034 "UPSCAT" 3067114 NIL UPSCAT (NIL T T) -9 NIL 3067879 NIL) (-1261 3062123 3062330 3062657 "UPSCAT-" 3062662 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1260 3047486 3055344 3055387 "UPOLYC" 3057488 NIL UPOLYC (NIL T) -9 NIL 3058709 NIL) (-1259 3038814 3041240 3044387 "UPOLYC-" 3044392 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1258 3038441 3038484 3038617 "UPOLYC2" 3038765 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1257 3030163 3038124 3038253 "UP" 3038360 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1256 3029502 3029609 3029773 "UPMP" 3030052 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1255 3029055 3029136 3029275 "UPDIVP" 3029415 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1254 3027623 3027872 3028188 "UPDECOMP" 3028804 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1253 3026854 3026966 3027152 "UPCDEN" 3027507 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1252 3026373 3026442 3026591 "UP2" 3026779 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1251 3024840 3025577 3025854 "UNISEG" 3026131 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1250 3024055 3024182 3024387 "UNISEG2" 3024683 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1249 3023115 3023295 3023521 "UNIFACT" 3023871 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1248 3006876 3022292 3022543 "ULS" 3022922 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1247 2994739 3006780 3006852 "ULSCONS" 3006857 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1246 2976038 2988163 2988225 "ULSCCAT" 2988863 NIL ULSCCAT (NIL T T) -9 NIL 2989152 NIL) (-1245 2975088 2975333 2975721 "ULSCCAT-" 2975726 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1244 2964152 2970635 2970678 "ULSCAT" 2971541 NIL ULSCAT (NIL T) -9 NIL 2972272 NIL) (-1243 2963582 2963661 2963840 "ULS2" 2964067 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1242 2962701 2963211 2963318 "UINT8" 2963429 T UINT8 (NIL) -8 NIL NIL 2963514) (-1241 2961819 2962329 2962436 "UINT64" 2962547 T UINT64 (NIL) -8 NIL NIL 2962632) (-1240 2960937 2961447 2961554 "UINT32" 2961665 T UINT32 (NIL) -8 NIL NIL 2961750) (-1239 2960055 2960565 2960672 "UINT16" 2960783 T UINT16 (NIL) -8 NIL NIL 2960868) (-1238 2958358 2959315 2959345 "UFD" 2959557 T UFD (NIL) -9 NIL 2959671 NIL) (-1237 2958152 2958198 2958293 "UFD-" 2958298 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1236 2957234 2957417 2957633 "UDVO" 2957958 T UDVO (NIL) -7 NIL NIL NIL) (-1235 2955050 2955459 2955930 "UDPO" 2956798 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1234 2954983 2954988 2955018 "TYPE" 2955023 T TYPE (NIL) -9 NIL NIL NIL) (-1233 2954743 2954938 2954969 "TYPEAST" 2954974 T TYPEAST (NIL) -8 NIL NIL NIL) (-1232 2953714 2953916 2954156 "TWOFACT" 2954537 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1231 2952737 2953123 2953358 "TUPLE" 2953514 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1230 2950428 2950947 2951486 "TUBETOOL" 2952220 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1229 2949277 2949482 2949723 "TUBE" 2950221 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1228 2944006 2948249 2948532 "TS" 2949029 NIL TS (NIL T) -8 NIL NIL NIL) (-1227 2932646 2936765 2936862 "TSETCAT" 2942131 NIL TSETCAT (NIL T T T T) -9 NIL 2943662 NIL) (-1226 2927378 2928978 2930869 "TSETCAT-" 2930874 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1225 2922017 2922864 2923793 "TRMANIP" 2926514 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1224 2921458 2921521 2921684 "TRIMAT" 2921949 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1223 2919324 2919561 2919918 "TRIGMNIP" 2921207 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1222 2918844 2918957 2918987 "TRIGCAT" 2919200 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1221 2918513 2918592 2918733 "TRIGCAT-" 2918738 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1220 2915358 2917371 2917652 "TREE" 2918267 NIL TREE (NIL T) -8 NIL NIL NIL) (-1219 2914632 2915160 2915190 "TRANFUN" 2915225 T TRANFUN (NIL) -9 NIL 2915291 NIL) (-1218 2913911 2914102 2914382 "TRANFUN-" 2914387 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1217 2913715 2913747 2913808 "TOPSP" 2913872 T TOPSP (NIL) -7 NIL NIL NIL) (-1216 2913063 2913178 2913332 "TOOLSIGN" 2913596 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1215 2911697 2912240 2912479 "TEXTFILE" 2912846 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1214 2909609 2910150 2910579 "TEX" 2911290 T TEX (NIL) -8 NIL NIL NIL) (-1213 2909390 2909421 2909493 "TEX1" 2909572 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1212 2909038 2909101 2909191 "TEMUTL" 2909322 T TEMUTL (NIL) -7 NIL NIL NIL) (-1211 2907192 2907472 2907797 "TBCMPPK" 2908761 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1210 2898969 2905352 2905408 "TBAGG" 2905808 NIL TBAGG (NIL T T) -9 NIL 2906019 NIL) (-1209 2894039 2895527 2897281 "TBAGG-" 2897286 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1208 2893423 2893530 2893675 "TANEXP" 2893928 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1207 2892934 2893198 2893288 "TALGOP" 2893368 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1206 2886324 2892791 2892884 "TABLE" 2892889 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1205 2885736 2885835 2885973 "TABLEAU" 2886221 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1204 2880344 2881564 2882812 "TABLBUMP" 2884522 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1203 2879566 2879713 2879894 "SYSTEM" 2880185 T SYSTEM (NIL) -8 NIL NIL NIL) (-1202 2876025 2876724 2877507 "SYSSOLP" 2878817 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1201 2875823 2875980 2876011 "SYSPTR" 2876016 T SYSPTR (NIL) -8 NIL NIL NIL) (-1200 2874859 2875364 2875483 "SYSNNI" 2875669 NIL SYSNNI (NIL NIL) -8 NIL NIL 2875754) (-1199 2874158 2874617 2874696 "SYSINT" 2874756 NIL SYSINT (NIL NIL) -8 NIL NIL 2874801) (-1198 2870490 2871436 2872146 "SYNTAX" 2873470 T SYNTAX (NIL) -8 NIL NIL NIL) (-1197 2867648 2868250 2868882 "SYMTAB" 2869880 T SYMTAB (NIL) -8 NIL NIL NIL) (-1196 2862897 2863799 2864782 "SYMS" 2866687 T SYMS (NIL) -8 NIL NIL NIL) (-1195 2860132 2862355 2862585 "SYMPOLY" 2862702 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1194 2859649 2859724 2859847 "SYMFUNC" 2860044 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1193 2855669 2856961 2857774 "SYMBOL" 2858858 T SYMBOL (NIL) -8 NIL NIL NIL) (-1192 2849208 2850897 2852617 "SWITCH" 2853971 T SWITCH (NIL) -8 NIL NIL NIL) (-1191 2842442 2848029 2848332 "SUTS" 2848963 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1190 2834508 2841689 2841962 "SUPXS" 2842227 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1189 2826178 2834126 2834252 "SUP" 2834417 NIL SUP (NIL T) -8 NIL NIL NIL) (-1188 2825337 2825464 2825681 "SUPFRACF" 2826046 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1187 2824958 2825017 2825130 "SUP2" 2825272 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1186 2823406 2823680 2824036 "SUMRF" 2824657 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1185 2822741 2822807 2822999 "SUMFS" 2823327 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1184 2806537 2821918 2822169 "SULS" 2822548 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1183 2806139 2806359 2806429 "SUCHTAST" 2806489 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1182 2805434 2805664 2805804 "SUCH" 2806047 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1181 2799301 2800340 2801299 "SUBSPACE" 2804522 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1180 2798731 2798821 2798985 "SUBRESP" 2799189 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1179 2792099 2793396 2794707 "STTF" 2797467 NIL STTF (NIL T) -7 NIL NIL NIL) (-1178 2786272 2787392 2788539 "STTFNC" 2790999 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1177 2777585 2779454 2781248 "STTAYLOR" 2784513 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1176 2770715 2777449 2777532 "STRTBL" 2777537 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1175 2766079 2770670 2770701 "STRING" 2770706 T STRING (NIL) -8 NIL NIL NIL) (-1174 2760908 2765422 2765452 "STRICAT" 2765511 T STRICAT (NIL) -9 NIL 2765573 NIL) (-1173 2753661 2758527 2759138 "STREAM" 2760332 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1172 2753171 2753248 2753392 "STREAM3" 2753578 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1171 2752153 2752336 2752571 "STREAM2" 2752984 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1170 2751841 2751893 2751986 "STREAM1" 2752095 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1169 2750857 2751038 2751269 "STINPROD" 2751657 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1168 2750409 2750619 2750649 "STEP" 2750729 T STEP (NIL) -9 NIL 2750807 NIL) (-1167 2749596 2749898 2750046 "STEPAST" 2750283 T STEPAST (NIL) -8 NIL NIL NIL) (-1166 2743028 2749495 2749572 "STBL" 2749577 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1165 2738123 2742219 2742262 "STAGG" 2742415 NIL STAGG (NIL T) -9 NIL 2742504 NIL) (-1164 2735825 2736427 2737299 "STAGG-" 2737304 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1163 2733972 2735595 2735687 "STACK" 2735768 NIL STACK (NIL T) -8 NIL NIL NIL) (-1162 2726667 2732113 2732569 "SREGSET" 2733602 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1161 2719092 2720461 2721974 "SRDCMPK" 2725273 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1160 2711977 2716502 2716532 "SRAGG" 2717835 T SRAGG (NIL) -9 NIL 2718443 NIL) (-1159 2710994 2711249 2711628 "SRAGG-" 2711633 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1158 2705365 2709941 2710362 "SQMATRIX" 2710620 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1157 2699050 2702083 2702810 "SPLTREE" 2704710 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1156 2695013 2695706 2696352 "SPLNODE" 2698476 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1155 2694060 2694293 2694323 "SPFCAT" 2694767 T SPFCAT (NIL) -9 NIL NIL NIL) (-1154 2692797 2693007 2693271 "SPECOUT" 2693818 T SPECOUT (NIL) -7 NIL NIL NIL) (-1153 2683907 2685779 2685809 "SPADXPT" 2690485 T SPADXPT (NIL) -9 NIL 2692649 NIL) (-1152 2683668 2683708 2683777 "SPADPRSR" 2683860 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1151 2681717 2683623 2683654 "SPADAST" 2683659 T SPADAST (NIL) -8 NIL NIL NIL) (-1150 2673662 2675435 2675478 "SPACEC" 2679851 NIL SPACEC (NIL T) -9 NIL 2681667 NIL) (-1149 2671792 2673594 2673643 "SPACE3" 2673648 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1148 2670544 2670715 2671006 "SORTPAK" 2671597 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1147 2668636 2668939 2669351 "SOLVETRA" 2670208 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1146 2667686 2667908 2668169 "SOLVESER" 2668409 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1145 2662990 2663878 2664873 "SOLVERAD" 2666738 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1144 2658805 2659414 2660143 "SOLVEFOR" 2662357 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1143 2653075 2658154 2658251 "SNTSCAT" 2658256 NIL SNTSCAT (NIL T T T T) -9 NIL 2658326 NIL) (-1142 2647181 2651398 2651789 "SMTS" 2652765 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1141 2641777 2647069 2647146 "SMP" 2647151 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1140 2639936 2640237 2640635 "SMITH" 2641474 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1139 2632378 2636665 2636768 "SMATCAT" 2638119 NIL SMATCAT (NIL NIL T T T) -9 NIL 2638669 NIL) (-1138 2629096 2629981 2631239 "SMATCAT-" 2631244 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1137 2626762 2628332 2628375 "SKAGG" 2628636 NIL SKAGG (NIL T) -9 NIL 2628771 NIL) (-1136 2623038 2626235 2626419 "SINT" 2626571 T SINT (NIL) -8 NIL NIL 2626733) (-1135 2622810 2622848 2622914 "SIMPAN" 2622994 T SIMPAN (NIL) -7 NIL NIL NIL) (-1134 2622089 2622345 2622485 "SIG" 2622692 T SIG (NIL) -8 NIL NIL NIL) (-1133 2620927 2621148 2621423 "SIGNRF" 2621848 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1132 2619760 2619911 2620195 "SIGNEF" 2620756 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1131 2619066 2619343 2619467 "SIGAST" 2619658 T SIGAST (NIL) -8 NIL NIL NIL) (-1130 2616756 2617210 2617716 "SHP" 2618607 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1129 2610752 2616657 2616733 "SHDP" 2616738 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1128 2610325 2610517 2610547 "SGROUP" 2610640 T SGROUP (NIL) -9 NIL 2610702 NIL) (-1127 2610183 2610209 2610282 "SGROUP-" 2610287 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1126 2606974 2607672 2608395 "SGCF" 2609482 T SGCF (NIL) -7 NIL NIL NIL) (-1125 2601342 2606421 2606518 "SFRTCAT" 2606523 NIL SFRTCAT (NIL T T T T) -9 NIL 2606562 NIL) (-1124 2594763 2595781 2596917 "SFRGCD" 2600325 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1123 2587889 2588962 2590148 "SFQCMPK" 2593696 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1122 2587509 2587598 2587709 "SFORT" 2587830 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1121 2586627 2587349 2587470 "SEXOF" 2587475 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1120 2585734 2586508 2586576 "SEX" 2586581 T SEX (NIL) -8 NIL NIL NIL) (-1119 2581515 2582230 2582325 "SEXCAT" 2584947 NIL SEXCAT (NIL T T T T T) -9 NIL 2585507 NIL) (-1118 2578668 2581449 2581497 "SET" 2581502 NIL SET (NIL T) -8 NIL NIL NIL) (-1117 2576892 2577381 2577686 "SETMN" 2578409 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1116 2576388 2576540 2576570 "SETCAT" 2576746 T SETCAT (NIL) -9 NIL 2576856 NIL) (-1115 2576080 2576158 2576288 "SETCAT-" 2576293 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1114 2572441 2574541 2574584 "SETAGG" 2575454 NIL SETAGG (NIL T) -9 NIL 2575794 NIL) (-1113 2571899 2572015 2572252 "SETAGG-" 2572257 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1112 2571342 2571595 2571696 "SEQAST" 2571820 T SEQAST (NIL) -8 NIL NIL NIL) (-1111 2570541 2570835 2570896 "SEGXCAT" 2571182 NIL SEGXCAT (NIL T T) -9 NIL 2571302 NIL) (-1110 2569547 2570207 2570389 "SEG" 2570394 NIL SEG (NIL T) -8 NIL NIL NIL) (-1109 2568526 2568740 2568783 "SEGCAT" 2569305 NIL SEGCAT (NIL T) -9 NIL 2569526 NIL) (-1108 2567458 2567889 2568097 "SEGBIND" 2568353 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1107 2567079 2567138 2567251 "SEGBIND2" 2567393 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1106 2566652 2566880 2566957 "SEGAST" 2567024 T SEGAST (NIL) -8 NIL NIL NIL) (-1105 2565871 2565997 2566201 "SEG2" 2566496 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1104 2565242 2565806 2565853 "SDVAR" 2565858 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1103 2557680 2565012 2565142 "SDPOL" 2565147 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1102 2556273 2556539 2556858 "SCPKG" 2557395 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1101 2555437 2555609 2555801 "SCOPE" 2556103 T SCOPE (NIL) -8 NIL NIL NIL) (-1100 2554657 2554791 2554970 "SCACHE" 2555292 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1099 2554303 2554489 2554519 "SASTCAT" 2554524 T SASTCAT (NIL) -9 NIL 2554537 NIL) (-1098 2553790 2554138 2554214 "SAOS" 2554249 T SAOS (NIL) -8 NIL NIL NIL) (-1097 2553355 2553390 2553563 "SAERFFC" 2553749 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1096 2547205 2553252 2553332 "SAE" 2553337 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1095 2546798 2546833 2546992 "SAEFACT" 2547164 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1094 2545119 2545433 2545834 "RURPK" 2546464 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1093 2543756 2544062 2544367 "RULESET" 2544953 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1092 2540979 2541509 2541967 "RULE" 2543437 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1091 2540591 2540773 2540856 "RULECOLD" 2540931 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1090 2540381 2540409 2540480 "RTVALUE" 2540542 T RTVALUE (NIL) -8 NIL NIL NIL) (-1089 2539852 2540098 2540192 "RSTRCAST" 2540309 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1088 2534700 2535495 2536415 "RSETGCD" 2539051 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1087 2523930 2529009 2529106 "RSETCAT" 2533225 NIL RSETCAT (NIL T T T T) -9 NIL 2534322 NIL) (-1086 2521857 2522396 2523220 "RSETCAT-" 2523225 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1085 2514243 2515619 2517139 "RSDCMPK" 2520456 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1084 2512222 2512689 2512763 "RRCC" 2513849 NIL RRCC (NIL T T) -9 NIL 2514193 NIL) (-1083 2511573 2511747 2512026 "RRCC-" 2512031 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1082 2511016 2511269 2511370 "RPTAST" 2511494 T RPTAST (NIL) -8 NIL NIL NIL) (-1081 2484679 2494128 2494195 "RPOLCAT" 2504861 NIL RPOLCAT (NIL T T T) -9 NIL 2508021 NIL) (-1080 2476177 2478517 2481639 "RPOLCAT-" 2481644 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1079 2467108 2474388 2474870 "ROUTINE" 2475717 T ROUTINE (NIL) -8 NIL NIL NIL) (-1078 2463855 2466734 2466874 "ROMAN" 2466990 T ROMAN (NIL) -8 NIL NIL NIL) (-1077 2462099 2462715 2462975 "ROIRC" 2463660 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1076 2458331 2460615 2460645 "RNS" 2460949 T RNS (NIL) -9 NIL 2461223 NIL) (-1075 2456840 2457223 2457757 "RNS-" 2457832 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1074 2456243 2456651 2456681 "RNG" 2456686 T RNG (NIL) -9 NIL 2456707 NIL) (-1073 2455246 2455608 2455810 "RNGBIND" 2456094 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1072 2454645 2455033 2455076 "RMODULE" 2455081 NIL RMODULE (NIL T) -9 NIL 2455108 NIL) (-1071 2453481 2453575 2453911 "RMCAT2" 2454546 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1070 2450331 2452827 2453124 "RMATRIX" 2453243 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1069 2443158 2445418 2445533 "RMATCAT" 2448892 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2449874 NIL) (-1068 2442533 2442680 2442987 "RMATCAT-" 2442992 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1067 2441934 2442155 2442198 "RLINSET" 2442392 NIL RLINSET (NIL T) -9 NIL 2442483 NIL) (-1066 2441501 2441576 2441704 "RINTERP" 2441853 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1065 2440559 2441113 2441143 "RING" 2441199 T RING (NIL) -9 NIL 2441291 NIL) (-1064 2440351 2440395 2440492 "RING-" 2440497 NIL RING- (NIL T) -8 NIL NIL NIL) (-1063 2439192 2439429 2439687 "RIDIST" 2440115 T RIDIST (NIL) -7 NIL NIL NIL) (-1062 2430481 2438660 2438866 "RGCHAIN" 2439040 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1061 2429831 2430237 2430278 "RGBCSPC" 2430336 NIL RGBCSPC (NIL T) -9 NIL 2430388 NIL) (-1060 2428989 2429370 2429411 "RGBCMDL" 2429643 NIL RGBCMDL (NIL T) -9 NIL 2429757 NIL) (-1059 2425983 2426597 2427267 "RF" 2428353 NIL RF (NIL T) -7 NIL NIL NIL) (-1058 2425629 2425692 2425795 "RFFACTOR" 2425914 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1057 2425354 2425389 2425486 "RFFACT" 2425588 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1056 2423471 2423835 2424217 "RFDIST" 2424994 T RFDIST (NIL) -7 NIL NIL NIL) (-1055 2422924 2423016 2423179 "RETSOL" 2423373 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1054 2422560 2422640 2422683 "RETRACT" 2422816 NIL RETRACT (NIL T) -9 NIL 2422903 NIL) (-1053 2422409 2422434 2422521 "RETRACT-" 2422526 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1052 2422011 2422231 2422301 "RETAST" 2422361 T RETAST (NIL) -8 NIL NIL NIL) (-1051 2414749 2421664 2421791 "RESULT" 2421906 T RESULT (NIL) -8 NIL NIL NIL) (-1050 2413340 2414018 2414217 "RESRING" 2414652 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1049 2412976 2413025 2413123 "RESLATC" 2413277 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1048 2412681 2412716 2412823 "REPSQ" 2412935 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1047 2410103 2410683 2411285 "REP" 2412101 T REP (NIL) -7 NIL NIL NIL) (-1046 2409800 2409835 2409946 "REPDB" 2410062 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1045 2403700 2405089 2406312 "REP2" 2408612 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1044 2400077 2400758 2401566 "REP1" 2402927 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1043 2392773 2398218 2398674 "REGSET" 2399707 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1042 2391538 2391921 2392171 "REF" 2392558 NIL REF (NIL T) -8 NIL NIL NIL) (-1041 2390915 2391018 2391185 "REDORDER" 2391422 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1040 2386883 2390128 2390355 "RECLOS" 2390743 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1039 2385935 2386116 2386331 "REALSOLV" 2386690 T REALSOLV (NIL) -7 NIL NIL NIL) (-1038 2385781 2385822 2385852 "REAL" 2385857 T REAL (NIL) -9 NIL 2385892 NIL) (-1037 2382264 2383066 2383950 "REAL0Q" 2384946 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1036 2377865 2378853 2379914 "REAL0" 2381245 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1035 2377336 2377582 2377676 "RDUCEAST" 2377793 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1034 2376741 2376813 2377020 "RDIV" 2377258 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1033 2375809 2375983 2376196 "RDIST" 2376563 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1032 2374406 2374693 2375065 "RDETRS" 2375517 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1031 2372218 2372672 2373210 "RDETR" 2373948 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1030 2370843 2371121 2371518 "RDEEFS" 2371934 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1029 2369352 2369658 2370083 "RDEEF" 2370531 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1028 2363413 2366333 2366363 "RCFIELD" 2367658 T RCFIELD (NIL) -9 NIL 2368389 NIL) (-1027 2361477 2361981 2362677 "RCFIELD-" 2362752 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1026 2357746 2359578 2359621 "RCAGG" 2360705 NIL RCAGG (NIL T) -9 NIL 2361170 NIL) (-1025 2357374 2357468 2357631 "RCAGG-" 2357636 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1024 2356709 2356821 2356986 "RATRET" 2357258 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1023 2356262 2356329 2356450 "RATFACT" 2356637 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1022 2355570 2355690 2355842 "RANDSRC" 2356132 T RANDSRC (NIL) -7 NIL NIL NIL) (-1021 2355304 2355348 2355421 "RADUTIL" 2355519 T RADUTIL (NIL) -7 NIL NIL NIL) (-1020 2348325 2354135 2354446 "RADIX" 2355027 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1019 2339841 2348167 2348297 "RADFF" 2348302 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1018 2339488 2339563 2339593 "RADCAT" 2339753 T RADCAT (NIL) -9 NIL NIL NIL) (-1017 2339270 2339318 2339418 "RADCAT-" 2339423 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1016 2337368 2339040 2339132 "QUEUE" 2339213 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1015 2333816 2337301 2337349 "QUAT" 2337354 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1014 2333447 2333490 2333621 "QUATCT2" 2333767 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1013 2326531 2329967 2330009 "QUATCAT" 2330800 NIL QUATCAT (NIL T) -9 NIL 2331566 NIL) (-1012 2322670 2323707 2325097 "QUATCAT-" 2325193 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1011 2320135 2321746 2321789 "QUAGG" 2322170 NIL QUAGG (NIL T) -9 NIL 2322345 NIL) (-1010 2319737 2319957 2320027 "QQUTAST" 2320087 T QQUTAST (NIL) -8 NIL NIL NIL) (-1009 2318750 2319250 2319415 "QFORM" 2319618 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1008 2309474 2314802 2314844 "QFCAT" 2315512 NIL QFCAT (NIL T) -9 NIL 2316513 NIL) (-1007 2304819 2306082 2307756 "QFCAT-" 2307852 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1006 2304450 2304493 2304624 "QFCAT2" 2304770 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1005 2303905 2304015 2304147 "QEQUAT" 2304340 T QEQUAT (NIL) -8 NIL NIL NIL) (-1004 2297031 2298104 2299290 "QCMPACK" 2302838 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1003 2294569 2295017 2295447 "QALGSET" 2296686 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1002 2293804 2293980 2294216 "QALGSET2" 2294387 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1001 2292489 2292713 2293032 "PWFFINTB" 2293577 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1000 2290664 2290832 2291188 "PUSHVAR" 2292303 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-999 2286582 2287636 2287677 "PTRANFN" 2289561 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-998 2284984 2285275 2285597 "PTPACK" 2286293 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-997 2284616 2284673 2284782 "PTFUNC2" 2284921 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-996 2279061 2283458 2283499 "PTCAT" 2283795 NIL PTCAT (NIL T) -9 NIL 2283948 NIL) (-995 2278719 2278754 2278878 "PSQFR" 2279020 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-994 2277314 2277612 2277946 "PSEUDLIN" 2278417 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-993 2264077 2266448 2268772 "PSETPK" 2275074 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-992 2257095 2259835 2259931 "PSETCAT" 2262952 NIL PSETCAT (NIL T T T T) -9 NIL 2263766 NIL) (-991 2254931 2255565 2256386 "PSETCAT-" 2256391 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-990 2254280 2254445 2254473 "PSCURVE" 2254741 T PSCURVE (NIL) -9 NIL 2254908 NIL) (-989 2250278 2251794 2251859 "PSCAT" 2252703 NIL PSCAT (NIL T T T) -9 NIL 2252943 NIL) (-988 2249341 2249557 2249957 "PSCAT-" 2249962 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-987 2247700 2248410 2248673 "PRTITION" 2249098 T PRTITION (NIL) -8 NIL NIL NIL) (-986 2247175 2247421 2247513 "PRTDAST" 2247628 T PRTDAST (NIL) -8 NIL NIL NIL) (-985 2236265 2238479 2240667 "PRS" 2245037 NIL PRS (NIL T T) -7 NIL NIL NIL) (-984 2234076 2235615 2235655 "PRQAGG" 2235838 NIL PRQAGG (NIL T) -9 NIL 2235940 NIL) (-983 2233412 2233717 2233745 "PROPLOG" 2233884 T PROPLOG (NIL) -9 NIL 2233999 NIL) (-982 2233016 2233073 2233196 "PROPFUN2" 2233335 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-981 2232331 2232452 2232624 "PROPFUN1" 2232877 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-980 2230512 2231078 2231375 "PROPFRML" 2232067 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-979 2229981 2230088 2230216 "PROPERTY" 2230404 T PROPERTY (NIL) -8 NIL NIL NIL) (-978 2224039 2228147 2228967 "PRODUCT" 2229207 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-977 2221317 2223497 2223731 "PR" 2223850 NIL PR (NIL T T) -8 NIL NIL NIL) (-976 2221113 2221145 2221204 "PRINT" 2221278 T PRINT (NIL) -7 NIL NIL NIL) (-975 2220453 2220570 2220722 "PRIMES" 2220993 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-974 2218518 2218919 2219385 "PRIMELT" 2220032 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-973 2218247 2218296 2218324 "PRIMCAT" 2218448 T PRIMCAT (NIL) -9 NIL NIL NIL) (-972 2214362 2218185 2218230 "PRIMARR" 2218235 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-971 2213369 2213547 2213775 "PRIMARR2" 2214180 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-970 2213012 2213068 2213179 "PREASSOC" 2213307 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-969 2212487 2212620 2212648 "PPCURVE" 2212853 T PPCURVE (NIL) -9 NIL 2212989 NIL) (-968 2212082 2212282 2212365 "PORTNUM" 2212424 T PORTNUM (NIL) -8 NIL NIL NIL) (-967 2209441 2209840 2210432 "POLYROOT" 2211663 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-966 2203534 2209045 2209205 "POLY" 2209314 NIL POLY (NIL T) -8 NIL NIL NIL) (-965 2202917 2202975 2203209 "POLYLIFT" 2203470 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-964 2199192 2199641 2200270 "POLYCATQ" 2202462 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-963 2185721 2190939 2191004 "POLYCAT" 2194518 NIL POLYCAT (NIL T T T) -9 NIL 2196396 NIL) (-962 2178948 2180872 2183336 "POLYCAT-" 2183341 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-961 2178535 2178603 2178723 "POLY2UP" 2178874 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-960 2178167 2178224 2178333 "POLY2" 2178472 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-959 2176852 2177091 2177367 "POLUTIL" 2177941 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-958 2175207 2175484 2175815 "POLTOPOL" 2176574 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-957 2170672 2175143 2175189 "POINT" 2175194 NIL POINT (NIL T) -8 NIL NIL NIL) (-956 2168859 2169216 2169591 "PNTHEORY" 2170317 T PNTHEORY (NIL) -7 NIL NIL NIL) (-955 2167317 2167614 2168013 "PMTOOLS" 2168557 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-954 2166910 2166988 2167105 "PMSYM" 2167233 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-953 2166418 2166487 2166662 "PMQFCAT" 2166835 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-952 2165773 2165883 2166039 "PMPRED" 2166295 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-951 2165166 2165252 2165414 "PMPREDFS" 2165674 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-950 2163830 2164038 2164416 "PMPLCAT" 2164928 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-949 2163362 2163441 2163593 "PMLSAGG" 2163745 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-948 2162835 2162911 2163093 "PMKERNEL" 2163280 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-947 2162452 2162527 2162640 "PMINS" 2162754 NIL PMINS (NIL T) -7 NIL NIL NIL) (-946 2161894 2161963 2162172 "PMFS" 2162377 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-945 2161122 2161240 2161445 "PMDOWN" 2161771 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-944 2160289 2160447 2160628 "PMASS" 2160961 T PMASS (NIL) -7 NIL NIL NIL) (-943 2159562 2159672 2159835 "PMASSFS" 2160176 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-942 2159217 2159285 2159379 "PLOTTOOL" 2159488 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-941 2153824 2155028 2156176 "PLOT" 2158089 T PLOT (NIL) -8 NIL NIL NIL) (-940 2149628 2150672 2151593 "PLOT3D" 2152923 T PLOT3D (NIL) -8 NIL NIL NIL) (-939 2148540 2148717 2148952 "PLOT1" 2149432 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-938 2123931 2128606 2133457 "PLEQN" 2143806 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-937 2123249 2123371 2123551 "PINTERP" 2123796 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-936 2122942 2122989 2123092 "PINTERPA" 2123196 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-935 2122158 2122706 2122793 "PI" 2122833 T PI (NIL) -8 NIL NIL 2122900) (-934 2120455 2121430 2121458 "PID" 2121640 T PID (NIL) -9 NIL 2121774 NIL) (-933 2120206 2120243 2120318 "PICOERCE" 2120412 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-932 2119526 2119665 2119841 "PGROEB" 2120062 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-931 2115113 2115927 2116832 "PGE" 2118641 T PGE (NIL) -7 NIL NIL NIL) (-930 2113236 2113483 2113849 "PGCD" 2114830 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-929 2112574 2112677 2112838 "PFRPAC" 2113120 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-928 2109214 2111122 2111475 "PFR" 2112253 NIL PFR (NIL T) -8 NIL NIL NIL) (-927 2107603 2107847 2108172 "PFOTOOLS" 2108961 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-926 2106136 2106375 2106726 "PFOQ" 2107360 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-925 2104637 2104849 2105205 "PFO" 2105920 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-924 2101190 2104526 2104595 "PF" 2104600 NIL PF (NIL NIL) -8 NIL NIL NIL) (-923 2098524 2099795 2099823 "PFECAT" 2100408 T PFECAT (NIL) -9 NIL 2100792 NIL) (-922 2097969 2098123 2098337 "PFECAT-" 2098342 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-921 2096572 2096824 2097125 "PFBRU" 2097718 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-920 2094438 2094790 2095222 "PFBR" 2096223 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-919 2090484 2091950 2092597 "PERM" 2093824 NIL PERM (NIL T) -8 NIL NIL NIL) (-918 2085718 2086691 2087561 "PERMGRP" 2089647 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-917 2083837 2084797 2084838 "PERMCAT" 2085238 NIL PERMCAT (NIL T) -9 NIL 2085536 NIL) (-916 2083490 2083531 2083655 "PERMAN" 2083790 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-915 2080978 2083155 2083277 "PENDTREE" 2083401 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-914 2079907 2080122 2080163 "PDSPC" 2080696 NIL PDSPC (NIL T) -9 NIL 2080941 NIL) (-913 2079010 2079228 2079590 "PDSPC-" 2079595 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-912 2077892 2078660 2078701 "PDRING" 2078706 NIL PDRING (NIL T) -9 NIL 2078734 NIL) (-911 2075107 2075885 2076553 "PDEPROB" 2077244 T PDEPROB (NIL) -8 NIL NIL NIL) (-910 2072652 2073156 2073711 "PDEPACK" 2074572 T PDEPACK (NIL) -7 NIL NIL NIL) (-909 2071564 2071754 2072005 "PDECOMP" 2072451 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-908 2069143 2069986 2070014 "PDECAT" 2070801 T PDECAT (NIL) -9 NIL 2071514 NIL) (-907 2068772 2068827 2068881 "PDDOM" 2069046 NIL PDDOM (NIL T T) -9 NIL 2069126 NIL) (-906 2068591 2068621 2068728 "PDDOM-" 2068733 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-905 2068342 2068375 2068465 "PCOMP" 2068552 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-904 2066520 2067143 2067440 "PBWLB" 2068071 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-903 2058993 2060593 2061931 "PATTERN" 2065203 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-902 2058625 2058682 2058791 "PATTERN2" 2058930 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-901 2056382 2056770 2057227 "PATTERN1" 2058214 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-900 2053750 2054331 2054812 "PATRES" 2055947 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-899 2053314 2053381 2053513 "PATRES2" 2053677 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-898 2051197 2051602 2052009 "PATMATCH" 2052981 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-897 2050707 2050916 2050957 "PATMAB" 2051064 NIL PATMAB (NIL T) -9 NIL 2051147 NIL) (-896 2049225 2049561 2049819 "PATLRES" 2050512 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-895 2048771 2048894 2048935 "PATAB" 2048940 NIL PATAB (NIL T) -9 NIL 2049112 NIL) (-894 2046953 2047348 2047771 "PARTPERM" 2048368 T PARTPERM (NIL) -7 NIL NIL NIL) (-893 2046574 2046637 2046739 "PARSURF" 2046884 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-892 2046206 2046263 2046372 "PARSU2" 2046511 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-891 2045970 2046010 2046077 "PARSER" 2046159 T PARSER (NIL) -7 NIL NIL NIL) (-890 2045591 2045654 2045756 "PARSCURV" 2045901 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-889 2045223 2045280 2045389 "PARSC2" 2045528 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-888 2044862 2044920 2045017 "PARPCURV" 2045159 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-887 2044494 2044551 2044660 "PARPC2" 2044799 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-886 2043555 2043867 2044049 "PARAMAST" 2044332 T PARAMAST (NIL) -8 NIL NIL NIL) (-885 2043075 2043161 2043280 "PAN2EXPR" 2043456 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-884 2041852 2042196 2042424 "PALETTE" 2042867 T PALETTE (NIL) -8 NIL NIL NIL) (-883 2040245 2040857 2041217 "PAIR" 2041538 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-882 2034024 2039502 2039697 "PADICRC" 2040099 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-881 2027148 2033368 2033553 "PADICRAT" 2033871 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-880 2025463 2027085 2027130 "PADIC" 2027135 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-879 2022573 2024137 2024177 "PADICCT" 2024758 NIL PADICCT (NIL NIL) -9 NIL 2025040 NIL) (-878 2021530 2021730 2021998 "PADEPAC" 2022360 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-877 2020742 2020875 2021081 "PADE" 2021392 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-876 2019129 2019950 2020230 "OWP" 2020546 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-875 2018622 2018835 2018932 "OVERSET" 2019052 T OVERSET (NIL) -8 NIL NIL NIL) (-874 2017668 2018227 2018399 "OVAR" 2018490 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-873 2016932 2017053 2017214 "OUT" 2017527 T OUT (NIL) -7 NIL NIL NIL) (-872 2005804 2008041 2010241 "OUTFORM" 2014752 T OUTFORM (NIL) -8 NIL NIL NIL) (-871 2005140 2005401 2005528 "OUTBFILE" 2005697 T OUTBFILE (NIL) -8 NIL NIL NIL) (-870 2004447 2004612 2004640 "OUTBCON" 2004958 T OUTBCON (NIL) -9 NIL 2005124 NIL) (-869 2004048 2004160 2004317 "OUTBCON-" 2004322 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-868 2003428 2003777 2003866 "OSI" 2003979 T OSI (NIL) -8 NIL NIL NIL) (-867 2002958 2003296 2003324 "OSGROUP" 2003329 T OSGROUP (NIL) -9 NIL 2003351 NIL) (-866 2001703 2001930 2002215 "ORTHPOL" 2002705 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-865 1999254 2001538 2001659 "OREUP" 2001664 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-864 1996657 1998945 1999072 "ORESUP" 1999196 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-863 1994185 1994685 1995246 "OREPCTO" 1996146 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-862 1987871 1990072 1990113 "OREPCAT" 1992461 NIL OREPCAT (NIL T) -9 NIL 1993565 NIL) (-861 1985018 1985800 1986858 "OREPCAT-" 1986863 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-860 1984169 1984467 1984495 "ORDSET" 1984804 T ORDSET (NIL) -9 NIL 1984968 NIL) (-859 1983600 1983748 1983972 "ORDSET-" 1983977 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-858 1982165 1982956 1982984 "ORDRING" 1983186 T ORDRING (NIL) -9 NIL 1983311 NIL) (-857 1981810 1981904 1982048 "ORDRING-" 1982053 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-856 1981190 1981653 1981681 "ORDMON" 1981686 T ORDMON (NIL) -9 NIL 1981707 NIL) (-855 1980352 1980499 1980694 "ORDFUNS" 1981039 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-854 1979690 1980109 1980137 "ORDFIN" 1980202 T ORDFIN (NIL) -9 NIL 1980276 NIL) (-853 1976249 1978276 1978685 "ORDCOMP" 1979314 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-852 1975515 1975642 1975828 "ORDCOMP2" 1976109 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-851 1972096 1973006 1973820 "OPTPROB" 1974721 T OPTPROB (NIL) -8 NIL NIL NIL) (-850 1968898 1969537 1970241 "OPTPACK" 1971412 T OPTPACK (NIL) -7 NIL NIL NIL) (-849 1966585 1967351 1967379 "OPTCAT" 1968198 T OPTCAT (NIL) -9 NIL 1968848 NIL) (-848 1965969 1966262 1966367 "OPSIG" 1966500 T OPSIG (NIL) -8 NIL NIL NIL) (-847 1965737 1965776 1965842 "OPQUERY" 1965923 T OPQUERY (NIL) -7 NIL NIL NIL) (-846 1962868 1964048 1964552 "OP" 1965266 NIL OP (NIL T) -8 NIL NIL NIL) (-845 1962242 1962468 1962509 "OPERCAT" 1962721 NIL OPERCAT (NIL T) -9 NIL 1962818 NIL) (-844 1961997 1962053 1962170 "OPERCAT-" 1962175 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-843 1958810 1960794 1961163 "ONECOMP" 1961661 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-842 1958115 1958230 1958404 "ONECOMP2" 1958682 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1957534 1957640 1957770 "OMSERVER" 1958005 T OMSERVER (NIL) -7 NIL NIL NIL) (-840 1954396 1956974 1957014 "OMSAGG" 1957075 NIL OMSAGG (NIL T) -9 NIL 1957139 NIL) (-839 1953019 1953282 1953564 "OMPKG" 1954134 T OMPKG (NIL) -7 NIL NIL NIL) (-838 1952449 1952552 1952580 "OM" 1952879 T OM (NIL) -9 NIL NIL NIL) (-837 1950996 1951998 1952167 "OMLO" 1952330 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-836 1949956 1950103 1950323 "OMEXPR" 1950822 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-835 1949247 1949502 1949638 "OMERR" 1949840 T OMERR (NIL) -8 NIL NIL NIL) (-834 1948398 1948668 1948828 "OMERRK" 1949107 T OMERRK (NIL) -8 NIL NIL NIL) (-833 1947849 1948075 1948183 "OMENC" 1948310 T OMENC (NIL) -8 NIL NIL NIL) (-832 1941744 1942929 1944100 "OMDEV" 1946698 T OMDEV (NIL) -8 NIL NIL NIL) (-831 1940813 1940984 1941178 "OMCONN" 1941570 T OMCONN (NIL) -8 NIL NIL NIL) (-830 1939334 1940310 1940338 "OINTDOM" 1940343 T OINTDOM (NIL) -9 NIL 1940364 NIL) (-829 1936672 1938022 1938359 "OFMONOID" 1939029 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-828 1936044 1936609 1936654 "ODVAR" 1936659 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-827 1933467 1935789 1935944 "ODR" 1935949 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-826 1925959 1933243 1933369 "ODPOL" 1933374 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-825 1919925 1925831 1925936 "ODP" 1925941 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-824 1918691 1918906 1919181 "ODETOOLS" 1919699 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-823 1915658 1916316 1917032 "ODESYS" 1918024 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-822 1910540 1911448 1912473 "ODERTRIC" 1914733 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-821 1909966 1910048 1910242 "ODERED" 1910452 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-820 1906854 1907402 1908079 "ODERAT" 1909389 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-819 1903813 1904278 1904875 "ODEPRRIC" 1906383 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-818 1901756 1902352 1902838 "ODEPROB" 1903347 T ODEPROB (NIL) -8 NIL NIL NIL) (-817 1898276 1898761 1899408 "ODEPRIM" 1901235 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-816 1897525 1897627 1897887 "ODEPAL" 1898168 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-815 1893687 1894478 1895342 "ODEPACK" 1896681 T ODEPACK (NIL) -7 NIL NIL NIL) (-814 1892748 1892855 1893077 "ODEINT" 1893576 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-813 1886849 1888274 1889721 "ODEIFTBL" 1891321 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-812 1882247 1883033 1883985 "ODEEF" 1886008 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-811 1881596 1881685 1881908 "ODECONST" 1882152 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-810 1879721 1880382 1880410 "ODECAT" 1881015 T ODECAT (NIL) -9 NIL 1881546 NIL) (-809 1876576 1879426 1879548 "OCT" 1879631 NIL OCT (NIL T) -8 NIL NIL NIL) (-808 1876214 1876257 1876384 "OCTCT2" 1876527 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-807 1870825 1873260 1873300 "OC" 1874397 NIL OC (NIL T) -9 NIL 1875255 NIL) (-806 1868052 1868800 1869790 "OC-" 1869884 NIL OC- (NIL T T) -8 NIL NIL NIL) (-805 1867404 1867872 1867900 "OCAMON" 1867905 T OCAMON (NIL) -9 NIL 1867926 NIL) (-804 1866935 1867276 1867304 "OASGP" 1867309 T OASGP (NIL) -9 NIL 1867329 NIL) (-803 1866196 1866685 1866713 "OAMONS" 1866753 T OAMONS (NIL) -9 NIL 1866796 NIL) (-802 1865610 1866043 1866071 "OAMON" 1866076 T OAMON (NIL) -9 NIL 1866096 NIL) (-801 1864868 1865386 1865414 "OAGROUP" 1865419 T OAGROUP (NIL) -9 NIL 1865439 NIL) (-800 1864558 1864608 1864696 "NUMTUBE" 1864812 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-799 1858131 1859649 1861185 "NUMQUAD" 1863042 T NUMQUAD (NIL) -7 NIL NIL NIL) (-798 1853887 1854875 1855900 "NUMODE" 1857126 T NUMODE (NIL) -7 NIL NIL NIL) (-797 1851242 1852122 1852150 "NUMINT" 1853073 T NUMINT (NIL) -9 NIL 1853837 NIL) (-796 1850190 1850387 1850605 "NUMFMT" 1851044 T NUMFMT (NIL) -7 NIL NIL NIL) (-795 1836549 1839494 1842026 "NUMERIC" 1847697 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-794 1830919 1835998 1836093 "NTSCAT" 1836098 NIL NTSCAT (NIL T T T T) -9 NIL 1836137 NIL) (-793 1830113 1830278 1830471 "NTPOLFN" 1830758 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-792 1818101 1826938 1827750 "NSUP" 1829334 NIL NSUP (NIL T) -8 NIL NIL NIL) (-791 1817733 1817790 1817899 "NSUP2" 1818038 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-790 1807870 1817507 1817640 "NSMP" 1817645 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-789 1806302 1806603 1806960 "NREP" 1807558 NIL NREP (NIL T) -7 NIL NIL NIL) (-788 1804893 1805145 1805503 "NPCOEF" 1806045 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-787 1803959 1804074 1804290 "NORMRETR" 1804774 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-786 1802000 1802290 1802699 "NORMPK" 1803667 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-785 1801685 1801713 1801837 "NORMMA" 1801966 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-784 1801485 1801642 1801671 "NONE" 1801676 T NONE (NIL) -8 NIL NIL NIL) (-783 1801274 1801303 1801372 "NONE1" 1801449 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-782 1800771 1800833 1801012 "NODE1" 1801206 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-781 1799052 1799903 1800158 "NNI" 1800505 T NNI (NIL) -8 NIL NIL 1800740) (-780 1797472 1797785 1798149 "NLINSOL" 1798720 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-779 1793713 1794708 1795607 "NIPROB" 1796593 T NIPROB (NIL) -8 NIL NIL NIL) (-778 1792470 1792704 1793006 "NFINTBAS" 1793475 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-777 1791644 1792120 1792161 "NETCLT" 1792333 NIL NETCLT (NIL T) -9 NIL 1792415 NIL) (-776 1790352 1790583 1790864 "NCODIV" 1791412 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-775 1790114 1790151 1790226 "NCNTFRAC" 1790309 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-774 1788294 1788658 1789078 "NCEP" 1789739 NIL NCEP (NIL T) -7 NIL NIL NIL) (-773 1787145 1787918 1787946 "NASRING" 1788056 T NASRING (NIL) -9 NIL 1788136 NIL) (-772 1786940 1786984 1787078 "NASRING-" 1787083 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-771 1786047 1786572 1786600 "NARNG" 1786717 T NARNG (NIL) -9 NIL 1786808 NIL) (-770 1785739 1785806 1785940 "NARNG-" 1785945 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-769 1784618 1784825 1785060 "NAGSP" 1785524 T NAGSP (NIL) -7 NIL NIL NIL) (-768 1775890 1777574 1779247 "NAGS" 1782965 T NAGS (NIL) -7 NIL NIL NIL) (-767 1774438 1774746 1775077 "NAGF07" 1775579 T NAGF07 (NIL) -7 NIL NIL NIL) (-766 1768976 1770267 1771574 "NAGF04" 1773151 T NAGF04 (NIL) -7 NIL NIL NIL) (-765 1761944 1763558 1765191 "NAGF02" 1767363 T NAGF02 (NIL) -7 NIL NIL NIL) (-764 1757168 1758268 1759385 "NAGF01" 1760847 T NAGF01 (NIL) -7 NIL NIL NIL) (-763 1750796 1752362 1753947 "NAGE04" 1755603 T NAGE04 (NIL) -7 NIL NIL NIL) (-762 1741965 1744086 1746216 "NAGE02" 1748686 T NAGE02 (NIL) -7 NIL NIL NIL) (-761 1737918 1738865 1739829 "NAGE01" 1741021 T NAGE01 (NIL) -7 NIL NIL NIL) (-760 1735713 1736247 1736805 "NAGD03" 1737380 T NAGD03 (NIL) -7 NIL NIL NIL) (-759 1727463 1729391 1731345 "NAGD02" 1733779 T NAGD02 (NIL) -7 NIL NIL NIL) (-758 1721274 1722699 1724139 "NAGD01" 1726043 T NAGD01 (NIL) -7 NIL NIL NIL) (-757 1717483 1718305 1719142 "NAGC06" 1720457 T NAGC06 (NIL) -7 NIL NIL NIL) (-756 1715948 1716280 1716636 "NAGC05" 1717147 T NAGC05 (NIL) -7 NIL NIL NIL) (-755 1715324 1715443 1715587 "NAGC02" 1715824 T NAGC02 (NIL) -7 NIL NIL NIL) (-754 1714283 1714866 1714906 "NAALG" 1714985 NIL NAALG (NIL T) -9 NIL 1715046 NIL) (-753 1714118 1714147 1714237 "NAALG-" 1714242 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-752 1708068 1709176 1710363 "MULTSQFR" 1713014 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-751 1707387 1707462 1707646 "MULTFACT" 1707980 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-750 1700058 1703972 1704025 "MTSCAT" 1705095 NIL MTSCAT (NIL T T) -9 NIL 1705610 NIL) (-749 1699770 1699824 1699916 "MTHING" 1699998 NIL MTHING (NIL T) -7 NIL NIL NIL) (-748 1699562 1699595 1699655 "MSYSCMD" 1699730 T MSYSCMD (NIL) -7 NIL NIL NIL) (-747 1695644 1698317 1698637 "MSET" 1699275 NIL MSET (NIL T) -8 NIL NIL NIL) (-746 1692713 1695205 1695246 "MSETAGG" 1695251 NIL MSETAGG (NIL T) -9 NIL 1695285 NIL) (-745 1688555 1690092 1690837 "MRING" 1692013 NIL MRING (NIL T T) -8 NIL NIL NIL) (-744 1688121 1688188 1688319 "MRF2" 1688482 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-743 1687739 1687774 1687918 "MRATFAC" 1688080 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-742 1685351 1685646 1686077 "MPRFF" 1687444 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-741 1679559 1685205 1685302 "MPOLY" 1685307 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-740 1679049 1679084 1679292 "MPCPF" 1679518 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-739 1678563 1678606 1678790 "MPC3" 1679000 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1677758 1677839 1678060 "MPC2" 1678478 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-737 1676059 1676396 1676786 "MONOTOOL" 1677418 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-736 1675284 1675601 1675629 "MONOID" 1675848 T MONOID (NIL) -9 NIL 1675995 NIL) (-735 1674830 1674949 1675130 "MONOID-" 1675135 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-734 1664738 1670780 1670839 "MONOGEN" 1671513 NIL MONOGEN (NIL T T) -9 NIL 1671969 NIL) (-733 1661956 1662691 1663691 "MONOGEN-" 1663810 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-732 1660789 1661235 1661263 "MONADWU" 1661655 T MONADWU (NIL) -9 NIL 1661893 NIL) (-731 1660161 1660320 1660568 "MONADWU-" 1660573 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-730 1659520 1659764 1659792 "MONAD" 1659999 T MONAD (NIL) -9 NIL 1660111 NIL) (-729 1659205 1659283 1659415 "MONAD-" 1659420 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-728 1657494 1658118 1658397 "MOEBIUS" 1658958 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-727 1656772 1657176 1657216 "MODULE" 1657221 NIL MODULE (NIL T) -9 NIL 1657260 NIL) (-726 1656340 1656436 1656626 "MODULE-" 1656631 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-725 1654020 1654704 1655031 "MODRING" 1656164 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-724 1650964 1652125 1652646 "MODOP" 1653549 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-723 1649552 1650031 1650308 "MODMONOM" 1650827 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-722 1639507 1647843 1648257 "MODMON" 1649189 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-721 1636663 1638351 1638627 "MODFIELD" 1639382 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1635640 1635944 1636134 "MMLFORM" 1636493 T MMLFORM (NIL) -8 NIL NIL NIL) (-719 1635166 1635209 1635388 "MMAP" 1635591 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-718 1633245 1634012 1634053 "MLO" 1634476 NIL MLO (NIL T) -9 NIL 1634718 NIL) (-717 1630611 1631127 1631729 "MLIFT" 1632726 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-716 1630002 1630086 1630240 "MKUCFUNC" 1630522 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-715 1629601 1629671 1629794 "MKRECORD" 1629925 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-714 1628648 1628810 1629038 "MKFUNC" 1629412 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-713 1628036 1628140 1628296 "MKFLCFN" 1628531 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-712 1627313 1627415 1627600 "MKBCFUNC" 1627929 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-711 1623988 1626867 1627003 "MINT" 1627197 T MINT (NIL) -8 NIL NIL NIL) (-710 1622800 1623043 1623320 "MHROWRED" 1623743 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-709 1618180 1621335 1621740 "MFLOAT" 1622415 T MFLOAT (NIL) -8 NIL NIL NIL) (-708 1617537 1617613 1617784 "MFINFACT" 1618092 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-707 1613852 1614700 1615584 "MESH" 1616673 T MESH (NIL) -7 NIL NIL NIL) (-706 1612242 1612554 1612907 "MDDFACT" 1613539 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-705 1609037 1611401 1611442 "MDAGG" 1611697 NIL MDAGG (NIL T) -9 NIL 1611840 NIL) (-704 1598684 1608330 1608537 "MCMPLX" 1608850 T MCMPLX (NIL) -8 NIL NIL NIL) (-703 1597821 1597967 1598168 "MCDEN" 1598533 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-702 1595711 1595981 1596361 "MCALCFN" 1597551 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-701 1594636 1594876 1595109 "MAYBE" 1595517 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-700 1592248 1592771 1593333 "MATSTOR" 1594107 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-699 1588205 1591620 1591868 "MATRIX" 1592033 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-698 1583971 1584678 1585414 "MATLIN" 1587562 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-697 1574077 1577263 1577340 "MATCAT" 1582220 NIL MATCAT (NIL T T T) -9 NIL 1583637 NIL) (-696 1570433 1571454 1572810 "MATCAT-" 1572815 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-695 1569027 1569180 1569513 "MATCAT2" 1570268 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-694 1567139 1567463 1567847 "MAPPKG3" 1568702 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-693 1566120 1566293 1566515 "MAPPKG2" 1566963 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-692 1564619 1564903 1565230 "MAPPKG1" 1565826 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-691 1563698 1564025 1564202 "MAPPAST" 1564462 T MAPPAST (NIL) -8 NIL NIL NIL) (-690 1563309 1563367 1563490 "MAPHACK3" 1563634 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-689 1562901 1562962 1563076 "MAPHACK2" 1563241 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-688 1562339 1562442 1562584 "MAPHACK1" 1562792 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-687 1560418 1561039 1561343 "MAGMA" 1562067 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-686 1559897 1560142 1560233 "MACROAST" 1560347 T MACROAST (NIL) -8 NIL NIL NIL) (-685 1556315 1558136 1558597 "M3D" 1559469 NIL M3D (NIL T) -8 NIL NIL NIL) (-684 1550390 1554654 1554695 "LZSTAGG" 1555477 NIL LZSTAGG (NIL T) -9 NIL 1555772 NIL) (-683 1546348 1547521 1548978 "LZSTAGG-" 1548983 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-682 1543435 1544239 1544726 "LWORD" 1545893 NIL LWORD (NIL T) -8 NIL NIL NIL) (-681 1543011 1543239 1543314 "LSTAST" 1543380 T LSTAST (NIL) -8 NIL NIL NIL) (-680 1536088 1542782 1542916 "LSQM" 1542921 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-679 1535312 1535451 1535679 "LSPP" 1535943 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-678 1533124 1533425 1533881 "LSMP" 1535001 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-677 1529903 1530577 1531307 "LSMP1" 1532426 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-676 1523749 1529040 1529081 "LSAGG" 1529143 NIL LSAGG (NIL T) -9 NIL 1529221 NIL) (-675 1520444 1521368 1522581 "LSAGG-" 1522586 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-674 1518043 1519588 1519837 "LPOLY" 1520239 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-673 1517625 1517710 1517833 "LPEFRAC" 1517952 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-672 1515946 1516719 1516972 "LO" 1517457 NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1515598 1515710 1515738 "LOGIC" 1515849 T LOGIC (NIL) -9 NIL 1515930 NIL) (-670 1515460 1515483 1515554 "LOGIC-" 1515559 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-669 1514653 1514793 1514986 "LODOOPS" 1515316 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-668 1512076 1514569 1514635 "LODO" 1514640 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-667 1510614 1510849 1511202 "LODOF" 1511823 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-666 1506818 1509249 1509290 "LODOCAT" 1509728 NIL LODOCAT (NIL T) -9 NIL 1509939 NIL) (-665 1506551 1506609 1506736 "LODOCAT-" 1506741 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-664 1503871 1506392 1506510 "LODO2" 1506515 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-663 1501306 1503808 1503853 "LODO1" 1503858 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-662 1500187 1500352 1500657 "LODEEF" 1501129 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-661 1495490 1498381 1498422 "LNAGG" 1499284 NIL LNAGG (NIL T) -9 NIL 1499719 NIL) (-660 1494637 1494851 1495193 "LNAGG-" 1495198 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-659 1490773 1491562 1492201 "LMOPS" 1494052 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-658 1490176 1490564 1490605 "LMODULE" 1490610 NIL LMODULE (NIL T) -9 NIL 1490636 NIL) (-657 1487374 1489821 1489944 "LMDICT" 1490086 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-656 1486780 1487001 1487042 "LLINSET" 1487233 NIL LLINSET (NIL T) -9 NIL 1487324 NIL) (-655 1486479 1486688 1486748 "LITERAL" 1486753 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-654 1479642 1485413 1485717 "LIST" 1486208 NIL LIST (NIL T) -8 NIL NIL NIL) (-653 1479167 1479241 1479380 "LIST3" 1479562 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-652 1478174 1478352 1478580 "LIST2" 1478985 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-651 1476308 1476620 1477019 "LIST2MAP" 1477821 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-650 1475904 1476141 1476182 "LINSET" 1476187 NIL LINSET (NIL T) -9 NIL 1476221 NIL) (-649 1474633 1475166 1475207 "LINEXP" 1475558 NIL LINEXP (NIL T) -9 NIL 1475749 NIL) (-648 1473210 1473470 1473781 "LINDEP" 1474385 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-647 1469977 1470696 1471473 "LIMITRF" 1472465 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-646 1468280 1468576 1468985 "LIMITPS" 1469672 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-645 1462708 1467791 1468019 "LIE" 1468101 NIL LIE (NIL T T) -8 NIL NIL NIL) (-644 1461656 1462125 1462165 "LIECAT" 1462305 NIL LIECAT (NIL T) -9 NIL 1462456 NIL) (-643 1461497 1461524 1461612 "LIECAT-" 1461617 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-642 1454084 1461037 1461193 "LIB" 1461361 T LIB (NIL) -8 NIL NIL NIL) (-641 1449719 1450602 1451537 "LGROBP" 1453201 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-640 1447717 1447991 1448341 "LF" 1449440 NIL LF (NIL T T) -7 NIL NIL NIL) (-639 1446557 1447249 1447277 "LFCAT" 1447484 T LFCAT (NIL) -9 NIL 1447623 NIL) (-638 1443459 1444089 1444777 "LEXTRIPK" 1445921 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-637 1440203 1441029 1441532 "LEXP" 1443039 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-636 1439679 1439924 1440016 "LETAST" 1440131 T LETAST (NIL) -8 NIL NIL NIL) (-635 1438077 1438390 1438791 "LEADCDET" 1439361 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-634 1437267 1437341 1437570 "LAZM3PK" 1437998 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-633 1432184 1435344 1435882 "LAUPOL" 1436779 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-632 1431763 1431807 1431968 "LAPLACE" 1432134 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-631 1429702 1430864 1431115 "LA" 1431596 NIL LA (NIL T T T) -8 NIL NIL NIL) (-630 1428696 1429280 1429321 "LALG" 1429383 NIL LALG (NIL T) -9 NIL 1429442 NIL) (-629 1428410 1428469 1428605 "LALG-" 1428610 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-628 1428245 1428269 1428310 "KVTFROM" 1428372 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-627 1427168 1427612 1427797 "KTVLOGIC" 1428080 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-626 1427003 1427027 1427068 "KRCFROM" 1427130 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-625 1425907 1426094 1426393 "KOVACIC" 1426803 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-624 1425742 1425766 1425807 "KONVERT" 1425869 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-623 1425577 1425601 1425642 "KOERCE" 1425704 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-622 1423408 1424170 1424547 "KERNEL" 1425233 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-621 1422904 1422985 1423117 "KERNEL2" 1423322 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-620 1416674 1421443 1421497 "KDAGG" 1421874 NIL KDAGG (NIL T T) -9 NIL 1422080 NIL) (-619 1416203 1416327 1416532 "KDAGG-" 1416537 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-618 1409351 1415864 1416019 "KAFILE" 1416081 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-617 1403779 1408862 1409090 "JORDAN" 1409172 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1403158 1403428 1403549 "JOINAST" 1403678 T JOINAST (NIL) -8 NIL NIL NIL) (-615 1403004 1403063 1403118 "JAVACODE" 1403123 T JAVACODE (NIL) -8 NIL NIL NIL) (-614 1399256 1401209 1401263 "IXAGG" 1402192 NIL IXAGG (NIL T T) -9 NIL 1402651 NIL) (-613 1398175 1398481 1398900 "IXAGG-" 1398905 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-612 1393705 1398097 1398156 "IVECTOR" 1398161 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-611 1392471 1392708 1392974 "ITUPLE" 1393472 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-610 1390973 1391150 1391445 "ITRIGMNP" 1392293 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-609 1389718 1389922 1390205 "ITFUN3" 1390749 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-608 1389350 1389407 1389516 "ITFUN2" 1389655 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-607 1388509 1388830 1389004 "ITFORM" 1389196 T ITFORM (NIL) -8 NIL NIL NIL) (-606 1386470 1387529 1387807 "ITAYLOR" 1388264 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-605 1375415 1380607 1381770 "ISUPS" 1385340 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-604 1374519 1374659 1374895 "ISUMP" 1375262 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-603 1369894 1374464 1374505 "ISTRING" 1374510 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-602 1369370 1369615 1369707 "ISAST" 1369822 T ISAST (NIL) -8 NIL NIL NIL) (-601 1368579 1368661 1368877 "IRURPK" 1369284 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-600 1367515 1367716 1367956 "IRSN" 1368359 T IRSN (NIL) -7 NIL NIL NIL) (-599 1365586 1365941 1366370 "IRRF2F" 1367153 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-598 1365333 1365371 1365447 "IRREDFFX" 1365542 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-597 1363948 1364207 1364506 "IROOT" 1365066 NIL IROOT (NIL T) -7 NIL NIL NIL) (-596 1360552 1361632 1362324 "IR" 1363288 NIL IR (NIL T) -8 NIL NIL NIL) (-595 1359757 1360045 1360196 "IRFORM" 1360421 T IRFORM (NIL) -8 NIL NIL NIL) (-594 1357370 1357865 1358431 "IR2" 1359235 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-593 1356470 1356583 1356797 "IR2F" 1357253 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-592 1356261 1356295 1356355 "IPRNTPK" 1356430 T IPRNTPK (NIL) -7 NIL NIL NIL) (-591 1352842 1356150 1356219 "IPF" 1356224 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-590 1351169 1352767 1352824 "IPADIC" 1352829 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-589 1350481 1350729 1350859 "IP4ADDR" 1351059 T IP4ADDR (NIL) -8 NIL NIL NIL) (-588 1349855 1350110 1350242 "IOMODE" 1350369 T IOMODE (NIL) -8 NIL NIL NIL) (-587 1348928 1349452 1349579 "IOBFILE" 1349748 T IOBFILE (NIL) -8 NIL NIL NIL) (-586 1348416 1348832 1348860 "IOBCON" 1348865 T IOBCON (NIL) -9 NIL 1348886 NIL) (-585 1347927 1347985 1348168 "INVLAPLA" 1348352 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-584 1337575 1339929 1342315 "INTTR" 1345591 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-583 1333910 1334652 1335517 "INTTOOLS" 1336760 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-582 1333496 1333587 1333704 "INTSLPE" 1333813 T INTSLPE (NIL) -7 NIL NIL NIL) (-581 1331449 1333419 1333478 "INTRVL" 1333483 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-580 1329051 1329563 1330138 "INTRF" 1330934 NIL INTRF (NIL T) -7 NIL NIL NIL) (-579 1328462 1328559 1328701 "INTRET" 1328949 NIL INTRET (NIL T) -7 NIL NIL NIL) (-578 1326459 1326848 1327318 "INTRAT" 1328070 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-577 1323722 1324305 1324924 "INTPM" 1325944 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-576 1320467 1321066 1321804 "INTPAF" 1323108 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-575 1315646 1316608 1317659 "INTPACK" 1319436 T INTPACK (NIL) -7 NIL NIL NIL) (-574 1312544 1315443 1315552 "INT" 1315557 T INT (NIL) -8 NIL NIL NIL) (-573 1311796 1311948 1312156 "INTHERTR" 1312386 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-572 1311235 1311315 1311503 "INTHERAL" 1311710 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-571 1309081 1309524 1309981 "INTHEORY" 1310798 T INTHEORY (NIL) -7 NIL NIL NIL) (-570 1300487 1302108 1303880 "INTG0" 1307433 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-569 1281060 1285850 1290660 "INTFTBL" 1295697 T INTFTBL (NIL) -8 NIL NIL NIL) (-568 1280309 1280447 1280620 "INTFACT" 1280919 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-567 1277736 1278182 1278739 "INTEF" 1279863 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-566 1276103 1276842 1276870 "INTDOM" 1277171 T INTDOM (NIL) -9 NIL 1277378 NIL) (-565 1275472 1275646 1275888 "INTDOM-" 1275893 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-564 1271860 1273788 1273842 "INTCAT" 1274641 NIL INTCAT (NIL T) -9 NIL 1274962 NIL) (-563 1271332 1271435 1271563 "INTBIT" 1271752 T INTBIT (NIL) -7 NIL NIL NIL) (-562 1270031 1270185 1270492 "INTALG" 1271177 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-561 1269514 1269604 1269761 "INTAF" 1269935 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-560 1262857 1269324 1269464 "INTABL" 1269469 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-559 1262190 1262656 1262721 "INT8" 1262755 T INT8 (NIL) -8 NIL NIL 1262800) (-558 1261522 1261988 1262053 "INT64" 1262087 T INT64 (NIL) -8 NIL NIL 1262132) (-557 1260854 1261320 1261385 "INT32" 1261419 T INT32 (NIL) -8 NIL NIL 1261464) (-556 1260186 1260652 1260717 "INT16" 1260751 T INT16 (NIL) -8 NIL NIL 1260796) (-555 1254981 1257747 1257775 "INS" 1258709 T INS (NIL) -9 NIL 1259374 NIL) (-554 1252221 1252992 1253966 "INS-" 1254039 NIL INS- (NIL T) -8 NIL NIL NIL) (-553 1250996 1251223 1251521 "INPSIGN" 1251974 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-552 1250114 1250231 1250428 "INPRODPF" 1250876 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-551 1249008 1249125 1249362 "INPRODFF" 1249994 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-550 1248008 1248160 1248420 "INNMFACT" 1248844 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-549 1247205 1247302 1247490 "INMODGCD" 1247907 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-548 1245713 1245958 1246282 "INFSP" 1246950 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-547 1244897 1245014 1245197 "INFPROD0" 1245593 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-546 1241752 1242962 1243477 "INFORM" 1244390 T INFORM (NIL) -8 NIL NIL NIL) (-545 1241362 1241422 1241520 "INFORM1" 1241687 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-544 1240885 1240974 1241088 "INFINITY" 1241268 T INFINITY (NIL) -7 NIL NIL NIL) (-543 1240061 1240605 1240706 "INETCLTS" 1240804 T INETCLTS (NIL) -8 NIL NIL NIL) (-542 1238677 1238927 1239248 "INEP" 1239809 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-541 1237926 1238574 1238639 "INDE" 1238644 NIL INDE (NIL T) -8 NIL NIL NIL) (-540 1237490 1237558 1237675 "INCRMAPS" 1237853 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-539 1236308 1236759 1236965 "INBFILE" 1237304 T INBFILE (NIL) -8 NIL NIL NIL) (-538 1231607 1232544 1233488 "INBFF" 1235396 NIL INBFF (NIL T) -7 NIL NIL NIL) (-537 1230515 1230784 1230812 "INBCON" 1231325 T INBCON (NIL) -9 NIL 1231591 NIL) (-536 1229767 1229990 1230266 "INBCON-" 1230271 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-535 1229246 1229491 1229582 "INAST" 1229696 T INAST (NIL) -8 NIL NIL NIL) (-534 1228673 1228925 1229031 "IMPTAST" 1229160 T IMPTAST (NIL) -8 NIL NIL NIL) (-533 1225119 1228517 1228621 "IMATRIX" 1228626 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-532 1223827 1223950 1224266 "IMATQF" 1224975 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-531 1222047 1222274 1222611 "IMATLIN" 1223583 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-530 1216625 1221971 1222029 "ILIST" 1222034 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-529 1214530 1216485 1216598 "IIARRAY2" 1216603 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-528 1209928 1214441 1214505 "IFF" 1214510 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-527 1209275 1209545 1209661 "IFAST" 1209832 T IFAST (NIL) -8 NIL NIL NIL) (-526 1204270 1208567 1208755 "IFARRAY" 1209132 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-525 1203450 1204174 1204247 "IFAMON" 1204252 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-524 1203034 1203099 1203153 "IEVALAB" 1203360 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-523 1202709 1202777 1202937 "IEVALAB-" 1202942 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-522 1202340 1202623 1202686 "IDPO" 1202691 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1201590 1202229 1202304 "IDPOAMS" 1202309 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-520 1200897 1201479 1201554 "IDPOAM" 1201559 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-519 1199956 1200232 1200285 "IDPC" 1200698 NIL IDPC (NIL T T) -9 NIL 1200847 NIL) (-518 1199425 1199848 1199921 "IDPAM" 1199926 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-517 1198801 1199317 1199390 "IDPAG" 1199395 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-516 1198446 1198637 1198712 "IDENT" 1198746 T IDENT (NIL) -8 NIL NIL NIL) (-515 1194701 1195549 1196444 "IDECOMP" 1197603 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-514 1187538 1188624 1189671 "IDEAL" 1193737 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-513 1186698 1186810 1187010 "ICDEN" 1187422 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-512 1185769 1186178 1186325 "ICARD" 1186571 T ICARD (NIL) -8 NIL NIL NIL) (-511 1183829 1184142 1184547 "IBPTOOLS" 1185446 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-510 1179436 1183449 1183562 "IBITS" 1183748 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-509 1176159 1176735 1177430 "IBATOOL" 1178853 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-508 1173938 1174400 1174933 "IBACHIN" 1175694 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-507 1171767 1173784 1173887 "IARRAY2" 1173892 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-506 1167873 1171693 1171750 "IARRAY1" 1171755 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-505 1161911 1166285 1166766 "IAN" 1167412 T IAN (NIL) -8 NIL NIL NIL) (-504 1161422 1161479 1161652 "IALGFACT" 1161848 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-503 1160950 1161063 1161091 "HYPCAT" 1161298 T HYPCAT (NIL) -9 NIL NIL NIL) (-502 1160488 1160605 1160791 "HYPCAT-" 1160796 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-501 1160083 1160283 1160366 "HOSTNAME" 1160425 T HOSTNAME (NIL) -8 NIL NIL NIL) (-500 1159928 1159965 1160006 "HOMOTOP" 1160011 NIL HOMOTOP (NIL T) -9 NIL 1160044 NIL) (-499 1156560 1157938 1157979 "HOAGG" 1158960 NIL HOAGG (NIL T) -9 NIL 1159639 NIL) (-498 1155154 1155553 1156079 "HOAGG-" 1156084 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-497 1149063 1154747 1154897 "HEXADEC" 1155024 T HEXADEC (NIL) -8 NIL NIL NIL) (-496 1147811 1148033 1148296 "HEUGCD" 1148840 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-495 1146887 1147648 1147778 "HELLFDIV" 1147783 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-494 1145066 1146664 1146752 "HEAP" 1146831 NIL HEAP (NIL T) -8 NIL NIL NIL) (-493 1144329 1144618 1144752 "HEADAST" 1144952 T HEADAST (NIL) -8 NIL NIL NIL) (-492 1138339 1144244 1144306 "HDP" 1144311 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-491 1132238 1137974 1138126 "HDMP" 1138240 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-490 1131562 1131702 1131866 "HB" 1132094 T HB (NIL) -7 NIL NIL NIL) (-489 1124948 1131408 1131512 "HASHTBL" 1131517 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-488 1124424 1124669 1124761 "HASAST" 1124876 T HASAST (NIL) -8 NIL NIL NIL) (-487 1122202 1124046 1124228 "HACKPI" 1124262 T HACKPI (NIL) -8 NIL NIL NIL) (-486 1117870 1122055 1122168 "GTSET" 1122173 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-485 1111285 1117748 1117846 "GSTBL" 1117851 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-484 1103563 1110316 1110581 "GSERIES" 1111076 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-483 1102704 1103121 1103149 "GROUP" 1103352 T GROUP (NIL) -9 NIL 1103486 NIL) (-482 1102070 1102229 1102480 "GROUP-" 1102485 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-481 1100437 1100758 1101145 "GROEBSOL" 1101747 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-480 1099351 1099639 1099690 "GRMOD" 1100219 NIL GRMOD (NIL T T) -9 NIL 1100387 NIL) (-479 1099119 1099155 1099283 "GRMOD-" 1099288 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-478 1094409 1095473 1096473 "GRIMAGE" 1098139 T GRIMAGE (NIL) -8 NIL NIL NIL) (-477 1092875 1093136 1093460 "GRDEF" 1094105 T GRDEF (NIL) -7 NIL NIL NIL) (-476 1092319 1092435 1092576 "GRAY" 1092754 T GRAY (NIL) -7 NIL NIL NIL) (-475 1091506 1091912 1091963 "GRALG" 1092116 NIL GRALG (NIL T T) -9 NIL 1092209 NIL) (-474 1091167 1091240 1091403 "GRALG-" 1091408 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-473 1087944 1090752 1090930 "GPOLSET" 1091074 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-472 1087298 1087355 1087613 "GOSPER" 1087881 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-471 1083030 1083736 1084262 "GMODPOL" 1086997 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-470 1082035 1082219 1082457 "GHENSEL" 1082842 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-469 1076191 1077034 1078054 "GENUPS" 1081119 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-468 1075888 1075939 1076028 "GENUFACT" 1076134 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-467 1075300 1075377 1075542 "GENPGCD" 1075806 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-466 1074774 1074809 1075022 "GENMFACT" 1075259 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-465 1073340 1073597 1073904 "GENEEZ" 1074517 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-464 1067399 1072951 1073113 "GDMP" 1073263 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-463 1056742 1061170 1062276 "GCNAALG" 1066382 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-462 1055069 1055931 1055959 "GCDDOM" 1056214 T GCDDOM (NIL) -9 NIL 1056371 NIL) (-461 1054539 1054666 1054881 "GCDDOM-" 1054886 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-460 1053211 1053396 1053700 "GB" 1054318 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-459 1041827 1044157 1046549 "GBINTERN" 1050902 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-458 1039664 1039956 1040377 "GBF" 1041502 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-457 1038445 1038610 1038877 "GBEUCLID" 1039480 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-456 1037794 1037919 1038068 "GAUSSFAC" 1038316 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-455 1036161 1036463 1036777 "GALUTIL" 1037513 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-454 1034469 1034743 1035067 "GALPOLYU" 1035888 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-453 1031834 1032124 1032531 "GALFACTU" 1034166 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-452 1023640 1025139 1026747 "GALFACT" 1030266 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-451 1021028 1021686 1021714 "FVFUN" 1022870 T FVFUN (NIL) -9 NIL 1023590 NIL) (-450 1020294 1020476 1020504 "FVC" 1020795 T FVC (NIL) -9 NIL 1020978 NIL) (-449 1019937 1020119 1020187 "FUNDESC" 1020246 T FUNDESC (NIL) -8 NIL NIL NIL) (-448 1019552 1019734 1019815 "FUNCTION" 1019889 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-447 1017296 1017874 1018340 "FT" 1019106 T FT (NIL) -8 NIL NIL NIL) (-446 1016087 1016597 1016800 "FTEM" 1017113 T FTEM (NIL) -8 NIL NIL NIL) (-445 1014378 1014667 1015064 "FSUPFACT" 1015778 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-444 1012775 1013064 1013396 "FST" 1014066 T FST (NIL) -8 NIL NIL NIL) (-443 1011974 1012080 1012268 "FSRED" 1012657 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-442 1010673 1010929 1011276 "FSPRMELT" 1011689 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-441 1007979 1008417 1008903 "FSPECF" 1010236 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-440 989281 997753 997794 "FS" 1001678 NIL FS (NIL T) -9 NIL 1003967 NIL) (-439 977924 980917 984974 "FS-" 985274 NIL FS- (NIL T T) -8 NIL NIL NIL) (-438 977452 977506 977676 "FSINT" 977865 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-437 975744 976445 976748 "FSERIES" 977231 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-436 974786 974902 975126 "FSCINT" 975624 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-435 970994 973730 973771 "FSAGG" 974141 NIL FSAGG (NIL T) -9 NIL 974400 NIL) (-434 968756 969357 970153 "FSAGG-" 970248 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-433 967798 967941 968168 "FSAGG2" 968609 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-432 965480 965760 966307 "FS2UPS" 967516 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-431 965114 965157 965286 "FS2" 965431 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-430 963992 964163 964465 "FS2EXPXP" 964939 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-429 963418 963533 963685 "FRUTIL" 963872 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-428 954831 958913 960271 "FR" 962092 NIL FR (NIL T) -8 NIL NIL NIL) (-427 949845 952520 952560 "FRNAALG" 953880 NIL FRNAALG (NIL T) -9 NIL 954478 NIL) (-426 945518 946594 947869 "FRNAALG-" 948619 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-425 945156 945199 945326 "FRNAAF2" 945469 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-424 943531 944005 944301 "FRMOD" 944968 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-423 941274 941906 942224 "FRIDEAL" 943322 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-422 940465 940552 940843 "FRIDEAL2" 941181 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-421 939598 940012 940053 "FRETRCT" 940058 NIL FRETRCT (NIL T) -9 NIL 940234 NIL) (-420 938710 938941 939292 "FRETRCT-" 939297 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-419 935798 937008 937067 "FRAMALG" 937949 NIL FRAMALG (NIL T T) -9 NIL 938241 NIL) (-418 933932 934387 935017 "FRAMALG-" 935240 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-417 927762 933405 933682 "FRAC" 933687 NIL FRAC (NIL T) -8 NIL NIL NIL) (-416 927398 927455 927562 "FRAC2" 927699 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-415 927034 927091 927198 "FR2" 927335 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-414 921547 924440 924468 "FPS" 925587 T FPS (NIL) -9 NIL 926144 NIL) (-413 920996 921105 921269 "FPS-" 921415 NIL FPS- (NIL T) -8 NIL NIL NIL) (-412 918298 919967 919995 "FPC" 920220 T FPC (NIL) -9 NIL 920362 NIL) (-411 918091 918131 918228 "FPC-" 918233 NIL FPC- (NIL T) -8 NIL NIL NIL) (-410 916881 917579 917620 "FPATMAB" 917625 NIL FPATMAB (NIL T) -9 NIL 917777 NIL) (-409 914554 915057 915483 "FPARFRAC" 916518 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-408 909948 910446 911128 "FORTRAN" 913986 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-407 907664 908164 908703 "FORT" 909429 T FORT (NIL) -7 NIL NIL NIL) (-406 905340 905902 905930 "FORTFN" 906990 T FORTFN (NIL) -9 NIL 907614 NIL) (-405 905104 905154 905182 "FORTCAT" 905241 T FORTCAT (NIL) -9 NIL 905303 NIL) (-404 903210 903720 904110 "FORMULA" 904734 T FORMULA (NIL) -8 NIL NIL NIL) (-403 902998 903028 903097 "FORMULA1" 903174 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-402 902521 902573 902746 "FORDER" 902940 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-401 901617 901781 901974 "FOP" 902348 T FOP (NIL) -7 NIL NIL NIL) (-400 900198 900897 901071 "FNLA" 901499 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-399 898927 899342 899370 "FNCAT" 899830 T FNCAT (NIL) -9 NIL 900090 NIL) (-398 898466 898886 898914 "FNAME" 898919 T FNAME (NIL) -8 NIL NIL NIL) (-397 897029 897992 898020 "FMTC" 898025 T FMTC (NIL) -9 NIL 898061 NIL) (-396 895775 896965 897011 "FMONOID" 897016 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-395 892603 893771 893812 "FMONCAT" 895029 NIL FMONCAT (NIL T) -9 NIL 895634 NIL) (-394 891795 892345 892494 "FM" 892499 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 889219 889865 889893 "FMFUN" 891037 T FMFUN (NIL) -9 NIL 891745 NIL) (-392 888488 888669 888697 "FMC" 888987 T FMC (NIL) -9 NIL 889169 NIL) (-391 885567 886427 886481 "FMCAT" 887676 NIL FMCAT (NIL T T) -9 NIL 888171 NIL) (-390 884433 885333 885433 "FM1" 885512 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-389 882207 882623 883117 "FLOATRP" 883984 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-388 875785 879936 880557 "FLOAT" 881606 T FLOAT (NIL) -8 NIL NIL NIL) (-387 873223 873723 874301 "FLOATCP" 875252 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-386 872070 872829 872870 "FLINEXP" 872875 NIL FLINEXP (NIL T) -9 NIL 872968 NIL) (-385 871002 871299 871707 "FLINEXP-" 871712 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-384 870078 870222 870446 "FLASORT" 870854 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-383 867194 868062 868114 "FLALG" 869341 NIL FLALG (NIL T T) -9 NIL 869808 NIL) (-382 860898 864650 864691 "FLAGG" 865953 NIL FLAGG (NIL T) -9 NIL 866605 NIL) (-381 859624 859963 860453 "FLAGG-" 860458 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-380 858666 858809 859036 "FLAGG2" 859477 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-379 855517 856525 856584 "FINRALG" 857712 NIL FINRALG (NIL T T) -9 NIL 858220 NIL) (-378 854677 854906 855245 "FINRALG-" 855250 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-377 854057 854296 854324 "FINITE" 854520 T FINITE (NIL) -9 NIL 854627 NIL) (-376 846414 848601 848641 "FINAALG" 852308 NIL FINAALG (NIL T) -9 NIL 853761 NIL) (-375 841746 842796 843940 "FINAALG-" 845319 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-374 841114 841501 841604 "FILE" 841676 NIL FILE (NIL T) -8 NIL NIL NIL) (-373 839772 840110 840164 "FILECAT" 840848 NIL FILECAT (NIL T T) -9 NIL 841064 NIL) (-372 837488 839016 839044 "FIELD" 839084 T FIELD (NIL) -9 NIL 839164 NIL) (-371 836108 836493 837004 "FIELD-" 837009 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-370 833958 834743 835090 "FGROUP" 835794 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-369 833048 833212 833432 "FGLMICPK" 833790 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-368 828880 832973 833030 "FFX" 833035 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-367 828481 828542 828677 "FFSLPE" 828813 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-366 824471 825253 826049 "FFPOLY" 827717 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-365 823975 824011 824220 "FFPOLY2" 824429 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-364 819821 823894 823957 "FFP" 823962 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-363 815219 819732 819796 "FF" 819801 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-362 810345 814562 814752 "FFNBX" 815073 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-361 805273 809480 809738 "FFNBP" 810199 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-360 799906 804557 804768 "FFNB" 805106 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-359 798738 798936 799251 "FFINTBAS" 799703 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-358 794764 796985 797013 "FFIELDC" 797633 T FFIELDC (NIL) -9 NIL 798009 NIL) (-357 793426 793797 794294 "FFIELDC-" 794299 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-356 792995 793041 793165 "FFHOM" 793368 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-355 790690 791177 791694 "FFF" 792510 NIL FFF (NIL T) -7 NIL NIL NIL) (-354 786308 790432 790533 "FFCGX" 790633 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-353 781930 786040 786147 "FFCGP" 786251 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-352 777113 781657 781765 "FFCG" 781866 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-351 757816 767002 767088 "FFCAT" 772253 NIL FFCAT (NIL T T T) -9 NIL 773704 NIL) (-350 753013 754061 755375 "FFCAT-" 756605 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-349 752424 752467 752702 "FFCAT2" 752964 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-348 741747 745396 746616 "FEXPR" 751276 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-347 740709 741144 741185 "FEVALAB" 741269 NIL FEVALAB (NIL T) -9 NIL 741530 NIL) (-346 739868 740078 740416 "FEVALAB-" 740421 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-345 738434 739251 739454 "FDIV" 739767 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-344 735454 736195 736310 "FDIVCAT" 737878 NIL FDIVCAT (NIL T T T T) -9 NIL 738315 NIL) (-343 735216 735243 735413 "FDIVCAT-" 735418 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-342 734436 734523 734800 "FDIV2" 735123 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 733410 733731 733933 "FCTRDATA" 734254 T FCTRDATA (NIL) -8 NIL NIL NIL) (-340 732096 732355 732644 "FCPAK1" 733141 T FCPAK1 (NIL) -7 NIL NIL NIL) (-339 731195 731596 731737 "FCOMP" 731987 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-338 714900 718345 721883 "FC" 727677 T FC (NIL) -8 NIL NIL NIL) (-337 707179 711207 711247 "FAXF" 713049 NIL FAXF (NIL T) -9 NIL 713741 NIL) (-336 704456 705113 705938 "FAXF-" 706403 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-335 699508 703832 704008 "FARRAY" 704313 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-334 694402 696469 696522 "FAMR" 697545 NIL FAMR (NIL T T) -9 NIL 698005 NIL) (-333 693292 693594 694029 "FAMR-" 694034 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-332 692461 693214 693267 "FAMONOID" 693272 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-331 690247 690957 691010 "FAMONC" 691951 NIL FAMONC (NIL T T) -9 NIL 692337 NIL) (-330 688911 690001 690138 "FAGROUP" 690143 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-329 686706 687025 687428 "FACUTIL" 688592 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-328 685805 685990 686212 "FACTFUNC" 686516 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-327 678227 685108 685307 "EXPUPXS" 685661 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-326 675710 676250 676836 "EXPRTUBE" 677661 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-325 671981 672573 673303 "EXPRODE" 675049 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-324 657700 670630 671059 "EXPR" 671585 NIL EXPR (NIL T) -8 NIL NIL NIL) (-323 652254 652841 653647 "EXPR2UPS" 656998 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-322 651886 651943 652052 "EXPR2" 652191 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-321 643139 651037 651328 "EXPEXPAN" 651722 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-320 642939 643096 643125 "EXIT" 643130 T EXIT (NIL) -8 NIL NIL NIL) (-319 642419 642663 642754 "EXITAST" 642868 T EXITAST (NIL) -8 NIL NIL NIL) (-318 642046 642108 642221 "EVALCYC" 642351 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-317 641587 641705 641746 "EVALAB" 641916 NIL EVALAB (NIL T) -9 NIL 642020 NIL) (-316 641068 641190 641411 "EVALAB-" 641416 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-315 638436 639738 639766 "EUCDOM" 640321 T EUCDOM (NIL) -9 NIL 640671 NIL) (-314 636841 637283 637873 "EUCDOM-" 637878 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-313 624380 627139 629889 "ESTOOLS" 634111 T ESTOOLS (NIL) -7 NIL NIL NIL) (-312 624012 624069 624178 "ESTOOLS2" 624317 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-311 623763 623805 623885 "ESTOOLS1" 623964 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-310 617800 619408 619436 "ES" 622204 T ES (NIL) -9 NIL 623614 NIL) (-309 612747 614034 615851 "ES-" 616015 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 609121 609882 610662 "ESCONT" 611987 T ESCONT (NIL) -7 NIL NIL NIL) (-307 608866 608898 608980 "ESCONT1" 609083 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-306 608541 608591 608691 "ES2" 608810 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-305 608171 608229 608338 "ES1" 608477 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-304 607387 607516 607692 "ERROR" 608015 T ERROR (NIL) -7 NIL NIL NIL) (-303 600779 607246 607337 "EQTBL" 607342 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-302 593282 596093 597542 "EQ" 599363 NIL -2085 (NIL T) -8 NIL NIL NIL) (-301 592914 592971 593080 "EQ2" 593219 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-300 588205 589252 590345 "EP" 591853 NIL EP (NIL T) -7 NIL NIL NIL) (-299 586805 587096 587402 "ENV" 587919 T ENV (NIL) -8 NIL NIL NIL) (-298 585899 586453 586481 "ENTIRER" 586486 T ENTIRER (NIL) -9 NIL 586532 NIL) (-297 582593 584081 584442 "EMR" 585707 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-296 581723 581908 581962 "ELTAGG" 582342 NIL ELTAGG (NIL T T) -9 NIL 582553 NIL) (-295 581442 581504 581645 "ELTAGG-" 581650 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-294 581206 581235 581289 "ELTAB" 581373 NIL ELTAB (NIL T T) -9 NIL 581425 NIL) (-293 580332 580478 580677 "ELFUTS" 581057 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-292 580074 580130 580158 "ELEMFUN" 580263 T ELEMFUN (NIL) -9 NIL NIL NIL) (-291 579944 579965 580033 "ELEMFUN-" 580038 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-290 574758 578014 578055 "ELAGG" 578995 NIL ELAGG (NIL T) -9 NIL 579458 NIL) (-289 573043 573477 574140 "ELAGG-" 574145 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-288 572355 572492 572648 "ELABOR" 572907 T ELABOR (NIL) -8 NIL NIL NIL) (-287 571016 571295 571589 "ELABEXPR" 572081 T ELABEXPR (NIL) -8 NIL NIL NIL) (-286 563880 565683 566510 "EFUPXS" 570292 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-285 557330 559131 559941 "EFULS" 563156 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-284 554815 555173 555645 "EFSTRUC" 556962 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-283 544606 546172 547720 "EF" 553330 NIL EF (NIL T T) -7 NIL NIL NIL) (-282 543680 544091 544240 "EAB" 544477 T EAB (NIL) -8 NIL NIL NIL) (-281 542862 543639 543667 "E04UCFA" 543672 T E04UCFA (NIL) -8 NIL NIL NIL) (-280 542044 542821 542849 "E04NAFA" 542854 T E04NAFA (NIL) -8 NIL NIL NIL) (-279 541226 542003 542031 "E04MBFA" 542036 T E04MBFA (NIL) -8 NIL NIL NIL) (-278 540408 541185 541213 "E04JAFA" 541218 T E04JAFA (NIL) -8 NIL NIL NIL) (-277 539592 540367 540395 "E04GCFA" 540400 T E04GCFA (NIL) -8 NIL NIL NIL) (-276 538776 539551 539579 "E04FDFA" 539584 T E04FDFA (NIL) -8 NIL NIL NIL) (-275 537958 538735 538763 "E04DGFA" 538768 T E04DGFA (NIL) -8 NIL NIL NIL) (-274 532131 533483 534847 "E04AGNT" 536614 T E04AGNT (NIL) -7 NIL NIL NIL) (-273 530902 531445 531485 "DVARCAT" 531826 NIL DVARCAT (NIL T) -9 NIL 531989 NIL) (-272 530106 530318 530632 "DVARCAT-" 530637 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-271 523154 529905 530034 "DSMP" 530039 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-270 517935 519099 520167 "DROPT" 522106 T DROPT (NIL) -8 NIL NIL NIL) (-269 517600 517659 517757 "DROPT1" 517870 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 512715 513841 514978 "DROPT0" 516483 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 511060 511385 511771 "DRAWPT" 512349 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 505647 506570 507649 "DRAW" 510034 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 505280 505333 505451 "DRAWHACK" 505588 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 504011 504280 504571 "DRAWCX" 505009 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 503526 503595 503746 "DRAWCURV" 503937 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 493994 495956 498071 "DRAWCFUN" 501431 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 490758 492687 492728 "DQAGG" 493357 NIL DQAGG (NIL T) -9 NIL 493631 NIL) (-260 478560 485119 485202 "DPOLCAT" 487054 NIL DPOLCAT (NIL T T T T) -9 NIL 487599 NIL) (-259 473397 474745 476703 "DPOLCAT-" 476708 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 467703 473258 473356 "DPMO" 473361 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 461912 467483 467650 "DPMM" 467655 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461482 461696 461785 "DOMTMPLT" 461843 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 460915 461284 461364 "DOMCTOR" 461422 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460127 460395 460546 "DOMAIN" 460784 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454026 459762 459914 "DMP" 460028 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453626 453682 453826 "DLP" 453964 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447448 452953 453143 "DLIST" 453468 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444245 446301 446342 "DLAGG" 446892 NIL DLAGG (NIL T) -9 NIL 447122 NIL) (-249 442921 443585 443613 "DIVRING" 443705 T DIVRING (NIL) -9 NIL 443788 NIL) (-248 442158 442348 442648 "DIVRING-" 442653 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440260 440617 441023 "DISPLAY" 441772 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434290 440174 440237 "DIRPROD" 440242 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433138 433341 433606 "DIRPROD2" 434083 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422340 428197 428250 "DIRPCAT" 428508 NIL DIRPCAT (NIL NIL T) -9 NIL 429383 NIL) (-243 419444 420148 421109 "DIRPCAT-" 421446 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418731 418891 419077 "DIOSP" 419278 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415386 417643 417684 "DIOPS" 418118 NIL DIOPS (NIL T) -9 NIL 418347 NIL) (-240 414935 415049 415240 "DIOPS-" 415245 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413986 414614 414642 "DIFRING" 414647 T DIFRING (NIL) -9 NIL 414669 NIL) (-238 413658 413732 413760 "DIFFSPC" 413879 T DIFFSPC (NIL) -9 NIL 413954 NIL) (-237 413303 413381 413533 "DIFFSPC-" 413538 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412459 412937 412977 "DIFFMOD" 412982 NIL DIFFMOD (NIL T) -9 NIL 413009 NIL) (-235 412167 412212 412253 "DIFFDOM" 412374 NIL DIFFDOM (NIL T) -9 NIL 412442 NIL) (-234 412020 412044 412128 "DIFFDOM-" 412133 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409553 410825 410866 "DIFEXT" 411229 NIL DIFEXT (NIL T) -9 NIL 411523 NIL) (-232 407838 408266 408932 "DIFEXT-" 408937 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 405113 407370 407411 "DIAGG" 407416 NIL DIAGG (NIL T) -9 NIL 407436 NIL) (-230 404497 404654 404906 "DIAGG-" 404911 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399914 403456 403733 "DHMATRIX" 404266 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395526 396435 397445 "DFSFUN" 398924 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390606 394457 394769 "DFLOAT" 395234 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388869 389150 389539 "DFINTTLS" 390314 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385898 386890 387290 "DERHAM" 388535 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383699 385673 385762 "DEQUEUE" 385842 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382953 383086 383269 "DEGRED" 383561 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379383 380128 380974 "DEFINTRF" 382181 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376938 377407 377999 "DEFINTEF" 378902 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376288 376558 376673 "DEFAST" 376843 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370197 375881 376031 "DECIMAL" 376158 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367709 368167 368673 "DDFACT" 369741 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367305 367348 367499 "DBLRESP" 367660 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365173 365535 365896 "DBASE" 367071 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364415 364653 364799 "DATAARY" 365072 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363521 364374 364402 "D03FAFA" 364407 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362628 363480 363508 "D03EEFA" 363513 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360578 361044 361533 "D03AGNT" 362159 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359867 360537 360565 "D02EJFA" 360570 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359156 359826 359854 "D02CJFA" 359859 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358445 359115 359143 "D02BHFA" 359148 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357734 358404 358432 "D02BBFA" 358437 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350931 352520 354126 "D02AGNT" 356148 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348699 349222 349768 "D01WGTS" 350405 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347766 348658 348686 "D01TRNS" 348691 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346834 347725 347753 "D01GBFA" 347758 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345902 346793 346821 "D01FCFA" 346826 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344970 345861 345889 "D01ASFA" 345894 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 344038 344929 344957 "D01AQFA" 344962 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 343106 343997 344025 "D01APFA" 344030 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342174 343065 343093 "D01ANFA" 343098 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341242 342133 342161 "D01AMFA" 342166 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340310 341201 341229 "D01ALFA" 341234 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339378 340269 340297 "D01AKFA" 340302 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338446 339337 339365 "D01AJFA" 339370 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331741 333294 334855 "D01AGNT" 336905 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 331078 331206 331358 "CYCLOTOM" 331609 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327811 328526 329253 "CYCLES" 330371 T CYCLES (NIL) -7 NIL NIL NIL) (-191 327123 327257 327428 "CVMP" 327672 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324964 325222 325591 "CTRIGMNP" 326851 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324400 324758 324831 "CTOR" 324911 T CTOR (NIL) -8 NIL NIL NIL) (-188 323909 324131 324232 "CTORKIND" 324319 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323200 323516 323544 "CTORCAT" 323726 T CTORCAT (NIL) -9 NIL 323839 NIL) (-186 322798 322909 323068 "CTORCAT-" 323073 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322260 322472 322580 "CTORCALL" 322722 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321634 321733 321886 "CSTTOOLS" 322157 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317433 318090 318848 "CRFP" 320946 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316908 317154 317246 "CRCEAST" 317361 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315955 316140 316368 "CRAPACK" 316712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315339 315440 315644 "CPMATCH" 315831 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 315064 315092 315198 "CPIMA" 315305 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311412 312084 312803 "COORDSYS" 314399 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310824 310945 311087 "CONTOUR" 311290 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306715 308827 309319 "CONTFRAC" 310364 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306595 306616 306644 "CONDUIT" 306681 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305683 306237 306265 "COMRING" 306270 T COMRING (NIL) -9 NIL 306322 NIL) (-173 304737 305041 305225 "COMPPROP" 305519 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304398 304433 304561 "COMPLPAT" 304696 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294600 304207 304316 "COMPLEX" 304321 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294236 294293 294400 "COMPLEX2" 294537 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293575 293696 293856 "COMPILER" 294096 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293293 293328 293426 "COMPFACT" 293534 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277046 287131 287171 "COMPCAT" 288175 NIL COMPCAT (NIL T) -9 NIL 289523 NIL) (-166 266336 269325 273032 "COMPCAT-" 273388 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266065 266093 266196 "COMMUPC" 266302 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265859 265893 265952 "COMMONOP" 266026 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265415 265610 265697 "COMM" 265792 T COMM (NIL) -8 NIL NIL NIL) (-162 264991 265219 265294 "COMMAAST" 265360 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264240 264434 264462 "COMBOPC" 264800 T COMBOPC (NIL) -9 NIL 264975 NIL) (-160 263136 263346 263588 "COMBINAT" 264030 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259593 260167 260794 "COMBF" 262558 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258351 258709 258944 "COLOR" 259378 T COLOR (NIL) -8 NIL NIL NIL) (-157 257827 258072 258164 "COLONAST" 258279 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257467 257514 257639 "CMPLXRT" 257774 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256915 257167 257266 "CLLCTAST" 257388 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252417 253445 254525 "CLIP" 255855 T CLIP (NIL) -7 NIL NIL NIL) (-153 250758 251518 251758 "CLIF" 252244 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246933 248904 248945 "CLAGG" 249874 NIL CLAGG (NIL T) -9 NIL 250410 NIL) (-151 245355 245812 246395 "CLAGG-" 246400 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244899 244984 245124 "CINTSLPE" 245264 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242400 242871 243419 "CHVAR" 244427 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241574 242128 242156 "CHARZ" 242161 T CHARZ (NIL) -9 NIL 242176 NIL) (-147 241328 241368 241446 "CHARPOL" 241528 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240386 240973 241001 "CHARNZ" 241048 T CHARNZ (NIL) -9 NIL 241104 NIL) (-145 238292 239040 239393 "CHAR" 240053 T CHAR (NIL) -8 NIL NIL NIL) (-144 238018 238079 238107 "CFCAT" 238218 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237259 237370 237553 "CDEN" 237902 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233224 236412 236692 "CCLASS" 236999 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232475 232632 232809 "CATEGORY" 233067 T -10 (NIL) -8 NIL NIL NIL) (-140 232048 232394 232442 "CATCTOR" 232447 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231499 231751 231849 "CATAST" 231970 T CATAST (NIL) -8 NIL NIL NIL) (-138 230975 231220 231312 "CASEAST" 231427 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226113 227132 227876 "CARTEN" 230287 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225221 225369 225590 "CARTEN2" 225960 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223537 224371 224628 "CARD" 224984 T CARD (NIL) -8 NIL NIL NIL) (-134 223113 223341 223416 "CAPSLAST" 223482 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222617 222825 222853 "CACHSET" 222985 T CACHSET (NIL) -9 NIL 223063 NIL) (-132 222087 222409 222437 "CABMON" 222487 T CABMON (NIL) -9 NIL 222543 NIL) (-131 221560 221791 221901 "BYTEORD" 221997 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220537 221089 221231 "BYTE" 221394 T BYTE (NIL) -8 NIL NIL 221516) (-129 215887 220042 220214 "BYTEBUF" 220385 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213396 215579 215686 "BTREE" 215813 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210845 213044 213166 "BTOURN" 213306 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208215 210315 210356 "BTCAT" 210424 NIL BTCAT (NIL T) -9 NIL 210501 NIL) (-125 207882 207962 208111 "BTCAT-" 208116 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203261 207141 207169 "BTAGG" 207283 T BTAGG (NIL) -9 NIL 207393 NIL) (-123 202751 202876 203082 "BTAGG-" 203087 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199746 202029 202244 "BSTREE" 202568 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198884 199010 199194 "BRILL" 199602 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195536 197610 197651 "BRAGG" 198300 NIL BRAGG (NIL T) -9 NIL 198558 NIL) (-119 194065 194471 195026 "BRAGG-" 195031 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187189 193409 193594 "BPADICRT" 193912 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185504 187126 187171 "BPADIC" 187176 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185202 185232 185346 "BOUNDZRO" 185468 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180430 181628 182540 "BOP" 184310 T BOP (NIL) -8 NIL NIL NIL) (-114 178211 178615 179090 "BOP1" 179988 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177912 177973 178001 "BOOLE" 178112 T BOOLE (NIL) -9 NIL 178194 NIL) (-112 176737 177486 177635 "BOOLEAN" 177783 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176016 176420 176474 "BMODULE" 176479 NIL BMODULE (NIL T T) -9 NIL 176544 NIL) (-110 171817 175814 175887 "BITS" 175963 T BITS (NIL) -8 NIL NIL NIL) (-109 171238 171357 171497 "BINDING" 171697 T BINDING (NIL) -8 NIL NIL NIL) (-108 165150 170833 170982 "BINARY" 171109 T BINARY (NIL) -8 NIL NIL NIL) (-107 162930 164405 164446 "BGAGG" 164706 NIL BGAGG (NIL T) -9 NIL 164843 NIL) (-106 162761 162793 162884 "BGAGG-" 162889 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161832 162145 162350 "BFUNCT" 162576 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160522 160700 160988 "BEZOUT" 161656 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156991 159374 159704 "BBTREE" 160225 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156725 156778 156806 "BASTYPE" 156925 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156577 156606 156679 "BASTYPE-" 156684 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156011 156087 156239 "BALFACT" 156488 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154867 155426 155612 "AUTOMOR" 155856 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154593 154598 154624 "ATTREG" 154629 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152845 153290 153642 "ATTRBUT" 154259 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152453 152673 152739 "ATTRAST" 152797 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151989 152102 152128 "ATRIG" 152329 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151798 151839 151926 "ATRIG-" 151931 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151443 151629 151655 "ASTCAT" 151660 T ASTCAT (NIL) -9 NIL 151690 NIL) (-92 151170 151229 151348 "ASTCAT-" 151353 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149319 150946 151034 "ASTACK" 151113 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147824 148121 148486 "ASSOCEQ" 149001 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146856 147483 147607 "ASP9" 147731 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146619 146804 146843 "ASP8" 146848 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145487 146224 146366 "ASP80" 146508 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144385 145122 145254 "ASP7" 145386 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143339 144062 144180 "ASP78" 144298 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142308 143019 143136 "ASP77" 143253 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141220 141946 142077 "ASP74" 142208 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140120 140855 140987 "ASP73" 141119 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139224 139946 140046 "ASP6" 140051 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138171 138901 139019 "ASP55" 139137 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137120 137845 137964 "ASP50" 138083 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136208 136821 136931 "ASP4" 137041 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135296 135909 136019 "ASP49" 136129 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134080 134835 135003 "ASP42" 135185 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132857 133613 133783 "ASP41" 133967 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131807 132534 132652 "ASP35" 132770 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131572 131755 131794 "ASP34" 131799 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131309 131376 131452 "ASP33" 131527 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130203 130944 131076 "ASP31" 131208 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129968 130151 130190 "ASP30" 130195 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129703 129772 129848 "ASP29" 129923 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129468 129651 129690 "ASP28" 129695 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129233 129416 129455 "ASP27" 129460 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128317 128931 129042 "ASP24" 129153 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127394 128119 128231 "ASP20" 128236 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126482 127095 127205 "ASP1" 127315 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125425 126156 126275 "ASP19" 126394 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125162 125229 125305 "ASP12" 125380 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124014 124761 124905 "ASP10" 125049 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121865 123858 123949 "ARRAY2" 123954 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117630 121513 121627 "ARRAY1" 121782 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116662 116835 117056 "ARRAY12" 117453 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110974 112892 112967 "ARR2CAT" 115597 NIL ARR2CAT (NIL T T T) -9 NIL 116355 NIL) (-56 108408 109152 110106 "ARR2CAT-" 110111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107725 108035 108160 "ARITY" 108301 T ARITY (NIL) -8 NIL NIL NIL) (-54 106501 106653 106952 "APPRULE" 107561 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106152 106200 106319 "APPLYORE" 106447 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105506 105745 105865 "ANY" 106050 T ANY (NIL) -8 NIL NIL NIL) (-51 104784 104907 105064 "ANY1" 105380 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102314 103221 103548 "ANTISYM" 104508 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101806 102021 102117 "ANON" 102236 T ANON (NIL) -8 NIL NIL NIL) (-48 95984 100345 100799 "AN" 101370 T AN (NIL) -8 NIL NIL NIL) (-47 91882 93270 93321 "AMR" 94069 NIL AMR (NIL T T) -9 NIL 94669 NIL) (-46 90994 91215 91578 "AMR-" 91583 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75433 90911 90972 "ALIST" 90977 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72238 75027 75196 "ALGSC" 75351 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68794 69348 69955 "ALGPKG" 71678 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68071 68172 68356 "ALGMFACT" 68680 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64106 64685 65279 "ALGMANIP" 67655 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 63732 63882 "ALGFF" 64039 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-1787 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 23)))
+(((-1245 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1067) (-1067) (-1195) (-1195) |#1| |#2|) (T -1245))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195)))))
+(-10 -7 (-15 -1787 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2384 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 177 (|has| |#1| (-374)))) (-1870 (((-430 $) $) 178 (|has| |#1| (-374)))) (-4214 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2363 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2409 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-2806 (($ $ $) 172 (|has| |#1| (-374)))) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-2395 (((-419 (-968 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2818 (($ $ $) 171 (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3124 (((-112) $) 179 (|has| |#1| (-374)))) (-2567 (((-112) $) 85)) (-3009 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) 116)) (-2028 (($ (-1 |#1| (-576)) $) 187)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1614 (((-112) $) 74)) (-4330 (($ |#1| (-576)) 73) (($ $ (-1100) (-576)) 88) (($ $ (-656 (-1100)) (-656 (-576))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2850 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 180 (|has| |#1| (-374)))) (-2254 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2838 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-2892 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-4205 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 173 (|has| |#1| (-374)))) (-3167 (($ $ (-576)) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-1619 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-3927 (((-783) $) 169 (|has| |#1| (-374)))) (-2209 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 170 (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2782 (((-576) $) 76)) (-2422 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4309 ((|#1| $ (-576)) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2434 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1246 |#1|) (-141) (-1067)) (T -1246))
+((-3602 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1067)) (-4 *1 (-1246 *3)))) (-2028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1067)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) (-5 *2 (-419 (-968 *4))))) (-2395 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568)) (-5 *2 (-419 (-968 *4))))) (-2254 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-2254 (*1 *1 *1 *2) (-2838 (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -4352 ((-656 *2) *3))) (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1264 |t#1| (-576)) (-10 -8 (-15 -3602 ($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -2028 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2395 ((-419 (-968 |t#1|)) $ (-576))) (-15 -2395 ((-419 (-968 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $)) (IF (|has| |t#1| (-15 -2254 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -4352 ((-656 (-1195)) |t#1|))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1130)) ((-300) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T))
+((-3549 (((-112) $) 12)) (-1706 (((-3 |#3| "failed") $) 17) (((-3 (-1195) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2216 ((|#3| $) 14) (((-1195) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL)))
+(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3549 ((-112) |#1|))) (-1248 |#2| |#3|) (-1067) (-1277 |#2|)) (T -1247))
+NIL
+(-10 -8 (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -1706 ((-3 (-1195) "failed") |#1|)) (-15 -2216 ((-1195) |#1|)) (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3549 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2742 ((|#2| $) 247 (-2096 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-4304 ((|#2| $) 283)) (-2855 (((-3 |#2| "failed") $) 279)) (-4404 ((|#2| $) 280)) (-2384 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-3529 (((-430 (-1191 $)) (-1191 $)) 256 (-2096 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2879 (($ $) 177 (|has| |#1| (-374)))) (-1870 (((-430 $) $) 178 (|has| |#1| (-374)))) (-4214 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 253 (-2096 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-1323 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2363 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2627 (((-576) $) 265 (-2096 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2409 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 286) (((-3 (-576) "failed") $) 276 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 274 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) 258 (-2096 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-2216 ((|#2| $) 287) (((-576) $) 275 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 273 (-2096 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-1195) $) 257 (-2096 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-3279 (($ $) 282) (($ (-576) $) 281)) (-2806 (($ $ $) 172 (|has| |#1| (-374)))) (-1404 (($ $) 72)) (-3928 (((-701 |#2|) (-1286 $)) 237 (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) 236 (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 235 (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 234 (-2096 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 233 (-2096 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) 232 (-2096 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-4077 (((-3 $ "failed") $) 37)) (-2395 (((-419 (-968 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2840 (($) 249 (-2096 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2818 (($ $ $) 171 (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3124 (((-112) $) 179 (|has| |#1| (-374)))) (-3730 (((-112) $) 263 (-2096 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2567 (((-112) $) 85)) (-3009 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 241 (-2096 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 240 (-2096 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-3540 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4192 (((-112) $) 35)) (-4299 (($ $) 245 (|has| |#1| (-374)))) (-2976 ((|#2| $) 243 (|has| |#1| (-374)))) (-2333 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2211 (((-3 $ "failed") $) 277 (-2096 (|has| |#2| (-1170)) (|has| |#1| (-374))))) (-3327 (((-112) $) 264 (-2096 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4162 (($ $ (-937)) 116)) (-2028 (($ (-1 |#1| (-576)) $) 187)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1614 (((-112) $) 74)) (-4330 (($ |#1| (-576)) 73) (($ $ (-1100) (-576)) 88) (($ $ (-656 (-1100)) (-656 (-576))) 87)) (-3639 (($ $ $) 267 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2571 (($ $ $) 268 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1787 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 227 (|has| |#1| (-374)))) (-3118 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2850 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-4416 (($ (-576) |#2|) 284)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 180 (|has| |#1| (-374)))) (-2254 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2838 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3796 (($) 278 (-2096 (|has| |#2| (-1170)) (|has| |#1| (-374))) CONST)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-2892 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-3739 (($ $) 248 (-2096 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4371 ((|#2| $) 251 (-2096 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4412 (((-430 (-1191 $)) (-1191 $)) 254 (-2096 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2822 (((-430 (-1191 $)) (-1191 $)) 255 (-2096 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-4205 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 173 (|has| |#1| (-374)))) (-3167 (($ $ (-576)) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-1619 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) 226 (-2096 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) 225 (-2096 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 224 (-2096 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 223 (-2096 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 222 (-2096 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 221 (-2096 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3927 (((-783) $) 169 (|has| |#1| (-374)))) (-2209 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1130))) (($ $ |#2|) 220 (-2096 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 170 (|has| |#1| (-374)))) (-3884 (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) 230 (|has| |#1| (-374))) (($ $) 100 (-2838 (-2096 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-2838 (-2096 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 108 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 106 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 105 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3210 (($ $) 246 (|has| |#1| (-374)))) (-2987 ((|#2| $) 244 (|has| |#1| (-374)))) (-2782 (((-576) $) 76)) (-2422 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1846 (((-227) $) 262 (-2096 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-390) $) 261 (-2096 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-548) $) 260 (-2096 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) 239 (-2096 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) 238 (-2096 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 252 (-2096 (-2096 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#1| (-374))))) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 285) (($ (-1195)) 259 (-2096 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4309 ((|#1| $ (-576)) 71)) (-1817 (((-3 $ "failed") $) 60 (-2838 (-2096 (-2838 (|has| |#2| (-146)) (-2096 (|has| $ (-146)) (|has| |#2| (-925)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-4175 ((|#2| $) 250 (-2096 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2434 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2130 (($ $) 266 (-2096 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) 228 (|has| |#1| (-374))) (($ $) 99 (-2838 (-2096 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-2838 (-2096 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 107 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 103 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 102 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-2838 (-2096 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3047 (((-112) $ $) 270 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3024 (((-112) $ $) 271 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2991 (((-112) $ $) 6)) (-3034 (((-112) $ $) 269 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3014 (((-112) $ $) 272 (-2096 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 242 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 219 (|has| |#1| (-374))) (($ |#2| $) 218 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1248 |#1| |#2|) (-141) (-1067) (-1277 |t#1|)) (T -1248))
+((-2782 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3)) (-5 *2 (-576)))) (-4416 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1067)) (-4 *1 (-1248 *4 *3)) (-4 *3 (-1277 *4)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))) (-3279 (*1 *1 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1277 *2)))) (-3279 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3)))) (-4404 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))) (-2855 (*1 *2 *1) (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))))
+(-13 (-1246 |t#1|) (-1056 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4416 ($ (-576) |t#2|)) (-15 -2782 ((-576) $)) (-15 -4304 (|t#2| $)) (-15 -3279 ($ $)) (-15 -3279 ($ (-576) $)) (-15 -4404 (|t#2| $)) (-15 -2855 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1010 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) ((-235 $) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-233 |#2|) |has| |#1| (-374)) ((-239) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-238) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1130)) ((-300) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-862) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-909 $ #4=(-1195)) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-914 #4#) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-916 #4#) -2838 (-12 (|has| |#1| (-374)) (|has| |#2| (-914 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))) ((-899 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))) ((-897 |#2|) |has| |#1| (-374)) ((-925) -12 (|has| |#1| (-374)) (|has| |#2| (-925))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1010 |#2|) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1040) -12 (|has| |#1| (-374)) (|has| |#2| (-1040))) ((-1056 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) ((-1056 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-576)))) ((-1056 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1056 (-1195)))) ((-1056 |#2|) . T) ((-1069 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 |#2|) |has| |#1| (-374)) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 |#2|) |has| |#1| (-374)) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) -12 (|has| |#1| (-374)) (|has| |#2| (-1170))) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1246 |#1|) . T) ((-1264 |#1| #0#) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 81)) (-2742 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 100)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-4304 ((|#2| $) 11)) (-2855 (((-3 |#2| "failed") $) 35)) (-4404 ((|#2| $) 36)) (-2384 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2627 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-2409 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-2216 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1056 (-576))) (|has| |#1| (-374)))) (((-1195) $) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374))))) (-3279 (($ $) 65) (($ (-576) $) 28)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-3928 (((-701 |#2|) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-4077 (((-3 $ "failed") $) 88)) (-2395 (((-419 (-968 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-2840 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-3730 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2567 (((-112) $) 74)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-3540 (((-576) $) 105) (((-576) $ (-576)) 107)) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL (|has| |#1| (-374)))) (-2976 ((|#2| $) 165 (|has| |#1| (-374)))) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2211 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1170)) (|has| |#1| (-374))))) (-3327 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4162 (($ $ (-937)) 148)) (-2028 (($ (-1 |#1| (-576)) $) 144)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-576)) 20) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-3639 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2571 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1787 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3118 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4416 (($ (-576) |#2|) 10)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 159 (|has| |#1| (-374)))) (-2254 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 233 (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3796 (($) NIL (-12 (|has| |#2| (-1170)) (|has| |#1| (-374))) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3739 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-4371 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-925)) (|has| |#1| (-374))))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-576)) 138)) (-2858 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1130))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $) 149 (-2838 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 153 (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3210 (($ $) NIL (|has| |#1| (-374)))) (-2987 ((|#2| $) 166 (|has| |#1| (-374)))) (-2782 (((-576) $) 12)) (-2422 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-1846 (((-227) $) NIL (-12 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1040)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925)) (|has| |#1| (-374))))) (-1588 (($ $) 136)) (-2956 (((-874) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1195)) NIL (-12 (|has| |#2| (-1056 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-576)) 85)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3423 (((-783)) 155 T CONST)) (-3337 ((|#1| $) 102)) (-4175 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2130 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2143 (($) 13 T CONST)) (-2155 (($) 18 T CONST)) (-3590 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-2838 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| |#2| (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| |#2| (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3047 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3024 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2991 (((-112) $ $) 72)) (-3034 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3014 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3096 (($ $) 227) (($ $ $) 78)) (-3081 (($ $ $) 76)) (** (($ $ (-937)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1249 |#1| |#2|) (-1248 |#1| |#2|) (-1067) (-1277 |#1|)) (T -1249))
+NIL
+(-1248 |#1| |#2|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2742 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 10)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4334 (($ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1428 (((-112) $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2725 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-2206 (((-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-4304 (((-1278 |#1| |#2| |#3|) $) NIL)) (-2855 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL)) (-4404 (((-1278 |#1| |#2| |#3|) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2627 (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3602 (($ (-1175 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-2216 (((-1278 |#1| |#2| |#3|) $) NIL) (((-1195) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))))) (-3279 (($ $) NIL) (($ (-576) $) NIL)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-1278 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-701 (-1278 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1278 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-4077 (((-3 $ "failed") $) NIL)) (-2395 (((-419 (-968 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-968 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-2840 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-3730 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-3540 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-4192 (((-112) $) NIL)) (-4299 (($ $) NIL (|has| |#1| (-374)))) (-2976 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2211 (((-3 $ "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))))) (-3327 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4162 (($ $ (-937)) NIL)) (-2028 (($ (-1 |#1| (-576)) $) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-576)) 18) (($ $ (-1100) (-576)) NIL) (($ $ (-656 (-1100)) (-656 (-576))) NIL)) (-3639 (($ $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2571 (($ $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4416 (($ (-576) (-1278 |#1| |#2| |#3|)) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1170)) (|has| |#1| (-374))) CONST)) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3739 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-4371 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-576)) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1278 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1278 |#1| |#2| |#3|)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1130))) (($ $ (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 26) (($ $) 25 (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3210 (($ $) NIL (|has| |#1| (-374)))) (-2987 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2782 (((-576) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1846 (((-548) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1278 |#1| |#2| |#3|)) NIL) (($ (-1282 |#2|)) 24) (($ (-1195)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-1056 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4309 ((|#1| $ (-576)) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 11)) (-4175 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-925)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2130 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2143 (($) 20 T CONST)) (-2155 (($) 15 T CONST)) (-3590 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-914 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-914 (-1195))))))) (-3047 (((-112) $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3024 (((-112) $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2991 (((-112) $ $) NIL)) (-3034 (((-112) $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3014 (((-112) $ $) NIL (-2838 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 22)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1250 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1250))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-10 -8 (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-3994 (((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112)) 13)) (-3067 (((-430 |#1|) |#1|) 26)) (-4205 (((-430 |#1|) |#1|) 24)))
+(((-1251 |#1|) (-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1|)) (-15 -3994 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112)))) (-1262 (-576))) (T -1251))
+((-3994 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576))))))) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-3067 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))))
+(-10 -7 (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3067 ((-430 |#1|) |#1|)) (-15 -3994 ((-2 (|:| |contp| (-576)) (|:| -3544 (-656 (-2 (|:| |irr| |#1|) (|:| -3807 (-576)))))) |#1| (-112))))
+((-1787 (((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 23 (|has| |#1| (-860))) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 17)))
+(((-1252 |#1| |#2|) (-10 -7 (-15 -1787 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -1787 ((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1252))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1252 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6)))))
+(-10 -7 (-15 -1787 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -1787 ((-1175 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3230 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1787 (((-1175 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-1843 ((|#1| $) 15)) (-2836 ((|#1| $) 12)) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1964 (((-576) $) 19)) (-3517 ((|#1| $) 18)) (-1975 ((|#1| $) 13)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-3431 (((-112) $) 17)) (-2139 (((-1175 |#1|) $) 41 (|has| |#1| (-860))) (((-1175 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-1846 (($ |#1|) 26)) (-2956 (($ (-1112 |#1|)) 25) (((-874) $) 37 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-4266 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2753 (($ $ (-576)) 14)) (-2991 (((-112) $ $) 30 (|has| |#1| (-1118)))))
+(((-1253 |#1|) (-13 (-1111 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3230 ($ |#1|)) (-15 -2956 ($ (-1112 |#1|))) (-15 -3431 ((-112) $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-1175 |#1|))) |%noBranch|))) (-1236)) (T -1253))
+((-4266 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-3230 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1112 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236)))))
+(-13 (-1111 |#1|) (-10 -8 (-15 -4266 ($ |#1|)) (-15 -3230 ($ |#1|)) (-15 -2956 ($ (-1112 |#1|))) (-15 -3431 ((-112) $)) (IF (|has| |#1| (-1118)) (-6 (-1118)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1113 |#1| (-1175 |#1|))) |%noBranch|)))
+((-1787 (((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)) 15)))
+(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)))) (-1195) (-1067) (-1195) (-1067)) (T -1254))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195)) (-4 *6 (-1067)) (-4 *8 (-1067)) (-5 *2 (-1259 *7 *8)) (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195)))))
+(-10 -7 (-15 -1787 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|))))
+((-4052 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3525 ((|#1| |#3|) 13)) (-3867 ((|#3| |#3|) 19)))
+(((-1255 |#1| |#2| |#3|) (-10 -7 (-15 -3525 (|#1| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1010 |#1|) (-1262 |#2|)) (T -1255))
+((-4052 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3867 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1255 *3 *4 *2)) (-4 *2 (-1262 *4)))) (-3525 (*1 *2 *3) (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -3525 (|#1| |#3|)) (-15 -3867 (|#3| |#3|)) (-15 -4052 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4015 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-1401 (((-3 |#2| "failed") |#2| (-783)) 36)) (-2815 (((-3 (-2 (|:| -3870 |#2|) (|:| -3883 |#2|)) "failed") |#2|) 50)) (-2992 (((-656 |#2|) |#2|) 52)) (-2365 (((-3 |#2| "failed") |#2| |#2|) 46)))
+(((-1256 |#1| |#2|) (-10 -7 (-15 -1401 ((-3 |#2| "failed") |#2| (-783))) (-15 -4015 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2365 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2815 ((-3 (-2 (|:| -3870 |#2|) (|:| -3883 |#2|)) "failed") |#2|)) (-15 -2992 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1262 |#1|)) (T -1256))
+((-2992 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-2815 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -3870 *3) (|:| -3883 *3))) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-2365 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1262 *3)))) (-4015 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))) (-1401 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))))
+(-10 -7 (-15 -1401 ((-3 |#2| "failed") |#2| (-783))) (-15 -4015 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -2365 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2815 ((-3 (-2 (|:| -3870 |#2|) (|:| -3883 |#2|)) "failed") |#2|)) (-15 -2992 ((-656 |#2|) |#2|)))
+((-3229 (((-3 (-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1257 |#1| |#2|) (-10 -7 (-15 -3229 ((-3 (-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) "failed") |#2| |#2|))) (-568) (-1262 |#1|)) (T -1257))
+((-3229 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1262 *4)))))
+(-10 -7 (-15 -3229 ((-3 (-2 (|:| -1758 |#2|) (|:| -3983 |#2|)) "failed") |#2| |#2|)))
+((-2511 ((|#2| |#2| |#2|) 22)) (-1397 ((|#2| |#2| |#2|) 36)) (-3459 ((|#2| |#2| |#2| (-783) (-783)) 44)))
+(((-1258 |#1| |#2|) (-10 -7 (-15 -2511 (|#2| |#2| |#2|)) (-15 -1397 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2| (-783) (-783)))) (-1067) (-1262 |#1|)) (T -1258))
+((-3459 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4)))) (-1397 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))) (-2511 (*1 *2 *2 *2) (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))))
+(-10 -7 (-15 -2511 (|#2| |#2| |#2|)) (-15 -1397 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2| (-783) (-783))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-2862 (((-1286 |#2|) $ (-783)) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-2357 (($ (-1191 |#2|)) NIL)) (-4174 (((-1191 $) $ (-1100)) NIL) (((-1191 |#2|) $) NIL)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4334 (($ $) NIL (|has| |#2| (-568)))) (-1428 (((-112) $) NIL (|has| |#2| (-568)))) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1100))) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2628 (($ $ $) NIL (|has| |#2| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2879 (($ $) NIL (|has| |#2| (-464)))) (-1870 (((-430 $) $) NIL (|has| |#2| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-1323 (((-112) $ $) NIL (|has| |#2| (-374)))) (-1708 (($ $ (-783)) NIL)) (-1546 (($ $ (-783)) NIL)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1056 (-576)))) (((-3 (-1100) "failed") $) NIL)) (-2216 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1056 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1056 (-576)))) (((-1100) $) NIL)) (-2799 (($ $ $ (-1100)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2806 (($ $ $) NIL (|has| |#2| (-374)))) (-1404 (($ $) NIL)) (-3928 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2818 (($ $ $) NIL (|has| |#2| (-374)))) (-3497 (($ $ $) NIL)) (-4055 (($ $ $) NIL (|has| |#2| (-568)))) (-3170 (((-2 (|:| -1868 |#2|) (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-4290 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1100)) NIL (|has| |#2| (-464)))) (-1391 (((-656 $) $) NIL)) (-3124 (((-112) $) NIL (|has| |#2| (-925)))) (-3130 (($ $ |#2| (-783) $) NIL)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1100) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1100) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-3540 (((-783) $ $) NIL (|has| |#2| (-568)))) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2211 (((-3 $ "failed") $) NIL (|has| |#2| (-1170)))) (-4341 (($ (-1191 |#2|) (-1100)) NIL) (($ (-1191 $) (-1100)) NIL)) (-4162 (($ $ (-783)) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-4330 (($ |#2| (-783)) 18) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1100)) NIL) (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL)) (-1859 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-2819 (($ (-1 (-783) (-783)) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-1525 (((-1191 |#2|) $) NIL)) (-1712 (((-3 (-1100) "failed") $) NIL)) (-1368 (($ $) NIL)) (-1380 ((|#2| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2148 (((-1177) $) NIL)) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) NIL)) (-1864 (((-3 (-656 $) "failed") $) NIL)) (-4139 (((-3 (-656 $) "failed") $) NIL)) (-2302 (((-3 (-2 (|:| |var| (-1100)) (|:| -2300 (-783))) "failed") $) NIL)) (-2254 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3796 (($) NIL (|has| |#2| (-1170)) CONST)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 ((|#2| $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-2892 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2288 (($ $ (-783) |#2| $) NIL)) (-4412 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-925)))) (-4205 (((-430 $) $) NIL (|has| |#2| (-925)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#2| (-374)))) (-2858 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2666 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#2|) NIL) (($ $ (-656 (-1100)) (-656 |#2|)) NIL) (($ $ (-1100) $) NIL) (($ $ (-656 (-1100)) (-656 $)) NIL)) (-3927 (((-783) $) NIL (|has| |#2| (-374)))) (-2209 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-3375 (((-3 $ "failed") $ (-783)) NIL)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#2| (-374)))) (-3206 (($ $ (-1100)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2782 (((-783) $) NIL) (((-783) $ (-1100)) NIL) (((-656 (-783)) $ (-656 (-1100))) NIL)) (-1846 (((-905 (-390)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1100) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1885 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1100)) NIL (|has| |#2| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-925))))) (-3224 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-2956 (((-874) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1100)) NIL) (($ (-1282 |#1|)) 20) (($ (-419 (-576))) NIL (-2838 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1056 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-783)) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1817 (((-3 $ "failed") $) NIL (-2838 (-12 (|has| $ (-146)) (|has| |#2| (-925))) (|has| |#2| (-146))))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2143 (($) NIL T CONST)) (-2155 (($) 14 T CONST)) (-3590 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1195)) NIL (|has| |#2| (-914 (-1195)))) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1259 |#1| |#2|) (-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -2288 ($ $ (-783) |#2| $)))) (-1195) (-1067)) (T -1259))
+((-2288 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195)) (-4 *3 (-1067)))))
+(-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -2288 ($ $ (-783) |#2| $))))
+((-1787 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|))) (-1067) (-1262 |#1|) (-1067) (-1262 |#3|)) (T -1260))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2862 (((-1286 |#2|) $ (-783)) 129)) (-4352 (((-656 (-1100)) $) 16)) (-2357 (($ (-1191 |#2|)) 80)) (-3306 (((-783) $) NIL) (((-783) $ (-656 (-1100))) 21)) (-3529 (((-430 (-1191 $)) (-1191 $)) 204)) (-2879 (($ $) 194)) (-1870 (((-430 $) $) 192)) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 95)) (-1708 (($ $ (-783)) 84)) (-1546 (($ $ (-783)) 86)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1706 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1100) "failed") $) NIL)) (-2216 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1100) $) NIL)) (-4055 (($ $ $) 170)) (-3170 (((-2 (|:| -1868 |#2|) (|:| -1758 $) (|:| -3983 $)) $ $) 172)) (-3540 (((-783) $ $) 189)) (-2211 (((-3 $ "failed") $) 138)) (-4330 (($ |#2| (-783)) NIL) (($ $ (-1100) (-783)) 59) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1859 (((-783) $) NIL) (((-783) $ (-1100)) 54) (((-656 (-783)) $ (-656 (-1100))) 55)) (-1525 (((-1191 |#2|) $) 72)) (-1712 (((-3 (-1100) "failed") $) 52)) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) 83)) (-2254 (($ $) 219)) (-3796 (($) 134)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 201)) (-4412 (((-430 (-1191 $)) (-1191 $)) 101)) (-2822 (((-430 (-1191 $)) (-1191 $)) 99)) (-4205 (((-430 $) $) 120)) (-2666 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1100) |#2|) 39) (($ $ (-656 (-1100)) (-656 |#2|)) 36) (($ $ (-1100) $) 32) (($ $ (-656 (-1100)) (-656 $)) 30)) (-3927 (((-783) $) 207)) (-2209 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 212)) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) NIL) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100))) NIL) (($ $ (-1100)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-2782 (((-783) $) NIL) (((-783) $ (-1100)) 17) (((-656 (-783)) $ (-656 (-1100))) 23)) (-1885 ((|#2| $) NIL) (($ $ (-1100)) 140)) (-3224 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1100)) 64) (($ (-419 (-576))) NIL) (($ $) NIL)))
+(((-1261 |#1| |#2|) (-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -2209 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3927 ((-783) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2209 (|#2| (-419 |#1|) |#2|)) (-15 -3680 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3170 ((-2 (|:| -1868 |#2|) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -4055 (|#1| |#1| |#1|)) (-15 -3224 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3224 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3540 ((-783) |#1| |#1|)) (-15 -2209 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1546 (|#1| |#1| (-783))) (-15 -1708 (|#1| |#1| (-783))) (-15 -2337 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| (-783))) (-15 -2357 (|#1| (-1191 |#2|))) (-15 -1525 ((-1191 |#2|) |#1|)) (-15 -2862 ((-1286 |#2|) |#1| (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| |#2|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3529 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -1885 (|#1| |#1| (-1100))) (-15 -4352 ((-656 (-1100)) |#1|)) (-15 -3306 ((-783) |#1| (-656 (-1100)))) (-15 -3306 ((-783) |#1|)) (-15 -4330 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -4330 (|#1| |#1| (-1100) (-783))) (-15 -1859 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -1859 ((-783) |#1| (-1100))) (-15 -1712 ((-3 (-1100) "failed") |#1|)) (-15 -2782 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -2782 ((-783) |#1| (-1100))) (-15 -2956 (|#1| (-1100))) (-15 -1706 ((-3 (-1100) "failed") |#1|)) (-15 -2216 ((-1100) |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1100)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-1100) |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1100)) (-656 |#2|))) (-15 -2666 (|#1| |#1| (-1100) |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2782 ((-783) |#1|)) (-15 -4330 (|#1| |#2| (-783))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1859 ((-783) |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -3884 (|#1| |#1| (-1100))) (-15 -3884 (|#1| |#1| (-656 (-1100)))) (-15 -3884 (|#1| |#1| (-1100) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|))) (-1262 |#2|) (-1067)) (T -1261))
+NIL
+(-10 -8 (-15 -2956 (|#1| |#1|)) (-15 -2045 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -1870 ((-430 |#1|) |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -3796 (|#1|)) (-15 -2211 ((-3 |#1| "failed") |#1|)) (-15 -2209 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3927 ((-783) |#1|)) (-15 -1408 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2209 (|#2| (-419 |#1|) |#2|)) (-15 -3680 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3170 ((-2 (|:| -1868 |#2|) (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| |#1|)) (-15 -4055 (|#1| |#1| |#1|)) (-15 -3224 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3224 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3540 ((-783) |#1| |#1|)) (-15 -2209 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1546 (|#1| |#1| (-783))) (-15 -1708 (|#1| |#1| (-783))) (-15 -2337 ((-2 (|:| -1758 |#1|) (|:| -3983 |#1|)) |#1| (-783))) (-15 -2357 (|#1| (-1191 |#2|))) (-15 -1525 ((-1191 |#2|) |#1|)) (-15 -2862 ((-1286 |#2|) |#1| (-783))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3884 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3884 (|#1| |#1| (-1195))) (-15 -3884 (|#1| |#1| (-656 (-1195)))) (-15 -3884 (|#1| |#1| (-1195) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3884 (|#1| |#1| (-783))) (-15 -3884 (|#1| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2209 (|#2| |#1| |#2|)) (-15 -4205 ((-430 |#1|) |#1|)) (-15 -3529 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -2822 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4412 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -3695 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -1885 (|#1| |#1| (-1100))) (-15 -4352 ((-656 (-1100)) |#1|)) (-15 -3306 ((-783) |#1| (-656 (-1100)))) (-15 -3306 ((-783) |#1|)) (-15 -4330 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -4330 (|#1| |#1| (-1100) (-783))) (-15 -1859 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -1859 ((-783) |#1| (-1100))) (-15 -1712 ((-3 (-1100) "failed") |#1|)) (-15 -2782 ((-656 (-783)) |#1| (-656 (-1100)))) (-15 -2782 ((-783) |#1| (-1100))) (-15 -2956 (|#1| (-1100))) (-15 -1706 ((-3 (-1100) "failed") |#1|)) (-15 -2216 ((-1100) |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1100)) (-656 |#1|))) (-15 -2666 (|#1| |#1| (-1100) |#1|)) (-15 -2666 (|#1| |#1| (-656 (-1100)) (-656 |#2|))) (-15 -2666 (|#1| |#1| (-1100) |#2|)) (-15 -2666 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2666 (|#1| |#1| |#1| |#1|)) (-15 -2666 (|#1| |#1| (-304 |#1|))) (-15 -2666 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2782 ((-783) |#1|)) (-15 -4330 (|#1| |#2| (-783))) (-15 -1706 ((-3 (-576) "failed") |#1|)) (-15 -2216 ((-576) |#1|)) (-15 -1706 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2216 ((-419 (-576)) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -1706 ((-3 |#2| "failed") |#1|)) (-15 -2956 (|#1| |#2|)) (-15 -1859 ((-783) |#1|)) (-15 -1885 (|#2| |#1|)) (-15 -3884 (|#1| |#1| (-1100))) (-15 -3884 (|#1| |#1| (-656 (-1100)))) (-15 -3884 (|#1| |#1| (-1100) (-783))) (-15 -3884 (|#1| |#1| (-656 (-1100)) (-656 (-783)))) (-15 -2956 (|#1| (-576))) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2862 (((-1286 |#1|) $ (-783)) 245)) (-4352 (((-656 (-1100)) $) 113)) (-2357 (($ (-1191 |#1|)) 243)) (-4174 (((-1191 $) $ (-1100)) 128) (((-1191 |#1|) $) 127)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4334 (($ $) 91 (|has| |#1| (-568)))) (-1428 (((-112) $) 93 (|has| |#1| (-568)))) (-3306 (((-783) $) 115) (((-783) $ (-656 (-1100))) 114)) (-3798 (((-3 $ "failed") $ $) 20)) (-2628 (($ $ $) 230 (|has| |#1| (-568)))) (-3529 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-925)))) (-2879 (($ $) 101 (|has| |#1| (-464)))) (-1870 (((-430 $) $) 100 (|has| |#1| (-464)))) (-3695 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-925)))) (-1323 (((-112) $ $) 215 (|has| |#1| (-374)))) (-1708 (($ $ (-783)) 238)) (-1546 (($ $ (-783)) 237)) (-3680 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 225 (|has| |#1| (-464)))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1056 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1056 (-576)))) (((-3 (-1100) "failed") $) 141)) (-2216 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1056 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1056 (-576)))) (((-1100) $) 142)) (-2799 (($ $ $ (-1100)) 111 (|has| |#1| (-174))) ((|#1| $ $) 233 (|has| |#1| (-174)))) (-2806 (($ $ $) 219 (|has| |#1| (-374)))) (-1404 (($ $) 159)) (-3928 (((-701 (-576)) (-1286 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2081 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1286 $)) 134)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 218 (|has| |#1| (-374)))) (-3497 (($ $ $) 236)) (-4055 (($ $ $) 227 (|has| |#1| (-568)))) (-3170 (((-2 (|:| -1868 |#1|) (|:| -1758 $) (|:| -3983 $)) $ $) 226 (|has| |#1| (-568)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 213 (|has| |#1| (-374)))) (-4290 (($ $) 181 (|has| |#1| (-464))) (($ $ (-1100)) 108 (|has| |#1| (-464)))) (-1391 (((-656 $) $) 112)) (-3124 (((-112) $) 99 (|has| |#1| (-925)))) (-3130 (($ $ |#1| (-783) $) 177)) (-1487 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3540 (((-783) $ $) 231 (|has| |#1| (-568)))) (-4192 (((-112) $) 35)) (-2747 (((-783) $) 174)) (-2211 (((-3 $ "failed") $) 211 (|has| |#1| (-1170)))) (-4341 (($ (-1191 |#1|) (-1100)) 120) (($ (-1191 $) (-1100)) 119)) (-4162 (($ $ (-783)) 242)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 222 (|has| |#1| (-374)))) (-2397 (((-656 $) $) 129)) (-1614 (((-112) $) 157)) (-4330 (($ |#1| (-783)) 158) (($ $ (-1100) (-783)) 122) (($ $ (-656 (-1100)) (-656 (-783))) 121)) (-2908 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $ (-1100)) 123) (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 240)) (-1859 (((-783) $) 175) (((-783) $ (-1100)) 125) (((-656 (-783)) $ (-656 (-1100))) 124)) (-2819 (($ (-1 (-783) (-783)) $) 176)) (-1787 (($ (-1 |#1| |#1|) $) 156)) (-1525 (((-1191 |#1|) $) 244)) (-1712 (((-3 (-1100) "failed") $) 126)) (-1368 (($ $) 154)) (-1380 ((|#1| $) 153)) (-2850 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2148 (((-1177) $) 10)) (-2337 (((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783)) 239)) (-1864 (((-3 (-656 $) "failed") $) 117)) (-4139 (((-3 (-656 $) "failed") $) 118)) (-2302 (((-3 (-2 (|:| |var| (-1100)) (|:| -2300 (-783))) "failed") $) 116)) (-2254 (($ $) 223 (|has| |#1| (-38 (-419 (-576)))))) (-3796 (($) 210 (|has| |#1| (-1170)) CONST)) (-3945 (((-1138) $) 11)) (-1345 (((-112) $) 171)) (-1357 ((|#1| $) 172)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-2892 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4412 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-925)))) (-2822 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-925)))) (-4205 (((-430 $) $) 102 (|has| |#1| (-925)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 221 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 220 (|has| |#1| (-374)))) (-2858 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 214 (|has| |#1| (-374)))) (-2666 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ (-1100) |#1|) 146) (($ $ (-656 (-1100)) (-656 |#1|)) 145) (($ $ (-1100) $) 144) (($ $ (-656 (-1100)) (-656 $)) 143)) (-3927 (((-783) $) 216 (|has| |#1| (-374)))) (-2209 ((|#1| $ |#1|) 263) (($ $ $) 262) (((-419 $) (-419 $) (-419 $)) 232 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 224 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 212 (|has| |#1| (-568)))) (-3375 (((-3 $ "failed") $ (-783)) 241)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 217 (|has| |#1| (-374)))) (-3206 (($ $ (-1100)) 110 (|has| |#1| (-174))) ((|#1| $) 234 (|has| |#1| (-174)))) (-3884 (($ $ (-656 (-1100)) (-656 (-783))) 44) (($ $ (-1100) (-783)) 43) (($ $ (-656 (-1100))) 42) (($ $ (-1100)) 40) (($ $) 261) (($ $ (-783)) 259) (($ $ (-656 (-1195)) (-656 (-783))) 254 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 253 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 252 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 250 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) $) 235)) (-2782 (((-783) $) 155) (((-783) $ (-1100)) 133) (((-656 (-783)) $ (-656 (-1100))) 132)) (-1846 (((-905 (-390)) $) 85 (-12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1885 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ (-1100)) 109 (|has| |#1| (-464)))) (-3300 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2096 (|has| $ (-146)) (|has| |#1| (-925))))) (-3224 (((-3 $ "failed") $ $) 229 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 228 (|has| |#1| (-568)))) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ (-1100)) 140) (($ (-419 (-576))) 81 (-2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3532 (((-656 |#1|) $) 173)) (-4309 ((|#1| $ (-783)) 160) (($ $ (-1100) (-783)) 131) (($ $ (-656 (-1100)) (-656 (-783))) 130)) (-1817 (((-3 $ "failed") $) 82 (-2838 (-2096 (|has| $ (-146)) (|has| |#1| (-925))) (|has| |#1| (-146))))) (-3423 (((-783)) 32 T CONST)) (-1412 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-656 (-1100)) (-656 (-783))) 47) (($ $ (-1100) (-783)) 46) (($ $ (-656 (-1100))) 45) (($ $ (-1100)) 41) (($ $) 260) (($ $ (-783)) 258) (($ $ (-656 (-1195)) (-656 (-783))) 257 (|has| |#1| (-914 (-1195)))) (($ $ (-1195) (-783)) 256 (|has| |#1| (-914 (-1195)))) (($ $ (-656 (-1195))) 255 (|has| |#1| (-914 (-1195)))) (($ $ (-1195)) 251 (|has| |#1| (-914 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 249) (($ $ (-1 |#1| |#1|)) 248)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-1262 |#1|) (-141) (-1067)) (T -1262))
+((-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-5 *2 (-1191 *3)))) (-2357 (*1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1067)) (-4 *1 (-1262 *3)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-3375 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1262 *3)))) (-2337 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1262 *4)))) (-1708 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-1546 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-3497 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)))) (-3884 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))) (-2799 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))) (-2209 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)))) (-3540 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2628 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-3224 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-3224 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568)))) (-4055 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))) (-3170 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1868 *3) (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1262 *3)))) (-3680 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1262 *3)))) (-2209 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2254 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))))
+(-13 (-965 |t#1| (-783) (-1100)) (-296 |t#1| |t#1|) (-296 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -2862 ((-1286 |t#1|) $ (-783))) (-15 -1525 ((-1191 |t#1|) $)) (-15 -2357 ($ (-1191 |t#1|))) (-15 -4162 ($ $ (-783))) (-15 -3375 ((-3 $ "failed") $ (-783))) (-15 -2908 ((-2 (|:| -1758 $) (|:| -3983 $)) $ $)) (-15 -2337 ((-2 (|:| -1758 $) (|:| -3983 $)) $ (-783))) (-15 -1708 ($ $ (-783))) (-15 -1546 ($ $ (-783))) (-15 -3497 ($ $ $)) (-15 -3884 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1170)) (-6 (-1170)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3206 (|t#1| $)) (-15 -2799 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2209 ((-419 $) (-419 $) (-419 $))) (-15 -3540 ((-783) $ $)) (-15 -2628 ($ $ $)) (-15 -3224 ((-3 $ "failed") $ $)) (-15 -3224 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4055 ($ $ $)) (-15 -3170 ((-2 (|:| -1868 |t#1|) (|:| -1758 $) (|:| -3983 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -3680 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4457) (-15 -2209 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -2254 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2838 (|has| |#1| (-1056 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1100)) . T) ((-628 |#1|) . T) ((-628 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1100) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| (-1100) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| (-1100) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2838 (|has| |#1| (-925)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2#) . T) ((-909 $ #4=(-1195)) |has| |#1| (-914 (-1195))) ((-914 #2#) . T) ((-914 #4#) |has| |#1| (-914 (-1195))) ((-916 #2#) . T) ((-916 #4#) |has| |#1| (-914 (-1195))) ((-899 (-390)) -12 (|has| (-1100) (-899 (-390))) (|has| |#1| (-899 (-390)))) ((-899 (-576)) -12 (|has| (-1100) (-899 (-576))) (|has| |#1| (-899 (-576)))) ((-965 |#1| #0# #2#) . T) ((-925) |has| |#1| (-925)) ((-936) |has| |#1| (-374)) ((-1056 (-419 (-576))) |has| |#1| (-1056 (-419 (-576)))) ((-1056 (-576)) |has| |#1| (-1056 (-576))) ((-1056 #2#) . T) ((-1056 |#1|) . T) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-925)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1170) |has| |#1| (-1170)) ((-1236) . T) ((-1240) |has| |#1| (-925)))
+((-4352 (((-656 (-1100)) $) 34)) (-1404 (($ $) 31)) (-4330 (($ |#2| |#3|) NIL) (($ $ (-1100) |#3|) 28) (($ $ (-656 (-1100)) (-656 |#3|)) 27)) (-1368 (($ $) 14)) (-1380 ((|#2| $) 12)) (-2782 ((|#3| $) 10)))
+(((-1263 |#1| |#2| |#3|) (-10 -8 (-15 -4352 ((-656 (-1100)) |#1|)) (-15 -4330 (|#1| |#1| (-656 (-1100)) (-656 |#3|))) (-15 -4330 (|#1| |#1| (-1100) |#3|)) (-15 -1404 (|#1| |#1|)) (-15 -4330 (|#1| |#2| |#3|)) (-15 -2782 (|#3| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1380 (|#2| |#1|))) (-1264 |#2| |#3|) (-1067) (-804)) (T -1263))
+NIL
+(-10 -8 (-15 -4352 ((-656 (-1100)) |#1|)) (-15 -4330 (|#1| |#1| (-656 (-1100)) (-656 |#3|))) (-15 -4330 (|#1| |#1| (-1100) |#3|)) (-15 -1404 (|#1| |#1|)) (-15 -4330 (|#1| |#2| |#3|)) (-15 -2782 (|#3| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1380 (|#2| |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-2206 (((-1175 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-2567 (((-112) $) 85)) (-3540 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-4192 (((-112) $) 35)) (-4162 (($ $ (-937)) 116)) (-1614 (((-112) $) 74)) (-4330 (($ |#1| |#2|) 73) (($ $ (-1100) |#2|) 88) (($ $ (-656 (-1100)) (-656 |#2|)) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-3167 (($ $ |#2|) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2209 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1130)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2782 ((|#2| $) 76)) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4309 ((|#1| $ |#2|) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3530 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1264 |#1| |#2|) (-141) (-1067) (-804)) (T -1264))
+((-2206 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (-5 *2 (-1195)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-3540 (*1 *2 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2725 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2725 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-3530 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2956 (*2 (-1195)))) (-4 *2 (-1067)))) (-3167 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))) (-2666 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3)))))
+(-13 (-991 |t#1| |t#2| (-1100)) (-296 |t#2| |t#1|) (-10 -8 (-15 -2206 ((-1175 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1500 ((-1195) $)) (-15 -3337 (|t#1| $)) (-15 -4162 ($ $ (-937))) (-15 -3540 (|t#2| $)) (-15 -3540 (|t#2| $ |t#2|)) (-15 -2725 ($ $ |t#2|)) (-15 -2725 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2956 (|t#1| (-1195)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3530 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3167 ($ $ |t#2|)) (IF (|has| |t#2| (-1130)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-914 (-1195))) (-6 (-914 (-1195))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2666 ((-1175 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1130)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #1=(-1195)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| |#2| (-1100)) . T) ((-1069 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1236) . T))
+((-2879 ((|#2| |#2|) 12)) (-1870 (((-430 |#2|) |#2|) 14)) (-1551 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30)))
+(((-1265 |#1| |#2|) (-10 -7 (-15 -1870 ((-430 |#2|) |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -1551 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1262 |#1|) (-568) (-10 -8 (-15 -2892 ($ $ $))))) (T -1265))
+((-1551 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -2892 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1265 *3 *4)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2)) (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -2892 ($ $ $))))))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3)) (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -2892 ($ $ $))))))))
+(-10 -7 (-15 -1870 ((-430 |#2|) |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -1551 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))))))
+((-1787 (((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)) 24)))
+(((-1266 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)))) (-1067) (-1067) (-1195) (-1195) |#1| |#2|) (T -1266))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195)))))
+(-10 -7 (-15 -1787 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2384 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 177 (|has| |#1| (-374)))) (-1870 (((-430 $) $) 178 (|has| |#1| (-374)))) (-4214 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2363 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2409 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-2806 (($ $ $) 172 (|has| |#1| (-374)))) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 171 (|has| |#1| (-374)))) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3124 (((-112) $) 179 (|has| |#1| (-374)))) (-2567 (((-112) $) 85)) (-3009 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) 116) (($ $ (-419 (-576))) 185)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1614 (((-112) $) 74)) (-4330 (($ |#1| (-419 (-576))) 73) (($ $ (-1100) (-419 (-576))) 88) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2850 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2148 (((-1177) $) 10)) (-1330 (($ $) 180 (|has| |#1| (-374)))) (-2254 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2838 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-2892 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-4205 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 173 (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-1619 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) 169 (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 170 (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2782 (((-419 (-576)) $) 76)) (-2422 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2434 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1267 |#1|) (-141) (-1067)) (T -1267))
+((-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1067)) (-4 *1 (-1267 *4)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1067)))) (-2254 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-2254 (*1 *1 *1 *2) (-2838 (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -4352 ((-656 *2) *3))) (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1264 |t#1| (-419 (-576))) (-10 -8 (-15 -3602 ($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4162 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $)) (IF (|has| |t#1| (-15 -2254 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -4352 ((-656 (-1195)) |t#1|))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1130)) ((-300) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T))
+((-3549 (((-112) $) 12)) (-1706 (((-3 |#3| "failed") $) 17)) (-2216 ((|#3| $) 14)))
+(((-1268 |#1| |#2| |#3|) (-10 -8 (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3549 ((-112) |#1|))) (-1269 |#2| |#3|) (-1067) (-1246 |#2|)) (T -1268))
+NIL
+(-10 -8 (-15 -1706 ((-3 |#3| "failed") |#1|)) (-15 -2216 (|#3| |#1|)) (-15 -3549 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2384 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 177 (|has| |#1| (-374)))) (-1870 (((-430 $) $) 178 (|has| |#1| (-374)))) (-4214 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2363 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2409 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#2| "failed") $) 197)) (-2216 ((|#2| $) 198)) (-2806 (($ $ $) 172 (|has| |#1| (-374)))) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-2552 (((-419 (-576)) $) 194)) (-2818 (($ $ $) 171 (|has| |#1| (-374)))) (-4428 (($ (-419 (-576)) |#2|) 195)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3124 (((-112) $) 179 (|has| |#1| (-374)))) (-2567 (((-112) $) 85)) (-3009 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) 116) (($ $ (-419 (-576))) 185)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1614 (((-112) $) 74)) (-4330 (($ |#1| (-419 (-576))) 73) (($ $ (-1100) (-419 (-576))) 88) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2850 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-4074 ((|#2| $) 193)) (-2516 (((-3 |#2| "failed") $) 191)) (-4416 ((|#2| $) 192)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 180 (|has| |#1| (-374)))) (-2254 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2838 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-2892 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-4205 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 173 (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-1619 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) 169 (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 170 (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2782 (((-419 (-576)) $) 76)) (-2422 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2434 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1269 |#1| |#2|) (-141) (-1067) (-1246 |t#1|)) (T -1269))
+((-2782 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-4428 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1067)) (-4 *1 (-1269 *4 *3)) (-4 *3 (-1246 *4)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))) (-4416 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))) (-2516 (*1 *2 *1) (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))))
+(-13 (-1267 |t#1|) (-1056 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4428 ($ (-419 (-576)) |t#2|)) (-15 -2552 ((-419 (-576)) $)) (-15 -4074 (|t#2| $)) (-15 -2782 ((-419 (-576)) $)) (-15 -4416 (|t#2| $)) (-15 -2516 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-249) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1130)) ((-300) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-936) |has| |#1| (-374)) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1056 |#2|) . T) ((-1069 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1074 #1#) -2838 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T) ((-1267 |#1|) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 104)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-2384 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-2409 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) 85)) (-2552 (((-419 (-576)) $) 13)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-4428 (($ (-419 (-576)) |#2|) 11)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-2567 (((-112) $) 74)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) 130) (($ $ (-419 (-576))) 128)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-419 (-576))) 33) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 125)) (-3118 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4074 ((|#2| $) 12)) (-2516 (((-3 |#2| "failed") $) 44)) (-4416 ((|#2| $) 45)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) 101 (|has| |#1| (-374)))) (-2254 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 151 (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221)))))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) 122)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2782 (((-419 (-576)) $) 16)) (-2422 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 120)) (-2956 (((-874) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) 107)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) 127 T CONST)) (-3337 ((|#1| $) 106)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 21 T CONST)) (-2155 (($) 17 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) 72)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3096 (($ $) 142) (($ $ $) 78)) (-3081 (($ $ $) 76)) (** (($ $ (-937)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1270 |#1| |#2|) (-1269 |#1| |#2|) (-1067) (-1246 |#1|)) (T -1270))
+NIL
+(-1269 |#1| |#2|)
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 11)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) NIL (|has| |#1| (-568)))) (-2725 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2206 (((-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-2879 (($ $) NIL (|has| |#1| (-374)))) (-1870 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1323 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-783) (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1278 |#1| |#2| |#3|) "failed") $) 22)) (-2216 (((-1250 |#1| |#2| |#3|) $) NIL) (((-1278 |#1| |#2| |#3|) $) NIL)) (-2806 (($ $ $) NIL (|has| |#1| (-374)))) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-2552 (((-419 (-576)) $) 69)) (-2818 (($ $ $) NIL (|has| |#1| (-374)))) (-4428 (($ (-419 (-576)) (-1250 |#1| |#2| |#3|)) NIL)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3124 (((-112) $) NIL (|has| |#1| (-374)))) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4192 (((-112) $) NIL)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) NIL) (($ $ (-419 (-576))) NIL)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-419 (-576))) 30) (($ $ (-1100) (-419 (-576))) NIL) (($ $ (-656 (-1100)) (-656 (-419 (-576)))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2850 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4074 (((-1250 |#1| |#2| |#3|) $) 72)) (-2516 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) NIL)) (-4416 (((-1250 |#1| |#2| |#3|) $) NIL)) (-2148 (((-1177) $) NIL)) (-1330 (($ $) NIL (|has| |#1| (-374)))) (-2254 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-2892 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4205 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1326 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) NIL (|has| |#1| (-374)))) (-3167 (($ $ (-419 (-576))) NIL)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2583 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3927 (((-783) $) NIL (|has| |#1| (-374)))) (-2209 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1130)))) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) NIL (|has| |#1| (-374)))) (-3884 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-2782 (((-419 (-576)) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) NIL)) (-2956 (((-874) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1250 |#1| |#2| |#3|)) 16) (($ (-1278 |#1| |#2| |#3|)) 17) (($ (-1282 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4309 ((|#1| $ (-419 (-576))) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 12)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 32 T CONST)) (-2155 (($) 26 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 34)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1271 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-1056 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1271))
+((-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-1056 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (-15 -3884 ($ $ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 37)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4334 (($ $) NIL)) (-1428 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 (-576) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 22)) (-2216 (((-576) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-576)))) (((-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-1404 (($ $) 41)) (-4077 (((-3 $ "failed") $) 27)) (-4290 (($ $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-3130 (($ $ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) 11)) (-1614 (((-112) $) NIL)) (-4330 (($ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-1859 (((-329 |#2| |#3| |#4|) $) NIL)) (-2819 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-1787 (($ (-1 (-1271 |#2| |#3| |#4|) (-1271 |#2| |#3| |#4|)) $) NIL)) (-3947 (((-3 (-855 |#2|) "failed") $) 90)) (-1368 (($ $) NIL)) (-1380 (((-1271 |#2| |#3| |#4|) $) 20)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1345 (((-112) $) NIL)) (-1357 (((-1271 |#2| |#3| |#4|) $) NIL)) (-2858 (((-3 $ "failed") $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-4267 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $) 74)) (-2782 (((-329 |#2| |#3| |#4|) $) 17)) (-1885 (((-1271 |#2| |#3| |#4|) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ (-1271 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2838 (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1271 |#2| |#3| |#4|) (-1056 (-419 (-576))))))) (-3532 (((-656 (-1271 |#2| |#3| |#4|)) $) NIL)) (-4309 (((-1271 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-1817 (((-3 $ "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-146)))) (-3423 (((-783)) NIL T CONST)) (-1412 (($ $ $ (-783)) NIL (|has| (-1271 |#2| |#3| |#4|) (-174)))) (-2617 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1271 |#2| |#3| |#4|)) NIL) (($ (-1271 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))))))
+(((-1272 |#1| |#2| |#3| |#4|) (-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3947 ((-3 (-855 |#2|) "failed") $)) (-15 -4267 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $)))) (-13 (-1056 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -1272))
+((-3947 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4))) (-4267 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1177)))) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4))))
+(-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3947 ((-3 (-855 |#2|) "failed") $)) (-15 -4267 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $))))
+((-3084 ((|#2| $) 34)) (-2426 ((|#2| $) 18)) (-1980 (($ $) 53)) (-3523 (($ $ (-576)) 85)) (-3762 (((-112) $ (-783)) 46)) (-3052 ((|#2| $ |#2|) 82)) (-1730 ((|#2| $ |#2|) 78)) (-3140 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4215 (($ $ (-656 $)) 81)) (-2413 ((|#2| $) 17)) (-2940 (($ $) NIL) (($ $ (-783)) 59)) (-2635 (((-656 $) $) 31)) (-4344 (((-112) $ $) 69)) (-2266 (((-112) $ (-783)) 45)) (-2356 (((-112) $ (-783)) 43)) (-3126 (((-112) $) 33)) (-3338 ((|#2| $) 25) (($ $ (-783)) 64)) (-2209 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1558 (((-112) $) 23)) (-3029 (($ $) 56)) (-1508 (($ $) 86)) (-2550 (((-783) $) 58)) (-3704 (($ $) 57)) (-4136 (($ $ $) 77) (($ |#2| $) NIL)) (-4197 (((-656 $) $) 32)) (-2991 (((-112) $ $) 67)) (-2882 (((-783) $) 52)))
+(((-1273 |#1| |#2|) (-10 -8 (-15 -3523 (|#1| |#1| (-576))) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -1730 (|#2| |#1| |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -1508 (|#1| |#1|)) (-15 -3029 (|#1| |#1|)) (-15 -2550 ((-783) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -2426 (|#2| |#1|)) (-15 -2413 (|#2| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3338 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "last")) (-15 -3338 (|#2| |#1|)) (-15 -2940 (|#1| |#1| (-783))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2940 (|#1| |#1|)) (-15 -2209 (|#2| |#1| "first")) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#1|)) (-15 -3052 (|#2| |#1| |#2|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -4215 (|#1| |#1| (-656 |#1|))) (-15 -4344 ((-112) |#1| |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3084 (|#2| |#1|)) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783)))) (-1274 |#2|) (-1236)) (T -1273))
+NIL
+(-10 -8 (-15 -3523 (|#1| |#1| (-576))) (-15 -3140 (|#2| |#1| "last" |#2|)) (-15 -1730 (|#2| |#1| |#2|)) (-15 -3140 (|#1| |#1| "rest" |#1|)) (-15 -3140 (|#2| |#1| "first" |#2|)) (-15 -1508 (|#1| |#1|)) (-15 -3029 (|#1| |#1|)) (-15 -2550 ((-783) |#1|)) (-15 -3704 (|#1| |#1|)) (-15 -2426 (|#2| |#1|)) (-15 -2413 (|#2| |#1|)) (-15 -1980 (|#1| |#1|)) (-15 -3338 (|#1| |#1| (-783))) (-15 -2209 (|#2| |#1| "last")) (-15 -3338 (|#2| |#1|)) (-15 -2940 (|#1| |#1| (-783))) (-15 -2209 (|#1| |#1| "rest")) (-15 -2940 (|#1| |#1|)) (-15 -2209 (|#2| |#1| "first")) (-15 -4136 (|#1| |#2| |#1|)) (-15 -4136 (|#1| |#1| |#1|)) (-15 -3052 (|#2| |#1| |#2|)) (-15 -3140 (|#2| |#1| "value" |#2|)) (-15 -4215 (|#1| |#1| (-656 |#1|))) (-15 -4344 ((-112) |#1| |#1|)) (-15 -1558 ((-112) |#1|)) (-15 -2209 (|#2| |#1| "value")) (-15 -3084 (|#2| |#1|)) (-15 -3126 ((-112) |#1|)) (-15 -2635 ((-656 |#1|) |#1|)) (-15 -4197 ((-656 |#1|) |#1|)) (-15 -2991 ((-112) |#1| |#1|)) (-15 -2882 ((-783) |#1|)) (-15 -3762 ((-112) |#1| (-783))) (-15 -2266 ((-112) |#1| (-783))) (-15 -2356 ((-112) |#1| (-783))))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-3084 ((|#1| $) 49)) (-2426 ((|#1| $) 66)) (-1980 (($ $) 68)) (-3523 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3762 (((-112) $ (-783)) 8)) (-3052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3439 (($ $ $) 57 (|has| $ (-6 -4462)))) (-1730 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1961 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3140 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462)))) (-4215 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2413 ((|#1| $) 67)) (-4335 (($) 7 T CONST)) (-2940 (($ $) 74) (($ $ (-783)) 72)) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2635 (((-656 $) $) 51)) (-4344 (((-112) $ $) 43 (|has| |#1| (-1118)))) (-2266 (((-112) $ (-783)) 9)) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36)) (-2356 (((-112) $ (-783)) 10)) (-3488 (((-656 |#1|) $) 46)) (-3126 (((-112) $) 50)) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-3338 ((|#1| $) 71) (($ $ (-783)) 69)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 77) (($ $ (-783)) 75)) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1785 (((-576) $ $) 45)) (-1558 (((-112) $) 47)) (-3029 (($ $) 63)) (-1508 (($ $) 60 (|has| $ (-6 -4462)))) (-2550 (((-783) $) 64)) (-3704 (($ $) 65)) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3162 (($ $) 13)) (-3228 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-4136 (($ $ $) 79) (($ |#1| $) 78)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4197 (((-656 $) $) 52)) (-1931 (((-112) $ $) 44 (|has| |#1| (-1118)))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1274 |#1|) (-141) (-1236)) (T -1274))
+((-4136 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-4136 (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2930 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-2940 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-2940 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3338 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-1980 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3704 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-3029 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3228 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3228 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1508 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1961 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3439 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-1730 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3140 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))))
+(-13 (-1028 |t#1|) (-10 -8 (-15 -4136 ($ $ $)) (-15 -4136 ($ |t#1| $)) (-15 -2930 (|t#1| $)) (-15 -2209 (|t#1| $ "first")) (-15 -2930 ($ $ (-783))) (-15 -2940 ($ $)) (-15 -2209 ($ $ "rest")) (-15 -2940 ($ $ (-783))) (-15 -3338 (|t#1| $)) (-15 -2209 (|t#1| $ "last")) (-15 -3338 ($ $ (-783))) (-15 -1980 ($ $)) (-15 -2413 (|t#1| $)) (-15 -2426 (|t#1| $)) (-15 -3704 ($ $)) (-15 -2550 ((-783) $)) (-15 -3029 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3228 ($ $ $)) (-15 -3228 ($ $ |t#1|)) (-15 -1508 ($ $)) (-15 -1961 (|t#1| $ |t#1|)) (-15 -3140 (|t#1| $ "first" |t#1|)) (-15 -3439 ($ $ $)) (-15 -3140 ($ $ "rest" $)) (-15 -1730 (|t#1| $ |t#1|)) (-15 -3140 (|t#1| $ "last" |t#1|)) (-15 -3523 ($ $ (-576)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1118)) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-1028 |#1|) . T) ((-1118) |has| |#1| (-1118)) ((-1236) . T))
+((-1787 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|))) (-1067) (-1067) (-1277 |#1|) (-1277 |#2|)) (T -1275))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067)) (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5)))))
+(-10 -7 (-15 -1787 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3549 (((-112) $) 17)) (-2384 (($ $) 105)) (-2260 (($ $) 81)) (-2363 (($ $) 101)) (-2238 (($ $) 77)) (-2409 (($ $) 109)) (-2282 (($ $) 85)) (-3118 (($ $) 75)) (-1619 (($ $) 73)) (-2422 (($ $) 111)) (-2291 (($ $) 87)) (-2394 (($ $) 107)) (-2270 (($ $) 83)) (-2373 (($ $) 103)) (-2249 (($ $) 79)) (-2956 (((-874) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2461 (($ $) 117)) (-2324 (($ $) 93)) (-2434 (($ $) 113)) (-2304 (($ $) 89)) (-2485 (($ $) 121)) (-2345 (($ $) 97)) (-2541 (($ $) 123)) (-2354 (($ $) 99)) (-2473 (($ $) 119)) (-2335 (($ $) 95)) (-2447 (($ $) 115)) (-2315 (($ $) 91)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71)))
+(((-1276 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -2345 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2394 (|#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -3549 ((-112) |#1|)) (-15 -2956 ((-874) |#1|))) (-1277 |#2|) (-1067)) (T -1276))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2260 (|#1| |#1|)) (-15 -2238 (|#1| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2315 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2354 (|#1| |#1|)) (-15 -2345 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2394 (|#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2363 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2461 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1619 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2956 (|#1| |#2|)) (-15 -2956 (|#1| |#1|)) (-15 -2956 (|#1| (-419 (-576)))) (-15 -2956 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-937))) (-15 -3549 ((-112) |#1|)) (-15 -2956 ((-874) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-4352 (((-656 (-1100)) $) 86)) (-1500 (((-1195) $) 118)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4334 (($ $) 64 (|has| |#1| (-568)))) (-1428 (((-112) $) 66 (|has| |#1| (-568)))) (-2725 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-2206 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-2384 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) 20)) (-4214 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1175 |#1|)) 168)) (-2409 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) 18 T CONST)) (-1404 (($ $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-3075 (($ $) 167)) (-4032 (((-968 |#1|) $ (-783)) 165) (((-968 |#1|) $ (-783) (-783)) 164)) (-2567 (((-112) $) 85)) (-3009 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $) 115) (((-783) $ (-783)) 114)) (-4192 (((-112) $) 35)) (-2333 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4162 (($ $ (-937)) 116)) (-2028 (($ (-1 |#1| (-576)) $) 166)) (-1614 (((-112) $) 74)) (-4330 (($ |#1| (-783)) 73) (($ $ (-1100) (-783)) 88) (($ $ (-656 (-1100)) (-656 (-783))) 87)) (-1787 (($ (-1 |#1| |#1|) $) 75)) (-3118 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) 77)) (-1380 ((|#1| $) 78)) (-2148 (((-1177) $) 10)) (-2254 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 161 (-2838 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-975)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3945 (((-1138) $) 11)) (-3167 (($ $ (-783)) 110)) (-2858 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1619 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2666 (((-1175 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2209 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1130)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2782 (((-783) $) 76)) (-2422 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 84)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3532 (((-1175 |#1|) $) 169)) (-4309 ((|#1| $ (-783)) 71)) (-1817 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-3423 (((-783)) 32 T CONST)) (-3337 ((|#1| $) 117)) (-2617 (((-112) $ $) 9)) (-2461 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2434 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3590 (($ $ (-1195)) 107 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-914 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1277 |#1|) (-141) (-1067)) (T -1277))
+((-3602 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1067)) (-4 *1 (-1277 *3)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-5 *2 (-1175 *3)))) (-3602 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-4 *1 (-1277 *3)))) (-3075 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)))) (-2028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1067)))) (-4032 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) (-5 *2 (-968 *4)))) (-4032 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067)) (-5 *2 (-968 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))) (-2254 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576)))))) (-2254 (*1 *1 *1 *2) (-2838 (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-12 (|has| *3 (-15 -4352 ((-656 *2) *3))) (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1264 |t#1| (-783)) (-10 -8 (-15 -3602 ($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -3532 ((-1175 |t#1|) $)) (-15 -3602 ($ (-1175 |t#1|))) (-15 -3075 ($ $)) (-15 -2028 ($ (-1 |t#1| (-576)) $)) (-15 -4032 ((-968 |t#1|) $ (-783))) (-15 -4032 ((-968 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2254 ($ $)) (IF (|has| |t#1| (-15 -2254 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -4352 ((-656 (-1195)) |t#1|))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-975)) (IF (|has| |t#1| (-29 (-576))) (-15 -2254 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1020)) (-6 (-1221))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1130)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-914 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-916 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195)))) ((-991 |#1| #0# (-1100)) . T) ((-1020) |has| |#1| (-38 (-419 (-576)))) ((-1069 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1069 |#1|) . T) ((-1069 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1074 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1074 |#1|) . T) ((-1074 $) -2838 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1264 |#1| #0#) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-4352 (((-656 (-1100)) $) NIL)) (-1500 (((-1195) $) 90)) (-3552 (((-1259 |#2| |#1|) $ (-783)) 73)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4334 (($ $) NIL (|has| |#1| (-568)))) (-1428 (((-112) $) 142 (|has| |#1| (-568)))) (-2725 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-2206 (((-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-2384 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2260 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (((-3 $ "failed") $ $) NIL)) (-4214 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2363 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2238 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3602 (($ (-1175 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1175 |#1|)) NIL)) (-2409 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2282 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4335 (($) NIL T CONST)) (-3634 (($ $) 134)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-3075 (($ $) 140)) (-4032 (((-968 |#1|) $ (-783)) 63) (((-968 |#1|) $ (-783) (-783)) 65)) (-2567 (((-112) $) NIL)) (-3009 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3540 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-4192 (((-112) $) NIL)) (-2058 (($ $) 117)) (-2333 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2057 (($ (-576) (-576) $) 136)) (-4162 (($ $ (-937)) 139)) (-2028 (($ (-1 |#1| (-576)) $) 111)) (-1614 (((-112) $) NIL)) (-4330 (($ |#1| (-783)) 16) (($ $ (-1100) (-783)) NIL) (($ $ (-656 (-1100)) (-656 (-783))) NIL)) (-1787 (($ (-1 |#1| |#1|) $) 98)) (-3118 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1368 (($ $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3663 (($ $) 115)) (-2083 (($ $) 113)) (-4034 (($ (-576) (-576) $) 138)) (-2254 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 156 (-2838 (-12 (|has| |#1| (-15 -2254 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -4352 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-975)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (((-1138) $) NIL)) (-3570 (($ $ (-576) (-576)) 121)) (-3167 (($ $ (-783)) 123)) (-2858 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1619 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3860 (($ $) 119)) (-2666 (((-1175 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2209 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1130)))) (-3884 (($ $ (-1195)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 103)) (-2782 (((-783) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2291 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2394 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2270 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2373 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2249 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1588 (($ $) 125)) (-2956 (((-874) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 81) (($ (-1282 |#2|)) 22)) (-3532 (((-1175 |#1|) $) NIL)) (-4309 ((|#1| $ (-783)) 94)) (-1817 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3423 (((-783)) NIL T CONST)) (-3337 ((|#1| $) 91)) (-2617 (((-112) $ $) NIL)) (-2461 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2324 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2946 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2434 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2304 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2485 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2345 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3530 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2956 (|#1| (-1195))))))) (-2541 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2354 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2335 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2447 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2315 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2143 (($) 18 T CONST)) (-2155 (($) 13 T CONST)) (-3590 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-914 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2991 (((-112) $ $) NIL)) (-3108 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) 107)) (-3081 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1278 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-10 -8 (-15 -2956 ($ (-1259 |#2| |#1|))) (-15 -3552 ((-1259 |#2| |#1|) $ (-783))) (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (-15 -2083 ($ $)) (-15 -3663 ($ $)) (-15 -2058 ($ $)) (-15 -3860 ($ $)) (-15 -3570 ($ $ (-576) (-576))) (-15 -3634 ($ $)) (-15 -2057 ($ (-576) (-576) $)) (-15 -4034 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|))) (-1067) (-1195) |#1|) (T -1278))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) (-3552 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *5 *3))) (-2083 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-2058 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-3860 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-3570 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-3634 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195)) (-14 *4 *2))) (-2057 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-4034 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195)) (-14 *5 *3))) (-2254 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(-13 (-1277 |#1|) (-10 -8 (-15 -2956 ($ (-1259 |#2| |#1|))) (-15 -3552 ((-1259 |#2| |#1|) $ (-783))) (-15 -2956 ($ (-1282 |#2|))) (-15 -3884 ($ $ (-1282 |#2|))) (-15 -2083 ($ $)) (-15 -3663 ($ $)) (-15 -2058 ($ $)) (-15 -3860 ($ $)) (-15 -3570 ($ $ (-576) (-576))) (-15 -3634 ($ $)) (-15 -2057 ($ (-576) (-576) $)) (-15 -4034 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -2254 ($ $ (-1282 |#2|))) |%noBranch|)))
+((-1385 (((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-1825 (((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1520 (((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|)) 13)) (-2829 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2621 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3168 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-1883 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-4188 ((|#2| |#2| |#2|) 43)))
+(((-1279 |#1| |#2|) (-10 -7 (-15 -1520 ((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|))) (-15 -1825 ((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1385 ((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -4188 (|#2| |#2| |#2|)) (-15 -2621 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3168 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1883 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1277 |#1|)) (T -1279))
+((-1883 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1279 *5 *6)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5)) (-5 *1 (-1279 *5 *2)))) (-2829 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-4188 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2)) (-4 *2 (-1277 *3)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-656 (-1175 *4)))) (-5 *1 (-1279 *4 *5)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5)))))
+(-10 -7 (-15 -1520 ((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|))) (-15 -1825 ((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1385 ((-1 (-1175 |#1|) (-656 (-1175 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -4188 (|#2| |#2| |#2|)) (-15 -2621 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2829 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3168 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1883 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|))))))
+((-2559 ((|#2| |#4| (-783)) 31)) (-4391 ((|#4| |#2|) 26)) (-2673 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-3586 (((-1 |#4| (-656 |#4|)) |#3|) 43)))
+(((-1280 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4391 (|#4| |#2|)) (-15 -2559 (|#2| |#4| (-783))) (-15 -3586 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2673 (|#4| (-419 |#2|))) |%noBranch|)) (-1067) (-1262 |#1|) (-668 |#2|) (-1277 |#1|)) (T -1280))
+((-2673 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) (-4 *4 (-1067)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5)))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-1067)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3)))))
+(-10 -7 (-15 -4391 (|#4| |#2|)) (-15 -2559 (|#2| |#4| (-783))) (-15 -3586 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2673 (|#4| (-419 |#2|))) |%noBranch|))
+NIL
+(((-1281) (-141)) (T -1281))
+NIL
+(-13 (-10 -7 (-6 -3500)))
+((-2869 (((-112) $ $) NIL)) (-1500 (((-1195)) 12)) (-2148 (((-1177) $) 18)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 11) (((-1195) $) 8)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 15)))
+(((-1282 |#1|) (-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2956 ((-1195) $)) (-15 -1500 ((-1195))))) (-1195)) (T -1282))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))) (-1500 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))))
+(-13 (-1118) (-625 (-1195)) (-10 -8 (-15 -2956 ((-1195) $)) (-15 -1500 ((-1195)))))
+((-2226 (($ (-783)) 19)) (-3878 (((-701 |#2|) $ $) 41)) (-2967 ((|#2| $) 51)) (-4114 ((|#2| $) 50)) (-4144 ((|#2| $ $) 36)) (-3794 (($ $ $) 47)) (-3096 (($ $) 23) (($ $ $) 29)) (-3081 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1283 |#1| |#2|) (-10 -8 (-15 -2967 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3878 ((-701 |#2|) |#1| |#1|)) (-15 -4144 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2226 (|#1| (-783))) (-15 -3081 (|#1| |#1| |#1|))) (-1284 |#2|) (-1236)) (T -1283))
+NIL
+(-10 -8 (-15 -2967 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3878 ((-701 |#2|) |#1| |#1|)) (-15 -4144 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3096 (|#1| |#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -2226 (|#1| (-783))) (-15 -3081 (|#1| |#1| |#1|)))
+((-2869 (((-112) $ $) 19 (|has| |#1| (-1118)))) (-2226 (($ (-783)) 115 (|has| |#1| (-23)))) (-3526 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) 8)) (-3140 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-4335 (($) 7 T CONST)) (-2002 (($ $) 93 (|has| $ (-6 -4462)))) (-4427 (($ $) 103)) (-4060 (($ $) 80 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-3316 (($ |#1| $) 79 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) 52)) (-1454 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3878 (((-701 |#1|) $ $) 108 (|has| |#1| (-1067)))) (-3769 (($ (-783) |#1|) 70)) (-2266 (((-112) $ (-783)) 9)) (-4280 (((-576) $) 44 (|has| (-576) (-862)))) (-3639 (($ $ $) 90 (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-1475 (((-576) $) 45 (|has| (-576) (-862)))) (-2571 (($ $ $) 89 (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2967 ((|#1| $) 105 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2356 (((-112) $ (-783)) 10)) (-4114 ((|#1| $) 106 (-12 (|has| |#1| (-1067)) (|has| |#1| (-1020))))) (-2148 (((-1177) $) 22 (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2961 (((-656 (-576)) $) 47)) (-4254 (((-112) (-576) $) 48)) (-3945 (((-1138) $) 21 (|has| |#1| (-1118)))) (-2930 ((|#1| $) 43 (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4211 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) 14)) (-1498 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) 49)) (-3321 (((-112) $) 11)) (-2953 (($) 12)) (-2209 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-4144 ((|#1| $ $) 109 (|has| |#1| (-1067)))) (-2860 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-3794 (($ $ $) 107 (|has| |#1| (-1067)))) (-3954 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1118)) (|has| $ (-6 -4461))))) (-2647 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-3162 (($ $) 13)) (-1846 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 72)) (-4136 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2956 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) 23 (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2991 (((-112) $ $) 20 (|has| |#1| (-1118)))) (-3034 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3014 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3096 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3081 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2882 (((-783) $) 6 (|has| $ (-6 -4461)))))
+(((-1284 |#1|) (-141) (-1236)) (T -1284))
+((-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (-3096 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))) (-3878 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1067)) (-5 *2 (-701 *3)))) (-3794 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) (-4 *2 (-1067)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020)) (-4 *2 (-1067)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3081 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2226 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3096 ($ $)) (-15 -3096 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1067)) (PROGN (-15 -4144 (|t#1| $ $)) (-15 -3878 ((-701 |t#1|) $ $)) (-15 -3794 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1020)) (IF (|has| |t#1| (-1067)) (PROGN (-15 -4114 (|t#1| $)) (-15 -2967 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-625 (-874)) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1118) -2838 (|has| |#1| (-1118)) (|has| |#1| (-862))) ((-1236) . T))
+((-3000 (((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 13)) (-2887 ((|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 15)) (-1787 (((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)) 30) (((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|)) 18)))
+(((-1285 |#1| |#2|) (-10 -7 (-15 -3000 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -1787 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -1787 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)))) (-1236) (-1236)) (T -1285))
+((-1787 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-2887 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2)))) (-3000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5)))))
+(-10 -7 (-15 -3000 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2887 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -1787 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -1787 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|))))
+((-2869 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-2226 (($ (-783)) NIL (|has| |#1| (-23)))) (-3871 (($ (-656 |#1|)) 11)) (-3526 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1375 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3330 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-2791 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3762 (((-112) $ (-783)) NIL)) (-3140 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2174 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-4335 (($) NIL T CONST)) (-2002 (($ $) NIL (|has| $ (-6 -4462)))) (-4427 (($ $) NIL)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-3316 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2887 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2481 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2405 ((|#1| $ (-576)) NIL)) (-1454 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1118))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1118)))) (-1873 (((-656 |#1|) $) 16 (|has| $ (-6 -4461)))) (-3878 (((-701 |#1|) $ $) NIL (|has| |#1| (-1067)))) (-3769 (($ (-783) |#1|) NIL)) (-2266 (((-112) $ (-783)) NIL)) (-4280 (((-576) $) NIL (|has| (-576) (-862)))) (-3639 (($ $ $) NIL (|has| |#1| (-862)))) (-1383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2186 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2653 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-1475 (((-576) $) 12 (|has| (-576) (-862)))) (-2571 (($ $ $) NIL (|has| |#1| (-862)))) (-2466 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2356 (((-112) $ (-783)) NIL)) (-4114 ((|#1| $) NIL (-12 (|has| |#1| (-1020)) (|has| |#1| (-1067))))) (-2148 (((-1177) $) NIL (|has| |#1| (-1118)))) (-1604 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2961 (((-656 (-576)) $) NIL)) (-4254 (((-112) (-576) $) NIL)) (-3945 (((-1138) $) NIL (|has| |#1| (-1118)))) (-2930 ((|#1| $) NIL (|has| (-576) (-862)))) (-2922 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4211 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1875 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1118))))) (-2001 (((-112) $ $) NIL)) (-1498 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-4274 (((-656 |#1|) $) NIL)) (-3321 (((-112) $) NIL)) (-2953 (($) NIL)) (-2209 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-4144 ((|#1| $ $) NIL (|has| |#1| (-1067)))) (-2860 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3794 (($ $ $) NIL (|has| |#1| (-1067)))) (-3954 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1118))))) (-2647 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-2968 (($ (-656 |#1|)) 10)) (-4136 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2956 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2617 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3972 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3047 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2991 (((-112) $ $) NIL (|has| |#1| (-1118)))) (-3034 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3096 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3081 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1286 |#1|) (-13 (-1284 |#1|) (-10 -8 (-15 -3871 ($ (-656 |#1|))))) (-1236)) (T -1286))
+((-3871 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3)))))
+(-13 (-1284 |#1|) (-10 -8 (-15 -3871 ($ (-656 |#1|)))))
+((-2869 (((-112) $ $) NIL)) (-1612 (((-1177) $ (-1177)) 107) (((-1177) $ (-1177) (-1177)) 105) (((-1177) $ (-1177) (-656 (-1177))) 104)) (-3887 (($) 69)) (-1405 (((-1291) $ (-480) (-937)) 54)) (-2007 (((-1291) $ (-937) (-1177)) 89) (((-1291) $ (-937) (-886)) 90)) (-2827 (((-1291) $ (-937) (-390) (-390)) 57)) (-3856 (((-1291) $ (-1177)) 84)) (-1628 (((-1291) $ (-937) (-1177)) 94)) (-1384 (((-1291) $ (-937) (-390) (-390)) 58)) (-4336 (((-1291) $ (-937) (-937)) 55)) (-1591 (((-1291) $) 85)) (-4222 (((-1291) $ (-937) (-1177)) 93)) (-1654 (((-1291) $ (-480) (-937)) 41)) (-3329 (((-1291) $ (-937) (-1177)) 92)) (-3204 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3557 (((-1291) $ (-783) (-783)) 52)) (-1948 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-2148 (((-1177) $) NIL)) (-3672 (((-576) $) 48)) (-3945 (((-1138) $) NIL)) (-2934 (((-1286 (-3 (-480) "undefined")) $) 47)) (-3914 (((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3329 (-576)) (|:| -3208 (-576)) (|:| |spline| (-576)) (|:| -2884 (-576)) (|:| |axesColor| (-886)) (|:| -2007 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $) 46)) (-2218 (((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576)) 83)) (-2733 (((-656 (-959 (-227))) $) NIL)) (-3426 (((-480) $ (-937)) 43)) (-3607 (((-1291) $ (-783) (-783) (-937) (-937)) 50)) (-1464 (((-1291) $ (-1177)) 95)) (-3208 (((-1291) $ (-937) (-1177)) 91)) (-2956 (((-874) $) 102)) (-1392 (((-1291) $) 96)) (-2617 (((-112) $ $) NIL)) (-2884 (((-1291) $ (-937) (-1177)) 87) (((-1291) $ (-937) (-886)) 88)) (-2991 (((-112) $ $) NIL)))
+(((-1287) (-13 (-1118) (-10 -8 (-15 -2733 ((-656 (-959 (-227))) $)) (-15 -3887 ($)) (-15 -1948 ($ $)) (-15 -3204 ((-656 (-270)) $)) (-15 -3204 ($ $ (-656 (-270)))) (-15 -1948 ($ (-480) (-656 (-270)))) (-15 -2218 ((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -3914 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3329 (-576)) (|:| -3208 (-576)) (|:| |spline| (-576)) (|:| -2884 (-576)) (|:| |axesColor| (-886)) (|:| -2007 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -2934 ((-1286 (-3 (-480) "undefined")) $)) (-15 -3856 ((-1291) $ (-1177))) (-15 -1654 ((-1291) $ (-480) (-937))) (-15 -3426 ((-480) $ (-937))) (-15 -2884 ((-1291) $ (-937) (-1177))) (-15 -2884 ((-1291) $ (-937) (-886))) (-15 -2007 ((-1291) $ (-937) (-1177))) (-15 -2007 ((-1291) $ (-937) (-886))) (-15 -3329 ((-1291) $ (-937) (-1177))) (-15 -4222 ((-1291) $ (-937) (-1177))) (-15 -3208 ((-1291) $ (-937) (-1177))) (-15 -1464 ((-1291) $ (-1177))) (-15 -1392 ((-1291) $)) (-15 -3607 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -1384 ((-1291) $ (-937) (-390) (-390))) (-15 -2827 ((-1291) $ (-937) (-390) (-390))) (-15 -1628 ((-1291) $ (-937) (-1177))) (-15 -3557 ((-1291) $ (-783) (-783))) (-15 -1405 ((-1291) $ (-480) (-937))) (-15 -4336 ((-1291) $ (-937) (-937))) (-15 -1612 ((-1177) $ (-1177))) (-15 -1612 ((-1177) $ (-1177) (-1177))) (-15 -1612 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -1591 ((-1291) $)) (-15 -3672 ((-576) $)) (-15 -2956 ((-874) $))))) (T -1287))
+((-2956 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-656 (-959 (-227)))) (-5 *1 (-1287)))) (-3887 (*1 *1) (-5 *1 (-1287))) (-1948 (*1 *1 *1) (-5 *1 (-1287))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-1948 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287)))) (-2218 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-937)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3329 (-576)) (|:| -3208 (-576)) (|:| |spline| (-576)) (|:| -2884 (-576)) (|:| |axesColor| (-886)) (|:| -2007 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) (-5 *1 (-1287)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1654 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1287)))) (-2884 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2884 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2007 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2007 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3329 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3607 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1384 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2827 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1628 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1405 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4336 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-1612 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-1612 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-1612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287)))))
+(-13 (-1118) (-10 -8 (-15 -2733 ((-656 (-959 (-227))) $)) (-15 -3887 ($)) (-15 -1948 ($ $)) (-15 -3204 ((-656 (-270)) $)) (-15 -3204 ($ $ (-656 (-270)))) (-15 -1948 ($ (-480) (-656 (-270)))) (-15 -2218 ((-1291) $ (-937) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -3914 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3329 (-576)) (|:| -3208 (-576)) (|:| |spline| (-576)) (|:| -2884 (-576)) (|:| |axesColor| (-886)) (|:| -2007 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -2934 ((-1286 (-3 (-480) "undefined")) $)) (-15 -3856 ((-1291) $ (-1177))) (-15 -1654 ((-1291) $ (-480) (-937))) (-15 -3426 ((-480) $ (-937))) (-15 -2884 ((-1291) $ (-937) (-1177))) (-15 -2884 ((-1291) $ (-937) (-886))) (-15 -2007 ((-1291) $ (-937) (-1177))) (-15 -2007 ((-1291) $ (-937) (-886))) (-15 -3329 ((-1291) $ (-937) (-1177))) (-15 -4222 ((-1291) $ (-937) (-1177))) (-15 -3208 ((-1291) $ (-937) (-1177))) (-15 -1464 ((-1291) $ (-1177))) (-15 -1392 ((-1291) $)) (-15 -3607 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -1384 ((-1291) $ (-937) (-390) (-390))) (-15 -2827 ((-1291) $ (-937) (-390) (-390))) (-15 -1628 ((-1291) $ (-937) (-1177))) (-15 -3557 ((-1291) $ (-783) (-783))) (-15 -1405 ((-1291) $ (-480) (-937))) (-15 -4336 ((-1291) $ (-937) (-937))) (-15 -1612 ((-1177) $ (-1177))) (-15 -1612 ((-1177) $ (-1177) (-1177))) (-15 -1612 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -1591 ((-1291) $)) (-15 -3672 ((-576) $)) (-15 -2956 ((-874) $))))
+((-2869 (((-112) $ $) NIL)) (-3070 (((-1291) $ (-390)) 169) (((-1291) $ (-390) (-390) (-390)) 170)) (-1612 (((-1177) $ (-1177)) 179) (((-1177) $ (-1177) (-1177)) 177) (((-1177) $ (-1177) (-656 (-1177))) 176)) (-2741 (($) 67)) (-3252 (((-1291) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1291) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1291) $ (-390) (-390)) 145) (((-1291) $ (-390) (-390) (-390)) 152)) (-1363 (((-390)) 122) (((-390) (-390)) 123)) (-1887 (((-390)) 117) (((-390) (-390)) 119)) (-1324 (((-390)) 120) (((-390) (-390)) 121)) (-4393 (((-390)) 126) (((-390) (-390)) 127)) (-2455 (((-390)) 124) (((-390) (-390)) 125)) (-2827 (((-1291) $ (-390) (-390)) 171)) (-3856 (((-1291) $ (-1177)) 153)) (-2191 (((-1151 (-227)) $) 68) (($ $ (-1151 (-227))) 69)) (-3611 (((-1291) $ (-1177)) 187)) (-3218 (((-1291) $ (-1177)) 188)) (-1656 (((-1291) $ (-390) (-390)) 151) (((-1291) $ (-576) (-576)) 168)) (-4336 (((-1291) $ (-937) (-937)) 160)) (-1591 (((-1291) $) 137)) (-4156 (((-1291) $ (-1177)) 186)) (-3921 (((-1291) $ (-1177)) 134)) (-3204 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3557 (((-1291) $ (-783) (-783)) 159)) (-3568 (((-1291) $ (-783) (-959 (-227))) 193)) (-2902 (($ $) 73) (($ (-1151 (-227)) (-1177)) 74) (($ (-1151 (-227)) (-656 (-270))) 75)) (-3519 (((-1291) $ (-390) (-390) (-390)) 131)) (-2148 (((-1177) $) NIL)) (-3672 (((-576) $) 128)) (-4050 (((-1291) $ (-390)) 174)) (-1601 (((-1291) $ (-390)) 191)) (-3945 (((-1138) $) NIL)) (-3148 (((-1291) $ (-390)) 190)) (-4116 (((-1291) $ (-1177)) 136)) (-3607 (((-1291) $ (-783) (-783) (-937) (-937)) 158)) (-3855 (((-1291) $ (-1177)) 133)) (-1464 (((-1291) $ (-1177)) 135)) (-2267 (((-1291) $ (-158) (-158)) 157)) (-2956 (((-874) $) 166)) (-1392 (((-1291) $) 138)) (-2523 (((-1291) $ (-1177)) 189)) (-2617 (((-112) $ $) NIL)) (-2884 (((-1291) $ (-1177)) 132)) (-2991 (((-112) $ $) NIL)))
+(((-1288) (-13 (-1118) (-10 -8 (-15 -1887 ((-390))) (-15 -1887 ((-390) (-390))) (-15 -1324 ((-390))) (-15 -1324 ((-390) (-390))) (-15 -1363 ((-390))) (-15 -1363 ((-390) (-390))) (-15 -2455 ((-390))) (-15 -2455 ((-390) (-390))) (-15 -4393 ((-390))) (-15 -4393 ((-390) (-390))) (-15 -2741 ($)) (-15 -2902 ($ $)) (-15 -2902 ($ (-1151 (-227)) (-1177))) (-15 -2902 ($ (-1151 (-227)) (-656 (-270)))) (-15 -2191 ((-1151 (-227)) $)) (-15 -2191 ($ $ (-1151 (-227)))) (-15 -3568 ((-1291) $ (-783) (-959 (-227)))) (-15 -3204 ((-656 (-270)) $)) (-15 -3204 ($ $ (-656 (-270)))) (-15 -3557 ((-1291) $ (-783) (-783))) (-15 -4336 ((-1291) $ (-937) (-937))) (-15 -3856 ((-1291) $ (-1177))) (-15 -3607 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -3252 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3252 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3252 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3252 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3252 ((-1291) $ (-390) (-390))) (-15 -3252 ((-1291) $ (-390) (-390) (-390))) (-15 -1464 ((-1291) $ (-1177))) (-15 -2884 ((-1291) $ (-1177))) (-15 -3855 ((-1291) $ (-1177))) (-15 -3921 ((-1291) $ (-1177))) (-15 -4116 ((-1291) $ (-1177))) (-15 -1656 ((-1291) $ (-390) (-390))) (-15 -1656 ((-1291) $ (-576) (-576))) (-15 -3070 ((-1291) $ (-390))) (-15 -3070 ((-1291) $ (-390) (-390) (-390))) (-15 -2827 ((-1291) $ (-390) (-390))) (-15 -4156 ((-1291) $ (-1177))) (-15 -3148 ((-1291) $ (-390))) (-15 -1601 ((-1291) $ (-390))) (-15 -3611 ((-1291) $ (-1177))) (-15 -3218 ((-1291) $ (-1177))) (-15 -2523 ((-1291) $ (-1177))) (-15 -3519 ((-1291) $ (-390) (-390) (-390))) (-15 -4050 ((-1291) $ (-390))) (-15 -1591 ((-1291) $)) (-15 -2267 ((-1291) $ (-158) (-158))) (-15 -1612 ((-1177) $ (-1177))) (-15 -1612 ((-1177) $ (-1177) (-1177))) (-15 -1612 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -1392 ((-1291) $)) (-15 -3672 ((-576) $))))) (T -1288))
+((-1887 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1324 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1363 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-2455 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-2455 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-4393 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-4393 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-2741 (*1 *1) (-5 *1 (-1288))) (-2902 (*1 *1 *1) (-5 *1 (-1288))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))) (-3568 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-3557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4336 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3607 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3252 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1288)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3252 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3252 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3252 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2884 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1656 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3070 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3070 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2827 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4156 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1601 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3519 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2267 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1612 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-1612 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-1612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3672 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288)))))
+(-13 (-1118) (-10 -8 (-15 -1887 ((-390))) (-15 -1887 ((-390) (-390))) (-15 -1324 ((-390))) (-15 -1324 ((-390) (-390))) (-15 -1363 ((-390))) (-15 -1363 ((-390) (-390))) (-15 -2455 ((-390))) (-15 -2455 ((-390) (-390))) (-15 -4393 ((-390))) (-15 -4393 ((-390) (-390))) (-15 -2741 ($)) (-15 -2902 ($ $)) (-15 -2902 ($ (-1151 (-227)) (-1177))) (-15 -2902 ($ (-1151 (-227)) (-656 (-270)))) (-15 -2191 ((-1151 (-227)) $)) (-15 -2191 ($ $ (-1151 (-227)))) (-15 -3568 ((-1291) $ (-783) (-959 (-227)))) (-15 -3204 ((-656 (-270)) $)) (-15 -3204 ($ $ (-656 (-270)))) (-15 -3557 ((-1291) $ (-783) (-783))) (-15 -4336 ((-1291) $ (-937) (-937))) (-15 -3856 ((-1291) $ (-1177))) (-15 -3607 ((-1291) $ (-783) (-783) (-937) (-937))) (-15 -3252 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -3252 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3252 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3252 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -3252 ((-1291) $ (-390) (-390))) (-15 -3252 ((-1291) $ (-390) (-390) (-390))) (-15 -1464 ((-1291) $ (-1177))) (-15 -2884 ((-1291) $ (-1177))) (-15 -3855 ((-1291) $ (-1177))) (-15 -3921 ((-1291) $ (-1177))) (-15 -4116 ((-1291) $ (-1177))) (-15 -1656 ((-1291) $ (-390) (-390))) (-15 -1656 ((-1291) $ (-576) (-576))) (-15 -3070 ((-1291) $ (-390))) (-15 -3070 ((-1291) $ (-390) (-390) (-390))) (-15 -2827 ((-1291) $ (-390) (-390))) (-15 -4156 ((-1291) $ (-1177))) (-15 -3148 ((-1291) $ (-390))) (-15 -1601 ((-1291) $ (-390))) (-15 -3611 ((-1291) $ (-1177))) (-15 -3218 ((-1291) $ (-1177))) (-15 -2523 ((-1291) $ (-1177))) (-15 -3519 ((-1291) $ (-390) (-390) (-390))) (-15 -4050 ((-1291) $ (-390))) (-15 -1591 ((-1291) $)) (-15 -2267 ((-1291) $ (-158) (-158))) (-15 -1612 ((-1177) $ (-1177))) (-15 -1612 ((-1177) $ (-1177) (-1177))) (-15 -1612 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -1392 ((-1291) $)) (-15 -3672 ((-576) $))))
+((-4320 (((-656 (-1177)) (-656 (-1177))) 104) (((-656 (-1177))) 96)) (-3885 (((-656 (-1177))) 94)) (-1516 (((-656 (-937)) (-656 (-937))) 69) (((-656 (-937))) 64)) (-3339 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-1658 (((-1291)) 71)) (-2181 (((-937) (-937)) 87) (((-937)) 86)) (-2197 (((-937) (-937)) 85) (((-937)) 84)) (-2656 (((-886) (-886)) 81) (((-886)) 80)) (-2508 (((-227)) 91) (((-227) (-390)) 93)) (-3678 (((-937)) 88) (((-937) (-937)) 89)) (-3750 (((-937) (-937)) 83) (((-937)) 82)) (-3714 (((-886) (-886)) 75) (((-886)) 73)) (-4229 (((-886) (-886)) 77) (((-886)) 76)) (-4268 (((-886) (-886)) 79) (((-886)) 78)))
+(((-1289) (-10 -7 (-15 -3714 ((-886))) (-15 -3714 ((-886) (-886))) (-15 -4229 ((-886))) (-15 -4229 ((-886) (-886))) (-15 -4268 ((-886))) (-15 -4268 ((-886) (-886))) (-15 -2656 ((-886))) (-15 -2656 ((-886) (-886))) (-15 -3750 ((-937))) (-15 -3750 ((-937) (-937))) (-15 -3339 ((-656 (-783)))) (-15 -3339 ((-656 (-783)) (-656 (-783)))) (-15 -1516 ((-656 (-937)))) (-15 -1516 ((-656 (-937)) (-656 (-937)))) (-15 -1658 ((-1291))) (-15 -4320 ((-656 (-1177)))) (-15 -4320 ((-656 (-1177)) (-656 (-1177)))) (-15 -3885 ((-656 (-1177)))) (-15 -2197 ((-937))) (-15 -2181 ((-937))) (-15 -2197 ((-937) (-937))) (-15 -2181 ((-937) (-937))) (-15 -3678 ((-937) (-937))) (-15 -3678 ((-937))) (-15 -2508 ((-227) (-390))) (-15 -2508 ((-227))))) (T -1289))
+((-2508 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289)))) (-3678 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-3678 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-2181 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-2197 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-3885 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-4320 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-1658 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289)))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))) (-1516 (*1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-3339 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-3750 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-2656 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4268 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4229 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4229 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-3714 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-3714 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))))
+(-10 -7 (-15 -3714 ((-886))) (-15 -3714 ((-886) (-886))) (-15 -4229 ((-886))) (-15 -4229 ((-886) (-886))) (-15 -4268 ((-886))) (-15 -4268 ((-886) (-886))) (-15 -2656 ((-886))) (-15 -2656 ((-886) (-886))) (-15 -3750 ((-937))) (-15 -3750 ((-937) (-937))) (-15 -3339 ((-656 (-783)))) (-15 -3339 ((-656 (-783)) (-656 (-783)))) (-15 -1516 ((-656 (-937)))) (-15 -1516 ((-656 (-937)) (-656 (-937)))) (-15 -1658 ((-1291))) (-15 -4320 ((-656 (-1177)))) (-15 -4320 ((-656 (-1177)) (-656 (-1177)))) (-15 -3885 ((-656 (-1177)))) (-15 -2197 ((-937))) (-15 -2181 ((-937))) (-15 -2197 ((-937) (-937))) (-15 -2181 ((-937) (-937))) (-15 -3678 ((-937) (-937))) (-15 -3678 ((-937))) (-15 -2508 ((-227) (-390))) (-15 -2508 ((-227))))
+((-3455 (((-480) (-656 (-656 (-959 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-959 (-227))))) 21) (((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270))) 20)) (-2178 (((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270))) 30) (((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270))) 29)) (-2956 (((-1287) (-480)) 46)))
+(((-1290) (-10 -7 (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))))) (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2178 ((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2178 ((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2956 ((-1287) (-480))))) (T -1290))
+((-2956 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-2178 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-3455 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886)) (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))))
+(-10 -7 (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))))) (-15 -3455 ((-480) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2178 ((-1287) (-656 (-656 (-959 (-227)))) (-886) (-886) (-937) (-656 (-270)))) (-15 -2178 ((-1287) (-656 (-656 (-959 (-227)))) (-656 (-270)))) (-15 -2956 ((-1287) (-480))))
+((-2446 (($) 6)) (-2956 (((-874) $) 9)))
+(((-1291) (-13 (-625 (-874)) (-10 -8 (-15 -2446 ($))))) (T -1291))
+((-2446 (*1 *1) (-5 *1 (-1291))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2446 ($))))
+((-3108 (($ $ |#2|) 10)))
+(((-1292 |#1| |#2|) (-10 -8 (-15 -3108 (|#1| |#1| |#2|))) (-1293 |#2|) (-374)) (T -1292))
+NIL
+(-10 -8 (-15 -3108 (|#1| |#1| |#2|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2068 (((-135)) 33)) (-2956 (((-874) $) 12)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2991 (((-112) $ $) 6)) (-3108 (($ $ |#1|) 34)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1293 |#1|) (-141) (-374)) (T -1293))
+((-3108 (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374)))) (-2068 (*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135)))))
+(-13 (-729 |t#1|) (-10 -8 (-15 -3108 ($ $ |t#1|)) (-15 -2068 ((-135)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1118) . T))
+((-3397 (((-656 (-1230 |#1|)) (-1195) (-1230 |#1|)) 83)) (-4154 (((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|))) 63)) (-3457 (((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|))) 74)) (-3255 (((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783)) 65)) (-3554 (((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195)) 32)) (-2739 (((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783)) 64)))
+(((-1294 |#1|) (-10 -7 (-15 -3255 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -2739 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -4154 ((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|)))) (-15 -3554 ((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195))) (-15 -3397 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -3457 ((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|))))) (-374)) (T -1294))
+((-3457 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6)) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1294 *6)) (-5 *5 (-1175 *4)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5))) (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-968 *4)) (-968 *4))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1175 (-1175 (-968 *5)))) (-5 *1 (-1294 *5)) (-5 *4 (-1175 (-968 *5))))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))))
+(-10 -7 (-15 -3255 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -2739 ((-1 (-1175 (-968 |#1|)) (-1175 (-968 |#1|))) (-783))) (-15 -4154 ((-1175 (-1175 (-968 |#1|))) (-1195) (-1175 (-968 |#1|)))) (-15 -3554 ((-1 (-1191 (-968 |#1|)) (-968 |#1|)) (-1195))) (-15 -3397 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -3457 ((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-783) (-1230 |#1|) (-1175 (-1230 |#1|)))))
+((-2835 (((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-3701 (((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79)))
+(((-1295 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1262 |#1|) (-1262 |#2|) (-421 |#2| |#3|)) (T -1295))
+((-2835 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-3701 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -4093 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5)))))
+(-10 -7 (-15 -3701 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2835 ((-2 (|:| -4093 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)))
+((-2869 (((-112) $ $) NIL)) (-2928 (((-1153) $) 11)) (-1664 (((-1153) $) 9)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1296) (-13 (-1101) (-10 -8 (-15 -1664 ((-1153) $)) (-15 -2928 ((-1153) $))))) (T -1296))
+((-1664 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296)))))
+(-13 (-1101) (-10 -8 (-15 -1664 ((-1153) $)) (-15 -2928 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2279 (((-1153) $) 9)) (-2956 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) NIL)))
+(((-1297) (-13 (-1101) (-10 -8 (-15 -2279 ((-1153) $))))) (T -1297))
+((-2279 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1297)))))
+(-13 (-1101) (-10 -8 (-15 -2279 ((-1153) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 58)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) NIL)) (-4192 (((-112) $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-3423 (((-783)) NIL T CONST)) (-3325 (((-1291) (-783)) 16)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 37 T CONST)) (-2155 (($) 84 T CONST)) (-2991 (((-112) $ $) 87)) (-3108 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3096 (($ $) 89) (($ $ $) NIL)) (-3081 (($ $ $) 63)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-1298 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1067) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3325 ((-1291) (-783))))) (-1067) (-862) (-805) (-965 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1298))
+((-3108 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-965 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-4 *5 (-862)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1291)) (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-965 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3))))
+(-13 (-1067) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3108 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3325 ((-1291) (-783)))))
+((-2869 (((-112) $ $) NIL)) (-2375 (((-656 (-2 (|:| -1392 $) (|:| -1685 (-656 |#4|)))) (-656 |#4|)) NIL)) (-3809 (((-656 $) (-656 |#4|)) 96)) (-4352 (((-656 |#3|) $) NIL)) (-2971 (((-112) $) NIL)) (-3565 (((-112) $) NIL (|has| |#1| (-568)))) (-1618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3276 ((|#4| |#4| $) NIL)) (-2791 (((-2 (|:| |under| $) (|:| -4371 $) (|:| |upper| $)) $ |#3|) NIL)) (-3762 (((-112) $ (-783)) NIL)) (-2174 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4335 (($) NIL T CONST)) (-3373 (((-112) $) NIL (|has| |#1| (-568)))) (-3679 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3651 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4066 (((-112) $) NIL (|has| |#1| (-568)))) (-3134 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2331 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-1595 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1706 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2216 (($ (-656 |#4|)) NIL)) (-2940 (((-3 $ "failed") $) 78)) (-3164 ((|#4| |#4| $) 83)) (-4060 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-3316 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3983 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2540 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2705 ((|#4| |#4| $) NIL)) (-2887 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2648 (((-2 (|:| -1392 (-656 |#4|)) (|:| -1685 (-656 |#4|))) $) NIL)) (-1873 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-3670 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2977 ((|#3| $) 84)) (-2266 (((-112) $ (-783)) NIL)) (-2186 (((-656 |#4|) $) 32 (|has| $ (-6 -4461)))) (-2653 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118))))) (-4253 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-2466 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-1787 (($ (-1 |#4| |#4|) $) NIL)) (-4172 (((-656 |#3|) $) NIL)) (-1820 (((-112) |#3| $) NIL)) (-2356 (((-112) $ (-783)) NIL)) (-2148 (((-1177) $) NIL)) (-3338 (((-3 |#4| "failed") $) NIL)) (-3200 (((-656 |#4|) $) 54)) (-3103 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1992 ((|#4| |#4| $) 82)) (-3320 (((-112) $ $) 93)) (-2891 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3661 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-3945 (((-1138) $) NIL)) (-2930 (((-3 |#4| "failed") $) 77)) (-2922 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2452 (((-3 $ "failed") $ |#4|) NIL)) (-3167 (($ $ |#4|) NIL)) (-1875 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2666 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1118))))) (-2001 (((-112) $ $) NIL)) (-3321 (((-112) $) 75)) (-2953 (($) 46)) (-2782 (((-783) $) NIL)) (-3954 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1118)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3162 (($ $) NIL)) (-1846 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2968 (($ (-656 |#4|)) NIL)) (-3888 (($ $ |#3|) NIL)) (-1572 (($ $ |#3|) NIL)) (-4104 (($ $) NIL)) (-2051 (($ $ |#3|) NIL)) (-2956 (((-874) $) NIL) (((-656 |#4|) $) 63)) (-3364 (((-783) $) NIL (|has| |#3| (-379)))) (-2070 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-1613 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-2617 (((-112) $ $) NIL)) (-4064 (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2012 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1644 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3972 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1916 (((-656 |#3|) $) NIL)) (-3684 (((-112) |#3| $) NIL)) (-2991 (((-112) $ $) NIL)) (-2882 (((-783) $) NIL (|has| $ (-6 -4461)))))
+(((-1299 |#1| |#2| |#3| |#4|) (-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4253 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4253 ((-3 $ "failed") (-656 |#4|))) (-15 -2070 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2070 ((-3 $ "failed") (-656 |#4|))) (-15 -1613 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1613 ((-656 $) (-656 |#4|))))) (-568) (-805) (-862) (-1083 |#1| |#2| |#3|)) (T -1299))
+((-4253 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-4253 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-2070 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-2070 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9))) (-5 *1 (-1299 *6 *7 *8 *9)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7))) (-5 *1 (-1299 *4 *5 *6 *7)))))
+(-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4253 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4253 ((-3 $ "failed") (-656 |#4|))) (-15 -2070 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2070 ((-3 $ "failed") (-656 |#4|))) (-15 -1613 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1613 ((-656 $) (-656 |#4|)))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-3798 (((-3 $ "failed") $ $) 20)) (-4335 (($) 18 T CONST)) (-4077 (((-3 $ "failed") $) 37)) (-4192 (((-112) $) 35)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1300 |#1|) (-141) (-1067)) (T -1300))
+NIL
+(-13 (-1067) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1069 |#1|) . T) ((-1074 |#1|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T))
+((-2869 (((-112) $ $) 67)) (-3549 (((-112) $) NIL)) (-1665 (((-656 |#1|) $) 52)) (-3405 (($ $ (-783)) 46)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2468 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-4335 (($) NIL T CONST)) (-3322 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-1706 (((-3 (-831 |#1|) "failed") $) NIL)) (-2216 (((-831 |#1|) $) NIL)) (-1404 (($ $) 39)) (-4077 (((-3 $ "failed") $) NIL)) (-3395 (((-112) $) NIL)) (-3178 (($ $) NIL)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ (-831 |#1|) |#2|) 38)) (-1351 (($ $) 40)) (-2990 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-1504 (((-831 |#1|) $) NIL)) (-2984 (((-831 |#1|) $) 41)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2534 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-4143 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1368 (((-831 |#1|) $) 35)) (-1380 ((|#2| $) 37)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2782 (((-783) $) 43)) (-2391 (((-112) $) 47)) (-1716 ((|#2| $) NIL)) (-2956 (((-874) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-831 |#1|)) NIL)) (-1868 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 13 T CONST)) (-2155 (($) 19 T CONST)) (-2960 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2991 (((-112) $ $) 44)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-937)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1301 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|)) (-862) (-1067)) (T -1301))
+NIL
+(-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|))
+((-3118 ((|#3| |#3| (-783)) 28)) (-1619 ((|#3| |#3| (-783)) 34)) (-4046 ((|#3| |#3| |#3| (-783)) 35)))
+(((-1302 |#1| |#2| |#3|) (-10 -7 (-15 -1619 (|#3| |#3| (-783))) (-15 -3118 (|#3| |#3| (-783))) (-15 -4046 (|#3| |#3| |#3| (-783)))) (-13 (-1067) (-729 (-419 (-576)))) (-862) (-1307 |#2| |#1|)) (T -1302))
+((-4046 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-3118 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))))
+(-10 -7 (-15 -1619 (|#3| |#3| (-783))) (-15 -3118 (|#3| |#3| (-783))) (-15 -4046 (|#3| |#3| |#3| (-783))))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1665 (((-656 |#1|) $) 47)) (-3798 (((-3 $ "failed") $ $) 20)) (-2468 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-4335 (($) 18 T CONST)) (-3322 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1706 (((-3 (-831 |#1|) "failed") $) 71)) (-2216 (((-831 |#1|) $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-3395 (((-112) $) 52)) (-3178 (($ $) 51)) (-4192 (((-112) $) 35)) (-1614 (((-112) $) 57)) (-3811 (($ (-831 |#1|) |#2|) 58)) (-1351 (($ $) 56)) (-2990 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1504 (((-831 |#1|) $) 68)) (-1787 (($ (-1 |#2| |#2|) $) 48)) (-2534 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2391 (((-112) $) 54)) (-1716 ((|#2| $) 53)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1868 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1303 |#1| |#2|) (-141) (-862) (-1067)) (T -1303))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-831 *3)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1868 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1067)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (-2534 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-2534 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3322 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3322 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3)) (-4 *3 (-1067)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-2956 (*1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-112)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))) (-2468 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)) (-4 *3 (-174)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-4 *4 (-174)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-656 *3)))))
+(-13 (-1067) (-1300 |t#2|) (-1056 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1504 ((-831 |t#1|) $)) (-15 -2990 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1868 (|t#2| $ (-831 |t#1|))) (-15 -1868 (|t#2| $ $)) (-15 -2534 ($ $ |t#1|)) (-15 -2534 ($ $ (-831 |t#1|))) (-15 -2534 ($ $ $)) (-15 -3322 ($ $ |t#1|)) (-15 -3322 ($ $ (-831 |t#1|))) (-15 -3322 ($ $ $)) (-15 -3811 ($ (-831 |t#1|) |t#2|)) (-15 -1614 ((-112) $)) (-15 -1351 ($ $)) (-15 -2956 ($ |t#1|)) (-15 -2391 ((-112) $)) (-15 -1716 (|t#2| $)) (-15 -3395 ((-112) $)) (-15 -3178 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2468 ($ $ $)) (-15 -2468 ($ $ (-783)))) |%noBranch|) (-15 -1787 ($ (-1 |t#2| |t#2|) $)) (-15 -1665 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4454)) (-6 -4454) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1056 #0#) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1300 |#2|) . T))
+((-1943 (((-112) $) 15)) (-3684 (((-112) $) 14)) (-3898 (($ $) 19) (($ $ (-783)) 21)))
+(((-1304 |#1| |#2|) (-10 -8 (-15 -3898 (|#1| |#1| (-783))) (-15 -3898 (|#1| |#1|)) (-15 -1943 ((-112) |#1|)) (-15 -3684 ((-112) |#1|))) (-1305 |#2|) (-374)) (T -1304))
+NIL
+(-10 -8 (-15 -3898 (|#1| |#1| (-783))) (-15 -3898 (|#1| |#1|)) (-15 -1943 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-2141 (((-2 (|:| -1651 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4334 (($ $) 46)) (-1428 (((-112) $) 44)) (-1943 (((-112) $) 104)) (-3419 (((-783)) 100)) (-3798 (((-3 $ "failed") $ $) 20)) (-2879 (($ $) 81)) (-1870 (((-430 $) $) 80)) (-1323 (((-112) $ $) 65)) (-4335 (($) 18 T CONST)) (-1706 (((-3 |#1| "failed") $) 111)) (-2216 ((|#1| $) 112)) (-2806 (($ $ $) 61)) (-4077 (((-3 $ "failed") $) 37)) (-2818 (($ $ $) 62)) (-1889 (((-2 (|:| -1868 (-656 $)) (|:| -2981 $)) (-656 $)) 57)) (-3454 (($ $ (-783)) 97 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3124 (((-112) $) 79)) (-3540 (((-845 (-937)) $) 94 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4192 (((-112) $) 35)) (-2421 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2850 (($ $ $) 52) (($ (-656 $)) 51)) (-2148 (((-1177) $) 10)) (-1330 (($ $) 78)) (-2388 (((-112) $) 103)) (-3945 (((-1138) $) 11)) (-2045 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-2892 (($ $ $) 54) (($ (-656 $)) 53)) (-4205 (((-430 $) $) 82)) (-2591 (((-845 (-937))) 101)) (-1326 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2981 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2858 (((-3 $ "failed") $ $) 48)) (-2583 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3927 (((-783) $) 64)) (-1408 (((-2 (|:| -1758 $) (|:| -3983 $)) $ $) 63)) (-3665 (((-3 (-783) "failed") $ $) 95 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2068 (((-135)) 109)) (-2782 (((-845 (-937)) $) 102)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-1817 (((-3 $ "failed") $) 93 (-2838 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2946 (((-112) $ $) 45)) (-3684 (((-112) $) 105)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-3898 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2991 (((-112) $ $) 6)) (-3108 (($ $ $) 73) (($ $ |#1|) 108)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1305 |#1|) (-141) (-374)) (T -1305))
+((-3684 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))) (-2591 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))) (-3419 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3898 (*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379)))))
+(-13 (-374) (-1056 |t#1|) (-1293 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -3684 ((-112) $)) (-15 -1943 ((-112) $)) (-15 -2388 ((-112) $)) (-15 -2782 ((-845 (-937)) $)) (-15 -2591 ((-845 (-937)))) (-15 -3419 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3898 ($ $)) (-15 -3898 ($ $ (-783)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2838 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-249) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2838 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-936) . T) ((-1056 |#1|) . T) ((-1069 #0#) . T) ((-1069 |#1|) . T) ((-1069 $) . T) ((-1074 #0#) . T) ((-1074 |#1|) . T) ((-1074 $) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1240) . T) ((-1293 |#1|) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1665 (((-656 |#1|) $) 98)) (-3405 (($ $ (-783)) 102)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2468 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-4335 (($) NIL T CONST)) (-3322 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-1706 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-906 |#1|) "failed") $) NIL)) (-2216 (((-831 |#1|) $) NIL) (((-906 |#1|) $) NIL)) (-1404 (($ $) 101)) (-4077 (((-3 $ "failed") $) NIL)) (-3395 (((-112) $) 90)) (-3178 (($ $) 93)) (-2230 (($ $ $ (-783)) 103)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ (-831 |#1|) |#2|) NIL) (($ (-906 |#1|) |#2|) 29)) (-1351 (($ $) 119)) (-2990 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1504 (((-831 |#1|) $) NIL)) (-2984 (((-831 |#1|) $) NIL)) (-1787 (($ (-1 |#2| |#2|) $) NIL)) (-2534 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3118 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-4143 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1368 (((-906 |#1|) $) 83)) (-1380 ((|#2| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-1619 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-2782 (((-783) $) 99)) (-2391 (((-112) $) 84)) (-1716 ((|#2| $) 88)) (-2956 (((-874) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-906 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1301 |#1| |#2|) $) 76) (((-1310 |#1| |#2|) $) 81)) (-3532 (((-656 |#2|) $) NIL)) (-4309 ((|#2| $ (-906 |#1|)) NIL)) (-1868 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 21 T CONST)) (-2155 (($) 28 T CONST)) (-2960 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2295 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-2991 (((-112) $ $) 77)) (-3096 (($ $) 111) (($ $ $) 110)) (-3081 (($ $ $) 20)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-906 |#1|)) NIL)))
+(((-1306 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2956 ($ (-676 |#1| |#2|))) (-15 -2956 ((-1301 |#1| |#2|) $)) (-15 -2956 ((-1310 |#1| |#2|) $)) (-15 -2295 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -2230 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -1619 ($ $ (-783))) (-15 -3118 ($ $ (-783)))) |%noBranch|))) (-862) (-174)) (T -1306))
+((-2956 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1306 *3 *4)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2295 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2230 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2956 ($ (-676 |#1| |#2|))) (-15 -2956 ((-1301 |#1| |#2|) $)) (-15 -2956 ((-1310 |#1| |#2|) $)) (-15 -2295 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -2230 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -1619 ($ $ (-783))) (-15 -3118 ($ $ (-783)))) |%noBranch|)))
+((-2869 (((-112) $ $) 7)) (-3549 (((-112) $) 17)) (-1665 (((-656 |#1|) $) 47)) (-3405 (($ $ (-783)) 80)) (-3798 (((-3 $ "failed") $ $) 20)) (-2468 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-4335 (($) 18 T CONST)) (-3322 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1706 (((-3 (-831 |#1|) "failed") $) 71)) (-2216 (((-831 |#1|) $) 72)) (-4077 (((-3 $ "failed") $) 37)) (-3395 (((-112) $) 52)) (-3178 (($ $) 51)) (-4192 (((-112) $) 35)) (-1614 (((-112) $) 57)) (-3811 (($ (-831 |#1|) |#2|) 58)) (-1351 (($ $) 56)) (-2990 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1504 (((-831 |#1|) $) 68)) (-2984 (((-831 |#1|) $) 82)) (-1787 (($ (-1 |#2| |#2|) $) 48)) (-2534 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2148 (((-1177) $) 10)) (-3945 (((-1138) $) 11)) (-2782 (((-783) $) 81)) (-2391 (((-112) $) 54)) (-1716 ((|#2| $) 53)) (-2956 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1868 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-3423 (((-783)) 32 T CONST)) (-2617 (((-112) $ $) 9)) (-2143 (($) 19 T CONST)) (-2155 (($) 34 T CONST)) (-2991 (((-112) $ $) 6)) (-3096 (($ $) 23) (($ $ $) 22)) (-3081 (($ $ $) 15)) (** (($ $ (-937)) 28) (($ $ (-783)) 36)) (* (($ (-937) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1307 |#1| |#2|) (-141) (-862) (-1067)) (T -1307))
+((-2984 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-831 *3)))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *2 (-783)))) (-3405 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))))
+(-13 (-1303 |t#1| |t#2|) (-10 -8 (-15 -2984 ((-831 |t#1|) $)) (-15 -2782 ((-783) $)) (-15 -3405 ($ $ (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1056 #0#) . T) ((-1069 |#2|) . T) ((-1074 |#2|) . T) ((-1067) . T) ((-1076) . T) ((-1130) . T) ((-1118) . T) ((-1300 |#2|) . T) ((-1303 |#1| |#2|) . T))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-1665 (((-656 (-1195)) $) NIL)) (-3825 (($ (-1301 (-1195) |#1|)) NIL)) (-3405 (($ $ (-783)) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2468 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-4335 (($) NIL T CONST)) (-3322 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-1706 (((-3 (-831 (-1195)) "failed") $) NIL)) (-2216 (((-831 (-1195)) $) NIL)) (-4077 (((-3 $ "failed") $) NIL)) (-3395 (((-112) $) NIL)) (-3178 (($ $) NIL)) (-4192 (((-112) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ (-831 (-1195)) |#1|) NIL)) (-1351 (($ $) NIL)) (-2990 (((-2 (|:| |k| (-831 (-1195))) (|:| |c| |#1|)) $) NIL)) (-1504 (((-831 (-1195)) $) NIL)) (-2984 (((-831 (-1195)) $) NIL)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-2534 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2139 (((-1301 (-1195) |#1|) $) NIL)) (-2782 (((-783) $) NIL)) (-2391 (((-112) $) NIL)) (-1716 ((|#1| $) NIL)) (-2956 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1195))) NIL) (($ (-1195)) NIL)) (-1868 ((|#1| $ (-831 (-1195))) NIL) ((|#1| $ $) NIL)) (-3423 (((-783)) NIL T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) NIL T CONST)) (-2475 (((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $) NIL)) (-2155 (($) NIL T CONST)) (-2991 (((-112) $ $) NIL)) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) NIL)) (** (($ $ (-937)) NIL) (($ $ (-783)) NIL)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1195) $) NIL)))
+(((-1308 |#1|) (-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -2139 ((-1301 (-1195) |#1|) $)) (-15 -3825 ($ (-1301 (-1195) |#1|))) (-15 -2475 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $)))) (-1067)) (T -1308))
+((-2139 (*1 *2 *1) (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1067)))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1067)) (-5 *1 (-1308 *3)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3))))) (-5 *1 (-1308 *3)) (-4 *3 (-1067)))))
+(-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -2139 ((-1301 (-1195) |#1|) $)) (-15 -3825 ($ (-1301 (-1195) |#1|))) (-15 -2475 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $))))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $ $) NIL)) (-4335 (($) NIL T CONST)) (-1706 (((-3 |#2| "failed") $) NIL)) (-2216 ((|#2| $) NIL)) (-1404 (($ $) NIL)) (-4077 (((-3 $ "failed") $) 42)) (-3395 (((-112) $) 35)) (-3178 (($ $) 37)) (-4192 (((-112) $) NIL)) (-2747 (((-783) $) NIL)) (-2397 (((-656 $) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ |#2| |#1|) NIL)) (-1504 ((|#2| $) 24)) (-2984 ((|#2| $) 22)) (-1787 (($ (-1 |#1| |#1|) $) NIL)) (-4143 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1368 ((|#2| $) NIL)) (-1380 ((|#1| $) NIL)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2391 (((-112) $) 32)) (-1716 ((|#1| $) 33)) (-2956 (((-874) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3532 (((-656 |#1|) $) NIL)) (-4309 ((|#1| $ |#2|) NIL)) (-1868 ((|#1| $ |#2|) 28)) (-3423 (((-783)) 14 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 29 T CONST)) (-2155 (($) 11 T CONST)) (-2960 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2991 (((-112) $ $) 30)) (-3108 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3096 (($ $) NIL) (($ $ $) NIL)) (-3081 (($ $ $) 50)) (** (($ $ (-937)) NIL) (($ $ (-783)) 52)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2882 (((-783) $) 16)))
+(((-1309 |#1| |#2|) (-13 (-1067) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2882 ((-783) $)) (-15 -2984 (|#2| $)) (-15 -1504 (|#2| $)) (-15 -1404 ($ $)) (-15 -1868 (|#1| $ |#2|)) (-15 -2391 ((-112) $)) (-15 -1716 (|#1| $)) (-15 -3395 ((-112) $)) (-15 -3178 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3108 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1067) (-858)) (T -1309))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-1404 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-858)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-2984 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))) (-1504 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))) (-1868 (*1 *2 *1 *3) (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-1716 (*1 *2 *1) (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-858)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))) (-3108 (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-858)))))
+(-13 (-1067) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2882 ((-783) $)) (-15 -2984 (|#2| $)) (-15 -1504 (|#2| $)) (-15 -1404 ($ $)) (-15 -1868 (|#1| $ |#2|)) (-15 -2391 ((-112) $)) (-15 -1716 (|#1| $)) (-15 -3395 ((-112) $)) (-15 -3178 ($ $)) (-15 -1787 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3108 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|)))
+((-2869 (((-112) $ $) 27)) (-3549 (((-112) $) NIL)) (-1665 (((-656 |#1|) $) 132)) (-3825 (($ (-1301 |#1| |#2|)) 50)) (-3405 (($ $ (-783)) 38)) (-3798 (((-3 $ "failed") $ $) NIL)) (-2468 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-4335 (($) NIL T CONST)) (-3322 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-1706 (((-3 (-831 |#1|) "failed") $) NIL)) (-2216 (((-831 |#1|) $) NIL)) (-4077 (((-3 $ "failed") $) 122)) (-3395 (((-112) $) 117)) (-3178 (($ $) 118)) (-4192 (((-112) $) NIL)) (-1614 (((-112) $) NIL)) (-3811 (($ (-831 |#1|) |#2|) 20)) (-1351 (($ $) NIL)) (-2990 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1504 (((-831 |#1|) $) 123)) (-2984 (((-831 |#1|) $) 126)) (-1787 (($ (-1 |#2| |#2|) $) 131)) (-2534 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2139 (((-1301 |#1| |#2|) $) 94)) (-2782 (((-783) $) 129)) (-2391 (((-112) $) 81)) (-1716 ((|#2| $) 32)) (-2956 (((-874) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1868 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-3423 (((-783)) 120 T CONST)) (-2617 (((-112) $ $) NIL)) (-2143 (($) 15 T CONST)) (-2475 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2155 (($) 33 T CONST)) (-2991 (((-112) $ $) 14)) (-3096 (($ $) 98) (($ $ $) 101)) (-3081 (($ $ $) 61)) (** (($ $ (-937)) NIL) (($ $ (-783)) 55)) (* (($ (-937) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1310 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-10 -8 (-15 -2139 ((-1301 |#1| |#2|) $)) (-15 -3825 ($ (-1301 |#1| |#2|))) (-15 -2475 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1067)) (T -1310))
+((-2139 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)) (-5 *1 (-1310 *3 *4)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4))))) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))))
+(-13 (-1307 |#1| |#2|) (-10 -8 (-15 -2139 ((-1301 |#1| |#2|) $)) (-15 -3825 ($ (-1301 |#1| |#2|))) (-15 -2475 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2869 (((-112) $ $) NIL)) (-4248 (($ (-656 (-937))) 10)) (-2509 (((-989) $) 12)) (-2148 (((-1177) $) NIL)) (-3945 (((-1138) $) NIL)) (-2956 (((-874) $) 25) (($ (-989)) 14) (((-989) $) 13)) (-2617 (((-112) $ $) NIL)) (-2991 (((-112) $ $) 17)))
+(((-1311) (-13 (-1118) (-502 (-989)) (-10 -8 (-15 -4248 ($ (-656 (-937)))) (-15 -2509 ((-989) $))))) (T -1311))
+((-4248 (*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1311)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-1311)))))
+(-13 (-1118) (-502 (-989)) (-10 -8 (-15 -4248 ($ (-656 (-937)))) (-15 -2509 ((-989) $))))
+((-1891 (((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576)) 16) (((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|))) 13)))
+(((-1312 |#1|) (-10 -7 (-15 -1891 ((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|)))) (-15 -1891 ((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576)))) (-1236)) (T -1312))
+((-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1175 *5)) (-656 (-1175 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1175 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1312 *4)) (-4 *4 (-1236)))))
+(-10 -7 (-15 -1891 ((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|)))) (-15 -1891 ((-656 (-1175 |#1|)) (-1 (-656 (-1175 |#1|)) (-656 (-1175 |#1|))) (-576))))
+((-2090 (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|))) 174) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112)) 173) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-1064 |#1| |#2|)) 156)) (-1410 (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|))) 85) (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112)) 84) (((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112)) 83)) (-1870 (((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|)) 73)) (-2263 (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|))) 140) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112)) 139) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|)) 132)) (-4384 (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|))) 145) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112)) 144) (((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|)) 142)) (-1846 (((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) 111) (((-1191 (-1042 (-419 |#1|))) (-1191 |#1|)) 102) (((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|))) 109) (((-968 (-1042 (-419 |#1|))) (-968 |#1|)) 107) (((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|))) 33)))
+(((-1313 |#1| |#2| |#3|) (-10 -7 (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112))) (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112))) (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-1064 |#1| |#2|))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -1870 ((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|))) (-15 -1846 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -1846 ((-968 (-1042 (-419 |#1|))) (-968 |#1|))) (-15 -1846 ((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -1846 ((-1191 (-1042 (-419 |#1|))) (-1191 |#1|))) (-15 -1846 ((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) (-13 (-860) (-317) (-148) (-1040)) (-656 (-1195)) (-656 (-1195))) (T -1313))
+((-1846 (*1 *2 *3) (-12 (-5 *3 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-1191 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195))) (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2263 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2263 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-968 *4))) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2090 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2090 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *4 *5))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-1410 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040))) (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))))
+(-10 -7 (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112) (-112))) (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)) (-112))) (-15 -1410 ((-656 (-1064 |#1| |#2|)) (-656 (-968 |#1|)))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-1064 |#1| |#2|))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)) (-112))) (-15 -2090 ((-656 (-2 (|:| -1675 (-1191 |#1|)) (|:| -3458 (-656 (-968 |#1|))))) (-656 (-968 |#1|)))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -2263 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-1064 |#1| |#2|))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112) (-112))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)) (-112))) (-15 -4384 ((-656 (-656 (-1042 (-419 |#1|)))) (-656 (-968 |#1|)))) (-15 -1870 ((-656 (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1064 |#1| |#2|))) (-15 -1846 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -1846 ((-968 (-1042 (-419 |#1|))) (-968 |#1|))) (-15 -1846 ((-968 (-1042 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -1846 ((-1191 (-1042 (-419 |#1|))) (-1191 |#1|))) (-15 -1846 ((-656 (-792 |#1| (-876 |#3|))) (-1164 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|))))))
+((-2061 (((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|) 21)) (-2565 (((-112) (-1286 |#1|)) 12)) (-4283 (((-3 (-1286 (-576)) "failed") (-1286 |#1|)) 16)))
+(((-1314 |#1|) (-10 -7 (-15 -2565 ((-112) (-1286 |#1|))) (-15 -4283 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -2061 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|))) (-13 (-1067) (-651 (-576)))) (T -1314))
+((-2061 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4)))) (-4283 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1314 *4)))))
+(-10 -7 (-15 -2565 ((-112) (-1286 |#1|))) (-15 -4283 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -2061 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|)))
+((-2869 (((-112) $ $) NIL)) (-3549 (((-112) $) 11)) (-3798 (((-3 $ "failed") $ $) NIL)) (-1499 (((-783)) 8)) (-4335 (($) NIL T CONST)) (-4077 (((-3 $ "failed") $) 58)) (-2840 (($) 49)) (-4192 (((-112) $) 57)) (-2211 (((-3 $ "failed") $) 40)) (-4261 (((-937) $) 15)) (-2148 (((-1177) $) NIL)) (-3796 (($) 32 T CONST)) (-2596 (($ (-937)) 50)) (-3945 (((-1138) $) NIL)) (-1846 (((-576) $) 13)) (-2956 (((-874) $) 27) (($ (-576)) 24)) (-3423 (((-783)) 9 T CONST)) (-2617 (((-112) $ $) 60)) (-2143 (($) 29 T CONST)) (-2155 (($) 31 T CONST)) (-2991 (((-112) $ $) 38)) (-3096 (($ $) 52) (($ $ $) 47)) (-3081 (($ $ $) 35)) (** (($ $ (-937)) NIL) (($ $ (-783)) 54)) (* (($ (-937) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43)))
+(((-1315 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1170)) (-937)) (T -1315))
+NIL
+(-13 (-174) (-379) (-626 (-576)) (-1170))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3242088 3242093 3242098 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3242073 3242078 3242083 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3242058 3242063 3242068 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3242043 3242048 3242053 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1315 3241186 3241918 3241995 "ZMOD" 3242000 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1314 3240240 3240404 3240627 "ZLINDEP" 3241018 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1313 3229540 3231308 3233280 "ZDSOLVE" 3238370 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1312 3228786 3228927 3229116 "YSTREAM" 3229386 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1311 3228214 3228460 3228573 "YDIAGRAM" 3228695 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1310 3225988 3227515 3227719 "XRPOLY" 3228057 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1309 3222541 3223859 3224434 "XPR" 3225460 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1308 3220262 3221872 3222076 "XPOLY" 3222372 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1307 3217915 3219283 3219338 "XPOLYC" 3219626 NIL XPOLYC (NIL T T) -9 NIL 3219739 NIL) (-1306 3214291 3216432 3216820 "XPBWPOLY" 3217573 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1305 3209986 3212281 3212323 "XF" 3212944 NIL XF (NIL T) -9 NIL 3213344 NIL) (-1304 3209607 3209695 3209864 "XF-" 3209869 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1303 3204803 3206092 3206147 "XFALG" 3208319 NIL XFALG (NIL T T) -9 NIL 3209108 NIL) (-1302 3203936 3204040 3204245 "XEXPPKG" 3204695 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1301 3202045 3203786 3203882 "XDPOLY" 3203887 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3200852 3201452 3201495 "XALG" 3201500 NIL XALG (NIL T) -9 NIL 3201611 NIL) (-1299 3194294 3198829 3199323 "WUTSET" 3200444 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1298 3192550 3193346 3193669 "WP" 3194105 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1297 3192152 3192372 3192442 "WHILEAST" 3192502 T WHILEAST (NIL) -8 NIL NIL NIL) (-1296 3191624 3191869 3191963 "WHEREAST" 3192080 T WHEREAST (NIL) -8 NIL NIL NIL) (-1295 3190510 3190708 3191003 "WFFINTBS" 3191421 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1294 3188414 3188841 3189303 "WEIER" 3190082 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1293 3187460 3187910 3187952 "VSPACE" 3188088 NIL VSPACE (NIL T) -9 NIL 3188162 NIL) (-1292 3187298 3187325 3187416 "VSPACE-" 3187421 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1291 3187107 3187149 3187217 "VOID" 3187252 T VOID (NIL) -8 NIL NIL NIL) (-1290 3185243 3185602 3186008 "VIEW" 3186723 T VIEW (NIL) -7 NIL NIL NIL) (-1289 3181667 3182306 3183043 "VIEWDEF" 3184528 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1288 3170971 3173215 3175388 "VIEW3D" 3179516 T VIEW3D (NIL) -8 NIL NIL NIL) (-1287 3163222 3164882 3166461 "VIEW2D" 3169414 T VIEW2D (NIL) -8 NIL NIL NIL) (-1286 3158575 3162992 3163084 "VECTOR" 3163165 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1285 3157152 3157411 3157729 "VECTOR2" 3158305 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1284 3150594 3154903 3154946 "VECTCAT" 3155941 NIL VECTCAT (NIL T) -9 NIL 3156528 NIL) (-1283 3149608 3149862 3150252 "VECTCAT-" 3150257 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1282 3149062 3149259 3149379 "VARIABLE" 3149523 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1281 3148995 3149000 3149030 "UTYPE" 3149035 T UTYPE (NIL) -9 NIL NIL NIL) (-1280 3147825 3147979 3148241 "UTSODETL" 3148821 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1279 3145265 3145725 3146249 "UTSODE" 3147366 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1278 3137103 3142891 3143380 "UTS" 3144834 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3127667 3133037 3133080 "UTSCAT" 3134192 NIL UTSCAT (NIL T) -9 NIL 3134950 NIL) (-1276 3125015 3125737 3126726 "UTSCAT-" 3126731 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1275 3124642 3124685 3124818 "UTS2" 3124966 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1274 3118868 3121480 3121523 "URAGG" 3123593 NIL URAGG (NIL T) -9 NIL 3124316 NIL) (-1273 3115807 3116670 3117793 "URAGG-" 3117798 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1272 3111516 3114442 3114907 "UPXSSING" 3115471 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1271 3103582 3110763 3111036 "UPXS" 3111301 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1270 3096655 3103486 3103558 "UPXSCONS" 3103563 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1269 3086062 3092858 3092920 "UPXSCCA" 3093494 NIL UPXSCCA (NIL T T) -9 NIL 3093727 NIL) (-1268 3085700 3085785 3085959 "UPXSCCA-" 3085964 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1267 3074959 3081528 3081571 "UPXSCAT" 3082219 NIL UPXSCAT (NIL T) -9 NIL 3082828 NIL) (-1266 3074389 3074468 3074647 "UPXS2" 3074874 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1265 3073043 3073296 3073647 "UPSQFREE" 3074132 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1264 3066251 3069311 3069366 "UPSCAT" 3070446 NIL UPSCAT (NIL T T) -9 NIL 3071211 NIL) (-1263 3065455 3065662 3065989 "UPSCAT-" 3065994 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1262 3050818 3058676 3058719 "UPOLYC" 3060820 NIL UPOLYC (NIL T) -9 NIL 3062041 NIL) (-1261 3042146 3044572 3047719 "UPOLYC-" 3047724 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1260 3041773 3041816 3041949 "UPOLYC2" 3042097 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1259 3033495 3041456 3041585 "UP" 3041692 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1258 3032834 3032941 3033105 "UPMP" 3033384 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1257 3032387 3032468 3032607 "UPDIVP" 3032747 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1256 3030955 3031204 3031520 "UPDECOMP" 3032136 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1255 3030186 3030298 3030484 "UPCDEN" 3030839 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1254 3029705 3029774 3029923 "UP2" 3030111 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1253 3028172 3028909 3029186 "UNISEG" 3029463 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1252 3027387 3027514 3027719 "UNISEG2" 3028015 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1251 3026447 3026627 3026853 "UNIFACT" 3027203 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1250 3010208 3025624 3025875 "ULS" 3026254 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 2998071 3010112 3010184 "ULSCONS" 3010189 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1248 2979370 2991495 2991557 "ULSCCAT" 2992195 NIL ULSCCAT (NIL T T) -9 NIL 2992484 NIL) (-1247 2978420 2978665 2979053 "ULSCCAT-" 2979058 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1246 2967484 2973967 2974010 "ULSCAT" 2974873 NIL ULSCAT (NIL T) -9 NIL 2975604 NIL) (-1245 2966914 2966993 2967172 "ULS2" 2967399 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1244 2966033 2966543 2966650 "UINT8" 2966761 T UINT8 (NIL) -8 NIL NIL 2966846) (-1243 2965151 2965661 2965768 "UINT64" 2965879 T UINT64 (NIL) -8 NIL NIL 2965964) (-1242 2964269 2964779 2964886 "UINT32" 2964997 T UINT32 (NIL) -8 NIL NIL 2965082) (-1241 2963387 2963897 2964004 "UINT16" 2964115 T UINT16 (NIL) -8 NIL NIL 2964200) (-1240 2961690 2962647 2962677 "UFD" 2962889 T UFD (NIL) -9 NIL 2963003 NIL) (-1239 2961484 2961530 2961625 "UFD-" 2961630 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1238 2960566 2960749 2960965 "UDVO" 2961290 T UDVO (NIL) -7 NIL NIL NIL) (-1237 2958382 2958791 2959262 "UDPO" 2960130 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1236 2958315 2958320 2958350 "TYPE" 2958355 T TYPE (NIL) -9 NIL NIL NIL) (-1235 2958075 2958270 2958301 "TYPEAST" 2958306 T TYPEAST (NIL) -8 NIL NIL NIL) (-1234 2957046 2957248 2957488 "TWOFACT" 2957869 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1233 2956069 2956455 2956690 "TUPLE" 2956846 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1232 2953760 2954279 2954818 "TUBETOOL" 2955552 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1231 2952609 2952814 2953055 "TUBE" 2953553 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1230 2947338 2951581 2951864 "TS" 2952361 NIL TS (NIL T) -8 NIL NIL NIL) (-1229 2935978 2940097 2940194 "TSETCAT" 2945463 NIL TSETCAT (NIL T T T T) -9 NIL 2946994 NIL) (-1228 2930710 2932310 2934201 "TSETCAT-" 2934206 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1227 2925349 2926196 2927125 "TRMANIP" 2929846 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1226 2924790 2924853 2925016 "TRIMAT" 2925281 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1225 2922656 2922893 2923250 "TRIGMNIP" 2924539 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1224 2922176 2922289 2922319 "TRIGCAT" 2922532 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1223 2921845 2921924 2922065 "TRIGCAT-" 2922070 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1222 2918690 2920703 2920984 "TREE" 2921599 NIL TREE (NIL T) -8 NIL NIL NIL) (-1221 2917964 2918492 2918522 "TRANFUN" 2918557 T TRANFUN (NIL) -9 NIL 2918623 NIL) (-1220 2917243 2917434 2917714 "TRANFUN-" 2917719 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1219 2917047 2917079 2917140 "TOPSP" 2917204 T TOPSP (NIL) -7 NIL NIL NIL) (-1218 2916395 2916510 2916664 "TOOLSIGN" 2916928 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1217 2915029 2915572 2915811 "TEXTFILE" 2916178 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1216 2912941 2913482 2913911 "TEX" 2914622 T TEX (NIL) -8 NIL NIL NIL) (-1215 2912722 2912753 2912825 "TEX1" 2912904 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1214 2912370 2912433 2912523 "TEMUTL" 2912654 T TEMUTL (NIL) -7 NIL NIL NIL) (-1213 2910524 2910804 2911129 "TBCMPPK" 2912093 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1212 2902301 2908684 2908740 "TBAGG" 2909140 NIL TBAGG (NIL T T) -9 NIL 2909351 NIL) (-1211 2897371 2898859 2900613 "TBAGG-" 2900618 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1210 2896755 2896862 2897007 "TANEXP" 2897260 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1209 2896266 2896530 2896620 "TALGOP" 2896700 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1208 2889656 2896123 2896216 "TABLE" 2896221 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1207 2889068 2889167 2889305 "TABLEAU" 2889553 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1206 2883676 2884896 2886144 "TABLBUMP" 2887854 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1205 2882898 2883045 2883226 "SYSTEM" 2883517 T SYSTEM (NIL) -8 NIL NIL NIL) (-1204 2879357 2880056 2880839 "SYSSOLP" 2882149 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1203 2879155 2879312 2879343 "SYSPTR" 2879348 T SYSPTR (NIL) -8 NIL NIL NIL) (-1202 2878191 2878696 2878815 "SYSNNI" 2879001 NIL SYSNNI (NIL NIL) -8 NIL NIL 2879086) (-1201 2877490 2877949 2878028 "SYSINT" 2878088 NIL SYSINT (NIL NIL) -8 NIL NIL 2878133) (-1200 2873822 2874768 2875478 "SYNTAX" 2876802 T SYNTAX (NIL) -8 NIL NIL NIL) (-1199 2870980 2871582 2872214 "SYMTAB" 2873212 T SYMTAB (NIL) -8 NIL NIL NIL) (-1198 2866229 2867131 2868114 "SYMS" 2870019 T SYMS (NIL) -8 NIL NIL NIL) (-1197 2863464 2865687 2865917 "SYMPOLY" 2866034 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1196 2862981 2863056 2863179 "SYMFUNC" 2863376 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1195 2859001 2860293 2861106 "SYMBOL" 2862190 T SYMBOL (NIL) -8 NIL NIL NIL) (-1194 2852540 2854229 2855949 "SWITCH" 2857303 T SWITCH (NIL) -8 NIL NIL NIL) (-1193 2845774 2851361 2851664 "SUTS" 2852295 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2837840 2845021 2845294 "SUPXS" 2845559 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2829510 2837458 2837584 "SUP" 2837749 NIL SUP (NIL T) -8 NIL NIL NIL) (-1190 2828669 2828796 2829013 "SUPFRACF" 2829378 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1189 2828290 2828349 2828462 "SUP2" 2828604 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1188 2826738 2827012 2827368 "SUMRF" 2827989 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1187 2826073 2826139 2826331 "SUMFS" 2826659 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1186 2809869 2825250 2825501 "SULS" 2825880 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2809471 2809691 2809761 "SUCHTAST" 2809821 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1184 2808766 2808996 2809136 "SUCH" 2809379 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1183 2802633 2803672 2804631 "SUBSPACE" 2807854 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1182 2802063 2802153 2802317 "SUBRESP" 2802521 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1181 2795431 2796728 2798039 "STTF" 2800799 NIL STTF (NIL T) -7 NIL NIL NIL) (-1180 2789604 2790724 2791871 "STTFNC" 2794331 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1179 2780917 2782786 2784580 "STTAYLOR" 2787845 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1178 2774047 2780781 2780864 "STRTBL" 2780869 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1177 2769411 2774002 2774033 "STRING" 2774038 T STRING (NIL) -8 NIL NIL NIL) (-1176 2764240 2768754 2768784 "STRICAT" 2768843 T STRICAT (NIL) -9 NIL 2768905 NIL) (-1175 2756993 2761859 2762470 "STREAM" 2763664 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1174 2756503 2756580 2756724 "STREAM3" 2756910 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1173 2755485 2755668 2755903 "STREAM2" 2756316 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1172 2755173 2755225 2755318 "STREAM1" 2755427 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1171 2754189 2754370 2754601 "STINPROD" 2754989 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1170 2753741 2753951 2753981 "STEP" 2754061 T STEP (NIL) -9 NIL 2754139 NIL) (-1169 2752928 2753230 2753378 "STEPAST" 2753615 T STEPAST (NIL) -8 NIL NIL NIL) (-1168 2746360 2752827 2752904 "STBL" 2752909 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1167 2741455 2745551 2745594 "STAGG" 2745747 NIL STAGG (NIL T) -9 NIL 2745836 NIL) (-1166 2739157 2739759 2740631 "STAGG-" 2740636 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1165 2737304 2738927 2739019 "STACK" 2739100 NIL STACK (NIL T) -8 NIL NIL NIL) (-1164 2729999 2735445 2735901 "SREGSET" 2736934 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1163 2722424 2723793 2725306 "SRDCMPK" 2728605 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1162 2715309 2719834 2719864 "SRAGG" 2721167 T SRAGG (NIL) -9 NIL 2721775 NIL) (-1161 2714326 2714581 2714960 "SRAGG-" 2714965 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1160 2708697 2713273 2713694 "SQMATRIX" 2713952 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1159 2702382 2705415 2706142 "SPLTREE" 2708042 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1158 2698345 2699038 2699684 "SPLNODE" 2701808 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1157 2697392 2697625 2697655 "SPFCAT" 2698099 T SPFCAT (NIL) -9 NIL NIL NIL) (-1156 2696129 2696339 2696603 "SPECOUT" 2697150 T SPECOUT (NIL) -7 NIL NIL NIL) (-1155 2687239 2689111 2689141 "SPADXPT" 2693817 T SPADXPT (NIL) -9 NIL 2695981 NIL) (-1154 2687000 2687040 2687109 "SPADPRSR" 2687192 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1153 2685049 2686955 2686986 "SPADAST" 2686991 T SPADAST (NIL) -8 NIL NIL NIL) (-1152 2676994 2678767 2678810 "SPACEC" 2683183 NIL SPACEC (NIL T) -9 NIL 2684999 NIL) (-1151 2675124 2676926 2676975 "SPACE3" 2676980 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1150 2673876 2674047 2674338 "SORTPAK" 2674929 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1149 2671968 2672271 2672683 "SOLVETRA" 2673540 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1148 2671018 2671240 2671501 "SOLVESER" 2671741 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1147 2666322 2667210 2668205 "SOLVERAD" 2670070 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1146 2662137 2662746 2663475 "SOLVEFOR" 2665689 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1145 2656407 2661486 2661583 "SNTSCAT" 2661588 NIL SNTSCAT (NIL T T T T) -9 NIL 2661658 NIL) (-1144 2650513 2654730 2655121 "SMTS" 2656097 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1143 2645109 2650401 2650478 "SMP" 2650483 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1142 2643268 2643569 2643967 "SMITH" 2644806 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1141 2635710 2639997 2640100 "SMATCAT" 2641451 NIL SMATCAT (NIL NIL T T T) -9 NIL 2642001 NIL) (-1140 2632428 2633313 2634571 "SMATCAT-" 2634576 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1139 2630094 2631664 2631707 "SKAGG" 2631968 NIL SKAGG (NIL T) -9 NIL 2632103 NIL) (-1138 2626370 2629567 2629751 "SINT" 2629903 T SINT (NIL) -8 NIL NIL 2630065) (-1137 2626142 2626180 2626246 "SIMPAN" 2626326 T SIMPAN (NIL) -7 NIL NIL NIL) (-1136 2625421 2625677 2625817 "SIG" 2626024 T SIG (NIL) -8 NIL NIL NIL) (-1135 2624259 2624480 2624755 "SIGNRF" 2625180 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1134 2623092 2623243 2623527 "SIGNEF" 2624088 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1133 2622398 2622675 2622799 "SIGAST" 2622990 T SIGAST (NIL) -8 NIL NIL NIL) (-1132 2620088 2620542 2621048 "SHP" 2621939 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1131 2614093 2619989 2620065 "SHDP" 2620070 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1130 2613666 2613858 2613888 "SGROUP" 2613981 T SGROUP (NIL) -9 NIL 2614043 NIL) (-1129 2613524 2613550 2613623 "SGROUP-" 2613628 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1128 2610315 2611013 2611736 "SGCF" 2612823 T SGCF (NIL) -7 NIL NIL NIL) (-1127 2604683 2609762 2609859 "SFRTCAT" 2609864 NIL SFRTCAT (NIL T T T T) -9 NIL 2609903 NIL) (-1126 2598104 2599122 2600258 "SFRGCD" 2603666 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1125 2591230 2592303 2593489 "SFQCMPK" 2597037 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1124 2590850 2590939 2591050 "SFORT" 2591171 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1123 2589968 2590690 2590811 "SEXOF" 2590816 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1122 2589075 2589849 2589917 "SEX" 2589922 T SEX (NIL) -8 NIL NIL NIL) (-1121 2584856 2585571 2585666 "SEXCAT" 2588288 NIL SEXCAT (NIL T T T T T) -9 NIL 2588848 NIL) (-1120 2582009 2584790 2584838 "SET" 2584843 NIL SET (NIL T) -8 NIL NIL NIL) (-1119 2580233 2580722 2581027 "SETMN" 2581750 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1118 2579729 2579881 2579911 "SETCAT" 2580087 T SETCAT (NIL) -9 NIL 2580197 NIL) (-1117 2579421 2579499 2579629 "SETCAT-" 2579634 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1116 2575782 2577882 2577925 "SETAGG" 2578795 NIL SETAGG (NIL T) -9 NIL 2579135 NIL) (-1115 2575240 2575356 2575593 "SETAGG-" 2575598 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1114 2574683 2574936 2575037 "SEQAST" 2575161 T SEQAST (NIL) -8 NIL NIL NIL) (-1113 2573882 2574176 2574237 "SEGXCAT" 2574523 NIL SEGXCAT (NIL T T) -9 NIL 2574643 NIL) (-1112 2572888 2573548 2573730 "SEG" 2573735 NIL SEG (NIL T) -8 NIL NIL NIL) (-1111 2571867 2572081 2572124 "SEGCAT" 2572646 NIL SEGCAT (NIL T) -9 NIL 2572867 NIL) (-1110 2570799 2571230 2571438 "SEGBIND" 2571694 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1109 2570420 2570479 2570592 "SEGBIND2" 2570734 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1108 2569993 2570221 2570298 "SEGAST" 2570365 T SEGAST (NIL) -8 NIL NIL NIL) (-1107 2569212 2569338 2569542 "SEG2" 2569837 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1106 2568583 2569147 2569194 "SDVAR" 2569199 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1105 2561021 2568353 2568483 "SDPOL" 2568488 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1104 2559614 2559880 2560199 "SCPKG" 2560736 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1103 2558778 2558950 2559142 "SCOPE" 2559444 T SCOPE (NIL) -8 NIL NIL NIL) (-1102 2557998 2558132 2558311 "SCACHE" 2558633 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1101 2557644 2557830 2557860 "SASTCAT" 2557865 T SASTCAT (NIL) -9 NIL 2557878 NIL) (-1100 2557131 2557479 2557555 "SAOS" 2557590 T SAOS (NIL) -8 NIL NIL NIL) (-1099 2556696 2556731 2556904 "SAERFFC" 2557090 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1098 2550546 2556593 2556673 "SAE" 2556678 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1097 2550139 2550174 2550333 "SAEFACT" 2550505 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1096 2548460 2548774 2549175 "RURPK" 2549805 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1095 2547097 2547403 2547708 "RULESET" 2548294 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1094 2544320 2544850 2545308 "RULE" 2546778 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1093 2543932 2544114 2544197 "RULECOLD" 2544272 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1092 2543722 2543750 2543821 "RTVALUE" 2543883 T RTVALUE (NIL) -8 NIL NIL NIL) (-1091 2543193 2543439 2543533 "RSTRCAST" 2543650 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1090 2538041 2538836 2539756 "RSETGCD" 2542392 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1089 2527271 2532350 2532447 "RSETCAT" 2536566 NIL RSETCAT (NIL T T T T) -9 NIL 2537663 NIL) (-1088 2525198 2525737 2526561 "RSETCAT-" 2526566 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1087 2517584 2518960 2520480 "RSDCMPK" 2523797 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1086 2515563 2516030 2516104 "RRCC" 2517190 NIL RRCC (NIL T T) -9 NIL 2517534 NIL) (-1085 2514914 2515088 2515367 "RRCC-" 2515372 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1084 2514357 2514610 2514711 "RPTAST" 2514835 T RPTAST (NIL) -8 NIL NIL NIL) (-1083 2488020 2497469 2497536 "RPOLCAT" 2508202 NIL RPOLCAT (NIL T T T) -9 NIL 2511362 NIL) (-1082 2479518 2481858 2484980 "RPOLCAT-" 2484985 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1081 2470449 2477729 2478211 "ROUTINE" 2479058 T ROUTINE (NIL) -8 NIL NIL NIL) (-1080 2467196 2470075 2470215 "ROMAN" 2470331 T ROMAN (NIL) -8 NIL NIL NIL) (-1079 2465440 2466056 2466316 "ROIRC" 2467001 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1078 2461672 2463956 2463986 "RNS" 2464290 T RNS (NIL) -9 NIL 2464564 NIL) (-1077 2460181 2460564 2461098 "RNS-" 2461173 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1076 2459584 2459992 2460022 "RNG" 2460027 T RNG (NIL) -9 NIL 2460048 NIL) (-1075 2458587 2458949 2459151 "RNGBIND" 2459435 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1074 2457986 2458374 2458417 "RMODULE" 2458422 NIL RMODULE (NIL T) -9 NIL 2458449 NIL) (-1073 2456822 2456916 2457252 "RMCAT2" 2457887 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1072 2453672 2456168 2456465 "RMATRIX" 2456584 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1071 2446499 2448759 2448874 "RMATCAT" 2452233 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2453215 NIL) (-1070 2445874 2446021 2446328 "RMATCAT-" 2446333 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1069 2445275 2445496 2445539 "RLINSET" 2445733 NIL RLINSET (NIL T) -9 NIL 2445824 NIL) (-1068 2444842 2444917 2445045 "RINTERP" 2445194 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1067 2443900 2444454 2444484 "RING" 2444540 T RING (NIL) -9 NIL 2444632 NIL) (-1066 2443692 2443736 2443833 "RING-" 2443838 NIL RING- (NIL T) -8 NIL NIL NIL) (-1065 2442533 2442770 2443028 "RIDIST" 2443456 T RIDIST (NIL) -7 NIL NIL NIL) (-1064 2433822 2442001 2442207 "RGCHAIN" 2442381 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1063 2433172 2433578 2433619 "RGBCSPC" 2433677 NIL RGBCSPC (NIL T) -9 NIL 2433729 NIL) (-1062 2432330 2432711 2432752 "RGBCMDL" 2432984 NIL RGBCMDL (NIL T) -9 NIL 2433098 NIL) (-1061 2429324 2429938 2430608 "RF" 2431694 NIL RF (NIL T) -7 NIL NIL NIL) (-1060 2428970 2429033 2429136 "RFFACTOR" 2429255 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1059 2428695 2428730 2428827 "RFFACT" 2428929 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1058 2426812 2427176 2427558 "RFDIST" 2428335 T RFDIST (NIL) -7 NIL NIL NIL) (-1057 2426265 2426357 2426520 "RETSOL" 2426714 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1056 2425901 2425981 2426024 "RETRACT" 2426157 NIL RETRACT (NIL T) -9 NIL 2426244 NIL) (-1055 2425750 2425775 2425862 "RETRACT-" 2425867 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1054 2425352 2425572 2425642 "RETAST" 2425702 T RETAST (NIL) -8 NIL NIL NIL) (-1053 2418090 2425005 2425132 "RESULT" 2425247 T RESULT (NIL) -8 NIL NIL NIL) (-1052 2416681 2417359 2417558 "RESRING" 2417993 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1051 2416317 2416366 2416464 "RESLATC" 2416618 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1050 2416022 2416057 2416164 "REPSQ" 2416276 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1049 2413444 2414024 2414626 "REP" 2415442 T REP (NIL) -7 NIL NIL NIL) (-1048 2413141 2413176 2413287 "REPDB" 2413403 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1047 2407041 2408430 2409653 "REP2" 2411953 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1046 2403418 2404099 2404907 "REP1" 2406268 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1045 2396114 2401559 2402015 "REGSET" 2403048 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1044 2394879 2395262 2395512 "REF" 2395899 NIL REF (NIL T) -8 NIL NIL NIL) (-1043 2394256 2394359 2394526 "REDORDER" 2394763 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1042 2390224 2393469 2393696 "RECLOS" 2394084 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1041 2389276 2389457 2389672 "REALSOLV" 2390031 T REALSOLV (NIL) -7 NIL NIL NIL) (-1040 2389122 2389163 2389193 "REAL" 2389198 T REAL (NIL) -9 NIL 2389233 NIL) (-1039 2385605 2386407 2387291 "REAL0Q" 2388287 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1038 2381206 2382194 2383255 "REAL0" 2384586 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1037 2380677 2380923 2381017 "RDUCEAST" 2381134 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1036 2380082 2380154 2380361 "RDIV" 2380599 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1035 2379150 2379324 2379537 "RDIST" 2379904 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1034 2377747 2378034 2378406 "RDETRS" 2378858 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1033 2375559 2376013 2376551 "RDETR" 2377289 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1032 2374184 2374462 2374859 "RDEEFS" 2375275 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1031 2372693 2372999 2373424 "RDEEF" 2373872 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1030 2366754 2369674 2369704 "RCFIELD" 2370999 T RCFIELD (NIL) -9 NIL 2371730 NIL) (-1029 2364818 2365322 2366018 "RCFIELD-" 2366093 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1028 2361087 2362919 2362962 "RCAGG" 2364046 NIL RCAGG (NIL T) -9 NIL 2364511 NIL) (-1027 2360715 2360809 2360972 "RCAGG-" 2360977 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1026 2360050 2360162 2360327 "RATRET" 2360599 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1025 2359603 2359670 2359791 "RATFACT" 2359978 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1024 2358911 2359031 2359183 "RANDSRC" 2359473 T RANDSRC (NIL) -7 NIL NIL NIL) (-1023 2358645 2358689 2358762 "RADUTIL" 2358860 T RADUTIL (NIL) -7 NIL NIL NIL) (-1022 2351666 2357476 2357787 "RADIX" 2358368 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1021 2343182 2351508 2351638 "RADFF" 2351643 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1020 2342829 2342904 2342934 "RADCAT" 2343094 T RADCAT (NIL) -9 NIL NIL NIL) (-1019 2342611 2342659 2342759 "RADCAT-" 2342764 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1018 2340709 2342381 2342473 "QUEUE" 2342554 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1017 2337157 2340642 2340690 "QUAT" 2340695 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1016 2336788 2336831 2336962 "QUATCT2" 2337108 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1015 2329872 2333308 2333350 "QUATCAT" 2334141 NIL QUATCAT (NIL T) -9 NIL 2334907 NIL) (-1014 2326011 2327048 2328438 "QUATCAT-" 2328534 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1013 2323476 2325087 2325130 "QUAGG" 2325511 NIL QUAGG (NIL T) -9 NIL 2325686 NIL) (-1012 2323078 2323298 2323368 "QQUTAST" 2323428 T QQUTAST (NIL) -8 NIL NIL NIL) (-1011 2322091 2322591 2322756 "QFORM" 2322959 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1010 2312815 2318143 2318185 "QFCAT" 2318853 NIL QFCAT (NIL T) -9 NIL 2319854 NIL) (-1009 2308160 2309423 2311097 "QFCAT-" 2311193 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1008 2307791 2307834 2307965 "QFCAT2" 2308111 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1007 2307246 2307356 2307488 "QEQUAT" 2307681 T QEQUAT (NIL) -8 NIL NIL NIL) (-1006 2300372 2301445 2302631 "QCMPACK" 2306179 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1005 2297910 2298358 2298788 "QALGSET" 2300027 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1004 2297145 2297321 2297557 "QALGSET2" 2297728 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1003 2295830 2296054 2296373 "PWFFINTB" 2296918 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1002 2294005 2294173 2294529 "PUSHVAR" 2295644 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1001 2289894 2290948 2290991 "PTRANFN" 2292902 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1000 2288285 2288576 2288900 "PTPACK" 2289605 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-999 2287917 2287974 2288083 "PTFUNC2" 2288222 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-998 2282362 2286759 2286800 "PTCAT" 2287096 NIL PTCAT (NIL T) -9 NIL 2287249 NIL) (-997 2282020 2282055 2282179 "PSQFR" 2282321 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-996 2280615 2280913 2281247 "PSEUDLIN" 2281718 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-995 2267378 2269749 2272073 "PSETPK" 2278375 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-994 2260396 2263136 2263232 "PSETCAT" 2266253 NIL PSETCAT (NIL T T T T) -9 NIL 2267067 NIL) (-993 2258232 2258866 2259687 "PSETCAT-" 2259692 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-992 2257581 2257746 2257774 "PSCURVE" 2258042 T PSCURVE (NIL) -9 NIL 2258209 NIL) (-991 2253579 2255095 2255160 "PSCAT" 2256004 NIL PSCAT (NIL T T T) -9 NIL 2256244 NIL) (-990 2252642 2252858 2253258 "PSCAT-" 2253263 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-989 2251001 2251711 2251974 "PRTITION" 2252399 T PRTITION (NIL) -8 NIL NIL NIL) (-988 2250476 2250722 2250814 "PRTDAST" 2250929 T PRTDAST (NIL) -8 NIL NIL NIL) (-987 2239566 2241780 2243968 "PRS" 2248338 NIL PRS (NIL T T) -7 NIL NIL NIL) (-986 2237377 2238916 2238956 "PRQAGG" 2239139 NIL PRQAGG (NIL T) -9 NIL 2239241 NIL) (-985 2236713 2237018 2237046 "PROPLOG" 2237185 T PROPLOG (NIL) -9 NIL 2237300 NIL) (-984 2236317 2236374 2236497 "PROPFUN2" 2236636 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-983 2235632 2235753 2235925 "PROPFUN1" 2236178 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-982 2233813 2234379 2234676 "PROPFRML" 2235368 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-981 2233282 2233389 2233517 "PROPERTY" 2233705 T PROPERTY (NIL) -8 NIL NIL NIL) (-980 2227340 2231448 2232268 "PRODUCT" 2232508 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-979 2224618 2226798 2227032 "PR" 2227151 NIL PR (NIL T T) -8 NIL NIL NIL) (-978 2224414 2224446 2224505 "PRINT" 2224579 T PRINT (NIL) -7 NIL NIL NIL) (-977 2223754 2223871 2224023 "PRIMES" 2224294 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-976 2221819 2222220 2222686 "PRIMELT" 2223333 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-975 2221548 2221597 2221625 "PRIMCAT" 2221749 T PRIMCAT (NIL) -9 NIL NIL NIL) (-974 2217663 2221486 2221531 "PRIMARR" 2221536 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-973 2216670 2216848 2217076 "PRIMARR2" 2217481 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-972 2216313 2216369 2216480 "PREASSOC" 2216608 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-971 2215788 2215921 2215949 "PPCURVE" 2216154 T PPCURVE (NIL) -9 NIL 2216290 NIL) (-970 2215383 2215583 2215666 "PORTNUM" 2215725 T PORTNUM (NIL) -8 NIL NIL NIL) (-969 2212742 2213141 2213733 "POLYROOT" 2214964 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-968 2206835 2212346 2212506 "POLY" 2212615 NIL POLY (NIL T) -8 NIL NIL NIL) (-967 2206218 2206276 2206510 "POLYLIFT" 2206771 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-966 2202493 2202942 2203571 "POLYCATQ" 2205763 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-965 2189022 2194240 2194305 "POLYCAT" 2197819 NIL POLYCAT (NIL T T T) -9 NIL 2199697 NIL) (-964 2182249 2184173 2186637 "POLYCAT-" 2186642 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-963 2181836 2181904 2182024 "POLY2UP" 2182175 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-962 2181468 2181525 2181634 "POLY2" 2181773 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-961 2180153 2180392 2180668 "POLUTIL" 2181242 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-960 2178508 2178785 2179116 "POLTOPOL" 2179875 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-959 2173973 2178444 2178490 "POINT" 2178495 NIL POINT (NIL T) -8 NIL NIL NIL) (-958 2172160 2172517 2172892 "PNTHEORY" 2173618 T PNTHEORY (NIL) -7 NIL NIL NIL) (-957 2170618 2170915 2171314 "PMTOOLS" 2171858 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-956 2170211 2170289 2170406 "PMSYM" 2170534 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-955 2169719 2169788 2169963 "PMQFCAT" 2170136 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-954 2169074 2169184 2169340 "PMPRED" 2169596 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-953 2168467 2168553 2168715 "PMPREDFS" 2168975 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-952 2167131 2167339 2167717 "PMPLCAT" 2168229 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-951 2166663 2166742 2166894 "PMLSAGG" 2167046 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-950 2166136 2166212 2166394 "PMKERNEL" 2166581 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-949 2165753 2165828 2165941 "PMINS" 2166055 NIL PMINS (NIL T) -7 NIL NIL NIL) (-948 2165195 2165264 2165473 "PMFS" 2165678 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-947 2164423 2164541 2164746 "PMDOWN" 2165072 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-946 2163590 2163748 2163929 "PMASS" 2164262 T PMASS (NIL) -7 NIL NIL NIL) (-945 2162863 2162973 2163136 "PMASSFS" 2163477 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-944 2162518 2162586 2162680 "PLOTTOOL" 2162789 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-943 2157125 2158329 2159477 "PLOT" 2161390 T PLOT (NIL) -8 NIL NIL NIL) (-942 2152929 2153973 2154894 "PLOT3D" 2156224 T PLOT3D (NIL) -8 NIL NIL NIL) (-941 2151841 2152018 2152253 "PLOT1" 2152733 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-940 2127232 2131907 2136758 "PLEQN" 2147107 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-939 2126550 2126672 2126852 "PINTERP" 2127097 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-938 2126243 2126290 2126393 "PINTERPA" 2126497 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-937 2125459 2126007 2126094 "PI" 2126134 T PI (NIL) -8 NIL NIL 2126201) (-936 2123756 2124731 2124759 "PID" 2124941 T PID (NIL) -9 NIL 2125075 NIL) (-935 2123507 2123544 2123619 "PICOERCE" 2123713 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-934 2122827 2122966 2123142 "PGROEB" 2123363 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-933 2118414 2119228 2120133 "PGE" 2121942 T PGE (NIL) -7 NIL NIL NIL) (-932 2116537 2116784 2117150 "PGCD" 2118131 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-931 2115875 2115978 2116139 "PFRPAC" 2116421 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-930 2112515 2114423 2114776 "PFR" 2115554 NIL PFR (NIL T) -8 NIL NIL NIL) (-929 2110904 2111148 2111473 "PFOTOOLS" 2112262 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-928 2109437 2109676 2110027 "PFOQ" 2110661 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-927 2107938 2108150 2108506 "PFO" 2109221 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-926 2104491 2107827 2107896 "PF" 2107901 NIL PF (NIL NIL) -8 NIL NIL NIL) (-925 2101825 2103096 2103124 "PFECAT" 2103709 T PFECAT (NIL) -9 NIL 2104093 NIL) (-924 2101270 2101424 2101638 "PFECAT-" 2101643 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-923 2099873 2100125 2100426 "PFBRU" 2101019 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-922 2097739 2098091 2098523 "PFBR" 2099524 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-921 2093785 2095251 2095898 "PERM" 2097125 NIL PERM (NIL T) -8 NIL NIL NIL) (-920 2089019 2089992 2090862 "PERMGRP" 2092948 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-919 2087138 2088098 2088139 "PERMCAT" 2088539 NIL PERMCAT (NIL T) -9 NIL 2088837 NIL) (-918 2086791 2086832 2086956 "PERMAN" 2087091 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-917 2084279 2086456 2086578 "PENDTREE" 2086702 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-916 2083208 2083423 2083464 "PDSPC" 2083997 NIL PDSPC (NIL T) -9 NIL 2084242 NIL) (-915 2082311 2082529 2082891 "PDSPC-" 2082896 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-914 2081193 2081961 2082002 "PDRING" 2082007 NIL PDRING (NIL T) -9 NIL 2082035 NIL) (-913 2078408 2079186 2079854 "PDEPROB" 2080545 T PDEPROB (NIL) -8 NIL NIL NIL) (-912 2075953 2076457 2077012 "PDEPACK" 2077873 T PDEPACK (NIL) -7 NIL NIL NIL) (-911 2074865 2075055 2075306 "PDECOMP" 2075752 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 2072444 2073287 2073315 "PDECAT" 2074102 T PDECAT (NIL) -9 NIL 2074815 NIL) (-909 2072073 2072128 2072182 "PDDOM" 2072347 NIL PDDOM (NIL T T) -9 NIL 2072427 NIL) (-908 2071892 2071922 2072029 "PDDOM-" 2072034 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-907 2071643 2071676 2071766 "PCOMP" 2071853 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 2069821 2070444 2070741 "PBWLB" 2071372 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 2062294 2063894 2065232 "PATTERN" 2068504 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 2061926 2061983 2062092 "PATTERN2" 2062231 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-903 2059683 2060071 2060528 "PATTERN1" 2061515 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-902 2057051 2057632 2058113 "PATRES" 2059248 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 2056615 2056682 2056814 "PATRES2" 2056978 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-900 2054498 2054903 2055310 "PATMATCH" 2056282 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 2054008 2054217 2054258 "PATMAB" 2054365 NIL PATMAB (NIL T) -9 NIL 2054448 NIL) (-898 2052526 2052862 2053120 "PATLRES" 2053813 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 2052072 2052195 2052236 "PATAB" 2052241 NIL PATAB (NIL T) -9 NIL 2052413 NIL) (-896 2050254 2050649 2051072 "PARTPERM" 2051669 T PARTPERM (NIL) -7 NIL NIL NIL) (-895 2049875 2049938 2050040 "PARSURF" 2050185 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 2049507 2049564 2049673 "PARSU2" 2049812 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 2049271 2049311 2049378 "PARSER" 2049460 T PARSER (NIL) -7 NIL NIL NIL) (-892 2048892 2048955 2049057 "PARSCURV" 2049202 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 2048524 2048581 2048690 "PARSC2" 2048829 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 2048163 2048221 2048318 "PARPCURV" 2048460 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 2047795 2047852 2047961 "PARPC2" 2048100 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 2046856 2047168 2047350 "PARAMAST" 2047633 T PARAMAST (NIL) -8 NIL NIL NIL) (-887 2046376 2046462 2046581 "PAN2EXPR" 2046757 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 2045153 2045497 2045725 "PALETTE" 2046168 T PALETTE (NIL) -8 NIL NIL NIL) (-885 2043546 2044158 2044518 "PAIR" 2044839 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 2037325 2042803 2042998 "PADICRC" 2043400 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 2030449 2036669 2036854 "PADICRAT" 2037172 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 2028764 2030386 2030431 "PADIC" 2030436 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 2025874 2027438 2027478 "PADICCT" 2028059 NIL PADICCT (NIL NIL) -9 NIL 2028341 NIL) (-880 2024831 2025031 2025299 "PADEPAC" 2025661 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 2024043 2024176 2024382 "PADE" 2024693 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 2022430 2023251 2023531 "OWP" 2023847 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 2021923 2022136 2022233 "OVERSET" 2022353 T OVERSET (NIL) -8 NIL NIL NIL) (-876 2020969 2021528 2021700 "OVAR" 2021791 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 2020233 2020354 2020515 "OUT" 2020828 T OUT (NIL) -7 NIL NIL NIL) (-874 2009105 2011342 2013542 "OUTFORM" 2018053 T OUTFORM (NIL) -8 NIL NIL NIL) (-873 2008441 2008702 2008829 "OUTBFILE" 2008998 T OUTBFILE (NIL) -8 NIL NIL NIL) (-872 2007748 2007913 2007941 "OUTBCON" 2008259 T OUTBCON (NIL) -9 NIL 2008425 NIL) (-871 2007349 2007461 2007618 "OUTBCON-" 2007623 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-870 2006729 2007078 2007167 "OSI" 2007280 T OSI (NIL) -8 NIL NIL NIL) (-869 2006259 2006597 2006625 "OSGROUP" 2006630 T OSGROUP (NIL) -9 NIL 2006652 NIL) (-868 2005004 2005231 2005516 "ORTHPOL" 2006006 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 2002555 2004839 2004960 "OREUP" 2004965 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 1999958 2002246 2002373 "ORESUP" 2002497 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 1997486 1997986 1998547 "OREPCTO" 1999447 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 1991172 1993373 1993414 "OREPCAT" 1995762 NIL OREPCAT (NIL T) -9 NIL 1996866 NIL) (-863 1988319 1989101 1990159 "OREPCAT-" 1990164 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-862 1987470 1987768 1987796 "ORDSET" 1988105 T ORDSET (NIL) -9 NIL 1988269 NIL) (-861 1986901 1987049 1987273 "ORDSET-" 1987278 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-860 1985466 1986257 1986285 "ORDRING" 1986487 T ORDRING (NIL) -9 NIL 1986612 NIL) (-859 1985111 1985205 1985349 "ORDRING-" 1985354 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 1984491 1984954 1984982 "ORDMON" 1984987 T ORDMON (NIL) -9 NIL 1985008 NIL) (-857 1983653 1983800 1983995 "ORDFUNS" 1984340 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1982991 1983410 1983438 "ORDFIN" 1983503 T ORDFIN (NIL) -9 NIL 1983577 NIL) (-855 1979550 1981577 1981986 "ORDCOMP" 1982615 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1978816 1978943 1979129 "ORDCOMP2" 1979410 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1975397 1976307 1977121 "OPTPROB" 1978022 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1972199 1972838 1973542 "OPTPACK" 1974713 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1969886 1970652 1970680 "OPTCAT" 1971499 T OPTCAT (NIL) -9 NIL 1972149 NIL) (-850 1969270 1969563 1969668 "OPSIG" 1969801 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1969038 1969077 1969143 "OPQUERY" 1969224 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1966169 1967349 1967853 "OP" 1968567 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1965543 1965769 1965810 "OPERCAT" 1966022 NIL OPERCAT (NIL T) -9 NIL 1966119 NIL) (-846 1965298 1965354 1965471 "OPERCAT-" 1965476 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1962111 1964095 1964464 "ONECOMP" 1964962 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1961416 1961531 1961705 "ONECOMP2" 1961983 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1960835 1960941 1961071 "OMSERVER" 1961306 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1957697 1960275 1960315 "OMSAGG" 1960376 NIL OMSAGG (NIL T) -9 NIL 1960440 NIL) (-841 1956320 1956583 1956865 "OMPKG" 1957435 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1955750 1955853 1955881 "OM" 1956180 T OM (NIL) -9 NIL NIL NIL) (-839 1954297 1955299 1955468 "OMLO" 1955631 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1953257 1953404 1953624 "OMEXPR" 1954123 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1952548 1952803 1952939 "OMERR" 1953141 T OMERR (NIL) -8 NIL NIL NIL) (-836 1951699 1951969 1952129 "OMERRK" 1952408 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1951150 1951376 1951484 "OMENC" 1951611 T OMENC (NIL) -8 NIL NIL NIL) (-834 1945045 1946230 1947401 "OMDEV" 1949999 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1944114 1944285 1944479 "OMCONN" 1944871 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1942635 1943611 1943639 "OINTDOM" 1943644 T OINTDOM (NIL) -9 NIL 1943665 NIL) (-831 1939973 1941323 1941660 "OFMONOID" 1942330 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1939345 1939910 1939955 "ODVAR" 1939960 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1936768 1939090 1939245 "ODR" 1939250 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1929260 1936544 1936670 "ODPOL" 1936675 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1923235 1929132 1929237 "ODP" 1929242 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1922001 1922216 1922491 "ODETOOLS" 1923009 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1918968 1919626 1920342 "ODESYS" 1921334 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1913850 1914758 1915783 "ODERTRIC" 1918043 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1913276 1913358 1913552 "ODERED" 1913762 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1910164 1910712 1911389 "ODERAT" 1912699 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1907123 1907588 1908185 "ODEPRRIC" 1909693 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1905066 1905662 1906148 "ODEPROB" 1906657 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1901586 1902071 1902718 "ODEPRIM" 1904545 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1900835 1900937 1901197 "ODEPAL" 1901478 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1896997 1897788 1898652 "ODEPACK" 1899991 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1896058 1896165 1896387 "ODEINT" 1896886 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1890159 1891584 1893031 "ODEIFTBL" 1894631 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1885557 1886343 1887295 "ODEEF" 1889318 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1884906 1884995 1885218 "ODECONST" 1885462 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1883031 1883692 1883720 "ODECAT" 1884325 T ODECAT (NIL) -9 NIL 1884856 NIL) (-811 1879886 1882736 1882858 "OCT" 1882941 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1879524 1879567 1879694 "OCTCT2" 1879837 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1874135 1876570 1876610 "OC" 1877707 NIL OC (NIL T) -9 NIL 1878565 NIL) (-808 1871362 1872110 1873100 "OC-" 1873194 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1870714 1871182 1871210 "OCAMON" 1871215 T OCAMON (NIL) -9 NIL 1871236 NIL) (-806 1870245 1870586 1870614 "OASGP" 1870619 T OASGP (NIL) -9 NIL 1870639 NIL) (-805 1869506 1869995 1870023 "OAMONS" 1870063 T OAMONS (NIL) -9 NIL 1870106 NIL) (-804 1868920 1869353 1869381 "OAMON" 1869386 T OAMON (NIL) -9 NIL 1869406 NIL) (-803 1868178 1868696 1868724 "OAGROUP" 1868729 T OAGROUP (NIL) -9 NIL 1868749 NIL) (-802 1867868 1867918 1868006 "NUMTUBE" 1868122 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1861441 1862959 1864495 "NUMQUAD" 1866352 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1857197 1858185 1859210 "NUMODE" 1860436 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1854552 1855432 1855460 "NUMINT" 1856383 T NUMINT (NIL) -9 NIL 1857147 NIL) (-798 1853500 1853697 1853915 "NUMFMT" 1854354 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1839859 1842804 1845336 "NUMERIC" 1851007 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1834229 1839308 1839403 "NTSCAT" 1839408 NIL NTSCAT (NIL T T T T) -9 NIL 1839447 NIL) (-795 1833423 1833588 1833781 "NTPOLFN" 1834068 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1821411 1830248 1831060 "NSUP" 1832644 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1821043 1821100 1821209 "NSUP2" 1821348 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1811180 1820817 1820950 "NSMP" 1820955 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1809612 1809913 1810270 "NREP" 1810868 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1808203 1808455 1808813 "NPCOEF" 1809355 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1807269 1807384 1807600 "NORMRETR" 1808084 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1805310 1805600 1806009 "NORMPK" 1806977 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1804995 1805023 1805147 "NORMMA" 1805276 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1804795 1804952 1804981 "NONE" 1804986 T NONE (NIL) -8 NIL NIL NIL) (-785 1804584 1804613 1804682 "NONE1" 1804759 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1804081 1804143 1804322 "NODE1" 1804516 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1802362 1803213 1803468 "NNI" 1803815 T NNI (NIL) -8 NIL NIL 1804050) (-782 1800782 1801095 1801459 "NLINSOL" 1802030 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1797023 1798018 1798917 "NIPROB" 1799903 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1795780 1796014 1796316 "NFINTBAS" 1796785 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1794954 1795430 1795471 "NETCLT" 1795643 NIL NETCLT (NIL T) -9 NIL 1795725 NIL) (-778 1793662 1793893 1794174 "NCODIV" 1794722 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1793424 1793461 1793536 "NCNTFRAC" 1793619 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1791604 1791968 1792388 "NCEP" 1793049 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1790455 1791228 1791256 "NASRING" 1791366 T NASRING (NIL) -9 NIL 1791446 NIL) (-774 1790250 1790294 1790388 "NASRING-" 1790393 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1789357 1789882 1789910 "NARNG" 1790027 T NARNG (NIL) -9 NIL 1790118 NIL) (-772 1789049 1789116 1789250 "NARNG-" 1789255 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1787928 1788135 1788370 "NAGSP" 1788834 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1779200 1780884 1782557 "NAGS" 1786275 T NAGS (NIL) -7 NIL NIL NIL) (-769 1777748 1778056 1778387 "NAGF07" 1778889 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1772286 1773577 1774884 "NAGF04" 1776461 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1765254 1766868 1768501 "NAGF02" 1770673 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1760478 1761578 1762695 "NAGF01" 1764157 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1754106 1755672 1757257 "NAGE04" 1758913 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1745275 1747396 1749526 "NAGE02" 1751996 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1741228 1742175 1743139 "NAGE01" 1744331 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1739023 1739557 1740115 "NAGD03" 1740690 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1730773 1732701 1734655 "NAGD02" 1737089 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1724584 1726009 1727449 "NAGD01" 1729353 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1720793 1721615 1722452 "NAGC06" 1723767 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1719258 1719590 1719946 "NAGC05" 1720457 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1718634 1718753 1718897 "NAGC02" 1719134 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1717593 1718176 1718216 "NAALG" 1718295 NIL NAALG (NIL T) -9 NIL 1718356 NIL) (-755 1717428 1717457 1717547 "NAALG-" 1717552 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1711378 1712486 1713673 "MULTSQFR" 1716324 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1710697 1710772 1710956 "MULTFACT" 1711290 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1703368 1707282 1707335 "MTSCAT" 1708405 NIL MTSCAT (NIL T T) -9 NIL 1708920 NIL) (-751 1703080 1703134 1703226 "MTHING" 1703308 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1702872 1702905 1702965 "MSYSCMD" 1703040 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1698954 1701627 1701947 "MSET" 1702585 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1696023 1698515 1698556 "MSETAGG" 1698561 NIL MSETAGG (NIL T) -9 NIL 1698595 NIL) (-747 1691865 1693402 1694147 "MRING" 1695323 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1691431 1691498 1691629 "MRF2" 1691792 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1691049 1691084 1691228 "MRATFAC" 1691390 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1688661 1688956 1689387 "MPRFF" 1690754 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1682869 1688515 1688612 "MPOLY" 1688617 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1682359 1682394 1682602 "MPCPF" 1682828 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1681873 1681916 1682100 "MPC3" 1682310 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1681068 1681149 1681370 "MPC2" 1681788 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1679369 1679706 1680096 "MONOTOOL" 1680728 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1678594 1678911 1678939 "MONOID" 1679158 T MONOID (NIL) -9 NIL 1679305 NIL) (-737 1678140 1678259 1678440 "MONOID-" 1678445 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1668048 1674090 1674149 "MONOGEN" 1674823 NIL MONOGEN (NIL T T) -9 NIL 1675279 NIL) (-735 1665266 1666001 1667001 "MONOGEN-" 1667120 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1664099 1664545 1664573 "MONADWU" 1664965 T MONADWU (NIL) -9 NIL 1665203 NIL) (-733 1663471 1663630 1663878 "MONADWU-" 1663883 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1662830 1663074 1663102 "MONAD" 1663309 T MONAD (NIL) -9 NIL 1663421 NIL) (-731 1662515 1662593 1662725 "MONAD-" 1662730 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1660804 1661428 1661707 "MOEBIUS" 1662268 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1660082 1660486 1660526 "MODULE" 1660531 NIL MODULE (NIL T) -9 NIL 1660570 NIL) (-728 1659650 1659746 1659936 "MODULE-" 1659941 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1657330 1658014 1658341 "MODRING" 1659474 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1654274 1655435 1655956 "MODOP" 1656859 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1652862 1653341 1653618 "MODMONOM" 1654137 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1642817 1651153 1651567 "MODMON" 1652499 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1639973 1641661 1641937 "MODFIELD" 1642692 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1638950 1639254 1639444 "MMLFORM" 1639803 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1638476 1638519 1638698 "MMAP" 1638901 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1636555 1637322 1637363 "MLO" 1637786 NIL MLO (NIL T) -9 NIL 1638028 NIL) (-719 1633921 1634437 1635039 "MLIFT" 1636036 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1633312 1633396 1633550 "MKUCFUNC" 1633832 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1632911 1632981 1633104 "MKRECORD" 1633235 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1631958 1632120 1632348 "MKFUNC" 1632722 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1631346 1631450 1631606 "MKFLCFN" 1631841 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1630623 1630725 1630910 "MKBCFUNC" 1631239 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1627298 1630177 1630313 "MINT" 1630507 T MINT (NIL) -8 NIL NIL NIL) (-712 1626110 1626353 1626630 "MHROWRED" 1627053 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1621490 1624645 1625050 "MFLOAT" 1625725 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1620847 1620923 1621094 "MFINFACT" 1621402 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1617162 1618010 1618894 "MESH" 1619983 T MESH (NIL) -7 NIL NIL NIL) (-708 1615552 1615864 1616217 "MDDFACT" 1616849 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1612347 1614711 1614752 "MDAGG" 1615007 NIL MDAGG (NIL T) -9 NIL 1615150 NIL) (-706 1601994 1611640 1611847 "MCMPLX" 1612160 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1601131 1601277 1601478 "MCDEN" 1601843 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1599021 1599291 1599671 "MCALCFN" 1600861 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1597946 1598186 1598419 "MAYBE" 1598827 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1595558 1596081 1596643 "MATSTOR" 1597417 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1591515 1594930 1595178 "MATRIX" 1595343 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1587281 1587988 1588724 "MATLIN" 1590872 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1577387 1580573 1580650 "MATCAT" 1585530 NIL MATCAT (NIL T T T) -9 NIL 1586947 NIL) (-698 1573743 1574764 1576120 "MATCAT-" 1576125 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1572337 1572490 1572823 "MATCAT2" 1573578 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1570449 1570773 1571157 "MAPPKG3" 1572012 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1569430 1569603 1569825 "MAPPKG2" 1570273 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1567929 1568213 1568540 "MAPPKG1" 1569136 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1567008 1567335 1567512 "MAPPAST" 1567772 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1566619 1566677 1566800 "MAPHACK3" 1566944 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1566211 1566272 1566386 "MAPHACK2" 1566551 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1565649 1565752 1565894 "MAPHACK1" 1566102 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1563728 1564349 1564653 "MAGMA" 1565377 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1563207 1563452 1563543 "MACROAST" 1563657 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1559625 1561446 1561907 "M3D" 1562779 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1553700 1557964 1558005 "LZSTAGG" 1558787 NIL LZSTAGG (NIL T) -9 NIL 1559082 NIL) (-685 1549658 1550831 1552288 "LZSTAGG-" 1552293 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1546745 1547549 1548036 "LWORD" 1549203 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1546321 1546549 1546624 "LSTAST" 1546690 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1539398 1546092 1546226 "LSQM" 1546231 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1538622 1538761 1538989 "LSPP" 1539253 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1536434 1536735 1537191 "LSMP" 1538311 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1533213 1533887 1534617 "LSMP1" 1535736 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1527059 1532350 1532391 "LSAGG" 1532453 NIL LSAGG (NIL T) -9 NIL 1532531 NIL) (-677 1523754 1524678 1525891 "LSAGG-" 1525896 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1521353 1522898 1523147 "LPOLY" 1523549 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1520935 1521020 1521143 "LPEFRAC" 1521262 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1519256 1520029 1520282 "LO" 1520767 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1518908 1519020 1519048 "LOGIC" 1519159 T LOGIC (NIL) -9 NIL 1519240 NIL) (-672 1518770 1518793 1518864 "LOGIC-" 1518869 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1517963 1518103 1518296 "LODOOPS" 1518626 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1515386 1517879 1517945 "LODO" 1517950 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1513924 1514159 1514512 "LODOF" 1515133 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1510128 1512559 1512600 "LODOCAT" 1513038 NIL LODOCAT (NIL T) -9 NIL 1513249 NIL) (-667 1509861 1509919 1510046 "LODOCAT-" 1510051 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1507181 1509702 1509820 "LODO2" 1509825 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1504616 1507118 1507163 "LODO1" 1507168 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1503497 1503662 1503967 "LODEEF" 1504439 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1498800 1501691 1501732 "LNAGG" 1502594 NIL LNAGG (NIL T) -9 NIL 1503029 NIL) (-662 1497947 1498161 1498503 "LNAGG-" 1498508 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1494083 1494872 1495511 "LMOPS" 1497362 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1493486 1493874 1493915 "LMODULE" 1493920 NIL LMODULE (NIL T) -9 NIL 1493946 NIL) (-659 1490684 1493131 1493254 "LMDICT" 1493396 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1490090 1490311 1490352 "LLINSET" 1490543 NIL LLINSET (NIL T) -9 NIL 1490634 NIL) (-657 1489789 1489998 1490058 "LITERAL" 1490063 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1482952 1488723 1489027 "LIST" 1489518 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1482477 1482551 1482690 "LIST3" 1482872 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1481484 1481662 1481890 "LIST2" 1482295 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1479618 1479930 1480329 "LIST2MAP" 1481131 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1479214 1479451 1479492 "LINSET" 1479497 NIL LINSET (NIL T) -9 NIL 1479531 NIL) (-651 1477943 1478476 1478517 "LINEXP" 1478868 NIL LINEXP (NIL T) -9 NIL 1479059 NIL) (-650 1476520 1476780 1477091 "LINDEP" 1477695 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1473287 1474006 1474783 "LIMITRF" 1475775 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1471590 1471886 1472295 "LIMITPS" 1472982 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1466018 1471101 1471329 "LIE" 1471411 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1464966 1465435 1465475 "LIECAT" 1465615 NIL LIECAT (NIL T) -9 NIL 1465766 NIL) (-645 1464807 1464834 1464922 "LIECAT-" 1464927 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1457394 1464347 1464503 "LIB" 1464671 T LIB (NIL) -8 NIL NIL NIL) (-643 1453029 1453912 1454847 "LGROBP" 1456511 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1451027 1451301 1451651 "LF" 1452750 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1449867 1450559 1450587 "LFCAT" 1450794 T LFCAT (NIL) -9 NIL 1450933 NIL) (-640 1446769 1447399 1448087 "LEXTRIPK" 1449231 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1443513 1444339 1444842 "LEXP" 1446349 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1442989 1443234 1443326 "LETAST" 1443441 T LETAST (NIL) -8 NIL NIL NIL) (-637 1441387 1441700 1442101 "LEADCDET" 1442671 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1440577 1440651 1440880 "LAZM3PK" 1441308 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1435494 1438654 1439192 "LAUPOL" 1440089 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1435073 1435117 1435278 "LAPLACE" 1435444 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1433012 1434174 1434425 "LA" 1434906 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1432006 1432590 1432631 "LALG" 1432693 NIL LALG (NIL T) -9 NIL 1432752 NIL) (-631 1431720 1431779 1431915 "LALG-" 1431920 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1431555 1431579 1431620 "KVTFROM" 1431682 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1430478 1430922 1431107 "KTVLOGIC" 1431390 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1430313 1430337 1430378 "KRCFROM" 1430440 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1429217 1429404 1429703 "KOVACIC" 1430113 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1429052 1429076 1429117 "KONVERT" 1429179 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1428887 1428911 1428952 "KOERCE" 1429014 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1426718 1427480 1427857 "KERNEL" 1428543 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1426214 1426295 1426427 "KERNEL2" 1426632 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1419984 1424753 1424807 "KDAGG" 1425184 NIL KDAGG (NIL T T) -9 NIL 1425390 NIL) (-621 1419513 1419637 1419842 "KDAGG-" 1419847 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1412661 1419174 1419329 "KAFILE" 1419391 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1407089 1412172 1412400 "JORDAN" 1412482 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1406468 1406738 1406859 "JOINAST" 1406988 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1406314 1406373 1406428 "JAVACODE" 1406433 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1402566 1404519 1404573 "IXAGG" 1405502 NIL IXAGG (NIL T T) -9 NIL 1405961 NIL) (-615 1401485 1401791 1402210 "IXAGG-" 1402215 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1397015 1401407 1401466 "IVECTOR" 1401471 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1395781 1396018 1396284 "ITUPLE" 1396782 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1394283 1394460 1394755 "ITRIGMNP" 1395603 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1393028 1393232 1393515 "ITFUN3" 1394059 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1392660 1392717 1392826 "ITFUN2" 1392965 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1391819 1392140 1392314 "ITFORM" 1392506 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1389780 1390839 1391117 "ITAYLOR" 1391574 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1378725 1383917 1385080 "ISUPS" 1388650 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1377829 1377969 1378205 "ISUMP" 1378572 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1373204 1377774 1377815 "ISTRING" 1377820 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1372680 1372925 1373017 "ISAST" 1373132 T ISAST (NIL) -8 NIL NIL NIL) (-603 1371889 1371971 1372187 "IRURPK" 1372594 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1370825 1371026 1371266 "IRSN" 1371669 T IRSN (NIL) -7 NIL NIL NIL) (-601 1368896 1369251 1369680 "IRRF2F" 1370463 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1368643 1368681 1368757 "IRREDFFX" 1368852 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1367258 1367517 1367816 "IROOT" 1368376 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1363862 1364942 1365634 "IR" 1366598 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1363067 1363355 1363506 "IRFORM" 1363731 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1360680 1361175 1361741 "IR2" 1362545 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1359780 1359893 1360107 "IR2F" 1360563 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1359571 1359605 1359665 "IPRNTPK" 1359740 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1356152 1359460 1359529 "IPF" 1359534 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1354479 1356077 1356134 "IPADIC" 1356139 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1353791 1354039 1354169 "IP4ADDR" 1354369 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1353165 1353420 1353552 "IOMODE" 1353679 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1352238 1352762 1352889 "IOBFILE" 1353058 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1351726 1352142 1352170 "IOBCON" 1352175 T IOBCON (NIL) -9 NIL 1352196 NIL) (-587 1351237 1351295 1351478 "INVLAPLA" 1351662 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1340885 1343239 1345625 "INTTR" 1348901 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1337220 1337962 1338827 "INTTOOLS" 1340070 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1336806 1336897 1337014 "INTSLPE" 1337123 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1334759 1336729 1336788 "INTRVL" 1336793 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1332361 1332873 1333448 "INTRF" 1334244 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1331772 1331869 1332011 "INTRET" 1332259 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1329769 1330158 1330628 "INTRAT" 1331380 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1327032 1327615 1328234 "INTPM" 1329254 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1323777 1324376 1325114 "INTPAF" 1326418 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1318956 1319918 1320969 "INTPACK" 1322746 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1315854 1318753 1318862 "INT" 1318867 T INT (NIL) -8 NIL NIL NIL) (-575 1315106 1315258 1315466 "INTHERTR" 1315696 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1314545 1314625 1314813 "INTHERAL" 1315020 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1312391 1312834 1313291 "INTHEORY" 1314108 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1303797 1305418 1307190 "INTG0" 1310743 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1284370 1289160 1293970 "INTFTBL" 1299007 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1283619 1283757 1283930 "INTFACT" 1284229 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1281046 1281492 1282049 "INTEF" 1283173 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1279413 1280152 1280180 "INTDOM" 1280481 T INTDOM (NIL) -9 NIL 1280688 NIL) (-567 1278782 1278956 1279198 "INTDOM-" 1279203 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1275170 1277098 1277152 "INTCAT" 1277951 NIL INTCAT (NIL T) -9 NIL 1278272 NIL) (-565 1274642 1274745 1274873 "INTBIT" 1275062 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1273341 1273495 1273802 "INTALG" 1274487 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1272824 1272914 1273071 "INTAF" 1273245 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1266167 1272634 1272774 "INTABL" 1272779 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1265500 1265966 1266031 "INT8" 1266065 T INT8 (NIL) -8 NIL NIL 1266110) (-560 1264832 1265298 1265363 "INT64" 1265397 T INT64 (NIL) -8 NIL NIL 1265442) (-559 1264164 1264630 1264695 "INT32" 1264729 T INT32 (NIL) -8 NIL NIL 1264774) (-558 1263496 1263962 1264027 "INT16" 1264061 T INT16 (NIL) -8 NIL NIL 1264106) (-557 1258291 1261057 1261085 "INS" 1262019 T INS (NIL) -9 NIL 1262684 NIL) (-556 1255531 1256302 1257276 "INS-" 1257349 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1254306 1254533 1254831 "INPSIGN" 1255284 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1253424 1253541 1253738 "INPRODPF" 1254186 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1252318 1252435 1252672 "INPRODFF" 1253304 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1251318 1251470 1251730 "INNMFACT" 1252154 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1250515 1250612 1250800 "INMODGCD" 1251217 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1249023 1249268 1249592 "INFSP" 1250260 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1248207 1248324 1248507 "INFPROD0" 1248903 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1245062 1246272 1246787 "INFORM" 1247700 T INFORM (NIL) -8 NIL NIL NIL) (-547 1244672 1244732 1244830 "INFORM1" 1244997 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1244195 1244284 1244398 "INFINITY" 1244578 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1243371 1243915 1244016 "INETCLTS" 1244114 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1241987 1242237 1242558 "INEP" 1243119 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1241236 1241884 1241949 "INDE" 1241954 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1240800 1240868 1240985 "INCRMAPS" 1241163 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1239618 1240069 1240275 "INBFILE" 1240614 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1234917 1235854 1236798 "INBFF" 1238706 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1233825 1234094 1234122 "INBCON" 1234635 T INBCON (NIL) -9 NIL 1234901 NIL) (-538 1233077 1233300 1233576 "INBCON-" 1233581 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1232556 1232801 1232892 "INAST" 1233006 T INAST (NIL) -8 NIL NIL NIL) (-536 1231983 1232235 1232341 "IMPTAST" 1232470 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1228429 1231827 1231931 "IMATRIX" 1231936 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1227137 1227260 1227576 "IMATQF" 1228285 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1225357 1225584 1225921 "IMATLIN" 1226893 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1219935 1225281 1225339 "ILIST" 1225344 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1217840 1219795 1219908 "IIARRAY2" 1219913 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1213238 1217751 1217815 "IFF" 1217820 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1212585 1212855 1212971 "IFAST" 1213142 T IFAST (NIL) -8 NIL NIL NIL) (-528 1207580 1211877 1212065 "IFARRAY" 1212442 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1206760 1207484 1207557 "IFAMON" 1207562 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1206344 1206409 1206463 "IEVALAB" 1206670 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1206019 1206087 1206247 "IEVALAB-" 1206252 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1205650 1205933 1205996 "IDPO" 1206001 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1204900 1205539 1205614 "IDPOAMS" 1205619 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1204207 1204789 1204864 "IDPOAM" 1204869 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1203266 1203542 1203595 "IDPC" 1204008 NIL IDPC (NIL T T) -9 NIL 1204157 NIL) (-520 1202735 1203158 1203231 "IDPAM" 1203236 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1202111 1202627 1202700 "IDPAG" 1202705 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1201756 1201947 1202022 "IDENT" 1202056 T IDENT (NIL) -8 NIL NIL NIL) (-517 1198011 1198859 1199754 "IDECOMP" 1200913 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1190848 1191934 1192981 "IDEAL" 1197047 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1190008 1190120 1190320 "ICDEN" 1190732 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1189079 1189488 1189635 "ICARD" 1189881 T ICARD (NIL) -8 NIL NIL NIL) (-513 1187139 1187452 1187857 "IBPTOOLS" 1188756 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1182746 1186759 1186872 "IBITS" 1187058 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1179469 1180045 1180740 "IBATOOL" 1182163 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1177248 1177710 1178243 "IBACHIN" 1179004 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1175077 1177094 1177197 "IARRAY2" 1177202 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1171183 1175003 1175060 "IARRAY1" 1175065 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1165221 1169595 1170076 "IAN" 1170722 T IAN (NIL) -8 NIL NIL NIL) (-506 1164732 1164789 1164962 "IALGFACT" 1165158 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1164260 1164373 1164401 "HYPCAT" 1164608 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1163798 1163915 1164101 "HYPCAT-" 1164106 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1163393 1163593 1163676 "HOSTNAME" 1163735 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1163238 1163275 1163316 "HOMOTOP" 1163321 NIL HOMOTOP (NIL T) -9 NIL 1163354 NIL) (-501 1159870 1161248 1161289 "HOAGG" 1162270 NIL HOAGG (NIL T) -9 NIL 1162949 NIL) (-500 1158464 1158863 1159389 "HOAGG-" 1159394 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1152373 1158057 1158207 "HEXADEC" 1158334 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1151121 1151343 1151606 "HEUGCD" 1152150 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1150197 1150958 1151088 "HELLFDIV" 1151093 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1148376 1149974 1150062 "HEAP" 1150141 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1147639 1147928 1148062 "HEADAST" 1148262 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1141658 1147554 1147616 "HDP" 1147621 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1135557 1141293 1141445 "HDMP" 1141559 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1134881 1135021 1135185 "HB" 1135413 T HB (NIL) -7 NIL NIL NIL) (-491 1128267 1134727 1134831 "HASHTBL" 1134836 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1127743 1127988 1128080 "HASAST" 1128195 T HASAST (NIL) -8 NIL NIL NIL) (-489 1125521 1127365 1127547 "HACKPI" 1127581 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1121189 1125374 1125487 "GTSET" 1125492 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1114604 1121067 1121165 "GSTBL" 1121170 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1106882 1113635 1113900 "GSERIES" 1114395 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1106023 1106440 1106468 "GROUP" 1106671 T GROUP (NIL) -9 NIL 1106805 NIL) (-484 1105389 1105548 1105799 "GROUP-" 1105804 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1103756 1104077 1104464 "GROEBSOL" 1105066 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1102670 1102958 1103009 "GRMOD" 1103538 NIL GRMOD (NIL T T) -9 NIL 1103706 NIL) (-481 1102438 1102474 1102602 "GRMOD-" 1102607 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1097728 1098792 1099792 "GRIMAGE" 1101458 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1096194 1096455 1096779 "GRDEF" 1097424 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1095638 1095754 1095895 "GRAY" 1096073 T GRAY (NIL) -7 NIL NIL NIL) (-477 1094825 1095231 1095282 "GRALG" 1095435 NIL GRALG (NIL T T) -9 NIL 1095528 NIL) (-476 1094486 1094559 1094722 "GRALG-" 1094727 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1091263 1094071 1094249 "GPOLSET" 1094393 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1090617 1090674 1090932 "GOSPER" 1091200 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1086349 1087055 1087581 "GMODPOL" 1090316 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1085354 1085538 1085776 "GHENSEL" 1086161 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1079510 1080353 1081373 "GENUPS" 1084438 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1079207 1079258 1079347 "GENUFACT" 1079453 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1078619 1078696 1078861 "GENPGCD" 1079125 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1078093 1078128 1078341 "GENMFACT" 1078578 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1076659 1076916 1077223 "GENEEZ" 1077836 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1070718 1076270 1076432 "GDMP" 1076582 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1060061 1064489 1065595 "GCNAALG" 1069701 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1058388 1059250 1059278 "GCDDOM" 1059533 T GCDDOM (NIL) -9 NIL 1059690 NIL) (-463 1057858 1057985 1058200 "GCDDOM-" 1058205 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1056530 1056715 1057019 "GB" 1057637 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1045146 1047476 1049868 "GBINTERN" 1054221 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1042983 1043275 1043696 "GBF" 1044821 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1041764 1041929 1042196 "GBEUCLID" 1042799 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1041113 1041238 1041387 "GAUSSFAC" 1041635 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1039480 1039782 1040096 "GALUTIL" 1040832 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1037788 1038062 1038386 "GALPOLYU" 1039207 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1035153 1035443 1035850 "GALFACTU" 1037485 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1026959 1028458 1030066 "GALFACT" 1033585 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1024347 1025005 1025033 "FVFUN" 1026189 T FVFUN (NIL) -9 NIL 1026909 NIL) (-452 1023613 1023795 1023823 "FVC" 1024114 T FVC (NIL) -9 NIL 1024297 NIL) (-451 1023256 1023438 1023506 "FUNDESC" 1023565 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1022871 1023053 1023134 "FUNCTION" 1023208 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1020615 1021193 1021659 "FT" 1022425 T FT (NIL) -8 NIL NIL NIL) (-448 1019406 1019916 1020119 "FTEM" 1020432 T FTEM (NIL) -8 NIL NIL NIL) (-447 1017697 1017986 1018383 "FSUPFACT" 1019097 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1016094 1016383 1016715 "FST" 1017385 T FST (NIL) -8 NIL NIL NIL) (-445 1015293 1015399 1015587 "FSRED" 1015976 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1013992 1014248 1014595 "FSPRMELT" 1015008 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1011298 1011736 1012222 "FSPECF" 1013555 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 992600 1001072 1001113 "FS" 1004997 NIL FS (NIL T) -9 NIL 1007286 NIL) (-441 981243 984236 988293 "FS-" 988593 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 980771 980825 980995 "FSINT" 981184 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 979063 979764 980067 "FSERIES" 980550 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 978105 978221 978445 "FSCINT" 978943 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 974313 977049 977090 "FSAGG" 977460 NIL FSAGG (NIL T) -9 NIL 977719 NIL) (-436 972075 972676 973472 "FSAGG-" 973567 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 971117 971260 971487 "FSAGG2" 971928 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 968795 969075 969623 "FS2UPS" 970835 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 968429 968472 968601 "FS2" 968746 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 967307 967478 967780 "FS2EXPXP" 968254 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 966733 966848 967000 "FRUTIL" 967187 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 958146 962228 963586 "FR" 965407 NIL FR (NIL T) -8 NIL NIL NIL) (-429 953160 955835 955875 "FRNAALG" 957195 NIL FRNAALG (NIL T) -9 NIL 957793 NIL) (-428 948833 949909 951184 "FRNAALG-" 951934 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 948471 948514 948641 "FRNAAF2" 948784 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 946846 947320 947616 "FRMOD" 948283 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 944589 945221 945539 "FRIDEAL" 946637 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 943780 943867 944158 "FRIDEAL2" 944496 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 942913 943327 943368 "FRETRCT" 943373 NIL FRETRCT (NIL T) -9 NIL 943549 NIL) (-422 942025 942256 942607 "FRETRCT-" 942612 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 939113 940323 940382 "FRAMALG" 941264 NIL FRAMALG (NIL T T) -9 NIL 941556 NIL) (-420 937247 937702 938332 "FRAMALG-" 938555 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 931077 936720 936997 "FRAC" 937002 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 930713 930770 930877 "FRAC2" 931014 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 930349 930406 930513 "FR2" 930650 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 924862 927755 927783 "FPS" 928902 T FPS (NIL) -9 NIL 929459 NIL) (-415 924311 924420 924584 "FPS-" 924730 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 921613 923282 923310 "FPC" 923535 T FPC (NIL) -9 NIL 923677 NIL) (-413 921406 921446 921543 "FPC-" 921548 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 920196 920894 920935 "FPATMAB" 920940 NIL FPATMAB (NIL T) -9 NIL 921092 NIL) (-411 917869 918372 918798 "FPARFRAC" 919833 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 913263 913761 914443 "FORTRAN" 917301 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 910979 911479 912018 "FORT" 912744 T FORT (NIL) -7 NIL NIL NIL) (-408 908655 909217 909245 "FORTFN" 910305 T FORTFN (NIL) -9 NIL 910929 NIL) (-407 908419 908469 908497 "FORTCAT" 908556 T FORTCAT (NIL) -9 NIL 908618 NIL) (-406 906525 907035 907425 "FORMULA" 908049 T FORMULA (NIL) -8 NIL NIL NIL) (-405 906313 906343 906412 "FORMULA1" 906489 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 905836 905888 906061 "FORDER" 906255 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 904932 905096 905289 "FOP" 905663 T FOP (NIL) -7 NIL NIL NIL) (-402 903513 904212 904386 "FNLA" 904814 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 902242 902657 902685 "FNCAT" 903145 T FNCAT (NIL) -9 NIL 903405 NIL) (-400 901781 902201 902229 "FNAME" 902234 T FNAME (NIL) -8 NIL NIL NIL) (-399 900344 901307 901335 "FMTC" 901340 T FMTC (NIL) -9 NIL 901376 NIL) (-398 899090 900280 900326 "FMONOID" 900331 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 895918 897086 897127 "FMONCAT" 898344 NIL FMONCAT (NIL T) -9 NIL 898949 NIL) (-396 895110 895660 895809 "FM" 895814 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 892534 893180 893208 "FMFUN" 894352 T FMFUN (NIL) -9 NIL 895060 NIL) (-394 891803 891984 892012 "FMC" 892302 T FMC (NIL) -9 NIL 892484 NIL) (-393 888882 889742 889796 "FMCAT" 890991 NIL FMCAT (NIL T T) -9 NIL 891486 NIL) (-392 887748 888648 888748 "FM1" 888827 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 885522 885938 886432 "FLOATRP" 887299 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 879100 883251 883872 "FLOAT" 884921 T FLOAT (NIL) -8 NIL NIL NIL) (-389 876538 877038 877616 "FLOATCP" 878567 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 875385 876144 876185 "FLINEXP" 876190 NIL FLINEXP (NIL T) -9 NIL 876283 NIL) (-387 874317 874614 875022 "FLINEXP-" 875027 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 873393 873537 873761 "FLASORT" 874169 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 870509 871377 871429 "FLALG" 872656 NIL FLALG (NIL T T) -9 NIL 873123 NIL) (-384 864213 867965 868006 "FLAGG" 869268 NIL FLAGG (NIL T) -9 NIL 869920 NIL) (-383 862939 863278 863768 "FLAGG-" 863773 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 861981 862124 862351 "FLAGG2" 862792 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 858832 859840 859899 "FINRALG" 861027 NIL FINRALG (NIL T T) -9 NIL 861535 NIL) (-380 857992 858221 858560 "FINRALG-" 858565 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 857372 857611 857639 "FINITE" 857835 T FINITE (NIL) -9 NIL 857942 NIL) (-378 849729 851916 851956 "FINAALG" 855623 NIL FINAALG (NIL T) -9 NIL 857076 NIL) (-377 845061 846111 847255 "FINAALG-" 848634 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 844429 844816 844919 "FILE" 844991 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 843087 843425 843479 "FILECAT" 844163 NIL FILECAT (NIL T T) -9 NIL 844379 NIL) (-374 840803 842331 842359 "FIELD" 842399 T FIELD (NIL) -9 NIL 842479 NIL) (-373 839423 839808 840319 "FIELD-" 840324 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 837273 838058 838405 "FGROUP" 839109 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 836363 836527 836747 "FGLMICPK" 837105 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 832195 836288 836345 "FFX" 836350 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 831796 831857 831992 "FFSLPE" 832128 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 827786 828568 829364 "FFPOLY" 831032 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 827290 827326 827535 "FFPOLY2" 827744 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 823136 827209 827272 "FFP" 827277 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 818534 823047 823111 "FF" 823116 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 813660 817877 818067 "FFNBX" 818388 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 808588 812795 813053 "FFNBP" 813514 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 803221 807872 808083 "FFNB" 808421 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 802053 802251 802566 "FFINTBAS" 803018 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 798079 800300 800328 "FFIELDC" 800948 T FFIELDC (NIL) -9 NIL 801324 NIL) (-359 796741 797112 797609 "FFIELDC-" 797614 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 796310 796356 796480 "FFHOM" 796683 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 794005 794492 795009 "FFF" 795825 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 789623 793747 793848 "FFCGX" 793948 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 785245 789355 789462 "FFCGP" 789566 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 780428 784972 785080 "FFCG" 785181 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 761131 770317 770403 "FFCAT" 775568 NIL FFCAT (NIL T T T) -9 NIL 777019 NIL) (-352 756328 757376 758690 "FFCAT-" 759920 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 755739 755782 756017 "FFCAT2" 756279 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 745062 748711 749931 "FEXPR" 754591 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 744024 744459 744500 "FEVALAB" 744584 NIL FEVALAB (NIL T) -9 NIL 744845 NIL) (-348 743183 743393 743731 "FEVALAB-" 743736 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 741749 742566 742769 "FDIV" 743082 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 738769 739510 739625 "FDIVCAT" 741193 NIL FDIVCAT (NIL T T T T) -9 NIL 741630 NIL) (-345 738531 738558 738728 "FDIVCAT-" 738733 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 737751 737838 738115 "FDIV2" 738438 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 736725 737046 737248 "FCTRDATA" 737569 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 735411 735670 735959 "FCPAK1" 736456 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 734510 734911 735052 "FCOMP" 735302 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 718215 721660 725198 "FC" 730992 T FC (NIL) -8 NIL NIL NIL) (-339 710494 714522 714562 "FAXF" 716364 NIL FAXF (NIL T) -9 NIL 717056 NIL) (-338 707771 708428 709253 "FAXF-" 709718 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 702823 707147 707323 "FARRAY" 707628 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 697717 699784 699837 "FAMR" 700860 NIL FAMR (NIL T T) -9 NIL 701320 NIL) (-335 696607 696909 697344 "FAMR-" 697349 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 695776 696529 696582 "FAMONOID" 696587 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 693562 694272 694325 "FAMONC" 695266 NIL FAMONC (NIL T T) -9 NIL 695652 NIL) (-332 692226 693316 693453 "FAGROUP" 693458 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 690021 690340 690743 "FACUTIL" 691907 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 689120 689305 689527 "FACTFUNC" 689831 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 681542 688423 688622 "EXPUPXS" 688976 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 679025 679565 680151 "EXPRTUBE" 680976 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 675296 675888 676618 "EXPRODE" 678364 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 661015 673945 674374 "EXPR" 674900 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 655569 656156 656962 "EXPR2UPS" 660313 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 655201 655258 655367 "EXPR2" 655506 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 646454 654352 654643 "EXPEXPAN" 655037 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 646254 646411 646440 "EXIT" 646445 T EXIT (NIL) -8 NIL NIL NIL) (-321 645734 645978 646069 "EXITAST" 646183 T EXITAST (NIL) -8 NIL NIL NIL) (-320 645361 645423 645536 "EVALCYC" 645666 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 644902 645020 645061 "EVALAB" 645231 NIL EVALAB (NIL T) -9 NIL 645335 NIL) (-318 644383 644505 644726 "EVALAB-" 644731 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 641751 643053 643081 "EUCDOM" 643636 T EUCDOM (NIL) -9 NIL 643986 NIL) (-316 640156 640598 641188 "EUCDOM-" 641193 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 627695 630454 633204 "ESTOOLS" 637426 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 627327 627384 627493 "ESTOOLS2" 627632 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 627078 627120 627200 "ESTOOLS1" 627279 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 621115 622723 622751 "ES" 625519 T ES (NIL) -9 NIL 626929 NIL) (-311 616062 617349 619166 "ES-" 619330 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 612436 613197 613977 "ESCONT" 615302 T ESCONT (NIL) -7 NIL NIL NIL) (-309 612181 612213 612295 "ESCONT1" 612398 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 611856 611906 612006 "ES2" 612125 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 611486 611544 611653 "ES1" 611792 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 610702 610831 611007 "ERROR" 611330 T ERROR (NIL) -7 NIL NIL NIL) (-305 604094 610561 610652 "EQTBL" 610657 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 596597 599408 600857 "EQ" 602678 NIL -2086 (NIL T) -8 NIL NIL NIL) (-303 596229 596286 596395 "EQ2" 596534 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 591520 592567 593660 "EP" 595168 NIL EP (NIL T) -7 NIL NIL NIL) (-301 590120 590411 590717 "ENV" 591234 T ENV (NIL) -8 NIL NIL NIL) (-300 589214 589768 589796 "ENTIRER" 589801 T ENTIRER (NIL) -9 NIL 589847 NIL) (-299 585908 587396 587757 "EMR" 589022 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 585038 585223 585277 "ELTAGG" 585657 NIL ELTAGG (NIL T T) -9 NIL 585868 NIL) (-297 584757 584819 584960 "ELTAGG-" 584965 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 584521 584550 584604 "ELTAB" 584688 NIL ELTAB (NIL T T) -9 NIL 584740 NIL) (-295 583647 583793 583992 "ELFUTS" 584372 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 583389 583445 583473 "ELEMFUN" 583578 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 583259 583280 583348 "ELEMFUN-" 583353 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 578073 581329 581370 "ELAGG" 582310 NIL ELAGG (NIL T) -9 NIL 582773 NIL) (-291 576358 576792 577455 "ELAGG-" 577460 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 575670 575807 575963 "ELABOR" 576222 T ELABOR (NIL) -8 NIL NIL NIL) (-289 574331 574610 574904 "ELABEXPR" 575396 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 567165 568968 569797 "EFUPXS" 573606 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 560613 562414 563225 "EFULS" 566440 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 558098 558456 558928 "EFSTRUC" 560245 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 547889 549455 551003 "EF" 556613 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 546963 547374 547523 "EAB" 547760 T EAB (NIL) -8 NIL NIL NIL) (-283 546145 546922 546950 "E04UCFA" 546955 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 545327 546104 546132 "E04NAFA" 546137 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 544509 545286 545314 "E04MBFA" 545319 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 543691 544468 544496 "E04JAFA" 544501 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 542875 543650 543678 "E04GCFA" 543683 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 542059 542834 542862 "E04FDFA" 542867 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 541241 542018 542046 "E04DGFA" 542051 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 535414 536766 538130 "E04AGNT" 539897 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 534185 534728 534768 "DVARCAT" 535109 NIL DVARCAT (NIL T) -9 NIL 535272 NIL) (-274 533389 533601 533915 "DVARCAT-" 533920 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 526437 533188 533317 "DSMP" 533322 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 524860 525579 525620 "DSEXT" 525983 NIL DSEXT (NIL T) -9 NIL 526277 NIL) (-271 523145 523573 524239 "DSEXT-" 524244 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 517926 519090 520158 "DROPT" 522097 T DROPT (NIL) -8 NIL NIL NIL) (-269 517591 517650 517748 "DROPT1" 517861 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 512706 513832 514969 "DROPT0" 516474 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 511051 511376 511762 "DRAWPT" 512340 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 505638 506561 507640 "DRAW" 510025 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 505271 505324 505442 "DRAWHACK" 505579 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 504002 504271 504562 "DRAWCX" 505000 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 503517 503586 503737 "DRAWCURV" 503928 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 493985 495947 498062 "DRAWCFUN" 501422 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 490749 492678 492719 "DQAGG" 493348 NIL DQAGG (NIL T) -9 NIL 493622 NIL) (-260 478551 485110 485193 "DPOLCAT" 487045 NIL DPOLCAT (NIL T T T T) -9 NIL 487590 NIL) (-259 473388 474736 476694 "DPOLCAT-" 476699 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 467694 473249 473347 "DPMO" 473352 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 461903 467474 467641 "DPMM" 467646 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 461473 461687 461776 "DOMTMPLT" 461834 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 460906 461275 461355 "DOMCTOR" 461413 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 460118 460386 460537 "DOMAIN" 460775 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 454017 459753 459905 "DMP" 460019 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 453617 453673 453817 "DLP" 453955 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 447439 452944 453134 "DLIST" 453459 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 444236 446292 446333 "DLAGG" 446883 NIL DLAGG (NIL T) -9 NIL 447113 NIL) (-249 442912 443576 443604 "DIVRING" 443696 T DIVRING (NIL) -9 NIL 443779 NIL) (-248 442149 442339 442639 "DIVRING-" 442644 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 440251 440608 441014 "DISPLAY" 441763 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 434290 440165 440228 "DIRPROD" 440233 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 433138 433341 433606 "DIRPROD2" 434083 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 422340 428197 428250 "DIRPCAT" 428508 NIL DIRPCAT (NIL NIL T) -9 NIL 429383 NIL) (-243 419444 420148 421109 "DIRPCAT-" 421446 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 418731 418891 419077 "DIOSP" 419278 T DIOSP (NIL) -7 NIL NIL NIL) (-241 415386 417643 417684 "DIOPS" 418118 NIL DIOPS (NIL T) -9 NIL 418347 NIL) (-240 414935 415049 415240 "DIOPS-" 415245 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 413986 414614 414642 "DIFRING" 414647 T DIFRING (NIL) -9 NIL 414669 NIL) (-238 413658 413732 413760 "DIFFSPC" 413879 T DIFFSPC (NIL) -9 NIL 413954 NIL) (-237 413303 413381 413533 "DIFFSPC-" 413538 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 412459 412937 412977 "DIFFMOD" 412982 NIL DIFFMOD (NIL T) -9 NIL 413009 NIL) (-235 412167 412212 412253 "DIFFDOM" 412374 NIL DIFFDOM (NIL T) -9 NIL 412442 NIL) (-234 412020 412044 412128 "DIFFDOM-" 412133 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 409553 410825 410866 "DIFEXT" 411229 NIL DIFEXT (NIL T) -9 NIL 411523 NIL) (-232 407838 408266 408932 "DIFEXT-" 408937 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 405113 407370 407411 "DIAGG" 407416 NIL DIAGG (NIL T) -9 NIL 407436 NIL) (-230 404497 404654 404906 "DIAGG-" 404911 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 399914 403456 403733 "DHMATRIX" 404266 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 395526 396435 397445 "DFSFUN" 398924 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 390606 394457 394769 "DFLOAT" 395234 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 388869 389150 389539 "DFINTTLS" 390314 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 385898 386890 387290 "DERHAM" 388535 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 383699 385673 385762 "DEQUEUE" 385842 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 382953 383086 383269 "DEGRED" 383561 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 379383 380128 380974 "DEFINTRF" 382181 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 376938 377407 377999 "DEFINTEF" 378902 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 376288 376558 376673 "DEFAST" 376843 T DEFAST (NIL) -8 NIL NIL NIL) (-219 370197 375881 376031 "DECIMAL" 376158 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 367709 368167 368673 "DDFACT" 369741 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 367305 367348 367499 "DBLRESP" 367660 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 365173 365535 365896 "DBASE" 367071 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 364415 364653 364799 "DATAARY" 365072 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 363521 364374 364402 "D03FAFA" 364407 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 362628 363480 363508 "D03EEFA" 363513 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 360578 361044 361533 "D03AGNT" 362159 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 359867 360537 360565 "D02EJFA" 360570 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 359156 359826 359854 "D02CJFA" 359859 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 358445 359115 359143 "D02BHFA" 359148 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 357734 358404 358432 "D02BBFA" 358437 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 350931 352520 354126 "D02AGNT" 356148 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 348699 349222 349768 "D01WGTS" 350405 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 347766 348658 348686 "D01TRNS" 348691 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 346834 347725 347753 "D01GBFA" 347758 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 345902 346793 346821 "D01FCFA" 346826 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 344970 345861 345889 "D01ASFA" 345894 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 344038 344929 344957 "D01AQFA" 344962 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 343106 343997 344025 "D01APFA" 344030 T D01APFA (NIL) -8 NIL NIL NIL) (-199 342174 343065 343093 "D01ANFA" 343098 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 341242 342133 342161 "D01AMFA" 342166 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 340310 341201 341229 "D01ALFA" 341234 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 339378 340269 340297 "D01AKFA" 340302 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 338446 339337 339365 "D01AJFA" 339370 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 331741 333294 334855 "D01AGNT" 336905 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 331078 331206 331358 "CYCLOTOM" 331609 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 327811 328526 329253 "CYCLES" 330371 T CYCLES (NIL) -7 NIL NIL NIL) (-191 327123 327257 327428 "CVMP" 327672 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 324964 325222 325591 "CTRIGMNP" 326851 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 324400 324758 324831 "CTOR" 324911 T CTOR (NIL) -8 NIL NIL NIL) (-188 323909 324131 324232 "CTORKIND" 324319 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 323200 323516 323544 "CTORCAT" 323726 T CTORCAT (NIL) -9 NIL 323839 NIL) (-186 322798 322909 323068 "CTORCAT-" 323073 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 322260 322472 322580 "CTORCALL" 322722 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 321634 321733 321886 "CSTTOOLS" 322157 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 317433 318090 318848 "CRFP" 320946 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 316908 317154 317246 "CRCEAST" 317361 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 315955 316140 316368 "CRAPACK" 316712 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 315339 315440 315644 "CPMATCH" 315831 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 315064 315092 315198 "CPIMA" 315305 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 311412 312084 312803 "COORDSYS" 314399 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 310824 310945 311087 "CONTOUR" 311290 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 306715 308827 309319 "CONTFRAC" 310364 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 306595 306616 306644 "CONDUIT" 306681 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 305683 306237 306265 "COMRING" 306270 T COMRING (NIL) -9 NIL 306322 NIL) (-173 304737 305041 305225 "COMPPROP" 305519 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 304398 304433 304561 "COMPLPAT" 304696 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 294600 304207 304316 "COMPLEX" 304321 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 294236 294293 294400 "COMPLEX2" 294537 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 293575 293696 293856 "COMPILER" 294096 T COMPILER (NIL) -8 NIL NIL NIL) (-168 293293 293328 293426 "COMPFACT" 293534 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277046 287131 287171 "COMPCAT" 288175 NIL COMPCAT (NIL T) -9 NIL 289523 NIL) (-166 266336 269325 273032 "COMPCAT-" 273388 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266065 266093 266196 "COMMUPC" 266302 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265859 265893 265952 "COMMONOP" 266026 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 265415 265610 265697 "COMM" 265792 T COMM (NIL) -8 NIL NIL NIL) (-162 264991 265219 265294 "COMMAAST" 265360 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 264240 264434 264462 "COMBOPC" 264800 T COMBOPC (NIL) -9 NIL 264975 NIL) (-160 263136 263346 263588 "COMBINAT" 264030 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 259593 260167 260794 "COMBF" 262558 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 258351 258709 258944 "COLOR" 259378 T COLOR (NIL) -8 NIL NIL NIL) (-157 257827 258072 258164 "COLONAST" 258279 T COLONAST (NIL) -8 NIL NIL NIL) (-156 257467 257514 257639 "CMPLXRT" 257774 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256915 257167 257266 "CLLCTAST" 257388 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 252417 253445 254525 "CLIP" 255855 T CLIP (NIL) -7 NIL NIL NIL) (-153 250758 251518 251758 "CLIF" 252244 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246933 248904 248945 "CLAGG" 249874 NIL CLAGG (NIL T) -9 NIL 250410 NIL) (-151 245355 245812 246395 "CLAGG-" 246400 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244899 244984 245124 "CINTSLPE" 245264 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 242400 242871 243419 "CHVAR" 244427 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 241574 242128 242156 "CHARZ" 242161 T CHARZ (NIL) -9 NIL 242176 NIL) (-147 241328 241368 241446 "CHARPOL" 241528 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 240386 240973 241001 "CHARNZ" 241048 T CHARNZ (NIL) -9 NIL 241104 NIL) (-145 238292 239040 239393 "CHAR" 240053 T CHAR (NIL) -8 NIL NIL NIL) (-144 238018 238079 238107 "CFCAT" 238218 T CFCAT (NIL) -9 NIL NIL NIL) (-143 237259 237370 237553 "CDEN" 237902 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 233224 236412 236692 "CCLASS" 236999 T CCLASS (NIL) -8 NIL NIL NIL) (-141 232475 232632 232809 "CATEGORY" 233067 T -10 (NIL) -8 NIL NIL NIL) (-140 232048 232394 232442 "CATCTOR" 232447 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 231499 231751 231849 "CATAST" 231970 T CATAST (NIL) -8 NIL NIL NIL) (-138 230975 231220 231312 "CASEAST" 231427 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226113 227132 227876 "CARTEN" 230287 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 225221 225369 225590 "CARTEN2" 225960 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223537 224371 224628 "CARD" 224984 T CARD (NIL) -8 NIL NIL NIL) (-134 223113 223341 223416 "CAPSLAST" 223482 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 222617 222825 222853 "CACHSET" 222985 T CACHSET (NIL) -9 NIL 223063 NIL) (-132 222087 222409 222437 "CABMON" 222487 T CABMON (NIL) -9 NIL 222543 NIL) (-131 221560 221791 221901 "BYTEORD" 221997 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 220537 221089 221231 "BYTE" 221394 T BYTE (NIL) -8 NIL NIL 221516) (-129 215887 220042 220214 "BYTEBUF" 220385 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 213396 215579 215686 "BTREE" 215813 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210845 213044 213166 "BTOURN" 213306 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 208215 210315 210356 "BTCAT" 210424 NIL BTCAT (NIL T) -9 NIL 210501 NIL) (-125 207882 207962 208111 "BTCAT-" 208116 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 203261 207141 207169 "BTAGG" 207283 T BTAGG (NIL) -9 NIL 207393 NIL) (-123 202751 202876 203082 "BTAGG-" 203087 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 199746 202029 202244 "BSTREE" 202568 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198884 199010 199194 "BRILL" 199602 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 195536 197610 197651 "BRAGG" 198300 NIL BRAGG (NIL T) -9 NIL 198558 NIL) (-119 194065 194471 195026 "BRAGG-" 195031 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 187189 193409 193594 "BPADICRT" 193912 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 185504 187126 187171 "BPADIC" 187176 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 185202 185232 185346 "BOUNDZRO" 185468 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 180430 181628 182540 "BOP" 184310 T BOP (NIL) -8 NIL NIL NIL) (-114 178211 178615 179090 "BOP1" 179988 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177912 177973 178001 "BOOLE" 178112 T BOOLE (NIL) -9 NIL 178194 NIL) (-112 176737 177486 177635 "BOOLEAN" 177783 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176016 176420 176474 "BMODULE" 176479 NIL BMODULE (NIL T T) -9 NIL 176544 NIL) (-110 171817 175814 175887 "BITS" 175963 T BITS (NIL) -8 NIL NIL NIL) (-109 171238 171357 171497 "BINDING" 171697 T BINDING (NIL) -8 NIL NIL NIL) (-108 165150 170833 170982 "BINARY" 171109 T BINARY (NIL) -8 NIL NIL NIL) (-107 162930 164405 164446 "BGAGG" 164706 NIL BGAGG (NIL T) -9 NIL 164843 NIL) (-106 162761 162793 162884 "BGAGG-" 162889 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161832 162145 162350 "BFUNCT" 162576 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 160522 160700 160988 "BEZOUT" 161656 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156991 159374 159704 "BBTREE" 160225 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156725 156778 156806 "BASTYPE" 156925 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156577 156606 156679 "BASTYPE-" 156684 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156011 156087 156239 "BALFACT" 156488 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154867 155426 155612 "AUTOMOR" 155856 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154593 154598 154624 "ATTREG" 154629 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152845 153290 153642 "ATTRBUT" 154259 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 152453 152673 152739 "ATTRAST" 152797 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151989 152102 152128 "ATRIG" 152329 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151798 151839 151926 "ATRIG-" 151931 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 151443 151629 151655 "ASTCAT" 151660 T ASTCAT (NIL) -9 NIL 151690 NIL) (-92 151170 151229 151348 "ASTCAT-" 151353 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 149319 150946 151034 "ASTACK" 151113 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147824 148121 148486 "ASSOCEQ" 149001 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146856 147483 147607 "ASP9" 147731 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146619 146804 146843 "ASP8" 146848 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 145487 146224 146366 "ASP80" 146508 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 144385 145122 145254 "ASP7" 145386 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 143339 144062 144180 "ASP78" 144298 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 142308 143019 143136 "ASP77" 143253 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 141220 141946 142077 "ASP74" 142208 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140120 140855 140987 "ASP73" 141119 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 139224 139946 140046 "ASP6" 140051 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 138171 138901 139019 "ASP55" 139137 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137120 137845 137964 "ASP50" 138083 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 136208 136821 136931 "ASP4" 137041 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 135296 135909 136019 "ASP49" 136129 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134080 134835 135003 "ASP42" 135185 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132857 133613 133783 "ASP41" 133967 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131807 132534 132652 "ASP35" 132770 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 131572 131755 131794 "ASP34" 131799 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 131309 131376 131452 "ASP33" 131527 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 130203 130944 131076 "ASP31" 131208 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129968 130151 130190 "ASP30" 130195 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129703 129772 129848 "ASP29" 129923 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 129468 129651 129690 "ASP28" 129695 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 129233 129416 129455 "ASP27" 129460 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 128317 128931 129042 "ASP24" 129153 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 127394 128119 128231 "ASP20" 128236 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 126482 127095 127205 "ASP1" 127315 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 125425 126156 126275 "ASP19" 126394 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 125162 125229 125305 "ASP12" 125380 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124014 124761 124905 "ASP10" 125049 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121865 123858 123949 "ARRAY2" 123954 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117630 121513 121627 "ARRAY1" 121782 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116662 116835 117056 "ARRAY12" 117453 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110974 112892 112967 "ARR2CAT" 115597 NIL ARR2CAT (NIL T T T) -9 NIL 116355 NIL) (-56 108408 109152 110106 "ARR2CAT-" 110111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107725 108035 108160 "ARITY" 108301 T ARITY (NIL) -8 NIL NIL NIL) (-54 106501 106653 106952 "APPRULE" 107561 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 106152 106200 106319 "APPLYORE" 106447 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 105506 105745 105865 "ANY" 106050 T ANY (NIL) -8 NIL NIL NIL) (-51 104784 104907 105064 "ANY1" 105380 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 102314 103221 103548 "ANTISYM" 104508 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101806 102021 102117 "ANON" 102236 T ANON (NIL) -8 NIL NIL NIL) (-48 95984 100345 100799 "AN" 101370 T AN (NIL) -8 NIL NIL NIL) (-47 91882 93270 93321 "AMR" 94069 NIL AMR (NIL T T) -9 NIL 94669 NIL) (-46 90994 91215 91578 "AMR-" 91583 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 75433 90911 90972 "ALIST" 90977 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 72238 75027 75196 "ALGSC" 75351 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68794 69348 69955 "ALGPKG" 71678 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68071 68172 68356 "ALGMFACT" 68680 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64106 64685 65279 "ALGMANIP" 67655 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 63732 63882 "ALGFF" 64039 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 6c737410..e77d1370 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,13310 +1,13695 @@
-(732466 . 3485764567)
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-428 *5)) (-4 *5 (-566))
- (-5 *2
- (-2 (|:| -2754 (-781)) (|:| -1866 *5) (|:| |radicand| (-654 *5))))
- (-5 *1 (-328 *5)) (-5 *4 (-781))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-574)))))
+(732907 . 3485769905)
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 (-966 *6))) (-4 *6 (-566))
- (-4 *2 (-963 (-417 (-966 *6)) *5 *4)) (-5 *1 (-742 *5 *4 *6 *2))
- (-4 *5 (-803))
- (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1193)) (-4 *4 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574))))
- (-4 *1 (-440 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574))))
- (-4 *1 (-440 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116))
- (-5 *2 (-2 (|:| |var| (-622 *1)) (|:| -2754 (-574))))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2754 (-781))))
- (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2754 (-781))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2754 (-574))))
- (-5 *1 (-964 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $))
- (-15 -2980 (*7 $))))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *3 (-654 (-270)))
- (-5 *1 (-268))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-491 *5 *6))) (-5 *3 (-491 *5 *6))
- (-14 *5 (-654 (-1193))) (-4 *6 (-462)) (-5 *2 (-1284 *6))
- (-5 *1 (-641 *5 *6)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-5 *1 (-909 *2 *4))
- (-4 *2 (-1260 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-516)) (-5 *3 (-654 (-886))) (-5 *1 (-493)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860))
- (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3919 *1)))
- (-4 *1 (-1081 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3919 *1)))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))))
+ (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-992)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))))
+(((*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-1216 *4))
- (-4 *4 (-1065)))))
-(((*1 *2)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568))
+ (-4 *3 (-965 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| (-656 *3))))
+ (-5 *1 (-969 *5 *6 *7 *3 *8)) (-5 *4 (-783))
+ (-4 *8
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *3)) (-15 -2976 (*3 $)) (-15 -2987 (*3 $))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4))
+ (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4102 *5))))
+ (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5))
+ (-4 *6 (-668 (-419 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4)) (-4 *6 (-1260 *5))
- (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7))
- (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112))
- (-5 *1 (-925 *4 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
((*1 *2 *3)
- (-12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
- (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4)))
- (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-926 *4 *5 *6)))))
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-417 (-574)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
+ (-12 (-5 *4 (-419 (-576)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574)))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *3))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576)))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8))
- (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574)))
- (-4 *8 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8))
+ (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576)))
+ (-4 *8 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574))))
- (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8)))
- (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *8 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576))))
+ (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8)))
+ (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-417 (-574))) (-4 *4 (-1065)) (-4 *1 (-1267 *4 *3))
- (-4 *3 (-1244 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1067)) (-4 *1 (-1269 *4 *3))
+ (-4 *3 (-1246 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236))))
((*1 *2 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-574))) (-5 *5 (-1 (-1173 *4))) (-4 *4 (-372))
- (-4 *4 (-1065)) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-4 *4 (-1065))
- (-5 *1 (-1045 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-315) (-148)))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805))
(-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7))
- (|:| |wcond| (-654 (-966 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *4))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *4))))))))))
- (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-769)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1) (-4 *1 (-1155))))
+ (-656
+ (-2 (|:| -3563 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *8) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *8)))))
+ (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-783)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860)))
+ (-5 *2 (-656 (-2 (|:| -3544 (-656 *3)) (|:| -2696 *5))))
+ (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-374) (-860)))
+ (-5 *2 (-656 (-2 (|:| -3544 (-656 *3)) (|:| -2696 *4))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-959 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1067))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *1))))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-91 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-4 *5 (-13 (-462) (-1054 *4) (-649 *4)))
- (-5 *2 (-52)) (-5 *1 (-323 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
+ (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1056 *4) (-651 *4)))
+ (-5 *2 (-52)) (-5 *1 (-325 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-1054 *5) (-649 *5))) (-5 *5 (-574))
- (-5 *2 (-52)) (-5 *1 (-323 *6 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1056 *5) (-651 *5))) (-5 *5 (-576))
+ (-5 *2 (-52)) (-5 *1 (-325 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574)))
- (-4 *7 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576)))
+ (-4 *7 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574)))
- (-4 *3 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *7 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576)))
+ (-4 *3 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-574)) (-4 *4 (-1065)) (-4 *1 (-1246 *4 *3))
- (-4 *3 (-1275 *4))))
+ (-12 (-5 *2 (-576)) (-4 *4 (-1067)) (-4 *1 (-1248 *4 *3))
+ (-4 *3 (-1277 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))))
+ (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2))
+ (-4 *2 (-699 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (|has| *4 (-6 (-4461 "*")))
- (-4 *4 (-1065)) (-5 *1 (-1044 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935))
- (|has| *4 (-6 (-4461 "*"))) (-4 *4 (-1065)) (-5 *1 (-1044 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-13 (-315) (-148)))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803))
- (-5 *2 (-654 (-417 (-966 *4)))) (-5 *1 (-938 *4 *5 *6 *7))
- (-4 *7 (-963 *4 *6 *5)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-574)) (-4 *6 (-372)) (-4 *6 (-377))
- (-4 *6 (-1065)) (-5 *2 (-654 (-654 (-699 *6)))) (-5 *1 (-1045 *6))
- (-5 *3 (-654 (-699 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-4 *4 (-377)) (-4 *4 (-1065))
- (-5 *2 (-654 (-654 (-699 *4)))) (-5 *1 (-1045 *4))
- (-5 *3 (-654 (-699 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065))
- (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5))
- (-5 *3 (-654 (-699 *5)))))
+ (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-965 *3 *5 *4)) (-5 *1 (-1005 *3 *4 *5 *2))
+ (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2)))
+ (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5))
+ (-4 *3 (-353 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240))
+ (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-5 *2 (-1291)) (-5 *1 (-1198))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065))
- (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5))
- (-5 *3 (-654 (-699 *5))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-605 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1244 *3)) (-4 *3 (-1065))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-574))) (-4 *1 (-1275 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358))
- (-5 *1 (-538 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-654 (-112))) (-5 *5 (-699 (-227)))
- (-5 *6 (-699 (-574))) (-5 *7 (-227)) (-5 *3 (-574)) (-5 *2 (-1051))
- (-5 *1 (-764)))))
+ (-12 (-5 *3 (-1195))
+ (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *2 (-1291))
+ (-5 *1 (-1198))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1195))
+ (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *2 (-1291))
+ (-5 *1 (-1198)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-4 *2 (-1116)) (-5 *1 (-690 *5 *6 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193)))))
- (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120))
- (-5 *1 (-407))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-654 (-654 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-654 (-3 (|:| |array| (-654 *3)) (|:| |scalar| (-1193)))))
- (-5 *6 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1120))
- (-5 *1 (-407))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-654 (-1193))) (-5 *5 (-1196)) (-5 *3 (-1193))
- (-5 *2 (-1120)) (-5 *1 (-407)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-692 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-52)) (-5 *1 (-323 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
+ (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-52)) (-5 *1 (-325 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-302 *3)) (-5 *5 (-781))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6))
- (-4 *6 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *5 *6))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-783))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6))
+ (-4 *6 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *6 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-781)))
- (-4 *7 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783)))
+ (-4 *7 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-781)))
- (-4 *3 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *7 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783)))
+ (-4 *3 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))))
+ (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3724 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))))
-(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4))
- (-4 *4 (-358)))))
+ (|partial| -12 (-4 *2 (-1118)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1157))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862))
+ (-4 *8 (-965 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed"))
+ (|:| -4093 (-656 (-1286 (-419 *8))))))
+ (-5 *1 (-681 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193)))
- (-4 *5 (-462)) (-5 *2 (-654 (-253 *4 *5))) (-5 *1 (-641 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
+ (-12 (-4 *4 (-1067)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4))
+ (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-417 *2)) (-4 *2 (-1260 *5))
- (-5 *1 (-817 *5 *2 *3 *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *3 (-666 *2)) (-4 *6 (-666 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-417 *2))) (-4 *2 (-1260 *5))
- (-5 *1 (-817 *5 *2 *3 *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2))
- (-4 *6 (-666 (-417 *2))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))))
-(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-158))))
- ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1401 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7))
- (-5 *3 (-417 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-584 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-428 *3)) (-4 *3 (-555)) (-4 *3 (-566))))
- ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-555)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-555)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1024 *3)) (-4 *3 (-1054 (-417 (-574)))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4093 (-656 *6)))
+ *7 *6))
+ (-4 *6 (-374)) (-4 *7 (-668 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1286 *6) "failed"))
+ (|:| -4093 (-656 (-1286 *6)))))
+ (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2799 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1205 (-654 *4))) (-4 *4 (-860))
- (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4)))))
-(((*1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-105)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065))
- (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3))
- (-4 *3 (-862 *5)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1160))))
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 (-417 (-966 *6))))
- (-5 *3 (-417 (-966 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-148)))
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-580 *6)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-654
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860))
- (-5 *1 (-459 *3 *4 *5 *6)))))
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-569 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-965 *3 *5 *4))
+ (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195))))
+ (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1262 (-171 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1262 (-171 *2))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574))))
- (-5 *1 (-1126)))))
-(((*1 *1) (-5 *1 (-607))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
+ (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4)))))
+ (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-968 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-317)) (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3))
+ (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-654 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |k| (-904 *3)) (|:| |c| *4))))
- (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-682 *3))) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-1118)) (-5 *1 (-980 *3 *2)) (-4 *3 (-1118)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-654 (-654 (-574))))
- (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-699 (-417 (-966 (-574)))))
- (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-872)))))
+ (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576))))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-442 *4) (-1020))) (-4 *4 (-568))
+ (-5 *1 (-285 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))))
(((*1 *2)
- (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-352 *3 *4)) (-14 *3 (-935))
- (-14 *4 (-935))))
- ((*1 *2)
- (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-353 *3 *4)) (-4 *3 (-358))
- (-14 *4 (-1189 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-972 (-1136))) (-5 *1 (-354 *3 *4)) (-4 *3 (-358))
- (-14 *4 (-935)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-654 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803))
- (-4 *8 (-860)) (-5 *1 (-993 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-115)) (-5 *4 (-783))
+ (-4 *5 (-13 (-464) (-1056 (-576)))) (-4 *5 (-568))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *5 (-624 $)) $))
+ (-15 -2987 ((-1143 *5 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *5 (-624 $))))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557))))
+ ((*1 *1 *1) (-4 *1 (-1078))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-52)) (-5 *2 (-1289)) (-5 *1 (-841)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574))) (-5 *3 (-574))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))))
+ (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))
- (-5 *2 (-654 (-1193))) (-5 *1 (-1092 *3 *4 *5))
- (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-372))
- (-5 *2 (-654 (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5)))))
- (-5 *1 (-994 *5)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
+ (-5 *1 (-122 *3)) (-4 *3 (-862))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221)))
+ (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-595 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-419 (-968 *3))))
+ (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -1369 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1067))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1067))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1162))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1162)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3))
+ (-4 *3 (-13 (-374) (-148) (-1056 (-576)))) (-5 *1 (-580 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $))))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3))
- (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))
- ((*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315))))
- ((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-574)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051))
- (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1262 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *2 (-1053)) (-5 *1 (-315))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))
+ (-5 *2 (-1053)) (-5 *1 (-315)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4))
+ (-5 *1 (-431 *4))))
+ ((*1 *1 *1) (-5 *1 (-942)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942))))
+ ((*1 *1 *1) (-5 *1 (-943)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))
+ (-5 *4 (-419 (-576))) (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))
+ (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))
+ (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 (-622 *4))) (-4 *4 (-440 *3)) (-4 *3 (-1116))
- (-5 *1 (-583 *3 *4))))
+ (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1118))
+ (-5 *1 (-585 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(((*1 *2)
- (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388)))))
+ (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6)))
+ (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1118))
+ (-4 *8 (-13 (-1067) (-626 (-905 *6)) (-1056 *7)))
+ (-5 *2 (-902 *6 *8)) (-4 *7 (-1067)) (-5 *1 (-957 *6 *7 *8)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-587 *4 *2))
+ (-4 *2 (-13 (-1221) (-975) (-1157) (-29 *4))))))
+(((*1 *1) (-5 *1 (-145)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-270)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))
- (-5 *2 (-654 (-1193))) (-5 *1 (-274))))
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))
+ (-5 *2 (-656 (-1195))) (-5 *1 (-276))))
((*1 *2 *3)
- (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-654 *5))
- (-5 *1 (-329 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-656 *5))
+ (-5 *1 (-331 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-348 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-397))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-399))))
((*1 *2 *1)
- (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-654 (-1193)))))
+ (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-656 (-1195)))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-654 *5))))
+ (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-656 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *5))
- (-5 *1 (-964 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *5))
+ (-5 *1 (-966 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $)))))))
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-4 *5 (-860)) (-5 *2 (-654 *5))))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-4 *5 (-862)) (-5 *2 (-656 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5))))
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-5 *2 (-654 (-1193)))
- (-5 *1 (-1059 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-315))
- (-5 *2 (-781)) (-5 *1 (-465 *5 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1260 *4)) (-5 *2 (-699 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-699 *4))
- (-5 *1 (-418 *3 *4 *5)) (-4 *3 (-419 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3))
- (-5 *2 (-699 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1238)) (-5 *1 (-149 *2 *4 *3))
- (-4 *3 (-1260 (-417 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860)))
- (-14 *3 (-654 (-1193))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *4 *5 *6))
- (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)))))
+ (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195)))
+ (-5 *1 (-1061 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-930 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-430 (-968 *6))) (-5 *5 (-1195)) (-5 *3 (-968 *6))
+ (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-931 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -4205 *4) (|:| -2782 (-576)))))
+ (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *6))))
+ (-5 *4 (-1044 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576)))
+ (-4 *6 (-1067)) (-5 *2 (-874)) (-5 *1 (-607 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-940 *4 *5 *6 *3))
+ (-4 *3 (-965 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
+ (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3))
+ (-4 *3 (-736 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-419 (-968 *5)))) (-5 *4 (-1195))
+ (-5 *2 (-968 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-5 *2 (-968 *4))
+ (-5 *1 (-302 *4)) (-4 *4 (-464))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576)))))
+ (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195))
+ (-5 *2 (-968 (-171 (-419 (-576))))) (-5 *1 (-776 *5))
+ (-4 *5 (-13 (-374) (-860)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-968 (-419 (-576))))
+ (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195))
+ (-5 *2 (-968 (-419 (-576)))) (-5 *1 (-791 *5))
+ (-4 *5 (-13 (-374) (-860))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1189 (-417 (-1189 *2)))) (-5 *4 (-622 *2))
- (-4 *2 (-13 (-440 *5) (-27) (-1219)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1116))))
+ (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2))
+ (-4 *2 (-13 (-442 *5) (-27) (-1221)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1118))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1189 *1)) (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *3 (-860))))
+ (-12 (-5 *2 (-1191 *1)) (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *3 (-862))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1189 *4)) (-4 *4 (-1065)) (-4 *1 (-963 *4 *5 *3))
- (-4 *5 (-803)) (-4 *3 (-860))))
+ (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1067)) (-4 *1 (-965 *4 *5 *3))
+ (-4 *5 (-805)) (-4 *3 (-862))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-1189 *2))) (-4 *5 (-803)) (-4 *4 (-860))
- (-4 *6 (-1065))
+ (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862))
+ (-4 *6 (-1067))
(-4 *2
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $)))))
- (-5 *1 (-964 *5 *4 *6 *7 *2)) (-4 *7 (-963 *6 *5 *4))))
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $)))))
+ (-5 *1 (-966 *5 *4 *6 *7 *2)) (-4 *7 (-965 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-1189 (-417 (-966 *5))))) (-5 *4 (-1193))
- (-5 *2 (-417 (-966 *5))) (-5 *1 (-1059 *5)) (-4 *5 (-566)))))
+ (-12 (-5 *3 (-419 (-1191 (-419 (-968 *5))))) (-5 *4 (-1195))
+ (-5 *2 (-419 (-968 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-568)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464))
+ (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574))))
- (-5 *2 (-112)) (-5 *1 (-1312 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-595)) (-5 *3 (-607)) (-5 *4 (-299)) (-5 *1 (-288)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-130)))
+ ((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559)))
+ ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))
+ ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1195)))
+ ((*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-937))))
+ ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937))))
+ ((*1 *1) (-5 *1 (-1241))) ((*1 *1) (-5 *1 (-1242)))
+ ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244))))
+(((*1 *1 *1) (-4 *1 (-568))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-803))
- (-4 *6 (-566)) (-4 *7 (-963 *6 *5 *3))
- (-5 *1 (-472 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1054 (-417 (-574))) (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $))
- (-15 -2980 (*7 $))))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3)) (-5 *6 (-1189 *3))
- (-4 *3 (-13 (-440 *7) (-27) (-1219)))
- (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3))
- (-5 *6 (-417 (-1189 *3))) (-4 *3 (-13 (-440 *7) (-27) (-1219)))
- (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-570 *7 *3 *8)) (-4 *8 (-1116)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-1173 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193)))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193)))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315))
- (-5 *2 (-654 (-781))) (-5 *1 (-788 *3 *4 *5 *6 *7))
- (-4 *3 (-1260 *6)) (-4 *7 (-963 *6 *4 *5)))))
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5))
+ (-5 *2 (-656 (-2 (|:| -1716 *5) (|:| -4102 *3))))
+ (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6))
+ (-4 *7 (-668 (-419 *6))))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-654 (-935))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-935))
- (-4 *2 (-372)) (-14 *5 (-1009 *4 *2))))
+ (-12 (-5 *3 (-656 (-937))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-937))
+ (-4 *2 (-374)) (-14 *5 (-1011 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-723 *5 *6 *7)) (-4 *5 (-860))
- (-4 *6 (-244 (-2877 *4) (-781)))
+ (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862))
+ (-4 *6 (-244 (-2882 *4) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6))
- (-2 (|:| -2591 *5) (|:| -2754 *6))))
- (-14 *4 (-654 (-1193))) (-4 *2 (-174))
- (-5 *1 (-471 *4 *2 *5 *6 *7 *8)) (-4 *8 (-963 *2 *6 (-874 *4)))))
+ (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6))
+ (-2 (|:| -2596 *5) (|:| -2300 *6))))
+ (-14 *4 (-656 (-1195))) (-4 *2 (-174))
+ (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-965 *2 *6 (-876 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860))))
+ (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4))
- (-4 *4 (-1260 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4))
+ (-4 *4 (-1262 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-745 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-736))))
+ (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-738))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5))
- (-4 *4 (-1065)) (-4 *5 (-860))))
+ (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5))
+ (-4 *4 (-1067)) (-4 *5 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065))
- (-4 *2 (-860))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067))
+ (-4 *2 (-862))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6))
- (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860))))
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6))
+ (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *2 (-860))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *2 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 *5)) (-4 *1 (-989 *4 *5 *6))
- (-4 *4 (-1065)) (-4 *5 (-802)) (-4 *6 (-860))))
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-991 *4 *5 *6))
+ (-4 *4 (-1067)) (-4 *5 (-804)) (-4 *6 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-989 *4 *3 *2)) (-4 *4 (-1065)) (-4 *3 (-802))
- (-4 *2 (-860)))))
+ (-12 (-4 *1 (-991 *4 *3 *2)) (-4 *4 (-1067)) (-4 *3 (-804))
+ (-4 *2 (-862)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1262 (-171 *2))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067))
+ (-5 *2 (-656 (-656 (-959 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112)) (-4 *4 (-1067))
+ (-4 *1 (-1152 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 (-959 *3)))) (-4 *3 (-1067))
+ (-4 *1 (-1152 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1152 *4)) (-4 *4 (-1067))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-959 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1152 *4)) (-4 *4 (-1067))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-959 *5)))) (-5 *3 (-656 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1152 *5)) (-4 *5 (-1067)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-654 (-324 (-227))))
- (|:| |constraints|
- (-654
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-781)) (|:| |boundaryType| (-574))
- (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
- (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175))
- (|:| |tol| (-227))))
- (-5 *2 (-112)) (-5 *1 (-212)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-722 *3 *4))
- (-4 *4 (-1260 *3)))))
+ (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2012 (-656 *7))))
+ (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372))
- (-14 *4 (-1193)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9))
- (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *9 (-1081 *6 *7 *8))
- (-5 *2
- (-654
- (-2 (|:| -4097 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9)))))
- (-5 *1 (-1004 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-654 *10)) (-5 *5 (-112)) (-4 *10 (-1087 *6 *7 *8 *9))
- (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *9 (-1081 *6 *7 *8))
- (-5 *2
- (-654
- (-2 (|:| -4097 (-654 *9)) (|:| -4068 *10) (|:| |ineq| (-654 *9)))))
- (-5 *1 (-1123 *6 *7 *8 *9 *10)) (-5 *3 (-654 *9)))))
+ (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *5)) (-4 *5 (-372)) (-5 *2 (-654 *6))
- (-5 *1 (-542 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
-(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1122))) (-5 *1 (-301)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 (-937))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5))
+ (-14 *4 (-937)) (-14 *5 (-1011 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4))
+ (-4 *4 (-1262 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5))
+ (-4 *4 (-1067)) (-4 *5 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1067))
+ (-4 *2 (-862))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-965 *4 *5 *6))
+ (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *6 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-965 *4 *5 *2)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *2 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *2 (-965 *4 (-543 *5) *5))
+ (-5 *1 (-1144 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-968 *4)) (-5 *1 (-1230 *4))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067))
+ (-5 *3 (-576)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
- (-5 *2 (-1189 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-319))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-654 (-302 *4))) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4))))
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1277 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13))
+ (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13))
+ (-5 *7 (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| *13)))))
+ (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10))))
+ (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-965 *10 *11 *12))
+ (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568))
+ (-4 *8 (-965 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| *3)))
+ (-5 *1 (-969 *5 *6 *7 *8 *3)) (-5 *4 (-783))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *8)) (-15 -2976 (*8 $)) (-15 -2987 (*8 $))))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3))
+ (-4 *3 (-1262 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1128)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1128)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372)))
- (-4 *3 (-1260 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1219))))
- ((*1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783)))
+ (-5 *1 (-920 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *3))
- (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-654 *7) (-654 *7))) (-5 *2 (-654 *7))
- (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4))))
- (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-659 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-302 *2)) (-4 *2 (-736)) (-4 *2 (-1234)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1042 (-853 (-574))))
- (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *4)))) (-4 *4 (-1065))
- (-5 *1 (-605 *4)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-1193))
- (-4 *2 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *5 *2)))))
-(((*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))))
-(((*1 *2 *1) (-12 (-5 *2 (-607)) (-5 *1 (-288)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9))
- (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6))
- (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))
+ (-4 *2 (-464))))
((*1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2)) (-4 *2 (-315))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
- (-4 *2 (-697 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3))))
+ (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2))
+ (-4 *4 (-1262 (-419 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-464))))
((*1 *1 *1)
- (-12 (-4 *1 (-1069 *2 *3 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-315)))))
-(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-935)) (-5 *2 (-478)) (-5 *1 (-1285)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-299)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555)))))
-(((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-569)))))
+ (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2))
+ (-4 *2 (-1262 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *5 (-377))
- (-5 *2 (-781)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))))
-(((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-699 *4)) (-4 *4 (-372)) (-5 *2 (-1189 *4))
- (-5 *1 (-542 *4 *5 *6)) (-4 *5 (-372)) (-4 *6 (-13 (-372) (-858))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-993 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234))
- (-4 *2 (-860))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4460))
- (-4 *1 (-382 *3)) (-4 *3 (-1234)))))
-(((*1 *1 *1) (-4 *1 (-1160))))
+ (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-837 *2 *3)) (-4 *2 (-718 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-566))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1051)) (-5 *1 (-759))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-398)) (-5 *2 (-1051)) (-5 *1 (-759)))))
+ (-12 (-4 *3 (-1067)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1017 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4))))
- (-5 *1 (-900 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))))
+ (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 *4))))
+ (-5 *1 (-902 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))))
((*1 *2 *1)
- (-12 (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116))
- (-4 *7 (-1116)) (-5 *2 (-654 *1)) (-4 *1 (-1119 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-972 (-185 (-140)))) (-5 *1 (-341))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-539)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-270))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-574)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *2 (-1289)) (-5 *1 (-1286))))
+ (-12 (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118))
+ (-4 *7 (-1118)) (-5 *2 (-656 *1)) (-4 *1 (-1121 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576))))
+ (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-974 (-185 (-140)))) (-5 *1 (-343))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118))
+ (-4 *2 (-862)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1291)) (-5 *1 (-216 *4))
+ (-4 *4
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $))
+ (-15 -4278 (*2 $)))))))
((*1 *2 *1)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $))
+ (-15 -4278 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-2 (|:| -2238 (-1175 *4)) (|:| -2249 (-1175 *4))))
+ (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4157 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-417 (-574)))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-1255 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462)) (-5 *1 (-369 *3 *4))
- (-14 *4 (-654 (-1193)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-460 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-460 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462))
- (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
+ (-656
+ (-2
+ (|:| -3672
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1918
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1175 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2055
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-571))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236))
+ (-5 *2 (-656 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139))))
((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
- ((*1 *1 *1) (-5 *1 (-872)))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874)))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3))))
- ((*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-654 *3)) (|:| |image| (-654 *3))))
- (-5 *1 (-919 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1260 (-171 *3))))))
-(((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
(((*1 *2 *3)
- (-12
+ (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783))
+ (-5 *2
+ (-656
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576))))))
+ (-5 *1 (-517 *4 *5))
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1101)))))
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576))))))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
+ (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1271 *4 *5 *6))
+ (|:| |%expon| (-329 *4 *5 *6))
+ (|:| |%expTerms|
+ (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4))))))
+ (|:| |%type| (-1177))))
+ (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3)))
+ (-14 *5 (-1195)) (-14 *6 *4))))
+(((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862))
+ (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-937))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-937))
+ (-5 *1 (-540 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-833)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-324 (-227))))
- (-5 *2
- (-2 (|:| |additions| (-574)) (|:| |multiplications| (-574))
- (|:| |exponentiations| (-574)) (|:| |functionCalls| (-574))))
- (-5 *1 (-313)))))
-(((*1 *1) (-5 *1 (-1196))))
+ (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028))))
- ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-654 *1)) (-4 *1 (-1028))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 (-417 (-574)))) (-5 *2 (-654 *1)) (-4 *1 (-1028))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 *1)) (-4 *1 (-1028)) (-5 *2 (-654 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-858) (-372))) (-4 *3 (-1260 *4)) (-5 *2 (-654 *1))
- (-4 *1 (-1084 *4 *3)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-12 (-4 *4 (-862))
(-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2)))))
+ (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4))))
+ (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4))))))
+ (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4)))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236))
+ (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1299 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-244 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1311)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195))))
+ ((*1 *1 *1) (-4 *1 (-161))))
+(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3479 (-699 (-417 (-966 *4))))
- (|:| |vec| (-654 (-417 (-966 *4)))) (|:| -3558 (-781))
- (|:| |rows| (-654 (-574))) (|:| |cols| (-654 (-574)))))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803))
+ (-12 (-5 *3 (-701 (-326 (-227))))
(-5 *2
- (-2 (|:| |partsol| (-1284 (-417 (-966 *4))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *4)))))))
- (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-341)) (-5 *1 (-255)))))
+ (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))))
+ (-5 *1 (-207)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-860))
+ (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))
+ (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *5))
+ (-4 *5 (-1262 (-419 *4))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
(-5 *2
- (-2 (|:| |f1| (-654 *4)) (|:| |f2| (-654 (-654 (-654 *4))))
- (|:| |f3| (-654 (-654 *4))) (|:| |f4| (-654 (-654 (-654 *4))))))
- (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 (-654 *4)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))
- (-4 *2 (-13 (-860) (-21))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-5 *1 (-1277 *3 *2))
- (-4 *2 (-1275 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574))))
- (-4 *2 (-174)))))
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1) (-5 *1 (-340))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862))
+ (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8))
+ (-4 *8 (-965 *3 *7 *6)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-705 *3)) (-4 *3 (-1116))
- (-5 *2 (-654 (-2 (|:| -1916 *3) (|:| -3949 (-781))))))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -2041 (-1177))))
+ (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1234)) (-4 *1 (-244 *3 *4)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116)) (-5 *2 (-654 *1))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
- (-4 *3 (-1116))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5))))
+ (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3))
- (-5 *1 (-964 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $))
- (-15 -2980 (*7 $))))))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051))
- (-5 *1 (-766)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-358))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574)))))))
- (-5 *1 (-218 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-490)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))))
-(((*1 *1) (-5 *1 (-338))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1234))
- (-4 *5 (-382 *4)) (-4 *2 (-382 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *7 *2)) (-4 *6 (-1065))
- (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-417 (-1189 (-324 *3)))) (-4 *3 (-566))
- (-5 *1 (-1146 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-699 (-574))) (-5 *3 (-654 (-574))) (-5 *1 (-1126)))))
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-942)))
+ (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-576)) (-5 *7 (-1177))
+ (-5 *2 (-1231 (-942))) (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576))
+ (-5 *2 (-1231 (-942))) (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177))
+ (-5 *2 (-1231 (-942))) (-5 *1 (-328)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-546))) (-5 *2 (-1193)) (-5 *1 (-546)))))
+ (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4))))
+ (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))))
+(((*1 *1) (-5 *1 (-815))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *2))
+ (-2 (|:| -2596 *5) (|:| -2300 *2))))
+ (-4 *2 (-244 (-2882 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-862)) (-4 *7 (-965 *4 *2 (-876 *3))))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4))))))
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6))
- (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-993 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-654
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-574)))))
- (-4 *2 (-566)) (-5 *1 (-428 *2))))
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6))
+ (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4))
+ (-4 *4 (-1118)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-574))
- (|:| -3996 (-654 (-2 (|:| |irr| *4) (|:| -1545 (-574)))))))
- (-4 *4 (-1260 (-574))) (-5 *2 (-428 *4)) (-5 *1 (-452 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065))
- (-5 *1 (-724 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-654 (-792 *3))) (-5 *1 (-792 *3)) (-4 *3 (-566))
- (-4 *3 (-1065)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1193))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1219) (-973)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1895 (-654 *4))))
- (-5 *1 (-811 *6 *4 *3)) (-4 *3 (-666 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-674 *4 *5)))
- (-5 *1 (-637 *4 *5 *6)) (-4 *5 (-13 (-174) (-727 (-417 (-574)))))
- (-14 *6 (-935)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-1208 *2)) (-4 *2 (-372)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-324 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-574))) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-566)) (-4 *8 (-963 *7 *5 *6))
- (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *9) (|:| |radicand| *9)))
- (-5 *1 (-967 *5 *6 *7 *8 *9)) (-5 *4 (-781))
- (-4 *9
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *8)) (-15 -2970 (*8 $)) (-15 -2980 (*8 $))))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-2 (|:| -2081 (-701 (-419 (-968 *4))))
+ (|:| |vec| (-656 (-419 (-968 *4)))) (|:| -3563 (-783))
+ (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805))
(-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *2 *1) (-12 (-4 *1 (-315)) (-5 *2 (-781)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1065)) (-4 *4 (-1260 *3)) (-5 *1 (-165 *3 *4 *2))
- (-4 *2 (-1260 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1124 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9))))
- (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8))
- (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860))
- (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9))))
- (-5 *1 (-1124 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *4))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *4)))))))
+ (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9)))
+ (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783)))
+ (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-965 *9 *10 *11))
+ (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12)))
+ (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1116)))))
+ (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1028 *3))
+ (-4 *3 (-1236)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
- ((*1 *1 *1) (-4 *1 (-1018)))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1028))))
- ((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1028))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-935))))
- ((*1 *1 *1) (-4 *1 (-1028))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1299 (-1193) *3)) (-4 *3 (-1065)) (-5 *1 (-1306 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *1 (-1308 *3 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-761)))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
+ ((*1 *1 *1) (-4 *1 (-1020)))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-937))))
+ ((*1 *1 *1) (-4 *1 (-1030))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1067)) (-4 *2 (-1262 *4))
+ (-5 *1 (-456 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5)))
+ (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1148 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1118))
+ (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2))
+ (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2))
+ (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-368 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-112))
- (-5 *1 (-682 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148))) (-5 *1 (-547 *4 *2))
- (-4 *2 (-1275 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3)))
- (-4 *5 (-1260 *4)) (-4 *6 (-734 *4 *5)) (-5 *1 (-551 *4 *5 *6 *2))
- (-4 *2 (-1275 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-13 (-372) (-377) (-624 *3)))
- (-5 *1 (-552 *4 *2)) (-4 *2 (-1275 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-13 (-566) (-148)))
- (-5 *1 (-1169 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1217)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-654 *7) *7 (-1189 *7))) (-5 *5 (-1 (-428 *7) *7))
- (-4 *7 (-1260 *6)) (-4 *6 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-5 *2 (-654 (-2 (|:| |frac| (-417 *7)) (|:| -4097 *3))))
- (-5 *1 (-819 *6 *7 *3 *8)) (-4 *3 (-666 *7))
- (-4 *8 (-666 (-417 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2
- (-654 (-2 (|:| |frac| (-417 *6)) (|:| -4097 (-664 *6 (-417 *6))))))
- (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-48))) (-5 *2 (-428 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1260 (-48)))))
+ (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1262 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803))
- (-5 *2 (-428 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-963 (-48) *6 *5))))
+ (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-965 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-48))) (-4 *5 (-860)) (-4 *6 (-803))
- (-4 *7 (-963 (-48) *6 *5)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1189 *7))))
+ (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *7 (-965 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-1260 (-171 *4)))))
+ (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1260 *4))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1262 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3))
- (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3))
+ (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 (-171 (-574)))) (-5 *1 (-456))
- (-5 *3 (-171 (-574)))))
+ (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458))
+ (-5 *3 (-171 (-576)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-4 *5 (-803)) (-4 *7 (-566)) (-5 *2 (-428 *3))
- (-5 *1 (-466 *4 *5 *6 *7 *3)) (-4 *6 (-566))
- (-4 *3 (-963 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-315)) (-5 *2 (-428 (-1189 *4))) (-5 *1 (-468 *4))
- (-5 *3 (-1189 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
- (-4 *7 (-13 (-372) (-148) (-734 *5 *6))) (-5 *2 (-428 *3))
- (-5 *1 (-504 *5 *6 *7 *3)) (-4 *3 (-1260 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7)))
- (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803))
- (-5 *2 (-428 *3)) (-5 *1 (-550 *5 *6 *7 *3))
- (-4 *3 (-963 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-428 (-1189 *7)) (-1189 *7)))
- (-4 *7 (-13 (-315) (-148))) (-4 *5 (-860)) (-4 *6 (-803))
- (-4 *8 (-963 *7 *6 *5)) (-5 *2 (-428 (-1189 *8)))
- (-5 *1 (-550 *5 *6 *7 *8)) (-5 *3 (-1189 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5)) (-5 *2 (-654 (-663 (-417 *6))))
- (-5 *1 (-667 *5 *6)) (-5 *3 (-663 (-417 *6)))))
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3))
+ (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568))
+ (-4 *3 (-965 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4))
+ (-5 *3 (-1191 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
+ (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3))
+ (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7)))
+ (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3))
+ (-4 *3 (-965 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7)))
+ (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *8 (-965 *7 *6 *5)) (-5 *2 (-430 (-1191 *8)))
+ (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6))))
+ (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5))))
- (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5)))))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5))))
+ (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-829 *4)) (-4 *4 (-860)) (-5 *2 (-654 (-682 *4)))
- (-5 *1 (-682 *4))))
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4)))
+ (-5 *1 (-684 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-5 *2 (-654 *3)) (-5 *1 (-706 *3))
- (-4 *3 (-1260 *4))))
+ (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3))
+ (-4 *3 (-1262 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358)) (-5 *2 (-428 *3))
- (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3))
+ (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-358))
- (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-708 *4 *5 *6 *7)) (-5 *3 (-1189 *7))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360))
+ (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-803))
+ (-12 (-4 *4 (-805))
(-4 *5
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-4 *6 (-315)) (-5 *2 (-428 *3)) (-5 *1 (-740 *4 *5 *6 *3))
- (-4 *3 (-963 (-966 *6) *4 *5))))
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3))
+ (-4 *3 (-965 (-968 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-803))
- (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566))
- (-5 *2 (-428 *3)) (-5 *1 (-742 *4 *5 *6 *3))
- (-4 *3 (-963 (-417 (-966 *6)) *4 *5))))
+ (-12 (-4 *4 (-805))
+ (-4 *5 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *6 (-568))
+ (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3))
+ (-4 *3 (-965 (-419 (-968 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-13 (-315) (-148)))
- (-5 *2 (-428 *3)) (-5 *1 (-743 *4 *5 *6 *3))
- (-4 *3 (-963 (-417 *6) *4 *5))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3))
+ (-4 *3 (-965 (-419 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148)))
- (-5 *2 (-428 *3)) (-5 *1 (-751 *4 *5 *6 *3))
- (-4 *3 (-963 *6 *5 *4))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3))
+ (-4 *3 (-965 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-13 (-315) (-148)))
- (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-751 *4 *5 *6 *7)) (-5 *3 (-1189 *7))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3))
- (-4 *3 (-1260 (-417 (-574))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3))
+ (-4 *3 (-1262 (-419 (-576))))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-1057 *3))
- (-4 *3 (-1260 (-417 (-966 (-574)))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1059 *3))
+ (-4 *3 (-1262 (-419 (-968 (-576)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1260 (-417 (-574))))
- (-4 *5 (-13 (-372) (-148) (-734 (-417 (-574)) *4)))
- (-5 *2 (-428 *3)) (-5 *1 (-1095 *4 *5 *3)) (-4 *3 (-1260 *5))))
+ (-12 (-4 *4 (-1262 (-419 (-576))))
+ (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4)))
+ (-5 *2 (-430 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1262 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1260 (-417 (-966 (-574)))))
- (-4 *5 (-13 (-372) (-148) (-734 (-417 (-966 (-574))) *4)))
- (-5 *2 (-428 *3)) (-5 *1 (-1097 *4 *5 *3)) (-4 *3 (-1260 *5))))
+ (-12 (-4 *4 (-1262 (-419 (-968 (-576)))))
+ (-4 *5 (-13 (-374) (-148) (-736 (-419 (-968 (-576))) *4)))
+ (-5 *2 (-430 *3)) (-5 *1 (-1099 *4 *5 *3)) (-4 *3 (-1262 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7))))
- (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7))))
+ (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2)
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1118))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-397 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-574)) (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-315))
- (-4 *9 (-963 *8 *6 *7))
- (-5 *2 (-2 (|:| -3414 (-1189 *9)) (|:| |polval| (-1189 *8))))
- (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)) (-5 *4 (-1189 *8)))))
+ (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4))
+ (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1033 *4 *5)) (-5 *3 (-419 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-370 (-115))) (-4 *2 (-1065)) (-5 *1 (-724 *2 *4))
- (-4 *4 (-658 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-370 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1227 *4 *5 *3 *6)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-654 (-574))) (-5 *3 (-654 (-935))) (-5 *4 (-112))
- (-5 *1 (-1126)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4))
- (-5 *2 (-428 *3)) (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1895 (-654 *1))))
- (-4 *1 (-376 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-463 *3 *4 *5 *6))
- (|:| -1895 (-654 (-463 *3 *4 *5 *6)))))
- (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4))
+ (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *2 (-13 (-862) (-21))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4))
+ (-14 *3 (-937)) (-4 *4 (-1067)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))))
+(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-3 (|:| |overq| (-1189 (-417 (-574))))
- (|:| |overan| (-1189 (-48))) (|:| -3574 (-112))))
- (-5 *1 (-445 *4 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401)))))
+ (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2318 (-783))))
+ (-5 *1 (-794 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2318 (-783))))
+ (-4 *1 (-1083 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193))
- (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1) (-5 *1 (-607))))
+ (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4)))
+ (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4)) (-5 *2 (-654 (-663 (-417 *5))))
- (-5 *1 (-667 *4 *5)) (-5 *3 (-663 (-417 *5))))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+ (-12 (-5 *2 (-2 (|:| -4217 (-576)) (|:| -3544 (-656 *3))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2))
+ (-4 *2 (-1277 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195))
+ (-14 *5 *3) (-5 *1 (-329 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2))
+ (-4 *2 (-1262 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193)))
- (-4 *6 (-13 (-566) (-1054 *5))) (-4 *5 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *6)))))) (-5 *1 (-1055 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))
- (-4 *4 (-358)) (-5 *2 (-781)) (-5 *1 (-355 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-360 *3 *4)) (-14 *3 (-935))
- (-14 *4 (-935))))
- ((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358))
- (-14 *4
- (-3 (-1189 *3)
- (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358))
- (-14 *4 (-935)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-835)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *5 (-668 (-419 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-668 *2))
+ (-4 *3 (-668 (-419 *2))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-654 (-966 *3))) (-4 *3 (-462))
- (-5 *1 (-369 *3 *4)) (-14 *4 (-654 (-1193)))))
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4))))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-654 (-790 *3 (-874 *4)))) (-4 *3 (-462))
- (-14 *4 (-654 (-1193))) (-5 *1 (-638 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941))
- (-5 *1 (-939 *3)) (-4 *3 (-624 (-546)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-5 *2 (-941)) (-5 *1 (-939 *3))
- (-4 *3 (-624 (-546)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-941))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941)))))
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416))))
+ ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937))))
+ ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1175 (-576))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-557))))
+ ((*1 *1 *1) (-4 *1 (-1078))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-440 *4)) (-4 *4 (-1116))
- (-4 *4 (-566)) (-5 *2 (-417 (-1189 *1)))))
+ (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1118))
+ (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-1189 (-417 (-1189 *3)))) (-5 *1 (-570 *6 *3 *7))
- (-5 *5 (-1189 *3)) (-4 *7 (-1116))))
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7))
+ (-5 *5 (-1191 *3)) (-4 *7 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1280 *5)) (-14 *5 (-1193)) (-4 *6 (-1065))
- (-5 *2 (-1257 *5 (-966 *6))) (-5 *1 (-961 *5 *6)) (-5 *3 (-966 *6))))
+ (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1067))
+ (-5 *2 (-1259 *5 (-968 *6))) (-5 *1 (-963 *5 *6)) (-5 *3 (-968 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-1189 *3))))
+ (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-1191 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860)) (-5 *2 (-1189 *1))
- (-4 *1 (-963 *4 *5 *3))))
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1))
+ (-4 *1 (-965 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *5 *4)) (-5 *2 (-417 (-1189 *3)))
- (-5 *1 (-964 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *5 *4)) (-5 *2 (-419 (-1191 *3)))
+ (-5 *1 (-966 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $)))))))
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1189 *3))
+ (-12 (-5 *2 (-1191 *3))
(-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $)))))
- (-4 *7 (-963 *6 *5 *4)) (-4 *5 (-803)) (-4 *4 (-860))
- (-4 *6 (-1065)) (-5 *1 (-964 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-566))
- (-5 *2 (-417 (-1189 (-417 (-966 *5))))) (-5 *1 (-1059 *5))
- (-5 *3 (-417 (-966 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-299)) (-5 *1 (-288)))))
-(((*1 *2 *3) (-12 (-5 *3 (-654 *2)) (-5 *1 (-1208 *2)) (-4 *2 (-372)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-941))
- (-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574)))
- (-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154)))))
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $)))))
+ (-4 *7 (-965 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862))
+ (-4 *6 (-1067)) (-5 *1 (-966 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-568))
+ (-5 *2 (-419 (-1191 (-419 (-968 *5))))) (-5 *1 (-1061 *5))
+ (-5 *3 (-419 (-968 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-4 *2 (-914 *5)) (-5 *1 (-704 *5 *2 *3 *4))
+ (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-711)))))
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1189 (-574))) (-5 *2 (-574)) (-5 *1 (-956)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-917 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-858) (-372))) (-5 *2 (-112)) (-5 *1 (-1077 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227))) (-5 *6 (-685 (-227)))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-760)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-654 *4)) (-4 *4 (-860))
- (-5 *1 (-1204 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1260 *6))
- (-4 *6 (-13 (-372) (-148) (-1054 *4))) (-5 *4 (-574))
+ (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-937) (-783))))))
+(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-707 *3)) (-4 *3 (-1118))
+ (-5 *2 (-656 (-2 (|:| -1918 *3) (|:| -3954 (-783))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4))
+ (-4 *4 (-1067)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1175 *7))) (-4 *6 (-862))
+ (-4 *7 (-965 *5 (-543 *6) *6)) (-4 *5 (-1067))
+ (-5 *2 (-1 (-1175 *7) *7)) (-5 *1 (-1144 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-304 (-968 (-576))))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -4097
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1031 *6 *3)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1)))
- (-4 *1 (-1081 *3 *4 *5)))))
+ (-2 (|:| |varOrder| (-656 (-1195)))
+ (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed"))
+ (|:| |hom| (-656 (-1286 (-783))))))
+ (-5 *1 (-242)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *6 (-624 (-1193)))
- (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *2 (-1182 (-654 (-966 *4)) (-654 (-302 (-966 *4)))))
- (-5 *1 (-514 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1177))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-937)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-804))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
- (|:| |expense| (-388)) (|:| |accuracy| (-388))
- (|:| |intermediateResults| (-388))))
- (-5 *2 (-1051)) (-5 *1 (-313)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-835)))))
+ (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195)))
+ (-4 *5 (-464))
+ (-5 *2
+ (-2 (|:| |gblist| (-656 (-253 *4 *5)))
+ (|:| |gvlist| (-656 (-576)))))
+ (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5))
+ (|:| |c2| (-419 *5)) (|:| |deg| (-783))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4))
- (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -4097 *5))))
- (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-666 *5))
- (-4 *6 (-666 (-417 *5))))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862)))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1175 (-1175 (-968 *5))))
+ (-5 *1 (-1294 *5)) (-5 *4 (-1175 (-968 *5))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-440 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-55)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *1 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-159 *3 *4))
- (-4 *4 (-440 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-115)) (-5 *1 (-164))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-283 *3 *4))
- (-4 *4 (-13 (-440 *3) (-1018)))))
- ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310))))
- ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4))
+ (-4 *4 (-13 (-442 *3) (-1020)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312))))
+ ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *4 (-1116)) (-5 *1 (-439 *3 *4))
- (-4 *3 (-440 *4))))
+ (-12 (-5 *2 (-115)) (-4 *4 (-1118)) (-5 *1 (-441 *3 *4))
+ (-4 *3 (-442 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-441 *3 *4))
- (-4 *4 (-440 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-622 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1118))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-566)) (-5 *1 (-640 *3 *4))
- (-4 *4 (-13 (-440 *3) (-1018) (-1219)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1207 *2)) (-4 *2 (-1116)))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4))
+ (-4 *4 (-13 (-442 *3) (-1020) (-1221)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1118)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-656
+ (-2
+ (|:| -3672
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1918
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1175 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2055
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-571)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))))
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2)))
- (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5))
- (-4 *3 (-351 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238))
- (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894))
- (-5 *3 (-654 (-574))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3))
- (-4 *3 (-13 (-372) (-148) (-1054 (-574)))) (-5 *1 (-578 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-145))) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-142)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *1) (-4 *1 (-566))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-848))) (-5 *1 (-141)))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-654 (-1189 *13))) (-5 *3 (-1189 *13))
- (-5 *4 (-654 *12)) (-5 *5 (-654 *10)) (-5 *6 (-654 *13))
- (-5 *7 (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| *13)))))
- (-5 *8 (-654 (-781))) (-5 *9 (-1284 (-654 (-1189 *10))))
- (-4 *12 (-860)) (-4 *10 (-315)) (-4 *13 (-963 *10 *11 *12))
- (-4 *11 (-803)) (-5 *1 (-717 *11 *12 *10 *13)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))
- (-4 *2 (-462))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2))
- (-4 *4 (-1260 (-417 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *3 (-462))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-315)) (-4 *3 (-566)) (-5 *1 (-1180 *3 *2))
- (-4 *2 (-1260 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860))
- (-5 *2 (-59 (-654 (-682 *5)))) (-5 *1 (-682 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1051)) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1051))) (-5 *2 (-1051)) (-5 *1 (-313))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-661 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *1) (-5 *1 (-1079)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1170 *4))
- (-4 *4 (-1234))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-444))
- (-5 *2
- (-654
- (-3 (|:| -2039 (-1193))
- (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574)))))))))
- (-5 *1 (-1197)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132))
- (-4 *3 (-802)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-442 *4) (-1020))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1067)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-1232))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1076)) (-4 *3 (-1219))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *1 (-1177 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))))
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))))
+(((*1 *1 *1) (-5 *1 (-112))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-654 (-1193)))
- (-5 *2 (-654 (-654 (-388)))) (-5 *1 (-1039)) (-5 *5 (-388))))
+ (-12 (-5 *3 (-656 (-937))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118)) (-5 *2 (-656 *1))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4)))))
- (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3))
+ (-5 *1 (-966 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $))
+ (-15 -2987 (*7 $))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-315))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1053))) (-5 *2 (-1053)) (-5 *1 (-315))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *1) (-5 *1 (-1081)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1172 *4))
+ (-4 *4 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464))
+ (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3883 *7) (|:| |sol?| (-112)))
+ (-576) *7))
+ (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7))
+ (-5 *3 (-419 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-586 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1089 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-4 *3 (-1083 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *7 *8 *9 *3 *4)) (-4 *4 (-1127 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-656 *8))
+ (|:| |towers| (-656 (-1045 *5 *6 *7 *8)))))
+ (-5 *1 (-1045 *5 *6 *7 *8)) (-5 *3 (-656 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4)))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-656 *8))
+ (|:| |towers| (-656 (-1164 *5 *6 *7 *8)))))
+ (-5 *1 (-1164 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053))
+ (-5 *1 (-768)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3))
+ (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2))
+ (-4 *2 (-699 *3 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872)))
- (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872)))
- (|:| |args| (-654 (-872)))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-781)) (-4 *4 (-358))
- (-5 *1 (-538 *4)))))
+ (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874)))
+ (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874)))
+ (|:| |args| (-656 (-874)))))
+ (-5 *1 (-1195)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
- (-4 *4 (-174))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-440 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-174)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 (-388))) (-5 *1 (-795 *3)) (-4 *3 (-624 (-388)))))
+ (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-5 *2 (-171 (-388))) (-5 *1 (-795 *3))
- (-4 *3 (-624 (-388)))))
+ (-12 (-5 *4 (-937)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3))
+ (-4 *3 (-626 (-390)))))
((*1 *2 *3)
- (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-624 (-388)))
- (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 *5)) (-5 *4 (-935)) (-4 *5 (-174))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-624 (-388)))
- (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 (-388)))
- (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 (-388)))
- (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
- (-5 *1 (-795 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-654 (-654 (-227)))) (-5 *4 (-227))
- (-5 *2 (-654 (-957 *4))) (-5 *1 (-1230)) (-5 *3 (-957 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884))
- (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-1285))
- (-5 *1 (-1288))))
+ (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270)))
- (-5 *2 (-1285)) (-5 *1 (-1288)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))
- (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4))))
- ((*1 *1 *1) (-4 *1 (-555)))
- ((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-829 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-1231 *3)) (-4 *3 (-1234))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018))
- (-4 *2 (-1065)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1076))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-1076))))
- ((*1 *1 *1) (-4 *1 (-858)))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)) (-4 *2 (-1076))))
- ((*1 *1 *1) (-4 *1 (-1076))) ((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227))))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-781)) (-4 *2 (-1116))
- (-5 *1 (-688 *2)))))
+ (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))))
+(((*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-654 (-417 *6))) (-5 *3 (-417 *6))
- (-4 *6 (-1260 *5)) (-4 *5 (-13 (-372) (-148) (-1054 (-574))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-578 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193))
- (-14 *4 *2))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-360))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576)))))))
+ (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))
+ ((*1 *1 *1) (-4 *1 (-557)))
+ ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020))
+ (-4 *2 (-1067)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4047 *3) (|:| |coef2| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414))))
- ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1090))))
+ (-12 (-5 *2 (-2 (|:| -2892 (-794 *3)) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-699 (-574)))
- (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-767)))))
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -2892 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52))
+ (-5 *1 (-1023)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1160 *3 *4)) (-14 *3 (-937)) (-4 *4 (-374))
+ (-5 *1 (-1011 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2892 *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-654 *5)) (-4 *5 (-860)) (-5 *1 (-1204 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7)))))
- (-4 *7 (-858))
- (-4 *8
- (-13 (-1262 *3 *7) (-372) (-1219)
- (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))))
- (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8))
- (-14 *10 (-1193)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1101))) (-5 *1 (-299)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1118))
+ (-5 *1 (-690 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830))
- (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *1 *1 *1) (-4 *1 (-483)))
- ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-894))))
- ((*1 *1 *1) (-5 *1 (-987)))
- ((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1238))
- (-4 *6 (-1260 (-417 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-351 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1116) (-1054 *5)))
- (-4 *5 (-897 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-945 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-388)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
+ (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *5 (-668 (-419 *2))))))
(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1092))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-654 *5))
- (-5 *1 (-901 *4 *5)) (-4 *5 (-1234)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-5 *2 (-654 (-2 (|:| -4201 *3) (|:| -3735 *4))))
- (-5 *1 (-706 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-654 (-622 *3)))
- (|:| |vals| (-654 *3))))
- (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227)))))
+ (-5 *2 (-656 (-1112 (-227)))) (-5 *1 (-944)))))
+(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118))))
+ ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-574))))
+ (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5))
+ (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *3) (|:| |radicand| *6)))
+ (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-965 *6 *4 *5))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-5 *1 (-331 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317))
+ (-4 *3 (-568)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-4 *4 (-374)) (-5 *2 (-1286 *1))
+ (-4 *1 (-339 *4))))
+ ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1))
+ (-4 *1 (-421 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4))
+ (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6))
+ (-4 *6 (-13 (-421 *4 *5) (-1056 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4))
+ (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))
+ (-4 *6 (-421 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -4199 (-783)) (|:| |period| (-783))))
+ (-5 *1 (-1175 *4)) (-4 *4 (-1236)) (-5 *3 (-783)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))))
+ (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1191 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1191 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-239)) (-4 *3 (-1065)) (-4 *4 (-860)) (-4 *5 (-273 *4))
- (-4 *6 (-803)) (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *3 *4 *5 *6))))
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2823 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1369 (-419 *6))
+ (|:| |special| (-419 *6))))
+ (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-4 *3 (-860)) (-4 *5 (-273 *3)) (-4 *6 (-803))
- (-5 *2 (-1 *1 (-781))) (-4 *1 (-260 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-273 *2)) (-4 *2 (-860)))))
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4))
+ (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -3870 *3) (|:| -3883 *3))) (-5 *1 (-911 *3 *5))
+ (-4 *3 (-1262 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236))
+ (-4 *5 (-384 *4)) (-4 *2 (-384 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *7 *2)) (-4 *6 (-1067))
+ (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-576))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862))
+ (-5 *1 (-461 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227)))
+ (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
+(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-769)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-55)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-622 *1))) (-4 *1 (-310)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-4 *5 (-372))
- (-4 *5 (-1065)) (-5 *2 (-112)) (-5 *1 (-1045 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372)) (-4 *4 (-1065))
- (-5 *2 (-112)) (-5 *1 (-1045 *4)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568))
+ (-5 *1 (-1148 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-374))
+ (-14 *4 (-1011 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734)))
+ ((*1 *1 *1) (|partial| -4 *1 (-738)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374)))
+ (-4 *2 (-1262 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1163 *3)))))
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))
+ (-14 *4 (-1195)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -2956 ($ *4)))))
+ (-4 *4 (-860))
+ (-4 *5
+ (-13 (-1264 *2 *4) (-374) (-1221)
+ (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $)))))
+ (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1001 *5))
+ (-14 *7 (-1195)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-1081 *3 *4 *2)) (-4 *2 (-860))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1246 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-968 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240))
+ (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-1205 *3)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1165 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1195))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-656 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1221) (-27) (-442 *8)))
+ (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3883 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1031 *8 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *9))))
+ (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2012 (-656 *8))))
+ (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374))
+ (-5 *2 (-112)) (-5 *1 (-679 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236))
+ (-4 *2 (-1118)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1128)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-315))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-457 *4 *5 *6 *2)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-963 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1065)) (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1)))
- (-4 *1 (-1260 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051))
- (-5 *1 (-766)))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *4))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *4)))))))
+ (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *7 (-965 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
+ (-4 *3 (-384 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *1 *1) (-4 *1 (-639)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-1260 *4)) (-4 *4 (-1065))
- (-5 *2 (-1284 *4)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
- (-5 *2 (-1051)) (-5 *1 (-759)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *3 (-174))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-220))))
- ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-493)) (-5 *1 (-686))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4)))
+ (-5 *1 (-705 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5))
+ (-5 *2 (-2 (|:| -4102 *7) (|:| |rh| (-656 (-419 *6)))))
+ (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6)))
+ (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3))
+ (-4 *3 (-1262 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
-(((*1 *1 *1) (-4 *1 (-639)))
+ (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *1 *1) (-4 *1 (-641)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
+(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1118)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| -3563 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *7) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *7)))))
+ (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783))
+ (-5 *1 (-940 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2 *3) (-12 (-5 *3 (-989)) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *2 (-654 *3)) (-5 *1 (-993 *4 *5 *6 *3))
- (-4 *3 (-1081 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116)))))
-(((*1 *2)
(-12
(-5 *2
- (-1284 (-654 (-2 (|:| -3079 (-924 *3)) (|:| -2591 (-1136))))))
- (-5 *1 (-360 *3 *4)) (-14 *3 (-935)) (-14 *4 (-935))))
- ((*1 *2)
- (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))
- (-5 *1 (-361 *3 *4)) (-4 *3 (-358)) (-14 *4 (-3 (-1189 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136))))))
- (-5 *1 (-362 *3 *4)) (-4 *3 (-358)) (-14 *4 (-935)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-557))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *3 *4)
+ (-12
(-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-972 (-1136)))
- (-5 *1 (-355 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1118 *3)) (-5 *1 (-919 *3)) (-4 *3 (-377))
- (-4 *3 (-1116)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-563)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574)
- *6))
- (-4 *6 (-372)) (-4 *7 (-1260 *6))
- (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
- (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-571)) (-5 *3 (-574))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576)))
+ (-5 *4 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *1 (-1038 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -3870 *5) (|:| -3883 *5)))) (-5 *1 (-1038 *3))
+ (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -3870 *5) (|:| -3883 *5)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-324 *4)) (-4 *4 (-13 (-838) (-1065))) (-5 *2 (-1175))
- (-5 *1 (-836 *4))))
+ (-12
+ (-5 *2
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-838) (-1065)))
- (-5 *2 (-1175)) (-5 *1 (-836 *5))))
+ (-12
+ (-5 *2
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-419 (-576))))
+ (-5 *4 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-324 *5)) (-4 *5 (-13 (-838) (-1065)))
- (-5 *2 (-1289)) (-5 *1 (-836 *5))))
+ (-12 (-5 *4 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -3870 *4) (|:| -3883 *4)))) (-5 *1 (-1039 *3))
+ (-4 *3 (-1262 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-832)) (-5 *4 (-324 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-838) (-1065))) (-5 *2 (-1289)) (-5 *1 (-836 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-838)) (-5 *2 (-1175))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-112)) (-5 *2 (-1175))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *2 (-1289))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-838)) (-5 *3 (-832)) (-5 *4 (-112)) (-5 *2 (-1289)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))))
+ (-12 (-5 *5 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -3870 *5) (|:| -3883 *5)))) (-5 *1 (-1039 *3))
+ (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -3870 *5) (|:| -3883 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118))
+ (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067))
+ (-5 *1 (-1179 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067))
+ (-14 *4 (-1195)) (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065))
- (-4 *5 (-860)) (-5 *2 (-966 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-862)) (-5 *2 (-968 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *5)) (-4 *4 (-1065))
- (-4 *5 (-860)) (-5 *2 (-966 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-862)) (-5 *2 (-968 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065))
- (-5 *2 (-966 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067))
+ (-5 *2 (-968 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-1275 *4)) (-4 *4 (-1065))
- (-5 *2 (-966 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1924 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-376 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1067))
+ (-5 *2 (-968 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7))
+ (-4 *7 (-965 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-163)))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-163)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1284 (-654 *3))) (-4 *4 (-315))
- (-5 *2 (-654 *3)) (-5 *1 (-465 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-767)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5))
- (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6))
- (-4 *6 (-462))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-491 *5 *6))) (-5 *4 (-874 *5))
- (-14 *5 (-654 (-1193))) (-5 *2 (-491 *5 *6)) (-5 *1 (-641 *5 *6))
- (-4 *6 (-462)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6))
+ (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-995 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))))
(((*1 *2)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-654 (-654 *4))) (-5 *1 (-350 *3 *4 *5 *6))
- (-4 *3 (-351 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-4 *3 (-377)) (-5 *2 (-654 (-654 *3))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-338)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-176 *6))
- (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-699 *3)) (|:| |invmval| (-699 *3))
- (|:| |genIdeal| (-514 *3 *4 *5 *6))))
- (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))))
+ (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372))
- (-5 *2 (-2 (|:| -1367 (-428 *3)) (|:| |special| (-428 *3))))
- (-5 *1 (-737 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *2 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))))
+ (|partial| -12 (-5 *4 (-304 (-845 *3)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 (-845 (-968 *5)))) (-4 *5 (-464))
+ (-5 *2 (-845 (-419 (-968 *5)))) (-5 *1 (-649 *5))
+ (-5 *3 (-419 (-968 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5)))
+ (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-576)))))
+ (-4 *2 (-568)) (-5 *1 (-430 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-576))
+ (|:| -3544 (-656 (-2 (|:| |irr| *4) (|:| -3807 (-576)))))))
+ (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
+(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-145)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))))
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-574)))))
- (-5 *1 (-370 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116))
- (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 (-781)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| -4201 *3) (|:| -2754 (-574)))))
- (-5 *1 (-428 *3)) (-4 *3 (-566)))))
+ (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7))
+ (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))
+ (-4 *7 (-1236)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4))
- (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-143 *2 *4 *3))
- (-4 *3 (-382 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-513 *2 *4 *5 *3))
- (-4 *5 (-382 *2)) (-4 *3 (-382 *4))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-699 *4)) (-4 *4 (-1008 *2)) (-4 *2 (-566))
- (-5 *1 (-703 *2 *4))))
+ (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112))
+ (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1056 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *2 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1067)) (-4 *3 (-1118))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2300 (-576)))) (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2300 (-905 *3))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1118))))
((*1 *2 *3)
- (-12 (-4 *4 (-1008 *2)) (-4 *2 (-566)) (-5 *1 (-1253 *2 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-315)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1260 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-315)) (-5 *1 (-470 *3 *2)) (-4 *2 (-1260 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-315)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-781)))
- (-5 *1 (-549 *3 *2 *4 *5)) (-4 *2 (-1260 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
- (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-963 *4 *5 *6))))
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2300 (-576))))
+ (-5 *1 (-966 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $))
+ (-15 -2987 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-975) (-29 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067))
+ (-5 *1 (-726 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-319))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-986))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1010))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1052))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1089)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| -3079 *4) (|:| -3716 (-574)))))
- (-4 *4 (-1116)) (-5 *2 (-1 *4)) (-5 *1 (-1033 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-1198) (-781)))) (-5 *1 (-341)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6))
- (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *2 (-1083 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3))
+ (-4 *3 (-1089 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4))
+ (-5 *2 (-2 (|:| -1868 (-419 *5)) (|:| |poly| *3)))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360))
+ (-5 *2 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))
+ (-5 *1 (-357 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-321))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-988))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1012))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1054))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1091)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-699 (-1189 *8))) (-4 *5 (-1065)) (-4 *8 (-1065))
- (-4 *6 (-1260 *5)) (-5 *2 (-699 *6)) (-5 *1 (-511 *5 *6 *7 *8))
- (-4 *7 (-1260 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-576))
+ (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576)))))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-576))
+ (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576)))))))
+ (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195))
+ (-4 *4 (-13 (-442 *7) (-27) (-1221)))
+ (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *2 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-870)) (-5 *3 (-129)) (-5 *2 (-781)))))
-(((*1 *1) (-5 *1 (-833))))
+ (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-1231 *3))
+ (-4 *3 (-992)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1133)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568))
+ (-4 *3 (-1067)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-972 *3)) (-5 *1 (-1180 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-858))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1260 (-171 *3))))))
-(((*1 *1) (-5 *1 (-299))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))))
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317))
+ (-5 *1 (-181 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 *8))
+ (-5 *4
+ (-656
+ (-2 (|:| -4093 (-701 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-701 *7)))))
+ (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360))
+ (-5 *2
+ (-2 (|:| -4093 (-701 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-701 *7))))
+ (-5 *1 (-510 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065))
- (-5 *2 (-654 (-654 (-654 (-781))))))))
+ (-12 (-4 *1 (-1121 *3 *2 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4))))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-654 *3)) (-5 *5 (-935)) (-4 *3 (-1260 *4))
- (-4 *4 (-315)) (-5 *1 (-470 *4 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1242))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27))
- (-5 *2 (-654 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| -1866 *4) (|:| -3758 *3) (|:| -3919 *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1081 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| -1866 *3) (|:| -3758 *1) (|:| -3919 *1)))
- (-4 *1 (-1260 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
+ (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1056 (-576)))
+ (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-624 *1)) (-4 *1 (-1067)) (-4 *1 (-312))
+ (-5 *2 (-1191 *1)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5))
- (-5 *2 (-654 *3)) (-5 *1 (-787 *4 *5 *6 *3 *7)) (-4 *3 (-1260 *6))
- (-14 *7 (-935)))))
-(((*1 *1 *1 *1) (-4 *1 (-555))))
-(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))))
-(((*1 *1) (-4 *1 (-358))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234))
- (-4 *3 (-1116)) (-5 *2 (-781))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4))
- (-4 *4 (-1234)) (-5 *2 (-781)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-436 *4 *2)) (-4 *2 (-13 (-1219) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *5))
- (-5 *1 (-599 *5)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1118)) (-4 *6 (-1118))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1118)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-993 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1195))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1221) (-975)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4093 (-656 *4))))
+ (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-555)) (-5 *1 (-160 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-736)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555))))
- ((*1 *1 *1) (-4 *1 (-1076))))
-(((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-1136)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-302 (-966 (-574))))
- (-5 *2
- (-2 (|:| |varOrder| (-654 (-1193)))
- (|:| |inhom| (-3 (-654 (-1284 (-781))) "failed"))
- (|:| |hom| (-654 (-1284 (-781))))))
- (-5 *1 (-242)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1120)) (-5 *3 (-784)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-1173 (-1173 (-966 *5))))
- (-5 *1 (-1292 *5)) (-5 *4 (-1173 (-966 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1234)) (-4 *2 (-1065))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
- ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-957 (-227))) (-5 *2 (-227)) (-5 *1 (-1230))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3878 *7) (|:| |sol?| (-112)))
- (-574) *7))
- (-5 *6 (-654 (-417 *8))) (-4 *7 (-372)) (-4 *8 (-1260 *7))
- (-5 *3 (-417 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-584 *7 *8)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-574)) (-5 *1 (-579 *3)) (-4 *3 (-1054 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388))))
- ((*1 *1 *1 *1) (-4 *1 (-555)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-781)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))))
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3))
+ (-4 *5 (-668 (-419 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-419 *5))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *5 (-1262 *4))
+ (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 *6)) (-4 *5 (-1238)) (-4 *6 (-1260 *5))
- (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| *6)))
- (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-781)) (-4 *7 (-1260 *3)))))
+ (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576))))
+ (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-579 *5 *3)) (-4 *3 (-641))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1286 (-1119 *3 *4))) (-5 *1 (-1119 *3 *4))
+ (-14 *3 (-937)) (-14 *4 (-937)))))
(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -4197 (-781)) (|:| |period| (-781))))
- (-5 *1 (-1173 *4)) (-4 *4 (-1234)) (-5 *3 (-781)))))
-(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1244 *3)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4))
+ (-4 *4 (-1236)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-968 *4)))) (-4 *4 (-464))
+ (-5 *2 (-656 (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4)))))
+ (-5 *1 (-302 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
+(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1118)) (-5 *2 (-783)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5)))
+ (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576)))))
+ (-14 *6 (-937)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-109)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566)) (-4 *7 (-803))
- (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *9))))
- (-5 *3 (-654 *9)) (-4 *1 (-1227 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2010 (-654 *8))))
- (-5 *3 (-654 *8)) (-4 *1 (-1227 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-833))))
+ (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862))
+ (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317))
+ (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *1) (-5 *1 (-1103))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-987 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-576))
+ (-5 *6
+ (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))))
+ (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-576))
+ (-5 *6
+ (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3958 (-390))))
+ (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4))
+ (-4 *4 (-925)) (-5 *1 (-675 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236))
+ (-4 *3 (-1118)) (-5 *2 (-783))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4))
+ (-4 *4 (-1236)) (-5 *2 (-783)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-654
- (-2 (|:| -3558 (-781))
- (|:| |eqns|
- (-654
- (-2 (|:| |det| *7) (|:| |rows| (-654 (-574)))
- (|:| |cols| (-654 (-574))))))
- (|:| |fgb| (-654 *7)))))
- (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148)))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781))
- (-5 *1 (-938 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148)))
- (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4)))))
+ (-2 (|:| |det| *12) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576)))))
+ (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-968 *9))))
+ (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576))
+ (-4 *9 (-13 (-317) (-148))) (-4 *12 (-965 *9 *11 *10))
+ (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805))
+ (-5 *2
+ (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12))
+ (|:| |wcond| (-656 (-968 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *9))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *9)))))))))
+ (-5 *1 (-940 *9 *10 *11 *12)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-568)) (-4 *8 (-965 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *9) (|:| |radicand| *9)))
+ (-5 *1 (-969 *5 *6 *7 *8 *9)) (-5 *4 (-783))
+ (-4 *9
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *8)) (-15 -2976 (*8 $)) (-15 -2987 (*8 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1065)) (-4 *3 (-1116))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2754 (-574)))) (-4 *1 (-440 *3))))
+ (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464)))
+ (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195))
+ (-14 *6 *4)))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-903 *3)) (|:| -2754 (-903 *3))))
- (-5 *1 (-903 *3)) (-4 *3 (-1116))))
+ (|partial| -12 (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464)))
+ (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195))
+ (-14 *6 *4))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1138)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-781))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))
+ (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-781)) (-5 *4 (-1081))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1053))))
+ (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-799)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))
+ (|:| |extra| (-1053))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-799)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))
+ (|:| |extra| (-1053))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-812)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2754 (-574))))
- (-5 *1 (-964 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $))
- (-15 -2980 (*7 $))))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-622 *4)) (-5 *6 (-1193))
- (-4 *4 (-13 (-440 *7) (-27) (-1219)))
- (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
+ (-12 (-5 *3 (-820))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-576 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820)) (-5 *4 (-1081))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-851)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))
+ (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-851)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-853))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-853)) (-5 *4 (-1081))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-910)) (-5 *3 (-1081))
+ (-5 *4
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177))
+ (|:| |tol| (-227))))
+ (-5 *2 (-2 (|:| -3944 (-390)) (|:| |explanations| (-1177))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-913))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-913)) (-5 *4 (-1081))
+ (-5 *2
+ (-2 (|:| -3944 (-390)) (|:| -2041 (-1177))
+ (|:| |explanations| (-656 (-1177)))))
+ (-5 *1 (-912)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1122)) (-5 *3 (-786)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862))
+ (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-965 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-656 (-2 (|:| -4205 (-1191 *9)) (|:| -2300 (-576)))))))
+ (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1056 (-48)))
+ (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3))
+ (-4 *3 (-1262 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390))))
+ ((*1 *1 *1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))))
+(((*1 *1) (-5 *1 (-590))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227)))
+ (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))))
(((*1 *2)
- (-12 (-5 *2 (-1284 (-1117 *3 *4))) (-5 *1 (-1117 *3 *4))
- (-14 *3 (-935)) (-14 *4 (-935)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1053))
+ (-5 *1 (-758)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))))
+ (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5))
+ (-4 *5 (-1067))
+ (-5 *2 (-2 (|:| -2081 (-701 *5)) (|:| |vec| (-1286 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1067))
+ (-5 *2 (-701 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *7)) (-4 *7 (-965 *6 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1067)) (-5 *2 (-1191 *6))
+ (-5 *1 (-331 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3))
+ (-4 *3 (-1262 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $))
+ (-15 -2987 ((-1143 *4 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *4 (-624 $)))))))
+ (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-624 *2)))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $))
+ (-15 -2987 ((-1143 *4 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *4 (-624 $)))))))
+ (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-851))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *2 (-1053))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-851))
+ (-5 *3
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))
+ (-5 *2 (-1053)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2))
+ (-4 *2 (-1262 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-310)))))
+(((*1 *1) (-5 *1 (-158))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4))
- (-5 *2 (-428 (-1189 (-417 (-574))))) (-5 *1 (-445 *4 *5 *3))
- (-4 *3 (-1260 *5)))))
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-1284
+ (-1286
(-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3656 (-574))
- (|:| -3645 (-574)) (|:| |spline| (-574)) (|:| -3436 (-574))
- (|:| |axesColor| (-884)) (|:| -2005 (-574))
- (|:| |unitsColor| (-884)) (|:| |showing| (-574)))))
- (-5 *1 (-1285)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3329 (-576))
+ (|:| -3208 (-576)) (|:| |spline| (-576)) (|:| -2884 (-576))
+ (|:| |axesColor| (-886)) (|:| -2007 (-576))
+ (|:| |unitsColor| (-886)) (|:| |showing| (-576)))))
+ (-5 *1 (-1287)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1126 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862))
+ (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4071 *9))))
+ (-5 *1 (-1126 *6 *7 *4 *8 *9)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2))
+ (-4 *2 (-668 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
(((*1 *2 *1)
- (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-654 *6))
- (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2))
- (-4 *2 (-684 *3)))))
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $))))))))))
+ (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4))
+ (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-937))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-959 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464))
+ (-5 *2
+ (-656
+ (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4))))
+ (|:| |geneigvec| (-656 (-701 (-419 (-968 *4))))))))
+ (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6))
+ (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193))
- (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-566))
- (-5 *2 (-2 (|:| -3479 (-699 *5)) (|:| |vec| (-1284 (-654 (-935))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
- (-4 *4 (-174)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3))))
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1277 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-1044 *3))))
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-654 (-699 *3))) (-4 *3 (-1065)) (-5 *1 (-1044 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4))
- (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6)))
- (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574))))
- (-5 *2 (-2 (|:| -1518 (-781)) (|:| -2722 *8)))
- (-5 *1 (-925 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
- (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4)))
- (-4 *6 (-351 (-417 (-574)) *4 *5))
- (-5 *2 (-2 (|:| -1518 (-781)) (|:| -2722 *6)))
- (-5 *1 (-926 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1284 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372))
- (-4 *1 (-734 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1260 *5))
- (-5 *2 (-699 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-832)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-654 (-1193))) (-4 *2 (-174))
- (-4 *3 (-244 (-2877 *4) (-781)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *3))
- (-2 (|:| -2591 *5) (|:| -2754 *3))))
- (-5 *1 (-471 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860))
- (-4 *7 (-963 *2 *3 (-874 *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-765)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1284 *5)) (-5 *3 (-781)) (-5 *4 (-1136)) (-4 *5 (-358))
- (-5 *1 (-538 *5)))))
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1277 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1171 *3)))))
+(((*1 *1) (-5 *1 (-449))))
(((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-315))
- (-5 *2 (-417 (-428 (-966 *4)))) (-5 *1 (-1058 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-4 *1 (-812))
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-1053)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-935)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-372)) (-14 *5 (-1009 *3 *4)))))
-(((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294)))))
+ (-12 (-5 *2 (-937)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-374)) (-14 *5 (-1011 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))))
+(((*1 *1) (-5 *1 (-1287))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4))
- (-4 *4 (-1065))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4))
+ (-4 *4 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4))
+ (-4 *4 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238))
- (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240))
+ (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))
- (-4 *4 (-1260 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))
+ (-4 *4 (-1262 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3))
- (-4 *3 (-1260 *2))))
+ (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3))
+ (-4 *3 (-1262 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-372)) (-4 *2 (-912 *3)) (-5 *1 (-596 *2))
- (-5 *3 (-1193))))
+ (-12 (-4 *2 (-374)) (-4 *2 (-914 *3)) (-5 *1 (-598 *2))
+ (-5 *3 (-1195))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-596 *2)) (-4 *2 (-372))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234))))
+ (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4))
+ (-4 *4 (-1118))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-654 *7))) (-4 *1 (-1227 *4 *5 *6 *7))
- (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-1079)))))
-(((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388)))
- (-5 *2 (-1051)) (-5 *1 (-850)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-605 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-633 *3 *4))
- (-4 *4 (-1260 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-736))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-686 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-1065))
- (-5 *2 (-699 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1175)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *4 (-1081 *6 *7 *8)) (-5 *2 (-1289))
- (-5 *1 (-786 *6 *7 *8 *4 *5)) (-4 *5 (-1087 *6 *7 *8 *4)))))
+ (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1067))
+ (-5 *2 (-701 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-858)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3996 (-428 *3))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-860)) (-5 *1 (-1204 *3)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1284 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7))
- (-4 *7 (-963 *5 *6 *4)) (-4 *5 (-923)) (-4 *6 (-803))
- (-4 *4 (-860)) (-5 *1 (-920 *5 *6 *4 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566))
- (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
- (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1051))
- (-5 *1 (-756)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3)) (-4 *3 (-1116))
- (-4 *3 (-1234)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5)))
- (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $))))))))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5))))
+ (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-143 *3 *4 *2))
+ (-4 *2 (-384 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-566)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-4 *7 (-1008 *4)) (-4 *2 (-697 *7 *8 *9))
- (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-697 *4 *5 *6))
- (-4 *8 (-382 *7)) (-4 *9 (-382 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065))
- (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-372))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-1010 *4)) (-4 *2 (-384 *4))
+ (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-1010 *4)) (-4 *4 (-568))
+ (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-372)) (-4 *3 (-174)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
- (-4 *2 (-697 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-699 *2)) (-4 *2 (-372)) (-4 *2 (-1065))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1139 *2 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-372))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-1204 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1065))
- (-5 *3 (-417 (-574))) (-5 *1 (-1177 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1156 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-781)) (-5 *3 (-957 *5)) (-4 *5 (-1065))
- (-5 *1 (-1181 *4 *5)) (-14 *4 (-935))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5))
- (-14 *4 (-935)) (-4 *5 (-1065))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065))
- (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462))
- (-5 *1 (-932 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2))
- (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))))
+ (-12 (-4 *3 (-568)) (-4 *4 (-1010 *3)) (-5 *1 (-1255 *3 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4)))
- (-4 *4 (-860)) (-5 *1 (-1204 *4)))))
+ (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *1 (-480)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360))
+ (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -1557 *3))))
+ (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3)))
+ (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-712 *3))
+ (-4 *3 (-317)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-860)) (-4 *5 (-923)) (-4 *6 (-803))
- (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-428 (-1189 *8)))
- (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-1189 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5)))
- (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-813)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *3 (-574)) (-4 *1 (-879 *4)))))
+ (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464))
+ (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7))
+ (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-656 (-981))) (-5 *1 (-301)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 *8))
- (-4 *7 (-860)) (-4 *8 (-1065)) (-4 *9 (-963 *8 *6 *7))
- (-4 *6 (-803)) (-5 *2 (-1189 *8)) (-5 *1 (-329 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1229 *2)) (-4 *2 (-990)))))
+ (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *3 (-914 *6))
+ (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3))
+ (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-701 *3))
+ (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416))
+ (-5 *2 (-937)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236))
+ (-14 *4 (-576)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2842 (-654 (-872))) (|:| -2354 (-654 (-872)))
- (|:| |presup| (-654 (-872))) (|:| -3480 (-654 (-872)))
- (|:| |args| (-654 (-872)))))
- (-5 *1 (-1193))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-1193)))))
+ (-2 (|:| -3840 (-656 (-874))) (|:| -2847 (-656 (-874)))
+ (|:| |presup| (-656 (-874))) (|:| -2094 (-656 (-874)))
+ (|:| |args| (-656 (-874)))))
+ (-5 *1 (-1195))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803))
- (-5 *2
- (-654
- (-2 (|:| -3558 (-781))
- (|:| |eqns|
- (-654
- (-2 (|:| |det| *8) (|:| |rows| (-654 (-574)))
- (|:| |cols| (-654 (-574))))))
- (|:| |fgb| (-654 *8)))))
- (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-781)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1924 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2))
- (-4 *2 (-1260 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))
- ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1118)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-338)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
- (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-428 *3)) (-4 *3 (-566))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| -4201 *4) (|:| -3735 (-574)))))
- (-4 *4 (-1260 (-574))) (-5 *2 (-781)) (-5 *1 (-452 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-212)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574))
- (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+ (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-5 *2 (-1177)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1122)) (-5 *1 (-289)))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566))
- (-4 *8 (-963 *7 *5 *6))
- (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| *3)))
- (-5 *1 (-967 *5 *6 *7 *8 *3)) (-5 *4 (-781))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *8)) (-15 -2970 (*8 $)) (-15 -2980 (*8 $))))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574))))
- (-5 *2 (-1284 (-574))) (-5 *1 (-1312 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1260 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)) (-5 *3 (-1175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-440 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193))))
- ((*1 *1 *1) (-4 *1 (-161))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-624 (-903 *3))) (-4 *3 (-897 *3)) (-4 *3 (-462))
- (-5 *1 (-1225 *3 *2)) (-4 *2 (-624 (-903 *3))) (-4 *2 (-897 *3))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-1092 *4 *5 *2))
- (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))
- (-5 *1 (-1092 *3 *4 *2))
- (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
+ (-12 (-4 *5 (-568))
+ (-5 *2 (-2 (|:| -2081 (-701 *5)) (|:| |vec| (-1286 (-656 (-937))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-860))
- (-4 *3 (-1116)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-302 *6)) (-5 *4 (-115)) (-4 *6 (-440 *5))
- (-4 *5 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-654 *7))
- (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7))
- (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-654 (-302 *8))) (-5 *4 (-654 (-115))) (-5 *5 (-302 *8))
- (-5 *6 (-654 *8)) (-4 *8 (-440 *7))
- (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115))) (-5 *5 (-302 *7))
- (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-115))) (-5 *6 (-654 (-302 *8)))
- (-4 *8 (-440 *7)) (-5 *5 (-302 *8))
- (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-302 *5)) (-5 *4 (-115)) (-4 *5 (-440 *6))
- (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6))
- (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-4 *3 (-440 *6))
- (-4 *6 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-115)) (-5 *5 (-302 *3)) (-5 *6 (-654 *3))
- (-4 *3 (-440 *7)) (-4 *7 (-13 (-566) (-624 (-546)))) (-5 *2 (-52))
- (-5 *1 (-325 *7 *3)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-957 *5)) (-5 *3 (-781)) (-4 *5 (-1065))
- (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1063)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1)))
- (-4 *1 (-862 *3)))))
-(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-158)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-699 *2)) (-5 *4 (-781))
- (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3))
- (-4 *3 (-1065))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-829 *4)) (-4 *4 (-860)) (-4 *1 (-1301 *4 *3))
- (-4 *3 (-1065)))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-4 *1 (-919 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1291))
+ (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555))
- (-4 *3 (-566))))
- ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555))
- (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555))
- (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-921 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4))
+ (-5 *1 (-1046 *5)) (-4 *5 (-1067))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3)) (-4 *3 (-1054 *2)))))
-(((*1 *1) (-5 *1 (-569))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-462) (-148))) (-5 *2 (-428 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1260 *4))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1046 *4))
+ (-4 *4 (-1067))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-13 (-462) (-148)))
- (-5 *2 (-428 *3)) (-5 *1 (-100 *5 *3)))))
+ (-12 (-5 *3 (-656 (-921 (-576)))) (-5 *4 (-576))
+ (-5 *2 (-656 (-701 *4))) (-5 *1 (-1046 *5)) (-4 *5 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-1046 *4)) (-4 *4 (-1067)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-799)) (-5 *2 (-1053))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-799)) (-5 *2 (-1053))
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1067)) (-5 *1 (-1308 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *1 (-1310 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-5 *2 (-576))
+ (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5))
+ (-4 *6 (-13 (-416) (-1056 *5) (-374) (-1221) (-294)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1262 *4))
+ (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862))
+ (-4 *5 (-805)) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1094 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1094 *3 *4 *2))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-749 *3)))))
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-1046 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1067)) (-5 *1 (-1046 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-654 (-781)))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-966 (-574))) (-5 *3 (-1193))
- (-5 *4 (-1110 (-417 (-574)))) (-5 *1 (-30)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
+ (-12 (-4 *1 (-910))
+ (-5 *3
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177))
+ (|:| |tol| (-227))))
+ (-5 *2 (-1053)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3))
+ (-4 *3 (-1067))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3))
+ (-4 *3 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803))
- (-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
- (|:| |wcond| (-654 (-966 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *5))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *5))))))))))
- (-5 *1 (-938 *5 *6 *7 *8)) (-5 *4 (-654 *8))))
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10))
+ (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1089 *5 *6 *7 *8))
+ (-4 *10 (-1127 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-5 *4 (-654 (-1193))) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803))
- (-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
- (|:| |wcond| (-654 (-966 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *5))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *5))))))))))
- (-5 *1 (-938 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803))
- (-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *7)) (|:| |neqzro| (-654 *7))
- (|:| |wcond| (-654 (-966 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *4))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *4))))))))))
- (-5 *1 (-938 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *9)) (-5 *5 (-935)) (-4 *9 (-963 *6 *8 *7))
- (-4 *6 (-13 (-315) (-148))) (-4 *7 (-13 (-860) (-624 (-1193))))
- (-4 *8 (-803))
- (-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9))
- (|:| |wcond| (-654 (-966 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *6))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *6))))))))))
- (-5 *1 (-938 *6 *7 *8 *9)) (-5 *4 (-654 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-935))
- (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
- (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803))
- (-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *9)) (|:| |neqzro| (-654 *9))
- (|:| |wcond| (-654 (-966 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *6))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *6))))))))))
- (-5 *1 (-938 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6)))
+ (-5 *1 (-640 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-5 *4 (-935)) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803))
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1195)))
(-5 *2
- (-654
- (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
- (|:| |wcond| (-654 (-966 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *5))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *5))))))))))
- (-5 *1 (-938 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 *9)) (-5 *5 (-1175))
- (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
- (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *9)) (-5 *4 (-654 (-1193))) (-5 *5 (-1175))
- (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
- (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-5 *4 (-1175)) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803)) (-5 *2 (-574)) (-5 *1 (-938 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 *10)) (-5 *5 (-935))
- (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148)))
- (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-699 *10)) (-5 *4 (-654 (-1193))) (-5 *5 (-935))
- (-5 *6 (-1175)) (-4 *10 (-963 *7 *9 *8)) (-4 *7 (-13 (-315) (-148)))
- (-4 *8 (-13 (-860) (-624 (-1193)))) (-4 *9 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *9)) (-5 *4 (-935)) (-5 *5 (-1175))
- (-4 *9 (-963 *6 *8 *7)) (-4 *6 (-13 (-315) (-148)))
- (-4 *7 (-13 (-860) (-624 (-1193)))) (-4 *8 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065))
- (-5 *1 (-1177 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065))
- (-14 *4 (-1193)) (-14 *5 *3))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860))))
- ((*1 *1) (-4 *1 (-1168))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1193))) (-4 *6 (-372))
- (-5 *2 (-654 (-302 (-966 *6)))) (-5 *1 (-548 *5 *6 *7))
- (-4 *5 (-462)) (-4 *7 (-13 (-372) (-858))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-839)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4)))
- (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+ (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6)))))
+ (-5 *1 (-640 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6)))
+ (-5 *1 (-1064 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1229 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1262 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-763)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5))
+ (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-555))))
-(((*1 *1 *1) (-5 *1 (-546))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227))))
- (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-654 (-324 (-227))))
- (|:| -3792 (-654 (-227)))))))
- (-5 *2 (-654 (-1175))) (-5 *1 (-274)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4))
+ (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6)))
+ (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576))))
+ (-5 *2 (-2 (|:| -3540 (-783)) (|:| -2726 *8)))
+ (-5 *1 (-927 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5))
+ (-5 *2 (-2 (|:| -3540 (-783)) (|:| -2726 *6)))
+ (-5 *1 (-928 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 (-1 *6 (-654 *6))))
- (-4 *5 (-38 (-417 (-574)))) (-4 *6 (-1275 *5)) (-5 *2 (-654 *6))
- (-5 *1 (-1277 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2 *2) (-12 (-5 *2 (-1173 (-654 (-935)))) (-5 *1 (-894)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))
- (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-566))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2)
+ (-12 (-5 *2 (-701 (-926 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-937))
+ (-14 *4 (-937))))
+ ((*1 *2)
+ (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360))
+ (-14 *4
+ (-3 (-1191 *3)
+ (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-937)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *1) (-4 *1 (-1170))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112))
+ (-5 *1 (-684 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1067)))))
+(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-937)) (-4 *5 (-317)) (-4 *3 (-1262 *5))
+ (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *1 *1) (-5 *1 (-548))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *4 (-656 (-937))) (-5 *5 (-656 (-270))) (-5 *1 (-480))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *4 (-656 (-937))) (-5 *1 (-480))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480))))
+ ((*1 *1 *1) (-5 *1 (-480))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1843 (-656 *3)) (|:| -3517 (-656 *3))))
+ (-5 *1 (-1237 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-769)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2))))
+ ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2))
+ (-4 *2 (-1277 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3)))
+ (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2))
+ (-4 *2 (-1277 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3)))
+ (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1171 *4)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-4 *7 (-1010 *4)) (-4 *8 (-384 *7))
+ (-4 *9 (-384 *7)) (-5 *2 (-656 *6))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *10 (-699 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-656 *7)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-781)) (-4 *3 (-1234)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1) (-5 *1 (-173)))
- ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1116))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399))))
- ((*1 *1) (-5 *1 (-404)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-4 *1 (-661 *3)) (-4 *3 (-1234))))
+ ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401))))
+ ((*1 *1) (-5 *1 (-406)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))
((*1 *1)
- (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116))
- (-4 *4 (-676 *3))))
- ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116))))
+ (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118))
+ (-4 *4 (-678 *3))))
+ ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-5 *1 (-1158 *3 *2)) (-14 *3 (-781)) (-4 *2 (-1065))))
- ((*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))
- ((*1 *1 *1) (-5 *1 (-1193))) ((*1 *1) (-5 *1 (-1193)))
- ((*1 *1) (-5 *1 (-1214))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))))
+ (-12 (-5 *1 (-1160 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1067))))
+ ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))
+ ((*1 *1 *1) (-5 *1 (-1195))) ((*1 *1) (-5 *1 (-1195)))
+ ((*1 *1) (-5 *1 (-1216))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1065))
- (-5 *1 (-863 *5 *2)) (-4 *2 (-862 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414))))
- ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709))))
- ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3))
- (-4 *3 (-1116)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))))
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1067))
+ (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374))
+ (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5))
+ (-5 *2 (-701 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065))
- (-14 *4 (-654 (-1193)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860)))
- (-14 *4 (-654 (-1193))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860)))
- (-14 *3 (-654 (-1193))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065))
- (-5 *2 (-253 *4 *5)) (-5 *1 (-958 *4 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711))))
+ ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
+(((*1 *2)
+ (-12 (-4 *1 (-360))
+ (-5 *2 (-656 (-2 (|:| -4205 (-576)) (|:| -2300 (-576))))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1219)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5))))
+ (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5)))))
+ (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-2 (|:| -3667 *3) (|:| -1916 *4))))
- (-4 *3 (-1116)) (-4 *4 (-1116)) (-4 *1 (-1210 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063))
- (-5 *3 (-574)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
- (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-656 (-2 (|:| -3672 *3) (|:| -1918 *4))))
+ (-4 *3 (-1118)) (-4 *4 (-1118)) (-4 *1 (-1212 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-417 (-574))))
+ (-12 (-4 *5 (-374))
(-5 *2
- (-654
- (-2 (|:| |outval| *4) (|:| |outmult| (-574))
- (|:| |outvect| (-654 (-699 *4))))))
- (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *5 *6 *3)) (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-135)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-62 *3)) (-14 *3 (-1193))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-69 *3)) (-14 *3 (-1193))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-72 *3)) (-14 *3 (-1193))))
- ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-1289))))
- ((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-407))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154))))
- ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-709)) (-5 *1 (-313)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2))
- (-4 *4 (-38 (-417 (-574)))))))
+ (-2 (|:| A (-701 *5))
+ (|:| |eqs|
+ (-656
+ (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -4102 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5))
+ (-4 *6 (-668 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-668 *5))
+ (-5 *2 (-2 (|:| -2081 (-701 *6)) (|:| |vec| (-1286 *5))))
+ (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2))
+ (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2))
+ (-4 *4 (-699 *2 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7))
+ (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -4102 *3))))
+ (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7))
+ (-4 *8 (-668 (-419 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2
+ (-656 (-2 (|:| |frac| (-419 *6)) (|:| -4102 (-666 *6 (-419 *6))))))
+ (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))))
+(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4093 (-656 *1))))
+ (-4 *1 (-378 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-465 *3 *4 *5 *6))
+ (|:| -4093 (-656 (-465 *3 *4 *5 *6)))))
+ (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-194)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065))
- (-14 *4 (-654 (-1193)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-574)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860)))
- (-14 *4 (-654 (-1193)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860))
- (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-282))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *8)) (-5 *4 (-654 *6)) (-4 *6 (-860))
- (-4 *8 (-963 *7 *5 *6)) (-4 *5 (-803)) (-4 *7 (-1065))
- (-5 *2 (-654 (-781))) (-5 *1 (-329 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-480 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4))
- (-4 *4 (-1260 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *3 (-860)) (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-989 *3 *2 *4)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *2 (-802))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1275 *3))
- (-5 *2 (-574))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-781)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-401)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-858)) (-4 *4 (-372)) (-5 *2 (-781))
- (-5 *1 (-959 *4 *5)) (-4 *5 (-1260 *4)))))
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291))))
+ ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937))
+ (-14 *4 (-937)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065))
- (-5 *2 (-491 *4 *5)) (-5 *1 (-958 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3))
- (-4 *3 (-658 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3))
- (-4 *3 (-658 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065))))
- ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-701 (-968 *4))) (-5 *1 (-1046 *4))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1193))
- (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *1 (-1196)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1) (-5 *1 (-642))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *3) (-12 (-5 *3 (-398)) (-5 *2 (-1289)) (-5 *1 (-401))))
- ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-401)))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576))))
+ ((*1 *1 *1) (-4 *1 (-1078))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4))
+ (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-5 *2 (-2 (|:| -1390 (-654 *6)) (|:| -1683 (-654 *6)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1116)) (-4 *4 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-1 *6 *5)) (-5 *1 (-694 *5 *4 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1275 *4)) (-5 *1 (-1277 *4 *2))
- (-4 *4 (-38 (-417 (-574)))))))
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-368 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-540 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-756 *3)) (-4 *3 (-174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-685 *2)) (-4 *2 (-1065)) (-4 *2 (-1116)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
- (-4 *3 (-1260 *4))
- (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-115))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860))
- (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781)))))
+ (-12 (-5 *1 (-687 *2)) (-4 *2 (-1067)) (-4 *2 (-1118)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-783))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174))
+ (-4 *3 (-244 (-2882 *4) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *3))
+ (-2 (|:| -2596 *5) (|:| -2300 *3))))
+ (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862))
+ (-4 *7 (-965 *2 *3 (-876 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291))
+ (-5 *1 (-461 *4 *5 *6 *7)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-444)) (-4 *5 (-1116))
- (-5 *1 (-1122 *5 *4)) (-4 *4 (-440 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *5 (-566))
- (-5 *2
- (-2 (|:| |minor| (-654 (-935))) (|:| -4097 *3)
- (|:| |minors| (-654 (-654 (-935)))) (|:| |ops| (-654 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-935)) (-4 *3 (-666 *5)))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1118))
+ (-5 *1 (-1124 *5 *4)) (-4 *4 (-442 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-1152)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1227 *5 *6 *7 *3))
- (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6))))
+ (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112))
+ (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1154)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6))
+ (|:| -2153 *6)))
+ (-5 *1 (-1033 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3))
+ (-4 *3 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-241 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1065))
- (-4 *2 (-1244 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-860))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234))))
+ (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-290 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3667
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1916
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2065
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-569))))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118))
+ (-5 *1 (-749 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-705 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2)
- (-12
+ (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317))
+ (-4 *9 (-965 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2625 (-1191 *9)) (|:| |polval| (-1191 *8))))
+ (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3724 *4))) (-5 *1 (-987 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 (-449)))))
+ (-5 *1 (-1199)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3))
(-5 *2
- (-2
- (|:| -3667
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (|:| -1916
- (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
- (|:| |expense| (-388)) (|:| |accuracy| (-388))
- (|:| |intermediateResults| (-388))))))
- (-5 *1 (-813))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-148)) (-4 *2 (-315)) (-4 *2 (-462)) (-4 *3 (-860))
- (-4 *4 (-803)) (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-324 (-574))) (-5 *1 (-1135))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-107 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1262 (-576)))
+ (-5 *2
+ (-2 (|:| -4093 (-701 (-576))) (|:| |basisDen| (-576))
+ (|:| |basisInv| (-701 (-576)))))
+ (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4))
+ (-5 *2
+ (-2 (|:| -4093 (-701 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-701 *4))))
+ (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4))
+ (-5 *2
+ (-2 (|:| -4093 (-701 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-701 *4))))
+ (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-767)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-428 *3)) (-4 *3 (-555))
- (-4 *3 (-566))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-555)) (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-807 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-843 *3)) (-4 *3 (-555))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1067)) (-5 *1 (-726 *2 *4))
+ (-4 *4 (-660 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5))
+ (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5))
+ (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576)))
+ (-5 *1 (-584))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1))
+ (-4 *1 (-925)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |det| *8) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (-5 *1 (-940 *5 *6 *7 *8)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1) (-5 *1 (-340))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-805)) (-4 *2 (-275 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1118) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -2570 (-419 *6)) (|:| |coeff| (-419 *6))))
+ (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4))
+ (-5 *2 (-2 (|:| -3402 (-635 *4 *5)) (|:| -3673 (-419 *5))))
+ (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-853 *3)) (-4 *3 (-555))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4))
+ (-14 *3 (-937)) (-4 *4 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-464)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1262 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *3 (-968 (-576)))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1110 (-968 (-576)))) (-5 *1 (-340)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1056 *4)) (-4 *3 (-317))
+ (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5))
+ (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1010 *3))
+ (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-937))) (-5 *4 (-112))
+ (-5 *1 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5))))
+ (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-374) (-148)))
+ (-5 *2 (-656 (-2 (|:| -2300 (-783)) (|:| -3337 *4) (|:| |num| *4))))
+ (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221)))
+ (-5 *1 (-595 *4 *2))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-419 (-968 *4))))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-601 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1013 *3)) (-4 *3 (-174)) (-4 *3 (-555))
- (-5 *2 (-417 (-574)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-417 (-574))) (-5 *1 (-1024 *3))
- (-4 *3 (-1054 *2)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *2 (-566)) (-5 *1 (-985 *2 *4))
- (-4 *4 (-1260 *2)))))
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-576)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1138)) (-4 *5 (-360))
+ (-5 *1 (-540 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1203)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 (-447)))))
- (-5 *1 (-1197)))))
+ (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576)))
+ (-5 *1 (-192)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-112)) (-4 *7 (-1081 *4 *5 *6))
- (-4 *4 (-462)) (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-993 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195))
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
- (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227)))
- (-5 *1 (-707))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-227)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-707))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1 (-957 (-227)) (-227) (-227)))
- (-5 *4 (-1110 (-227))) (-5 *5 (-654 (-270))) (-5 *1 (-707)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-317))
+ (-5 *2 (-419 (-430 (-968 *4)))) (-5 *1 (-1060 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1193)) (-5 *6 (-112))
- (-4 *7 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-4 *3 (-13 (-1219) (-973) (-29 *7)))
+ (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576))))))
+ (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-304 (-419 (-968 (-171 (-576)))))))
+ (-5 *2 (-656 (-656 (-304 (-968 (-171 *4)))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 (-171 (-576)))))
+ (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-968 (-171 (-576))))))
+ (-5 *2 (-656 (-304 (-968 (-171 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227)))
+ (-5 *2 (-1288)) (-5 *1 (-264)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9))))
+ (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1089 *5 *6 *7 *8))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291))
+ (-5 *1 (-1087 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9))))
+ (-5 *4 (-783)) (-4 *8 (-1083 *5 *6 *7)) (-4 *9 (-1127 *5 *6 *7 *8))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291))
+ (-5 *1 (-1163 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *9 (-1083 *6 *7 *8))
(-5 *2
- (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *7 *3)) (-5 *5 (-853 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-4 *3 (-566)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-399)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-112)))))
+ (-656
+ (-2 (|:| -4102 (-656 *9)) (|:| -4071 *10) (|:| |ineq| (-656 *9)))))
+ (-5 *1 (-1006 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1089 *6 *7 *8 *9))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *9 (-1083 *6 *7 *8))
+ (-5 *2
+ (-656
+ (-2 (|:| -4102 (-656 *9)) (|:| -4071 *10) (|:| |ineq| (-656 *9)))))
+ (-5 *1 (-1125 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5))
+ (-14 *4 (-937)) (-4 *5 (-1067)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2))))
+ ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))))
+(((*1 *1)
+ (-12 (-4 *1 (-416)) (-2085 (|has| *1 (-6 -4452)))
+ (-2085 (|has| *1 (-6 -4444)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862))))
+ ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4))))
+ (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-428 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-1065)) (-5 *2 (-654 *6)) (-5 *1 (-454 *5 *6)))))
+ (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6))
+ (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195))
+ (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-556))))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))))
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3))
+ (|:| |logand| (-1191 *3)))))
+ (-5 *1 (-598 *3)) (-4 *3 (-374)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-803)) (-4 *2 (-273 *4)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3))
- (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3)))
- (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))))
-(((*1 *1) (-5 *1 (-478))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-417 (-966 *4))) (-5 *1 (-938 *4 *5 *6 *3))
- (-4 *3 (-963 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 *7)) (-4 *7 (-963 *4 *6 *5))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-699 (-417 (-966 *4))))
- (-5 *1 (-938 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-654 (-417 (-966 *4))))
- (-5 *1 (-938 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-654 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1116))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-654 *4))) (-4 *4 (-1116))
+ (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1118)) (-4 *5 (-678 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *1) (-4 *1 (-1078))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1118))
(-5 *1 (-114 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118))
(-5 *1 (-114 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-654 *4)))
- (-5 *1 (-114 *4)) (-4 *4 (-1116))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-658 *3)) (-4 *3 (-1065))
- (-5 *1 (-724 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-846 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-884))
- (-5 *5 (-935)) (-5 *6 (-654 (-270))) (-5 *2 (-478)) (-5 *1 (-1288))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-478))
- (-5 *1 (-1288))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-654 (-270)))
- (-5 *2 (-478)) (-5 *1 (-1288)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1285))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1286)))))
+ (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4)))
+ (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *5)) (-4 *5 (-1260 *3)) (-4 *3 (-315))
- (-5 *2 (-112)) (-5 *1 (-465 *3 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-174))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1305 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-574)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-856)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-568) (-1056 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| -2570 (-419 (-968 *5))) (|:| |coeff| (-419 (-968 *5)))))
+ (-5 *1 (-582 *5)) (-5 *3 (-419 (-968 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4))))
- (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-769)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4)))
- (-4 *4 (-566)) (-5 *2 (-1284 *4)) (-5 *1 (-648 *4 *5)))))
+ (-12 (-4 *6 (-568)) (-4 *2 (-965 *3 *5 *4))
+ (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-968 *6))) (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *5 (-1238)) (-4 *6 (-1260 *5))
- (-4 *7 (-1260 (-417 *6))) (-5 *2 (-654 (-966 *5)))
- (-5 *1 (-350 *4 *5 *6 *7)) (-4 *4 (-351 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238))
- (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *4 (-372))
- (-5 *2 (-654 (-966 *4))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-514 *3 *4 *5 *6))) (-4 *3 (-372)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-963 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-781)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-118 *3)) (-14 *3 (-574))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-315)) (-5 *1 (-176 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-176 (-574))) (-5 *1 (-775 *3)) (-4 *3 (-414))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-176 (-417 (-574)))) (-5 *1 (-881 *3)) (-14 *3 (-574))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-574)) (-5 *2 (-176 (-417 (-574))))
- (-5 *1 (-882 *3 *4)) (-4 *4 (-879 *3)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *2) (-12 (-5 *1 (-975 *2)) (-4 *2 (-555)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-4 *6 (-462))
- (-5 *2 (-654 (-654 *7))) (-5 *1 (-548 *6 *7 *5)) (-4 *7 (-372))
- (-4 *5 (-13 (-372) (-858))))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9))))
- (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289))
- (-5 *1 (-1085 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9))))
- (-5 *4 (-781)) (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-1289))
- (-5 *1 (-1161 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-315))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-457 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6))
- (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-457 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-1175)) (-4 *7 (-963 *4 *5 *6))
- (-4 *4 (-315)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-457 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-966 *6)) (-5 *4 (-1193))
- (-5 *5 (-853 *7))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-4 *7 (-13 (-1219) (-29 *6))) (-5 *1 (-226 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1189 *6)) (-5 *4 (-853 *6))
- (-4 *6 (-13 (-1219) (-29 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-226 *5 *6)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *1)
- (-12 (-5 *2 (-701 (-980 *3))) (-5 *1 (-980 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *1)
- (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450)))
- (-2084 (|has| *1 (-6 -4442)))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860))))
- ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-860))))
- ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860))
- (-4 *4 (-273 *3)) (-4 *5 (-803)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-574)) (-14 *4 (-781)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 (-957 *4))) (-4 *1 (-1150 *4)) (-4 *4 (-1065))
- (-5 *2 (-781)))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *1 (-1050 *2))
+ (-4 *2 (-13 (-1118) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *5)) (-5 *1 (-896 *3 *4 *5))
- (-4 *3 (-1116)) (-4 *5 (-676 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6))
- (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574))))
- (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3))
- (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-401)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *1) (-5 *1 (-833))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065))
- (-14 *4 (-654 (-1193)))))
+ (-12 (-4 *3 (-1262 (-419 (-576))))
+ (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))
+ (-5 *1 (-929 *3 *4)) (-4 *4 (-1262 (-419 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1234))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860)))
- (-14 *4 (-654 (-1193)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-860)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-874 *4))
- (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3))
- (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2))
- (-4 *2 (-697 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-516)) (-5 *2 (-701 (-189))) (-5 *1 (-189)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-935)) (-4 *3 (-372))
- (-14 *4 (-1009 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *1) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
- ((*1 *1 *1) (|partial| -4 *1 (-732)))
- ((*1 *1 *1) (|partial| -4 *1 (-736)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372)))
- (-4 *2 (-1260 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1116)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116))
- (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))))
-(((*1 *2)
- (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *1) (-4 *1 (-639)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-338)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *2 (-1081 *4 *5 *6)) (-5 *1 (-786 *4 *5 *6 *2 *3))
- (-4 *3 (-1087 *4 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-872)))))
+ (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3))
+ (-4 *3 (-1262 (-419 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-516)) (-5 *3 (-654 (-979))) (-5 *1 (-109)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-574))
- (-5 *6
- (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))))
- (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-574))
- (-5 *6
- (-2 (|:| |try| (-388)) (|:| |did| (-388)) (|:| -3953 (-388))))
- (-5 *7 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227)))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *5)) (-4 *5 (-13 (-27) (-1219) (-440 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-417 (-574)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *5 *3))))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6))
+ (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227)))
+ (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-419 (-576)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-302 *3)) (-5 *5 (-417 (-574)))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-323 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-574))) (-5 *4 (-302 *6))
- (-4 *6 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *5 *6))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576)))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6))
+ (-4 *6 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *6 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-574))) (-5 *4 (-302 *7)) (-5 *5 (-1251 (-574)))
- (-4 *7 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576)))
+ (-4 *7 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-574)))
- (-4 *3 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *7 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576)))
+ (-4 *3 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-417 (-574)))) (-5 *4 (-302 *8))
- (-5 *5 (-1251 (-417 (-574)))) (-5 *6 (-417 (-574)))
- (-4 *8 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8))
+ (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576)))
+ (-4 *8 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1193)) (-5 *5 (-302 *3)) (-5 *6 (-1251 (-417 (-574))))
- (-5 *7 (-417 (-574))) (-4 *3 (-13 (-27) (-1219) (-440 *8)))
- (-4 *8 (-13 (-566) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-52))
- (-5 *1 (-469 *8 *3))))
+ (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576))))
+ (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8)))
+ (-4 *8 (-13 (-568) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3))))
- (-4 *3 (-1065)) (-5 *1 (-605 *3))))
+ (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-4 *3 (-1067)) (-5 *1 (-607 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-608 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3))))
- (-4 *3 (-1065)) (-4 *1 (-1244 *3))))
+ (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-4 *3 (-1067)) (-4 *1 (-1246 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-781))
- (-5 *3 (-1173 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4))))
- (-4 *4 (-1065)) (-4 *1 (-1265 *4))))
+ (-12 (-5 *2 (-783))
+ (-5 *3 (-1175 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4))))
+ (-4 *4 (-1067)) (-4 *1 (-1267 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-4 *1 (-1275 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-4 *1 (-1277 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1173 (-2 (|:| |k| (-781)) (|:| |c| *3))))
- (-4 *3 (-1065)) (-4 *1 (-1275 *3)))))
-(((*1 *1 *1) (-4 *1 (-639)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
-(((*1 *1) (-5 *1 (-158))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+ (-12 (-5 *2 (-1175 (-2 (|:| |k| (-783)) (|:| |c| *3))))
+ (-4 *3 (-1067)) (-4 *1 (-1277 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *1 *1) (-4 *1 (-175)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *1))))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3))
+ (|:| |genIdeal| (-516 *3 *4 *5 *6))))
+ (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-957 *4)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884)))
- (-5 *1 (-478)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-501)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1289))
- (-5 *1 (-443 *3 *4)) (-4 *4 (-440 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *1 (-233 *4))
- (-4 *4 (-1065))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1081)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8)))
+ (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-965 *8 *6 *7)) (-4 *6 (-805))
+ (-5 *2
+ (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8))
+ (|:| |Lfact|
+ (-656 (-2 (|:| -4205 (-1191 *8)) (|:| -2300 (-576)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-754 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-233 *4))
+ (-4 *4 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4))
+ (-4 *4 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-781))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))
- (-4 *4 (-1260 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))
+ (-4 *4 (-1262 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-372) (-148))) (-5 *1 (-409 *2 *3))
- (-4 *3 (-1260 *2))))
- ((*1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065))))
+ (-12 (-4 *2 (-13 (-374) (-148))) (-5 *1 (-411 *2 *3))
+ (-4 *3 (-1262 *2))))
+ ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-907 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1234))))
+ (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 (-781))) (-4 *1 (-914 *4))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-916 *4))
+ (-4 *4 (-1118))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-914 *2)) (-4 *2 (-1116))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-916 *2)) (-4 *2 (-1118))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *1 (-914 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1284 *5))) (-5 *4 (-574)) (-5 *2 (-1284 *5))
- (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-377)) (-4 *5 (-1065)))))
-(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884)))
- (-5 *4 (-654 (-935))) (-5 *5 (-654 (-270))) (-5 *1 (-478))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *3 (-654 (-884)))
- (-5 *4 (-654 (-935))) (-5 *1 (-478))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478))))
- ((*1 *1 *1) (-5 *1 (-478))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4460)) (-4 *4 (-372)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-531 *4 *5 *6 *3))
- (-4 *3 (-697 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4460)) (-4 *4 (-566)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-4 *7 (-1008 *4)) (-4 *8 (-382 *7))
- (-4 *9 (-382 *7)) (-5 *2 (-654 *6))
- (-5 *1 (-532 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-697 *4 *5 *6))
- (-4 *10 (-697 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-654 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *2 (-654 *6)) (-5 *1 (-698 *4 *5 *6 *3))
- (-4 *3 (-697 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
- (-5 *2 (-654 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1895 (-654 *1))))
- (-4 *1 (-376 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-463 *3 *4 *5 *6))
- (|:| -1895 (-654 (-463 *3 *4 *5 *6)))))
- (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-497))))
- ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-315))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574))))
- ((*1 *1 *1) (-4 *1 (-1076))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-916 *3)) (-4 *3 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112))
- (-5 *1 (-366 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-112))
- (-5 *1 (-538 *4)))))
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-1191 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-1067)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6)))
+ (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -1369 (-430 *3)) (|:| |special| (-430 *3))))
+ (-5 *1 (-739 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236))
+ (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))))
(((*1 *1)
- (-12 (-4 *3 (-1116)) (-5 *1 (-896 *2 *3 *4)) (-4 *2 (-1116))
- (-4 *4 (-676 *3))))
- ((*1 *1) (-12 (-5 *1 (-900 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2176 *4))) (-5 *1 (-985 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5))
- (-4 *5 (-167 *4)) (-4 *4 (-555)) (-5 *1 (-150 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 *3)) (-4 *3 (-1260 *5))
- (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *1 (-367 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 (-574)))) (-5 *3 (-1189 (-574)))
- (-5 *1 (-582))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 *1))) (-5 *3 (-1189 *1))
- (-4 *1 (-923)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
- (-5 *2 (-2 (|:| -1401 (-417 *6)) (|:| |coeff| (-417 *6))))
- (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))))
+ (-12 (-4 *3 (-1118)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1118))
+ (-4 *4 (-678 *3))))
+ ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-372) (-148)))
- (-5 *2 (-654 (-2 (|:| -2754 (-781)) (|:| -3332 *4) (|:| |num| *4))))
- (-5 *1 (-409 *3 *4)) (-4 *4 (-1260 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193))
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227)))
- (-5 *2 (-1286)) (-5 *1 (-264)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1) (-5 *1 (-518))))
+(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067))
+ (-5 *1 (-1179 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067))
+ (-14 *4 (-1195)) (-14 *5 *3))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *2 (-1289))
- (-5 *1 (-478))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-996 *3))))
+ (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *2 (-1291))
+ (-5 *1 (-480))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-998 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-957 *3))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-959 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3))))
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-959 *3)) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)) (-5 *3 (-227)))))
-(((*1 *1) (-5 *1 (-833))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)) (-5 *3 (-227)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-783)) (-5 *3 (-959 *4)) (-4 *1 (-1152 *4))
+ (-4 *4 (-1067))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-959 (-227))) (-5 *2 (-1291))
+ (-5 *1 (-1288)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
+ (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
(-14 *4 *2) (-4 *5 (-174))))
((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-935)) (-5 *1 (-166 *3 *4))
+ (-12 (-4 *4 (-174)) (-5 *2 (-937)) (-5 *1 (-166 *3 *4))
(-4 *3 (-167 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-935))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-937))))
((*1 *2)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3))
- (-5 *2 (-935))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3))
+ (-5 *2 (-937))))
((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
+ (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372))
- (-5 *2 (-781)) (-5 *1 (-677 *5))))
+ (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374))
+ (-5 *2 (-783)) (-5 *1 (-679 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-781))
- (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783))))
((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3))
- (-4 *3 (-697 *4 *5 *6))))
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
- (-5 *2 (-781)))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-783)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116)))))
-(((*1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860))
- (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-654 (-781)))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 (-781))))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051))
- (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
- (-4 *3 (-1260 *4))
- (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))))
(((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-440 *5) (-27) (-1219)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
- (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-622 *3))
- (-4 *3 (-13 (-440 *5) (-27) (-1219)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3)))
- (-5 *1 (-576 *5 *3 *6)) (-4 *6 (-1116)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-929 *3 *2))
+ (-4 *2 (-1262 (-419 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1275 *4))
- (-4 *4 (-38 (-417 (-574)))) (-5 *2 (-1 (-1173 *4) (-1173 *4)))
- (-5 *1 (-1277 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-666 *3)) (-4 *3 (-1065)) (-4 *3 (-372))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-1 *5 *5)) (-4 *5 (-372))
- (-5 *1 (-669 *5 *2)) (-4 *2 (-666 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-614 *4 *3)) (-4 *4 (-1116))
- (-4 *3 (-1234)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |%expansion| (-321 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))))
- (-5 *1 (-430 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-14 *6 (-1193)) (-14 *7 *3))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-555)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-803))
- (-4 *5 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *6 (-566))
- (-5 *2 (-2 (|:| -2354 (-966 *6)) (|:| -2955 (-966 *6))))
- (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-963 (-417 (-966 *6)) *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-351 *4 *5 *6)) (-4 *4 (-1238))
- (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-2 (|:| |num| (-699 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-968 *4)) (-968 *4)))
+ (-5 *1 (-1294 *4)) (-4 *4 (-374)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6))
+ (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6))
+ (-4 *4 (-1067)) (-14 *5 (-1195)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3))
+ (-4 *4 (-384 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1160 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 (-576)))))
+ (-5 *1 (-372 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118))
+ (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 (-783)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| -4205 *3) (|:| -2300 (-576)))))
+ (-5 *1 (-430 *3)) (-4 *3 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-968 (-576)))) (-5 *1 (-449))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1122))
+ (-5 *1 (-771))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1122))
+ (-5 *1 (-771)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1118)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-937))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374)))
+ (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6))
+ (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-937)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1262 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1067))
+ (-4 *3 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1067)) (-4 *3 (-862))
+ (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4))
+ (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6)))
+ (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1056 (-576))))
+ (-5 *2 (-783)) (-5 *1 (-927 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783))
+ (-5 *1 (-928 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374))
+ (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4))
+ (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783))
+ (-5 *1 (-1036 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-4 *3 (-568))
+ (-5 *2 (-783))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1110 *3)) (-4 *3 (-963 *7 *6 *4)) (-4 *6 (-803))
- (-4 *4 (-860)) (-4 *7 (-566))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574))))
- (-5 *1 (-604 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-566))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-574))))
- (-5 *1 (-604 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1) (-5 *1 (-872)))
+ (-12 (-5 *5 (-1112 *3)) (-4 *3 (-965 *7 *6 *4)) (-4 *6 (-805))
+ (-4 *4 (-862)) (-4 *7 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576))))
+ (-5 *1 (-606 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576))))
+ (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219)))))
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-161) (-27) (-1219)))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1185 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574))))
- (-5 *2 (-417 (-966 *5))) (-5 *1 (-1186 *5)) (-5 *3 (-966 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574))))
- (-5 *2 (-3 (-417 (-966 *5)) (-324 *5))) (-5 *1 (-1186 *5))
- (-5 *3 (-417 (-966 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1108 (-966 *5))) (-5 *3 (-966 *5))
- (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 *3))
- (-5 *1 (-1186 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1108 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5)))
- (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-3 *3 (-324 *5)))
- (-5 *1 (-1186 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894))
- (-5 *3 (-654 (-574)))))
+ (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221)))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1187 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576))))
+ (-5 *2 (-419 (-968 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-968 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576))))
+ (-5 *2 (-3 (-419 (-968 *5)) (-326 *5))) (-5 *1 (-1188 *5))
+ (-5 *3 (-419 (-968 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1110 (-968 *5))) (-5 *3 (-968 *5))
+ (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 *3))
+ (-5 *1 (-1188 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1110 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5)))
+ (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-3 *3 (-326 *5)))
+ (-5 *1 (-1188 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221))))
+ ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1081)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4))
+ (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894))
- (-5 *3 (-654 (-574))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-428 *4)) (-4 *4 (-566)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372))
- (-5 *2 (-1189 (-966 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-115)) (-4 *4 (-1065)) (-5 *1 (-724 *4 *2))
- (-4 *2 (-658 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-417 (-574))) (-4 *1 (-564 *3))
- (-4 *3 (-13 (-414) (-1219)))))
- ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-654 *3))
- (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-576 *6 *3 *7)) (-4 *7 (-1116)))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1175 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-738))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1067)) (-5 *2 (-1175 *3)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-654
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-803)) (-4 *3 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
- (-5 *1 (-459 *4 *5 *6 *3)))))
+ (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2))
+ (-4 *2 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-937)) (-5 *4 (-783)) (-5 *1 (-454 *2))
+ (-4 *2 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2))
+ (-4 *2 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783))
+ (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-937)) (-5 *4 (-656 (-783))) (-5 *5 (-783))
+ (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5))
+ (-5 *1 (-456 *5 *2)) (-4 *5 (-1067)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-118 *4)) (-14 *4 *3)
- (-5 *3 (-574))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3)
+ (-5 *3 (-576))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-881 *4)) (-14 *4 *3)
- (-5 *3 (-574))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3)
+ (-5 *3 (-576))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-417 (-574))) (-5 *1 (-882 *4 *5))
- (-5 *3 (-574)) (-4 *5 (-879 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1028)) (-5 *2 (-417 (-574)))))
+ (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5))
+ (-5 *3 (-576)) (-4 *5 (-881 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-419 (-576)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372)))
- (-4 *3 (-1260 *2))))
+ (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2951 (*2 (-1193))))
- (-4 *2 (-1065)))))
+ (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2956 (*2 (-1195))))
+ (-4 *2 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1126)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-566)) (-4 *2 (-1065))))
+ (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3))
+ (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1))))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7))
+ (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1236)) (-5 *2 (-1291)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193))
- (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289))
- (-5 *1 (-1196))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1193))
- (-5 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void"))) (-5 *2 (-1289))
- (-5 *1 (-1196)))))
-(((*1 *2 *2) (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
+ (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3))
+ (-4 *3 (-384 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3))
+ (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *4)) (-4 *4 (-1010 *2)) (-4 *2 (-568))
+ (-5 *1 (-705 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1010 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2))
+ (-4 *2 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195)))
+ (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1118)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3))
+ (-4 *3 (-1236)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-654 (-654 *6))) (-4 *6 (-963 *3 *5 *4))
- (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193))))
- (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 (-903 *6)))
- (-5 *5 (-1 (-900 *6 *8) *8 (-903 *6) (-900 *6 *8))) (-4 *6 (-1116))
- (-4 *8 (-13 (-1065) (-624 (-903 *6)) (-1054 *7)))
- (-5 *2 (-900 *6 *8)) (-4 *7 (-1065)) (-5 *1 (-955 *6 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-4 *3 (-1116))
- (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1173 *2)) (-4 *2 (-315)) (-5 *1 (-176 *2)))))
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-516)) (-5 *2 (-701 (-1120))) (-5 *1 (-299)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3)))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3)))
+ (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-417 (-574))))
- (-5 *2 (-2 (|:| -2236 (-1173 *4)) (|:| -2247 (-1173 *4))))
- (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-935))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-935))
- (-5 *1 (-538 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1123 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-872))))
- ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358)) (-5 *2 (-112))
- (-5 *1 (-366 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-299)) (-5 *1 (-169)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-97)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2))
- (-4 *2 (-1260 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-417 *2))) (-4 *2 (-1260 *4)) (-5 *1 (-820 *4 *2))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-664 *2 (-417 *2))) (-4 *2 (-1260 *4))
- (-5 *1 (-820 *4 *2))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
-(((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4))))
- (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4))))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-935)) (-5 *4 (-227)) (-5 *5 (-574)) (-5 *6 (-884))
- (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1189 *7))
- (-4 *5 (-1065)) (-4 *7 (-1065)) (-4 *2 (-1260 *5))
- (-5 *1 (-511 *5 *2 *6 *7)) (-4 *6 (-1260 *2)))))
-(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2))
- (-4 *2 (-666 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-831)))))
+ (-12 (-5 *3 (-937))
+ (-5 *2
+ (-3 (-1191 *4)
+ (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138)))))))
+ (-5 *1 (-357 *4)) (-4 *4 (-360)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4))))
+ (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4))
+ (-4 *4 (-1118)) (-5 *1 (-585 *4 *5)))))
+(((*1 *1) (-5 *1 (-480))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
- (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6)))
- (-5 *1 (-638 *5 *6)))))
-(((*1 *1) (-5 *1 (-607))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-301)) (-5 *1 (-169)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-27) (-440 *4))) (-4 *4 (-13 (-566) (-1054 (-574))))
- (-4 *7 (-1260 (-417 *6))) (-5 *1 (-562 *4 *5 *6 *7 *2))
- (-4 *2 (-351 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8)))))
+ (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783)))
+ (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-656 (-227)))
+ (-5 *1 (-480)))))
+(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-419 (-968 *4))) (-5 *1 (-940 *4 *5 *6 *3))
+ (-4 *3 (-965 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-701 (-419 (-968 *4))))
+ (-5 *1 (-940 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-656 (-419 (-968 *4))))
+ (-5 *1 (-940 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-654 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
+ (-12 (-4 *3 (-1067)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1262 *3)))))
+(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2892 (-794 *3)) (|:| |coef1| (-794 *3))
+ (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -2892 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-965 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-227))) (-5 *4 (-781)) (-5 *2 (-699 (-227)))
- (-5 *1 (-313)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-574)) (-4 *3 (-174)) (-4 *5 (-382 *3))
- (-4 *6 (-382 *3)) (-5 *1 (-698 *3 *5 *6 *2))
- (-4 *2 (-697 *3 *5 *6)))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574)))))
- (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112))
- (-5 *1 (-515 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-699 *11)) (-5 *4 (-654 (-417 (-966 *8))))
- (-5 *5 (-781)) (-5 *6 (-1175)) (-4 *8 (-13 (-315) (-148)))
- (-4 *11 (-963 *8 *10 *9)) (-4 *9 (-13 (-860) (-624 (-1193))))
- (-4 *10 (-803))
- (-5 *2
- (-2
- (|:| |rgl|
- (-654
- (-2 (|:| |eqzro| (-654 *11)) (|:| |neqzro| (-654 *11))
- (|:| |wcond| (-654 (-966 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *8))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *8))))))))))
- (|:| |rgsz| (-574))))
- (-5 *1 (-938 *8 *9 *10 *11)) (-5 *7 (-574)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-963 *4 *6 *5)) (-4 *4 (-462))
- (-4 *5 (-860)) (-4 *6 (-803)) (-5 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-935)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1065))
- (-4 *4 (-1234))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174))
- (-4 *5 (-244 (-2877 *3) (-781)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *5))
- (-2 (|:| -2591 *2) (|:| -2754 *5))))
- (-5 *1 (-471 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860))
- (-4 *7 (-963 *4 *5 (-874 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230)))))
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *2 (-656 (-227))) (-5 *1 (-315)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112))
+ (-5 *2 (-1053)) (-5 *1 (-765)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-574))
- (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))))
+ (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1067))
+ (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-965 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-982 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6))
+ (-4 *6 (-464)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1044 (-855 (-576))))
+ (-5 *3 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1067))
+ (-5 *1 (-607 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-930 *3)) (-4 *3 (-317)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1079)) (-5 *3 (-1175)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
+ (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568))
+ (-4 *3 (-1236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3))
- (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148)))
- (-5 *1 (-1169 *3)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-759)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1118)) (-5 *2 (-624 *5))
+ (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195))
+ (-4 *2 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *5 *2)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4288 (-115)) (|:| |arg| (-656 (-905 *3)))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4)))
+ (-5 *1 (-905 *4)) (-4 *4 (-1118)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *1 (-940 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1118))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1118))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1118))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4)))
+ (-5 *1 (-114 *4)) (-4 *4 (-1118))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1067))
+ (-5 *1 (-726 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-848 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-5 *1 (-1258 *4 *2))
+ (-4 *2 (-1262 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-598 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2))
- (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1239))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-546)) (-5 *1 (-545 *4))
- (-4 *4 (-1234)))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-366 *3)) (-4 *3 (-358)))))
-(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-253 *4 *5))
- (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-935)) (-4 *4 (-377)) (-4 *4 (-372)) (-5 *2 (-1189 *1))
- (-4 *1 (-337 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3))))
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-1286 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1262 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1262 *4)) (-5 *2 (-701 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *3 (-372))
- (-4 *2 (-1260 *3))))
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3))
+ (-5 *2 (-1286 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4))
- (-5 *1 (-538 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-417 (-966 *6)) (-1182 (-1193) (-966 *6))))
- (-5 *5 (-781)) (-4 *6 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *6)))))
- (-5 *1 (-300 *6)) (-5 *4 (-699 (-417 (-966 *6))))))
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5))))
- (|:| |eigmult| (-781)) (|:| |eigvec| (-654 *4))))
- (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5)))))
- (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
+ (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374))
+ (-5 *2 (-1286 *5)) (-5 *1 (-1104 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6))
+ (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1294 *6))
+ (-5 *5 (-1175 *4)))))
+(((*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886))
+ (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *2 (-480))
+ (-5 *1 (-1290))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-480)) (-5 *1 (-1290)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))
+ ((*1 *1 *1) (-4 *1 (-414))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -3084 *4) (|:| -2599 (-576)))))
+ (-4 *4 (-1118)) (-5 *2 (-1 *4)) (-5 *1 (-1035 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-247))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-803)) (-4 *5 (-1065)) (-4 *6 (-963 *5 *4 *2))
- (-4 *2 (-860)) (-5 *1 (-964 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *6)) (-15 -2970 (*6 $))
- (-15 -2980 (*6 $)))))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566))
- (-5 *2 (-1193)) (-5 *1 (-1059 *4)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-781))
- (-4 *3 (-13 (-736) (-377) (-10 -7 (-15 ** (*3 *3 (-574))))))
- (-5 *1 (-252 *3)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)) (-4 *2 (-317))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1071 *2 *3 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-317)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-941))
- (-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-941)) (-5 *4 (-417 (-574)))
- (-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3)
- (-12
+ (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4))
+ (-5 *3 (-656 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1118)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1175 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3883 *6) (|:| |sol?| (-112))) (-576)
+ *6))
+ (-4 *6 (-374)) (-4 *7 (-1262 *6))
(-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-654 (-957 (-227))))))
- ((*1 *2 *3)
- (-12
+ (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6))
+ (-2 (|:| -2570 (-419 *7)) (|:| |coeff| (-419 *7))) "failed"))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195))
(-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 (-227)))))
- (|:| |xValues| (-1110 (-227))) (|:| |yValues| (-1110 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 (-227)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1294)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-654 (-1092 *4 *5 *2))) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-654 (-1092 *5 *6 *2))) (-5 *4 (-935)) (-4 *5 (-1116))
- (-4 *6 (-13 (-1065) (-897 *5) (-624 (-903 *5))))
- (-4 *2 (-13 (-440 *6) (-897 *5) (-624 (-903 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
+ (-2 (|:| |zeros| (-1175 (-227))) (|:| |ones| (-1175 (-227)))
+ (|:| |singularities| (-1175 (-227)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5))
+ (-5 *2 (-425 *4 (-419 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1056 *4)))
+ (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317))
+ (-5 *1 (-425 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1260 (-574))) (-5 *1 (-496 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
+ (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
+ (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3))
+ (-4 *5 (-13 (-442 *4) (-1020) (-1221)))
+ (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1287)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067))
+ (-5 *1 (-1179 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783))
+ (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4))
+ (-4 *3 (-442 *4))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))
+ ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4))
+ (-4 *3 (-809 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1009 *3 *4))
+ (-4 *3 (-1010 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1014 *3 *4))
+ (-4 *3 (-1015 *4))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1029 *3)) (-4 *3 (-1030))))
+ ((*1 *2) (-12 (-4 *1 (-1067)) (-5 *2 (-783))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1077 *3)) (-4 *3 (-1078)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2799 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-981))) (-5 *1 (-301)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-982 *3)) (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))
- (-4 *4 (-358)) (-5 *2 (-1289)) (-5 *1 (-538 *4)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115)))))
+ (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317))
+ (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-802)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193))
- (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))))
-(((*1 *1) (-5 *1 (-1101))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *4)) (-5 *3 (-935)) (-4 *4 (-1065))
- (-5 *1 (-1044 *4))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6))
+ (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3))
+ (-4 *2 (-1262 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-699 *4))) (-5 *3 (-935)) (-4 *4 (-1065))
- (-5 *1 (-1044 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 (-574)))))
- (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4))
- (-4 *4 (-13 (-858) (-372)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-302 (-417 (-966 (-574))))))
- (-5 *2 (-654 (-654 (-302 (-966 *4))))) (-5 *1 (-389 *4))
- (-4 *4 (-13 (-858) (-372)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 (-302 (-966 *4))))
- (-5 *1 (-389 *4)) (-4 *4 (-13 (-858) (-372)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-302 (-417 (-966 (-574)))))
- (-5 *2 (-654 (-302 (-966 *4)))) (-5 *1 (-389 *4))
- (-4 *4 (-13 (-858) (-372)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1193))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1219) (-973)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1895 (-654 *4))))
- (-5 *1 (-662 *6 *4 *3)) (-4 *3 (-666 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *2))
- (-4 *2 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *1 (-662 *6 *2 *3)) (-4 *3 (-666 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *5)) (-4 *5 (-372))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1284 *5) "failed"))
- (|:| -1895 (-654 (-1284 *5)))))
- (-5 *1 (-677 *5)) (-5 *4 (-1284 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1284 *5) "failed"))
- (|:| -1895 (-654 (-1284 *5)))))
- (-5 *1 (-677 *5)) (-5 *4 (-1284 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *5)) (-4 *5 (-372))
- (-5 *2
- (-654
- (-2 (|:| |particular| (-3 (-1284 *5) "failed"))
- (|:| -1895 (-654 (-1284 *5))))))
- (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-654 *5))) (-4 *5 (-372))
- (-5 *2
- (-654
- (-2 (|:| |particular| (-3 (-1284 *5) "failed"))
- (|:| -1895 (-654 (-1284 *5))))))
- (-5 *1 (-677 *5)) (-5 *4 (-654 (-1284 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-4 *7 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-5 *2
- (-654
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1895 (-654 *7)))))
- (-5 *1 (-678 *5 *6 *7 *3)) (-5 *4 (-654 *7))
- (-4 *3 (-697 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *1 (-782 *5 *2)) (-4 *2 (-13 (-29 *5) (-1219) (-973)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-699 *7)) (-5 *5 (-1193))
- (-4 *7 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7)))))
- (-5 *1 (-812 *6 *7)) (-5 *4 (-1284 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-699 *6)) (-5 *4 (-1193))
- (-4 *6 (-13 (-29 *5) (-1219) (-973)))
- (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-1284 *6))) (-5 *1 (-812 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-654 (-302 *7))) (-5 *4 (-654 (-115)))
- (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7)))))
- (-5 *1 (-812 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-654 *7)) (-5 *4 (-654 (-115)))
- (-5 *5 (-1193)) (-4 *7 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1284 *7)) (|:| -1895 (-654 (-1284 *7)))))
- (-5 *1 (-812 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-302 *7)) (-5 *4 (-115)) (-5 *5 (-1193))
- (-4 *7 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1895 (-654 *7))) *7 "failed"))
- (-5 *1 (-812 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-1193))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1895 (-654 *3))) *3 "failed"))
- (-5 *1 (-812 *6 *3)) (-4 *3 (-13 (-29 *6) (-1219) (-973)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-302 *2)) (-5 *4 (-115)) (-5 *5 (-654 *2))
- (-4 *2 (-13 (-29 *6) (-1219) (-973))) (-5 *1 (-812 *6 *2))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-302 *2)) (-5 *5 (-654 *2))
- (-4 *2 (-13 (-29 *6) (-1219) (-973)))
- (-4 *6 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *1 (-812 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
- (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
- (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388)))
- (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1284 (-324 (-388)))) (-5 *4 (-388)) (-5 *5 (-654 *4))
- (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388)))
- (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1284 (-324 *4))) (-5 *5 (-654 (-388)))
- (-5 *6 (-324 (-388))) (-5 *4 (-388)) (-5 *2 (-1051)) (-5 *1 (-815))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1895 (-654 *6))) "failed")
- *7 *6))
- (-4 *6 (-372)) (-4 *7 (-666 *6))
- (-5 *2 (-2 (|:| |particular| (-1284 *6)) (|:| -1895 (-699 *6))))
- (-5 *1 (-823 *6 *7)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-1051)) (-5 *1 (-910))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-910))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175))
- (-5 *8 (-227)) (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388))
- (-5 *2 (-1051)) (-5 *1 (-910))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-781)) (-5 *6 (-654 (-654 (-324 *3)))) (-5 *7 (-1175))
- (-5 *5 (-654 (-324 (-388)))) (-5 *3 (-388)) (-5 *2 (-1051))
- (-5 *1 (-910))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *2 (-654 (-388)))
- (-5 *1 (-1039)) (-5 *4 (-388))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 (-574))) (-5 *2 (-654 (-388))) (-5 *1 (-1039))
- (-5 *4 (-388))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4))
- (-5 *3 (-324 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1147 *4))
- (-5 *3 (-302 (-324 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5))
- (-5 *3 (-302 (-324 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-302 (-324 *5)))) (-5 *1 (-1147 *5))
- (-5 *3 (-324 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1193)))
- (-4 *5 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-654 (-654 (-302 (-324 *5))))) (-5 *1 (-1147 *5))
- (-5 *3 (-654 (-302 (-324 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *5))))))
- (-5 *1 (-1202 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1193))) (-4 *5 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-1202 *5))
- (-5 *3 (-654 (-302 (-417 (-966 *5)))))))
+ (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-1202 *4))))
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1262 (-171 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3)) (-5 *1 (-425 *3 *2 *4 *5))
+ (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1056 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1010 *3))
+ (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4))
+ (-14 *6 (-1286 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *5) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507))))
+ (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 (-654 (-302 (-417 (-966 *4))))))
- (-5 *1 (-1202 *4)) (-5 *3 (-654 (-302 (-417 (-966 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-566))
- (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5))
- (-5 *3 (-417 (-966 *5)))))
+ (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4))
+ (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1) (-4 *1 (-1078))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-566))
- (-5 *2 (-654 (-302 (-417 (-966 *5))))) (-5 *1 (-1202 *5))
- (-5 *3 (-302 (-417 (-966 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4)))))
- (-5 *1 (-1202 *4)) (-5 *3 (-417 (-966 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 (-302 (-417 (-966 *4)))))
- (-5 *1 (-1202 *4)) (-5 *3 (-302 (-417 (-966 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-1193)) (-4 *6 (-440 *5))
- (-4 *5 (-1116)) (-5 *2 (-654 (-622 *6))) (-5 *1 (-583 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065))
- (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3))
- (-4 *3 (-862 *5)))))
+ (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576))
+ (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-1040 *3))
- (-4 *3 (-13 (-858) (-372) (-1038)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1084 *2 *3)) (-4 *2 (-13 (-858) (-372)))
- (-4 *3 (-1260 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
+ (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2))
+ (-4 *3 (-13 (-374) (-148))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1067)) (-4 *8 (-1067))
+ (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8))
+ (-4 *7 (-1262 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148)))
+ (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1147 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148)))
+ (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1147 *5)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-1005 (-419 (-576)) (-876 *3) (-246 *4 (-783))
+ (-253 *3 (-419 (-576)))))
+ (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1004 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5)))
+ (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5)))))
+(((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4))))
- (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-832)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-596 *3) *3 (-1193)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1193)))
- (-4 *3 (-292)) (-4 *3 (-639)) (-4 *3 (-1054 *4)) (-4 *3 (-440 *7))
- (-5 *4 (-1193)) (-4 *7 (-624 (-903 (-574)))) (-4 *7 (-462))
- (-4 *7 (-897 (-574))) (-4 *7 (-1116)) (-5 *2 (-596 *3))
- (-5 *1 (-583 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-358)) (-5 *2 (-1189 *4))
- (-5 *1 (-538 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-335 *3)) (-4 *3 (-1234))))
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234))
- (-14 *4 (-574)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-654 (-1189 *11))) (-5 *3 (-1189 *11))
- (-5 *4 (-654 *10)) (-5 *5 (-654 *8)) (-5 *6 (-654 (-781)))
- (-5 *7 (-1284 (-654 (-1189 *8)))) (-4 *10 (-860))
- (-4 *8 (-315)) (-4 *11 (-963 *8 *9 *10)) (-4 *9 (-803))
- (-5 *1 (-717 *9 *10 *8 *11)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1142 *4 *3 *5))) (-4 *4 (-38 (-417 (-574))))
- (-4 *4 (-1065)) (-4 *3 (-860)) (-5 *1 (-1142 *4 *3 *5))
- (-4 *5 (-963 *4 (-541 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1228 *4))) (-5 *3 (-1193)) (-5 *1 (-1228 *4))
- (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-338)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-315)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-1140 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-858)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3))
+ (-4 *3 (-686 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-212)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236))
+ (-4 *5 (-384 *4)) (-4 *2 (-384 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *6 *2 *7)) (-4 *6 (-1067))
+ (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-656 (-656 (-959 (-227)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-656 (-656 (-959 (-227))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576)))))
(-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
+ (-656
+ (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 (-171 *4)))))))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4))))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1287)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
+ (-656
+ (-2
+ (|:| -3672
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227))))
+ (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227)))
+ (|:| |g| (-326 (-227))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1918
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390)))))))
+ (-5 *1 (-815)))))
(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *3 (-656 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-480)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-654
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-781)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-803)) (-4 *6 (-963 *4 *3 *5)) (-4 *4 (-462)) (-4 *5 (-860))
- (-5 *1 (-459 *4 *3 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 (-491 *3 *4))) (-14 *3 (-654 (-1193)))
- (-4 *4 (-462)) (-5 *1 (-641 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))))
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-805)) (-4 *2 (-965 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2))
+ (-4 *4 (-464)) (-4 *6 (-862)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-654
- (-2 (|:| -3558 (-781))
- (|:| |eqns|
- (-654
- (-2 (|:| |det| *7) (|:| |rows| (-654 (-574)))
- (|:| |cols| (-654 (-574))))))
- (|:| |fgb| (-654 *7)))))
- (-4 *7 (-963 *4 *6 *5)) (-4 *4 (-13 (-315) (-148)))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-781))
- (-5 *1 (-938 *4 *5 *6 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-654 (-287))) (-5 *1 (-287))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-747 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116))))
- ((*1 *1) (-12 (-5 *1 (-747 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-1254 *3 *2))
- (-4 *2 (-1260 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1189 *3)) (-4 *3 (-1065)) (-4 *1 (-1260 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-622 *4)) (-4 *4 (-1116)) (-4 *2 (-1116))
- (-5 *1 (-621 *2 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067))
+ (-5 *2 (-656 (-656 (-656 (-959 *3))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4))
+ (-4 *2 (-244 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274))))
- ((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-112)) (-5 *1 (-274))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-654 (-966 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-654 (-966 *4))) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-654 (-966 *3)))))
+ (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221)))
+ (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1020) (-1221))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-987 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-4 *5 (-379))
+ (-5 *2 (-783)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2799 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))))
+(((*1 *1) (-5 *1 (-1100))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4))
+ (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -3337 *5) (|:| -2712 *5))))
+ (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5))
+ (-4 *6 (-668 (-419 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3337 *4) (|:| -2712 *4))))
+ (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4))
+ (-4 *6 (-668 (-419 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -3337 *5) (|:| -2712 *5))))
+ (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5))
+ (-4 *3 (-668 (-419 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3337 *4) (|:| -2712 *4))))
+ (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4))
+ (-4 *3 (-668 (-419 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1067) (-651 *4)))
+ (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-5 *2 (-2 (|:| -3672 *3) (|:| -1918 *4))))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-654 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-463 *4 *5 *6 *7))) (-5 *2 (-654 (-966 *4)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-566)) (-4 *4 (-174))
- (-14 *5 (-935)) (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1191 *4 *5 *6))
- (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1276 *4 *5 *6))
- (-4 *4 (-1065)) (-14 *5 (-1193)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-966 (-574)))) (-5 *1 (-447))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6)))
+ (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-227))) (-5 *2 (-1120))
- (-5 *1 (-769))))
+ (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4))
+ (-4 *3 (-1056 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-699 (-574))) (-5 *2 (-1120))
- (-5 *1 (-769)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-5 *2 (-654 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-654 *3))))
+ (-12 (-4 *5 (-1118)) (-5 *2 (-656 (-304 (-968 *3))))
+ (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1067))
+ (-2085 (-4 *3 (-1056 (-1195)))) (-4 *3 (-899 *5))
+ (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4))
+ (-2085 (-4 *3 (-1056 (-1195)))) (-2085 (-4 *3 (-1067)))
+ (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-995 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-937))) (-5 *4 (-921 (-576)))
+ (-5 *2 (-701 (-576))) (-5 *1 (-602))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-602))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-921 (-576))))
+ (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5))
+ (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-968 *5)))
+ (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240))
+ (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374))
+ (-5 *2 (-656 (-968 *4))))))
+(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))))
+(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1173 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))
+ (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177))
+ (-5 *1 (-247))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 *3)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-736))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-654 *3))))
+ (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *3 (-656 (-576)))
+ (-5 *1 (-896)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-974 *3)) (-5 *1 (-1182 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2)))
+ (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5))
+ (-4 *3 (-353 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240))
+ (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-5 *2 (-1191 (-968 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2))
+ (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174))
+ (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1065)) (-5 *2 (-1173 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-963 *3 *4 *5)))))
+ (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236))
+ (-4 *2 (-862))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462))
+ (-4 *1 (-384 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4))
+ (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-5 *1 (-1256 *4 *2))
- (-4 *2 (-1260 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-574)) (-5 *1 (-247))))
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7))
+ (-4 *4 (-1067)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-574)) (-5 *1 (-247)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-574)) (-5 *1 (-1173 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
-(((*1 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-1067)) (-4 *5 (-862)) (-4 *6 (-805))
+ (-14 *8 (-656 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-965 *4 *6 *5))
+ (-14 *9 (-656 *3)) (-14 *10 *3))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1079 (-1042 *4) (-1191 (-1042 *4)))) (-5 *3 (-874))
+ (-5 *1 (-1042 *4)) (-4 *4 (-13 (-860) (-374) (-1040))))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-1003 (-417 (-574)) (-874 *3) (-246 *4 (-781))
- (-253 *3 (-417 (-574)))))
- (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-1002 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-654 (-654 (-957 (-227)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-654 (-654 (-957 (-227))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-253 *4 *5))) (-5 *2 (-253 *4 *5))
- (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-641 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1234)) (-5 *1 (-184 *3 *2)) (-4 *2 (-684 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-59 *3)) (-4 *3 (-1234))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-59 *3)))))
+ (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1262 (-171 *3))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
+ (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
(-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065))))
+ (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-118 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-574))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-881 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-881 *2)) (-14 *2 (-574))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112))
+ (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-965 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-1162))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236))
+ (-4 *2 (-1118))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-574)) (-14 *3 *2) (-5 *1 (-882 *3 *4))
- (-4 *4 (-879 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-574)) (-5 *1 (-882 *2 *3)) (-4 *3 (-879 *2))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3))
+ (-4 *3 (-1236))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-574)) (-4 *1 (-1246 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-1275 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1246 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1275 *2)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1118))
+ (-5 *1 (-749 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6)
+ (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2153 *6)))
+ (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
(-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
(|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4))))
- (-5 *1 (-1292 *4)) (-4 *4 (-372)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-194))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-308))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1175)) (-5 *1 (-313)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1866 *3) (|:| |gap| (-781)) (|:| -3758 (-792 *3))
- (|:| -3919 (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860))
- (-5 *2
- (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3758 *1)
- (|:| -3919 *1)))
- (-4 *1 (-1081 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1) (-5 *1 (-301))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-227))
(-5 *2
- (-2 (|:| -1866 *1) (|:| |gap| (-781)) (|:| -3758 *1)
- (|:| -3919 *1)))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-803))
- (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566))
- (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *3
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *6))
- (-4 *6
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2))
- (-4 *2 (-963 (-966 *4) *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1260 *5))
- (-5 *1 (-737 *5 *2)) (-4 *5 (-372)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6))
- (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858)))))
+ (-2 (|:| |brans| (-656 (-656 (-959 *4))))
+ (|:| |xValues| (-1112 *4)) (|:| |yValues| (-1112 *4))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 *4)))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1138)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-783)))))
+(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-419 (-576)))
+ (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 *5)) (-4 *5 (-462)) (-5 *2 (-654 *6))
- (-5 *1 (-548 *5 *6 *4)) (-4 *6 (-372)) (-4 *4 (-13 (-372) (-858))))))
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5))
+ (-4 *5 (-13 (-568) (-1056 (-576)))) (-5 *2 (-1191 (-419 (-576))))
+ (-5 *1 (-445 *5 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1)))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-925))
+ (-5 *2 (-1286 *1)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1053)) (-5 *1 (-761))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-400)) (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1175 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576))))
+ (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-541)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-654 *2))) (-5 *4 (-654 *5))
- (-4 *5 (-38 (-417 (-574)))) (-4 *2 (-1275 *5))
- (-5 *1 (-1277 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *2 (-1289)) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-5 *2 (-2 (|:| -3667 *3) (|:| -1916 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-171 (-574))) (-5 *2 (-112)) (-5 *1 (-456))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310))))
((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574)))))
- (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112))
- (-5 *1 (-515 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-975 *3)) (-4 *3 (-555))))
- ((*1 *2 *1) (-12 (-4 *1 (-1238)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1065)) (-4 *2 (-697 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1260 *4)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)))))
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-968 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *5))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *5))))))))))
+ (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-965 *5 *7 *6))
+ (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4))
+ (-4 *4 (-881 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1277 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1277 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338))
- (-5 *1 (-340)))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-398)) (-5 *1 (-446)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1 *1) (-4 *1 (-983))))
-(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1112))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234))))
- ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-654 (-1175))) (-5 *3 (-574)) (-5 *4 (-1175))
- (-5 *1 (-247))))
- ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1262 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1042 (-853 (-574)))) (-5 *1 (-605 *3)) (-4 *3 (-1065)))))
+ (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2)))
+ (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3))
+ (-4 *3 (-353 *5 *2 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1305 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-829 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-171 (-227))) (-5 *6 (-1175))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067))
+ (-5 *2 (-656 (-656 (-656 (-783))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4))
- (-4 *4 (-38 (-417 (-574)))) (-4 *4 (-1065)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1158 *3 *4)) (-14 *3 (-935)) (-4 *4 (-372))
- (-5 *1 (-1009 *3 *4)))))
+ (-12 (-4 *4 (-13 (-374) (-1056 (-419 *2)))) (-5 *2 (-576))
+ (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-957 (-227)))))
- (-5 *2 (-654 (-1110 (-227)))) (-5 *1 (-942)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2818 (-423 *4 (-417 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1367 (-417 *6))
- (|:| |special| (-417 *6))))
- (-5 *1 (-737 *5 *6)) (-5 *3 (-417 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-909 *3 *4))
- (-4 *3 (-1260 *4))))
+ (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-929 *4 *3))
+ (-4 *3 (-1262 (-419 *4))))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342))))
((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-781)) (-4 *5 (-372))
- (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-909 *3 *5))
- (-4 *3 (-1260 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
- (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
- (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
- (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-654 *9)) (-5 *3 (-654 *8)) (-5 *4 (-112))
- (-4 *8 (-1081 *5 *6 *7)) (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238))
- (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))))
+ (-12 (-5 *3 (-1195)) (-5 *4 (-1110 (-968 (-576)))) (-5 *2 (-340))
+ (-5 *1 (-342))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1067))
+ (-4 *3 (-1118)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))))
+(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464))
+ (-5 *1 (-934 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4))))
+ (-5 *1 (-1294 *4)) (-4 *4 (-374)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-372))
- (-5 *2 (-112)) (-5 *1 (-677 *5))))
+ (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4))
+ (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *6 (-13 (-382 *5) (-10 -7 (-6 -4460))))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4460)))) (-5 *2 (-112))
- (-5 *1 (-678 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-341)))))
-(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *3 *4)
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574)))
- (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))
- ((*1 *2 *3 *4)
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-270))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574))) (-5 *4 (-417 (-574)))))
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1384 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-683))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1119 *3 *4)) (-14 *3 (-937))
+ (-14 *4 (-937)))))
+(((*1 *2 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317))
+ (-4 *10 (-965 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-656 (-1191 *10)))
+ (|:| |dterm|
+ (-656 (-656 (-2 (|:| -3615 (-783)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10))))
+ (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6))
+ (-5 *5 (-656 *10)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27))
+ (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-417 (-574)))
- (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1036 *3))
- (-4 *3 (-1260 (-574))) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5)))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195)))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *1) (-4 *1 (-360)))
((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148)))
(-5 *2
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574))))))
- ((*1 *2 *3 *4)
- (-12
+ (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5)))
+ (|:| |prim| (-1191 *5))))
+ (-5 *1 (-444 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-568) (-148)))
(-5 *2
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574))))
- (-5 *4 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))))
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3))
+ (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3))))
+ (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-968 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576))
+ (|:| |prim| (-1191 *5))))
+ (-5 *1 (-976 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-417 (-574)))
- (-5 *2 (-654 (-2 (|:| -3865 *4) (|:| -3878 *4)))) (-5 *1 (-1037 *3))
- (-4 *3 (-1260 *4))))
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 *5)))
+ (|:| |prim| (-1191 *5))))
+ (-5 *1 (-976 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-417 (-574)))
- (-5 *2 (-654 (-2 (|:| -3865 *5) (|:| -3878 *5)))) (-5 *1 (-1037 *3))
- (-4 *3 (-1260 *5)) (-5 *4 (-2 (|:| -3865 *5) (|:| -3878 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189 *6)) (-4 *6 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-1189 *7)) (-5 *1 (-329 *4 *5 *6 *7))
- (-4 *7 (-963 *6 *4 *5)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4))
- (-4 *4 (-1260 *3)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234))
- (-4 *2 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3))
- (-4 *3 (-1234))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116))
- (-5 *1 (-747 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1116)) (-4 *6 (-1116))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *5 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-4 *4 (-462))
- (-5 *2 (-654 (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4)))))
- (-5 *1 (-300 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1054 (-48)))
- (-4 *4 (-13 (-566) (-1054 (-574)))) (-4 *5 (-440 *4))
- (-5 *2 (-428 (-1189 (-48)))) (-5 *1 (-445 *4 *5 *3))
- (-4 *3 (-1260 *5)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1051))
- (-5 *1 (-756)))))
+ (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195))
+ (-4 *6 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| -1868 (-656 (-576))) (|:| |poly| (-656 (-1191 *6)))
+ (|:| |prim| (-1191 *6))))
+ (-5 *1 (-976 *6)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3))
- (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148)))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))))
-(((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462))
- (-5 *2 (-654 (-654 (-253 *5 *6)))) (-5 *1 (-481 *5 *6 *7))
- (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-699 *3))
- (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *3 (-419 (-576)))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464))
+ (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374))
+ (-4 *5 (-13 (-374) (-860))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-919 (-574))) (-5 *4 (-574)) (-5 *2 (-699 *4))
- (-5 *1 (-1044 *5)) (-4 *5 (-1065))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1044 *4))
- (-4 *4 (-1065))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-919 (-574)))) (-5 *4 (-574))
- (-5 *2 (-654 (-699 *4))) (-5 *1 (-1044 *5)) (-4 *5 (-1065))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -4205 *4) (|:| -2782 (-576)))))
+ (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-574)))) (-5 *2 (-654 (-699 (-574))))
- (-5 *1 (-1044 *4)) (-4 *4 (-1065)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-247)))))
+ (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1067))
+ (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1176))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195)))))
+(((*1 *1) (-5 *1 (-590)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1175 *4))
+ (-4 *4 (-1118)) (-4 *4 (-1236)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *10))
- (-5 *1 (-634 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1087 *5 *6 *7 *8))
- (-4 *10 (-1125 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
- (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6)))
- (-5 *1 (-638 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
- (-14 *6 (-654 (-1193)))
+ (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464))
(-5 *2
- (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6)))))
- (-5 *1 (-638 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1043 *5 *6 *7 *8))) (-5 *1 (-1043 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
- (-14 *6 (-654 (-1193))) (-5 *2 (-654 (-1062 *5 *6)))
- (-5 *1 (-1062 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-112)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1162 *5 *6 *7 *8))) (-5 *1 (-1162 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1227 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-935)) (-4 *5 (-315)) (-4 *3 (-1260 *5))
- (-5 *2 (-2 (|:| |plist| (-654 *3)) (|:| |modulo| *5)))
- (-5 *1 (-470 *5 *3)) (-5 *4 (-654 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2))))
- ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2))
- (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2))
- (-4 *4 (-697 *2 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-446)))))
-(((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
+ (-2 (|:| |dpolys| (-656 (-253 *5 *6)))
+ (|:| |coords| (-656 (-576)))))
+ (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-805))
+ (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *5 (-568))
+ (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *6))
+ (-4 *6
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2))
+ (-4 *2 (-965 (-968 *4) *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *3 (-966 (-574)))
- (-5 *1 (-338))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1108 (-966 (-574)))) (-5 *1 (-338)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1111 *3)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1112 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574)))
- (-5 *1 (-192)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-207))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-388))) (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *1 *1) (-4 *1 (-1076))))
+ (|partial| -12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-1257 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229 *3)) (-4 *3 (-990)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1234))
- (-4 *5 (-382 *4)) (-4 *3 (-382 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065))
- (-5 *1 (-1177 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065))
- (-14 *4 (-1193)) (-14 *5 *3))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-115)))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-974 (-1191 *4))) (-5 *1 (-368 *4))
+ (-5 *3 (-1191 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))
+ (-4 *3 (-568))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-789 *4))
- (-4 *4 (-13 (-372) (-858))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))
- ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1) (-4 *1 (-879 *2)))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4))))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5))
+ (-14 *4 (-937)) (-4 *5 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802))
- (-4 *4 (-860)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-900 *4 *5)) (-5 *3 (-900 *4 *6)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-676 *5)) (-5 *1 (-896 *4 *5 *6)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-372)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-666 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-5 *2 (-2 (|:| -4097 *3) (|:| -4285 (-654 *5))))
- (-5 *1 (-1041 *5 *3)) (-5 *4 (-654 *5)) (-4 *3 (-666 *5)))))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464))
+ (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-654 *3)) (-5 *1 (-975 *3)) (-4 *3 (-555)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-177))) (-5 *1 (-1101)))))
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1006 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1089 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-4 *2 (-440 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1054 *4)) (-4 *3 (-566)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310))))
- ((*1 *1 *1) (-4 *1 (-310)))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
- ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-372)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783))
+ (-5 *2 (-701 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576))))
+ (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-579 *5 *3)) (-4 *3 (-641))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1157))
+ (-4 *2 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576))))
+ (-5 *1 (-579 *5 *2)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-656 *3)) (-5 *5 (-937)) (-4 *3 (-1262 *4))
+ (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-802)) (-4 *3 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-654 (-173)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781)))
- (-5 *1 (-918 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-699 *4))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-666 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-372))
- (-5 *2 (-699 *5)) (-5 *1 (-824 *5 *6)) (-4 *6 (-666 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-315))))
+ (-2 (|:| -1868 *3) (|:| |gap| (-783)) (|:| -1758 (-794 *3))
+ (|:| -3983 (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-5 *2
+ (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -1758 *1)
+ (|:| -3983 *1)))
+ (-4 *1 (-1083 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1)))
- (-4 *1 (-315)))))
-(((*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))))
-(((*1 *2)
- (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193))) (-4 *5 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *5)))))) (-5 *1 (-780 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-566))
- (-5 *2 (-654 (-654 (-302 (-417 (-966 *4)))))) (-5 *1 (-780 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1895 (-654 *6)))
- *7 *6))
- (-4 *6 (-372)) (-4 *7 (-666 *6))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
(-5 *2
- (-2 (|:| |particular| (-3 (-1284 *6) "failed"))
- (|:| -1895 (-654 (-1284 *6)))))
- (-5 *1 (-823 *6 *7)) (-5 *4 (-1284 *6)))))
-(((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116))))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1193)))))
-(((*1 *1) (-5 *1 (-588)))
- ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-873))))
- ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-873))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-872)) (-5 *2 (-1289)) (-5 *1 (-873))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1173 *4))
- (-4 *4 (-1116)) (-4 *4 (-1234)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)) (-4 *2 (-555))))
- ((*1 *1 *1) (-4 *1 (-1076))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1260 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *6))))
- (-5 *4 (-1042 (-853 (-574)))) (-5 *5 (-1193)) (-5 *7 (-417 (-574)))
- (-4 *6 (-1065)) (-5 *2 (-872)) (-5 *1 (-605 *6)))))
+ (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -1758 *1)
+ (|:| -3983 *1)))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1177)) (-5 *1 (-798)))))
+(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2))
+ (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4))
+ (-4 *3 (-421 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4))
+ (-4 *4 (-421 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 (-937))) (-5 *2 (-783)) (-5 *1 (-602)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1109 *3)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1234))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1108 *3)) (-4 *3 (-1234))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2) (-12 (-5 *1 (-1251 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-486 *4 *5 *6 *7)) (|:| -2010 (-654 *7))))
- (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |k| (-682 *3)) (|:| |c| *4))))
- (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-654 (-781)))
- (-5 *1 (-918 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-216 *4))
- (-4 *4
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $))
- (-15 -3220 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3))
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-805))
+ (-4 *3 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *5 (-568))
+ (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-965 (-419 (-968 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805))
(-4 *3
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $))
- (-15 -3220 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512)))))
-(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-5 *1 (-1002 *4 *5 *3 *2)) (-4 *2 (-965 (-968 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *6))
+ (-4 *6
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-4 *4 (-1067)) (-4 *5 (-805)) (-5 *1 (-1002 *4 *5 *6 *2))
+ (-4 *2 (-965 (-968 *4) *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-317))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6))
+ (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-459 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-965 *4 *5 *6))
+ (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-459 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-1291)) (-5 *1 (-843)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-767))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-324 (-227))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))))
- (-5 *1 (-207)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4))
+ (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27))
+ (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5))
+ (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))))
+(((*1 *2 *1) (-12 (-5 *2 (-974 (-783))) (-5 *1 (-343)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1045 *5 *6 *7 *3))) (-5 *1 (-1045 *5 *6 *7 *3))
+ (-4 *3 (-1083 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1164 *5 *6 *7 *3))) (-5 *1 (-1164 *5 *6 *7 *3))
+ (-4 *3 (-1083 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *5)) (-4 *5 (-13 (-1065) (-649 *4)))
- (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2799 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1067)) (-5 *2 (-974 (-724 *3 *4))) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1262 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-251 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-358)) (-5 *3 (-574)) (-5 *2 (-1206 (-935) (-781))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-935)) (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-802))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-417 (-574))) (-4 *1 (-1265 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
- (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
- (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-709)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-884)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-315)) (-4 *6 (-382 *5)) (-4 *4 (-382 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-1140 *5 *6 *4 *3)) (-4 *3 (-697 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-622 *4)) (-5 *1 (-621 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174))
- (-4 *5 (-244 (-2877 *3) (-781)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *5))
- (-2 (|:| -2591 *2) (|:| -2754 *5))))
- (-4 *2 (-860)) (-5 *1 (-471 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-963 *4 *5 (-874 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1189 *3)) (-4 *3 (-377)) (-4 *1 (-337 *3))
- (-4 *3 (-372)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1285))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-270))) (-5 *1 (-1286)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))
- (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4)))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *9 (-1087 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1085 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6))
+ (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *9)) (-4 *8 (-1081 *5 *6 *7))
- (-4 *9 (-1125 *5 *6 *7 *8)) (-4 *5 (-462)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *2 (-781)) (-5 *1 (-1161 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-957 *5)) (-4 *5 (-1065)) (-5 *2 (-781))
- (-5 *1 (-1181 *4 *5)) (-14 *4 (-935))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-781)) (-5 *1 (-1181 *4 *5))
- (-14 *4 (-935)) (-4 *5 (-1065))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-957 *5)) (-4 *5 (-1065))
- (-5 *1 (-1181 *4 *5)) (-14 *4 (-935)))))
+ (-12 (-5 *3 (-968 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6))
+ (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174))
- (-5 *2 (-1284 (-699 (-966 *4)))) (-5 *1 (-191 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-112))
- (-5 *1 (-900 *4 *5)) (-4 *5 (-1116))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-903 *5)) (-4 *5 (-1116)) (-5 *2 (-112))
- (-5 *1 (-901 *5 *3)) (-4 *3 (-1234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116))
- (-4 *6 (-1234)) (-5 *2 (-112)) (-5 *1 (-901 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-112)) (-5 *1 (-831)))))
-(((*1 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-589)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $))))))))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4461 "*"))) (-4 *5 (-382 *2)) (-4 *6 (-382 *2))
- (-4 *2 (-1065)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1260 *2))
- (-4 *4 (-697 *2 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
+ (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1020) (-1221)))
+ (-5 *1 (-612 *4 *2 *3))
+ (-4 *3 (-13 (-442 (-171 *4)) (-1020) (-1221))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-574))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189 *1)) (-4 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-148))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-4 *4 (-1260 *3))
- (-4 *5 (-734 *3 *4)) (-5 *1 (-551 *3 *4 *5 *2)) (-4 *2 (-1275 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-372) (-377) (-624 (-574)))) (-5 *1 (-552 *3 *2))
- (-4 *2 (-1275 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-13 (-566) (-148)))
- (-5 *1 (-1169 *3)))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-251 *3)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
-(((*1 *2)
- (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-388)) (-5 *1 (-194)))))
-(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
- (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-963 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-315))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1189 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-462)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-428 *1)) (-4 *1 (-963 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-4 *5 (-803)) (-4 *6 (-462)) (-5 *2 (-428 *3))
- (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-963 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-462))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-428 (-1189 (-417 *7))))
- (-5 *1 (-1188 *4 *5 *6 *7)) (-5 *3 (-1189 (-417 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-428 *1)) (-4 *1 (-1238))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-428 *3)) (-5 *1 (-1263 *4 *3))
- (-4 *3 (-13 (-1260 *4) (-566) (-10 -8 (-15 -2887 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-14 *5 (-654 (-1193)))
- (-5 *2
- (-654 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6)))))
- (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1) (-5 *1 (-299))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1275 *4))
- (-4 *4 (-38 (-417 (-574))))
- (-5 *2 (-1 (-1173 *4) (-1173 *4) (-1173 *4))) (-5 *1 (-1277 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-966 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3))))
+ (-5 *1 (-921 *3)) (-4 *3 (-1118)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-566)) (-4 *3 (-1116)))))
-(((*1 *1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-270)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-968 *6)) (-5 *4 (-1195))
+ (-5 *5 (-855 *7))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6))
+ (-4 *6 (-13 (-1221) (-29 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-226 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024)))))
+(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| -1868 *4) (|:| -1758 *3) (|:| -3983 *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1083 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| -1868 *3) (|:| -1758 *1) (|:| -3983 *1)))
+ (-4 *1 (-1262 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289))
- (-5 *1 (-1235 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-5 *2 (-1289))
- (-5 *1 (-1235 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227)))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065))
- (-4 *6 (-1260 *5)) (-5 *2 (-1189 (-1189 *7)))
- (-5 *1 (-511 *5 *6 *4 *7)) (-4 *4 (-1260 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-699 *5))) (-4 *5 (-315)) (-4 *5 (-1065))
- (-5 *2 (-1284 (-1284 *5))) (-5 *1 (-1045 *5)) (-5 *4 (-1284 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5))
+ (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5))
+ (-5 *1 (-1279 *5 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-862))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-998 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6))
+ (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374))
+ (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5)))
+ (-5 *1 (-880 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374))
+ (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5)))
+ (-5 *1 (-880 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1262 (-171 *3))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703 (-982 *3))) (-5 *1 (-982 *3)) (-4 *3 (-1118)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
- ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-555)))
- ((*1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065))))
+ ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067))))
((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3))
- (-4 *3 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 (-853 *3))) (-4 *3 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (-853 *3)
- (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-853 *3) "failed")))
- "failed"))
- (-5 *1 (-646 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-302 *3)) (-5 *5 (-1175))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-853 *3)) (-5 *1 (-646 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 (-853 (-966 *5)))) (-4 *5 (-462))
- (-5 *2
- (-3 (-853 (-417 (-966 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-853 (-417 (-966 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-853 (-417 (-966 *5))) "failed")))
- "failed"))
- (-5 *1 (-647 *5)) (-5 *3 (-417 (-966 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5)))
- (-4 *5 (-462))
- (-5 *2
- (-3 (-853 *3)
- (-2 (|:| |leftHandLimit| (-3 (-853 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-853 *3) "failed")))
- "failed"))
- (-5 *1 (-647 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-302 (-417 (-966 *6)))) (-5 *5 (-1175))
- (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-853 *3))
- (-5 *1 (-647 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-122 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-584 *5 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-699 *3))
- (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-358)) (-4 *6 (-1260 *5))
- (-5 *2
- (-654
- (-2 (|:| -1895 (-699 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-699 *6)))))
- (-5 *1 (-508 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1895 (-699 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-699 *6))))
- (-4 *7 (-1260 *6)))))
+ (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1153)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227))
+ (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-768)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *4 (-1193))
- (-5 *1 (-1196))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195))
+ (-5 *1 (-1198))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1196))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-447)) (-5 *3 (-1193)) (-5 *1 (-1197))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-447)) (-5 *3 (-654 (-1193))) (-5 *1 (-1197)))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
- (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $))))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-462)) (-4 *4 (-830))
- (-14 *5 (-1193)) (-5 *2 (-574)) (-5 *1 (-1130 *4 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1238)) (-4 *5 (-1260 *3)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-112)) (-5 *1 (-350 *4 *3 *5 *6)) (-4 *4 (-351 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-407)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-781)) (|:| -3414 *4))) (-5 *5 (-781))
- (-4 *4 (-963 *6 *7 *8)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398)))) (-5 *3 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))
+ (-5 *2 (-390)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-459 *6 *7 *8 *4)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *1 (-276)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *2 (-965 *4 *6 *5)) (-5 *1 (-940 *4 *5 *6 *2))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1103)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-790 *5 (-874 *6)))) (-5 *4 (-112)) (-4 *5 (-462))
- (-14 *6 (-654 (-1193)))
- (-5 *2
- (-654 (-1162 *5 (-541 (-874 *6)) (-874 *6) (-790 *5 (-874 *6)))))
- (-5 *1 (-638 *5 *6)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234))
- (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3))
- (-4 *3 (-1234))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3))
+ (-4 *3 (-1236))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4460)) (-4 *1 (-120 *3))
- (-4 *3 (-1234))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3))
+ (-4 *3 (-1236))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116))
- (-4 *2 (-1234))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1193)) (-5 *1 (-642))))
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118))
+ (-4 *2 (-1236))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1251 (-574))) (|has| *1 (-6 -4460)) (-4 *1 (-661 *2))
- (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2))
+ (-4 *2 (-1236))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2))
- (-4 *2 (-1234))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2))
+ (-4 *2 (-1236))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2))
- (-4 *2 (-1234))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2))
+ (-4 *2 (-1236))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3))
- (-4 *3 (-1234))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3))
+ (-4 *3 (-1236))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2))
- (-4 *2 (-1234)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-516)) (-5 *2 (-701 (-784))) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-784)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-979)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-491 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065))
- (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-449))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-848))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1131))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2))
+ (-4 *2 (-1236)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-850))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1133))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1198))) (-5 *3 (-1198)) (-5 *1 (-1134)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-1065))
- (-5 *2 (-966 *5)) (-5 *1 (-958 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))))
+ (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1136)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358))
- (-4 *2
- (-13 (-412)
- (-10 -7 (-15 -2951 (*2 *4)) (-15 -3507 ((-935) *2))
- (-15 -1895 ((-1284 *2) (-935))) (-15 -2535 (*2 *2)))))
- (-5 *1 (-365 *2 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219)))
- (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219)))
- (-5 *1 (-610 *4 *5 *2)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-935)) (-4 *5 (-860))
- (-5 *2 (-654 (-682 *5))) (-5 *1 (-682 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-656 *5))
+ (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1146 *3 *5)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-935))) (-5 *2 (-1195 (-417 (-574))))
- (-5 *1 (-192)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-112)) (-5 *5 (-699 (-171 (-227))))
- (-5 *2 (-1051)) (-5 *1 (-765)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-4 *3 (-912 *5)) (-5 *2 (-1284 *3))
- (-5 *1 (-702 *5 *3 *6 *4)) (-4 *6 (-382 *3))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-699 *3))
- (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-699 *3))
- (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-4 *1 (-337 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238))
- (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174))
- (-4 *1 (-376 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1284 *1)) (-4 *4 (-174))
- (-4 *1 (-379 *4 *5)) (-4 *5 (-1260 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4))
- (-4 *4 (-1260 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3)))))
+ (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5))
+ (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6))
+ (-14 *7 (-937)))))
+(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-977 *3)) (-4 *3 (-557))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-937)) (-5 *1 (-478)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1119 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *1) (-4 *1 (-292)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *1) (-4 *1 (-294)))
((*1 *2 *3)
- (-12 (-5 *3 (-428 *4)) (-4 *4 (-566))
- (-5 *2 (-654 (-2 (|:| -1866 (-781)) (|:| |logand| *4))))
- (-5 *1 (-328 *4))))
+ (-12 (-5 *3 (-430 *4)) (-4 *4 (-568))
+ (-5 *2 (-656 (-2 (|:| -1868 (-783)) (|:| |logand| *4))))
+ (-5 *1 (-330 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *1)
- (-12 (-5 *2 (-674 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))
+ (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574)))))
- (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4))
- (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4))
+ (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576))
+ (-4 *6 (-1118)) (-5 *2 (-1 *6)) (-5 *1 (-1035 *6)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7))
+ (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))
+ (-4 *7 (-1236))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6))
+ (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *2
+ (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4))
+ (|:| |genIdeal| (-516 *4 *5 *6 *7))))
+ (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-574)) (-5 *1 (-496 *4))
- (-4 *4 (-1260 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-5 *1 (-447)))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-171 (-324 *4)))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-171 *3)) (-5 *1 (-1223 *4 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *4))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-699 *5)) (-4 *5 (-1065)) (-5 *1 (-1070 *3 *4 *5))
- (-14 *3 (-781)) (-14 *4 (-781)))))
-(((*1 *2 *1) (-12 (-5 *2 (-428 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1079)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-935)) (-4 *5 (-566)) (-5 *2 (-699 *5))
- (-5 *1 (-970 *5 *3)) (-4 *3 (-666 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-856)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))))
+ (-12 (-5 *3 (-1286 (-326 (-227))))
+ (-5 *2
+ (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576))
+ (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))))
+ (-5 *1 (-315)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))
- (-4 *2 (-372))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-227))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))
+ (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227))))
((*1 *1 *1 *1)
- (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234)))
- (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234)))))
- ((*1 *1 *1 *1) (-4 *1 (-372)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-388))))
+ (-2838 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236)))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236)))))
+ ((*1 *1 *1 *1) (-4 *1 (-374)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-566)) (-4 *3 (-1116))
- (-4 *1 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-483)))
+ (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1118))
+ (-4 *1 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-485)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-546)))
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-631 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-736) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-736) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174)) (-4 *2 (-372))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-738) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-727 *4))
- (-4 *3 (|SubsetCategory| (-736) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4))
+ (-4 *3 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))
- (-4 *2 (|SubsetCategory| (-736) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))
+ (-4 *2 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2)) (-4 *2 (-372))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-876 *2 *3 *4 *5)) (-4 *2 (-372))
- (-4 *2 (-1065)) (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-781)))
- (-14 *5 (-781))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566))))
+ (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374))
+ (-4 *2 (-1067)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783)))
+ (-14 *5 (-783))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065))
- (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-372))))
+ (-12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067))
+ (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1291 *2)) (-4 *2 (-372))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-372)) (-4 *2 (-1065)) (-4 *3 (-860))
- (-4 *4 (-803)) (-14 *6 (-654 *3))
- (-5 *1 (-1296 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-963 *2 *4 *3))
- (-14 *7 (-654 (-781))) (-14 *8 (-781))))
+ (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1067)) (-4 *3 (-862))
+ (-4 *4 (-805)) (-14 *6 (-656 *3))
+ (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-965 *2 *4 *3))
+ (-14 *7 (-656 (-783))) (-14 *8 (-783))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-372)) (-4 *2 (-1065))
- (-4 *3 (-856)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5))
- (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4097 *3))))
- (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6))
- (-4 *7 (-666 (-417 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5))
- (-5 *2 (-654 (-2 (|:| |poly| *6) (|:| -4097 (-664 *6 (-417 *6))))))
- (-5 *1 (-822 *5 *6)) (-5 *3 (-664 *6 (-417 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-713 *3))
- (-4 *3 (-624 (-546)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1193)) (-5 *2 (-1 (-227) (-227) (-227)))
- (-5 *1 (-713 *3)) (-4 *3 (-624 (-546))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1067))
+ (-4 *3 (-858)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3)))
+ (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3)))
+ (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3)))
+ (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1118)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-514 (-417 (-574)) (-246 *4 (-781)) (-874 *3)
- (-253 *3 (-417 (-574)))))
- (-14 *3 (-654 (-1193))) (-14 *4 (-781)) (-5 *1 (-515 *3 *4)))))
+ (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-173)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3))
+ (-4 *3 (-1262 *4)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-654
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-781)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-803)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462)) (-4 *5 (-860))
- (-5 *1 (-459 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
+ (-516 (-419 (-576)) (-246 *4 (-783)) (-876 *3)
+ (-253 *3 (-419 (-576)))))
+ (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *1) (-5 *1 (-1198))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-135)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $))
- (-15 -3220 ((-1289) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234))))
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $))
+ (-15 -4278 ((-1291) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
- ((*1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941))
- (-5 *1 (-939 *3)) (-4 *3 (-624 (-546)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1193)) (-5 *5 (-1110 (-227))) (-5 *2 (-941))
- (-5 *1 (-939 *3)) (-4 *3 (-624 (-546)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-940))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-940))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1 (-227) (-227)))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *1 (-814 *4 *2)) (-4 *2 (-13 (-29 *4) (-1219) (-973)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
+ (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1054 (-574)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-795 *3)) (-4 *3 (-624 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-5 *2 (-388)) (-5 *1 (-795 *3))
- (-4 *3 (-624 *2))))
+ (-12 (-5 *2 (-2 (|:| -2650 *3) (|:| -2300 (-783)))) (-5 *1 (-599 *3))
+ (-4 *3 (-557)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3)))
+ (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2))
+ (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6))
+ (-4 *6 (-353 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3)))
+ (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *1 (-346 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874)))
((*1 *2 *3)
- (-12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2))
- (-5 *2 (-388)) (-5 *1 (-795 *4))))
+ (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
+ (-12 (-5 *4 (-937)) (-5 *2 (-390)) (-5 *1 (-797 *3))
+ (-4 *3 (-626 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566)) (-4 *4 (-624 *2))
- (-5 *2 (-388)) (-5 *1 (-795 *4))))
+ (-12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
+ (-12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566)) (-4 *5 (-860))
- (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1108 (-853 *3))) (-4 *3 (-13 (-1219) (-973) (-29 *5)))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1108 (-853 *3))) (-5 *5 (-1175))
- (-4 *3 (-13 (-1219) (-973) (-29 *6)))
- (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 *3)) (|:| |f2| (-654 (-853 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1108 (-853 (-324 *5))))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1108 (-853 (-324 *6))))
- (-5 *5 (-1175))
- (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
+ (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1108 (-853 (-417 (-966 *5))))) (-5 *3 (-417 (-966 *5)))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 (-324 *5))) (|:| |f2| (-654 (-853 (-324 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1108 (-853 (-417 (-966 *6))))) (-5 *5 (-1175))
- (-5 *3 (-417 (-966 *6)))
- (-4 *6 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-3 (|:| |f1| (-853 (-324 *6))) (|:| |f2| (-654 (-853 (-324 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-3 *3 (-654 *3))) (-5 *1 (-438 *5 *3))
- (-4 *3 (-13 (-1219) (-973) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388))))
- (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388))))
- (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388))))
- (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-1110 (-853 (-388))))
- (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388)))))
- (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388)))))
- (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388)))))
- (-5 *5 (-388)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-1110 (-853 (-388)))))
- (-5 *5 (-388)) (-5 *6 (-1079)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388))))
- (-5 *5 (-1175)) (-5 *2 (-1051)) (-5 *1 (-575))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-324 (-388))) (-5 *4 (-1108 (-853 (-388))))
- (-5 *5 (-1193)) (-5 *2 (-1051)) (-5 *1 (-575))))
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4))
- (-5 *2 (-596 (-417 *5))) (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193)) (-4 *5 (-148))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-3 (-324 *5) (-654 (-324 *5)))) (-5 *1 (-599 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-750 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860))
- (-4 *3 (-38 (-417 (-574))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-966 *3)) (-4 *3 (-38 (-417 (-574))))
- (-4 *3 (-1065))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-4 *2 (-860))
- (-5 *1 (-1142 *3 *2 *4)) (-4 *4 (-963 *3 (-541 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065))
- (-5 *1 (-1177 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1190 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-38 (-417 (-574))))
- (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-2833
- (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065))
- (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219))
- (-4 *3 (-38 (-417 (-574))))))
- (-12 (-5 *2 (-1193)) (-4 *1 (-1244 *3)) (-4 *3 (-1065))
- (-12 (|has| *3 (-15 -4350 ((-654 *2) *3)))
- (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574))))))
- ((*1 *1 *1 *2)
- (-2833
- (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065))
- (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219))
- (-4 *3 (-38 (-417 (-574))))))
- (-12 (-5 *2 (-1193)) (-4 *1 (-1265 *3)) (-4 *3 (-1065))
- (-12 (|has| *3 (-15 -4350 ((-654 *2) *3)))
- (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1269 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-2833
- (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065))
- (-12 (-4 *3 (-29 (-574))) (-4 *3 (-973)) (-4 *3 (-1219))
- (-4 *3 (-38 (-417 (-574))))))
- (-12 (-5 *2 (-1193)) (-4 *1 (-1275 *3)) (-4 *3 (-1065))
- (-12 (|has| *3 (-15 -4350 ((-654 *2) *3)))
- (|has| *3 (-15 -3083 (*3 *3 *2))) (-4 *3 (-38 (-417 (-574))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-38 (-417 (-574))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)) (-14 *5 *3))))
-(((*1 *1 *1 *1) (-4 *1 (-483))) ((*1 *1 *1 *1) (-4 *1 (-771))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1100 *3)) (-4 *3 (-133)))))
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568)) (-4 *5 (-862))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576)))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *1) (-4 *1 (-360))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1102 *3)) (-4 *3 (-133)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1005))))
- ((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-981))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1007))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1236))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *2 *3))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-5 *2 (-1284 *3)) (-5 *1 (-722 *3 *4))
- (-4 *4 (-1260 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
+ (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *2 *3))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030))))
+ ((*1 *2 *3) (-12 (-5 *3 (-968 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1030))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1030))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1030)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1))
+ (-4 *1 (-1086 *4 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $))
- (-15 -3220 ((-1289) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-25)) (-4 *2 (-1234))))
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $))
+ (-15 -4278 ((-1291) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-331 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-132))))
+ (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2))
+ (-4 *2 (-1262 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-546)))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-25)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940))))
- ((*1 *2 *1) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25)))))
+(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862))
+ (-4 *4 (-275 *3)) (-4 *5 (-805)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781))
- (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-439 *3 *4))
- (-4 *3 (-440 *4))))
- ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-554 *3)) (-4 *3 (-555))))
- ((*1 *2) (-12 (-4 *1 (-773)) (-5 *2 (-781))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-806 *3 *4))
- (-4 *3 (-807 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-1007 *3 *4))
- (-4 *3 (-1008 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-781)) (-5 *1 (-1012 *3 *4))
- (-4 *3 (-1013 *4))))
- ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1027 *3)) (-4 *3 (-1028))))
- ((*1 *2) (-12 (-4 *1 (-1065)) (-5 *2 (-781))))
- ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-1075 *3)) (-4 *3 (-1076)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1260 *3)) (-5 *1 (-409 *3 *2))
- (-4 *3 (-13 (-372) (-148))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1234)) (-5 *2 (-781)) (-5 *1 (-184 *4 *3))
- (-4 *3 (-684 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *3 (-654 (-270)))
- (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-478)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *3 (-654 (-574)))
- (-5 *1 (-894)))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1198))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-516)) (-5 *3 (-654 (-1198))) (-5 *1 (-1198)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1260 *9)) (-4 *7 (-803)) (-4 *8 (-860)) (-4 *9 (-315))
- (-4 *10 (-963 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-654 (-1189 *10)))
- (|:| |dterm|
- (-654 (-654 (-2 (|:| -2503 (-781)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-654 *6)) (|:| |nlead| (-654 *10))))
- (-5 *1 (-788 *6 *7 *8 *9 *10)) (-5 *3 (-1189 *10)) (-5 *4 (-654 *6))
- (-5 *5 (-654 *10)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *4 (-781))
- (-5 *2 (-699 (-227))) (-5 *1 (-274)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1136)) (-5 *2 (-1289)) (-5 *1 (-841)))))
-(((*1 *2)
- (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4))
- (-4 *4 (-1260 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-456)) (-5 *3 (-574)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1051)) (-5 *3 (-1193)) (-5 *1 (-274)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))
- (-5 *2 (-388)) (-5 *1 (-274))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-313)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1284 *6)) (-5 *4 (-1284 (-574))) (-5 *5 (-574))
- (-4 *6 (-1116)) (-5 *2 (-1 *6)) (-5 *1 (-1033 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874))
+ (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1118)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1067))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-428 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1260 *4))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1262 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-781))) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-654 (-781))) (-5 *5 (-781)) (-5 *2 (-428 *3))
- (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3))
+ (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-428 *3)) (-5 *1 (-452 *3))
- (-4 *3 (-1260 (-574)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1262 (-576)))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-1023 *3))
- (-4 *3 (-1260 (-417 (-574))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1025 *3))
+ (-4 *3 (-1262 (-419 (-576))))))
((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1118))
+ (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-818 *5 *6 *7 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-326 *5))
+ (-5 *1 (-601 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-2 (|:| -4093 (-656 (-419 *6))) (|:| -2081 (-701 *5))))
+ (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-2 (|:| -4093 (-656 (-419 *6))) (|:| -2081 (-701 *5))))
+ (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240))
+ (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1116)) (-5 *2 (-112)) (-5 *1 (-896 *3 *4 *5))
- (-4 *3 (-1116)) (-4 *5 (-676 *4))))
+ (-12 (-4 *4 (-1118)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1118)) (-4 *5 (-678 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-145))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-103 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1118))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-290 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-290 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-4 *4 (-1116))
- (-5 *1 (-583 *4 *2)) (-4 *2 (-440 *4)))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1118)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5))
+ (-4 *4 (-1118)) (-14 *5 *2))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1028 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-2 (|:| |k| (-829 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227))
- (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 (-959 *4))) (-4 *1 (-1152 *4)) (-4 *4 (-1067))
+ (-5 *2 (-783)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1053))
+ (-5 *1 (-762)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-5 *2 (-781)) (-5 *1 (-531 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-4 *3 (-566)) (-5 *2 (-781))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *4 (-174)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *2 (-781)) (-5 *1 (-698 *4 *5 *6 *3))
- (-4 *3 (-697 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-566))
- (-5 *2 (-781)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576))))
+ (-5 *1 (-315)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1284 (-3 (-478) "undefined"))) (-5 *1 (-1285)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-995 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-4 *4 (-1236)) (-5 *2 (-112))
+ (-5 *1 (-1175 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-985))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-656 (-227))) (-5 *1 (-206)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-428 *3)) (-4 *3 (-566)) (-5 *1 (-429 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1116)) (-4 *5 (-1116))
- (-5 *2 (-1 *5)) (-5 *1 (-693 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1)))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *1) (-5 *1 (-145))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576))))
+ (-5 *1 (-192)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-148))) (-5 *1 (-580 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1158 *4 *2)) (-14 *4 (-935))
- (-4 *2 (-13 (-1065) (-10 -7 (-6 (-4461 "*")))))
- (-5 *1 (-916 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-1189 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $))
- (-15 -2980 ((-1141 *4 (-622 $)) $))
- (-15 -2951 ($ (-1141 *4 (-622 $))))))))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-299)))
- ((*1 *1) (-5 *1 (-872)))
- ((*1 *1)
- (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803))
- (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1101)))
- ((*1 *1)
- (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34)))))
- ((*1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1197))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-654 (-417 *7)))
- (-4 *7 (-1260 *6)) (-5 *3 (-417 *7)) (-4 *6 (-372))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-584 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-5 *1 (-1047)))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1030))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-874))
+ (-4 *1 (-1030))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *1 (-1086 *4 *2)) (-4 *2 (-1262 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-372)) (-5 *2 (-654 (-1173 *4))) (-5 *1 (-293 *4 *5))
- (-5 *3 (-1173 *4)) (-4 *5 (-1275 *4)))))
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-1056 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2441 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-937))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-1128)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))))
+ (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1118)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1162))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805))
+ (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-501)) (-5 *4 (-968)) (-5 *2 (-701 (-543)))
- (-5 *1 (-543))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-968)) (-4 *3 (-1116)) (-5 *2 (-701 *1))
- (-4 *1 (-777 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-130)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6))
+ (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576))))
+ (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3))
+ (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-227) (-227)))
+ (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2))
- (-4 *3 (-566))))
+ (-12 (-4 *2 (-13 (-442 *3) (-1020))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568))))
((*1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-1219))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1221))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374))
+ (-4 *5 (-1067)) (-5 *2 (-112)) (-5 *1 (-1047 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1067))
+ (-5 *2 (-112)) (-5 *1 (-1047 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-5 *1 (-1006 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-5 *1 (-1125 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1118))
+ (-5 *2 (-2 (|:| -1868 (-576)) (|:| |var| (-624 *1))))
+ (-4 *1 (-442 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236))
+ (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-783))
+ (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-246 *6 *5))
+ (-5 *1 (-245 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236))
+ (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118))
+ (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236))
+ (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-974 *6)) (-4 *6 (-1236))
+ (-4 *5 (-1236)) (-5 *2 (-974 *5)) (-5 *1 (-973 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1236))
+ (-4 *3 (-1236)) (-5 *2 (-1175 *3)) (-5 *1 (-1173 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236))
+ (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1118))
+ (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-148))) (-5 *1 (-582 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1044 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3))
- (-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
+ (|partial| -12 (-5 *3 (-968 (-171 *4))) (-4 *4 (-174))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-968 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-1260 *3))
- (-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-5 *1 (-778 *4 *5)) (-4 *5 (-419 *3 *4))))
+ (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3))
- (-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-5 *1 (-1001 *4 *3 *5 *6)) (-4 *6 (-734 *3 *5))))
+ (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 *3))
- (-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-5 *1 (-1293 *4 *3 *5 *6)) (-4 *6 (-419 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1))
- (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116))))
+ (|partial| -12 (-5 *3 (-419 (-968 (-171 *4)))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-968 (-171 *5)))) (-5 *4 (-937))
+ (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-699 *6)) (-5 *5 (-1 (-428 (-1189 *6)) (-1189 *6)))
- (-4 *6 (-372))
- (-5 *2
- (-654
- (-2 (|:| |outval| *7) (|:| |outmult| (-574))
- (|:| |outvect| (-654 (-699 *7))))))
- (-5 *1 (-542 *6 *7 *4)) (-4 *7 (-372)) (-4 *4 (-13 (-372) (-858))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-781))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-736)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1401 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-372)) (-4 *7 (-1260 *6))
- (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
- (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(((*1 *1 *1) (-4 *1 (-1076)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-335 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234)) (-14 *4 *2))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1236)))))
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3))
+ (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1042 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-372)) (-4 *2 (-858)) (-5 *1 (-959 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4))
- (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1044 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1199)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3)) (-4 *2 (-315))
- (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3)))))
+ (-12 (-4 *3 (-1010 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317))
+ (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1056 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1)))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505))))
+ (-12 (-4 *3 (-568)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1)))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4))
- (-5 *1 (-631 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4))
+ (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-736) *4))
- (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-727 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))))
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4))
+ (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))))
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)))))
-(((*1 *1)
- (-12 (-4 *1 (-414)) (-2084 (|has| *1 (-6 -4450)))
- (-2084 (|has| *1 (-6 -4442)))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-860))))
- ((*1 *1) (-4 *1 (-854))) ((*1 *1 *1 *1) (-4 *1 (-860)))
- ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))))
+ (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-831 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-5 *1 (-1006 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-5 *1 (-1125 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065))
- (-14 *4 (-654 (-1193)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067))
+ (-14 *4 (-656 (-1195)))))
((*1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1065) (-860)))
- (-14 *4 (-654 (-1193)))))
- ((*1 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-377)) (-4 *2 (-372))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862)))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-344 *3 *4 *5 *2)) (-4 *3 (-372))
- (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-4 *2 (-351 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374))
+ (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-4 *2 (-353 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-174))))
- ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-734 *2 *3)) (-4 *3 (-1260 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-4 *2 (-1260 *5))
- (-5 *1 (-1278 *5 *2 *6 *3)) (-4 *6 (-666 *2)) (-4 *3 (-1275 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-324 (-388))) (-5 *2 (-324 (-227))) (-5 *1 (-313)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1308 *3 *4)) (-4 *1 (-383 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-829 *3)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))))
+ ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227))
+ (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-1083 *3 *4 *2)) (-4 *2 (-862))))
((*1 *2 *1)
- (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4))
- (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6))
- (-4 *6 (-13 (-419 *4 *5) (-1054 *4)))))
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *3 (-1116)) (-5 *2 (-1141 *3 (-622 *1)))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505))))
+ (-12 (-4 *3 (-317)) (-4 *4 (-1010 *3)) (-4 *5 (-1262 *4))
+ (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6))
+ (-4 *6 (-13 (-421 *4 *5) (-1056 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-631 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-736) *3))))
+ (-12 (-4 *3 (-1067)) (-4 *3 (-1118)) (-5 *2 (-1143 *3 (-624 *1)))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-727 *3)) (-5 *1 (-672 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-736) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))))
-(((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1088 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-1289))
- (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1087 *3 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1156 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34)))
- (-5 *1 (-1157 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-1156 *3 *4))) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1054 (-574))) (-4 *3 (-566)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-440 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1189 *4)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1065)) (-4 *1 (-310))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1189 *3))))
- ((*1 *2) (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-738) *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *2)) (-4 *3 (-13 (-858) (-372)))
- (-4 *2 (-1260 *3)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-738) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1160 *4 *2)) (-14 *4 (-937))
+ (-4 *2 (-13 (-1067) (-10 -7 (-6 (-4463 "*")))))
+ (-5 *1 (-918 *4 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-546))) (-5 *1 (-546)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-152 *3))))
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317))
+ (-4 *5 (-1067)) (-5 *2 (-701 *5)) (-5 *1 (-1047 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5)))
+ (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5))
+ (-5 *1 (-650 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 *5)))
+ (-2085 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5)))
+ (-5 *1 (-650 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067))
+ (-5 *2 (-253 *4 *5)) (-5 *1 (-960 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-1120 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-656 *4))) (-5 *1 (-920 *4))
+ (-5 *3 (-656 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1118)) (-5 *2 (-1120 (-1120 *4))) (-5 *1 (-920 *4))
+ (-5 *3 (-1120 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1120 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-654 (-2 (|:| -2754 (-781)) (|:| -3332 *4) (|:| |num| *4))))
- (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148))) (-5 *1 (-409 *3 *4))))
+ (-5 *2 (-656 (-2 (|:| -2300 (-783)) (|:| -3337 *4) (|:| |num| *4))))
+ (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-5 *3 (-654 (-966 (-574)))) (-5 *4 (-112)) (-5 *1 (-447))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-112)) (-5 *1 (-449))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-5 *3 (-654 (-1193))) (-5 *4 (-112)) (-5 *1 (-447))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449))))
((*1 *2 *1)
- (-12 (-5 *2 (-1173 *3)) (-5 *1 (-611 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-174))))
+ (-12 (-5 *2 (-1175 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-5 *1 (-674 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 (-654 *3)))) (-4 *3 (-1116))
- (-5 *1 (-685 *3))))
+ (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1118))
+ (-5 *1 (-687 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-723 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1116))
+ (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1118))
(-14 *4
- (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *3))
- (-2 (|:| -2591 *2) (|:| -2754 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-848))))
+ (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *3))
+ (-2 (|:| -2596 *2) (|:| -2300 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-850))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234))))
+ (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-2 (|:| -3667 (-1193)) (|:| -1916 *4))))
- (-4 *4 (-1116)) (-5 *1 (-900 *3 *4)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-2 (|:| -3672 (-1195)) (|:| -1918 *4))))
+ (-4 *4 (-1118)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *5)) (-4 *5 (-13 (-1116) (-34)))
- (-5 *2 (-654 (-1156 *3 *5))) (-5 *1 (-1156 *3 *5))
- (-4 *3 (-13 (-1116) (-34)))))
+ (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1118) (-34)))
+ (-5 *2 (-656 (-1158 *3 *5))) (-5 *1 (-1158 *3 *5))
+ (-4 *3 (-13 (-1118) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| |val| *4) (|:| -4068 *5))))
- (-4 *4 (-13 (-1116) (-34))) (-4 *5 (-13 (-1116) (-34)))
- (-5 *2 (-654 (-1156 *4 *5))) (-5 *1 (-1156 *4 *5))))
+ (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4071 *5))))
+ (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34)))
+ (-5 *2 (-656 (-1158 *4 *5))) (-5 *1 (-1158 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4068 *4)))
- (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34)))
- (-5 *1 (-1156 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4071 *4)))
+ (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34)))
+ (-5 *1 (-1158 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34)))))
+ (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-13 (-1116) (-34)))
- (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34)))))
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1118) (-34)))
+ (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1156 *2 *3))) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))) (-5 *1 (-1157 *2 *3))))
+ (-12 (-5 *4 (-656 (-1158 *2 *3))) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))) (-5 *1 (-1159 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1157 *2 *3))) (-5 *1 (-1157 *2 *3))
- (-4 *2 (-13 (-1116) (-34))) (-4 *3 (-13 (-1116) (-34)))))
+ (-12 (-5 *4 (-656 (-1159 *2 *3))) (-5 *1 (-1159 *2 *3))
+ (-4 *2 (-13 (-1118) (-34))) (-4 *3 (-13 (-1118) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4))))
+ (-12 (-5 *2 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1182 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-654 (-574))) (-5 *3 (-699 (-574))) (-5 *1 (-1126)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *1 (-596 *2)) (-4 *2 (-1054 *3))
- (-4 *2 (-372))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-640 *4 *2))
- (-4 *2 (-13 (-440 *4) (-1018) (-1219)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1108 *2)) (-4 *2 (-13 (-440 *4) (-1018) (-1219)))
- (-4 *4 (-566)) (-5 *1 (-640 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-973)) (-5 *2 (-1193))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-973)))))
-(((*1 *1) (-5 *1 (-607))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1022)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227)))
- (-5 *1 (-707)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-781))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-935))))
+ (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1020))
+ (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *4 (-624 $)) $))
+ (-15 -2987 ((-1143 *4 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *4 (-624 $))))))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4))
+ (-4 *4 (-1118)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1236))
+ (-5 *2 (-656 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4))))
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065))
+ (-5 *3 (-576)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1)))
+ (-4 *1 (-864 *3)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
(-4 *4 (-174))))
((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-158))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-158))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219)))
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221)))
(-5 *1 (-229 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234))))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-302 *2)) (-4 *2 (-1128)) (-4 *2 (-1234))))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-1130)) (-4 *2 (-1236))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1118))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-390 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-860))))
+ (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174))
- (-4 *6 (-244 (-2877 *3) (-781)))
+ (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174))
+ (-4 *6 (-244 (-2882 *3) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6))
- (-2 (|:| -2591 *5) (|:| -2754 *6))))
- (-5 *1 (-471 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860))
- (-4 *2 (-963 *4 *6 (-874 *3)))))
+ (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6))
+ (-2 (|:| -2596 *5) (|:| -2300 *6))))
+ (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862))
+ (-4 *2 (-965 *4 *6 (-876 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-546)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-694 *5 *6 *7))))
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-696 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-697 *3 *2 *4)) (-4 *3 (-1065)) (-4 *2 (-382 *3))
- (-4 *4 (-382 *3))))
+ (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1067)) (-4 *2 (-384 *3))
+ (-4 *4 (-384 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-697 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *2 (-382 *3))))
+ (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *2 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-730))) ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566))
- (-5 *1 (-985 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128))))
- ((*1 *1 *1 *1) (-4 *1 (-1128)))
+ (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568))
+ (-5 *1 (-987 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130))))
+ ((*1 *1 *1 *1) (-4 *1 (-1130)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *2 (-244 *3 *4))
+ (-12 (-4 *1 (-1141 *3 *4 *2 *5)) (-4 *4 (-1067)) (-4 *2 (-244 *3 *4))
(-4 *5 (-244 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1139 *3 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4))
+ (-12 (-4 *1 (-1141 *3 *4 *5 *2)) (-4 *4 (-1067)) (-4 *5 (-244 *3 *4))
(-4 *2 (-244 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2))
- (-4 *2 (-963 *3 (-541 *4) *4))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2))
+ (-4 *2 (-965 *3 (-543 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-957 (-227))) (-5 *3 (-227)) (-5 *1 (-1230))))
+ (-12 (-5 *2 (-959 (-227))) (-5 *3 (-227)) (-5 *1 (-1232))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736))))
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-736))))
+ (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-574)) (-4 *1 (-1282 *3)) (-4 *3 (-1234)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065))))
+ (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))))
+ (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-372)) (-14 *6 (-1284 (-699 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-935)) (-14 *5 (-654 (-1193)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-656 (-1195)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'JINT 'X 'ELAM) (-2963) (-709))))
- (-5 *1 (-61 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'JINT 'X 'ELAM) (-2968) (-711))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'XC) (-709))))
- (-5 *1 (-63 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 'XC) (-711))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 (-2963 'X) (-2963) (-709))) (-5 *1 (-64 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-350 (-2968 'X) (-2968) (-711))) (-5 *1 (-64 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 (-2963) (-2963 'XC) (-709))) (-5 *1 (-66 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-350 (-2968) (-2968 'XC) (-711))) (-5 *1 (-66 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963 '-1889) (-709))))
- (-5 *1 (-71 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'X) (-2968 '-1891) (-711))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'X) (-709))))
- (-5 *1 (-74 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 'X) (-711))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'X 'EPS) (-2963 '-1889) (-709))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193))
- (-14 *5 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'X 'EPS) (-2968 '-1891) (-711))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195))
+ (-14 *5 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'EPS) (-2963 'YA 'YB) (-709))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1193)) (-14 *4 (-1193))
- (-14 *5 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'EPS) (-2968 'YA 'YB) (-711))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195))
+ (-14 *5 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 (-2963) (-2963 'X) (-709))) (-5 *1 (-77 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-350 (-2968) (-2968 'X) (-711))) (-5 *1 (-77 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 (-2963) (-2963 'X) (-709))) (-5 *1 (-78 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-350 (-2968) (-2968 'X) (-711))) (-5 *1 (-78 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'XC) (-709))))
- (-5 *1 (-79 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 'XC) (-711))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963) (-2963 'X) (-709))))
- (-5 *1 (-80 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968) (-2968 'X) (-711))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'X '-1889) (-2963) (-709))))
- (-5 *1 (-82 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'X '-1891) (-2968) (-711))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-699 (-348 (-2963 'X '-1889) (-2963) (-709))))
- (-5 *1 (-83 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-701 (-350 (-2968 'X '-1891) (-2968) (-711))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-699 (-348 (-2963 'X) (-2963) (-709)))) (-5 *1 (-84 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-701 (-350 (-2968 'X) (-2968) (-711)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963) (-709))))
- (-5 *1 (-85 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'X) (-2968) (-711))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-348 (-2963 'X) (-2963 '-1889) (-709))))
- (-5 *1 (-86 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-1286 (-350 (-2968 'X) (-2968 '-1891) (-711))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-699 (-348 (-2963 'XL 'XR 'ELAM) (-2963) (-709))))
- (-5 *1 (-87 *3)) (-14 *3 (-1193))))
+ (-12 (-5 *2 (-701 (-350 (-2968 'XL 'XR 'ELAM) (-2968) (-711))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 (-2963 'X) (-2963 '-1889) (-709))) (-5 *1 (-89 *3))
- (-14 *3 (-1193))))
+ (-12 (-5 *2 (-350 (-2968 'X) (-2968 '-1891) (-711))) (-5 *1 (-89 *3))
+ (-14 *3 (-1195))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-574)) (-14 *4 (-781)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-574)) (-14 *4 (-781))))
+ (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))))
+ (-12 (-5 *2 (-1160 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))))
((*1 *1 *2)
- (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-781)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))))
+ (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))))
((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-699 *4))) (-4 *4 (-174))
- (-5 *2 (-1284 (-699 (-417 (-966 *4))))) (-5 *1 (-191 *4))))
+ (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174))
+ (-5 *2 (-1286 (-701 (-419 (-968 *4))))) (-5 *1 (-191 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1108 (-324 *4)))
- (-4 *4 (-13 (-860) (-566) (-624 (-388)))) (-5 *2 (-1108 (-388)))
+ (-12 (-5 *3 (-1110 (-326 *4)))
+ (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1110 (-390)))
(-5 *1 (-265 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282))))
+ ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))
((*1 *2 *1)
- (-12 (-4 *2 (-1260 *3)) (-5 *1 (-297 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7))
(-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3)))
- (-14 *5 (-1193)) (-14 *6 *4)
- (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462)))
- (-5 *1 (-321 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3)))
+ (-14 *5 (-1195)) (-14 *6 *4)
+ (-4 *3 (-13 (-1056 (-576)) (-651 (-576)) (-464)))
+ (-5 *1 (-323 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-324 *5)) (-5 *1 (-348 *3 *4 *5))
- (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *3 *4 *2))
- (-4 *3 (-337 *4))))
+ (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2))
+ (-4 *3 (-339 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-4 *2 (-337 *4)) (-5 *1 (-356 *2 *4 *3))
- (-4 *3 (-337 *4))))
+ (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3))
+ (-4 *3 (-339 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *2 (-1308 *3 *4))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-1310 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *2 (-1299 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-1301 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-392))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-709))) (-4 *1 (-392))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-393))))
- ((*1 *2 *3) (-12 (-5 *2 (-404)) (-5 *1 (-403 *3)) (-4 *3 (-1116))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395))))
+ ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1118))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-406))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-171 (-388))))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-388)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-574)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-388))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-574))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-704)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-709)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-302 (-324 (-711)))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-704))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-709))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-711))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193))
- (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195))
+ (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-338))) (-5 *1 (-408 *3 *4 *5 *6))
- (-14 *3 (-1193)) (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-338)) (-5 *1 (-408 *3 *4 *5 *6)) (-14 *3 (-1193))
- (-14 *4 (-3 (|:| |fst| (-444)) (|:| -2441 "void")))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1197))))
+ (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195))
+ (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))
((*1 *1 *2)
- (-12 (-5 *2 (-339 *4)) (-4 *4 (-13 (-860) (-21)))
- (-5 *1 (-437 *3 *4)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))))
+ (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21)))
+ (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-437 *2 *3)) (-4 *2 (-13 (-174) (-38 (-417 (-574)))))
- (-4 *3 (-13 (-860) (-21)))))
+ (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *3 (-13 (-862) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 (-966 (-417 *3)))) (-4 *3 (-566)) (-4 *3 (-1116))
- (-4 *1 (-440 *3))))
+ (-12 (-5 *2 (-419 (-968 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1118))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 (-417 *3))) (-4 *3 (-566)) (-4 *3 (-1116))
- (-4 *1 (-440 *3))))
+ (-12 (-5 *2 (-968 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1118))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 *3)) (-4 *3 (-566)) (-4 *3 (-1116))
- (-4 *1 (-440 *3))))
+ (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1118))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1141 *3 (-622 *1))) (-4 *3 (-1065)) (-4 *3 (-1116))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-444))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-444))))
- ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-447))))
+ (-12 (-5 *2 (-1143 *3 (-624 *1))) (-4 *3 (-1067)) (-4 *3 (-1118))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-446))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-4 *1 (-450))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-450))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-450))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-709))) (-4 *1 (-450))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1197)) (|:| -2057 (-654 (-338)))))
- (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-4 *1 (-451))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2059 (-656 (-340)))))
+ (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-417 (-966 *3)))) (-4 *3 (-174))
- (-14 *6 (-1284 (-699 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-14 *4 (-935)) (-14 *5 (-654 (-1193)))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-478))))
+ (-12 (-5 *2 (-1286 (-419 (-968 *3)))) (-4 *3 (-174))
+ (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-14 *4 (-937)) (-14 *5 (-656 (-1195)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1065)) (-14 *4 (-1193))
- (-14 *5 *3) (-5 *1 (-484 *3 *4 *5))))
+ (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1067)) (-14 *4 (-1195))
+ (-14 *5 *3) (-5 *1 (-486 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-484 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1141 (-574) (-622 (-505)))) (-5 *1 (-505))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-512))))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1143 (-576) (-624 (-507)))) (-5 *1 (-507))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-534))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-616))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-617 *3 *2)) (-4 *2 (-754 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1065))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))
+ (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))
((*1 *2 *1)
- (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))
+ (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-645 *3 *2)) (-4 *2 (-754 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-687 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-5 *1 (-685 *3))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-5 *1 (-687 *3))
+ (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-5 *2 (-972 (-972 (-972 *3)))) (-4 *3 (-1116))
- (-5 *1 (-685 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
- ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-691))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-974 (-974 (-974 *3)))) (-4 *3 (-1118))
+ (-5 *1 (-687 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-693))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *2)) (-4 *4 (-382 *3))
- (-4 *2 (-382 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-704))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-704))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-574))) (-5 *1 (-704))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-388))) (-5 *1 (-704))))
- ((*1 *1 *2) (-12 (-5 *2 (-711)) (-5 *1 (-709))))
- ((*1 *2 *1) (-12 (-5 *2 (-388)) (-5 *1 (-709))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-324 (-574))) (-5 *2 (-324 (-711))) (-5 *1 (-711))))
- ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720))))
+ (-12 (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3))
+ (-4 *2 (-384 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4))))
- (-4 *3 (-1065)) (-4 *4 (-736)) (-5 *1 (-745 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-773))))
+ (-12 (-5 *2 (-656 (-2 (|:| -1868 *3) (|:| -3811 *4))))
+ (-4 *3 (-1067)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-324 (-227)))
- (|:| -2065 (-654 (-1110 (-853 (-227)))))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-656 (-1112 (-855 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-779))))
+ (-5 *1 (-781))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-324 (-227)))
- (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-656 (-1112 (-855 (-227))))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-779))))
+ (-5 *1 (-781))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-779))))
- ((*1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-783 *3)) (-4 *3 (-1234))))
+ (-5 *1 (-781))))
+ ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-818))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-834))))
+ (-5 *1 (-820))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227))))
- (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-654 (-324 (-227))))
- (|:| -3792 (-654 (-227)))))))
- (-5 *1 (-851))))
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3796 (-656 (-227)))))))
+ (-5 *1 (-853))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))
- (-5 *1 (-851))))
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3796 (-656 (-227)))))
+ (-5 *1 (-853))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
- (-5 *1 (-851))))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-966 (-48))) (-5 *2 (-324 (-574))) (-5 *1 (-885))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 (-48)))) (-5 *2 (-324 (-574)))
- (-5 *1 (-885))))
- ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *1 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-968 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-419 (-968 (-48)))) (-5 *2 (-326 (-576)))
+ (-5 *1 (-887))))
+ ((*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-654 (-324 (-227))))
+ (-2 (|:| |pde| (-656 (-326 (-227))))
(|:| |constraints|
- (-654
+ (-656
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-781)) (|:| |boundaryType| (-574))
- (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
- (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177))
(|:| |tol| (-227))))
- (-5 *1 (-911))))
+ (-5 *1 (-913))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-919 *3))) (-4 *3 (-1116)) (-5 *1 (-918 *3))))
+ (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3))))
+ (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-921 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-5 *1 (-919 *3))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 (-428 *3))) (-4 *3 (-315)) (-5 *1 (-928 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315))))
+ (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-930 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317))))
((*1 *2 *3)
- (-12 (-5 *3 (-487)) (-5 *2 (-324 *4)) (-5 *1 (-933 *4))
- (-4 *4 (-566))))
- ((*1 *2 *3) (-12 (-5 *2 (-1289)) (-5 *1 (-1049 *3)) (-4 *3 (-1234))))
- ((*1 *2 *3) (-12 (-5 *3 (-320)) (-5 *1 (-1049 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-935 *4))
+ (-4 *4 (-568))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1051 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1051 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5))
- (-14 *6 (-654 *2))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5))
+ (-14 *6 (-656 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-566))))
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-568))))
((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-4 *4 (-860)) (-5 *1 (-1142 *3 *4 *2))
- (-4 *2 (-963 *3 (-541 *4) *4))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-862)) (-5 *1 (-1144 *3 *4 *2))
+ (-4 *2 (-965 *3 (-543 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-4 *2 (-860)) (-5 *1 (-1142 *3 *2 *4))
- (-4 *4 (-963 *3 (-541 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-872))))
- ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1160))))
+ (-12 (-4 *3 (-1067)) (-4 *2 (-862)) (-5 *1 (-1144 *3 *2 *4))
+ (-4 *4 (-965 *3 (-543 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1162))))
((*1 *2 *3)
- (-12 (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193))
- (-14 *5 *3) (-5 *1 (-1191 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1192))))
- ((*1 *2 *1) (-12 (-5 *2 (-1206 (-1193) (-447))) (-5 *1 (-1197))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1205 *3)) (-4 *3 (-1116))))
- ((*1 *2 *3) (-12 (-5 *2 (-1214)) (-5 *1 (-1213 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195))
+ (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-5 *1 (-1228 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1228 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-5 *1 (-1230 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1067))))
((*1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1248 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1234)) (-5 *1 (-1251 *3))))
+ (-12 (-5 *2 (-1112 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1280 *4)) (-14 *4 (-1193)) (-5 *1 (-1276 *3 *4 *5))
- (-4 *3 (-1065)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5))
+ (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1065)) (-14 *4 (-1193))
- (-14 *5 *3) (-5 *1 (-1276 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-872)) (-5 *1 (-1285))))
- ((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1285)) (-5 *1 (-1288))))
+ (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1067)) (-14 *4 (-1195))
+ (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287))))
+ ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290))))
((*1 *1 *2)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860))
+ (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862))
(-4 *4 (-174))))
((*1 *2 *1)
- (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1304 *3 *4)) (-4 *3 (-860))
+ (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *1 (-1304 *3 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6))
- (-5 *2 (-654 (-2 (|:| |val| (-112)) (|:| -4068 *1))))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-109))) (-5 *1 (-177)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-1 (-1189 (-966 *4)) (-966 *4)))
- (-5 *1 (-1292 *4)) (-4 *4 (-372)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-622 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193))) (-5 *5 (-1189 *2))
- (-4 *2 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-622 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193)))
- (-5 *5 (-417 (-1189 *2))) (-4 *2 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *1 (-570 *6 *2 *7)) (-4 *7 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935))
- (-5 *2
- (-3 (-1189 *4)
- (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136)))))))
- (-5 *1 (-355 *4)) (-4 *4 (-358)))))
+ (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *1 (-1306 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1080))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1080)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
+ (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-783)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301)))
+ ((*1 *1) (-5 *1 (-874)))
+ ((*1 *1)
+ (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805))
+ (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1103)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34)))))
+ ((*1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1199))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1128))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576))
+ (-5 *1 (-1128)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2887 (-792 *3)) (|:| |coef1| (-792 *3))
- (|:| |coef2| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| -2887 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-757)))))
-(((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-656 (-1286 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7)))
+ (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-586 *6 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1227 *2 *3 *4 *5)) (-4 *2 (-566))
- (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-1081 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568))
+ (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1083 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1 *1) (-4 *1 (-671))))
-(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065))
- (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1251 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-654 (-324 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-212)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576))))
+ (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-194)))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-1207 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-614 *3 *2)) (-4 *3 (-1116)) (-4 *3 (-860))
- (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *2 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
+ (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1118)) (-4 *3 (-862))
+ (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
((*1 *2 *1)
- (-12 (-4 *2 (-1234)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
+ (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1272 *3)) (-4 *3 (-1234))))
- ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-654 (-872)))) (-5 *1 (-872))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-5 *2 (-1158 *3 *4)) (-5 *1 (-1009 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-372))))
+ (-12 (-5 *2 (-1160 *3 *4)) (-5 *1 (-1011 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-374))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *5))) (-4 *5 (-1065))
- (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5))
+ (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1067))
+ (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5))
(-4 *7 (-244 *3 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-671))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *2 (-1127 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 (-171 *4)) (-1018) (-1219)))
- (-5 *1 (-610 *4 *3 *2)) (-4 *3 (-13 (-440 *4) (-1018) (-1219))))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
+ (-4 *2 (-1236)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 (-417 *2)))
- (-4 *2 (-1260 *4)) (-5 *1 (-350 *3 *4 *2 *5))
- (-4 *3 (-351 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-351 *3 *2 *4)) (-4 *3 (-1238))
- (-4 *4 (-1260 (-417 *2))) (-4 *2 (-1260 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1077 (-1040 *4) (-1189 (-1040 *4)))) (-5 *3 (-872))
- (-5 *1 (-1040 *4)) (-4 *4 (-13 (-858) (-372) (-1038))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
- (-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 *3 (-654 *1)))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-888 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-890 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-5 *1 (-893 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1102 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-317))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2)))))
(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-654
- (-2 (|:| |eqzro| (-654 *8)) (|:| |neqzro| (-654 *8))
- (|:| |wcond| (-654 (-966 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *5))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *5))))))))))
- (-5 *4 (-1175)) (-4 *5 (-13 (-315) (-148))) (-4 *8 (-963 *5 *7 *6))
- (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-574))
- (-5 *1 (-938 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-1054 (-417 *2)))) (-5 *2 (-574))
- (-5 *1 (-116 *4 *3)) (-4 *3 (-1260 *4)))))
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1175 *4))) (-5 *1 (-295 *4 *5))
+ (-5 *3 (-1175 *4)) (-4 *5 (-1277 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-658 *5)) (-4 *5 (-1065))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-862 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1067))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-699 *3)) (-4 *1 (-427 *3)) (-4 *3 (-174))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065))))
+ (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1065))
- (-5 *1 (-863 *2 *3)) (-4 *3 (-862 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-966 *4))) (-5 *3 (-654 (-1193))) (-4 *4 (-462))
- (-5 *1 (-932 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *1)) (-5 *4 (-1193)) (-4 *1 (-27))
- (-5 *2 (-654 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1189 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-966 *1)) (-4 *1 (-27)) (-5 *2 (-654 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *2 (-654 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-566)) (-5 *2 (-654 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-227))) (-5 *4 (-654 (-1193)))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-1173 (-227))) (-5 *1 (-308)))))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1067))
+ (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-656 (-1094 *4 *5 *2))) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-656 (-1094 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1118))
+ (-4 *6 (-13 (-1067) (-899 *5) (-626 (-905 *5))))
+ (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 (-419 (-968 (-576)))))
+ (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1049)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-874 *5))) (-14 *5 (-654 (-1193))) (-4 *6 (-462))
+ (-12 (-5 *3 (-701 (-419 (-576))))
(-5 *2
- (-2 (|:| |dpolys| (-654 (-253 *5 *6)))
- (|:| |coords| (-654 (-574)))))
- (-5 *1 (-481 *5 *6 *7)) (-5 *3 (-654 (-253 *5 *6))) (-4 *7 (-462)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))
- (-4 *3 (-566))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))))
+ (-656
+ (-2 (|:| |outval| *4) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 *4))))))
+ (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574))))
- (-4 *5 (-897 (-574)))
- (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-577 *5 *3)) (-4 *3 (-639))
- (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1193)) (-5 *4 (-853 *2)) (-4 *2 (-1155))
- (-4 *2 (-13 (-27) (-1219) (-440 *5)))
- (-4 *5 (-624 (-903 (-574)))) (-4 *5 (-897 (-574)))
- (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574))))
- (-5 *1 (-577 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-781)) (-4 *4 (-315)) (-4 *6 (-1260 *4))
- (-5 *2 (-1284 (-654 *6))) (-5 *1 (-465 *4 *6)) (-5 *5 (-654 *6)))))
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1127 *5 *6 *7 *8))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-603 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1118)) (-4 *5 (-1118))
+ (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-965 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1067)) (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1)))
+ (-4 *1 (-1262 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 (-574)))) (-5 *1 (-476)))))
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1151)) (-5 *2 (-701 (-288))) (-5 *1 (-169)))))
-(((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))))
-(((*1 *2 *2) (-12 (-5 *2 (-324 (-227))) (-5 *1 (-274)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1234)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
- (-5 *2
- (-2 (|:| |mval| (-699 *4)) (|:| |invmval| (-699 *4))
- (|:| |genIdeal| (-514 *4 *5 *6 *7))))
- (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1) (-4 *1 (-983))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-699 (-227))) (-5 *6 (-112)) (-5 *7 (-699 (-574)))
- (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-574)) (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-351 *5 *6 *7))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-816 *5 *6 *7 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-832)))))
-(((*1 *1 *1) (-4 *1 (-671))))
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-1195 (-417 (-574))))
- (-5 *1 (-192)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1116))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-395 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462))))
- ((*1 *1 *1 *1) (-4 *1 (-462)))
+ (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288))))
+ ((*1 *1 *1) (-5 *1 (-1288))))
+(((*1 *1) (-4 *1 (-985))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574)))))
+ (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1175 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))))
+(((*1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1067))
+ (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067))
+ (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1067))
+ (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464))))
+ ((*1 *1 *1 *1) (-4 *1 (-464)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-574)) (-5 *1 (-706 *2)) (-4 *2 (-1260 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-781)))
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-783)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315))
- (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4))))
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317))
+ (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5))
- (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-315))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5))
+ (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1189 *7))) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-315)) (-5 *2 (-1189 *7)) (-5 *1 (-930 *4 *5 *6 *7))
- (-4 *7 (-963 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-935)))
+ (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-932 *4 *5 *6 *7))
+ (-4 *7 (-965 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-937)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-462)) (-4 *3 (-566)) (-5 *1 (-985 *3 *2))
- (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-987 *3 *2))
+ (-4 *2 (-1262 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-52)) (-5 *1 (-841)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *3 *5))
- (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2))
- (-4 *5 (-666 (-417 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1260 *4)) (-5 *1 (-817 *4 *2 *5 *3))
- (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-666 *2))
- (-4 *3 (-666 (-417 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-4 *2 (-912 *5)) (-5 *1 (-702 *5 *2 *3 *4))
- (-4 *3 (-382 *2)) (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))))
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-994 *4 *5 *6 *3)) (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-783)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112))
- (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1219) (-29 *4))))))
+ (|partial| -12 (-5 *3 (-968 *4)) (-4 *4 (-1067)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-968 *5)) (-5 *4 (-937)) (-4 *5 (-1067))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390))
+ (-5 *1 (-797 *5)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1234))
- (-4 *2 (-1234)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236))
+ (-4 *2 (-1236)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (|has| *1 (-6 -4459))
- (-4 *1 (-152 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (|has| *1 (-6 -4461))
+ (-4 *1 (-152 *2)) (-4 *2 (-1236))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2))
- (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2))
+ (-4 *2 (-1236))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *2))
- (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2))
+ (-4 *2 (-1236))))
((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-5 *2 (-2 (|:| -3414 (-1189 *4)) (|:| |deg| (-935))))
- (-5 *1 (-223 *4 *5)) (-5 *3 (-1189 *4)) (-4 *5 (-566))))
+ (-12 (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| -2625 (-1191 *4)) (|:| |deg| (-937))))
+ (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781))
- (-4 *6 (-1234)) (-4 *2 (-1234)) (-5 *1 (-245 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783))
+ (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-245 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-297 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1260 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-566)) (-4 *2 (-1116))))
+ ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1118))))
((*1 *1 *1)
- (-12 (-4 *1 (-344 *2 *3 *4 *5)) (-4 *2 (-372)) (-4 *3 (-1260 *2))
- (-4 *4 (-1260 (-417 *3))) (-4 *5 (-351 *2 *3 *4))))
+ (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2))
+ (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1234)) (-4 *2 (-1234))
- (-5 *1 (-380 *5 *4 *2 *6)) (-4 *4 (-382 *5)) (-4 *6 (-382 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236))
+ (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1116)) (-4 *2 (-1116))
- (-5 *1 (-433 *5 *4 *2 *6)) (-4 *4 (-435 *5)) (-4 *6 (-435 *2))))
- ((*1 *1 *1) (-5 *1 (-505)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118))
+ (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2))))
+ ((*1 *1 *1) (-5 *1 (-507)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-654 *5)) (-4 *5 (-1234))
- (-4 *2 (-1234)) (-5 *1 (-652 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236))
+ (-4 *2 (-1236)) (-5 *1 (-654 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1065)) (-4 *2 (-1065))
- (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *8 (-382 *2))
- (-4 *9 (-382 *2)) (-5 *1 (-695 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-697 *5 *6 *7)) (-4 *10 (-697 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1067)) (-4 *2 (-1067))
+ (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2))
+ (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-722 *3 *2)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-372))
- (-4 *3 (-174)) (-4 *1 (-734 *3 *4))))
+ (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374))
+ (-4 *3 (-174)) (-4 *1 (-736 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-972 *5)) (-4 *5 (-1234))
- (-4 *2 (-1234)) (-5 *1 (-971 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-974 *5)) (-4 *5 (-1236))
+ (-4 *2 (-1236)) (-5 *1 (-973 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-1050 *3 *4 *5 *2 *6)) (-4 *2 (-963 *3 *4 *5))
- (-14 *6 (-654 *2))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1052 *3 *4 *5 *2 *6)) (-4 *2 (-965 *3 *4 *5))
+ (-14 *6 (-656 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1065)) (-4 *2 (-1065))
- (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1067)) (-4 *2 (-1067))
+ (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7))
(-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2))
- (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *12 (-1069 *5 *6 *2 *10 *11))))
+ (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *12 (-1071 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1234))
- (-4 *2 (-1234)) (-5 *1 (-1171 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1236))
+ (-4 *2 (-1236)) (-5 *1 (-1173 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1227 *5 *6 *7 *2)) (-4 *5 (-566)) (-4 *6 (-803))
- (-4 *7 (-860)) (-4 *2 (-1081 *5 *6 *7))))
+ (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *2 (-1083 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1284 *5)) (-4 *5 (-1234))
- (-4 *2 (-1234)) (-5 *1 (-1283 *5 *2)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-654
- (-2
- (|:| -3667
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1916
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2065
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-569)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1116))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781))
- (-14 *4 (-781)) (-4 *5 (-174)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-417 (-574))) (-5 *1 (-388)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4459)) (-4 *1 (-34)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-256))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-987))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236))
+ (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-503)) (-5 *4 (-970)) (-5 *2 (-703 (-545)))
+ (-5 *1 (-545))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-970)) (-4 *3 (-1118)) (-5 *2 (-703 *1))
+ (-4 *1 (-779 *3)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-768)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1053))
+ (-5 *1 (-766)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-989))))
((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-574))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-576))))
((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-856)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-858)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4))
+ (-4 *4 (-1118))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1118))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4))
+ (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1118))
+ (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))))
+(((*1 *2)
+ (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-354 *3 *4)) (-14 *3 (-937))
+ (-14 *4 (-937))))
+ ((*1 *2)
+ (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-1191 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-974 (-1138))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-937)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-965 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *1))))
+ (-4 *1 (-1089 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1240)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2))
+ (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -2892 ($ $ $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-574))) (-5 *4 (-574)) (-5 *2 (-52))
- (-5 *1 (-1021)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1260 (-574))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
- (-5 *2 (-1189 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
- (-5 *2 (-1189 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-654 (-112))) (-5 *7 (-699 (-227)))
- (-5 *8 (-699 (-574))) (-5 *3 (-574)) (-5 *4 (-227)) (-5 *5 (-112))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-966 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1260 *4)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
+ (-4 *7 (-1262 (-419 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3633 *3)))
+ (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-2 (|:| |answer| (-419 *6)) (|:| -3633 (-419 *6))
+ (|:| |specpart| (-419 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $))))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *6)) (-4 *6 (-13 (-440 *5) (-27) (-1219)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-1189 (-417 (-1189 *6)))) (-5 *1 (-570 *5 *6 *7))
- (-5 *3 (-1189 *6)) (-4 *7 (-1116))))
+ (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7))
+ (-5 *3 (-1191 *6)) (-4 *7 (-1118))))
((*1 *2 *1)
- (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065))))
+ (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-734 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1189 *11)) (-5 *6 (-654 *10))
- (-5 *7 (-654 (-781))) (-5 *8 (-654 *11)) (-4 *10 (-860))
- (-4 *11 (-315)) (-4 *9 (-803)) (-4 *5 (-963 *11 *9 *10))
- (-5 *2 (-654 (-1189 *5))) (-5 *1 (-752 *9 *10 *11 *5))
- (-5 *3 (-1189 *5))))
+ (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10))
+ (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862))
+ (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-965 *11 *9 *10))
+ (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5))
+ (-5 *3 (-1191 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-963 *3 *4 *5)) (-5 *1 (-1050 *3 *4 *5 *2 *6))
- (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-14 *6 (-654 *2)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1284 (-417 (-966 *4))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *4)))))))
- (-5 *3 (-654 *7)) (-4 *4 (-13 (-315) (-148)))
- (-4 *7 (-963 *4 *6 *5)) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2 *3) (-12 (-5 *3 (-987)) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1173 *4)) (-5 *3 (-574)) (-4 *4 (-1065))
- (-5 *1 (-1177 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-574)) (-5 *1 (-1276 *3 *4 *5)) (-4 *3 (-1065))
- (-14 *4 (-1193)) (-14 *5 *3))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-1234)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1284 (-709))) (-5 *1 (-313)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-574))
- (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574)))))))
- (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-574))
- (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574)))))))
- (-5 *1 (-1249 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-622 *5)) (-4 *5 (-440 *4)) (-4 *4 (-1054 (-574)))
- (-4 *4 (-566)) (-5 *2 (-1189 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-4 *2 (-965 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *2 *6))
+ (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
((*1 *2 *3)
- (-12 (-5 *3 (-622 *1)) (-4 *1 (-1065)) (-4 *1 (-310))
- (-5 *2 (-1189 *1)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4))
- (-4 *4 (-1234)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-308))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576))
+ (-5 *2 (-701 *6)) (-5 *1 (-1047 *6)) (-4 *6 (-374)) (-4 *6 (-1067))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1047 *4))
+ (-4 *4 (-374)) (-4 *4 (-1067))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5))
+ (-5 *1 (-1047 *5)) (-4 *5 (-374)) (-4 *5 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))
+ (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174))
+ (-4 *4 (-244 (-2882 *5) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2596 *3) (|:| -2300 *4))
+ (-2 (|:| -2596 *3) (|:| -2300 *4))))
+ (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862))
+ (-4 *7 (-965 *2 *4 (-876 *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1156))))
((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-227)))) (-5 *2 (-227)) (-5 *1 (-313)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8))) (-4 *7 (-860))
- (-4 *8 (-315)) (-4 *6 (-803)) (-4 *9 (-963 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-654 (-2 (|:| -4201 (-1189 *9)) (|:| -2754 (-574)))))))
- (-5 *1 (-752 *6 *7 *8 *9)) (-5 *3 (-1189 *9)))))
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))))
+(((*1 *1 *1) (-4 *1 (-1162))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832))
+ (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1067))
+ (-5 *2 (-1286 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1251 (-574))) (-4 *1 (-661 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
+ (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
+ (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))
- (-4 *2 (-566))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-566)))
+ (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))
+ (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-568)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065))
- (-4 *3 (-382 *2)) (-4 *4 (-382 *2)) (-4 *2 (-566))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-781)))
+ (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-783)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-566))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-566))
- (-5 *1 (-985 *3 *4))))
+ (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568))
+ (-5 *1 (-987 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1069 *3 *4 *2 *5 *6)) (-4 *2 (-1065))
- (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-566))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $)))))))))
+ (|partial| -12 (-4 *1 (-1071 *3 *4 *2 *5 *6)) (-4 *2 (-1067))
+ (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-568))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $))
- (-15 -2980 ((-1141 *4 (-622 $)) $))
- (-15 -2951 ($ (-1141 *4 (-622 $)))))))
- (-4 *4 (-566)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-622 *2)))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *4 (-622 $)) $))
- (-15 -2980 ((-1141 *4 (-622 $)) $))
- (-15 -2951 ($ (-1141 *4 (-622 $)))))))
- (-4 *4 (-566)) (-5 *1 (-41 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-1197)) (-5 *1 (-1196)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1197)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
+ (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-5 *1 (-995 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1277 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))
+ (-5 *2 (-1053)) (-5 *1 (-758)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-462))))
- ((*1 *1 *1 *1) (-4 *1 (-462))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-315)) (-4 *3 (-174)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3)))
- (-5 *1 (-698 *3 *4 *5 *6)) (-4 *6 (-697 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-710 *3))
- (-4 *3 (-315)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *3 (-912 *6))
- (-5 *2 (-699 *3)) (-5 *1 (-702 *6 *3 *7 *4)) (-4 *7 (-382 *3))
- (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-568 *2)) (-4 *2 (-555)))))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464))))
+ ((*1 *1 *1 *1) (-4 *1 (-464))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))
+ ((*1 *1 *1 *1) (-4 *1 (-805))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-829 *3)) (|:| |rm| (-829 *3))))
- (-5 *1 (-829 *3)) (-4 *3 (-860))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *6))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3))))
+ (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358))))
- ((*1 *1) (-4 *1 (-377)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4))
- (-4 *4 (-358))))
- ((*1 *1 *1) (-4 *1 (-555))) ((*1 *1) (-4 *1 (-555)))
- ((*1 *1 *1) (-5 *1 (-781)))
- ((*1 *2 *1) (-12 (-5 *2 (-919 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360))))
+ ((*1 *1) (-4 *1 (-379)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360))))
+ ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1) (-5 *1 (-783)))
+ ((*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4))
- (-4 *4 (-1116))))
- ((*1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-555)) (-4 *2 (-566)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-767)))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4))
+ (-4 *4 (-1118))))
+ ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-557)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1067)) (-5 *2 (-1286 *4))
+ (-5 *1 (-1196 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-937)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3))
+ (-4 *3 (-1067)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-372))
- (-5 *2
- (-2 (|:| A (-699 *5))
- (|:| |eqs|
- (-654
- (-2 (|:| C (-699 *5)) (|:| |g| (-1284 *5)) (|:| -4097 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *5)) (-5 *4 (-1284 *5))
- (-4 *6 (-666 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *6 (-666 *5))
- (-5 *2 (-2 (|:| -3479 (-699 *6)) (|:| |vec| (-1284 *5))))
- (-5 *1 (-823 *5 *6)) (-5 *3 (-699 *6)) (-5 *4 (-1284 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1173 (-417 *3))) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-781))
- (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |c| (-417 *6))
- (|:| -2150 *6)))
- (-5 *1 (-1031 *5 *6)) (-5 *3 (-417 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-1238)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3))
(-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-5 *1 (-359 *3 *4 *5)) (-4 *5 (-419 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1260 (-574)))
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3))
(-5 *2
- (-2 (|:| -1895 (-699 (-574))) (|:| |basisDen| (-574))
- (|:| |basisInv| (-699 (-574)))))
- (-5 *1 (-778 *3 *4)) (-4 *4 (-419 (-574) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4))
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3))
(-5 *2
- (-2 (|:| -1895 (-699 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-699 *4))))
- (-5 *1 (-1001 *3 *4 *5 *6)) (-4 *6 (-734 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 *4))
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-1003 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3))
(-5 *2
- (-2 (|:| -1895 (-699 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-699 *4))))
- (-5 *1 (-1293 *3 *4 *5 *6)) (-4 *6 (-419 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2))
+ (-4 *4 (-38 (-419 (-576)))))))
+(((*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118)))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219)))))
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-388)) (-5 *2 (-1289)) (-5 *1 (-1285))))
+ (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-372)) (-4 *4 (-566)) (-4 *5 (-1260 *4))
- (-5 *2 (-2 (|:| -3068 (-633 *4 *5)) (|:| -3569 (-417 *5))))
- (-5 *1 (-633 *4 *5)) (-5 *3 (-417 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4))
- (-14 *3 (-935)) (-4 *4 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-462)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1260 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1192)))
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1) (-5 *1 (-1194)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
-(((*1 *2 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-426 *3 *2)) (-4 *3 (-427 *2))))
- ((*1 *2) (-12 (-4 *1 (-427 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-372)) (-5 *2 (-654 *3)) (-5 *1 (-959 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-883 (-935) (-935)))) (-5 *1 (-987)))))
-(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781)))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
- ((*1 *1 *1) (|partial| -4 *1 (-732))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-979))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1175) (-784))) (-5 *1 (-115)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-803)) (-4 *4 (-860)) (-4 *6 (-315)) (-5 *2 (-428 *3))
- (-5 *1 (-752 *5 *4 *6 *3)) (-4 *3 (-963 *6 *5 *4)))))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240))
+ (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))))
+(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1118)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
-(((*1 *1 *1 *1) (-4 *1 (-315))) ((*1 *1 *1 *1) (-5 *1 (-781)))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-607))) (-5 *1 (-607)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-4 *3 (-13 (-27) (-1219) (-440 *6) (-10 -8 (-15 -2951 ($ *7)))))
- (-4 *7 (-858))
- (-4 *8
- (-13 (-1262 *3 *7) (-372) (-1219)
- (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1175)) (|:| |prob| (-1175))))))
- (-5 *1 (-432 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1175)) (-4 *9 (-999 *8))
- (-14 *10 (-1193)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
- (-14 *4 (-781)) (-4 *5 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-654 (-654 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-654 (-654 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-654 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1116)))))
+ (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1118))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-925)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-804)))))
+(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783)))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-224 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3))))
+ ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-216 (-512))) (-5 *1 (-847)))))
-(((*1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1287)))))
+ (|partial| -12 (-4 *4 (-13 (-568) (-148)))
+ (-5 *2 (-2 (|:| -3870 *3) (|:| -3883 *3))) (-5 *1 (-1256 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-981))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-379)))))
+(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783)))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-597 *2)) (-4 *2 (-555)))))
-(((*1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-377)) (-4 *2 (-1116)))))
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1053)) (-5 *3 (-1195)) (-5 *1 (-194)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5))
+ (-5 *3 (-419 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-148) (-27) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-568)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1262 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195))
+ (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116))
- (-4 *2 (-860)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
- (-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
-(((*1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-173))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))
+ (-5 *2 (-656 (-1195))) (-5 *1 (-1094 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236))))
((*1 *2 *2)
- (-12 (-5 *2 (-654 (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1118))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *3 (-860))
- (-4 *6 (-1081 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3229 *1) (|:| |upper| *1)))
- (-4 *1 (-992 *4 *5 *3 *6)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-993 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-4 *6 (-1083 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -4371 *1) (|:| |upper| *1)))
+ (-4 *1 (-994 *4 *5 *3 *6)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2625 *4))) (-5 *5 (-783))
+ (-4 *4 (-965 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-112))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-461 *6 *7 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220))))
+ ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1065)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *1) (-5 *1 (-588))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-174)) (-4 *5 (-382 *4))
- (-4 *6 (-382 *4)) (-5 *1 (-698 *4 *5 *6 *2))
- (-4 *2 (-697 *4 *5 *6)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-373 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1284 *5)) (-4 *5 (-802)) (-5 *2 (-112))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-781)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-315)) (-4 *3 (-1008 *2)) (-4 *4 (-1260 *3))
- (-5 *1 (-423 *2 *3 *4 *5)) (-4 *5 (-13 (-419 *3 *4) (-1054 *3))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-115)) (-5 *4 (-781))
- (-4 *5 (-13 (-462) (-1054 (-574)))) (-4 *5 (-566))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-440 *5))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *5 (-622 $)) $))
- (-15 -2980 ((-1141 *5 (-622 $)) $))
- (-15 -2951 ($ (-1141 *5 (-622 $))))))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2))
- (-4 *3 (-566)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-428 *2)) (-4 *2 (-315)) (-5 *1 (-928 *2))))
+ (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200)))
+ (-5 *1 (-1200)))))
+(((*1 *1) (-5 *1 (-1103))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-428 (-966 *6))) (-5 *5 (-1193)) (-5 *3 (-966 *6))
- (-4 *6 (-13 (-315) (-148))) (-5 *2 (-52)) (-5 *1 (-929 *6)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-253 *5 *6))) (-4 *6 (-462))
- (-5 *2 (-253 *5 *6)) (-14 *5 (-654 (-1193))) (-5 *1 (-641 *5 *6)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-853 (-388))) (-5 *2 (-853 (-227))) (-5 *1 (-313)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065))
- (-5 *3 (-574)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-440 *3) (-1018))) (-5 *1 (-283 *3 *2))
- (-4 *3 (-566)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-614 *2 *3)) (-4 *3 (-1234)) (-4 *2 (-1116))
- (-4 *2 (-860)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-654 (-1193))) (-14 *5 (-781))
- (-5 *2
- (-654
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574))))))
- (-5 *1 (-515 *4 *5))
- (-5 *3
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-574))))
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374))
+ (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)))))
+ (-5 *1 (-996 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1309)))))
-(((*1 *2 *3) (-12 (-5 *2 (-428 *3)) (-5 *1 (-568 *3)) (-4 *3 (-555)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-549 *4 *2 *5 *6))
- (-4 *4 (-315)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-781))))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -1953 (-654 (-1193))) (|:| -3456 (-654 (-1193)))))
- (-5 *1 (-1236)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-327 *3 *4 *5)) (-4 *3 (-372))
- (-14 *4 (-1193)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-428 *3)) (-4 *3 (-566))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-709))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067))
+ (-14 *4 (-656 (-1195)))))
((*1 *2 *1)
- (-12 (-4 *2 (-1116)) (-5 *1 (-723 *3 *2 *4)) (-4 *3 (-860))
- (-14 *4
- (-1 (-112) (-2 (|:| -2591 *3) (|:| -2754 *2))
- (-2 (|:| -2591 *3) (|:| -2754 *2)))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-792 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-977 *3 *2)) (-4 *2 (-132)) (-4 *3 (-566))
- (-4 *3 (-1065)) (-4 *2 (-802))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1189 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-987)) (-4 *2 (-132)) (-5 *1 (-1195 *3)) (-4 *3 (-566))
- (-4 *3 (-1065))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1193))
- (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-966 (-574))))) (-5 *2 (-654 (-324 (-574))))
- (-5 *1 (-1047)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-158)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1056)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-1109 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-372)) (-4 *2 (-1260 *4))
- (-5 *1 (-936 *4 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-760)))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862)))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862))
+ (-4 *8 (-965 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1067))
+ (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1262 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-920 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3 *2 *4)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *2 (-804))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1277 *3))
+ (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-783)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1120 (-783))) (-5 *6 (-783))
+ (-5 *2
+ (-2 (|:| |contp| (-576))
+ (|:| -3544 (-656 (-2 (|:| |irr| *3) (|:| -3807 (-576)))))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6)))
+ (-4 *6 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |outval| *7) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 *7))))))
+ (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (-4 *4 (-1067))
+ (-5 *1 (-1046 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937)) (-4 *4 (-1067))
+ (-5 *1 (-1046 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-459 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1196)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-622 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1193)))
- (-4 *2 (-13 (-440 *5) (-27) (-1219)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *1 (-576 *5 *2 *6)) (-4 *6 (-1116)))))
-(((*1 *2 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1116)) (-5 *1 (-981 *3)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))
- (-5 *2 (-1189 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-370 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3)) (-4 *3 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1116)) (-5 *1 (-659 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *3 (-574)) (-5 *1 (-247)))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-14 *5 (-654 (-1193)))
+ (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-656 *3)) (-5 *1 (-995 *4 *5 *6 *3))
+ (-4 *3 (-1083 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-968 (-576)))))
+ (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-304 (-419 (-968 (-576))))))
+ (-5 *2 (-656 (-656 (-304 (-968 *4))))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 (-304 (-968 *4))))
+ (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-968 (-576)))))
+ (-5 *2 (-656 (-304 (-968 *4)))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1195))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1221) (-975)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4093 (-656 *4))))
+ (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-374))
(-5 *2
- (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4))))))
- (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
+ (-2 (|:| |particular| (-3 (-1286 *5) "failed"))
+ (|:| -4093 (-656 (-1286 *5)))))
+ (-5 *1 (-679 *5)) (-5 *4 (-1286 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374))
(-5 *2
- (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5))))))
- (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5)))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
+ (-2 (|:| |particular| (-3 (-1286 *5) "failed"))
+ (|:| -4093 (-656 (-1286 *5)))))
+ (-5 *1 (-679 *5)) (-5 *4 (-1286 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |particular| (-3 (-1286 *5) "failed"))
+ (|:| -4093 (-656 (-1286 *5))))))
+ (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |particular| (-3 (-1286 *5) "failed"))
+ (|:| -4093 (-656 (-1286 *5))))))
+ (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))
(-5 *2
- (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5))))))
- (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5)))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462))))
+ (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462))))
(-5 *2
- (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5))))))
- (-5 *1 (-1311 *5 *6 *7)) (-5 *3 (-654 (-966 *5)))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
+ (-656
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4093 (-656 *7)))))
+ (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7))
+ (-4 *3 (-699 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-782 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
+ (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-782 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-975)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195))
+ (-4 *7 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7)))))
+ (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195))
+ (-4 *6 (-13 (-29 *5) (-1221) (-975)))
+ (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115)))
+ (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7)))))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115)))
+ (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1286 *7)) (|:| -4093 (-656 (-1286 *7)))))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195))
+ (-4 *7 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
(-5 *2
- (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4))))))
- (-5 *1 (-1311 *4 *5 *6)) (-5 *3 (-654 (-966 *4)))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1189 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
- (-5 *1 (-32 *4 *2)))))
+ (-3 (-2 (|:| |particular| *7) (|:| -4093 (-656 *7))) *7 "failed"))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-1195))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -4093 (-656 *3))) *3 "failed"))
+ (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-975)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1221) (-975))) (-5 *1 (-814 *6 *2))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1221) (-975)))
+ (-4 *6 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-814 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1053)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -4093 (-656 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-374)) (-4 *7 (-668 *6))
+ (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -4093 (-701 *6))))
+ (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1053)) (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-913)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-912))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177))
+ (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390))
+ (-5 *2 (-1053)) (-5 *1 (-912))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177))
+ (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1053))
+ (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *2 (-656 (-390)))
+ (-5 *1 (-1041)) (-5 *4 (-390))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-968 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1041))
+ (-5 *4 (-390))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4))
+ (-5 *3 (-326 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1149 *4))
+ (-5 *3 (-304 (-326 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5))
+ (-5 *3 (-304 (-326 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1149 *5))
+ (-5 *3 (-326 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-1195)))
+ (-4 *5 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1149 *5))
+ (-5 *3 (-656 (-304 (-326 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *5))))))
+ (-5 *1 (-1204 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *5)))))) (-5 *1 (-1204 *5))
+ (-5 *3 (-656 (-304 (-419 (-968 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *4)))))) (-5 *1 (-1204 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-968 *4))))))
+ (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-968 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-568))
+ (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5))
+ (-5 *3 (-419 (-968 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-568))
+ (-5 *2 (-656 (-304 (-419 (-968 *5))))) (-5 *1 (-1204 *5))
+ (-5 *3 (-304 (-419 (-968 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4)))))
+ (-5 *1 (-1204 *4)) (-5 *3 (-419 (-968 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-968 *4)))))
+ (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-968 *4)))))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -4093 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))))
(((*1 *2)
- (-12 (-14 *4 (-781)) (-4 *5 (-1234)) (-5 *2 (-135))
- (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 *2)) (-4 *2 (-965 (-419 (-968 *6)) *5 *4))
+ (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $)))))
+ (-4 *6 (-568)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1195)))
+ (-5 *2
+ (-656 (-1164 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6)))))
+ (-5 *1 (-640 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1118)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5))
+ (-4 *5 (-1118)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-360)) (-4 *2 (-1067)) (-5 *1 (-724 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-1111 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3))
+ (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783))
+ (-5 *1 (-961 *4 *5)) (-4 *5 (-1262 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1118)) (-4 *2 (-914 *4)) (-5 *1 (-704 *4 *2 *5 *3))
+ (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-981)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-738)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1286 (-656 (-2 (|:| -3084 (-926 *3)) (|:| -2596 (-1138))))))
+ (-5 *1 (-362 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937))))
((*1 *2)
- (-12 (-4 *4 (-372)) (-5 *2 (-135)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
+ (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138))))))
+ (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2))))
((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
- (-5 *2 (-574)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1065)) (-5 *2 (-935))))
- ((*1 *2) (-12 (-4 *1 (-1291 *3)) (-4 *3 (-372)) (-5 *2 (-135)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1276 *2 *3 *4)) (-4 *2 (-1065)) (-14 *3 (-1193))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 (-227))) (-5 *4 (-574)) (-5 *2 (-1051))
- (-5 *1 (-768)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-654 (-622 *6))) (-5 *4 (-1193)) (-5 *2 (-622 *6))
- (-4 *6 (-440 *5)) (-4 *5 (-1116)) (-5 *1 (-583 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-983))))
+ (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138))))))
+ (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-937)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1158 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067))
+ (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-568)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1078)) (-5 *2 (-576)))))
+(((*1 *1) (-5 *1 (-1288))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1175 (-968 *4)) (-1175 (-968 *4))))
+ (-5 *1 (-1294 *4)) (-4 *4 (-374)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067))
+ (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2570 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-374)) (-4 *7 (-1262 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1103)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-959 (-227)))) (-5 *1 (-1287)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-851)) (-5 *4 (-1079)) (-5 *2 (-1051)) (-5 *1 (-850))))
- ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-1051)) (-5 *1 (-850))))
+ (-12 (-5 *3 (-853)) (-5 *4 (-1081)) (-5 *2 (-1053)) (-5 *1 (-852))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-654 (-388))) (-5 *5 (-654 (-853 (-388))))
- (-5 *6 (-654 (-324 (-388)))) (-5 *3 (-324 (-388))) (-5 *2 (-1051))
- (-5 *1 (-850))))
+ (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390))))
+ (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1053))
+ (-5 *1 (-852))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388)))
- (-5 *5 (-654 (-853 (-388)))) (-5 *2 (-1051)) (-5 *1 (-850))))
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390)))
+ (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1053)) (-5 *1 (-852))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 (-388))) (-5 *4 (-654 (-388))) (-5 *2 (-1051))
- (-5 *1 (-850))))
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1053))
+ (-5 *1 (-852))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-324 (-388)))) (-5 *4 (-654 (-388)))
- (-5 *2 (-1051)) (-5 *1 (-850)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1081 *3 *4 *5)))))
+ (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390)))
+ (-5 *2 (-1053)) (-5 *1 (-852)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053))
+ (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067))
+ (-5 *2 (-493 *4 *5)) (-5 *1 (-960 *4 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1193)) (-5 *1 (-546))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-714 *3)) (-4 *3 (-624 (-546)))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-654 (-1193))) (-5 *2 (-1193)) (-5 *1 (-714 *3))
- (-4 *3 (-624 (-546))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))))))
-(((*1 *1) (-5 *1 (-1079))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3996 (-654 (-2 (|:| |irr| *10) (|:| -1545 (-574)))))))
- (-5 *6 (-654 *3)) (-5 *7 (-654 *8)) (-4 *8 (-860)) (-4 *3 (-315))
- (-4 *10 (-963 *3 *9 *8)) (-4 *9 (-803))
- (-5 *2
- (-2 (|:| |polfac| (-654 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-654 (-1189 *3)))))
- (-5 *1 (-635 *8 *9 *3 *10)) (-5 *4 (-654 (-1189 *3))))))
+ (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3))
+ (-4 *3 (-626 (-548))))))
+(((*1 *1 *1) (-4 *1 (-1078)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1042 *3))
+ (-4 *3 (-13 (-860) (-374) (-1040)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1086 *2 *3)) (-4 *2 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *2)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4))
- (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))
+ (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289))
- (-5 *1 (-1196))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-654 (-1193))) (-5 *3 (-1193)) (-5 *2 (-1289))
- (-5 *1 (-1196)))))
+ (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4))
+ (-5 *3 (-656 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1067)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067))))
+ ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1067)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2887 *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238))
- (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))))
+ (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576))))
+ (-4 *5 (-1262 *4))
+ (-5 *2 (-2 (|:| -2570 (-419 *5)) (|:| |coeff| (-419 *5))))
+ (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1067))
+ (-5 *2 (-968 *5)) (-5 *1 (-960 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1260 *6))
- (-4 *6 (-13 (-27) (-440 *5))) (-4 *5 (-13 (-566) (-1054 (-574))))
- (-4 *8 (-1260 (-417 *7))) (-5 *2 (-596 *3))
- (-5 *1 (-562 *5 *6 *7 *8 *3)) (-4 *3 (-351 *6 *7 *8)))))
-(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-388)))
- ((*1 *1) (-5 *1 (-388))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-1005))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-974 (-1138)))
+ (-5 *1 (-357 *4)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1007))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-4 *4 (-1234)) (-5 *1 (-1073 *3 *4))
- (-4 *3 (-1109 *4))))
+ (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1075 *3 *4))
+ (-4 *3 (-1111 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1110 *4)) (-4 *4 (-1234))
- (-5 *1 (-1108 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-566))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1112 *4)) (-4 *4 (-1236))
+ (-5 *1 (-1110 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-358)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-935)) (-5 *1 (-987)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-574)) (-5 *1 (-388)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *2 (-654 (-417 (-574)))) (-5 *1 (-1036 *4))
- (-4 *4 (-1260 (-574))))))
-(((*1 *2 *2) (-12 (-5 *2 (-654 (-324 (-227)))) (-5 *1 (-274)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34)))
- (-4 *5 (-13 (-1116) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+ (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1067)) (-4 *2 (-699 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *6)) (-4 *5 (-1116))
- (-4 *6 (-1234)) (-5 *2 (-1 *6 *5)) (-5 *1 (-651 *5 *6))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1118))
+ (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116))
- (-4 *2 (-1234)) (-5 *1 (-651 *5 *2))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118))
+ (-4 *2 (-1236)) (-5 *1 (-653 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 *5)) (-4 *6 (-1116))
- (-4 *5 (-1234)) (-5 *2 (-1 *5 *6)) (-5 *1 (-651 *6 *5))))
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1118))
+ (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-4 *5 (-1116))
- (-4 *2 (-1234)) (-5 *1 (-651 *5 *2))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1118))
+ (-4 *2 (-1236)) (-5 *1 (-653 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-654 *5)) (-5 *4 (-654 *6))
- (-4 *5 (-1116)) (-4 *6 (-1234)) (-5 *1 (-651 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6))
+ (-4 *5 (-1118)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-654 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1116)) (-4 *2 (-1234)) (-5 *1 (-651 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-781)))))
-(((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-1240))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-654 *4))) (-5 *1 (-918 *4))
- (-5 *3 (-654 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1116)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-918 *4))
- (-5 *3 (-1118 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1118)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1120 *3)) (-5 *1 (-921 *3)) (-4 *3 (-379))
+ (-4 *3 (-1118)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2975 *1)))
- (-4 *1 (-862 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-574)) (-5 *1 (-1126))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1284 (-574))) (-5 *3 (-654 (-574))) (-5 *4 (-574))
- (-5 *1 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304))))
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067))
+ (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4))))
+ (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-320)) (-5 *1 (-304))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-320)) (-5 *1 (-304))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-1175))) (-5 *3 (-1175)) (-5 *2 (-320))
- (-5 *1 (-304)))))
-(((*1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-21)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-1125 *5 *6 *7 *8))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-601 *5 *6 *7 *8 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-654 (-270))) (-5 *1 (-1286))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1149 (-227))) (-5 *3 (-1175)) (-5 *1 (-1286))))
- ((*1 *1 *1) (-5 *1 (-1286))))
+ (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322))
+ (-5 *1 (-306)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1195))
+ (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void"))) (-5 *1 (-1198)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065)) (-4 *4 (-624 *2))
- (-5 *2 (-388)) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566))
- (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 *2)) (-5 *2 (-388)) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-860)) (-4 *5 (-624 *2)) (-5 *2 (-388))
- (-5 *1 (-795 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 *4)) (-5 *1 (-1157 *3 *4))
- (-4 *3 (-13 (-1116) (-34))) (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-963 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *1))))
- (-4 *1 (-1087 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1238)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-1263 *3 *2))
- (-4 *2 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-1154))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-872))) (-5 *2 (-1289)) (-5 *1 (-1154)))))
+ (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065))
- (-4 *2 (-1275 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-566) (-148)))
- (-5 *2 (-2 (|:| -3865 *3) (|:| -3878 *3))) (-5 *1 (-1254 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-2 (|:| |num| (-1284 *4)) (|:| |den| *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-654 *1)) (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-884))))
- ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1116)) (-4 *2 (-912 *4)) (-5 *1 (-702 *4 *2 *5 *3))
- (-4 *5 (-382 *2)) (-4 *3 (-13 (-382 *4) (-10 -7 (-6 -4459)))))))
-(((*1 *1) (-5 *1 (-1286))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574))))
- (-4 *5 (-1260 *4))
- (-5 *2 (-2 (|:| -1401 (-417 *5)) (|:| |coeff| (-417 *5))))
- (-5 *1 (-578 *4 *5)) (-5 *3 (-417 *5)))))
+ (-12 (-5 *2 (-656 *4)) (-5 *1 (-1159 *3 *4))
+ (-4 *3 (-13 (-1118) (-34))) (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317))
+ (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-654 *2) *2 *2 *2)) (-4 *2 (-1116))
+ (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1118))
(-5 *1 (-103 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1116)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-417 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-566))
- (-4 *4 (-1065)) (-4 *2 (-1275 *4)) (-5 *1 (-1278 *4 *5 *6 *2))
- (-4 *6 (-666 *5)))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1118)) (-5 *1 (-103 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-966 (-417 (-574)))) (-5 *4 (-1193))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))))
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3883 *6) (|:| |sol?| (-112))) (-576)
+ *6))
+ (-4 *6 (-374)) (-4 *7 (-1262 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-942)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1262 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4))
+ (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3))
+ (-5 *2 (-701 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568))
+ (-4 *4 (-1067)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2))
+ (-4 *6 (-668 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1) (-5 *1 (-644))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360))
+ (-4 *2
+ (-13 (-414)
+ (-10 -7 (-15 -2956 (*2 *4)) (-15 -4261 ((-937) *2))
+ (-15 -4093 ((-1286 *2) (-937))) (-15 -3898 (*2 *2)))))
+ (-5 *1 (-367 *2 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-689 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-382 *3))
- (-4 *3 (-1234)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
+ (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-961 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-417 *5)) (-4 *4 (-1238)) (-4 *5 (-1260 *4))
- (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1260 *3))))
+ (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4))
+ (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1195 (-417 (-574)))) (-5 *2 (-417 (-574)))
+ (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576)))
(-5 *1 (-192))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-699 (-324 (-227)))) (-5 *3 (-654 (-1193)))
- (-5 *4 (-1284 (-324 (-227)))) (-5 *1 (-207))))
+ (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195)))
+ (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-302 *3))) (-4 *3 (-317 *3)) (-4 *3 (-1116))
- (-4 *3 (-1234)) (-5 *1 (-302 *3))))
+ (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1118))
+ (-4 *3 (-1236)) (-5 *1 (-304 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-317 *2)) (-4 *2 (-1116)) (-4 *2 (-1234))
- (-5 *1 (-302 *2))))
+ (-12 (-4 *2 (-319 *2)) (-4 *2 (-1118)) (-4 *2 (-1236))
+ (-5 *1 (-304 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 (-654 *1))))
- (-4 *1 (-310))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1))))
+ (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1 *1 (-654 *1))) (-4 *1 (-310))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 (-654 *1))))
- (-4 *1 (-310))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1))))
+ (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-1 *1 *1))) (-4 *1 (-310))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-302 *3))) (-4 *1 (-317 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1118))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-302 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-574))) (-5 *4 (-1195 (-417 (-574))))
- (-5 *1 (-318 *2)) (-4 *2 (-38 (-417 (-574))))))
+ (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576))))
+ (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *1)) (-4 *1 (-383 *4 *5))
- (-4 *4 (-860)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5))
+ (-4 *4 (-862)) (-4 *5 (-174))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-781)) (-5 *4 (-1 *1 (-654 *1)))
- (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-1065))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1)))
+ (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-1067))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781)))
- (-5 *4 (-654 (-1 *1 (-654 *1)))) (-4 *1 (-440 *5)) (-4 *5 (-1116))
- (-4 *5 (-1065))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783)))
+ (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1118))
+ (-4 *5 (-1067))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-654 (-781)))
- (-5 *4 (-654 (-1 *1 *1))) (-4 *1 (-440 *5)) (-4 *5 (-1116))
- (-4 *5 (-1065))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783)))
+ (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1118))
+ (-4 *5 (-1067))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-115))) (-5 *3 (-654 *1)) (-5 *4 (-1193))
- (-4 *1 (-440 *5)) (-4 *5 (-1116)) (-4 *5 (-624 (-546)))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195))
+ (-4 *1 (-442 *5)) (-4 *5 (-1118)) (-4 *5 (-626 (-548)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1193)) (-4 *1 (-440 *4)) (-4 *4 (-1116))
- (-4 *4 (-624 (-546)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1118))
+ (-4 *4 (-626 (-548)))))
((*1 *1 *1)
- (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-624 (-546)))))
+ (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)) (-4 *2 (-626 (-548)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-1193))) (-4 *1 (-440 *3)) (-4 *3 (-1116))
- (-4 *3 (-624 (-546)))))
+ (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1118))
+ (-4 *3 (-626 (-548)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116))
- (-4 *3 (-624 (-546)))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118))
+ (-4 *3 (-626 (-548)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-524 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1234))))
+ (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1236))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *4)) (-5 *3 (-654 *5)) (-4 *1 (-524 *4 *5))
- (-4 *4 (-1116)) (-4 *5 (-1234))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5))
+ (-4 *4 (-1118)) (-4 *5 (-1236))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-843 *3)) (-4 *3 (-372)) (-5 *1 (-728 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-728 *2)) (-4 *2 (-372))))
+ (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-417 (-966 *4))) (-5 *3 (-1193)) (-4 *4 (-566))
- (-5 *1 (-1059 *4))))
+ (-12 (-5 *2 (-419 (-968 *4))) (-5 *3 (-1195)) (-4 *4 (-568))
+ (-5 *1 (-1061 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1193))) (-5 *4 (-654 (-417 (-966 *5))))
- (-5 *2 (-417 (-966 *5))) (-4 *5 (-566)) (-5 *1 (-1059 *5))))
+ (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-968 *5))))
+ (-5 *2 (-419 (-968 *5))) (-4 *5 (-568)) (-5 *1 (-1061 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-5 *2 (-417 (-966 *4)))
- (-4 *4 (-566)) (-5 *1 (-1059 *4))))
+ (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-5 *2 (-419 (-968 *4)))
+ (-4 *4 (-568)) (-5 *1 (-1061 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-302 (-417 (-966 *4))))) (-5 *2 (-417 (-966 *4)))
- (-4 *4 (-566)) (-5 *1 (-1059 *4))))
+ (-12 (-5 *3 (-656 (-304 (-419 (-968 *4))))) (-5 *2 (-419 (-968 *4)))
+ (-4 *4 (-568)) (-5 *1 (-1061 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1173 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-699 *4)) (-4 *4 (-1065)) (-5 *1 (-1158 *3 *4))
- (-14 *3 (-781)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-985 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-1244 *3))
- (-5 *2 (-417 (-574))))))
-(((*1 *2 *1) (-12 (-5 *2 (-701 (-1151))) (-5 *1 (-1167)))))
+ (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-689 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-975))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1150 *4 *2))
+ (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462))))))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1) (-4 *1 (-1155))) ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1150 *3 *2))
+ (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236))
+ (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-372)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3)))
- (-5 *1 (-776 *3 *4)) (-4 *3 (-718 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-372)) (-4 *5 (-1065))
- (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3))
- (-4 *3 (-862 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-622 *3)) (-5 *5 (-1 (-1189 *3) (-1189 *3)))
- (-4 *3 (-13 (-27) (-440 *6))) (-4 *6 (-566)) (-5 *2 (-596 *3))
- (-5 *1 (-561 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-860))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935)))) ((*1 *1) (-4 *1 (-555)))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-709))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-860)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-693 *4 *3)) (-4 *4 (-1116))
- (-4 *3 (-1116)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-516))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-886))) (-5 *1 (-493)))))
+ (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-968 (-419 (-576)))) (-5 *4 (-1195))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-193)) (-5 *3 (-574))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *2)
- (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923))
- (-5 *1 (-467 *3 *4 *2 *5)) (-4 *5 (-963 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *2 (-923))
- (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-923)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1260 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247)) (-5 *3 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-247))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-884)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-871)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1175)) (-5 *4 (-171 (-227))) (-5 *5 (-574))
- (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-145)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1118) (-34)))
+ (-4 *3 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236))
+ (-4 *3 (-1118)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-112))
+ (-5 *1 (-920 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-937)) (-5 *2 (-112)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) ((*1 *1) (-4 *1 (-557)))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3))
+ (-4 *3 (-1262 (-419 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065))
- (-5 *2
- (-2 (|:| -3656 (-781)) (|:| |curves| (-781))
- (|:| |polygons| (-781)) (|:| |constructs| (-781)))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1392 (-656 *6)) (|:| -1685 (-656 *6)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3))
+ (-4 *3 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221)))
+ (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1020) (-1221)))
+ (-5 *1 (-612 *4 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4))
+ (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *1) (-5 *1 (-516))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-781)) (-5 *2 (-1289)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1234)) (-4 *3 (-1234)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-781)) (-4 *5 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
- (-4 *4 (-174))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1065)) (-4 *1 (-697 *3 *2 *4)) (-4 *2 (-382 *3))
- (-4 *4 (-382 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-781)) (-4 *3 (-1065)))))
-(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1234)) (-5 *2 (-1289)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 (-622 *5))) (-5 *3 (-1193)) (-4 *5 (-440 *4))
- (-4 *4 (-1116)) (-5 *1 (-583 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112))
- (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *7)) (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *1 (-938 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-781))))
- ((*1 *1 *1) (-4 *1 (-412))))
+ (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247)) (-5 *3 (-1177))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-247))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-598 *3) *3 (-1195)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1195)))
+ (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1056 *4)) (-4 *3 (-442 *7))
+ (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464))
+ (-4 *7 (-899 (-576))) (-4 *7 (-1118)) (-5 *2 (-598 *3))
+ (-5 *1 (-585 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1028 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5 *6)) (-4 *3 (-372)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5))
- (-5 *2 (-423 *4 (-417 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1284 *6)) (-4 *6 (-13 (-419 *4 *5) (-1054 *4)))
- (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *3 (-315))
- (-5 *1 (-423 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-963 *3 *4 *5)) (-4 *3 (-372))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-514 *3 *4 *5 *6)))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067))
+ (-5 *2
+ (-2 (|:| -3329 (-783)) (|:| |curves| (-783))
+ (|:| |polygons| (-783)) (|:| |constructs| (-783)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1118)) (-4 *4 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-372)) (-4 *3 (-1065))
- (-5 *1 (-1177 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-654 (-622 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 (-48))) (-5 *3 (-622 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-568)))))
+(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-921 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1086 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1262 *4)) (-5 *2 (-576))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1260 (-171 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
- ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3)) (-5 *1 (-423 *3 *2 *4 *5))
- (-4 *3 (-315)) (-4 *5 (-13 (-419 *2 *4) (-1054 *2)))))
+ (|partial| -12 (-4 *4 (-13 (-568) (-1056 *2) (-651 *2) (-464)))
+ (-5 *2 (-576)) (-5 *1 (-1134 *4 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576))
+ (-5 *1 (-1134 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177))
+ (-4 *6 (-13 (-568) (-1056 *2) (-651 *2) (-464))) (-5 *2 (-576))
+ (-5 *1 (-1134 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-576))
+ (-5 *1 (-1135 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-968 *6))))
+ (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-576))
+ (-5 *1 (-1135 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1195))
+ (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1135 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227)))
+ (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4))
+ (-5 *1 (-540 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2))
+ (-4 *4 (-38 (-419 (-576)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-701 *4)) (-4 *4 (-1067)) (-5 *1 (-1160 *3 *4))
+ (-14 *3 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-937)) (-4 *5 (-862))
+ (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))))
+ (-5 *1 (-207)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1067))) (-5 *2 (-1177))
+ (-5 *1 (-838 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1067)))
+ (-5 *2 (-1177)) (-5 *1 (-838 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1067)))
+ (-5 *2 (-1291)) (-5 *1 (-838 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-840) (-1067))) (-5 *2 (-1291)) (-5 *1 (-838 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236))))
((*1 *2 *1)
- (-12 (-4 *4 (-1260 *2)) (-4 *2 (-1008 *3))
- (-5 *1 (-424 *3 *2 *4 *5 *6)) (-4 *3 (-315)) (-4 *5 (-419 *2 *4))
- (-14 *6 (-1284 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292)))
- (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-622 (-505)))) (-5 *1 (-505))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-505))) (-5 *1 (-505))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-654 (-622 (-505))))
- (-5 *1 (-505))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 (-505))) (-5 *3 (-622 (-505))) (-5 *1 (-505))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358))
- (-5 *1 (-538 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-734 *4 *2)) (-4 *2 (-1260 *4))
- (-5 *1 (-785 *4 *2 *5 *3)) (-4 *3 (-1260 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174))))
- ((*1 *1 *1) (-4 *1 (-1076))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236))
+ (-14 *4 (-576)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1067)) (-4 *3 (-862))
+ (-4 *4 (-275 *3)) (-4 *5 (-805)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1065)) (-4 *3 (-860))
- (-4 *4 (-273 *3)) (-4 *5 (-803)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2707 *5))))
- (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-666 *5))
- (-4 *6 (-666 (-417 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2707 *4))))
- (-5 *1 (-817 *5 *4 *3 *6)) (-4 *3 (-666 *4))
- (-4 *6 (-666 (-417 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4)) (-5 *2 (-654 (-2 (|:| -3332 *5) (|:| -2707 *5))))
- (-5 *1 (-817 *4 *5 *6 *3)) (-4 *6 (-666 *5))
- (-4 *3 (-666 (-417 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *4 (-1260 *5)) (-5 *2 (-654 (-2 (|:| -3332 *4) (|:| -2707 *4))))
- (-5 *1 (-817 *5 *4 *6 *3)) (-4 *6 (-666 *4))
- (-4 *3 (-666 (-417 *4))))))
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862)))
+ (-14 *3 (-656 (-1195))))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1262 *4))
+ (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-935))) (-5 *4 (-919 (-574)))
- (-5 *2 (-699 (-574))) (-5 *1 (-600))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-935))) (-5 *2 (-654 (-699 (-574))))
- (-5 *1 (-600))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1067))
+ (-4 *7 (-1067)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7))
+ (-4 *6 (-1262 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-919 (-574))))
- (-5 *2 (-654 (-699 (-574)))) (-5 *1 (-600)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067))
+ (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7))
+ (-4 *6 (-1262 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1195)) (-5 *4 (-968 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-351 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-1260 *4))
- (-4 *5 (-1260 (-417 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-571)) (-5 *3 (-574)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1193)) (-5 *2 (-447)) (-5 *1 (-1197)))))
+ (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6))
+ (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-987 *4 *3))
+ (-4 *3 (-1262 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-1230)))))
+ (-12 (-5 *3 (-656 (-937))) (-5 *2 (-1197 (-419 (-576))))
+ (-5 *1 (-192)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3))
- (-4 *3 (-1260 (-417 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-681))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935))
- (-14 *4 (-935)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-566))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *5 *3)) (-4 *3 (-1260 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-377))))
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-379))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1284 *4)) (-5 *1 (-538 *4))
- (-4 *4 (-358))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360))))
((*1 *2 *1)
- (-12 (-4 *2 (-860)) (-5 *1 (-723 *2 *3 *4)) (-4 *3 (-1116))
+ (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1118))
(-14 *4
- (-1 (-112) (-2 (|:| -2591 *2) (|:| -2754 *3))
- (-2 (|:| -2591 *2) (|:| -2754 *3)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-1116))))
+ (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *3))
+ (-2 (|:| -2596 *2) (|:| -2300 *3)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1118))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1220 *3))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1222 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-654 (-1220 *2))) (-5 *1 (-1220 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-250 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-1175)) (-5 *1 (-796)))))
+ (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1118)))))
+(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11))
+ (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783)))
+ (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862))
+ (-4 *8 (-317)) (-4 *11 (-965 *8 *9 *10)) (-4 *9 (-805))
+ (-5 *1 (-719 *9 *10 *8 *11)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416))
+ (-5 *2 (-937)))))
+(((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-937)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-845 (-937))) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-937))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-937))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-903 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1116))
- (-4 *5 (-1234)) (-5 *1 (-901 *4 *5))))
+ (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1118))
+ (-4 *5 (-1236)) (-5 *1 (-903 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-903 *4)) (-5 *3 (-654 (-1 (-112) *5))) (-4 *4 (-1116))
- (-4 *5 (-1234)) (-5 *1 (-901 *4 *5))))
+ (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1118))
+ (-4 *5 (-1236)) (-5 *1 (-903 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-903 *5)) (-5 *3 (-654 (-1193)))
- (-5 *4 (-1 (-112) (-654 *6))) (-4 *5 (-1116)) (-4 *6 (-1234))
- (-5 *1 (-901 *5 *6))))
+ (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195)))
+ (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1118)) (-4 *6 (-1236))
+ (-5 *1 (-903 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1234)) (-4 *4 (-1116))
- (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1118))
+ (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 (-1 (-112) *5))) (-4 *5 (-1234)) (-4 *4 (-1116))
- (-5 *1 (-951 *4 *2 *5)) (-4 *2 (-440 *4))))
+ (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1118))
+ (-5 *1 (-953 *4 *2 *5)) (-4 *2 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1234))
- (-5 *2 (-324 (-574))) (-5 *1 (-952 *5))))
+ (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236))
+ (-5 *2 (-326 (-576))) (-5 *1 (-954 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-654 (-1 (-112) *5))) (-4 *5 (-1234))
- (-5 *2 (-324 (-574))) (-5 *1 (-952 *5))))
+ (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236))
+ (-5 *2 (-326 (-576))) (-5 *1 (-954 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-1 (-112) (-654 *6)))
- (-4 *6 (-13 (-440 *5) (-897 *4) (-624 (-903 *4)))) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-1092 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-537)) (-5 *3 (-129)) (-5 *2 (-781)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396)))) (-5 *3 (-227))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6)))
+ (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1094 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-935)) (-5 *1 (-1117 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-781)) (-5 *1 (-597 *2)) (-4 *2 (-555))))
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2644 *3) (|:| -2754 (-781)))) (-5 *1 (-597 *3))
- (-4 *3 (-555)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-872) (-872) (-872))) (-5 *4 (-574)) (-5 *2 (-872))
- (-5 *1 (-659 *5 *6 *7)) (-4 *5 (-1116)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-872)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1065))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-872))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-872))))
- ((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-872)) (-5 *1 (-1189 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1284 *1)) (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238))
- (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *5 (-1175))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1051))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-3 (-112) (-654 *1)))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1112 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-384 *4 *2))
- (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460)))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-462)) (-4 *3 (-860)) (-4 *4 (-803))
- (-5 *1 (-1003 *2 *3 *4 *5)) (-4 *5 (-963 *2 *4 *3)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-936)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1116))
- (-5 *2 (-2 (|:| -1866 (-574)) (|:| |var| (-622 *1))))
- (-4 *1 (-440 *3)))))
+ (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1144 *4 *3 *5))) (-4 *4 (-38 (-419 (-576))))
+ (-4 *4 (-1067)) (-4 *3 (-862)) (-5 *1 (-1144 *4 *3 *5))
+ (-4 *5 (-965 *4 (-543 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1067)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2799 *3) (|:| |coef1| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-148))) (-5 *2 (-654 *3))
- (-5 *1 (-1254 *4 *3)) (-4 *3 (-1260 *4)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-1173 *4))) (-5 *2 (-1173 *4)) (-5 *1 (-1177 *4))
- (-4 *4 (-1065)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-833)) (-5 *1 (-832)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-127 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-310)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2799 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1053)) (-5 *1 (-767)))))
+(((*1 *1)
+ (-12 (-4 *1 (-416)) (-2085 (|has| *1 (-6 -4452)))
+ (-2085 (|has| *1 (-6 -4444)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1118)) (-4 *2 (-862))))
+ ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862)))
+ ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))))
+(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-965 *7 *5 *6))
+ (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-317)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-340)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576))))
+ (-5 *2 (-112)) (-5 *1 (-1314 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-622 *1))) (-5 *3 (-654 *1)) (-4 *1 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-302 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-302 *1)) (-4 *1 (-310)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-4 *3 (-914 *5)) (-5 *2 (-1286 *3))
+ (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-1067)) (-4 *2 (-1262 *5))
+ (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-324 (-227)))) (-5 *2 (-112)) (-5 *1 (-274)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1193))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-654 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1219) (-27) (-440 *8)))
- (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1029 *8 *4)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574)))))
- (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-1092 *3 *4 *5))) (-4 *3 (-1116))
- (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))
- (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
- (-5 *1 (-1093 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-769)))))
+ (-12 (-5 *2 (-656 (-1094 *3 *4 *5))) (-4 *3 (-1118))
+ (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1095 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-654 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
+ (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1246 *3))
+ (-5 *2 (-419 (-576))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |minor| (-656 (-937))) (|:| -4102 *3)
+ (|:| |minors| (-656 (-656 (-937)))) (|:| |ops| (-656 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-668 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4))
- (-5 *2 (-2 (|:| -1866 (-417 *5)) (|:| |poly| *3)))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *3 (-1260 *4)) (-5 *1 (-819 *4 *3 *2 *5)) (-4 *2 (-666 *3))
- (-4 *5 (-666 (-417 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-417 *5))
- (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *5 (-1260 *4))
- (-5 *1 (-819 *4 *5 *2 *6)) (-4 *2 (-666 *5)) (-4 *6 (-666 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-928 *3)) (-4 *3 (-315)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-566)) (-5 *1 (-985 *4 *2))
- (-4 *2 (-1260 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462)))
- (-5 *2 (-853 *4)) (-5 *1 (-321 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462)))
- (-5 *2 (-853 *4)) (-5 *1 (-1270 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1219) (-440 *3))) (-14 *5 (-1193))
- (-14 *6 *4))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-112)) (-5 *1 (-308)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1065)) (-4 *2 (-372))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-372)) (-5 *1 (-669 *4 *2))
- (-4 *2 (-666 *4)))))
+ (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5))
+ (-4 *4 (-1118)) (-4 *5 (-1118)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1142 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-358)) (-4 *4 (-337 *3)) (-4 *5 (-1260 *4))
- (-5 *1 (-787 *3 *4 *5 *2 *6)) (-4 *2 (-1260 *5)) (-14 *6 (-935))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
- ((*1 *1 *1) (-12 (-4 *1 (-1303 *2)) (-4 *2 (-372)) (-4 *2 (-377)))))
-(((*1 *1) (-5 *1 (-1285))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1083 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1142 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358))
- (-5 *2 (-654 (-2 (|:| |deg| (-781)) (|:| -1322 *3))))
- (-5 *1 (-218 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-901 *4 *5)) (-4 *5 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1183)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *3 (-1116)) (-4 *1 (-917 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-4 *5 (-1065)) (-5 *2 (-574))
- (-5 *1 (-453 *5 *3 *6)) (-4 *3 (-1260 *5))
- (-4 *6 (-13 (-414) (-1054 *5) (-372) (-1219) (-292)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-5 *2 (-574)) (-5 *1 (-453 *4 *3 *5))
- (-4 *3 (-1260 *4))
- (-4 *5 (-13 (-414) (-1054 *4) (-372) (-1219) (-292))))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-546)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1065))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-957 (-227))) (-5 *1 (-1230))))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703 (-1153))) (-5 *1 (-1169)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-903 *4 *5)) (-4 *5 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1185)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1065)))))
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *6 *7 *8 *3 *4)) (-4 *4 (-1127 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))))
+ (-5 *1 (-1163 *5 *6 *7 *3 *4)) (-4 *4 (-1127 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390)))))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390)))))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-968 (-576))))
+ (-5 *4 (-326 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-317) (-1056 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1221) (-975))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-505)))))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1157))) ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1089 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-417 (-966 *5)) (-1182 (-1193) (-966 *5))))
- (-4 *5 (-462)) (-5 *2 (-654 (-699 (-417 (-966 *5)))))
- (-5 *1 (-300 *5)) (-5 *4 (-699 (-417 (-966 *5)))))))
-(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195)))
+ (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1118)) (-4 *6 (-914 *5)) (-5 *2 (-701 *6))
+ (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240))
+ (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174))
+ (-4 *1 (-378 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174))
+ (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4))
+ (-4 *4 (-1262 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372)))
- (-4 *3 (-1260 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-112))
- (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-937))
+ (-5 *2 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))
+ (-5 *1 (-357 *4)) (-4 *4 (-360)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 *1)) (-4 *1 (-440 *4))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4))
+ (-4 *4 (-1118))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1193)) (-4 *1 (-440 *3)) (-4 *3 (-1116)))))
-(((*1 *1) (-5 *1 (-447))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805))
+ (-4 *6 (-568)) (-4 *7 (-965 *6 *5 *3))
+ (-5 *1 (-474 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1056 (-419 (-576))) (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $))
+ (-15 -2987 (*7 $))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1067))
+ (-4 *2 (-1246 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1116) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1156 *4 *5)) (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-574)) (-4 *5 (-358)) (-5 *2 (-428 (-1189 (-1189 *5))))
- (-5 *1 (-1232 *5)) (-5 *3 (-1189 (-1189 *5))))))
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
- (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574))))))
- (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-372) (-858)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-302 (-417 (-966 (-171 (-574)))))))
- (-5 *2 (-654 (-654 (-302 (-966 (-171 *4)))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-372) (-858)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 (-171 (-574)))))
- (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-372) (-858)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-302 (-417 (-966 (-171 (-574))))))
- (-5 *2 (-654 (-302 (-966 (-171 *4))))) (-5 *1 (-387 *4))
- (-4 *4 (-13 (-372) (-858))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-654
- (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *3))
- (|:| |logand| (-1189 *3)))))
- (-5 *1 (-596 *3)) (-4 *3 (-372)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-830)) (-14 *5 (-1193)) (-5 *2 (-654 (-1257 *5 *4)))
- (-5 *1 (-1130 *4 *5)) (-5 *3 (-1257 *5 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *1 (-1048 *2))
- (-4 *2 (-13 (-1116) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1) (-5 *1 (-1079))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4))
+ (-4 *4 (-1262 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -4288 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-989)) (-5 *1 (-1311)))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3))))
+ (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1173 (-987))) (-5 *1 (-987)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *2)
+ (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-1118)) (-4 *7 (-914 *6))
+ (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7))
+ (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1 *4 (-574))) (-4 *4 (-1065))
- (-5 *1 (-1177 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-566))
- (-4 *7 (-963 *3 *5 *6))
- (-5 *2 (-2 (|:| -2754 (-781)) (|:| -1866 *8) (|:| |radicand| *8)))
- (-5 *1 (-967 *5 *6 *3 *7 *8)) (-5 *4 (-781))
- (-4 *8
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $)) (-15 -2980 (*7 $))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 *6)) (-5 *3 (-574)) (-4 *6 (-315)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1189 *4)) (-5 *1 (-538 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-654 *6)) (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-4 *3 (-566)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-853 *4)) (-5 *3 (-622 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1219) (-29 *6)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-226 *6 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-992 *3 *4 *2 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *5 (-1081 *3 *4 *2)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *2)
+ (-2
+ (|:| -3672
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -1918
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1175 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2055
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-571))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-574))))
- (-4 *4 (-13 (-1260 *3) (-566) (-10 -8 (-15 -2887 ($ $ $)))))
- (-4 *3 (-566)) (-5 *1 (-1263 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
- (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227))
- (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1193))
- (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3))) (-5 *1 (-567 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-860)) (-5 *1 (-682 *3)))))
+ (-2
+ (|:| -3672
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (|:| -1918
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))))
+ (-5 *1 (-815))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1158 *3 *2)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *2 (-13 (-1118) (-34))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3)))
+ (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1067))
+ (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2446 "void")))
+ (-5 *1 (-449)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-163)))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6))
+ (-4 *6 (-353 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3))
+ (-4 *3 (-13 (-442 *7) (-27) (-1221)))
+ (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3))
+ (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221)))
+ (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862))
+ (-4 *4 (-805)) (-5 *1 (-1005 *2 *3 *4 *5)) (-4 *5 (-965 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1137))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-781)) (-5 *1 (-103 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-171 (-326 *4)))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1158 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1118) (-34))) (-4 *5 (-13 (-1118) (-34)))
+ (-5 *1 (-1159 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-1158 *3 *4))) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))) (-5 *1 (-1159 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1028)) (-5 *2 (-872)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 (-2 (|:| -4201 (-1189 *6)) (|:| -2754 (-574)))))
- (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *1) (-12 (-4 *1 (-566)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-957 (-227))) (-5 *4 (-884)) (-5 *5 (-935))
- (-5 *2 (-1289)) (-5 *1 (-478))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-884)) (-5 *5 (-935))
- (-5 *2 (-1289)) (-5 *1 (-478)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4))
+ (-5 *1 (-276)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-1175 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195)))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195)))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-1175 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3)))
+ (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3))
+ (-5 *1 (-563 *6 *3)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234))
- (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-296 *3 *2)) (-4 *3 (-1116))
- (-4 *2 (-1234)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-315))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1116))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-395 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3758 (-781)) (|:| -3919 (-781))))
- (-5 *1 (-781))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-978 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-382 *2)) (-4 *2 (-1234)) (-4 *2 (-860))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-382 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-860))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4))
- (-14 *3 (-935)) (-4 *4 (-1065))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1065)) (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
- (-4 *5 (-244 *3 *2)))))
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1118))
+ (-4 *2 (-1236)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1056 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-442 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1067)) (-4 *1 (-312))))
+ ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3))))
+ ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1086 *3 *2)) (-4 *3 (-13 (-860) (-374)))
+ (-4 *2 (-1262 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317))
+ (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3)))))
+ (-5 *1 (-1308 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4)))))
+ (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-805)) (-4 *6 (-965 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *4 *3 *5 *6)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-417 (-574))) (-5 *1 (-313)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-574)) (-5 *6 (-1 (-1289) (-1284 *5) (-1284 *5) (-388)))
- (-5 *3 (-1284 (-388))) (-5 *5 (-388)) (-5 *2 (-1289))
- (-5 *1 (-798)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-112))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 (-171 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-112))
- (-5 *1 (-1223 *4 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *4))))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1195))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-656 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2570 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1221) (-27) (-442 *8)))
+ (-4 *8 (-13 (-464) (-148) (-1056 *3) (-651 *3))) (-5 *3 (-576))
+ (-5 *2 (-656 *4)) (-5 *1 (-1032 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067)) (-4 *4 (-174))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067))
+ (-4 *3 (-174)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-701 *5)) (-4 *5 (-1067)) (-5 *1 (-1072 *3 *4 *5))
+ (-14 *3 (-783)) (-14 *4 (-783)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4460)) (-4 *1 (-499 *3))
- (-4 *3 (-1234)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-91 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-444)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1260 (-171 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1260 (-171 *2))))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3))
+ (-4 *3 (-1236)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-937))
+ (-5 *1 (-929 *4 *5)) (-4 *5 (-1262 (-419 *4))))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)))) (-4 *3 (-566))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-440 *3))
- (-4 *2
- (-13 (-372) (-310)
- (-10 -8 (-15 -2970 ((-1141 *3 (-622 $)) $))
- (-15 -2980 ((-1141 *3 (-622 $)) $))
- (-15 -2951 ($ (-1141 *3 (-622 $))))))))))
-(((*1 *1) (-5 *1 (-145)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-699 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-174)) (-4 *2 (-1260 *4)) (-5 *1 (-179 *4 *2 *3))
- (-4 *3 (-734 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-417 (-966 *5)))) (-5 *4 (-1193))
- (-5 *2 (-966 *5)) (-5 *1 (-300 *5)) (-4 *5 (-462))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-966 *4)))) (-5 *2 (-966 *4))
- (-5 *1 (-300 *4)) (-4 *4 (-462))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1260 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 (-171 (-417 (-574)))))
- (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *4))
- (-4 *4 (-13 (-372) (-858)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *4 (-1193))
- (-5 *2 (-966 (-171 (-417 (-574))))) (-5 *1 (-774 *5))
- (-4 *5 (-13 (-372) (-858)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *2 (-966 (-417 (-574))))
- (-5 *1 (-789 *4)) (-4 *4 (-13 (-372) (-858)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-419 (-968 (-576))))) (-5 *4 (-656 (-1195)))
+ (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5))
+ (-4 *5 (-13 (-860) (-374)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-417 (-574)))) (-5 *4 (-1193))
- (-5 *2 (-966 (-417 (-574)))) (-5 *1 (-789 *5))
- (-4 *5 (-13 (-372) (-858))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-1065))))
- ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1015 *3)) (-4 *3 (-174)) (-5 *1 (-809 *3)))))
+ (-12 (-5 *3 (-419 (-968 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317))
+ (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7))
+ (-4 *3 (-1262 *6)) (-4 *7 (-965 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-654
- (-2
- (|:| -3667
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1916
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2065
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-569))))
+ (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557))
+ (-4 *3 (-568))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
((*1 *2 *1)
- (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234))
- (-5 *2 (-654 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3))
+ (-4 *3 (-1056 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-5 *1 (-711))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-374)) (-5 *1 (-996 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195)))
+ (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-568)) (-5 *2 (-656 (-656 (-968 *5)))) (-5 *1 (-1204 *5)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *5 (-227))
- (-5 *2 (-1051)) (-5 *1 (-761)))))
-(((*1 *1) (-5 *1 (-1289))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *1) (-5 *1 (-1291))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1089 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1089 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-987 *2 *4))
+ (-4 *4 (-1262 *2)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1118))
+ (-4 *3 (-1118)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-546))) (-5 *1 (-546)))))
-(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-171 (-227))))
- (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-813))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-654 *11)) (-5 *5 (-654 (-1189 *9)))
- (-5 *6 (-654 *9)) (-5 *7 (-654 *12)) (-5 *8 (-654 (-781)))
- (-4 *11 (-860)) (-4 *9 (-315)) (-4 *12 (-963 *9 *10 *11))
- (-4 *10 (-803)) (-5 *2 (-654 (-1189 *12)))
- (-5 *1 (-717 *10 *11 *9 *12)) (-5 *3 (-1189 *12)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-388))) (-5 *1 (-313)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-315)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1128)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-769)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051))
- (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1) (-12 (-4 *1 (-969)) (-5 *2 (-1110 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-990)) (-5 *2 (-1110 (-227))))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-654 *4)))) (-5 *2 (-654 (-654 *4)))
- (-5 *1 (-1204 *4)) (-4 *4 (-860)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132))
- (-5 *2 (-654 (-2 (|:| |gen| *3) (|:| -1617 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| -1866 *3) (|:| -3806 *4))))
- (-5 *1 (-745 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-736))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-5 *2 (-1173 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
- (-5 *7 (-699 (-574)))
- (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-1016 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1181 3 *3)) (-4 *3 (-1065)) (-4 *1 (-1150 *3))))
- ((*1 *1) (-12 (-4 *1 (-1150 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177))
+ (|:| |tol| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-212)))))
+(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1112 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-992)) (-5 *2 (-1112 (-227))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1056 *3))
+ (-4 *2 (-374))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2))
+ (-4 *2 (-13 (-442 *4) (-1020) (-1221)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1110 *2)) (-4 *2 (-13 (-442 *4) (-1020) (-1221)))
+ (-4 *4 (-568)) (-5 *1 (-642 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-975)) (-5 *2 (-1195))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-975)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| -3563 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *7) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *7)))))
+ (-4 *7 (-965 *4 *6 *5)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783))
+ (-5 *1 (-940 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5))
+ (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6))
+ (-4 *6 (-464))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5))
+ (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6))
+ (-4 *6 (-464)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2020 *1) (|:| -4446 *1) (|:| |associate| *1)))
- (-4 *1 (-566)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8))
- (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *2 (-112)) (-5 *1 (-993 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464))
+ (-5 *2
+ (-656
+ (-2 (|:| |eigval| (-3 (-419 (-968 *4)) (-1184 (-1195) (-968 *4))))
+ (|:| |eigmult| (-783))
+ (|:| |eigvec| (-656 (-701 (-419 (-968 *4))))))))
+ (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-968 *4)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1262 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1065)) (-5 *1 (-1177 *3)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1083 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-995 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-654 *8))) (-5 *3 (-654 *8))
- (-4 *8 (-963 *5 *7 *6)) (-4 *5 (-13 (-315) (-148)))
- (-4 *6 (-13 (-860) (-624 (-1193)))) (-4 *7 (-803)) (-5 *2 (-112))
- (-5 *1 (-938 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-656 (-937))) (-5 *4 (-656 (-576)))
+ (-5 *2 (-701 (-576))) (-5 *1 (-1128)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-215 *4 *2)) (-14 *4 (-935))
- (-4 *2 (-1116)))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-937))
+ (-4 *2 (-1118)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1234)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1234))))
- ((*1 *2 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-793 *2)) (-4 *2 (-38 (-417 (-574))))
- (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527)))))
+ (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390)))
+ (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291))
+ (-5 *1 (-800)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1077 (-1040 *3) (-1189 (-1040 *3))))
- (-5 *1 (-1040 *3)) (-4 *3 (-13 (-858) (-372) (-1038))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-1284 *2)) (-4 *5 (-315))
- (-4 *6 (-1008 *5)) (-4 *2 (-13 (-419 *6 *7) (-1054 *6)))
- (-5 *1 (-423 *5 *6 *7 *2)) (-4 *7 (-1260 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374))
+ (-14 *4 (-1195)) (-14 *5 *3))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2))
- (-4 *5 (-382 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2))
+ (-4 *5 (-384 *2)) (-4 *2 (-1236))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *2 (-1116)) (-5 *1 (-215 *4 *2))
- (-14 *4 (-935))))
+ (-12 (-5 *3 (-783)) (-4 *2 (-1118)) (-5 *1 (-215 *4 *2))
+ (-14 *4 (-937))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234))))
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7))
- (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-4 *1 (-414))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-4 *1 (-414))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7))
+ (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-937)) (-4 *1 (-416))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416))))
((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *2 *6)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1193)) (-5 *6 (-654 (-622 *3)))
- (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *7)))
- (-4 *7 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3)))
- (-5 *1 (-567 *7 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-555))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2 *6)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-937)) (-4 *5 (-568)) (-5 *2 (-701 *5))
+ (-5 *1 (-972 *5 *3)) (-4 *3 (-668 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-537)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *1 (-993 *4 *5 *6 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-574) (-574))) (-5 *1 (-370 *3)) (-4 *3 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-781) (-781))) (-4 *1 (-395 *3)) (-4 *3 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1260 *2)) (-4 *2 (-1260 *4))
- (-5 *1 (-1001 *4 *2 *3 *5)) (-4 *4 (-358)) (-4 *5 (-734 *2 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-555))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-1118)) (-5 *2 (-656 *1))
+ (-4 *1 (-393 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-965 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568))
+ (-5 *2 (-419 (-968 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1067)) (-4 *4 (-568))
+ (-5 *2 (-419 (-968 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1173 *3))) (-5 *1 (-1173 *3)) (-4 *3 (-1234)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-331 *4 *2)) (-4 *4 (-1116))
- (-4 *2 (-132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))
- ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-853 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3) (-12 (-5 *3 (-654 (-52))) (-5 *2 (-1289)) (-5 *1 (-873)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-559))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-682 *3)) (-4 *3 (-860)) (-4 *1 (-383 *3 *4))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *2 (-1284 (-324 (-388))))
- (-5 *1 (-313)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925))
+ (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-965 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-925))
+ (-5 *1 (-922 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-925)) (-5 *1 (-923 *2 *3)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-858)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-959 (-227))))) (-5 *1 (-480)))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6))
+ (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3))))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-654 (-622 *2))) (-5 *4 (-654 (-1193)))
- (-4 *2 (-13 (-440 (-171 *5)) (-1018) (-1219))) (-4 *5 (-566))
- (-5 *1 (-610 *5 *6 *2)) (-4 *6 (-13 (-440 *5) (-1018) (-1219))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-287)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-227)) (-5 *5 (-574)) (-5 *2 (-1229 *3))
- (-5 *1 (-800 *3)) (-4 *3 (-990))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *4 (-112))
- (-5 *1 (-1229 *2)) (-4 *2 (-990)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1260 *4)) (-5 *2 (-699 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3))
- (-5 *2 (-699 *3)))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-38 (-417 (-574))))
- (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-699 (-574))) (-5 *1 (-1126)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
- (-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289)))))
+(((*1 *1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1112 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1151 (-227)))
+ (-5 *1 (-709))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-227)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-709))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1151 (-227))) (-5 *3 (-1 (-959 (-227)) (-227) (-227)))
+ (-5 *4 (-1112 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *2 (-13 (-862) (-21))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1024)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| -1392 *1) (|:| -1685 (-656 *7)))))
+ (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-749 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118))))
+ ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1118)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-112))
- (-5 *1 (-270)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))))
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *6 (-1262 *5))
+ (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4102 *3))))
+ (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6))
+ (-4 *7 (-668 (-419 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5))
+ (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -4102 (-666 *6 (-419 *6))))))
+ (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-860)) (-5 *4 (-654 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-654 *4))))
- (-5 *1 (-1204 *6)) (-5 *5 (-654 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-324 (-227))) (-5 *2 (-227)) (-5 *1 (-313)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-771))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-428 (-1189 (-574)))) (-5 *1 (-193)) (-5 *3 (-574)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289))
- (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1173 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))))
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2))
+ (-4 *2 (-1262 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1) (-4 *1 (-503)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-171 (-227)))) (-5 *2 (-1051))
- (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-654 (-699 *6))) (-5 *4 (-112)) (-5 *5 (-574))
- (-5 *2 (-699 *6)) (-5 *1 (-1045 *6)) (-4 *6 (-372)) (-4 *6 (-1065))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3))
+ (-4 *3 (-626 (-548)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227)))
+ (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1067)) (-4 *1 (-1262 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 (-699 *4))) (-5 *2 (-699 *4)) (-5 *1 (-1045 *4))
- (-4 *4 (-372)) (-4 *4 (-1065))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1118))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-574)) (-5 *2 (-699 *5))
- (-5 *1 (-1045 *5)) (-4 *5 (-372)) (-4 *5 (-1065)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-564 *2)) (-4 *2 (-13 (-414) (-1219)))))
- ((*1 *1 *1 *1) (-4 *1 (-803))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1116)) (-4 *2 (-377)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-691))))
- ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-986))))
- ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1134)))))
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1118)) (-5 *2 (-112))
+ (-5 *1 (-1237 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-988))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1136)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1175 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-5 *1 (-607 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805))
+ (-5 *2 (-112)) (-5 *1 (-1005 *3 *4 *5 *6))
+ (-4 *6 (-965 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-574) (-227) (-516) (-1175) (-1198)))
- (-5 *1 (-1198)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-227)) (-5 *1 (-313)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -1895 (-699 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-699 *3))))
- (-4 *3 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *4 (-1260 *3)) (-5 *1 (-509 *3 *4 *5)) (-4 *5 (-419 *3 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1156 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1116) (-34))) (-4 *6 (-13 (-1116) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1118) (-34)))
+ (-4 *4 (-13 (-1118) (-34))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-177))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-516)) (-5 *2 (-701 (-109))) (-5 *1 (-1101)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))
- (-4 *4 (-358)) (-5 *2 (-699 *4)) (-5 *1 (-355 *4)))))
+ (-12 (-5 *3 (-446))
+ (-5 *2
+ (-656
+ (-3 (|:| -2041 (-1195))
+ (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576)))))))))
+ (-5 *1 (-1199)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-174)) (-4 *2 (-566))))
- ((*1 *1 *1) (|partial| -4 *1 (-732))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-862 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-566)) (-4 *5 (-1065))
- (-5 *2 (-2 (|:| -3758 *3) (|:| -3919 *3))) (-5 *1 (-863 *5 *3))
- (-4 *3 (-862 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-145))))
- ((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-145)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-574)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1234))
- (-4 *3 (-382 *4)) (-4 *5 (-382 *4)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234))
- (-4 *3 (-1116)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-919 *4)) (-4 *4 (-1116)) (-5 *2 (-112))
- (-5 *1 (-918 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-935)) (-5 *2 (-112)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544))))
- ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1195)) (-5 *6 (-112))
+ (-4 *7 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-1221) (-975) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *1) (-5 *1 (-1081))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145))))
+ ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-132))
+ (-4 *3 (-804)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-1067))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-1262 *4)))))
+(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1110 (-227))) (-5 *6 (-654 (-270))) (-5 *2 (-1149 (-227)))
- (-5 *1 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-574)) (-5 *1 (-455 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1189 *7)) (-4 *5 (-1065))
- (-4 *7 (-1065)) (-4 *2 (-1260 *5)) (-5 *1 (-511 *5 *2 *6 *7))
- (-4 *6 (-1260 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1065)) (-4 *7 (-1065))
- (-4 *4 (-1260 *5)) (-5 *2 (-1189 *7)) (-5 *1 (-511 *5 *4 *6 *7))
- (-4 *6 (-1260 *4)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414))
- (-5 *2 (-935)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4047 *3) (|:| |coef1| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))))
+ (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1067))
+ (-5 *3 (-576)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-574)) (-5 *4 (-428 *2)) (-4 *2 (-963 *7 *5 *6))
- (-5 *1 (-752 *5 *6 *7 *2)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-315)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
+ (-12 (-5 *3 (-430 *5)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| -2300 (-783)) (|:| -1868 *5) (|:| |radicand| (-656 *5))))
+ (-5 *1 (-330 *5)) (-5 *4 (-783))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-576)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5))
- (-4 *4 (-1116)) (-4 *5 (-1116)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-171 (-388)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-388))) (-5 *1 (-338))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-574))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-171 (-388)))))
- (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-388)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-574)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-171 (-388)))))
- (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-388)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-574)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-171 (-388)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-388))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-574))) (-5 *1 (-338))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-704))) (-5 *1 (-338))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-709))) (-5 *1 (-338))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1193)) (-5 *3 (-654 (-966 (-574))))
- (-5 *4 (-324 (-711))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-704)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-709)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-324 (-711)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-704)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-709)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-324 (-711)))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-704))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-709))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-711))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-704))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-709))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-699 (-711))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-704))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-709))) (-5 *1 (-338))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-324 (-711))) (-5 *1 (-338))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1193)) (-5 *3 (-1175)) (-5 *1 (-338))))
- ((*1 *1 *1 *1) (-5 *1 (-872))))
+ (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1118)) (-4 *2 (-1118))
+ (-5 *1 (-623 *2 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-4 *3 (-568)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7))
+ (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-925)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-5 *1 (-922 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5))
+ (-4 *5 (-1262 *4)) (-4 *4 (-925)) (-5 *1 (-923 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-250 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1078)) (-4 *3 (-1221))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5)))
+ (-5 *1 (-1147 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5))))
+ (-5 *1 (-1147 *5)))))
(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1 *1) (-5 *1 (-388)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1 *1) (-5 *1 (-390)))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1191 (-968 *6))) (-4 *6 (-568))
+ (-4 *2 (-965 (-419 (-968 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2))
+ (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-805)) (-4 *6 (-965 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-374)) (-4 *3 (-1067))
(-5 *1 (-1179 *3)))))
-(((*1 *2) (-12 (-5 *2 (-853 (-574))) (-5 *1 (-544))))
- ((*1 *1) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-935))
- (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))
- (-5 *1 (-355 *4)) (-4 *4 (-358)))))
-(((*1 *2 *1) (-12 (-5 *2 (-987)) (-5 *1 (-1309)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6))
- (-4 *6 (-351 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |k| (-1193)) (|:| |c| (-1306 *3)))))
- (-5 *1 (-1306 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |k| *3) (|:| |c| (-1308 *3 *4)))))
- (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-959 *4)) (-4 *4 (-1067)) (-5 *1 (-1183 *3 *4))
+ (-14 *3 (-937)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-1260 (-417 *3))) (-5 *2 (-935))
- (-5 *1 (-927 *4 *5)) (-4 *5 (-1260 (-417 *4))))))
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-995 *4 *5 *6 *3)) (-4 *3 (-1083 *4 *5 *6)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-935)) (-5 *1 (-709))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-699 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-372)) (-5 *1 (-994 *5)))))
-(((*1 *1 *1) (-4 *1 (-555))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-462))
- (-5 *2
- (-654
- (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4))))
- (|:| |eigmult| (-781))
- (|:| |eigvec| (-654 (-699 (-417 (-966 *4))))))))
- (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))))
-(((*1 *1 *1) (-5 *1 (-1079))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-1116)) (-5 *2 (-654 *1))
- (-4 *1 (-391 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-745 *3 *4))) (-5 *1 (-745 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-736))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-963 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-654 (-2 (|:| -1390 *1) (|:| -1683 (-654 *7)))))
- (-5 *3 (-654 *7)) (-4 *1 (-1227 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-555))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-781)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1116)) (-5 *2 (-112))
- (-5 *1 (-1235 *3)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -3517 (-656 (-1195))) (|:| -1843 (-656 (-1195)))))
+ (-5 *1 (-1238)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464))
+ (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-656 *11))
+ (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4071 *11))))))
+ (-5 *6 (-783))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4071 *11))))
+ (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9))
+ (-4 *11 (-1089 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-5 *1 (-1087 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-656 *11))
+ (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4071 *11))))))
+ (-5 *6 (-783))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4071 *11))))
+ (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1083 *7 *8 *9))
+ (-4 *11 (-1127 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-5 *1 (-1163 *7 *8 *9 *10 *11)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1233))) (-5 *1 (-691))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-1134)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-1065))
- (-5 *2 (-2 (|:| -3758 *1) (|:| -3919 *1))) (-4 *1 (-1260 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-324 *5)))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-324 *5))))
- (-5 *1 (-1145 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-546)) (-5 *1 (-545 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-546)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-957 *4)) (-4 *4 (-1065)) (-5 *1 (-1181 *3 *4))
- (-14 *3 (-935)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 (-699 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-372))
- (-5 *1 (-531 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
+ (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576))))
+ (-4 *1 (-442 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576))))
+ (-4 *1 (-442 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2))
- (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065))))
+ (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2300 (-576))))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2300 (-783))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-965 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2300 (-783))))))
((*1 *2 *3)
- (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174))
- (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2300 (-576))))
+ (-5 *1 (-966 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $))
+ (-15 -2987 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1136)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374))
+ (-14 *4 (-1195)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
- (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))))
+ (-12 (-4 *2 (-1118)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2596 *3) (|:| -2300 *2))
+ (-2 (|:| -2596 *3) (|:| -2300 *2)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1116 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *2 (-1289))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1260 (-417 *5))) (-14 *7 *6))))
+ (-12 (-5 *3 (-701 (-419 (-968 (-576)))))
+ (-5 *2
+ (-656
+ (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576))
+ (|:| |radvect| (-656 (-701 (-326 (-576))))))))
+ (-5 *1 (-1049)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *1 (-676 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4))
+ (-4 *3 (-862)) (-4 *4 (-174)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-694 *4 *5 *6)) (-4 *4 (-1116)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-935)) (-5 *1 (-452 *2))
- (-4 *2 (-1260 (-574)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-935)) (-5 *4 (-781)) (-5 *1 (-452 *2))
- (-4 *2 (-1260 (-574)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *1 (-452 *2))
- (-4 *2 (-1260 (-574)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781))
- (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-935)) (-5 *4 (-654 (-781))) (-5 *5 (-781))
- (-5 *6 (-112)) (-5 *1 (-452 *2)) (-4 *2 (-1260 (-574)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-428 *2)) (-4 *2 (-1260 *5))
- (-5 *1 (-454 *5 *2)) (-4 *5 (-1065)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (|has| *1 (-6 -4460)) (-4 *1 (-1272 *3))
- (-4 *3 (-1234)))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374))
+ (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2))
+ (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174))
+ (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-656 (-968 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-656 (-968 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-968 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-656 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-968 *4)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174))
+ (-14 *5 (-937)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-654 (-957 (-227))))) (-5 *2 (-654 (-227)))
- (-5 *1 (-478)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-654 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574))))))
- (-5 *2 (-654 (-227))) (-5 *1 (-313)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-980 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-957 (-227)) (-957 (-227)))) (-5 *1 (-270))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-337 *4)) (-4 *4 (-372))
- (-5 *2 (-699 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-1284 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-1284 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1260 *4)) (-5 *2 (-699 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1260 *4)) (-5 *2 (-1284 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-419 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1260 *4)) (-5 *2 (-699 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3))
- (-5 *2 (-1284 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-427 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *3 (-656 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-959 (-227)))) (-5 *1 (-270))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 (-699 *5))) (-5 *3 (-699 *5)) (-4 *5 (-372))
- (-5 *2 (-1284 *5)) (-5 *1 (-1102 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))))
+ (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6))
+ (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6))
+ (-5 *1 (-643 *5 *6)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-979 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568))
+ (-4 *3 (-1067)) (-4 *2 (-804))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-989)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568))
+ (-4 *3 (-1067))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195))
+ (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943))
+ (-5 *1 (-941 *3)) (-4 *3 (-626 (-548)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943))
+ (-5 *1 (-941 *3)) (-4 *3 (-626 (-548)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-942))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-942))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-942))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 (-227))) (-5 *1 (-943))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-968 (-576)))))
+ (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3878 *6) (|:| |sol?| (-112))) (-574)
- *6))
- (-4 *6 (-372)) (-4 *7 (-1260 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6))
- (-2 (|:| -1401 (-417 *7)) (|:| |coeff| (-417 *7))) "failed"))
- (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-171 *5)) (-5 *1 (-610 *4 *5 *3))
- (-4 *5 (-13 (-440 *4) (-1018) (-1219)))
- (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-527))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1056 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1116) (-34))) (-5 *1 (-1156 *3 *2))
- (-4 *3 (-13 (-1116) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1295)))))
-(((*1 *2)
- (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-781)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-372)) (-5 *1 (-909 *2 *3))
- (-4 *2 (-1260 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148)))
- (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5)))))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148)))
- (-5 *2 (-1182 (-654 (-324 *5)) (-654 (-302 (-324 *5)))))
- (-5 *1 (-1145 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1234))
- (-4 *5 (-382 *4)) (-4 *2 (-382 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *6 *2 *7)) (-4 *6 (-1065))
- (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))))
+ (-12 (-4 *2 (-13 (-1118) (-34))) (-5 *1 (-1158 *3 *2))
+ (-4 *3 (-13 (-1118) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1297)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-654 (-781))) (-5 *1 (-985 *4 *3))
- (-4 *3 (-1260 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-5 *3 (-701 (-419 (-968 (-576))))) (-5 *2 (-656 (-326 (-576))))
+ (-5 *1 (-1049)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1118)) (-5 *1 (-921 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4))
+ (-5 *1 (-822 *4 *2))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576))))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-968 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
- ((*1 *1 *1) (-5 *1 (-1136))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1189 (-966 *4))) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-4 *3 (-372))
- (-5 *2 (-1189 (-966 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)) (-5 *2 (-112))
- (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4))
+ (-4 *2 (-1262 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1) (-5 *1 (-1138))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862))
+ (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1056 (-576)))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-227))
- (-5 *2
- (-2 (|:| |brans| (-654 (-654 (-957 *4))))
- (|:| |xValues| (-1110 *4)) (|:| |yValues| (-1110 *4))))
- (-5 *1 (-154)) (-5 *3 (-654 (-654 (-957 *4)))))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-358)) (-5 *2 (-1284 *1))))
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-1286 (-701 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374))
+ (-5 *2 (-1286 (-701 (-419 (-968 *5))))) (-5 *1 (-1104 *5))
+ (-5 *4 (-701 (-419 (-968 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374))
+ (-5 *2 (-1286 (-701 (-968 *5)))) (-5 *1 (-1104 *5))
+ (-5 *4 (-701 (-968 *5)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-699 *1)) (-4 *1 (-146)) (-4 *1 (-923))
- (-5 *2 (-1284 *1)))))
-(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-587))))
- ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-587)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-171 *4))) (-5 *1 (-156 *3 *4))
- (-4 *3 (-1260 (-171 (-574)))) (-4 *4 (-13 (-372) (-858)))))
+ (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374))
+ (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1104 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-968 (-576)))) (-5 *4 (-656 (-1195)))
+ (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1041)) (-5 *5 (-390))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-654 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
+ (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1042 (-419 *4)))))
+ (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-968 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-656 (-1042 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-783)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))))
-(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-654 (-115))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-173)) (-5 *1 (-1181 *4 *5))
- (-14 *4 (-935)) (-4 *5 (-1065)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-972 (-781))) (-5 *1 (-341)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1 *1) (-5 *1 (-1138))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5))
+ (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8))
+ (-5 *6 (-656 *8)) (-4 *8 (-442 *7))
+ (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8)))
+ (-4 *8 (-442 *7)) (-5 *5 (-304 *8))
+ (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3))
+ (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1110 (-855 *3))) (-4 *3 (-13 (-1221) (-975) (-29 *5)))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1110 (-855 *3))) (-5 *5 (-1177))
+ (-4 *3 (-13 (-1221) (-975) (-29 *6)))
+ (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1110 (-855 (-326 *5))))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-419 (-968 *6))) (-5 *4 (-1110 (-855 (-326 *6))))
+ (-5 *5 (-1177))
+ (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1110 (-855 (-419 (-968 *5))))) (-5 *3 (-419 (-968 *5)))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1110 (-855 (-419 (-968 *6))))) (-5 *5 (-1177))
+ (-5 *3 (-419 (-968 *6)))
+ (-4 *6 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3))
+ (-4 *3 (-13 (-1221) (-975) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1112 (-855 (-390))))
+ (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390)))))
+ (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1112 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *6 (-1081)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390))))
+ (-5 *5 (-1177)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1110 (-855 (-390))))
+ (-5 *5 (-1195)) (-5 *2 (-1053)) (-5 *1 (-577))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1056 (-576)))) (-4 *5 (-1262 *4))
+ (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195)) (-4 *5 (-148))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-176 *3)) (-4 *3 (-315))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-4 *1 (-684 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-750 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-860))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574))))
+ (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-862))
+ (-4 *3 (-38 (-419 (-576))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *1 (-996 *3)) (-4 *3 (-1065))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-5 *3 (-654 *7)) (-4 *1 (-1087 *4 *5 *6 *7))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-968 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-4 *3 (-1067))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-4 *2 (-862))
+ (-5 *1 (-1144 *3 *2 *4)) (-4 *4 (-965 *3 (-543 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-654 *1))
- (-4 *1 (-1087 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067))
+ (-5 *1 (-1179 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *6 (-227))
- (-5 *3 (-574)) (-5 *2 (-1051)) (-5 *1 (-761)))))
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-2838
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1067))
+ (-12 (|has| *3 (-15 -4352 ((-656 *2) *3)))
+ (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-2838
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1067))
+ (-12 (|has| *3 (-15 -4352 ((-656 *2) *3)))
+ (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2838
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-975)) (-4 *3 (-1221))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1067))
+ (-12 (|has| *3 (-15 -4352 ((-656 *2) *3)))
+ (|has| *3 (-15 -2254 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)) (-14 *5 *3))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374))
+ (-5 *1 (-679 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-374))
+ (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462))))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))
+ (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374))
+ (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1146 *3 *2)) (-4 *3 (-1262 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-315) (-148)))
- (-4 *2 (-963 *4 *6 *5)) (-5 *1 (-938 *4 *5 *6 *2))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-654 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1227 *5 *6 *7 *8)) (-4 *5 (-566))
- (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-510 *2)) (-14 *2 (-574))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))))
-(((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 (-1284 (-574)))) (-5 *3 (-935)) (-5 *1 (-476)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1189 *4)) (-5 *1 (-366 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *3 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-459 *4 *3 *5 *6)) (-4 *6 (-963 *4 *3 *5)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1 *1) (-5 *1 (-1138))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1067)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -3983 *1)))
+ (-4 *1 (-1083 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -1868 *1) (|:| |gap| (-783)) (|:| -3983 *1)))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-227)) (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-959 *5)) (-5 *3 (-783)) (-4 *5 (-1067))
+ (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))))
+(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053))
+ (-5 *1 (-760)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-715 *3 *4)) (-4 *3 (-1234)) (-4 *4 (-1234)))))
+ (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-860))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
- ((*1 *1 *1) (-4 *1 (-1222))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1087 *4 *5 *6 *3)) (-4 *4 (-462)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1026 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1173 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-1116)) (-4 *4 (-1234)) (-5 *2 (-112))
- (-5 *1 (-1173 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1189 *1)) (-5 *3 (-1193)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-966 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1193)) (-4 *1 (-29 *3)) (-4 *3 (-566))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-566))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *2)) (-5 *4 (-1193)) (-4 *2 (-440 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-566))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-4 *1 (-1028))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1189 *1)) (-5 *3 (-935)) (-5 *4 (-872))
- (-4 *1 (-1028))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-935)) (-4 *4 (-13 (-858) (-372)))
- (-4 *1 (-1084 *4 *2)) (-4 *2 (-1260 *4)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1160))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-112))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-372)) (-5 *1 (-776 *2 *3)) (-4 *2 (-718 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
+ ((*1 *1 *1) (-4 *1 (-1224))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-968 *4))) (-4 *4 (-464)) (-5 *2 (-112))
+ (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464))
+ (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1110 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4))))
+ (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-5 *1 (-1004 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-5 *1 (-1123 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-699 *5))) (-5 *4 (-1284 *5)) (-4 *5 (-315))
- (-4 *5 (-1065)) (-5 *2 (-699 *5)) (-5 *1 (-1045 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1193))) (-5 *3 (-52)) (-5 *1 (-903 *4))
- (-4 *4 (-1116)))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-781)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1282 *3)) (-4 *3 (-23)) (-4 *3 (-1234)))))
-(((*1 *1 *1) (-4 *1 (-639)))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4))
+ (-4 *4 (-1067)))))
+(((*1 *1 *1) (-4 *1 (-641)))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
-(((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-699 (-417 *4))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803))
- (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *7 *8 *9 *3 *4)) (-4 *4 (-1087 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-781)) (-5 *6 (-112)) (-4 *7 (-462)) (-4 *8 (-803))
- (-4 *9 (-860)) (-4 *3 (-1081 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *7 *8 *9 *3 *4)) (-4 *4 (-1125 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *6 *7 *8 *3 *4)) (-4 *4 (-1125 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-701 (-130))))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020) (-1221))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1065)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2887 *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116))))
- ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *3 (-566)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4))
+ (-5 *1 (-938 *4 *2)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-768)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-103 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-937)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886))
+ (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4)))
+ (-5 *1 (-1206 *4)) (-4 *4 (-862)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 *2))
- (-14 *4 (-654 *2)) (-4 *5 (-397))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2))
+ (-14 *4 (-656 *2)) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-324 *5)) (-4 *5 (-397)) (-5 *1 (-348 *3 *4 *5))
- (-14 *3 (-654 (-1193))) (-14 *4 (-654 (-1193)))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-966 (-574))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-966 (-388))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-4 *1 (-406))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451))))
+ (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-968 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-968 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-324 (-227)))
- (|:| -2065 (-654 (-1110 (-853 (-227)))))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-656 (-1112 (-855 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-779))))
+ (-5 *1 (-781))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-818))))
+ (-5 *1 (-820))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227))))
- (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-654 (-324 (-227))))
- (|:| -3792 (-654 (-227)))))))
- (-5 *1 (-851))))
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3796 (-656 (-227)))))))
+ (-5 *1 (-853))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-654 (-324 (-227))))
+ (-2 (|:| |pde| (-656 (-326 (-227))))
(|:| |constraints|
- (-654
+ (-656
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-781)) (|:| |boundaryType| (-574))
- (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
- (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177))
(|:| |tol| (-227))))
- (-5 *1 (-911))))
+ (-5 *1 (-913))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *1 (-992 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-994 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (-2833
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-38 (-417 (-574)))))
- (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574)))))
- (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574))))
- (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))))
+ (-2838
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-38 (-419 (-576)))))
+ (-2085 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-557))) (-2085 (-4 *3 (-38 (-419 (-576)))))
+ (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576))))
+ (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))))
((*1 *1 *2)
- (-2833
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
- (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))))
+ (-2838
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-767)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
-(((*1 *2 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065))))
- ((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
- (-4 *3 (-382 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-513 *4 *5 *6 *3)) (-4 *6 (-382 *4)) (-4 *3 (-382 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566))
- (-5 *2 (-2 (|:| |num| (-699 *4)) (|:| |den| *4)))
- (-5 *1 (-703 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5))
- (-5 *2 (-2 (|:| -4097 *7) (|:| |rh| (-654 (-417 *6)))))
- (-5 *1 (-817 *5 *6 *7 *3)) (-5 *4 (-654 (-417 *6)))
- (-4 *7 (-666 *6)) (-4 *3 (-666 (-417 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1253 *4 *5 *3))
- (-4 *3 (-1260 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-917 *3)) (-4 *3 (-1116)) (-5 *2 (-1118 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1118 *3)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-839)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-302 (-843 *3)))
- (-4 *5 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-843 *3)) (-5 *1 (-646 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 (-843 (-966 *5)))) (-4 *5 (-462))
- (-5 *2 (-843 (-417 (-966 *5)))) (-5 *1 (-647 *5))
- (-5 *3 (-417 (-966 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-302 (-417 (-966 *5)))) (-5 *3 (-417 (-966 *5)))
- (-4 *5 (-462)) (-5 *2 (-843 *3)) (-5 *1 (-647 *5)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-388)) (-5 *3 (-1175)) (-5 *1 (-97)))))
+ (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1053))
+ (-5 *1 (-761)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1)))
+ (-4 *1 (-864 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-762)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1170))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1234))
- (-4 *4 (-382 *2)) (-4 *5 (-382 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-382 *2))
- (-4 *5 (-382 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2))
+ (-4 *5 (-384 *2)) (-4 *2 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1234))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 (-574))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 (-574)) (-14 *5 (-781))))
+ (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 (-576)) (-14 *5 (-783))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-781))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-781))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-781))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-574))
- (-14 *4 (-781))))
+ (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576))
+ (-14 *4 (-783))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-251 (-1175))) (-5 *1 (-216 *4))
+ (-12 (-5 *3 (-1195)) (-5 *2 (-251 (-1177))) (-5 *1 (-216 *4))
(-4 *4
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ *3)) (-15 -1414 ((-1289) $))
- (-15 -3220 ((-1289) $)))))))
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ *3)) (-15 -1416 ((-1291) $))
+ (-15 -4278 ((-1291) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1005)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1007)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 ((-1289) $))
- (-15 -3220 ((-1289) $)))))))
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 ((-1291) $))
+ (-15 -4278 ((-1291) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-781)) (-5 *1 (-251 *4)) (-4 *4 (-860))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-860))))
+ (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-251 *4)) (-4 *4 (-862))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-862))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-860))))
+ (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-862))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1234)) (-4 *2 (-1234))))
+ (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1234))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1236))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-351 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-1260 *2))
- (-4 *4 (-1260 (-417 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1175)) (-5 *1 (-512))))
+ (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2))
+ (-4 *4 (-1262 (-419 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *1 (-685 *2)) (-4 *2 (-1116))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1118))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-654 (-574))) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
+ (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-654 (-903 *4))) (-5 *1 (-903 *4))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4))
+ (-4 *4 (-1118))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-919 *4)) (-5 *1 (-918 *4))
- (-4 *4 (-1116))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-921 *4)) (-5 *1 (-920 *4))
+ (-4 *4 (-1118))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1026 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *1 (-1042 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 "value") (-4 *1 (-1028 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1044 *2)) (-4 *2 (-1236))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7)) (-4 *2 (-1065))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7)) (-4 *2 (-1067))
(-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1069 *4 *5 *2 *6 *7))
- (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1065))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1071 *4 *5 *2 *6 *7))
+ (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1067))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-935)) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-1092 *4 *5 *2))
- (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
+ (-12 (-5 *3 (-937)) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1094 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-935)) (-4 *4 (-1116))
- (-4 *5 (-13 (-1065) (-897 *4) (-624 (-903 *4))))
- (-5 *1 (-1093 *4 *5 *2))
- (-4 *2 (-13 (-440 *5) (-897 *4) (-624 (-903 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1160)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193))))
+ (-12 (-5 *3 (-937)) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1095 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1162)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-417 *1)) (-4 *1 (-1260 *2)) (-4 *2 (-1065))
- (-4 *2 (-372))))
+ (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1067))
+ (-4 *2 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-417 *1)) (-4 *1 (-1260 *3)) (-4 *3 (-1065))
- (-4 *3 (-566))))
+ (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1067))
+ (-4 *3 (-568))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1272 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1272 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-781))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-783))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-574)) (-5 *6 (-1175))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
- (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
- (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-654 (-654 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-5 *3 (-654 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
- (-4 *7 (-860)) (-4 *8 (-963 *5 *6 *7)) (-5 *2 (-654 (-654 *8)))
- (-5 *1 (-458 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1116)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-694 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-781))))
+ (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132))
+ (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -1619 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-781)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1116)))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))))
+ (-12 (-5 *2 (-656 (-2 (|:| -1868 *3) (|:| -3811 *4))))
+ (-5 *1 (-747 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7))
+ (-4 *5 (-1067)) (-4 *7 (-1067)) (-4 *2 (-1262 *5))
+ (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5))
+ (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7))
+ (-4 *4 (-13 (-568) (-1056 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-927 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-928 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-143 *3 *4 *2))
- (-4 *2 (-382 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-1008 *4)) (-4 *2 (-382 *4))
- (-5 *1 (-513 *4 *5 *2 *3)) (-4 *3 (-382 *5))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-158)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227))
+ (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-783)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1089 *4 *5 *6 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-4 *2 (-1118))
+ (-5 *1 (-902 *4 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-374))
+ (-4 *4 (-1067)) (-5 *2 (-1175 *4)) (-5 *1 (-1179 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-701 *2)) (-5 *4 (-783))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-461 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-1183 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151 (-227))) (-5 *1 (-1288)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-1142 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227))
+ (-5 *2 (-656 (-959 *4))) (-5 *1 (-1232)) (-5 *3 (-959 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
+ (-5 *7 (-701 (-576)))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-576)) (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1067)) (-4 *2 (-374))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2))
+ (-4 *2 (-668 *4)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1067))
+ (-5 *1 (-1047 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557))
+ (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
((*1 *2 *3)
- (-12 (-5 *3 (-699 *5)) (-4 *5 (-1008 *4)) (-4 *4 (-566))
- (-5 *2 (-699 *4)) (-5 *1 (-703 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-4 *4 (-1008 *3)) (-5 *1 (-1253 *3 *4 *2))
- (-4 *2 (-1260 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (|has| *1 (-6 -4450)) (-4 *1 (-414))
- (-5 *2 (-935)))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-4 *3 (-1056 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-373 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-5 *2 (-1175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-762)))))
-(((*1 *2)
- (-12 (-5 *2 (-699 (-924 *3))) (-5 *1 (-360 *3 *4)) (-14 *3 (-935))
- (-14 *4 (-935))))
- ((*1 *2)
- (-12 (-5 *2 (-699 *3)) (-5 *1 (-361 *3 *4)) (-4 *3 (-358))
- (-14 *4
- (-3 (-1189 *3)
- (-1284 (-654 (-2 (|:| -3079 *3) (|:| -2591 (-1136)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-699 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-358))
- (-14 *4 (-935)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-993 *4 *5 *6 *3)) (-4 *3 (-1081 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1215)))))
+ (-12 (-5 *2 (-703 (-885 (-982 *3) (-982 *3)))) (-5 *1 (-982 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-886))
+ (-5 *5 (-937)) (-5 *6 (-656 (-270))) (-5 *2 (-1287))
+ (-5 *1 (-1290))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-1287)) (-5 *1 (-1290)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-935))) (-5 *1 (-1117 *3 *4)) (-14 *3 (-935))
- (-14 *4 (-935)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1212)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-566)) (-4 *2 (-462)) (-5 *1 (-985 *2 *3))
- (-4 *3 (-1260 *2)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-5 *1 (-1018 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-241 *3))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3))
+ (-4 *3 (-1236))))
((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-241 *2)) (-4 *2 (-1116))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-290 *2)) (-4 *2 (-1234)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-290 *3)) (-4 *3 (-1234))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-574)) (-4 *4 (-1116))
- (-5 *1 (-747 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-5 *1 (-747 *2)) (-4 *2 (-1116))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))) (-5 *1 (-1157 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4459)) (-4 *1 (-152 *3))
- (-4 *3 (-1234))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-684 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1227 *4 *5 *3 *2)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *3 (-860)) (-4 *2 (-1081 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1083 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *1 (-1231 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *2) (-12 (-5 *2 (-324 (-171 (-388)))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-574))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-388))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-704))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-711))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-324 (-709))) (-5 *1 (-338))))
- ((*1 *1) (-5 *1 (-338))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-620 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-870)) (-5 *2 (-701 (-1242))) (-5 *3 (-1242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
-(((*1 *1 *1) (-12 (-5 *1 (-928 *2)) (-4 *2 (-315)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-388))))
- ((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-388)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-654 (-1 *4 (-654 *4)))) (-4 *4 (-1116))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1116))
- (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-1 *4 (-654 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1116)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-546)))))
+ (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195)))
+ (-4 *2 (-13 (-442 *5) (-27) (-1221)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1118)))))
+(((*1 *1) (-5 *1 (-571))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-566)) (-4 *2 (-963 *3 *5 *4))
- (-5 *1 (-742 *5 *4 *6 *2)) (-5 *3 (-417 (-966 *6))) (-4 *5 (-803))
- (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174))
+ (-4 *5 (-244 (-2882 *3) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *5))
+ (-2 (|:| -2596 *2) (|:| -2300 *5))))
+ (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-965 *4 *5 (-876 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1067)) (-4 *1 (-1152 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1064 *5 *6)))
+ (-5 *1 (-640 *5 *6)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
+(((*1 *2 *2) (-12 (-5 *2 (-982 *3)) (-4 *3 (-1118)) (-5 *1 (-983 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1051)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1118)) (-4 *5 (-1118))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-253 *3 *4))
- (-14 *3 (-654 (-1193))) (-4 *4 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-14 *3 (-654 (-1193)))
- (-5 *1 (-464 *3 *4 *5)) (-4 *4 (-1065))
- (-4 *5 (-244 (-2877 *3) (-781)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-491 *3 *4))
- (-14 *3 (-654 (-1193))) (-4 *4 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5))))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-13 (-315) (-148)))
- (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-302 (-417 (-966 *5)))) (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-302 (-324 *5))))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-302 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148)))
- (-5 *2 (-654 (-302 (-324 *4)))) (-5 *1 (-1145 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5)))))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-417 (-966 *4)))) (-4 *4 (-13 (-315) (-148)))
- (-5 *2 (-654 (-654 (-302 (-324 *4))))) (-5 *1 (-1145 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-302 (-417 (-966 *5))))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *5)))))
- (-5 *1 (-1145 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-302 (-417 (-966 *4)))))
- (-4 *4 (-13 (-315) (-148))) (-5 *2 (-654 (-654 (-302 (-324 *4)))))
- (-5 *1 (-1145 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 (-1284 *4))) (-4 *4 (-1065)) (-5 *2 (-699 *4))
- (-5 *1 (-1045 *4)))))
-(((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-4 *1 (-732)))
- ((*1 *1) (-4 *1 (-736)))
- ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
- ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-860)))))
-(((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1196)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-654
- (-654
- (-3 (|:| -2039 (-1193))
- (|:| -3942 (-654 (-3 (|:| S (-1193)) (|:| P (-966 (-574))))))))))
- (-5 *1 (-1197)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))))
+ (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3))
+ (-4 *3 (-374)))))
+(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734)))
+ ((*1 *1) (-4 *1 (-738)))
+ ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
+ ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1083 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-331 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-132)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-574)) (-5 *1 (-206)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))))
-(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-839)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *1) (-12 (-4 *1 (-1118)) (-5 *2 (-1177)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-5 *2 (-1189 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-388) (-388))) (-5 *4 (-388))
- (-5 *2
- (-2 (|:| -3079 *4) (|:| -2691 *4) (|:| |totalpts| (-574))
- (|:| |success| (-112))))
- (-5 *1 (-799)) (-5 *5 (-574)))))
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1191 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))))
(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-546)))
- ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1128))))
- ((*1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
- ((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1128)))))
+ ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-548)))
+ ((*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1130))))
+ ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
+ ((*1 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1130)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-829 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-856)) (-5 *1 (-1307 *3 *2)) (-4 *3 (-1065)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-440 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
- (-5 *1 (-159 *4 *5)) (-4 *5 (-440 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
- (-5 *1 (-283 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-309 *4)) (-4 *4 (-310))))
- ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *5 (-1116)) (-5 *2 (-112))
- (-5 *1 (-439 *4 *5)) (-4 *4 (-440 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
- (-5 *1 (-441 *4 *5)) (-4 *5 (-440 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-566)) (-5 *2 (-112))
- (-5 *1 (-640 *4 *5)) (-4 *5 (-13 (-440 *4) (-1018) (-1219))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-5 *2 (-1189 *3)) (-5 *1 (-1208 *3))
- (-4 *3 (-372)))))
+ (-12 (-5 *2 (-2 (|:| -1651 *1) (|:| -4448 *1) (|:| |associate| *1)))
+ (-4 *1 (-568)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5))
+ (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1056 (-576))))
+ (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2))
+ (-4 *2 (-353 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-4 *6 (-566)) (-5 *2 (-654 (-324 *6)))
- (-5 *1 (-223 *5 *6)) (-5 *3 (-324 *6)) (-4 *5 (-1065))))
- ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566))))
+ (-12 (-5 *4 (-937)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6)))
+ (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))
((*1 *2 *3)
- (-12 (-5 *3 (-596 *5)) (-4 *5 (-13 (-29 *4) (-1219)))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-654 *5))
- (-5 *1 (-593 *4 *5))))
+ (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221)))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576)))) (-5 *2 (-656 *5))
+ (-5 *1 (-595 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-596 (-417 (-966 *4))))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-654 (-324 *4))) (-5 *1 (-599 *4))))
+ (-12 (-5 *3 (-598 (-419 (-968 *4))))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1111 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1165 *3))))
+ (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1167 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 *1)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858))
- (-4 *2 (-1165 *4))))
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860))
+ (-4 *2 (-1167 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1299 (-1193) *3)) (-5 *1 (-1306 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-324 (-227))) (-5 *4 (-1193))
- (-5 *5 (-1110 (-853 (-227)))) (-5 *2 (-654 (-227))) (-5 *1 (-308)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-803)) (-4 *4 (-860)) (-4 *5 (-315))
- (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-963 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *5 (-315)) (-5 *1 (-930 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *6 *4 *5))
- (-5 *1 (-930 *4 *5 *6 *2)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-315)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-831)))))
+ (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7))
+ (|:| |wcond| (-656 (-968 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *4))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *4))))))))))
+ (-5 *1 (-940 *4 *5 *6 *7)) (-4 *7 (-965 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *9 (-1089 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *9 (-1127 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1163 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1569)) (-5 *2 (-112)) (-5 *1 (-627))))
+ (-12 (-5 *3 (|[\|\|]| -1571)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2040)) (-5 *2 (-112)) (-5 *1 (-627))))
+ (-12 (-5 *3 (|[\|\|]| -2042)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2896)) (-5 *2 (-112)) (-5 *1 (-627))))
+ (-12 (-5 *3 (|[\|\|]| -2901)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-701 *4))
- (-4 *4 (-623 (-872)))))
+ (-12 (-5 *3 (|[\|\|]| -2243)) (-5 *2 (-112)) (-5 *1 (-703 *4))
+ (-4 *4 (-625 (-874)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-623 (-872))) (-5 *2 (-112))
- (-5 *1 (-701 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112))
+ (-5 *1 (-703 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-886))))
+ (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-886))))
+ (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-602))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-488))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-636))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1106))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-988))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1052))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1054))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-319))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1133))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-1294))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1153)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1155)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)) (-5 *1 (-1198))))
+ (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)) (-5 *1 (-1198))))
+ (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1198))))
+ (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-574))) (-5 *2 (-112)) (-5 *1 (-1198)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 *2)))
- (-5 *2 (-903 *3)) (-5 *1 (-1092 *3 *4 *5))
- (-4 *5 (-13 (-440 *4) (-897 *3) (-624 *2))))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-622 *4)) (-5 *6 (-1189 *4))
- (-4 *4 (-13 (-440 *7) (-27) (-1219)))
- (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-622 *4)) (-5 *6 (-417 (-1189 *4)))
- (-4 *4 (-13 (-440 *7) (-27) (-1219)))
- (-4 *7 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-666 *4)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-781)) (-4 *4 (-13 (-566) (-148)))
- (-5 *1 (-1254 *4 *2)) (-4 *2 (-1260 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-968)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *1)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1065)) (-4 *1 (-697 *3 *4 *5))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1065)) (-5 *1 (-699 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *4)) (-4 *4 (-1065)) (-4 *1 (-1139 *3 *4 *5 *6))
- (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-540 *3)) (-4 *3 (-13 (-736) (-25))))))
+ (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-654
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-574)))))
- (-5 *1 (-428 *3)) (-4 *3 (-566))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-781)) (-4 *3 (-358)) (-4 *5 (-1260 *3))
- (-5 *2 (-654 (-1189 *3))) (-5 *1 (-508 *3 *5 *6))
- (-4 *6 (-1260 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-796)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-516)) (-5 *1 (-115))))
+ (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 *2)))
+ (-5 *2 (-905 *3)) (-5 *1 (-1094 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1078))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1078))))
+ ((*1 *1 *1) (-4 *1 (-860)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)) (-4 *2 (-1078))))
+ ((*1 *1 *1) (-4 *1 (-1078))) ((*1 *1 *1) (-4 *1 (-1157))))
+(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-970)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-516)) (-4 *4 (-1116)) (-5 *1 (-943 *4 *2))
- (-4 *2 (-440 *4))))
+ (-12 (-5 *3 (-518)) (-4 *4 (-1118)) (-5 *1 (-945 *4 *2))
+ (-4 *2 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-516)) (-5 *2 (-324 (-574)))
- (-5 *1 (-944)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-803)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462)) (-4 *6 (-860))
- (-5 *2 (-112)) (-5 *1 (-459 *4 *5 *6 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-516)) (-5 *1 (-287)))))
+ (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576)))
+ (-5 *1 (-946)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-372 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-661 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))))
(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))
- ((*1 *1 *1 *1) (-5 *1 (-1136))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-372) (-858)))
- (-5 *2 (-654 (-2 (|:| -3996 (-654 *3)) (|:| -2691 *5))))
- (-5 *1 (-183 *5 *3)) (-4 *3 (-1260 (-171 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-372) (-858)))
- (-5 *2 (-654 (-2 (|:| -3996 (-654 *3)) (|:| -2691 *4))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-781)) (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2176 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1138))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1045 *5 *6 *7 *8))) (-5 *1 (-1045 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1164 *5 *6 *7 *8))) (-5 *1 (-1164 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-959 *5)) (-4 *5 (-1067)) (-5 *2 (-783))
+ (-5 *1 (-1183 *4 *5)) (-14 *4 (-937))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5))
+ (-14 *4 (-937)) (-4 *5 (-1067))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067))
+ (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-4 *3 (-1260 *4)) (-4 *2 (-1275 *4))
- (-5 *1 (-1278 *4 *3 *5 *2)) (-4 *5 (-666 *3)))))
+ (-12 (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-2 (|:| -2363 (-1175 *4)) (|:| -2373 (-1175 *4))))
+ (-5 *1 (-1181 *4)) (-5 *3 (-1175 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1053)) (-5 *1 (-766)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1193)) (-5 *1 (-685 *3)) (-4 *3 (-1116)))))
+ (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8))
+ (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-995 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *2 (-1051)) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))
- (-5 *2 (-1051)) (-5 *1 (-313)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1235 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-194))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-372) (-858))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1260 (-171 *2))))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3))
- (-4 *3 (-1260 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1284 (-654 (-574)))) (-5 *1 (-490))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1234)) (-5 *1 (-1173 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1175 *3)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-247)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-968 (-576))) (-5 *3 (-1195))
+ (-5 *4 (-1112 (-419 (-576)))) (-5 *1 (-30)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1054 (-574)) (-649 (-574)) (-462)))
+ (-12 (-5 *2 (-874)) (-5 *1 (-1175 *3)) (-4 *3 (-1118))
+ (-4 *3 (-1236)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174))
+ (-5 *2 (-1286 (-701 (-968 *4)))) (-5 *1 (-191 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6))
+ (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1056 (-576))))
(-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1269 *4 *5 *6))
- (|:| |%expon| (-327 *4 *5 *6))
- (|:| |%expTerms|
- (-654 (-2 (|:| |k| (-417 (-574))) (|:| |c| *4))))))
- (|:| |%type| (-1175))))
- (-5 *1 (-1270 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1219) (-440 *3)))
- (-14 *5 (-1193)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *2 (-1229 (-940)))
- (-5 *1 (-326))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1110 (-227))) (-5 *6 (-574)) (-5 *7 (-1175))
- (-5 *2 (-1229 (-940))) (-5 *1 (-326))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574))
- (-5 *2 (-1229 (-940))) (-5 *1 (-326))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-324 (-574))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1110 (-227))) (-5 *6 (-227)) (-5 *7 (-574)) (-5 *8 (-1175))
- (-5 *2 (-1229 (-940))) (-5 *1 (-326)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1157))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *4)) (-4 *4 (-1065)) (-4 *2 (-1260 *4))
- (-5 *1 (-454 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-417 (-1189 (-324 *5)))) (-5 *3 (-1284 (-324 *5)))
- (-5 *4 (-574)) (-4 *5 (-566)) (-5 *1 (-1146 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-860)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-14 *5 (-656 (-1195)))
(-5 *2
- (-2 (|:| |polnum| (-792 *3)) (|:| |polden| *3) (|:| -4128 (-781))))
- (-5 *1 (-792 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4128 (-781))))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1192)) (-5 *1 (-338)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-654 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-491 *4 *5))) (-14 *4 (-654 (-1193)))
- (-4 *5 (-462))
+ (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4))))))
+ (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
(-5 *2
- (-2 (|:| |gblist| (-654 (-253 *4 *5)))
- (|:| |gvlist| (-654 (-574)))))
- (-5 *1 (-641 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-112)) (-5 *1 (-283 *4 *3))
- (-4 *3 (-13 (-440 *4) (-1018))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *1 *2 *2)
- (-12
+ (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5))))))
+ (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5)))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
(-5 *2
- (-3 (|:| I (-324 (-574))) (|:| -1396 (-324 (-388)))
- (|:| CF (-324 (-171 (-388)))) (|:| |switch| (-1192))))
- (-5 *1 (-1192)))))
-(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-781)) (-5 *1 (-1117 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-766)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1168))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1175)) (-5 *5 (-699 (-227))) (-5 *6 (-227))
- (-5 *7 (-699 (-574))) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-762)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-1181 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1181 *2 *3)) (-14 *2 (-935)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-1149 (-227))) (-5 *1 (-1286)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *1)) (-4 *1 (-310))))
- ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-701 (-883 (-980 *3) (-980 *3)))) (-5 *1 (-980 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1116)) (-4 *5 (-1116))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-693 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3)) (-4 *3 (-1234)))))
-(((*1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-417 (-574))))
- (-5 *2 (-2 (|:| -2358 (-1173 *4)) (|:| -2368 (-1173 *4))))
- (-5 *1 (-1179 *4)) (-5 *3 (-1173 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-872)) (-5 *1 (-1173 *3)) (-4 *3 (-1116))
- (-4 *3 (-1234)))))
+ (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5))))))
+ (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5)))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2
+ (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5))))))
+ (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-968 *5)))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2
+ (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4))))))
+ (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-968 *4)))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
(-5 *2
- (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
- (|:| |expense| (-388)) (|:| |accuracy| (-388))
- (|:| |intermediateResults| (-388))))
- (-5 *1 (-813)))))
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))
+ (-5 *1 (-815)))))
+(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-576))) (|:| -1398 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194))))
+ (-5 *1 (-1194)))))
+(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-783)) (-5 *1 (-1119 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195))
+ (-14 *4 *2))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227)))
+ (-5 *1 (-315)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568))
+ (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4463 "*")))
+ (-4 *4 (-1067)) (-5 *1 (-1046 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-937))
+ (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1067)) (-5 *1 (-1046 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-968 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *5))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *5))))))))))
+ (-5 *1 (-940 *5 *6 *7 *8)) (-5 *4 (-656 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-968 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *5))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *5))))))))))
+ (-5 *1 (-940 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *7)) (-4 *7 (-965 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7))
+ (|:| |wcond| (-656 (-968 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *4))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *4))))))))))
+ (-5 *1 (-940 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *5 (-937)) (-4 *9 (-965 *6 *8 *7))
+ (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195))))
+ (-4 *8 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9))
+ (|:| |wcond| (-656 (-968 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *6))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *6))))))))))
+ (-5 *1 (-940 *6 *7 *8 *9)) (-5 *4 (-656 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-937))
+ (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9))
+ (|:| |wcond| (-656 (-968 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *6))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *6))))))))))
+ (-5 *1 (-940 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-937)) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-968 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *5))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *5))))))))))
+ (-5 *1 (-940 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177))
+ (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177))
+ (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-965 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195))))
+ (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-940 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-937))
+ (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148)))
+ (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-937))
+ (-5 *6 (-1177)) (-4 *10 (-965 *7 *9 *8)) (-4 *7 (-13 (-317) (-148)))
+ (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-937)) (-5 *5 (-1177))
+ (-4 *9 (-965 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-940 *6 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 *5)) (-5 *4 (-574)) (-4 *5 (-858)) (-4 *5 (-372))
- (-5 *2 (-781)) (-5 *1 (-959 *5 *6)) (-4 *6 (-1260 *5)))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374))
+ (-5 *2 (-783)) (-5 *1 (-961 *5 *6)) (-4 *6 (-1262 *5)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-112))
+ (-5 *1 (-902 *4 *5)) (-4 *5 (-1118))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-905 *5)) (-4 *5 (-1118)) (-5 *2 (-112))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2799 *3) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8))
+ (-4 *8 (-965 *5 *7 *6)) (-4 *5 (-13 (-317) (-148)))
+ (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112))
+ (-5 *1 (-940 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3))
+ (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2))
+ (-4 *2 (-699 *3 *5 *6)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1299 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2)
+ (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135))
+ (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-965 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1067)) (-5 *2 (-937))))
+ ((*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1138)) (-5 *2 (-112)) (-5 *1 (-833)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-781)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-574)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-781)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
((*1 *2 *2 *3)
(-12
(-5 *2
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574)))))
- (-5 *3 (-654 (-874 *4))) (-14 *4 (-654 (-1193))) (-14 *5 (-781))
- (-5 *1 (-515 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-417 (-574))))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 (-1110 (-388)))) (-5 *1 (-270)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-462))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1189 *6)) (-4 *6 (-963 *5 *3 *4)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *5 (-923)) (-5 *1 (-467 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1189 *1)) (-4 *1 (-923)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-654 *7)) (-5 *3 (-574)) (-4 *7 (-963 *4 *5 *6))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-459 *4 *5 *6 *7)))))
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1238)) (-4 *5 (-1260 *4))
- (-5 *2 (-2 (|:| |radicand| (-417 *5)) (|:| |deg| (-781))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803))
- (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4097 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9))))
- (-5 *1 (-1004 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9))
- (-4 *4 (-1087 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803))
- (-4 *8 (-860)) (-4 *9 (-1081 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4097 (-654 *9)) (|:| -4068 *4) (|:| |ineq| (-654 *9))))
- (-5 *1 (-1123 *6 *7 *8 *9 *4)) (-5 *3 (-654 *9))
- (-4 *4 (-1087 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-382 *2)) (-4 *2 (-1234))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-659 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-417 *4)) (-4 *4 (-1260 *3)) (-4 *3 (-13 (-372) (-148)))
- (-5 *1 (-409 *3 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1067) (-651 (-576))))
+ (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805))
+ (-5 *2 (-656 (-419 (-968 *4)))) (-5 *1 (-940 *4 *5 *6 *7))
+ (-4 *7 (-965 *4 *6 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1193))
- (|:| |arrayIndex| (-654 (-966 (-574))))
+ (-2 (|:| |var| (-1195))
+ (|:| |arrayIndex| (-656 (-968 (-576))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1193)) (|:| |rand| (-872))
+ (-2 (|:| |var| (-1195)) (|:| |rand| (-874))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1192)) (|:| |thenClause| (-338))
- (|:| |elseClause| (-338))))
+ (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340))
+ (|:| |elseClause| (-340))))
(|:| |returnBranch|
- (-2 (|:| -2265 (-112))
- (|:| -3079
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1456 (-872))))))
- (|:| |blockBranch| (-654 (-338)))
- (|:| |commentBranch| (-654 (-1175))) (|:| |callBranch| (-1175))
+ (-2 (|:| -3321 (-112))
+ (|:| -3084
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1458 (-874))))))
+ (|:| |blockBranch| (-656 (-340)))
+ (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177))
(|:| |forBranch|
- (-2 (|:| -2065 (-1108 (-966 (-574))))
- (|:| |span| (-966 (-574))) (|:| -2051 (-338))))
- (|:| |labelBranch| (-1136))
- (|:| |loopBranch| (-2 (|:| |switch| (-1192)) (|:| -2051 (-338))))
+ (-2 (|:| -2055 (-1110 (-968 (-576))))
+ (|:| |span| (-968 (-576))) (|:| -2053 (-340))))
+ (|:| |labelBranch| (-1138))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2053 (-340))))
(|:| |commonBranch|
- (-2 (|:| -2039 (-1193)) (|:| |contents| (-654 (-1193)))))
- (|:| |printBranch| (-654 (-872)))))
- (-5 *1 (-338)))))
-(((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-478)) (-5 *3 (-654 (-270))) (-5 *1 (-1285))))
- ((*1 *1 *1) (-5 *1 (-1285))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227)))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-871))))
- ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-871)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-686))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1035))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1112)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065))
- (-5 *1 (-700 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3))
- (-4 *3 (-13 (-1219) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-4 *5 (-13 (-566) (-1054 (-574)) (-148)))
- (-5 *2 (-596 (-417 (-966 *5)))) (-5 *1 (-580 *5))
- (-5 *3 (-417 (-966 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-338))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2065
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1051)) (-5 *1 (-313)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-934)) (-5 *2 (-2 (|:| -1866 (-654 *1)) (|:| -2975 *1)))
- (-5 *3 (-654 *1)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-5 *2 (-1284 *6)) (-5 *1 (-345 *3 *4 *5 *6))
- (-4 *6 (-351 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))
- ((*1 *2 *1) (-12 (-4 *1 (-718 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *3)) (-4 *3 (-1065)) (-5 *2 (-781))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *1 (-963 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-781)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-963 *4 *5 *3)) (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *3 (-860)) (-5 *2 (-781)))))
+ (-2 (|:| -2041 (-1195)) (|:| |contents| (-656 (-1195)))))
+ (|:| |printBranch| (-656 (-874)))))
+ (-5 *1 (-340)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1067)) (-14 *3 (-1195))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1175 *4)) (-5 *3 (-576)) (-4 *4 (-1067))
+ (-5 *1 (-1179 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1067))
+ (-14 *4 (-1195)) (-14 *5 *3))))
(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
- (-4 *4 (-174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
-(((*1 *1) (-5 *1 (-627))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-109))))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-419 (-576))))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4452)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-688))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1037))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1084))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1116))))
- ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-448 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-493))))
- ((*1 *2 *1) (-12 (-4 *1 (-845 *2)) (-4 *2 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-875))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1091 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1131))))
- ((*1 *1 *1) (-5 *1 (-1193))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-372)) (-4 *7 (-1260 *5)) (-4 *4 (-734 *5 *7))
- (-5 *2 (-2 (|:| -3479 (-699 *6)) (|:| |vec| (-1284 *5))))
- (-5 *1 (-821 *5 *6 *7 *4 *3)) (-4 *6 (-666 *5)) (-4 *3 (-666 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-2 (|:| |val| (-654 *8)) (|:| -4068 *9))))
- (-5 *5 (-112)) (-4 *8 (-1081 *6 *7 *4)) (-4 *9 (-1087 *6 *7 *4 *8))
- (-4 *6 (-462)) (-4 *7 (-803)) (-4 *4 (-860))
- (-5 *2 (-654 (-2 (|:| |val| *8) (|:| -4068 *9))))
- (-5 *1 (-1088 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-539)))))
-(((*1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
+ (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-770)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-925)) (-5 *1 (-469 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-925)))))
+(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576)))
+ (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-769)))))
+(((*1 *1) (-5 *1 (-629))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1118))))
+ ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-981))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1093 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1133))))
+ ((*1 *1 *1) (-5 *1 (-1195))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-921 *3))) (-4 *3 (-1118)) (-5 *1 (-920 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-598 *3)) (-4 *3 (-374)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-529)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379))
+ (-4 *6 (-1067)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1047 *6))
+ (-5 *3 (-656 (-701 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1067))
+ (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1047 *4))
+ (-5 *3 (-656 (-701 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-937)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1067))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1047 *5))
+ (-5 *3 (-656 (-701 *5))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6))
+ (-4 *6 (-442 *5)) (-4 *5 (-1118)) (-5 *1 (-585 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374))
+ (-5 *2 (-656 (-304 (-968 *6)))) (-5 *1 (-550 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-654 *5)) (-14 *4 (-1193))
- (-4 *5 (-372)) (-5 *1 (-937 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *5)) (-4 *5 (-372)) (-5 *2 (-1189 *5))
- (-5 *1 (-937 *4 *5)) (-14 *4 (-1193))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-781)) (-4 *6 (-372))
- (-5 *2 (-417 (-966 *6))) (-5 *1 (-1066 *5 *6)) (-14 *5 (-1193)))))
-(((*1 *2 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-965 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-461 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-417 *7))) (-5 *4 (-1 (-654 *6) *7))
- (-5 *5 (-1 (-428 *7) *7))
- (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *6 (-1260 *5)) (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-664 *7 (-417 *7))) (-5 *4 (-1 (-654 *6) *7))
- (-5 *5 (-1 (-428 *7) *7))
- (-4 *6 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *7 (-1260 *6)) (-5 *2 (-654 (-417 *7))) (-5 *1 (-822 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-1 (-428 *6) *6))
- (-4 *6 (-1260 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-664 *5 (-417 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-654 (-417 *5))) (-5 *1 (-822 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-1 (-428 *6) *6))
- (-4 *6 (-1260 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-654 (-417 *6))) (-5 *1 (-822 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-771))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-699 (-417 (-966 (-574)))))
- (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047))
- (-5 *3 (-324 (-574))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| |deg| (-781)) (|:| -1322 *5))))
- (-4 *5 (-1260 *4)) (-4 *4 (-358)) (-5 *2 (-654 *5))
- (-5 *1 (-218 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-2 (|:| -4201 *5) (|:| -3735 (-574)))))
- (-5 *4 (-574)) (-4 *5 (-1260 *4)) (-5 *2 (-654 *5))
- (-5 *1 (-706 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1260 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-566)) (-5 *1 (-985 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-514 (-417 (-574)) (-246 *5 (-781)) (-874 *4)
- (-253 *4 (-417 (-574)))))
- (-14 *4 (-654 (-1193))) (-14 *5 (-781)) (-5 *2 (-112))
- (-5 *1 (-515 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-935)) (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-270))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-376 *2)) (-4 *2 (-566)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-5 *1 (-428 *2)) (-4 *2 (-566)))))
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -2976 ((-1143 *3 (-624 $)) $))
+ (-15 -2987 ((-1143 *3 (-624 $)) $))
+ (-15 -2956 ($ (-1143 *3 (-624 $))))))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-781)))))
+ (|partial| -12 (-5 *2 (-1079 (-1042 *3) (-1191 (-1042 *3))))
+ (-5 *1 (-1042 *3)) (-4 *3 (-13 (-860) (-374) (-1040))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-968 *8))))
+ (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148)))
+ (-4 *11 (-965 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195))))
+ (-4 *10 (-805))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-656
+ (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11))
+ (|:| |wcond| (-656 (-968 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1286 (-419 (-968 *8))))
+ (|:| -4093 (-656 (-1286 (-419 (-968 *8))))))))))
+ (|:| |rgsz| (-576))))
+ (-5 *1 (-940 *8 *9 *10 *11)) (-5 *7 (-576)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))
+ ((*1 *1 *1) (-5 *1 (-390)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-607 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1 *1) (-4 *1 (-985))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4))
+ (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2))
+ (-4 *2 (-1067)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2))
+ (-4 *4 (-699 *2 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1138)) (-5 *1 (-340)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2956 ($ *7)))))
+ (-4 *7 (-860))
+ (-4 *8
+ (-13 (-1264 *3 *7) (-374) (-1221)
+ (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))))
+ (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8))
+ (-14 *10 (-1195)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-965 *4 *6 *5)) (-4 *4 (-464))
+ (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1005 *4 *5 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
- (-4 *7 (-1260 (-417 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2505 *3)))
- (-5 *1 (-572 *5 *6 *7 *3)) (-4 *3 (-351 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
+ (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317))
+ (-4 *6 (-1010 *5)) (-4 *2 (-13 (-421 *6 *7) (-1056 *6)))
+ (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3))
(-5 *2
- (-2 (|:| |answer| (-417 *6)) (|:| -2505 (-417 *6))
- (|:| |specpart| (-417 *6)) (|:| |polypart| *6)))
- (-5 *1 (-573 *5 *6)) (-5 *3 (-417 *6)))))
-(((*1 *1 *1) (-4 *1 (-1160))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))
- (-5 *2 (-1051)) (-5 *1 (-756)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5)
+ (|:| |f4| (-656 *5))))
+ (-5 *1 (-1206 *6)) (-5 *4 (-656 *5)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -13319,463 +13704,443 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
+ (-3 (|:| |str| (-1175 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2065
+ (|:| -2055
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-569)))))
+ (-5 *1 (-571)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4)))
+ (-5 *1 (-1132 *4 *5)) (-5 *3 (-1259 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4102 (-656 *9)) (|:| -4071 *4) (|:| |ineq| (-656 *9))))
+ (-5 *1 (-1006 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9))
+ (-4 *4 (-1089 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-4 *9 (-1083 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4102 (-656 *9)) (|:| -4071 *4) (|:| |ineq| (-656 *9))))
+ (-5 *1 (-1125 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9))
+ (-4 *4 (-1089 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1103))) (-5 *1 (-301)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-937)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1067))
+ (-4 *4 (-1236))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174))
+ (-4 *5 (-244 (-2882 *3) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2596 *2) (|:| -2300 *5))
+ (-2 (|:| -2596 *2) (|:| -2300 *5))))
+ (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862))
+ (-4 *7 (-965 *4 *5 (-876 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-959 (-227))) (-5 *1 (-1232)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-1065)) (-5 *2 (-1284 *4))
- (-5 *1 (-1194 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-5 *2 (-1284 *3)) (-5 *1 (-1194 *3))
- (-4 *3 (-1065)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-1260 *4)) (-4 *4 (-1238))
- (-4 *1 (-351 *4 *3 *5)) (-4 *5 (-1260 (-417 *3))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1126)) (-5 *3 (-574)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-4 *5 (-1260 *4)) (-5 *2 (-1189 (-417 *5))) (-5 *1 (-625 *4 *5))
- (-5 *3 (-417 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-428 *6) *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-148) (-27) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-1189 (-417 *6))) (-5 *1 (-625 *5 *6)) (-5 *3 (-417 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1118 (-781))) (-5 *6 (-781))
- (-5 *2
- (-2 (|:| |contp| (-574))
- (|:| -3996 (-654 (-2 (|:| |irr| *3) (|:| -1545 (-574)))))))
- (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189 *2)) (-4 *2 (-963 (-417 (-966 *6)) *5 *4))
- (-5 *1 (-742 *5 *4 *6 *2)) (-4 *5 (-803))
- (-4 *4 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $)))))
- (-4 *6 (-566)))))
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-654 (-388))) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-388))) (-5 *1 (-478))))
+ (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-884)) (-5 *2 (-1289)) (-5 *1 (-1285))))
+ (-12 (-5 *3 (-937)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1116)) (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))
- (-5 *2 (-654 (-1092 *3 *4 *5))) (-5 *1 (-1093 *3 *4 *5))
- (-4 *5 (-13 (-440 *4) (-897 *3) (-624 (-903 *3)))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1 (-1173 (-966 *4)) (-1173 (-966 *4))))
- (-5 *1 (-1292 *4)) (-4 *4 (-372)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-388)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1173 (-654 (-574)))) (-5 *1 (-894)) (-5 *3 (-574)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-901 *4 *3))
- (-4 *3 (-1234))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872))))
- ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-324 (-227))) (-5 *2 (-417 (-574))) (-5 *1 (-313)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-254)))))
+ (-12 (-4 *3 (-1118)) (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))
+ (-5 *2 (-656 (-1094 *3 *4 *5))) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-317)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227)))
+ (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1053))
+ (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))))
+(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -1398))))
+ (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1120 (-1120 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3)))
+ (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7)))
+ (-4 *7 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3)))
+ (-5 *1 (-569 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8)))
+ (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8)))
+ (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-388)) (|:| |stabilityFactor| (-388))))
- (-5 *1 (-207)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-324 (-227)))) (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1083 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148)))
+ (-5 *1 (-411 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193))
- (-5 *1 (-269 *2)) (-4 *2 (-1234))))
+ (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195))
+ (-5 *1 (-269 *2)) (-4 *2 (-1236))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-654 (-270))) (-5 *4 (-1193)) (-5 *2 (-52))
+ (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52))
(-5 *1 (-270)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-934)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4047 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-1234)) (-5 *2 (-781)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-315)) (-4 *5 (-382 *4)) (-4 *6 (-382 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1140 *4 *5 *6 *3)) (-4 *3 (-697 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1284 (-324 (-227)))) (-5 *4 (-654 (-1193)))
- (-5 *2 (-699 (-324 (-227)))) (-5 *1 (-207))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-4 *6 (-912 *5)) (-5 *2 (-699 *6))
- (-5 *1 (-702 *5 *6 *3 *4)) (-4 *3 (-382 *6))
- (-4 *4 (-13 (-382 *5) (-10 -7 (-6 -4459)))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -4285 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1156 *3 *2)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *2 (-13 (-1116) (-34))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832))
+ (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195)))))
+ (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195)))))
+ (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1122))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195))
+ (-5 *2 (-1122)) (-5 *1 (-409)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236))))
((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860))))
- ((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 -1396))))
- (-5 *2 (-1051)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065)) (-4 *4 (-174))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065))
- (-4 *3 (-174)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))
- ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))))
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1 *1) (-4 *1 (-485)))
+ ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-896))))
+ ((*1 *1 *1) (-5 *1 (-989)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
- (-4 *2 (-697 *3 *4 *5)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))))
(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-935))) (-5 *4 (-654 (-574)))
- (-5 *2 (-699 (-574))) (-5 *1 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-535)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-478)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-437 *3 *2)) (-4 *3 (-13 (-174) (-38 (-417 (-574)))))
- (-4 *2 (-13 (-860) (-21))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-574)) (-5 *3 (-781)) (-5 *1 (-571)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803))
- (-5 *2 (-112)) (-5 *1 (-1003 *3 *4 *5 *6))
- (-4 *6 (-963 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3 *4)) (-4 *3 (-13 (-1116) (-34)))
- (-4 *4 (-13 (-1116) (-34))))))
-(((*1 *1) (-5 *1 (-1079))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1146 *4 *3)) (-4 *4 (-1262 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 *7))) (-5 *3 (-1189 *7))
- (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-923)) (-4 *5 (-803))
- (-4 *6 (-860)) (-5 *1 (-920 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 *5))) (-5 *3 (-1189 *5))
- (-4 *5 (-1260 *4)) (-4 *4 (-923)) (-5 *1 (-921 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1234)) (-5 *2 (-574)))))
+ (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1118))
+ (-4 *5 (-13 (-1067) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240))
+ (-4 *6 (-1262 (-419 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-353 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *3 *4 *2 *5 *6)
(-12
- (-5 *5
- (-2 (|:| |done| (-654 *11))
- (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11))))))
- (-5 *6 (-781))
- (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11))))
- (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9))
- (-4 *11 (-1087 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803))
- (-4 *9 (-860)) (-5 *1 (-1085 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-654 *11))
- (|:| |todo| (-654 (-2 (|:| |val| *3) (|:| -4068 *11))))))
- (-5 *6 (-781))
- (-5 *2 (-654 (-2 (|:| |val| (-654 *10)) (|:| -4068 *11))))
- (-5 *3 (-654 *10)) (-5 *4 (-654 *11)) (-4 *10 (-1081 *7 *8 *9))
- (-4 *11 (-1125 *7 *8 *9 *10)) (-4 *7 (-462)) (-4 *8 (-803))
- (-4 *9 (-860)) (-5 *1 (-1161 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-966 (-574)))))
(-5 *2
- (-654
- (-2 (|:| |radval| (-324 (-574))) (|:| |radmult| (-574))
- (|:| |radvect| (-654 (-699 (-324 (-574))))))))
- (-5 *1 (-1047)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
- (-5 *2 (-1051)) (-5 *1 (-759)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-326)) (-5 *3 (-227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-1284 (-699 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 (-699 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372))
- (-5 *2 (-1284 (-699 (-417 (-966 *5))))) (-5 *1 (-1102 *5))
- (-5 *4 (-699 (-417 (-966 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1193))) (-4 *5 (-372))
- (-5 *2 (-1284 (-699 (-966 *5)))) (-5 *1 (-1102 *5))
- (-5 *4 (-699 (-966 *5)))))
+ (-2 (|:| -2799 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067)))))
+(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-699 *4))) (-4 *4 (-372))
- (-5 *2 (-1284 (-699 *4))) (-5 *1 (-1102 *4)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1284 *4)) (-5 *3 (-699 *4)) (-4 *4 (-372))
- (-5 *1 (-677 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-372))
- (-4 *5 (-13 (-382 *4) (-10 -7 (-6 -4460))))
- (-4 *2 (-13 (-382 *4) (-10 -7 (-6 -4460))))
- (-5 *1 (-678 *4 *5 *2 *3)) (-4 *3 (-697 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-654 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-372))
- (-5 *1 (-824 *2 *3)) (-4 *3 (-666 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *1 (-1144 *3 *2)) (-4 *3 (-1260 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-388))))
+ (-12 (-5 *3 (-937)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1) (-5 *1 (-1081))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-1 (-227) (-227) (-227) (-227)))
+ (-5 *2 (-1 (-959 (-227)) (-227) (-227))) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *4 (-803)) (-4 *5 (-860)) (-4 *2 (-1065))
- (-5 *1 (-329 *4 *5 *2 *6)) (-4 *6 (-963 *2 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-302 *3))) (-5 *1 (-302 *3)) (-4 *3 (-566))
- (-4 *3 (-1234)))))
-(((*1 *2)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5)))
- (-5 *2 (-781)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *3 (-351 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-781)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-832)))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1118) (-1056 *5)))
+ (-4 *5 (-899 *4)) (-4 *4 (-1118)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-947 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-995 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1067)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -3544 (-656 (-2 (|:| |irr| *10) (|:| -3807 (-576)))))))
+ (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317))
+ (-4 *10 (-965 *3 *9 *8)) (-4 *9 (-805))
+ (-5 *2
+ (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-656 (-1191 *3)))))
+ (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287))))
+ ((*1 *1 *1) (-5 *1 (-1287))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-959 *3)) (-4 *3 (-13 (-374) (-1221) (-1020)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 *4))) (-5 *1 (-1204 *4))
- (-5 *3 (-654 *4)))))
+ (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195)))
+ (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
- (-4 *4 (-13 (-372) (-858))) (-4 *3 (-1260 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))))
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4))
+ (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1277 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1277 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1053)) (-5 *1 (-765)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4))
+ (-5 *1 (-1003 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-4 *3 (-1118))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-965 *4 *3 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-518)) (-5 *3 (-1122)) (-5 *1 (-301)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5))
+ (-5 *1 (-819 *5 *2 *3 *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576)))))
+ (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5))
+ (-5 *1 (-819 *5 *2 *3 *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *6 (-668 (-419 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067))
+ (-5 *1 (-702 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-692 *2)) (-4 *2 (-1116))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-654 *5) (-654 *5))) (-5 *4 (-574))
- (-5 *2 (-654 *5)) (-5 *1 (-692 *5)) (-4 *5 (-1116)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-462)) (-4 *7 (-803)) (-4 *8 (-860))
- (-4 *3 (-1081 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1085 *6 *7 *8 *3 *4)) (-4 *4 (-1087 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-654 *4))
- (|:| |todo| (-654 (-2 (|:| |val| (-654 *3)) (|:| -4068 *4))))))
- (-5 *1 (-1161 *5 *6 *7 *3 *4)) (-4 *4 (-1125 *5 *6 *7 *3)))))
-(((*1 *1 *2)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
(-5 *2
- (-654
- (-2
- (|:| -3667
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227))))
- (|:| |yinit| (-654 (-227))) (|:| |intvals| (-654 (-227)))
- (|:| |g| (-324 (-227))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -1916
- (-2 (|:| |stiffness| (-388)) (|:| |stability| (-388))
- (|:| |expense| (-388)) (|:| |accuracy| (-388))
- (|:| |intermediateResults| (-388)))))))
- (-5 *1 (-813)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *4 *2 *5)) (-4 *4 (-1065)) (-4 *5 (-244 *3 *4))
- (-4 *2 (-244 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4047 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-417 (-574))) (-5 *2 (-227)) (-5 *1 (-313)))))
-(((*1 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 (-781))) (-5 *1 (-1287)))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1175 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2055
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-571)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-564 *3)) (-4 *3 (-13 (-414) (-1219))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372)))
- (-4 *3 (-1260 *4)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-338))) (-5 *1 (-338)))))
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-656 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-566) (-1054 (-574)))) (-5 *2 (-417 (-574)))
- (-5 *1 (-443 *4 *3)) (-4 *3 (-440 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-622 *3)) (-4 *3 (-440 *5))
- (-4 *5 (-13 (-566) (-1054 (-574)))) (-5 *2 (-1189 (-417 (-574))))
- (-5 *1 (-443 *5 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-566)) (-5 *2 (-654 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-427 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338))
- (-5 *1 (-340))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-1108 (-966 (-574)))) (-5 *2 (-338))
- (-5 *1 (-340))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-685 *3)) (-4 *3 (-1065))
- (-4 *3 (-1116)))))
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3))
+ (-4 *3 (-13 (-1221) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1056 (-576)) (-148)))
+ (-5 *2 (-598 (-419 (-968 *5)))) (-5 *1 (-582 *5))
+ (-5 *3 (-419 (-968 *5))))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1236)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-957 (-227))) (-5 *2 (-1289)) (-5 *1 (-478)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| -4201 *4) (|:| -3735 (-574)))))
- (-4 *4 (-1260 (-574))) (-5 *2 (-747 (-781))) (-5 *1 (-452 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-428 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-1065))
- (-5 *2 (-747 (-781))) (-5 *1 (-454 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-972 (-1189 *4))) (-5 *1 (-366 *4))
- (-5 *3 (-1189 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1004 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-654 *3)) (-4 *3 (-1087 *5 *6 *7 *8)) (-4 *5 (-462))
- (-4 *6 (-803)) (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1123 *5 *6 *7 *8 *3)))))
-(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-379 *2 *4)) (-4 *4 (-1260 *2))
- (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *4 (-1260 *2)) (-4 *2 (-174)) (-5 *1 (-418 *3 *2 *4))
- (-4 *3 (-419 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-419 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *3 (-1260 *2)) (-5 *2 (-574)) (-5 *1 (-778 *3 *4))
- (-4 *4 (-419 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *3 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-765))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-398))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-765)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4047 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022)))))
+ (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1081)) (-5 *3 (-1177)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-241 *3))))
+ ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1118)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1030)) (-5 *2 (-874)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1128)) (-5 *3 (-576)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-781))
- (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))))
-(((*1 *2 *2)
(-12
- (-5 *2
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
- (-5 *1 (-274)))))
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3796 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3796 (-656 (-227)))))))
+ (-5 *2 (-656 (-1177))) (-5 *1 (-276)))))
(((*1 *2)
- (-12 (-5 *2 (-1289)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2
- (-2 (|:| |solns| (-654 *5))
- (|:| |maps| (-654 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1144 *3 *5)) (-4 *3 (-1260 *5)))))
+ (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -13788,2879 +14153,2587 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1173 (-227)))
+ (-3 (|:| |str| (-1175 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2065
+ (|:| -2055
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-569)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *3 *5 *6 *7))
- (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234))
- (-4 *7 (-1234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193)) (-5 *2 (-1 *6 *5)) (-5 *1 (-716 *3 *5 *6))
- (-4 *3 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-1189 *3))
- (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3)))
- (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-622 *3)) (-5 *5 (-417 (-1189 *3)))
- (-4 *3 (-13 (-440 *6) (-27) (-1219)))
- (-4 *6 (-13 (-462) (-1054 (-574)) (-148) (-649 (-574))))
- (-5 *2 (-2 (|:| -1401 *3) (|:| |coeff| *3)))
- (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1116)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-372)) (-4 *3 (-1260 *4)) (-4 *5 (-1260 (-417 *3)))
- (-4 *1 (-344 *4 *3 *5 *2)) (-4 *2 (-351 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-372)) (-4 *4 (-1260 *2))
- (-4 *5 (-1260 (-417 *4))) (-4 *1 (-344 *2 *4 *5 *6))
- (-4 *6 (-351 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-372)) (-4 *3 (-1260 *2)) (-4 *4 (-1260 (-417 *3)))
- (-4 *1 (-344 *2 *3 *4 *5)) (-4 *5 (-351 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-1260 *3)) (-4 *5 (-1260 (-417 *4)))
- (-4 *1 (-344 *3 *4 *5 *2)) (-4 *2 (-351 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-423 *4 (-417 *4) *5 *6)) (-4 *4 (-1260 *3))
- (-4 *5 (-1260 (-417 *4))) (-4 *6 (-351 *3 *4 *5)) (-4 *3 (-372))
- (-4 *1 (-344 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-462)) (-4 *4 (-1116))
- (-5 *1 (-583 *4 *2)) (-4 *2 (-292)) (-4 *2 (-440 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-370 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-395 *4)) (-4 *4 (-1116)) (-5 *2 (-781))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-23)) (-5 *1 (-659 *4 *2 *5))
- (-4 *4 (-1116)) (-14 *5 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-324 (-227))) (-5 *2 (-324 (-417 (-574))))
- (-5 *1 (-313)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-5 *2 (-1053)) (-5 *1 (-315)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-174)) (-4 *2 (-1065)) (-5 *1 (-724 *2 *3))
- (-4 *3 (-658 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-174)) (-4 *2 (-1065)))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-957 (-227)) (-227) (-227)))
- (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1234))
- (-4 *5 (-1234)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-781))
- (-4 *7 (-1234)) (-4 *5 (-1234)) (-5 *2 (-246 *6 *5))
- (-5 *1 (-245 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1234)) (-4 *5 (-1234))
- (-4 *2 (-382 *5)) (-5 *1 (-380 *6 *4 *5 *2)) (-4 *4 (-382 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1116)) (-4 *5 (-1116))
- (-4 *2 (-435 *5)) (-5 *1 (-433 *6 *4 *5 *2)) (-4 *4 (-435 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-654 *6)) (-4 *6 (-1234))
- (-4 *5 (-1234)) (-5 *2 (-654 *5)) (-5 *1 (-652 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-972 *6)) (-4 *6 (-1234))
- (-4 *5 (-1234)) (-5 *2 (-972 *5)) (-5 *1 (-971 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1173 *6)) (-4 *6 (-1234))
- (-4 *3 (-1234)) (-5 *2 (-1173 *3)) (-5 *1 (-1171 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1284 *6)) (-4 *6 (-1234))
- (-4 *5 (-1234)) (-5 *2 (-1284 *5)) (-5 *1 (-1283 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1197)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *2)) (-4 *2 (-1234)) (-4 *2 (-1018))
- (-4 *2 (-1065)))))
-(((*1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1078))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1078)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-654 (-1284 *4))) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
- (-5 *2 (-654 (-1284 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-574) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1100 *2)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-766)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1284 *4)) (-4 *4 (-427 *3)) (-4 *3 (-315))
- (-4 *3 (-566)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-4 *4 (-372)) (-5 *2 (-1284 *1))
- (-4 *1 (-337 *4))))
- ((*1 *2) (-12 (-4 *3 (-372)) (-5 *2 (-1284 *1)) (-4 *1 (-337 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-174)) (-4 *4 (-1260 *3)) (-5 *2 (-1284 *1))
- (-4 *1 (-419 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4))
- (-5 *2 (-1284 *6)) (-5 *1 (-423 *3 *4 *5 *6))
- (-4 *6 (-13 (-419 *4 *5) (-1054 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-315)) (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4))
- (-5 *2 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))
- (-4 *6 (-419 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1284 *1)) (-4 *1 (-427 *3))))
+ (-12 (-5 *2 (-656 (-921 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1118))
+ (-4 *2 (-132)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))
((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1284 (-1284 *4))) (-5 *1 (-538 *4))
- (-4 *4 (-358)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-574))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860))
- (-5 *1 (-459 *5 *6 *7 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-430 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))
- (-14 *4 (-1193)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-4 *2 (-13 (-27) (-1219) (-440 *3) (-10 -8 (-15 -2951 ($ *4)))))
- (-4 *4 (-858))
- (-4 *5
- (-13 (-1262 *2 *4) (-372) (-1219)
- (-10 -8 (-15 -3879 ($ $)) (-15 -3083 ($ $)))))
- (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *6 (-999 *5)) (-14 *7 (-1193)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1065)) (-4 *2 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1175 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1173 *4) (-1173 *4))) (-5 *2 (-1173 *4))
- (-5 *1 (-1310 *4)) (-4 *4 (-1234))))
+ (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4))
+ (-5 *1 (-1312 *4)) (-4 *4 (-1236))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-654 (-1173 *5)) (-654 (-1173 *5)))) (-5 *4 (-574))
- (-5 *2 (-654 (-1173 *5))) (-5 *1 (-1310 *5)) (-4 *5 (-1234)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 (-1193))) (-5 *2 (-1289)) (-5 *1 (-1236)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-372) (-1219))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *6 *5))
- (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-112)) (-5 *1 (-938 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1 (-656 (-1175 *5)) (-656 (-1175 *5)))) (-5 *4 (-576))
+ (-5 *2 (-656 (-1175 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-936)) (-5 *2 (-2 (|:| -1868 (-656 *1)) (|:| -2981 *1)))
+ (-5 *3 (-656 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-905 *4)) (-4 *4 (-1118)) (-5 *2 (-656 *5))
+ (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067))
+ (-4 *2 (-464))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-13 (-315) (-148)))
- (-4 *5 (-13 (-860) (-624 (-1193)))) (-4 *6 (-803)) (-5 *2 (-112))
- (-5 *1 (-938 *4 *5 *6 *7)) (-4 *7 (-963 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-358))
- (-5 *2 (-1284 (-654 (-2 (|:| -3079 *4) (|:| -2591 (-1136))))))
- (-5 *1 (-355 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *2)) (-5 *1 (-181 *2)) (-4 *2 (-315))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-654 (-654 *4))) (-5 *2 (-654 *4)) (-4 *4 (-315))
- (-5 *1 (-181 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 *8))
- (-5 *4
- (-654
- (-2 (|:| -1895 (-699 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-699 *7)))))
- (-5 *5 (-781)) (-4 *8 (-1260 *7)) (-4 *7 (-1260 *6)) (-4 *6 (-358))
- (-5 *2
- (-2 (|:| -1895 (-699 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-699 *7))))
- (-5 *1 (-508 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571)))))
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576)))
+ (-5 *1 (-498 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067)) (-4 *2 (-464))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-464)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2570 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7))
+ (-5 *3 (-419 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-586 *7 *8)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1193)) (-4 *5 (-624 (-903 (-574))))
- (-4 *5 (-897 (-574)))
- (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-577 *5 *3)) (-4 *3 (-639))
- (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-4 *7 (-860))
- (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803)) (-4 *8 (-315))
- (-5 *2 (-654 (-781))) (-5 *1 (-752 *6 *7 *8 *9)) (-5 *5 (-781)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-1189 *4))) (-5 *3 (-1189 *4))
- (-4 *4 (-923)) (-5 *1 (-673 *4)))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6))))
+ (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6))
+ (-5 *1 (-1279 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-779))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))
- (-5 *1 (-575))))
+ (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-779)) (-5 *4 (-1079))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175))) (|:| |extra| (-1051))))
- (-5 *1 (-575))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-797)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |fn| (-324 (-227)))
- (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))
- (|:| |extra| (-1051))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-797)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291))
+ (-5 *1 (-1198))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291))
+ (-5 *1 (-1198)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))
- (|:| |extra| (-1051))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-810)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))))))
+ (-5 *2 (-390)) (-5 *1 (-194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-52)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -4205 *3) (|:| -2782 *4))))
+ (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1277 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1277 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-855 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4))
+ (-4 *4 (-1236)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1015 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-818))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-815))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-818)) (-5 *4 (-1079))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-815))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-849)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))
- (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-849)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
- (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1056 (-419 (-576)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-989)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2892 *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))
((*1 *2 *3)
- (-12 (-5 *3 (-851))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-850))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-851)) (-5 *4 (-1079))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-850))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-908)) (-5 *3 (-1079))
- (-5 *4
- (-2 (|:| |pde| (-654 (-324 (-227))))
- (|:| |constraints|
- (-654
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-781)) (|:| |boundaryType| (-574))
- (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
- (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175))
- (|:| |tol| (-227))))
- (-5 *2 (-2 (|:| -1879 (-388)) (|:| |explanations| (-1175))))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-965 *6 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-911))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-910))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-911)) (-5 *4 (-1079))
- (-5 *2
- (-2 (|:| -1879 (-388)) (|:| -2039 (-1175))
- (|:| |explanations| (-654 (-1175)))))
- (-5 *1 (-910)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-699 (-574))) (-5 *5 (-112)) (-5 *7 (-699 (-227)))
- (-5 *3 (-574)) (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-52)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189 *7)) (-4 *7 (-963 *6 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1065)) (-5 *2 (-1189 *6))
- (-5 *1 (-329 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-462))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-464)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-430 *1)) (-4 *1 (-965 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3))
+ (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-965 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7))))
+ (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3))
+ (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -2892 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-14 *5 (-656 (-1195)))
(-5 *2
- (-654
- (-2 (|:| |eigval| (-3 (-417 (-966 *4)) (-1182 (-1193) (-966 *4))))
- (|:| |geneigvec| (-654 (-699 (-417 (-966 *4))))))))
- (-5 *1 (-300 *4)) (-5 *3 (-699 (-417 (-966 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))))
+ (-656 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))))
+ (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-654 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234))
- (-5 *2 (-654 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-935))) (-5 *1 (-987)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-574)) (-5 *5 (-112)) (-5 *6 (-699 (-227)))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-227)) (-5 *2 (-1051)) (-5 *1 (-763)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-516)) (-5 *2 (-654 (-979))) (-5 *1 (-299)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1175)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-270)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))
+ (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6))
+ (-4 *6 (-353 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1308 *4 *2)) (-4 *1 (-383 *4 *2)) (-4 *4 (-860))
+ (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862))
(-4 *2 (-174))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065))))
+ (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-829 *4)) (-4 *1 (-1301 *4 *2)) (-4 *4 (-860))
- (-4 *2 (-1065))))
+ (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862))
+ (-4 *2 (-1067))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))))
+ (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-654 (-1193))) (|:| |pred| (-52))))
- (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-462)) (-4 *4 (-860))
- (-4 *5 (-803)) (-5 *1 (-1003 *3 *4 *5 *6)) (-4 *6 (-963 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-908))
+ (|partial| -12 (-4 *3 (-1130)) (-4 *3 (-1118)) (-5 *2 (-656 *1))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1118))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-965 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1067))
+ (-4 *7 (-965 *6 *4 *5)) (-5 *2 (-656 *3))
+ (-5 *1 (-966 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $))
+ (-15 -2987 (*7 $))))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *1 *2 *3 *4)
+ (-12
(-5 *3
- (-2 (|:| |pde| (-654 (-324 (-227))))
- (|:| |constraints|
- (-654
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-781)) (|:| |boundaryType| (-574))
- (|:| |dStart| (-699 (-227))) (|:| |dFinish| (-699 (-227))))))
- (|:| |f| (-654 (-654 (-324 (-227))))) (|:| |st| (-1175))
- (|:| |tol| (-227))))
- (-5 *2 (-1051)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3456 (-654 *3)) (|:| -1953 (-654 *3))))
- (-5 *1 (-1235 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *1 *1) (-4 *1 (-639)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-640 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018) (-1219))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *2)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-566)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-440 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1108 *2)) (-4 *2 (-440 *4)) (-4 *4 (-566))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1108 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1193)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-935)) (-4 *1 (-754 *3)) (-4 *3 (-174)))))
+ (-656
+ (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2))
+ (|:| |logand| (-1191 *2)))))
+ (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-374)) (-5 *1 (-598 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1175 (-656 (-937)))) (-5 *1 (-896)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240))
+ (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-804))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1067)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-965 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-965 *4 *5 *3)) (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-5 *2 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4071 *4))))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-262))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227)))
+ (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227)))
(-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388)))
- (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227)))
+ (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227)))
(-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3))
- (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1149 (-227))) (-5 *1 (-266 *3))
- (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1151 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227)))
+ (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227)))
(-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388)))
- (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1149 (-227)))
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1151 (-227)))
(-5 *1 (-266 *5)))))
-(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4))
+ (-4 *4 (-174)))))
+(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5))
+ (-4 *4 (-1118)) (-4 *5 (-1118)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862))
+ (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1118))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *8)) (-5 *4 (-781)) (-4 *8 (-963 *5 *7 *6))
- (-4 *5 (-13 (-315) (-148))) (-4 *6 (-13 (-860) (-624 (-1193))))
- (-4 *7 (-803))
- (-5 *2
- (-654
- (-2 (|:| |det| *8) (|:| |rows| (-654 (-574)))
- (|:| |cols| (-654 (-574))))))
- (-5 *1 (-938 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-699 (-227))) (-5 *5 (-699 (-574))) (-5 *3 (-574))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-29 *4) (-1219)))
- (-5 *1 (-593 *4 *2))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-596 (-417 (-966 *4))))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *2 (-324 *4))
- (-5 *1 (-599 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *1)) (-4 *1 (-1081 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1227 *4 *5 *6 *3)) (-4 *4 (-566)) (-4 *5 (-803))
- (-4 *6 (-860)) (-4 *3 (-1081 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1196)) (-5 *3 (-1193)))))
-(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1234)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-781))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))
- (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-622 *3)) (-4 *3 (-1116))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-781))) (-5 *3 (-112)) (-5 *1 (-1181 *4 *5))
- (-14 *4 (-935)) (-4 *5 (-1065)))))
-(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-624 *2) (-174))) (-5 *2 (-903 *4))
- (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1116)) (-4 *3 (-167 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1110 (-853 (-388)))))
- (-5 *2 (-654 (-1110 (-853 (-227))))) (-5 *1 (-313))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-404))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6))
+ (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1056 (-576))))
+ (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3))
+ (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067))
+ (-4 *2 (-13 (-416) (-1056 *4) (-374) (-1221) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))))
+(((*1 *1) (-5 *1 (-301))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4))
+ (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1118)) (-4 *3 (-167 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1112 (-855 (-390)))))
+ (-5 *2 (-656 (-1112 (-855 (-227))))) (-5 *1 (-315))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-419 *3 *4))
- (-4 *4 (-1260 *3))))
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4))
+ (-4 *4 (-1262 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-419 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1260 *3))
- (-5 *2 (-1284 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-174)) (-4 *1 (-427 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-1284 *3))))
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3))
+ (-5 *2 (-1286 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-428 *1)) (-4 *1 (-440 *3)) (-4 *3 (-566))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568))
+ (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-473 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-546))))
- ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1234))))
- ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1234))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-548))))
+ ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-734 *3 *2)) (-4 *2 (-1260 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 *3)) (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5))
- (-4 *5 (-624 (-1193))) (-4 *4 (-803)) (-4 *5 (-860))))
+ (-12 (-5 *2 (-968 *3)) (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5))
+ (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862))))
((*1 *1 *2)
- (-2833
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
- (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))))
+ (-2838
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (-12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8)))
- (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175))
- (-5 *1 (-1085 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8)))
- (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1125 *4 *5 *6 *7)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1175))
- (-5 *1 (-1161 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1198))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-872)) (-5 *3 (-574)) (-5 *1 (-1214))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-790 *4 (-874 *5)))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *5 (-654 (-1193)))
- (-5 *2 (-790 *4 (-874 *6))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-966 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-790 *4 (-874 *6)))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193)))
- (-5 *2 (-966 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1189 *4)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-1189 (-1040 (-417 *4)))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193)))))
+ (-12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8)))
+ (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1089 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177))
+ (-5 *1 (-1087 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4071 *8)))
+ (-4 *7 (-1083 *4 *5 *6)) (-4 *8 (-1127 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177))
+ (-5 *1 (-1163 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1200))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-792 *4 (-876 *5)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *5 (-656 (-1195)))
+ (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-968 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-792 *4 (-876 *6)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195)))
+ (-5 *2 (-968 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-1191 (-1042 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1162 *4 (-541 (-874 *6)) (-874 *6) (-790 *4 (-874 *6))))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038))) (-14 *6 (-654 (-1193)))
- (-5 *2 (-654 (-790 *4 (-874 *6)))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-372)) (-5 *1 (-584 *4 *2)) (-4 *2 (-1260 *4)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1193))
- (-4 *5 (-13 (-566) (-1054 (-574)) (-148)))
- (-5 *2
- (-2 (|:| -1401 (-417 (-966 *5))) (|:| |coeff| (-417 (-966 *5)))))
- (-5 *1 (-580 *5)) (-5 *3 (-417 (-966 *5))))))
+ (-5 *3 (-1164 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040))) (-14 *6 (-656 (-1195)))
+ (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-568) (-1056 (-576)) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3)))
+ (|:| |vals| (-656 *3))))
+ (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-965 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-1291))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1056 (-576))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1034 *4 *5))
+ (-5 *3 (-419 *5)))))
+(((*1 *1) (-5 *1 (-301))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390)))
+ ((*1 *1) (-5 *1 (-390))))
+(((*1 *1 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1126 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-1118)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1260 (-417 (-574))))
- (-5 *2 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574))))
- (-5 *1 (-927 *3 *4)) (-4 *4 (-1260 (-417 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *3))
- (-4 *3 (-1260 (-417 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-315)) (-5 *1 (-710 *3)))))
-(((*1 *1 *1) (-4 *1 (-175)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
+ (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390))))
+ (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1118)) (-4 *2 (-862)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-1260 *4)) (-5 *2 (-1 *6 (-654 *6)))
- (-5 *1 (-1278 *4 *5 *3 *6)) (-4 *3 (-666 *5)) (-4 *6 (-1275 *4)))))
-(((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4))
+ (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1279 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7))
+ (-5 *2 (-2 (|:| -2081 (-701 *6)) (|:| |vec| (-1286 *5))))
+ (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1260 (-417 (-574)))) (-5 *1 (-927 *3 *2))
- (-4 *2 (-1260 (-417 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-388)) (-5 *1 (-1079)))))
-(((*1 *1) (-5 *1 (-299))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-436 *5 *3))
- (-4 *3 (-13 (-1219) (-29 *5))))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1189 *3)) (-5 *1 (-928 *3)) (-4 *3 (-315)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1110 (-853 (-227)))) (-5 *1 (-313)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112))
- (-5 *2 (-1051)) (-5 *1 (-755)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1110 (-227)))
- (-5 *5 (-112)) (-5 *2 (-1286)) (-5 *1 (-264)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-1272 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-654 *6) "failed") (-574) *6 *6)) (-4 *6 (-372))
- (-4 *7 (-1260 *6))
- (-5 *2 (-2 (|:| |answer| (-596 (-417 *7))) (|:| |a0| *6)))
- (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116))
- (-4 *3 (-167 *6)) (-4 (-966 *6) (-897 *5))
- (-4 *6 (-13 (-897 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-900 *4 *1)) (-5 *3 (-903 *4)) (-4 *1 (-897 *4))
- (-4 *4 (-1116))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *6)) (-5 *4 (-903 *5)) (-4 *5 (-1116))
- (-4 *6 (-13 (-1116) (-1054 *3))) (-4 *3 (-897 *5))
- (-5 *1 (-945 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116))
- (-4 *3 (-13 (-440 *6) (-624 *4) (-897 *5) (-1054 (-622 $))))
- (-5 *4 (-903 *5)) (-4 *6 (-13 (-566) (-897 *5)))
- (-5 *1 (-946 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 (-574) *3)) (-5 *4 (-903 (-574))) (-4 *3 (-555))
- (-5 *1 (-947 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *6)) (-5 *3 (-622 *6)) (-4 *5 (-1116))
- (-4 *6 (-13 (-1116) (-1054 (-622 $)) (-624 *4) (-897 *5)))
- (-5 *4 (-903 *5)) (-5 *1 (-948 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *6 *3)) (-5 *4 (-903 *5)) (-4 *5 (-1116))
- (-4 *6 (-897 *5)) (-4 *3 (-676 *6)) (-5 *1 (-949 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-900 *6 *3) *8 (-903 *6) (-900 *6 *3)))
- (-4 *8 (-860)) (-5 *2 (-900 *6 *3)) (-5 *4 (-903 *6))
- (-4 *6 (-1116)) (-4 *3 (-13 (-963 *9 *7 *8) (-624 *4)))
- (-4 *7 (-803)) (-4 *9 (-13 (-1065) (-897 *6)))
- (-5 *1 (-950 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116))
- (-4 *3 (-13 (-963 *8 *6 *7) (-624 *4))) (-5 *4 (-903 *5))
- (-4 *7 (-897 *5)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *8 (-13 (-1065) (-897 *5))) (-5 *1 (-950 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 *3)) (-4 *5 (-1116)) (-4 *3 (-1008 *6))
- (-4 *6 (-13 (-566) (-897 *5) (-624 *4))) (-5 *4 (-903 *5))
- (-5 *1 (-953 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-900 *5 (-1193))) (-5 *3 (-1193)) (-5 *4 (-903 *5))
- (-4 *5 (-1116)) (-5 *1 (-954 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-654 (-903 *7))) (-5 *5 (-1 *9 (-654 *9)))
- (-5 *6 (-1 (-900 *7 *9) *9 (-903 *7) (-900 *7 *9))) (-4 *7 (-1116))
- (-4 *9 (-13 (-1065) (-624 (-903 *7)) (-1054 *8)))
- (-5 *2 (-900 *7 *9)) (-5 *3 (-654 *9)) (-4 *8 (-1065))
- (-5 *1 (-955 *7 *8 *9)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-574)) (-5 *2 (-112)) (-5 *1 (-563)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-853 (-388)))) (-5 *2 (-1110 (-853 (-227))))
- (-5 *1 (-313)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-566))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2887 *3)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1233)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636))))
+ (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *3)) (-4 *3 (-1089 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195)))
+ (-4 *2 (-13 (-442 (-171 *5)) (-1020) (-1221))) (-4 *5 (-568))
+ (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1020) (-1221))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-994 *4 *5 *3 *6)) (-4 *4 (-1067)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-4 *6 (-1083 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1253 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638))))
((*1 *2 *1)
- (-12 (-4 *3 (-1116))
- (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
- (-5 *1 (-1092 *3 *4 *2))
- (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))))
+ (-12 (-4 *3 (-1118))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1094 *3 *4 *2))
+ (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *3 *2)) (-4 *3 (-1116)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-1020 *3)) (-14 *3 (-574)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701 (-589))) (-5 *1 (-589)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-940)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-654 (-2 (|:| |totdeg| (-781)) (|:| -3414 *3))))
- (-5 *4 (-781)) (-4 *3 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *6 (-803))
- (-4 *7 (-860)) (-5 *1 (-459 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *1 *1) (-4 *1 (-879 *2))))
+ (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1118)))))
+(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-925)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067))
+ (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1067))
+ (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1083 *6 *7 *8))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4071 *4))))
+ (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1089 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4071 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1083 *6 *7 *4)) (-4 *9 (-1089 *6 *7 *4 *8))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862))
+ (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4071 *9))))
+ (-5 *1 (-1090 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591)))))
+(((*1 *2 *3) (-12 (-5 *3 (-968 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1089 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1285)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1287)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1285)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1285)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1287)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-957 (-227)) (-227) (-227))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-1 (-959 (-227)) (-227) (-227))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *5 (-654 (-270))) (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-893 (-1 (-227) (-227) (-227)))) (-5 *4 (-1110 (-388)))
- (-5 *2 (-1286)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1112 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-302 *7)) (-5 *4 (-1193)) (-5 *5 (-654 (-270)))
- (-4 *7 (-440 *6)) (-4 *6 (-13 (-566) (-860) (-1054 (-574))))
- (-5 *2 (-1285)) (-5 *1 (-263 *6 *7))))
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270)))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1056 (-576))))
+ (-5 *2 (-1287)) (-5 *1 (-263 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1285))
- (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1285)) (-5 *1 (-266 *3))
- (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285))
+ (-12 (-5 *3 (-890 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287))
(-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1108 (-388)))
- (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1285))
+ (-12 (-5 *3 (-890 *5)) (-5 *4 (-1110 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1287))
(-5 *1 (-266 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-890 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286))
+ (-12 (-5 *3 (-892 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288))
(-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-890 *5)) (-5 *4 (-1108 (-388)))
- (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286))
+ (-12 (-5 *3 (-892 *5)) (-5 *4 (-1110 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288))
(-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270))) (-5 *2 (-1286))
- (-5 *1 (-266 *3)) (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1108 (-388))) (-5 *2 (-1286)) (-5 *1 (-266 *3))
- (-4 *3 (-13 (-624 (-546)) (-1116)))))
+ (-12 (-5 *4 (-1110 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1118)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-893 *6)) (-5 *4 (-1108 (-388))) (-5 *5 (-654 (-270)))
- (-4 *6 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286))
+ (-12 (-5 *3 (-895 *6)) (-5 *4 (-1110 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288))
(-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-1108 (-388)))
- (-4 *5 (-13 (-624 (-546)) (-1116))) (-5 *2 (-1286))
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-1110 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1118))) (-5 *2 (-1288))
(-5 *1 (-266 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1285)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1285))
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287))
(-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *2 (-1285)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-957 (-227)))) (-5 *4 (-654 (-270)))
- (-5 *2 (-1285)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-1287)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-1286)) (-5 *1 (-267))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-654 (-227))) (-5 *4 (-654 (-270))) (-5 *2 (-1286))
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288))
(-5 *1 (-267)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7))))
- (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1004 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-654 (-2 (|:| |val| (-654 *6)) (|:| -4068 *7))))
- (-4 *6 (-1081 *3 *4 *5)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *1 (-1123 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-935)) (-5 *1 (-796)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-302 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-488))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-602))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-636))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3))
+ (-5 *1 (-802 *3)) (-4 *3 (-992))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 (-959 (-227))))) (-5 *4 (-112))
+ (-5 *1 (-1231 *2)) (-4 *2 (-992)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195))))
+ (-4 *6 (-805)) (-4 *7 (-965 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7))))
+ (-5 *1 (-940 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-490))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-604))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-638))))
((*1 *2 *1)
- (-12 (-4 *3 (-1116))
- (-4 *2 (-13 (-440 *4) (-897 *3) (-624 (-903 *3))))
- (-5 *1 (-1092 *3 *4 *2))
- (-4 *4 (-13 (-1065) (-897 *3) (-624 (-903 *3))))))
+ (-12 (-4 *3 (-1118))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1094 *3 *4 *2))
+ (-4 *4 (-13 (-1067) (-899 *3) (-626 (-905 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1116)) (-5 *1 (-1182 *2 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-872))))
- ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1289)) (-5 *1 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2) (-12 (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-718 *3)) (-5 *1 (-837 *2 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1175)) (-5 *1 (-720)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-4 *2 (-1118)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1118)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1162))))
+(((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-989)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-987 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-978)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-315)) (-5 *1 (-181 *3)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-784)) (-5 *1 (-115))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-784)) (-5 *1 (-115)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1062 *4 *5)) (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-14 *5 (-654 (-1193))) (-5 *2 (-654 (-654 (-1040 (-417 *4)))))
- (-5 *1 (-1311 *4 *5 *6)) (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *5))))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4)))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-654 (-1040 (-417 *4))))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))))
-(((*1 *1 *2) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1234))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1193))) (-5 *1 (-1193)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-338)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-585 *4 *2))
- (-4 *2 (-13 (-1219) (-973) (-1155) (-29 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-372) (-10 -8 (-15 ** ($ $ (-417 (-574)))))))
- (-5 *2 (-654 *3)) (-5 *1 (-1144 *4 *3)) (-4 *4 (-1260 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-654 *5) *6))
- (-4 *5 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *6 (-1260 *5))
- (-5 *2 (-654 (-2 (|:| -1714 *5) (|:| -4097 *3))))
- (-5 *1 (-819 *5 *6 *3 *7)) (-4 *3 (-666 *6))
- (-4 *7 (-666 (-417 *6))))))
-(((*1 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1287)))))
+ (|partial| -12 (-5 *2 (-635 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3883 *4) (|:| |sol?| (-112)))
+ (-576) *4))
+ (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1118)))))
+(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3))
+ (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 (-935))) (-4 *2 (-372)) (-5 *1 (-153 *4 *2 *5))
- (-14 *4 (-935)) (-14 *5 (-1009 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-331 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-132))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-566)) (-5 *1 (-633 *2 *4))
- (-4 *4 (-1260 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-718 *2)) (-4 *2 (-1065))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-736))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *5)) (-5 *3 (-654 (-781))) (-4 *1 (-750 *4 *5))
- (-4 *4 (-1065)) (-4 *5 (-860))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-750 *4 *2)) (-4 *4 (-1065))
- (-4 *2 (-860))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-781)) (-4 *1 (-862 *2)) (-4 *2 (-1065))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-654 *6)) (-5 *3 (-654 (-781))) (-4 *1 (-963 *4 *5 *6))
- (-4 *4 (-1065)) (-4 *5 (-803)) (-4 *6 (-860))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *1 (-963 *4 *5 *2)) (-4 *4 (-1065))
- (-4 *5 (-803)) (-4 *2 (-860))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-4 *2 (-963 *4 (-541 *5) *5))
- (-5 *1 (-1142 *4 *5 *2)) (-4 *4 (-1065)) (-4 *5 (-860))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-966 *4)) (-5 *1 (-1228 *4))
- (-4 *4 (-1065)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-324 (-227))) (-5 *1 (-313))))
+ (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1262 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3))
+ (-5 *2 (-701 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-968 *6))))
+ (-5 *3 (-419 (-968 *6)))
+ (-4 *6 (-13 (-568) (-1056 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-582 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-145)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-903 *3)) (|:| |den| (-903 *3))))
- (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))))
+(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-802))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-804))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-654 (-1193)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-656 (-1195)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574))
- (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576))
+ (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174))
(-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-324 *3) (-324 *3))) (-4 *3 (-13 (-1065) (-860)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193)))))
+ (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1067) (-862)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-781))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-5 *2 (-246 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-783))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-246 *5 *7))
(-5 *1 (-245 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-302 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-302 *6)) (-5 *1 (-301 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-302 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1175)) (-5 *5 (-622 *6))
- (-4 *6 (-310)) (-4 *2 (-1234)) (-5 *1 (-305 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6))
+ (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-622 *5)) (-4 *5 (-310))
- (-4 *2 (-310)) (-5 *1 (-306 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312))
+ (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-622 *1)) (-4 *1 (-310))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-699 *5)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-5 *2 (-699 *6)) (-5 *1 (-312 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-324 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-324 *6)) (-5 *1 (-322 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-345 *5 *6 *7 *8)) (-4 *5 (-372))
- (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *8 (-351 *5 *6 *7))
- (-4 *9 (-372)) (-4 *10 (-1260 *9)) (-4 *11 (-1260 (-417 *10)))
- (-5 *2 (-345 *9 *10 *11 *12))
- (-5 *1 (-342 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-351 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374))
+ (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7))
+ (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10)))
+ (-5 *2 (-347 *9 *10 *11 *12))
+ (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-353 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1238)) (-4 *8 (-1238))
- (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6))) (-4 *9 (-1260 *8))
- (-4 *2 (-351 *8 *9 *10)) (-5 *1 (-349 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-351 *5 *6 *7)) (-4 *10 (-1260 (-417 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240))
+ (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8))
+ (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1234)) (-4 *6 (-1234))
- (-4 *2 (-382 *6)) (-5 *1 (-380 *5 *4 *6 *2)) (-4 *4 (-382 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236))
+ (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3 *4)) (-4 *3 (-1065))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-428 *5)) (-4 *5 (-566))
- (-4 *6 (-566)) (-5 *2 (-428 *6)) (-5 *1 (-415 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568))
+ (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-566))
- (-4 *6 (-566)) (-5 *2 (-417 *6)) (-5 *1 (-416 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568))
+ (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-423 *5 *6 *7 *8)) (-4 *5 (-315))
- (-4 *6 (-1008 *5)) (-4 *7 (-1260 *6))
- (-4 *8 (-13 (-419 *6 *7) (-1054 *6))) (-4 *9 (-315))
- (-4 *10 (-1008 *9)) (-4 *11 (-1260 *10))
- (-5 *2 (-423 *9 *10 *11 *12))
- (-5 *1 (-422 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-419 *10 *11) (-1054 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317))
+ (-4 *6 (-1010 *5)) (-4 *7 (-1262 *6))
+ (-4 *8 (-13 (-421 *6 *7) (-1056 *6))) (-4 *9 (-317))
+ (-4 *10 (-1010 *9)) (-4 *11 (-1262 *10))
+ (-5 *2 (-425 *9 *10 *11 *12))
+ (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-421 *10 *11) (-1056 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-427 *6)) (-5 *1 (-425 *4 *5 *2 *6)) (-4 *4 (-427 *5))))
+ (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-566)) (-5 *1 (-428 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065))
- (-4 *2 (-440 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-440 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1116)) (-4 *6 (-1116))
- (-4 *2 (-435 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118))
+ (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-519 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-860))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-862))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-596 *5)) (-4 *5 (-372))
- (-4 *6 (-372)) (-5 *2 (-596 *6)) (-5 *1 (-594 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374))
+ (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1401 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-372)) (-4 *6 (-372))
- (-5 *2 (-2 (|:| -1401 *6) (|:| |coeff| *6)))
- (-5 *1 (-594 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -2570 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-374)) (-4 *6 (-374))
+ (-5 *2 (-2 (|:| -2570 *6) (|:| |coeff| *6)))
+ (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-372)) (-4 *2 (-372)) (-5 *1 (-594 *5 *2))))
+ (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-372)) (-4 *6 (-372))
+ (-4 *5 (-374)) (-4 *6 (-374))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-594 *5 *6))))
+ (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-611 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-611 *6)) (-5 *1 (-608 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-611 *7))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-611 *8))
- (-5 *1 (-609 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-611 *7))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8))
- (-5 *1 (-609 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-613 *7))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-611 *6)) (-5 *5 (-1173 *7))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8))
- (-5 *1 (-609 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1175 *7))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1234)) (-5 *1 (-611 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-654 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-654 *6)) (-5 *1 (-652 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-654 *6)) (-5 *5 (-654 *7))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-654 *8))
- (-5 *1 (-653 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8))
+ (-5 *1 (-655 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-661 *3)) (-4 *3 (-1234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1065)) (-4 *8 (-1065))
- (-4 *6 (-382 *5)) (-4 *7 (-382 *5)) (-4 *2 (-697 *8 *9 *10))
- (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-697 *5 *6 *7))
- (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1065))
- (-4 *8 (-1065)) (-4 *6 (-382 *5)) (-4 *7 (-382 *5))
- (-4 *2 (-697 *8 *9 *10)) (-5 *1 (-695 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-697 *5 *6 *7)) (-4 *9 (-382 *8)) (-4 *10 (-382 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-566)) (-4 *7 (-566))
- (-4 *6 (-1260 *5)) (-4 *2 (-1260 (-417 *8)))
- (-5 *1 (-719 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1260 (-417 *6)))
- (-4 *8 (-1260 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1065)) (-4 *9 (-1065))
- (-4 *5 (-860)) (-4 *6 (-803)) (-4 *2 (-963 *9 *7 *5))
- (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803))
- (-4 *4 (-963 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-803))
- (-4 *9 (-1065)) (-4 *2 (-963 *9 *8 *6))
- (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-803))
- (-4 *4 (-963 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-745 *5 *7)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-4 *7 (-736)) (-5 *2 (-745 *6 *7))
- (-5 *1 (-744 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1067)) (-4 *8 (-1067))
+ (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10))
+ (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7))
+ (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1067))
+ (-4 *8 (-1067)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5))
+ (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568))
+ (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8)))
+ (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6)))
+ (-4 *8 (-1262 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1067)) (-4 *9 (-1067))
+ (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-965 *9 *7 *5))
+ (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805))
+ (-4 *4 (-965 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805))
+ (-4 *9 (-1067)) (-4 *2 (-965 *9 *8 *6))
+ (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805))
+ (-4 *4 (-965 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7))
+ (-5 *1 (-746 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-745 *3 *4))
- (-4 *4 (-736))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-747 *3 *4))
+ (-4 *4 (-738))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-807 *6)) (-5 *1 (-808 *4 *5 *2 *6)) (-4 *4 (-807 *5))))
+ (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-842 *5 *6))))
+ (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-844 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-853 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-5 *1 (-852 *5 *6))))
+ (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *1 (-854 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-900 *5 *6)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-900 *5 *7))
- (-5 *1 (-899 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-902 *5 *7))
+ (-5 *1 (-901 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-5 *2 (-966 *6)) (-5 *1 (-960 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-968 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-968 *6)) (-5 *1 (-962 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860))
- (-4 *8 (-1065)) (-4 *6 (-803))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862))
+ (-4 *8 (-1067)) (-4 *6 (-805))
(-4 *2
- (-13 (-1116)
- (-10 -8 (-15 -3074 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-781))))))
- (-5 *1 (-965 *6 *7 *8 *5 *2)) (-4 *5 (-963 *8 *6 *7))))
+ (-13 (-1118)
+ (-10 -8 (-15 -3081 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))))))
+ (-5 *1 (-967 *6 *7 *8 *5 *2)) (-4 *5 (-965 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-972 *6)) (-5 *1 (-971 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-974 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-974 *6)) (-5 *1 (-973 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1116))
- (-4 *6 (-1116)) (-5 *2 (-980 *6)) (-5 *1 (-982 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-982 *5)) (-4 *5 (-1118))
+ (-4 *6 (-1118)) (-5 *2 (-982 *6)) (-5 *1 (-984 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-957 *5)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-5 *2 (-957 *6)) (-5 *1 (-997 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-959 *6)) (-5 *1 (-999 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-966 *4))) (-4 *4 (-1065))
- (-4 *2 (-963 (-966 *4) *5 *6)) (-4 *5 (-803))
+ (-12 (-5 *3 (-1 *2 (-968 *4))) (-4 *4 (-1067))
+ (-4 *2 (-965 (-968 *4) *5 *6)) (-4 *5 (-805))
(-4 *6
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-5 *1 (-1000 *4 *5 *6 *2))))
+ (-13 (-862)
+ (-10 -8 (-15 -1846 ((-1195) $))
+ (-15 -1500 ((-3 $ "failed") (-1195))))))
+ (-5 *1 (-1002 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-566)) (-4 *6 (-566))
- (-4 *2 (-1008 *6)) (-5 *1 (-1006 *5 *6 *4 *2)) (-4 *4 (-1008 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568))
+ (-4 *2 (-1010 *6)) (-5 *1 (-1008 *5 *6 *4 *2)) (-4 *4 (-1010 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-1013 *6)) (-5 *1 (-1014 *4 *5 *2 *6)) (-4 *4 (-1013 *5))))
+ (-4 *2 (-1015 *6)) (-5 *1 (-1016 *4 *5 *2 *6)) (-4 *4 (-1015 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7))
- (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7))
+ (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1069 *3 *4 *5 *6 *7))
- (-4 *5 (-1065)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1065)) (-4 *10 (-1065))
- (-14 *5 (-781)) (-14 *6 (-781)) (-4 *8 (-244 *6 *7))
- (-4 *9 (-244 *5 *7)) (-4 *2 (-1069 *5 *6 *10 *11 *12))
- (-5 *1 (-1071 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1069 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1071 *3 *4 *5 *6 *7))
+ (-4 *5 (-1067)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1067)) (-4 *10 (-1067))
+ (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-244 *6 *7))
+ (-4 *9 (-244 *5 *7)) (-4 *2 (-1071 *5 *6 *10 *11 *12))
+ (-5 *1 (-1073 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1071 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10))
(-4 *12 (-244 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-1110 *6)) (-5 *1 (-1105 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-1112 *6)) (-5 *1 (-1107 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-858))
- (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-654 *6))
- (-5 *1 (-1105 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-860))
+ (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6))
+ (-5 *1 (-1107 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1108 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-1108 *6)) (-5 *1 (-1107 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-1110 *6)) (-5 *1 (-1109 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1111 *4 *2)) (-4 *4 (-858))
- (-4 *2 (-1165 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1113 *4 *2)) (-4 *4 (-860))
+ (-4 *2 (-1167 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1173 *6)) (-5 *5 (-1173 *7))
- (-4 *6 (-1234)) (-4 *7 (-1234)) (-4 *8 (-1234)) (-5 *2 (-1173 *8))
- (-5 *1 (-1172 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7))
+ (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1175 *8))
+ (-5 *1 (-1174 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-5 *2 (-1189 *6)) (-5 *1 (-1187 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1243 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1193))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1195))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-1251 *6)) (-5 *1 (-1250 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5)) (-4 *5 (-858))
- (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1173 *6))
- (-5 *1 (-1250 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860))
+ (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1175 *6))
+ (-5 *1 (-1252 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1193))
- (-4 *6 (-1065)) (-4 *8 (-1065)) (-5 *2 (-1257 *7 *8))
- (-5 *1 (-1252 *5 *6 *7 *8)) (-14 *7 (-1193))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195))
+ (-4 *6 (-1067)) (-4 *8 (-1067)) (-5 *2 (-1259 *7 *8))
+ (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065))
- (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *4 *6 *2)) (-4 *4 (-1260 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1065))
- (-4 *6 (-1065)) (-14 *7 (-1193)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1264 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1193))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1067))
+ (-4 *6 (-1067)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1195))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1065)) (-4 *6 (-1065))
- (-4 *2 (-1275 *6)) (-5 *1 (-1273 *5 *6 *4 *2)) (-4 *4 (-1275 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1067)) (-4 *6 (-1067))
+ (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1284 *5)) (-4 *5 (-1234))
- (-4 *6 (-1234)) (-5 *2 (-1284 *6)) (-5 *1 (-1283 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236))
+ (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1284 *5))
- (-4 *5 (-1234)) (-4 *6 (-1234)) (-5 *2 (-1284 *6))
- (-5 *1 (-1283 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5))
+ (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6))
+ (-5 *1 (-1285 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1301 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-1065))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1067))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-1307 *3 *4))
- (-4 *4 (-856)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-654 *7)) (|:| |badPols| (-654 *7))))
- (-5 *1 (-993 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-654 *1)) (-4 *1 (-310))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-622 *3)) (-4 *3 (-1116))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1067)) (-5 *1 (-1309 *3 *4))
+ (-4 *4 (-858)))))
+(((*1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-115)) (-5 *3 (-654 *5)) (-5 *4 (-781)) (-4 *5 (-1116))
- (-5 *1 (-622 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-831)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-860)) (-5 *1 (-494 *3)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1118))
+ (-5 *1 (-624 *5)))))
+(((*1 *1 *1) (-5 *1 (-1081))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1175)) (|:| -2039 (-1175))))
- (-5 *1 (-832)))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-576)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-656 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576))))))
+ (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1038 *4))
+ (-4 *4 (-1262 (-576))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291))
+ (-5 *1 (-1237 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1118)) (-5 *2 (-1291))
+ (-5 *1 (-1237 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195))
+ (-4 *5 (-374)) (-5 *1 (-939 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5))
+ (-5 *1 (-939 *4 *5)) (-14 *4 (-1195))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374))
+ (-5 *2 (-419 (-968 *6))) (-5 *1 (-1068 *5 *6)) (-14 *5 (-1195)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174))
- (-14 *6
- (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *2))
- (-2 (|:| -2591 *5) (|:| -2754 *2))))
- (-4 *2 (-244 (-2877 *3) (-781))) (-5 *1 (-471 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-860)) (-4 *7 (-963 *4 *2 (-874 *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 *1)) (|has| *1 (-6 -4460)) (-4 *1 (-1026 *3))
- (-4 *3 (-1234)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-388)) (-5 *1 (-1079)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2 (-596 *3)) (-5 *1 (-567 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414))))
- ((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-413 *3)) (-4 *3 (-414))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (|has| *1 (-6 -4450)) (-4 *1 (-414))))
- ((*1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-935))))
- ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-1173 (-574))))))
+ (-12 (-4 *3 (-239)) (-4 *3 (-1067)) (-4 *4 (-862)) (-4 *5 (-275 *4))
+ (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805))
+ (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-654
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
+ (-656
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227)))))
- (-5 *1 (-569))))
+ (-5 *1 (-571))))
((*1 *2 *1)
- (-12 (-4 *1 (-620 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-5 *2 (-654 *3))))
+ (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-5 *2 (-656 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-654
+ (-656
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
+ (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227)))))
- (-5 *1 (-813)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-757)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065))))
- ((*1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-375 *3 *4))
- (-4 *3 (-376 *4))))
- ((*1 *2) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-654 (-1193))) (-4 *5 (-462))
- (-5 *2 (-491 *4 *5)) (-5 *1 (-641 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2887 (-792 *3)) (|:| |coef2| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-566)) (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-2 (|:| -2887 *1) (|:| |coef2| *1)))
- (-4 *1 (-1081 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-903 *4)) (-4 *4 (-1116)) (-4 *2 (-1116))
- (-5 *1 (-900 *4 *2)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-499 *3)) (-4 *3 (-1234))
- (-5 *2 (-654 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-747 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-449))) (-5 *1 (-875)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935))))
- ((*1 *1 *1 *1) (-5 *1 (-1239))) ((*1 *1 *1 *1) (-5 *1 (-1240)))
- ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-310)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1234)))))
+ (-5 *1 (-815)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-1198))) (-5 *1 (-891)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234)))))
+ (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4))
+ (-4 *4 (-1236)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *4 *5 *6)) (-4 *4 (-374))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374))
+ (-5 *2
+ (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6))))
+ (-5 *1 (-996 *6)) (-5 *3 (-701 *6)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1118)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-566))
- (-5 *2 (-872)) (-5 *1 (-32 *4 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-1297 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-843 (-574))) (-5 *1 (-544))))
- ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 (-574))))
- (-5 *2 (-1284 (-417 (-574)))) (-5 *1 (-1312 *4)))))
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935))))
- ((*1 *1 *1 *1) (-5 *1 (-1239))) ((*1 *1 *1 *1) (-5 *1 (-1240)))
- ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-596 *3)) (-4 *3 (-372)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))))
- ((*1 *1 *1) (-5 *1 (-388)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-786 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-860)) (-5 *3 (-654 *6)) (-5 *5 (-654 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-654 *5)) (|:| |f3| *5)
- (|:| |f4| (-654 *5))))
- (-5 *1 (-1204 *6)) (-5 *4 (-654 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-935)) (-5 *2 (-918 (-574))) (-5 *1 (-931))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-574))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8)))
- (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-654 *7)) (|:| -4068 *8)))
- (-4 *7 (-1081 *4 *5 *6)) (-4 *8 (-1087 *4 *5 *6 *7)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-940)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-903 *4)) (-4 *4 (-1116)) (-5 *1 (-900 *4 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -4047 *3) (|:| |coef1| (-792 *3)) (|:| |coef2| (-792 *3))))
- (-5 *1 (-792 *3)) (-4 *3 (-566)) (-4 *3 (-1065)))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
- ((*1 *1 *1) (-5 *1 (-388))) ((*1 *1) (-5 *1 (-388))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-654 (-270))) (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-839)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-516)) (-5 *3 (-1120)) (-5 *1 (-299)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-241 *3))))
- ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065))
- (-4 *2 (-462))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *4)) (-4 *4 (-1260 (-574))) (-5 *2 (-654 (-574)))
- (-5 *1 (-496 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065)) (-4 *2 (-462))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-963 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)) (-4 *3 (-462)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4459)) (-4 *1 (-499 *4))
- (-4 *4 (-1234)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1128)) (-4 *3 (-1116)) (-5 *2 (-654 *1))
- (-4 *1 (-440 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
- (-4 *3 (-1116))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *2 (-654 *1)) (-4 *1 (-963 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-4 *7 (-963 *6 *4 *5)) (-5 *2 (-654 *3))
- (-5 *1 (-964 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *7)) (-15 -2970 (*7 $))
- (-15 -2980 (*7 $))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-4 *3 (-174)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *1 (-698 *3 *4 *5 *2))
- (-4 *2 (-697 *3 *4 *5)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937))))
+ ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242)))
+ ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1088 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-1289))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-519 *3 *2)) (-4 *3 (-1116)) (-4 *2 (-860)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *5 *3 *6)) (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *3 (-860)) (-4 *6 (-1081 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-4 *7 (-963 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-654 *7)) (|:| |n0| (-654 *7))))
- (-5 *1 (-938 *4 *5 *6 *7)) (-5 *3 (-654 *7)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-654 (-903 *3))) (-5 *1 (-903 *3))
- (-4 *3 (-1116)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-654 (-875))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *1 *2) (-12 (-5 *2 (-417 (-574))) (-5 *1 (-219)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1128)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-331 *2 *4)) (-4 *4 (-132))
- (-4 *2 (-1116))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-4 *1 (-395 *2)) (-4 *2 (-1116))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *1 (-428 *2)) (-4 *2 (-566))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132))
+ (-4 *2 (-1118))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1118))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *2 (-1116)) (-5 *1 (-659 *2 *4 *5))
+ (-12 (-5 *3 (-576)) (-4 *2 (-1118)) (-5 *1 (-661 *2 *4 *5))
(-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1158 *4 *5)) (-4 *4 (-13 (-1118) (-34)))
+ (-4 *5 (-13 (-1118) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-965 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-965 *2 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227)))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1118)) (-5 *2 (-55)))))
+(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1118)))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-937))))
+ ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242)))
+ ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))))
(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-112))
- (-5 *2 (-1051)) (-5 *1 (-755)))))
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112))
+ (-5 *2 (-1053)) (-5 *1 (-757)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1118))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067))
+ (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1067) (-862)))
+ (-14 *4 (-656 (-1195))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7))
+ (-5 *5 (-1 (-430 *7) *7))
+ (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7))
+ (-5 *5 (-1 (-430 *7) *7))
+ (-4 *6 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6))
+ (-4 *6 (-1262 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6))
+ (-4 *6 (-1262 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1067)) (-4 *7 (-1067))
+ (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7)))
+ (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *7)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-253 *4 *5))
+ (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1284 (-1193))) (-5 *3 (-1284 (-463 *4 *5 *6 *7)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935))
- (-14 *6 (-654 (-1193))) (-14 *7 (-1284 (-699 *4)))))
+ (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-1284 (-463 *4 *5 *6 *7)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-935))
- (-14 *6 (-654 *2)) (-14 *7 (-1284 (-699 *4)))))
+ (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-937))
+ (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-463 *3 *4 *5 *6))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193)))
- (-14 *6 (-1284 (-699 *3)))))
+ (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195)))
+ (-14 *6 (-1286 (-701 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1284 (-1193))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-935)) (-14 *5 (-654 (-1193)))
- (-14 *6 (-1284 (-699 *3)))))
+ (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-937)) (-14 *5 (-656 (-1195)))
+ (-14 *6 (-1286 (-701 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1193)) (-5 *1 (-463 *3 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-935)) (-14 *5 (-654 *2)) (-14 *6 (-1284 (-699 *3)))))
+ (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-937)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3)))))
((*1 *1)
- (-12 (-5 *1 (-463 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-935))
- (-14 *4 (-654 (-1193))) (-14 *5 (-1284 (-699 *2))))))
+ (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-937))
+ (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2))))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1083 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1089 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))))
+(((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1067))
+ (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1047 *5)) (-5 *4 (-1286 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-773))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-937)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1))
+ (-4 *1 (-339 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-4 *2 (-1262 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4))
+ (-5 *1 (-540 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-324 *3)) (-4 *3 (-13 (-1065) (-860)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-654 (-1193))))))
-(((*1 *1) (-5 *1 (-447))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-872)) (-5 *1 (-400 *3 *4 *5)) (-14 *3 (-781))
- (-14 *4 (-781)) (-4 *5 (-174)))))
+ (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1067) (-862)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-701 (-419 (-968 (-576)))))
+ (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1049))
+ (-5 *3 (-326 (-576))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-419 (-968 *6)) (-1184 (-1195) (-968 *6))))
+ (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *6)))))
+ (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-968 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-419 (-968 *5)) (-1184 (-1195) (-968 *5))))
+ (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4))))
+ (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-968 *5)))))
+ (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-968 *5)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112))
+ (-5 *1 (-270)))))
+(((*1 *1) (-5 *1 (-449))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1116)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-693 *4 *5)) (-4 *4 (-1116))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862)))
+ (-14 *3 (-656 (-1195))))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -1557 *5))))
+ (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5))
+ (-5 *1 (-218 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-2 (|:| -4205 *5) (|:| -2782 (-576)))))
+ (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5))
+ (-5 *1 (-708 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-695 *4 *5)) (-4 *4 (-1118))))
((*1 *2 *2)
- (-12 (-4 *3 (-1116)) (-5 *1 (-943 *3 *2)) (-4 *2 (-440 *3))))
+ (-12 (-4 *3 (-1118)) (-5 *1 (-945 *3 *2)) (-4 *2 (-442 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-324 (-574))) (-5 *1 (-944))))
+ (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-946))))
((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1065))))
+ (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-4 *2 (-1065)) (-5 *1 (-1307 *2 *3)) (-4 *3 (-856)))))
-(((*1 *2) (-12 (-5 *2 (-654 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-133)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-870)) (-5 *2 (-701 (-559))) (-5 *3 (-559)))))
+ (-12 (-4 *2 (-1067)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))))
+(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-133)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 (-171 (-574))))) (-5 *2 (-654 (-171 *4)))
- (-5 *1 (-387 *4)) (-4 *4 (-13 (-372) (-858)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-417 (-966 (-171 (-574))))))
- (-5 *4 (-654 (-1193))) (-5 *2 (-654 (-654 (-171 *5))))
- (-5 *1 (-387 *5)) (-4 *5 (-13 (-372) (-858))))))
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4093 (-656 *1))))
+ (-4 *1 (-378 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-465 *3 *4 *5 *6))
+ (|:| -4093 (-656 (-465 *3 *4 *5 *6)))))
+ (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1056 (-576))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1195))
+ (-4 *4 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-965 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1067)) (-4 *6 (-965 *5 *4 *2))
+ (-4 *2 (-862)) (-5 *1 (-966 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *6)) (-15 -2976 (*6 $))
+ (-15 -2987 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-568))
+ (-5 *2 (-1195)) (-5 *1 (-1061 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-935)) (-5 *1 (-1046 *2))
- (-4 *2 (-13 (-1116) (-10 -8 (-15 -3074 ($ $ $))))))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *5 (-699 (-227))) (-5 *4 (-227))
- (-5 *2 (-1051)) (-5 *1 (-765)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1203)))))
+ (-12 (-5 *3 (-937)) (-5 *1 (-1048 *2))
+ (-4 *2 (-13 (-1118) (-10 -8 (-15 -3081 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-1083 *5 *6 *7)) (-5 *2 (-656 *3))
+ (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1127 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148)))
+ (-5 *2
+ (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5))))))
+ (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5)))
+ (-14 *6 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148)))
+ (-5 *2
+ (-656 (-2 (|:| -1675 (-1191 *4)) (|:| -3458 (-656 (-968 *4))))))
+ (-5 *1 (-1096 *4 *5)) (-5 *3 (-656 (-968 *4)))
+ (-14 *5 (-656 (-1195)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148)))
+ (-5 *2
+ (-656 (-2 (|:| -1675 (-1191 *5)) (|:| -3458 (-656 (-968 *5))))))
+ (-5 *1 (-1096 *5 *6)) (-5 *3 (-656 (-968 *5)))
+ (-14 *6 (-656 (-1195))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-241 *3))
+ (-4 *3 (-1118))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1234))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-966 (-388))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-968 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-324 (-388))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-388))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-390))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-966 (-574))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-968 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-324 (-574))) (-5 *1 (-348 *3 *4 *5))
- (-4 *5 (-1054 (-574))) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1056 (-576))) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-348 *3 *4 *5))
- (-14 *3 (-654 *2)) (-14 *4 (-654 *2)) (-4 *5 (-397))))
+ (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-324 *5)) (-4 *5 (-397))
- (-5 *1 (-348 *3 *4 *5)) (-14 *3 (-654 (-1193)))
- (-14 *4 (-654 (-1193)))))
+ (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399))
+ (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-417 (-966 (-574))))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-419 (-968 (-576))))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-417 (-966 (-388))))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-419 (-968 (-390))))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-966 (-574)))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-968 (-576)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-966 (-388)))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-968 (-390)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-324 (-574)))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-699 (-324 (-388)))) (-4 *1 (-393))))
+ (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-417 (-966 (-574)))) (-4 *1 (-406))))
+ (|partial| -12 (-5 *2 (-419 (-968 (-576)))) (-4 *1 (-408))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-417 (-966 (-388)))) (-4 *1 (-406))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-574))) (-4 *1 (-406))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-966 (-388))) (-4 *1 (-406))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-574))) (-4 *1 (-406))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-324 (-388))) (-4 *1 (-406))))
+ (|partial| -12 (-5 *2 (-419 (-968 (-390)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-968 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-574))))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-576))))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-417 (-966 (-388))))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-419 (-968 (-390))))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-966 (-574)))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-968 (-576)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-966 (-388)))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-968 (-390)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-324 (-574)))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1284 (-324 (-388)))) (-4 *1 (-451))))
+ (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-358)) (-4 *5 (-337 *4)) (-4 *6 (-1260 *5))
- (-5 *2 (-1189 (-1189 *4))) (-5 *1 (-787 *4 *5 *6 *3 *7))
- (-4 *3 (-1260 *6)) (-14 *7 (-935))))
+ (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5))
+ (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7))
+ (-4 *3 (-1262 *6)) (-14 *7 (-937))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *1 (-992 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1054 *2)) (-4 *2 (-1234))))
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *1 (-994 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1056 *2)) (-4 *2 (-1236))))
((*1 *1 *2)
- (|partial| -2833
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-38 (-417 (-574)))))
- (-2084 (-4 *3 (-38 (-574)))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-555))) (-2084 (-4 *3 (-38 (-417 (-574)))))
- (-4 *3 (-38 (-574))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))
- (-12 (-5 *2 (-966 *3))
- (-12 (-2084 (-4 *3 (-1008 (-574)))) (-4 *3 (-38 (-417 (-574))))
- (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *1 (-1081 *3 *4 *5)) (-4 *4 (-803))
- (-4 *5 (-860)))))
+ (|partial| -2838
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-38 (-419 (-576)))))
+ (-2085 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-557))) (-2085 (-4 *3 (-38 (-419 (-576)))))
+ (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 *3))
+ (-12 (-2085 (-4 *3 (-1010 (-576)))) (-4 *3 (-38 (-419 (-576))))
+ (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *1 (-1083 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))))
((*1 *1 *2)
- (|partial| -2833
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-2084 (-4 *3 (-38 (-417 (-574))))) (-4 *3 (-38 (-574)))
- (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))
- (-12 (-5 *2 (-966 (-574))) (-4 *1 (-1081 *3 *4 *5))
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193))))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))))
+ (|partial| -2838
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-2085 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-968 (-576))) (-4 *1 (-1083 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-966 (-417 (-574)))) (-4 *1 (-1081 *3 *4 *5))
- (-4 *3 (-38 (-417 (-574)))) (-4 *5 (-624 (-1193)))
- (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)))))
-(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-781) *2)) (-5 *4 (-781)) (-4 *2 (-1116))
- (-5 *1 (-688 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-781) *3)) (-4 *3 (-1116)) (-5 *1 (-692 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-830)) (-14 *5 (-1193))
- (-5 *2 (-654 *4)) (-5 *1 (-1130 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1116)) (-5 *2 (-1 *4))
- (-5 *1 (-1033 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1110 (-574))) (-5 *2 (-1 (-574))) (-5 *1 (-1063)))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-264)))))
-(((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-477))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-941)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-224 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-4 *1 (-261 *3))))
- ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
+ (|partial| -12 (-5 *2 (-968 (-419 (-576)))) (-4 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))
+ (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)))))
+(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-992)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-173))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-372) (-858))) (-5 *2 (-428 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1260 (-171 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-574)) (-5 *5 (-1175)) (-5 *6 (-699 (-227)))
- (-5 *7 (-3 (|:| |fn| (-398)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-398)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-398)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1051)) (-5 *1 (-759)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-783))
+ (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576))))))
+ (-5 *1 (-252 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-961 *4 *3))
+ (-4 *3 (-1262 *4)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-358)) (-4 *2 (-1065)) (-5 *1 (-722 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-872)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-957 (-227)))) (-5 *1 (-1285)))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-5 *2 (-1205 (-654 *4))) (-5 *1 (-1204 *4))
- (-5 *3 (-654 *4)))))
+ (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1112 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-315))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5)) (-4 *5 (-372))
+ (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
(-5 *2
- (-2 (|:| |ir| (-596 (-417 *6))) (|:| |specpart| (-417 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-584 *5 *6)) (-5 *3 (-417 *6)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-372)) (-4 *3 (-803)) (-4 *4 (-860))
- (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-963 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-654 (-227)))) (-5 *1 (-940)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *1 (-373 *2 *4)) (-4 *2 (-1116))
- (-4 *4 (-1116))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-373 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-1116)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2))
- (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2))
- (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))))
+ (-3 (-855 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 *3) "failed")))
+ "failed"))
+ (-5 *1 (-648 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 (-855 (-968 *5)))) (-4 *5 (-464))
+ (-5 *2
+ (-3 (-855 (-419 (-968 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-968 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 (-419 (-968 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-649 *5)) (-5 *3 (-419 (-968 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 (-419 (-968 *5)))) (-5 *3 (-419 (-968 *5)))
+ (-4 *5 (-464))
+ (-5 *2
+ (-3 (-855 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 *3) "failed")))
+ "failed"))
+ (-5 *1 (-649 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-304 (-419 (-968 *6)))) (-5 *5 (-1177))
+ (-5 *3 (-419 (-968 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3))
+ (-5 *1 (-649 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-699 *2)) (-4 *4 (-1260 *2))
- (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-5 *1 (-509 *2 *4 *5)) (-4 *5 (-419 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
- (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-539))))
- ((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-539)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-1193)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-462))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338))
- (-5 *1 (-340)))))
+ (-12 (-4 *4 (-13 (-568) (-1056 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1191 (-419 (-576))))
+ (|:| |overan| (-1191 (-48))) (|:| -3580 (-112))))
+ (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4))))
+ (-5 *1 (-1206 *6)) (-5 *5 (-656 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-943))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576)))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-959 (-227))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-656 (-959 (-227)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1112 (-390)))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
(((*1 *2)
- (-12 (-4 *4 (-372)) (-5 *2 (-935)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-372)) (-5 *2 (-843 (-935))) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-372)) (-5 *2 (-935))))
- ((*1 *2)
- (-12 (-4 *1 (-1303 *3)) (-4 *3 (-372)) (-5 *2 (-843 (-935))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-1175)) (-5 *5 (-699 (-227)))
- (-5 *2 (-1051)) (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-989 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-4 *5 (-860)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-1118)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-1054 (-574)) (-649 (-574)) (-148)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-814 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1219) (-973))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-781)) (-4 *6 (-1116)) (-4 *7 (-912 *6))
- (-5 *2 (-699 *7)) (-5 *1 (-702 *6 *7 *3 *4)) (-4 *3 (-382 *7))
- (-4 *4 (-13 (-382 *6) (-10 -7 (-6 -4459)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))))
+ (-12 (-5 *3 (-968 *5)) (-4 *5 (-1067)) (-5 *2 (-493 *4 *5))
+ (-5 *1 (-960 *4 *5)) (-14 *4 (-656 (-1195))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-763)))))
+(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *2)) (-5 *1 (-1000 *2)) (-4 *2 (-1067)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1165 (-1177))) (-5 *1 (-403)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1118))
+ (-4 *4 (-1118))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-853 (-227)))) (-5 *4 (-227)) (-5 *2 (-654 *4))
- (-5 *1 (-274)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1193))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-654 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1401 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1219) (-27) (-440 *8)))
- (-4 *8 (-13 (-462) (-148) (-1054 *3) (-649 *3))) (-5 *3 (-574))
- (-5 *2 (-654 *4)) (-5 *1 (-1030 *8 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-417 (-966 (-574))))) (-5 *4 (-654 (-1193)))
- (-5 *2 (-654 (-654 *5))) (-5 *1 (-389 *5))
- (-4 *5 (-13 (-858) (-372)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-417 (-966 (-574)))) (-5 *2 (-654 *4)) (-5 *1 (-389 *4))
- (-4 *4 (-13 (-858) (-372))))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-937) (-937)))) (-5 *1 (-989)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-5 *1 (-987 *3 *2)) (-4 *2 (-1262 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-417 (-966 *5)))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-566)) (-5 *2 (-654 (-654 (-966 *5)))) (-5 *1 (-1202 *5)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-586 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195))
+ (-5 *2 (-576)) (-5 *1 (-1132 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-968 (-171 (-576))))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-419 (-968 (-171 (-576))))))
+ (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5))))
+ (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1067)) (-5 *1 (-1179 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-937)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-246 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1175 (-989))) (-5 *1 (-989)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-767)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-654 (-1193))) (-5 *1 (-212))
- (-5 *3 (-1193))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212))
+ (-5 *3 (-1195))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-324 (-227))) (-5 *4 (-781)) (-5 *2 (-654 (-1193)))
- (-5 *1 (-274))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195)))
+ (-5 *1 (-276))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *2 (-654 *3))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-656 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-654 *3)) (-5 *1 (-637 *3 *4 *5)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-14 *5 (-935))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-682 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-687 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-829 *3)) (-4 *3 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-904 *3)) (-4 *3 (-860))))
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-937))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (-12 (-4 *1 (-1301 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1065))
- (-5 *2 (-654 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-574)) (-5 *1 (-455 *3)) (-4 *3 (-414)) (-4 *3 (-1065)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-654 *1)) (-4 *1 (-315)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566))
- (-5 *2 (-417 (-966 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-1244 *4)) (-4 *4 (-1065)) (-4 *4 (-566))
- (-5 *2 (-417 (-966 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-372)) (-5 *1 (-293 *3 *2)) (-4 *2 (-1275 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-656 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1296)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4))
+ (-14 *4 (-576)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5))
+ (-5 *2
+ (-656
+ (-2 (|:| -4093 (-701 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-701 *6)))))
+ (-5 *1 (-510 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -4093 (-701 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-701 *6))))
+ (-4 *7 (-1262 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1173 (-2 (|:| |k| (-574)) (|:| |c| *3))))
- (-5 *1 (-605 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-287)))))
+ (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1173 (-574))) (-5 *1 (-1177 *4)) (-4 *4 (-1065))
- (-5 *3 (-574)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-372)) (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-963 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *7 (-1116)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-574)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-428 *2)) (-4 *2 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1234)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-995 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1067))
+ (-5 *1 (-1179 *4)))))
+(((*1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
-(((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-884))))
- ((*1 *2 *3) (-12 (-5 *3 (-957 *2)) (-5 *1 (-998 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-574)) (-5 *5 (-699 (-227)))
- (-5 *6 (-227)) (-5 *2 (-1051)) (-5 *1 (-762)))))
+ (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195))))
+ (-4 *5 (-805)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *2 (-965 *3 *5 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-935)) (-4 *1 (-337 *3)) (-4 *3 (-372)) (-4 *3 (-377))))
- ((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-372))))
+ (-12 (-5 *2 (-937)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1260 *2)) (-4 *2 (-174))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-935)) (-4 *4 (-358))
- (-5 *1 (-538 *4))))
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-937)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
- (-4 *5 (-244 *3 *2)) (-4 *2 (-1065)))))
+ (-12 (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)) (-4 *2 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7))
+ (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734))))
+(((*1 *2)
+ (-12 (-4 *1 (-360))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-112))
- (-5 *1 (-369 *4 *5)) (-14 *5 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-790 *4 (-874 *5)))) (-4 *4 (-462))
- (-14 *5 (-654 (-1193))) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-398)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1051))
- (-5 *1 (-759)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-654 (-491 *4 *5))) (-5 *3 (-654 (-874 *4)))
- (-14 *4 (-654 (-1193))) (-4 *5 (-462)) (-5 *1 (-481 *4 *5 *6))
- (-4 *6 (-462)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1056 (-576)) (-1056 (-419 (-576)))))
+ (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5))))
+ (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-622 *5))) (-4 *4 (-1116)) (-5 *2 (-622 *5))
- (-5 *1 (-583 *4 *5)) (-4 *5 (-440 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-781)) (-4 *6 (-372)) (-5 *4 (-1228 *6))
- (-5 *2 (-1 (-1173 *4) (-1173 *4))) (-5 *1 (-1292 *6))
- (-5 *5 (-1173 *4)))))
+ (-12 (-5 *3 (-2 (|:| -3870 (-419 (-576))) (|:| -3883 (-419 (-576)))))
+ (-5 *2 (-419 (-576))) (-5 *1 (-1038 *4)) (-4 *4 (-1262 (-576))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-1 (-112) *8))) (-4 *8 (-1081 *5 *6 *7))
- (-4 *5 (-566)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-2 (|:| |goodPols| (-654 *8)) (|:| |badPols| (-654 *8))))
- (-5 *1 (-993 *5 *6 *7 *8)) (-5 *4 (-654 *8)))))
+ (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568))
+ (-4 *7 (-965 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2300 (-783)) (|:| -1868 *8) (|:| |radicand| *8)))
+ (-5 *1 (-969 *5 *6 *3 *7 *8)) (-5 *4 (-783))
+ (-4 *8
+ (-13 (-374)
+ (-10 -8 (-15 -2956 ($ *7)) (-15 -2976 (*7 $)) (-15 -2987 (*7 $))))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1067)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1067)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1118))
+ (-5 *1 (-690 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1118)) (-5 *1 (-694 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1081)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1193))
- (-5 *2
- (-2 (|:| |zeros| (-1173 (-227))) (|:| |ones| (-1173 (-227)))
- (|:| |singularities| (-1173 (-227)))))
- (-5 *1 (-105)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5)))
+ (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195)))
+ (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1067))
+ (-4 *5 (-244 (-2882 *3) (-783)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-1067)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1053))
+ (-5 *1 (-760)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4047 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-5 *1 (-919 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-4 *5 (-372)) (-5 *2 (-654 (-1228 *5)))
- (-5 *1 (-1292 *5)) (-5 *4 (-1228 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-171 (-417 (-574)))))
- (-5 *2
- (-654
- (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-574))
- (|:| |outvect| (-654 (-699 (-171 *4)))))))
- (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
+ (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195))
+ (-5 *2 (-656 *4)) (-5 *1 (-1132 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1053)) (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390)))
+ (-5 *2 (-1053)) (-5 *1 (-852)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *1) (-5 *1 (-1098))))
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-965 *6 *5 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-4 *6 (-897 *5)) (-5 *2 (-896 *5 *6 (-654 *6)))
- (-5 *1 (-898 *5 *6 *4)) (-5 *3 (-654 *6)) (-4 *4 (-624 (-903 *5)))))
+ (-12 (-5 *3 (-419 (-968 *5))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5))))
+ (-5 *1 (-1147 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-419 (-968 *4))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 *3))) (-5 *1 (-898 *5 *3 *4))
- (-4 *3 (-1054 (-1193))) (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))
+ (-12 (-5 *3 (-304 (-419 (-968 *5)))) (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5))))
+ (-5 *1 (-1147 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-304 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1147 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-5 *2 (-654 (-302 (-966 *3))))
- (-5 *1 (-898 *5 *3 *4)) (-4 *3 (-1065))
- (-2084 (-4 *3 (-1054 (-1193)))) (-4 *3 (-897 *5))
- (-4 *4 (-624 (-903 *5)))))
+ (-12 (-5 *3 (-656 (-419 (-968 *5)))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1147 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-419 (-968 *4)))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1147 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-5 *2 (-900 *5 *3)) (-5 *1 (-898 *5 *3 *4))
- (-2084 (-4 *3 (-1054 (-1193)))) (-2084 (-4 *3 (-1065)))
- (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-935)) (-5 *4 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-697 *2 *3 *4)) (-4 *3 (-382 *2)) (-4 *4 (-382 *2))
- (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065))))
+ (-12 (-5 *3 (-656 (-304 (-419 (-968 *5))))) (-5 *4 (-656 (-1195)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1147 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-382 *2)) (-4 *5 (-382 *2)) (-4 *2 (-174))
- (-5 *1 (-698 *2 *4 *5 *3)) (-4 *3 (-697 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1139 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
- (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4461 "*"))) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *8)) (-4 *8 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1227 *3 *4 *5 *6)) (-4 *3 (-566)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-1136)) (-4 *4 (-358))
- (-5 *1 (-538 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7))
- (-5 *2 (-654 (-2 (|:| |val| *3) (|:| -4068 *4))))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-338))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-957 *3)) (-4 *3 (-13 (-372) (-1219) (-1018)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-490)))))
+ (-12 (-5 *3 (-656 (-304 (-419 (-968 *4)))))
+ (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4)))))
+ (-5 *1 (-1147 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4))
+ (-4 *4 (-13 (-374) (-860))))))
+(((*1 *1) (-5 *1 (-340))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-654 (-574))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1065))
- (-14 *4 (-654 (-1193)))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1067))
+ (-14 *4 (-656 (-1195)))))
((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1275 *3))
- (-5 *1 (-285 *3 *4 *2)) (-4 *2 (-1246 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-417 (-574)))) (-4 *4 (-1244 *3))
- (-5 *1 (-286 *3 *4 *2 *5)) (-4 *2 (-1267 *3 *4)) (-4 *5 (-999 *4))))
- ((*1 *1 *1) (-4 *1 (-292)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1001 *4))))
+ ((*1 *1 *1) (-4 *1 (-294)))
((*1 *1 *1)
- (-12 (-5 *1 (-348 *2 *3 *4)) (-14 *2 (-654 (-1193)))
- (-14 *3 (-654 (-1193))) (-4 *4 (-397))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195)))
+ (-14 *3 (-656 (-1195))) (-4 *4 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-674 *3 *4)) (-4 *3 (-860))
- (-4 *4 (-13 (-174) (-727 (-417 (-574))))) (-5 *1 (-637 *3 *4 *5))
- (-14 *5 (-935))))
+ (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5))
+ (-14 *5 (-937))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-13 (-1065) (-727 (-417 (-574)))))
- (-4 *5 (-860)) (-5 *1 (-1300 *4 *5 *2)) (-4 *2 (-1305 *5 *4))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1067) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-5 *1 (-1304 *3 *4))
- (-4 *4 (-727 (-417 (-574)))) (-4 *3 (-860)) (-4 *4 (-174)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *1) (-4 *1 (-358)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *5)) (-4 *5 (-440 *4)) (-4 *4 (-13 (-566) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-654 (-1189 *5)))
- (|:| |prim| (-1189 *5))))
- (-5 *1 (-442 *4 *5))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4))
+ (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1083 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1067)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1262 *4))
+ (-4 *5 (-13 (-416) (-1056 *4) (-374) (-1221) (-294))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1120 *4)) (-4 *4 (-1118)) (-5 *2 (-1 *4))
+ (-5 *1 (-1035 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-566) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1189 *3))
- (|:| |pol2| (-1189 *3)) (|:| |prim| (-1189 *3))))
- (-5 *1 (-442 *4 *3)) (-4 *3 (-27)) (-4 *3 (-440 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-966 *5)) (-5 *4 (-1193)) (-4 *5 (-13 (-372) (-148)))
- (-5 *2
- (-2 (|:| |coef1| (-574)) (|:| |coef2| (-574))
- (|:| |prim| (-1189 *5))))
- (-5 *1 (-974 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-654 (-1193)))
- (-4 *5 (-13 (-372) (-148)))
- (-5 *2
- (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *5)))
- (|:| |prim| (-1189 *5))))
- (-5 *1 (-974 *5))))
+ (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1112 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1065)))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-1118))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1067))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1262 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1083 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7)))
+ (-5 *1 (-1299 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 (-966 *6))) (-5 *4 (-654 (-1193))) (-5 *5 (-1193))
- (-4 *6 (-13 (-372) (-148)))
- (-5 *2
- (-2 (|:| -1866 (-654 (-574))) (|:| |poly| (-654 (-1189 *6)))
- (|:| |prim| (-1189 *6))))
- (-5 *1 (-974 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-803))
- (-4 *3 (-13 (-860) (-10 -8 (-15 -1844 ((-1193) $))))) (-4 *5 (-566))
- (-5 *1 (-742 *4 *3 *5 *2)) (-4 *2 (-963 (-417 (-966 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1065)) (-4 *5 (-803))
- (-4 *3
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-5 *1 (-1000 *4 *5 *3 *2)) (-4 *2 (-963 (-966 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *6))
- (-4 *6
- (-13 (-860)
- (-10 -8 (-15 -1844 ((-1193) $))
- (-15 -1498 ((-3 $ "failed") (-1193))))))
- (-4 *4 (-1065)) (-4 *5 (-803)) (-5 *1 (-1000 *4 *5 *6 *2))
- (-4 *2 (-963 (-966 *4) *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-555))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-654 (-872))) (-5 *1 (-1193)))))
-(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)) (-4 *2 (-566))))
- ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-566)))))
+ (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1083 *6 *7 *8)) (-4 *6 (-568))
+ (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9)))
+ (-5 *1 (-1299 *6 *7 *8 *9)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1285))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1285))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1175)) (-5 *1 (-1286))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1286)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-315)) (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-993 *3 *4 *5 *6)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1043 *5 *6 *7 *3))) (-5 *1 (-1043 *5 *6 *7 *3))
- (-4 *3 (-1081 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-654 *6)) (-4 *1 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1087 *3 *4 *5 *2)) (-4 *3 (-462)) (-4 *4 (-803))
- (-4 *5 (-860)) (-4 *2 (-1081 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-5 *2 (-654 (-1162 *5 *6 *7 *3))) (-5 *1 (-1162 *5 *6 *7 *3))
- (-4 *3 (-1081 *5 *6 *7)))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1067)) (-5 *2 (-701 *4))
+ (-5 *1 (-1047 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-4 *2 (-13 (-440 *4) (-1018) (-1219)))
- (-5 *1 (-610 *4 *2 *3))
- (-4 *3 (-13 (-440 (-171 *4)) (-1018) (-1219))))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-781)) (-4 *5 (-372)) (-5 *2 (-417 *6))
- (-5 *1 (-877 *5 *4 *6)) (-4 *4 (-1275 *5)) (-4 *6 (-1260 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372))
- (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5)))
- (-5 *1 (-878 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-781)) (-5 *4 (-1276 *5 *6 *7)) (-4 *5 (-372))
- (-14 *6 (-1193)) (-14 *7 *5) (-5 *2 (-417 (-1257 *6 *5)))
- (-5 *1 (-878 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-766)))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-968 *6))) (-5 *4 (-656 (-1195)))
+ (-4 *6 (-13 (-568) (-1056 *5))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-968 *6)))))) (-5 *1 (-1057 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-661 *3)) (-4 *3 (-1234))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-574)) (-4 *1 (-661 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-699 (-227))) (-5 *4 (-574)) (-5 *2 (-1051))
- (-5 *1 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-477)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-935)) (-5 *3 (-654 (-270))) (-5 *1 (-268))))
- ((*1 *1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
+ (-12 (-4 *1 (-1083 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-227)) (-5 *2 (-1053)) (-5 *1 (-761)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))))
(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-417 *6))) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-2 (|:| -1895 (-654 (-417 *6))) (|:| -3479 (-699 *5))))
- (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 *6 (-417 *6))) (-5 *4 (-417 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1895 (-654 *4))))
- (-5 *1 (-820 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 *6 (-417 *6))) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574)) (-1054 (-417 (-574)))))
- (-5 *2 (-2 (|:| -1895 (-654 (-417 *6))) (|:| -3479 (-699 *5))))
- (-5 *1 (-820 *5 *6)) (-5 *4 (-654 (-417 *6))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-654 *4)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-654 (-227))) (-5 *1 (-206)))))
+ (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3084 *4) (|:| -2596 (-1138))))))
+ (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-937))
+ (-14 *4 (-937))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360))
+ (-14 *4
+ (-3 (-1191 *3)
+ (-1286 (-656 (-2 (|:| -3084 *3) (|:| -2596 (-1138)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-937)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-994 *3 *4 *5 *6)) (-4 *3 (-1067))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1083 *3 *4 *5))
+ (-4 *3 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1193))
- (-4 *5 (-13 (-1054 (-574)) (-462) (-649 (-574))))
- (-5 *2 (-2 (|:| -2642 *3) (|:| |nconst| *3))) (-5 *1 (-577 *5 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *5))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1004 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-1081 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1123 *4 *5 *6 *7 *3)) (-4 *3 (-1087 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-5 *1 (-1004 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-654 *7)) (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *3 (-462))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1081 *3 *4 *5))
- (-5 *1 (-1123 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-966 (-171 *4))) (-4 *4 (-174))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-966 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-174))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-966 *4)) (-4 *4 (-1065))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-966 *5)) (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-566))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-417 (-966 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-417 (-966 (-171 *4)))) (-4 *4 (-566))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-417 (-966 (-171 *5)))) (-5 *4 (-935))
- (-4 *5 (-566)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
- (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-324 *4)) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-324 *5)) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
- (-5 *1 (-795 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-324 (-171 *4))) (-4 *4 (-566)) (-4 *4 (-860))
- (-4 *4 (-624 (-388))) (-5 *2 (-171 (-388))) (-5 *1 (-795 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-324 (-171 *5))) (-5 *4 (-935)) (-4 *5 (-566))
- (-4 *5 (-860)) (-4 *5 (-624 (-388))) (-5 *2 (-171 (-388)))
- (-5 *1 (-795 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-761)))))
+ (-12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-317) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3))
+ (-4 *3 (-13 (-1221) (-29 *5))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5)))
- (-4 *5 (-372)) (-4 *5 (-566)) (-5 *2 (-1284 *5))
- (-5 *1 (-648 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1284 *4)) (-4 *4 (-13 (-1065) (-649 *5)))
- (-2084 (-4 *5 (-372))) (-4 *5 (-566)) (-5 *2 (-1284 (-417 *5)))
- (-5 *1 (-648 *5 *4)))))
+ (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1179 *3))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1067)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234))
- (-5 *2 (-654 *3)))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4)))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *4 *2)))))
+ (-12
+ (-5 *2
+ (-656
+ (-656
+ (-3 (|:| -2041 (-1195))
+ (|:| -4183 (-656 (-3 (|:| S (-1195)) (|:| P (-968 (-576))))))))))
+ (-5 *1 (-1199)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))
+ ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))
+ ((*1 *1 *1) (-4 *1 (-881 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804))
+ (-4 *4 (-862)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *4 (-1083 *6 *7 *8)) (-5 *2 (-1291))
+ (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1089 *6 *7 *8 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1081 *3 *4 *5)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *5 (-860)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-4 *4 (-803)) (-4 *5 (-860))
- (-4 *6 (-1081 *3 *4 *5)) (-5 *1 (-634 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1087 *3 *4 *5 *6)) (-4 *2 (-1125 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-699 *3)) (-4 *3 (-1065)) (-5 *1 (-700 *3)))))
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *1) (-5 *1 (-188))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1083 *3 *4 *5)) (-5 *2 (-1291))
+ (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1089 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1221) (-29 *6)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-226 *6 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-566)) (-5 *1 (-985 *2 *3)) (-4 *3 (-1260 *2)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-574) "failed") *5)) (-4 *5 (-1065))
- (-5 *2 (-574)) (-5 *1 (-553 *5 *3)) (-4 *3 (-1260 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065))
- (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-574) "failed") *4)) (-4 *4 (-1065))
- (-5 *2 (-574)) (-5 *1 (-553 *4 *3)) (-4 *3 (-1260 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1193)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-112)) (-5 *1 (-622 *4))
- (-4 *4 (-1116))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-622 *4)) (-4 *4 (-1116))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-845 *3)) (-4 *3 (-1116)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1116)) (-5 *2 (-112)) (-5 *1 (-898 *5 *3 *4))
- (-4 *3 (-897 *5)) (-4 *4 (-624 (-903 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6)) (-4 *6 (-897 *5)) (-4 *5 (-1116))
- (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *4)) (-4 *4 (-624 (-903 *5))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-654 (-1193))) (-4 *2 (-174))
- (-4 *4 (-244 (-2877 *5) (-781)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2591 *3) (|:| -2754 *4))
- (-2 (|:| -2591 *3) (|:| -2754 *4))))
- (-5 *1 (-471 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860))
- (-4 *7 (-963 *2 *4 (-874 *5))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4459)) (-4 *1 (-152 *2)) (-4 *2 (-1234))
- (-4 *2 (-1116)))))
+ (-12 (-5 *2 (-1191 *3)) (-5 *1 (-930 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-958)) (-5 *3 (-576)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-174)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1118))
+ (-4 *4 (-132)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-860)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -3544 (-430 *3))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1198))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
+ (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1156 *2 *3)) (-4 *2 (-13 (-1116) (-34)))
- (-4 *3 (-13 (-1116) (-34))))))
-(((*1 *1) (-4 *1 (-983))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-247))))
+ (-12 (-4 *1 (-994 *3 *4 *2 *5)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1083 *3 *4 *2)))))
+(((*1 *1) (-4 *1 (-985))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1112 (-855 (-227)))) (-5 *1 (-315)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-247))))
((*1 *2 *3)
- (-12 (-5 *3 (-654 (-1175))) (-5 *2 (-1289)) (-5 *1 (-247)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1193)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-712 *4 *5 *6 *7))
- (-4 *4 (-624 (-546))) (-4 *5 (-1234)) (-4 *6 (-1234))
- (-4 *7 (-1234)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-315) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-632 *4 *2)) (-4 *2 (-13 (-1219) (-973) (-29 *4))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-1134)) (-5 *1 (-1131)))))
+ (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-247)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-372)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1116)) (-5 *2 (-781)))))
-(((*1 *1) (-5 *1 (-1101))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-654 (-574)))
- (|:| |cols| (-654 (-574)))))
- (-5 *4 (-699 *12)) (-5 *5 (-654 (-417 (-966 *9))))
- (-5 *6 (-654 (-654 *12))) (-5 *7 (-781)) (-5 *8 (-574))
- (-4 *9 (-13 (-315) (-148))) (-4 *12 (-963 *9 *11 *10))
- (-4 *10 (-13 (-860) (-624 (-1193)))) (-4 *11 (-803))
- (-5 *2
- (-2 (|:| |eqzro| (-654 *12)) (|:| |neqzro| (-654 *12))
- (|:| |wcond| (-654 (-966 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1284 (-417 (-966 *9))))
- (|:| -1895 (-654 (-1284 (-417 (-966 *9)))))))))
- (-5 *1 (-938 *9 *10 *11 *12)))))
-(((*1 *1) (-5 *1 (-588))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 *1)) (-5 *4 (-1284 *1)) (-4 *1 (-649 *5))
- (-4 *5 (-1065))
- (-5 *2 (-2 (|:| -3479 (-699 *5)) (|:| |vec| (-1284 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-699 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065))
- (-5 *2 (-699 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-649 *4)) (-4 *4 (-1065))
- (-5 *2 (-699 *4)))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-1191 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-849))
- (-5 *3
- (-2 (|:| |fn| (-324 (-227))) (|:| -3792 (-654 (-227)))
- (|:| |lb| (-654 (-853 (-227)))) (|:| |cf| (-654 (-324 (-227))))
- (|:| |ub| (-654 (-853 (-227))))))
- (-5 *2 (-1051))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-849))
+ (-12
(-5 *3
- (-2 (|:| |lfn| (-654 (-324 (-227)))) (|:| -3792 (-654 (-227)))))
- (-5 *2 (-1051)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1051)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-52))) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-576)) (-5 *1 (-206)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1195 (-417 (-574)))) (-5 *1 (-192)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-1234))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-526 *3 *4)) (-4 *3 (-1234))
- (-14 *4 (-574)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1120)) (-5 *1 (-287)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-797)) (-5 *2 (-1051))
- (-5 *3
- (-2 (|:| |fn| (-324 (-227)))
- (|:| -2065 (-654 (-1110 (-853 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-797)) (-5 *2 (-1051))
+ (-12 (-5 *2 (-1 (-959 *3) (-959 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1221) (-1020))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3)
+ (-12
(-5 *3
- (-2 (|:| |var| (-1193)) (|:| |fn| (-324 (-227)))
- (|:| -2065 (-1110 (-853 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
-(((*1 *2)
- (-12 (-4 *3 (-1065)) (-5 *2 (-972 (-722 *3 *4))) (-5 *1 (-722 *3 *4))
- (-4 *4 (-1260 *3)))))
-(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1203)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-516)) (-5 *3 (-607)) (-5 *1 (-595)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1284 *1)) (-4 *1 (-376 *4)) (-4 *4 (-174))
- (-5 *2 (-699 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-699 *4)) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2) (-12 (-4 *1 (-427 *3)) (-4 *3 (-174)) (-5 *2 (-699 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-358))
- (-5 *2 (-654 (-2 (|:| -4201 (-574)) (|:| -2754 (-574))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-699 (-966 *4))) (-5 *1 (-1044 *4))
- (-4 *4 (-1065)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112))
+ (-5 *2 (-1053)) (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-654 *4)) (-4 *4 (-372)) (-5 *2 (-1284 *4))
- (-5 *1 (-824 *4 *3)) (-4 *3 (-666 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-963 *4 *5 *6)) (-4 *4 (-462))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-1289))
- (-5 *1 (-459 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-592)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-423 *3 *4 *5 *6)) (-4 *6 (-1054 *4)) (-4 *3 (-315))
- (-4 *4 (-1008 *3)) (-4 *5 (-1260 *4)) (-4 *6 (-419 *4 *5))
- (-14 *7 (-1284 *6)) (-5 *1 (-424 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1284 *6)) (-4 *6 (-419 *4 *5)) (-4 *4 (-1008 *3))
- (-4 *5 (-1260 *4)) (-4 *3 (-315)) (-5 *1 (-424 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-781))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-412)) (-5 *2 (-781)))))
-(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-781)) (-4 *4 (-358)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1260 *4)))))
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -2956 ($ *7)))))
+ (-4 *7 (-860))
+ (-4 *8
+ (-13 (-1264 *3 *7) (-374) (-1221)
+ (-10 -8 (-15 -3884 ($ $)) (-15 -2254 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))))
+ (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1001 *8))
+ (-14 *10 (-1195)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-358)) (-5 *2 (-428 (-1189 (-1189 *4))))
- (-5 *1 (-1232 *4)) (-5 *3 (-1189 (-1189 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-872)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1189 *9)) (-5 *4 (-654 *7)) (-5 *5 (-654 (-654 *8)))
- (-4 *7 (-860)) (-4 *8 (-315)) (-4 *9 (-963 *8 *6 *7)) (-4 *6 (-803))
+ (|partial| -12 (-5 *2 (-656 (-968 *3))) (-4 *3 (-464))
+ (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464))
+ (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |upol| (-1189 *8)) (|:| |Lval| (-654 *8))
- (|:| |Lfact|
- (-654 (-2 (|:| -4201 (-1189 *8)) (|:| -2754 (-574)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-752 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-654 *6)) (-4 *6 (-860)) (-4 *4 (-372)) (-4 *5 (-803))
- (-5 *2 (-112)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-963 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-781)) (-5 *3 (-957 *4)) (-4 *1 (-1150 *4))
- (-4 *4 (-1065))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-781)) (-5 *4 (-957 (-227))) (-5 *2 (-1289))
- (-5 *1 (-1286)))))
-(((*1 *2)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1065))
- (-4 *2 (-13 (-414) (-1054 *4) (-372) (-1219) (-292)))
- (-5 *1 (-453 *4 *3 *2)) (-4 *3 (-1260 *4))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-576))))
+ (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -2892 ($ $ $)))))
+ (-4 *3 (-568)) (-5 *1 (-1265 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7))
+ (-4 *7 (-965 *5 *6 *4)) (-4 *5 (-925)) (-4 *6 (-805))
+ (-4 *4 (-862)) (-5 *1 (-922 *5 *6 *4 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-767)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1195)) (-5 *5 (-1112 (-227))) (-5 *2 (-943))
+ (-5 *1 (-941 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-935)) (-4 *5 (-1065))
- (-4 *2 (-13 (-414) (-1054 *5) (-372) (-1219) (-292)))
- (-5 *1 (-453 *5 *3 *2)) (-4 *3 (-1260 *5)))))
+ (-12 (-5 *4 (-1195)) (-5 *2 (-943)) (-5 *1 (-941 *3))
+ (-4 *3 (-626 (-548)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-943))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1083 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-624 *3))
+ (-4 *3 (-13 (-442 *5) (-27) (-1221)))
+ (-4 *5 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3)))
+ (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1065)) (-4 *4 (-860))
- (-4 *5 (-273 *4)) (-4 *6 (-803)) (-5 *2 (-781))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1065)) (-4 *3 (-860))
- (-4 *5 (-273 *3)) (-4 *6 (-803)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-273 *3)) (-4 *3 (-860)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-358)) (-5 *2 (-935))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-345 *4 *5 *6 *7)) (-4 *4 (-13 (-377) (-372)))
- (-4 *5 (-1260 *4)) (-4 *6 (-1260 (-417 *5))) (-4 *7 (-351 *4 *5 *6))
- (-5 *2 (-781)) (-5 *1 (-402 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-843 (-935)))))
- ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-574))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-606 *3)) (-4 *3 (-1065))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-566)) (-5 *2 (-574)) (-5 *1 (-633 *3 *4))
- (-4 *4 (-1260 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-750 *4 *3)) (-4 *4 (-1065))
- (-4 *3 (-860))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-750 *4 *3)) (-4 *4 (-1065)) (-4 *3 (-860))
- (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-879 *3)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-918 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-345 *5 *6 *7 *8)) (-4 *5 (-440 *4))
- (-4 *6 (-1260 *5)) (-4 *7 (-1260 (-417 *6)))
- (-4 *8 (-351 *5 *6 *7)) (-4 *4 (-13 (-566) (-1054 (-574))))
- (-5 *2 (-781)) (-5 *1 (-925 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-345 (-417 (-574)) *4 *5 *6))
- (-4 *4 (-1260 (-417 (-574)))) (-4 *5 (-1260 (-417 *4)))
- (-4 *6 (-351 (-417 (-574)) *4 *5)) (-5 *2 (-781))
- (-5 *1 (-926 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-345 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-372))
- (-4 *7 (-1260 *6)) (-4 *4 (-1260 (-417 *7))) (-4 *8 (-351 *6 *7 *4))
- (-4 *9 (-13 (-377) (-372))) (-5 *2 (-781))
- (-5 *1 (-1034 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1065)) (-4 *3 (-566))
- (-5 *2 (-781))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802))))
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-656 (-656 *5)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-802)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-428 (-1189 *1))) (-5 *1 (-324 *4)) (-5 *3 (-1189 *1))
- (-4 *4 (-462)) (-4 *4 (-566)) (-4 *4 (-1116))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-923)) (-5 *2 (-428 (-1189 *1))) (-5 *3 (-1189 *1)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-781)) (-5 *1 (-866 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1116)) (-4 *1 (-1114 *3))))
- ((*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-872)))))
-(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-282)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-1212)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-654 (-1233))) (-5 *3 (-1233)) (-5 *1 (-691)))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-995 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-668 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -4102 *3) (|:| -4288 (-656 *5))))
+ (-5 *1 (-1043 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-918 *4))
- (-4 *4 (-1116))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-918 *3)) (-4 *3 (-1116)))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-920 *4))
+ (-4 *4 (-1118))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-920 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-701 *2)) (-5 *4 (-576))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -1870 ((-430 $) $)))))
+ (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227))
+ (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-764)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1067)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1053))
+ (-5 *1 (-758)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1067)) (-5 *2 (-1191 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-977 *3)) (-4 *3 (-557)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-781)) (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-555)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1151))) (-5 *1 (-1082)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-589)))))
-(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-388)) (-5 *1 (-1056)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1401 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-372)) (-4 *7 (-1260 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-417 *7)) (|:| |a0| *6))
- (-2 (|:| -1401 (-417 *7)) (|:| |coeff| (-417 *7))) "failed"))
- (-5 *1 (-584 *6 *7)) (-5 *3 (-417 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-462)) (-5 *1 (-1225 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1219))))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| -4201 (-1189 *6)) (|:| -2754 (-574)))))
- (-4 *6 (-315)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-574))
- (-5 *1 (-752 *4 *5 *6 *7)) (-4 *7 (-963 *6 *4 *5)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-940))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-940))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-957 (-227)) (-227))) (-5 *3 (-1110 (-227)))
- (-5 *1 (-941)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1175 *4) (-1175 *4)))
+ (-5 *1 (-1279 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1195))
+ (-4 *5 (-13 (-464) (-148) (-1056 (-576)) (-651 (-576))))
+ (-5 *2 (-2 (|:| -2570 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3))
+ (-4 *3 (-13 (-27) (-1221) (-442 *5))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1112 (-227)))
+ (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-1116 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-937))) (-5 *1 (-1289)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1175 *3)) (-4 *3 (-1118))
+ (-4 *3 (-1236)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1103)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-654 (-1193))) (-4 *5 (-462))
+ (-12 (-5 *3 (-943))
(-5 *2
- (-2 (|:| |glbase| (-654 (-253 *4 *5))) (|:| |glval| (-654 (-574)))))
- (-5 *1 (-641 *4 *5)) (-5 *3 (-654 (-253 *4 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-297 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1260 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-943)) (-5 *4 (-419 (-576)))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-959 (-227)))))
+ (|:| |xValues| (-1112 (-227))) (|:| |yValues| (-1112 (-227)))))
+ (-5 *1 (-154)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1153))) (-5 *1 (-1084)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1067)) (-4 *3 (-374))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374))
+ (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-925)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-965 *4 *5 *6)) (-5 *2 (-430 (-1191 *7)))
+ (-5 *1 (-922 *4 *5 *6 *7)) (-5 *3 (-1191 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5)))
+ (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399))))
((*1 *2)
- (-12 (-4 *2 (-1260 *3)) (-5 *1 (-722 *3 *2)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195)))
+ (-14 *4 (-656 (-1195))) (-4 *5 (-399)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1067))
+ (-5 *2 (-831 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-725 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-879 *3)) (-5 *2 (-574)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-574))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-781)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-803)) (-4 *4 (-963 *5 *6 *7)) (-4 *5 (-462)) (-4 *7 (-860))
- (-5 *1 (-459 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-273 *2)) (-4 *2 (-860))))
+ (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1056 *4)) (-4 *3 (-568)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1058)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-937))
+ (-4 *4 (-1067)))))
+(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1193)) (-5 *1 (-874 *3)) (-14 *3 (-654 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1005))))
+ (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1007))))
((*1 *2 *1)
- (-12 (-4 *4 (-1234)) (-5 *2 (-1193)) (-5 *1 (-1073 *3 *4))
- (-4 *3 (-1109 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1108 *3)) (-4 *3 (-1234))))
+ (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1075 *3 *4))
+ (-4 *3 (-1111 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1110 *3)) (-4 *3 (-1236))))
((*1 *2 *1)
- (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
- (-5 *2 (-1193))))
- ((*1 *2) (-12 (-5 *2 (-1193)) (-5 *1 (-1280 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1235 *2))
- (-4 *2 (-1116))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-1116)) (-4 *2 (-860))
- (-5 *1 (-1235 *2)))))
+ (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
+ (-5 *2 (-1195))))
+ ((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1234)) (-5 *2 (-781))
+ (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783))
(-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-331 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-132))
- (-5 *2 (-781))))
+ (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-132))
+ (-5 *2 (-783))))
((*1 *2)
- (-12 (-4 *4 (-372)) (-5 *2 (-781)) (-5 *1 (-336 *3 *4))
- (-4 *3 (-337 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-781)) (-5 *1 (-370 *3)) (-4 *3 (-1116))))
- ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-781))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1116)) (-5 *2 (-781))))
+ (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1118))))
+ ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1118)) (-5 *2 (-783))))
((*1 *2)
- (-12 (-4 *4 (-1116)) (-5 *2 (-781)) (-5 *1 (-434 *3 *4))
- (-4 *3 (-435 *4))))
+ (-12 (-4 *4 (-1118)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4))
+ (-4 *3 (-437 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-781)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-1116))
+ (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1118))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1260 *4)) (-5 *2 (-781))
- (-5 *1 (-733 *3 *4 *5)) (-4 *3 (-734 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-1022))))
+ (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783))
+ (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1024))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065)) (-5 *2 (-654 (-957 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *3 (-1065)) (-4 *1 (-1150 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-654 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-654 (-957 *3))) (-4 *1 (-1150 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1173 *3)) (-5 *1 (-176 *3)) (-4 *3 (-315)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-574)) (-5 *2 (-1051)) (-5 *1 (-768)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1079 *2 *3))
+ (-4 *3 (-1262 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1118))
+ (-4 *3 (-1236)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374))
+ (-4 *7 (-1262 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-860)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))
- ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))))
-(((*1 *2) (-12 (-5 *2 (-1289)) (-5 *1 (-455 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286))))
- ((*1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-1286)))))
+ (-12 (-5 *2 (-419 (-968 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-4 *7 (-1010 *4)) (-4 *2 (-699 *7 *8 *9))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1067))
+ (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1067))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1141 *2 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-374))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1) (-4 *1 (-312)))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2570 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-374)) (-4 *7 (-1262 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6))
+ (-2 (|:| -2570 (-419 *7)) (|:| |coeff| (-419 *7))) "failed"))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713))))
+ ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-803)) (-4 *6 (-860)) (-4 *7 (-566))
- (-4 *3 (-963 *7 *5 *6))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1056 (-576)) (-651 (-576))))
(-5 *2
- (-2 (|:| -2754 (-781)) (|:| -1866 *3) (|:| |radicand| (-654 *3))))
- (-5 *1 (-967 *5 *6 *7 *3 *8)) (-5 *4 (-781))
- (-4 *8
- (-13 (-372)
- (-10 -8 (-15 -2951 ($ *3)) (-15 -2970 (*3 $)) (-15 -2980 (*3 $))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-834)) (-5 *3 (-654 (-1193))) (-5 *1 (-835)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903 *3)) (-4 *3 (-1116)))))
+ (-3 (|:| |%expansion| (-323 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))))
+ (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))
+ (-14 *6 (-1195)) (-14 *7 *3))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118))
+ (-4 *3 (-167 *6)) (-4 (-968 *6) (-899 *5))
+ (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4))
+ (-4 *4 (-1118))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1118))
+ (-4 *6 (-13 (-1118) (-1056 *3))) (-4 *3 (-899 *5))
+ (-5 *1 (-947 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118))
+ (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1056 (-624 $))))
+ (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5)))
+ (-5 *1 (-948 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557))
+ (-5 *1 (-949 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1118))
+ (-4 *6 (-13 (-1118) (-1056 (-624 $)) (-626 *4) (-899 *5)))
+ (-5 *4 (-905 *5)) (-5 *1 (-950 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1118))
+ (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-951 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3)))
+ (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6))
+ (-4 *6 (-1118)) (-4 *3 (-13 (-965 *9 *7 *8) (-626 *4)))
+ (-4 *7 (-805)) (-4 *9 (-13 (-1067) (-899 *6)))
+ (-5 *1 (-952 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118))
+ (-4 *3 (-13 (-965 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5))
+ (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-13 (-1067) (-899 *5))) (-5 *1 (-952 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1118)) (-4 *3 (-1010 *6))
+ (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5))
+ (-5 *1 (-955 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5))
+ (-4 *5 (-1118)) (-5 *1 (-956 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9)))
+ (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1118))
+ (-4 *9 (-13 (-1067) (-626 (-905 *7)) (-1056 *8)))
+ (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1067))
+ (-5 *1 (-957 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1067))
+ (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4)))))
+(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1118)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1067)) (-5 *1 (-702 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1116)) (-5 *1 (-1211 *3 *2)) (-4 *3 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-566))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4047 *4)))
- (-5 *1 (-985 *4 *3)) (-4 *3 (-1260 *4)))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))
+ ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *5 (-1118)) (-5 *2 (-112))
+ (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1020) (-1221))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1221))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-958)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1001 *2)) (-4 *2 (-1221)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1116)) (-5 *1 (-978 *3 *2)) (-4 *3 (-1116)))))
+ (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1118))
+ (-4 *2 (-862)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-699 (-171 (-417 (-574))))) (-5 *2 (-654 (-171 *4)))
- (-5 *1 (-774 *4)) (-4 *4 (-13 (-372) (-858))))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-765)))))
-(((*1 *2 *1) (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-5 *2 (-1189 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-935)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065))
- (-5 *2 (-654 (-654 (-957 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112)) (-4 *4 (-1065))
- (-4 *1 (-1150 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 (-654 (-957 *3)))) (-4 *3 (-1065))
- (-4 *1 (-1150 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-654 (-654 (-654 *4)))) (-5 *3 (-112))
- (-4 *1 (-1150 *4)) (-4 *4 (-1065))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-654 (-654 (-957 *4)))) (-5 *3 (-112))
- (-4 *1 (-1150 *4)) (-4 *4 (-1065))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-654 (-654 *5)))) (-5 *3 (-654 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-654 (-654 (-957 *5)))) (-5 *3 (-654 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1150 *5)) (-4 *5 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1054 (-574))) (-4 *1 (-310)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1116)))))
-(((*1 *1 *2) (-12 (-5 *2 (-398)) (-5 *1 (-642)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1246 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1275 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-566) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-284 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))))
-(((*1 *1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1175)) (-5 *1 (-313)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-614 *3 *4)) (-4 *3 (-1116)) (-4 *4 (-1234))
- (-5 *2 (-112)))))
+ (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3))
+ (-4 *3 (-374)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -4205 (-1191 *6)) (|:| -2300 (-576)))))
+ (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -16672,1645 +16745,1592 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-338)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-2 (|:| |den| (-574)) (|:| |gcdnum| (-574)))))
- (-4 *4 (-1260 (-417 *2))) (-5 *2 (-574)) (-5 *1 (-927 *4 *5))
- (-4 *5 (-1260 (-417 *4))))))
+ (-5 *1 (-340)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1118)) (-4 *1 (-919 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1020))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-860)) (-5 *2 (-654 (-654 (-654 *4))))
- (-5 *1 (-1204 *4)) (-5 *3 (-654 (-654 *4))))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1193)) (-5 *3 (-112)) (-5 *1 (-903 *4))
- (-4 *4 (-1116)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1234)) (-4 *3 (-382 *2))
- (-4 *4 (-382 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-614 *3 *2)) (-4 *3 (-1116))
- (-4 *2 (-1234)))))
+ (-12 (-5 *3 (-1112 (-855 (-390)))) (-5 *2 (-1112 (-855 (-227))))
+ (-5 *1 (-315)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-417 (-574))) (-4 *4 (-1054 (-574))) (-4 *4 (-566))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-440 *4))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1056 (-576))) (-4 *4 (-568))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4))))
((*1 *1 *1 *1) (-5 *1 (-135)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-574))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-576))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3))
- (-4 *5 (-1275 *4)) (-5 *1 (-285 *4 *5 *2)) (-4 *2 (-1246 *4 *5))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3))
+ (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-417 (-574))) (-4 *4 (-372)) (-4 *4 (-38 *3))
- (-4 *5 (-1244 *4)) (-5 *1 (-286 *4 *5 *2 *6)) (-4 *2 (-1267 *4 *5))
- (-4 *6 (-999 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-292)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-574)) (-5 *1 (-370 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *1) (-5 *1 (-388)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-781)) (-4 *1 (-395 *2)) (-4 *2 (-1116))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3))
+ (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5))
+ (-4 *6 (-1001 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-294)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *1) (-5 *1 (-390)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1118))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-440 *3)) (-4 *3 (-1116))
- (-4 *3 (-1128))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-483)) (-5 *2 (-574))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1118))
+ (-4 *3 (-1130))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-965 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1284 *4)) (-5 *3 (-574)) (-4 *4 (-358))
- (-5 *1 (-538 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-546))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-546))))
+ (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-781)) (-4 *4 (-1116))
- (-5 *1 (-692 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1118))
+ (-5 *1 (-694 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3)) (-4 *3 (-372))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-781)) (-4 *1 (-697 *3 *4 *5)) (-4 *3 (-1065))
- (-4 *4 (-382 *3)) (-4 *5 (-382 *3))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-699 *4)) (-5 *3 (-781)) (-4 *4 (-1065))
- (-5 *1 (-700 *4))))
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1067))
+ (-5 *1 (-702 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *3 (-1065)) (-5 *1 (-724 *3 *4))
- (-4 *4 (-658 *3))))
+ (-12 (-5 *2 (-576)) (-4 *3 (-1067)) (-5 *1 (-726 *3 *4))
+ (-4 *4 (-660 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-4 *4 (-1065))
- (-5 *1 (-724 *4 *5)) (-4 *5 (-658 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-935))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-781))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-781))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-574)) (-5 *1 (-846 *3)) (-4 *3 (-1065))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1067))
+ (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-937))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1067))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-574)) (-5 *1 (-846 *4)) (-4 *4 (-1065))))
- ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1116))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-417 (-574)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1128)) (-5 *2 (-935))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1067))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-419 (-576)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1130)) (-5 *2 (-937))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-1139 *3 *4 *5 *6)) (-4 *4 (-1065))
- (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-372))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-1141 *3 *4 *5 *6)) (-4 *4 (-1067))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1180 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1173 *3)) (-4 *3 (-38 (-417 (-574))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1065)) (-4 *2 (-372)))))
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1067)) (-4 *2 (-374)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-546) (-654 (-546)))) (-5 *1 (-115))))
- ((*1 *1) (-5 *1 (-588))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-372) (-148) (-1054 (-574)))) (-4 *5 (-1260 *4))
- (-5 *2 (-2 (|:| |ans| (-417 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1031 *4 *5)) (-5 *3 (-417 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3503 (-574)) (|:| -3996 (-654 *3))))
- (-5 *1 (-452 *3)) (-4 *3 (-1260 (-574))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-566) (-1054 (-574)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1219) (-440 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193)) (-4 *4 (-13 (-566) (-1054 (-574))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *3 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1193))
- (-4 *4 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-1223 *4 *2)) (-4 *2 (-13 (-27) (-1219) (-440 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-595)) (-5 *1 (-288)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1238)) (-4 *5 (-1260 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-417 *5))
- (|:| |c2| (-417 *5)) (|:| |deg| (-781))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1260 (-417 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-417 (-574))) (-5 *1 (-605 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1065)))))
+ (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115))))
+ ((*1 *1) (-5 *1 (-590))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-942))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-942))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-959 (-227)) (-227))) (-5 *3 (-1112 (-227)))
+ (-5 *1 (-943)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1079 *4 *3))
+ (-4 *3 (-1262 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1119 *3 *4 *5 *6 *2)) (-4 *3 (-1116)) (-4 *4 (-1116))
- (-4 *5 (-1116)) (-4 *6 (-1116)) (-4 *2 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-935))) (-5 *2 (-918 (-574))) (-5 *1 (-931)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *8 (-1081 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-654 *8))
- (|:| |towers| (-654 (-1043 *5 *6 *7 *8)))))
- (-5 *1 (-1043 *5 *6 *7 *8)) (-5 *3 (-654 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *8 (-1081 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-654 *8))
- (|:| |towers| (-654 (-1162 *5 *6 *7 *8)))))
- (-5 *1 (-1162 *5 *6 *7 *8)) (-5 *3 (-654 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1163 (-1175))) (-5 *1 (-401)))))
-(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-781))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6 *2)) (-4 *3 (-1118)) (-4 *4 (-1118))
+ (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-1118)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1030)) (-5 *2 (-874)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1083 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-995 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-805))
+ (-4 *5 (-13 (-862) (-10 -8 (-15 -1846 ((-1195) $))))) (-4 *6 (-568))
+ (-5 *2 (-2 (|:| -2847 (-968 *6)) (|:| -3621 (-968 *6))))
+ (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-965 (-419 (-968 *6)) *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-574)) (-4 *1 (-382 *3)) (-4 *3 (-1234))
- (-4 *3 (-1116))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236))
+ (-4 *3 (-1118))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-382 *3)) (-4 *3 (-1234)) (-4 *3 (-1116))
- (-5 *2 (-574))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-382 *4)) (-4 *4 (-1234))
- (-5 *2 (-574))))
- ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-539))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)) (-5 *3 (-142))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1160)) (-5 *2 (-574)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1260 *4)) (-5 *1 (-819 *4 *2 *3 *5))
- (-4 *4 (-13 (-372) (-148) (-1054 (-417 (-574))))) (-4 *3 (-666 *2))
- (-4 *5 (-666 (-417 *2))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1189 *7)) (-5 *3 (-574)) (-4 *7 (-963 *6 *4 *5))
- (-4 *4 (-803)) (-4 *5 (-860)) (-4 *6 (-1065))
- (-5 *1 (-329 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1193)) (-5 *2 (-1289)) (-5 *1 (-1196))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1197)))))
-(((*1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-858)) (-5 *1 (-311 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 (-966 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-1062 *5 *6))) (-5 *1 (-1311 *5 *6 *7))
- (-14 *6 (-654 (-1193))) (-14 *7 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-966 *4)))
- (-4 *4 (-13 (-858) (-315) (-148) (-1038)))
- (-5 *2 (-654 (-1062 *4 *5))) (-5 *1 (-1311 *4 *5 *6))
- (-14 *5 (-654 (-1193))) (-14 *6 (-654 (-1193))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1065)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1260 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-654 *5))) (-4 *5 (-1275 *4))
- (-4 *4 (-38 (-417 (-574))))
- (-5 *2 (-1 (-1173 *4) (-654 (-1173 *4)))) (-5 *1 (-1277 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-338)))))
-(((*1 *1 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *2 (-860)) (-4 *3 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-637 *2 *3 *4)) (-4 *2 (-860))
- (-4 *3 (-13 (-174) (-727 (-417 (-574))))) (-14 *4 (-935))))
- ((*1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-860))))
- ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-860))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1301 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1065)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1284 (-781))) (-5 *1 (-685 *3)) (-4 *3 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-574))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-654 (-701 (-288)))) (-5 *1 (-169)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-957 *4))) (-5 *1 (-1181 *3 *4)) (-14 *3 (-935))
- (-4 *4 (-1065)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-963 *3 *5 *4)) (-5 *1 (-1003 *3 *4 *5 *2))
- (-4 *3 (-462)) (-4 *4 (-860)) (-4 *5 (-803)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-654 *7)) (-4 *7 (-860))
- (-4 *8 (-963 *5 *6 *7)) (-4 *5 (-566)) (-4 *6 (-803))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1284 (-417 *8)) "failed"))
- (|:| -1895 (-654 (-1284 (-417 *8))))))
- (-5 *1 (-679 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-654 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-462) (-148) (-1054 (-574)) (-649 (-574))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-654 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-567 *6 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-654 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-440 *4) (-1018))) (-4 *4 (-566))
- (-5 *1 (-283 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-428 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48)))))
+ (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1118))
+ (-5 *2 (-576))))
((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
- (-5 *1 (-122 *3)) (-4 *3 (-860))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-596 *4)) (-4 *4 (-13 (-29 *3) (-1219)))
- (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574))))
- (-5 *1 (-593 *3 *4))))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236))
+ (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-541))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)) (-5 *3 (-142))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1162)) (-5 *2 (-576)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1118) (-34))) (-4 *6 (-13 (-1118) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1056 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3))))))
((*1 *2 *2)
- (-12 (-5 *2 (-596 (-417 (-966 *3))))
- (-4 *3 (-13 (-462) (-1054 (-574)) (-649 (-574)))) (-5 *1 (-599 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1260 *5)) (-4 *5 (-372))
- (-5 *2 (-2 (|:| -1367 *3) (|:| |special| *3))) (-5 *1 (-737 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1284 *5)) (-4 *5 (-372)) (-4 *5 (-1065))
- (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5))
- (-5 *3 (-654 (-699 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1284 (-1284 *5))) (-4 *5 (-372)) (-4 *5 (-1065))
- (-5 *2 (-654 (-654 (-699 *5)))) (-5 *1 (-1045 *5))
- (-5 *3 (-654 (-699 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-654 *1)) (-4 *1 (-1160))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-654 *1)) (-4 *1 (-1160)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-428 *4) *4)) (-4 *4 (-566)) (-5 *2 (-428 *4))
- (-5 *1 (-429 *4))))
- ((*1 *1 *1) (-5 *1 (-940)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-940))))
- ((*1 *1 *1) (-5 *1 (-941)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-227))) (-5 *1 (-941))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))
- (-5 *4 (-417 (-574))) (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))
- (-5 *1 (-1036 *3)) (-4 *3 (-1260 (-574)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))
- (-5 *4 (-417 (-574))) (-5 *1 (-1037 *3)) (-4 *3 (-1260 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1260 (-417 (-574))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-858) (-372))) (-5 *1 (-1077 *2 *3))
- (-4 *3 (-1260 *2)))))
+ (-12 (-4 *3 (-13 (-464) (-1056 (-576)) (-651 (-576))))
+ (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-148))) (-4 *5 (-13 (-860) (-624 (-1193))))
- (-4 *6 (-803)) (-5 *2 (-654 *3)) (-5 *1 (-938 *4 *5 *6 *3))
- (-4 *3 (-963 *4 *6 *5)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-130)))
- ((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-574)) (-14 *3 (-781))
- (-4 *4 (-174))))
- ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557)))
- ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559)))
- ((*1 *1) (-4 *1 (-736))) ((*1 *1) (-5 *1 (-1193)))
- ((*1 *1) (-12 (-5 *1 (-1199 *2)) (-14 *2 (-935))))
- ((*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-935))))
- ((*1 *1) (-5 *1 (-1239))) ((*1 *1) (-5 *1 (-1240)))
- ((*1 *1) (-5 *1 (-1241))) ((*1 *1) (-5 *1 (-1242))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-574)) (-5 *4 (-699 (-227))) (-5 *2 (-1051))
- (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1189 *3)) (-4 *3 (-358)) (-5 *1 (-366 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175)) (-4 *1 (-373 *3 *4)) (-4 *3 (-1116))
- (-4 *4 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-574))) (-5 *1 (-282)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-574))
- (-5 *5 (-3 (|:| |fn| (-398)) (|:| |fp| (-64 G)))) (-5 *2 (-1051))
- (-5 *1 (-758)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-654 *6)) (-4 *6 (-1081 *3 *4 *5))
- (-4 *3 (-566)) (-4 *4 (-803)) (-4 *5 (-860))
- (-5 *1 (-1297 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-654 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1081 *5 *6 *7)) (-4 *5 (-566))
- (-4 *6 (-803)) (-4 *7 (-860)) (-5 *1 (-1297 *5 *6 *7 *8)))))
+ (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464))
+ (-5 *2
+ (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576)))))
+ (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1058)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -4205 (-1191 *6)) (|:| -2300 (-576)))))
+ (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-965 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240))
+ (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5)))
+ (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2892 *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-783)) (-5 *3 (-959 *5)) (-4 *5 (-1067))
+ (-5 *1 (-1183 *4 *5)) (-14 *4 (-937))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5))
+ (-14 *4 (-937)) (-4 *5 (-1067))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-959 *5)) (-4 *5 (-1067))
+ (-5 *1 (-1183 *4 *5)) (-14 *4 (-937)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -3084 *4) (|:| -2696 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-781)) (-5 *5 (-654 *3)) (-4 *3 (-315)) (-4 *6 (-860))
- (-4 *7 (-803)) (-5 *2 (-112)) (-5 *1 (-635 *6 *7 *3 *8))
- (-4 *8 (-963 *3 *7 *6)))))
-(((*1 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-884)) (-5 *1 (-1287)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1234)) (-5 *1 (-1148 *4 *2))
- (-4 *2 (-13 (-614 (-574) *4) (-10 -7 (-6 -4459) (-6 -4460))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-860)) (-4 *3 (-1234)) (-5 *1 (-1148 *3 *2))
- (-4 *2 (-13 (-614 (-574) *3) (-10 -7 (-6 -4459) (-6 -4460)))))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195))
+ (-5 *5 (-1112 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1234)) (-5 *2 (-654 *1)) (-4 *1 (-1026 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1181 *3 *4))) (-5 *1 (-1181 *3 *4))
- (-14 *3 (-935)) (-4 *4 (-1065)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-372)) (-14 *4 (-1193))
- (-14 *5 *3) (-5 *1 (-327 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-1284 (-699 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-699 *4)) (-4 *5 (-666 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6)) (-5 *4 (-654 (-1173 *7))) (-4 *6 (-860))
- (-4 *7 (-963 *5 (-541 *6) *6)) (-4 *5 (-1065))
- (-5 *2 (-1 (-1173 *7) *7)) (-5 *1 (-1142 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-872))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-872) (-654 (-872)))) (-5 *1 (-115))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1067))))
((*1 *2 *1)
- (-12 (-5 *2 (-1289)) (-5 *1 (-216 *3))
- (-4 *3
- (-13 (-860)
- (-10 -8 (-15 -2207 ((-1175) $ (-1193))) (-15 -1414 (*2 $))
- (-15 -3220 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-404))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-404))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-512))))
- ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-720))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1214))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-574)) (-5 *2 (-1289)) (-5 *1 (-1214)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-535))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1167)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-957 *3) (-957 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-372) (-1219) (-1018))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-516)) (-5 *2 (-112)) (-5 *1 (-115)))))
+ (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1175 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1022 *3)) (-14 *3 (-576)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1121 *2 *3 *4 *5 *6)) (-4 *2 (-1118)) (-4 *3 (-1118))
+ (-4 *4 (-1118)) (-4 *5 (-1118)) (-4 *6 (-1118)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1053)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1083 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-995 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317))
+ (-5 *1 (-932 *3 *4 *5 *2)) (-4 *2 (-965 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1191 *6)) (-4 *6 (-965 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-932 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-965 *6 *4 *5))
+ (-5 *1 (-932 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-576))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-805)) (-4 *4 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862))
+ (-5 *1 (-461 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227)))
+ (-5 *3 (-227)) (-5 *2 (-1053)) (-5 *1 (-762)))))
+(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-430 *4)) (-4 *4 (-568)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-942)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1053))
+ (-5 *1 (-759)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-388)) (-5 *1 (-207)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1119 *2 *3 *4 *5 *6)) (-4 *2 (-1116)) (-4 *3 (-1116))
- (-4 *4 (-1116)) (-4 *5 (-1116)) (-4 *6 (-1116)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-283 *3 *2))
- (-4 *2 (-13 (-440 *3) (-1018))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
+ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227)))
+ (|:| -2055 (-1112 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1193)) (-5 *4 (-966 (-574))) (-5 *2 (-338))
- (-5 *1 (-340)))))
+ (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2))
+ (-4 *2 (-1118))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1118)) (-4 *2 (-862))
+ (-5 *1 (-1237 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862))
+ (-5 *1 (-1206 *4)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-959 (-227))) (-5 *4 (-886)) (-5 *5 (-937))
+ (-5 *2 (-1291)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-959 (-227))) (-5 *2 (-1291)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-656 (-959 (-227)))) (-5 *4 (-886)) (-5 *5 (-937))
+ (-5 *2 (-1291)) (-5 *1 (-480)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-968 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-5 *2 (-1191 (-968 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1191 (-419 (-968 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-937))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
+ (-5 *2 (-1053)) (-5 *1 (-768)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -2209 ((-1177) $ (-1195))) (-15 -1416 (*2 $))
+ (-15 -4278 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-1220 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1116)))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-968 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464))
+ (-5 *1 (-934 *4)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4))
+ (-4 *4 (-13 (-442 *7) (-27) (-1221)))
+ (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4)))
+ (-4 *4 (-13 (-442 *7) (-27) (-1221)))
+ (-4 *7 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4093 (-656 *4))))
+ (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1118)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1067))
+ (-4 *4 (-804)) (-4 *3 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-959 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *3 (-1067)) (-4 *1 (-1152 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-959 *3))) (-4 *1 (-1152 *3)) (-4 *3 (-1067)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-968 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-1064 *5 *6))) (-5 *1 (-1313 *5 *6 *7))
+ (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-968 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1040)))
+ (-5 *2 (-656 (-1064 *4 *5))) (-5 *1 (-1313 *4 *5 *6))
+ (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1758 *1) (|:| -3983 *1))) (-4 *1 (-317))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1118))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1758 (-783)) (|:| -3983 (-783))))
+ (-5 *1 (-783))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1758 *3) (|:| -3983 *3)))
+ (-5 *1 (-987 *4 *3)) (-4 *3 (-1262 *4)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2625 *3))))
+ (-5 *4 (-783)) (-4 *3 (-965 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-478)) (-5 *4 (-935)) (-5 *2 (-1289)) (-5 *1 (-1285)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))))
+ (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1065)) (-14 *3 (-654 (-1193)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1067)) (-14 *3 (-656 (-1195)))))
((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1065) (-860)))
- (-14 *3 (-654 (-1193)))))
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1067) (-862)))
+ (-14 *3 (-656 (-1195)))))
((*1 *1 *1)
- (-12 (-4 *1 (-391 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-1116))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-1118))))
((*1 *1 *1)
- (-12 (-14 *2 (-654 (-1193))) (-4 *3 (-174))
- (-4 *5 (-244 (-2877 *2) (-781)))
+ (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174))
+ (-4 *5 (-244 (-2882 *2) (-783)))
(-14 *6
- (-1 (-112) (-2 (|:| -2591 *4) (|:| -2754 *5))
- (-2 (|:| -2591 *4) (|:| -2754 *5))))
- (-5 *1 (-471 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860))
- (-4 *7 (-963 *3 *5 (-874 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1116)) (-4 *3 (-860))))
+ (-1 (-112) (-2 (|:| -2596 *4) (|:| -2300 *5))
+ (-2 (|:| -2596 *4) (|:| -2300 *5))))
+ (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862))
+ (-4 *7 (-965 *3 *5 (-876 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-862))))
((*1 *1 *1)
- (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065))))
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067))))
((*1 *1 *1)
- (-12 (-5 *1 (-745 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1065))
- (-4 *3 (-736))))
- ((*1 *1 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065))))
+ (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1067))
+ (-4 *3 (-738))))
+ ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860))))
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-1307 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-856)))))
-(((*1 *2 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-372)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-120 *2)) (-4 *2 (-1234)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)))))
+ (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-858)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1116 *2)) (-4 *2 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4285 (-115)) (|:| |arg| (-654 (-903 *3)))))
- (-5 *1 (-903 *3)) (-4 *3 (-1116))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-654 (-903 *4)))
- (-5 *1 (-903 *4)) (-4 *4 (-1116)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-781)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-803)) (-4 *2 (-963 *4 *5 *6)) (-5 *1 (-459 *4 *5 *6 *2))
- (-4 *4 (-462)) (-4 *6 (-860)))))
+ (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1067)) (-5 *2 (-656 (-656 (-173)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1 (-388))) (-5 *1 (-1056)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3)) (-4 *3 (-1065))
- (-5 *2 (-654 (-654 (-654 (-957 *3))))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1065)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1173 *3))) (-5 *2 (-1173 *3)) (-5 *1 (-1177 *3))
- (-4 *3 (-38 (-417 (-574)))) (-4 *3 (-1065)))))
-(((*1 *1 *2) (-12 (-5 *2 (-781)) (-5 *1 (-129)))))
-(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-872))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1058)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6))
+ (-4 *6 (-13 (-374) (-148) (-1056 *4))) (-5 *4 (-576))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -4102
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1033 *6 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-980 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-115)) (-4 *4 (-1067)) (-5 *1 (-726 *4 *2))
+ (-4 *2 (-660 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1067)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1285))))
- ((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-1286)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1065)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-654 *1))
- (-4 *1 (-963 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-654 (-935))) (-5 *2 (-781)) (-5 *1 (-600)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-566)) (-5 *2 (-781)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-427 *4)))))
+ (-12 (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-965 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1299 *3 *4)) (-4 *3 (-860)) (-4 *4 (-174))
- (-5 *1 (-674 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-674 *3 *4)) (-5 *1 (-1304 *3 *4))
- (-4 *3 (-860)) (-4 *4 (-174)))))
+ (-12 (-5 *2 (-656 *1)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1067)) (-5 *1 (-701 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *4)) (-4 *4 (-1067)) (-4 *1 (-1141 *3 *4 *5 *6))
+ (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1053)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-699 (-417 (-966 (-574)))))
- (-5 *2 (-654 (-699 (-324 (-574))))) (-5 *1 (-1047)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-654 (-654 (-957 (-227))))) (-5 *1 (-1229 *3))
- (-4 *3 (-990)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-999 *2)) (-4 *2 (-1219)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-605 *2)) (-4 *2 (-38 (-417 (-574)))) (-4 *2 (-1065)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-1 (-227) (-227) (-227) (-227)))
- (-5 *2 (-1 (-957 (-227)) (-227) (-227))) (-5 *1 (-707)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065))))
+ (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4))
+ (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-1 (-1175 *4) (-656 (-1175 *4)))) (-5 *1 (-1279 *4 *5)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-937)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1152 *3)) (-4 *3 (-1067))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4))
+ (-14 *3 (-937)) (-4 *4 (-1067))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1067)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))))
+(((*1 *1 *1) (-4 *1 (-881 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-4 *2 (-1065)) (-5 *1 (-50 *2 *3)) (-14 *3 (-654 (-1193)))))
+ (-12 (-4 *2 (-1067)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195)))))
((*1 *2 *1)
- (-12 (-5 *2 (-324 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1065) (-860))) (-14 *4 (-654 (-1193)))))
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1067) (-862))) (-14 *4 (-656 (-1195)))))
((*1 *2 *1)
- (-12 (-4 *1 (-391 *2 *3)) (-4 *3 (-1116)) (-4 *2 (-1065))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-14 *3 (-654 (-1193))) (-4 *5 (-244 (-2877 *3) (-781)))
+ (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-244 (-2882 *3) (-783)))
(-14 *6
- (-1 (-112) (-2 (|:| -2591 *4) (|:| -2754 *5))
- (-2 (|:| -2591 *4) (|:| -2754 *5))))
- (-4 *2 (-174)) (-5 *1 (-471 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860))
- (-4 *7 (-963 *2 *5 (-874 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-519 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1116))))
+ (-1 (-112) (-2 (|:| -2596 *4) (|:| -2300 *5))
+ (-2 (|:| -2596 *4) (|:| -2300 *5))))
+ (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862))
+ (-4 *7 (-965 *2 *5 (-876 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1118))))
((*1 *2 *1)
- (-12 (-4 *2 (-566)) (-5 *1 (-633 *2 *3)) (-4 *3 (-1260 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-718 *2)) (-4 *2 (-1065))))
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-4 *2 (-1065)) (-5 *1 (-745 *2 *3)) (-4 *3 (-860))
- (-4 *3 (-736))))
- ((*1 *2 *1) (-12 (-4 *1 (-862 *2)) (-4 *2 (-1065))))
+ (-12 (-4 *2 (-1067)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862))
+ (-4 *3 (-738))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1067))))
((*1 *2 *1)
- (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *3 (-802)) (-4 *4 (-860))
- (-4 *2 (-1065))))
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862))
+ (-4 *2 (-1067))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *3 *4 *2)) (-4 *3 (-1065)) (-4 *4 (-803))
- (-4 *2 (-860)))))
+ (-12 (-4 *1 (-1083 *3 *4 *2)) (-4 *3 (-1067)) (-4 *4 (-805))
+ (-4 *2 (-862)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4)))
+ (-4 *4 (-862)) (-5 *1 (-1206 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-5 *2 (-1289)) (-5 *1 (-876 *4 *5 *6 *7))
- (-4 *4 (-1065)) (-14 *5 (-654 (-1193))) (-14 *6 (-654 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-781)) (-4 *4 (-1065)) (-4 *5 (-860)) (-4 *6 (-803))
- (-14 *8 (-654 *5)) (-5 *2 (-1289))
- (-5 *1 (-1296 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-963 *4 *6 *5))
- (-14 *9 (-654 *3)) (-14 *10 *3))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1260 *5))
- (-4 *5 (-13 (-372) (-148) (-1054 (-574))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-417 *6)) (|:| |h| *6)
- (|:| |c1| (-417 *6)) (|:| |c2| (-417 *6)) (|:| -2150 *6)))
- (-5 *1 (-1032 *5 *6)) (-5 *3 (-417 *6)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-921 *4)) (-4 *4 (-1118)) (-5 *2 (-656 (-783)))
+ (-5 *1 (-920 *4)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1116)) (-5 *2 (-900 *3 *4)) (-5 *1 (-896 *3 *4 *5))
- (-4 *3 (-1116)) (-4 *5 (-676 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-980 *4)) (-4 *4 (-1116)) (-5 *2 (-1118 *4))
- (-5 *1 (-981 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-315)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-315) (-148))) (-4 *4 (-13 (-860) (-624 (-1193))))
- (-4 *5 (-803)) (-5 *1 (-938 *3 *4 *5 *2)) (-4 *2 (-963 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3865 (-417 (-574))) (|:| -3878 (-417 (-574)))))
- (-5 *2 (-417 (-574))) (-5 *1 (-1036 *4)) (-4 *4 (-1260 (-574))))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-159 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-555)))))
-(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-574))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-919 *3)) (-4 *3 (-1116))))
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-576)))))
+ (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3))
+ (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6))
+ (-4 *6 (-1262 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1084 *4 *3)) (-4 *4 (-13 (-858) (-372)))
- (-4 *3 (-1260 *4)) (-5 *2 (-574))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-566) (-1054 *2) (-649 *2) (-462)))
- (-5 *2 (-574)) (-5 *1 (-1132 *4 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 *3))
- (-4 *3 (-13 (-27) (-1219) (-440 *6)))
- (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574))
- (-5 *1 (-1132 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-1175))
- (-4 *6 (-13 (-566) (-1054 *2) (-649 *2) (-462))) (-5 *2 (-574))
- (-5 *1 (-1132 *6 *3)) (-4 *3 (-13 (-27) (-1219) (-440 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-417 (-966 *4))) (-4 *4 (-462)) (-5 *2 (-574))
- (-5 *1 (-1133 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1193)) (-5 *5 (-853 (-417 (-966 *6))))
- (-5 *3 (-417 (-966 *6))) (-4 *6 (-462)) (-5 *2 (-574))
- (-5 *1 (-1133 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-417 (-966 *6))) (-5 *4 (-1193))
- (-5 *5 (-1175)) (-4 *6 (-462)) (-5 *2 (-574)) (-5 *1 (-1133 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-574)) (-5 *1 (-1216 *3)) (-4 *3 (-1065)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 (-227))) (-5 *2 (-654 (-1175))) (-5 *1 (-313)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-372)) (-4 *6 (-1260 (-417 *2)))
- (-4 *2 (-1260 *5)) (-5 *1 (-217 *5 *2 *6 *3))
- (-4 *3 (-351 *5 *2 *6)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236))
+ (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2892 (-794 *3)) (|:| |coef1| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1067))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1067)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -2892 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1083 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-783)) (-4 *3 (-1067)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1067)) (-4 *1 (-1141 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2))
+ (-4 *5 (-244 *3 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3))
+ (-4 *3 (-13 (-416) (-1221)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4071 *7))))
+ (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1006 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4071 *7))))
+ (-4 *6 (-1083 *3 *4 *5)) (-4 *7 (-1089 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1125 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-388))) (-5 *1 (-1056)) (-5 *3 (-388)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1065)) (-4 *3 (-802))))
+ (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1058)) (-5 *3 (-390)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1067)) (-4 *3 (-804))))
((*1 *2 *1)
- (-12 (-4 *1 (-391 *3 *2)) (-4 *3 (-1065)) (-4 *2 (-1116))))
+ (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1067)) (-4 *2 (-1118))))
((*1 *2 *1)
- (-12 (-14 *3 (-654 (-1193))) (-4 *4 (-174))
- (-4 *6 (-244 (-2877 *3) (-781)))
+ (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174))
+ (-4 *6 (-244 (-2882 *3) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -2591 *5) (|:| -2754 *6))
- (-2 (|:| -2591 *5) (|:| -2754 *6))))
- (-5 *2 (-723 *5 *6 *7)) (-5 *1 (-471 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-860)) (-4 *8 (-963 *4 *6 (-874 *3)))))
+ (-1 (-112) (-2 (|:| -2596 *5) (|:| -2300 *6))
+ (-2 (|:| -2596 *5) (|:| -2300 *6))))
+ (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-862)) (-4 *8 (-965 *4 *6 (-876 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-736)) (-4 *2 (-860)) (-5 *1 (-745 *3 *2))
- (-4 *3 (-1065))))
+ (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2))
+ (-4 *3 (-1067))))
((*1 *1 *1)
- (-12 (-4 *1 (-989 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-802))
- (-4 *4 (-860)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-870)) (-5 *2 (-701 (-130))) (-5 *3 (-130)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-810))
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1284 (-324 (-227)))) (|:| |yinit| (-654 (-227)))
- (|:| |intvals| (-654 (-227))) (|:| |g| (-324 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-1051)))))
-(((*1 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287))))
- ((*1 *2 *2) (-12 (-5 *2 (-935)) (-5 *1 (-1287)))))
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-1067)) (-4 *3 (-804))
+ (-4 *4 (-862)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-574))) (-4 *3 (-1065)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1065)) (-5 *1 (-99 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4))
- (-5 *1 (-1124 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-925)) (-4 *6 (-805))
+ (-4 *8 (-965 *5 *6 *7)) (-5 *2 (-430 (-1191 *8)))
+ (-5 *1 (-922 *5 *6 *7 *8)) (-5 *4 (-1191 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5)))
+ (-5 *1 (-923 *4 *5)) (-5 *3 (-1191 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1067)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4))
+ (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374))
+ (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-965 *4 *5 *6)) (-4 *6 (-626 (-1195)))
+ (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-1184 (-656 (-968 *4)) (-656 (-304 (-968 *4)))))
+ (-5 *1 (-516 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1157))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1221)))
+ (-4 *6 (-13 (-464) (-1056 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1118)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815)))))
+(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1067)))))
+(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862))
+ (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-937))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1067)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-654
- (-2 (|:| |scalar| (-417 (-574))) (|:| |coeff| (-1189 *2))
- (|:| |logand| (-1189 *2)))))
- (-5 *4 (-654 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-372)) (-5 *1 (-596 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-1211 *4 *5))
- (-4 *4 (-1116)) (-4 *5 (-1116)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-372) (-148) (-1054 (-574))))
- (-4 *5 (-1260 *4)) (-5 *2 (-654 (-417 *5))) (-5 *1 (-1032 *4 *5))
- (-5 *3 (-417 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1260 (-48))))))
-(((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-802)) (-4 *2 (-1065))))
- ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1116)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1160)) (-5 *2 (-1251 (-574))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-633 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3878 *4) (|:| |sol?| (-112)))
- (-574) *4))
- (-4 *4 (-372)) (-4 *5 (-1260 *4)) (-5 *1 (-584 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-566)) (-4 *4 (-382 *3)) (-4 *5 (-382 *3))
- (-5 *1 (-1224 *3 *4 *5 *2)) (-4 *2 (-697 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1234)) (-4 *4 (-382 *3))
- (-4 *5 (-382 *3)) (-5 *2 (-574))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1069 *3 *4 *5 *6 *7)) (-4 *5 (-1065))
- (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-574)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-963 *4 *5 *6)) (-4 *4 (-372))
- (-4 *4 (-462)) (-4 *5 (-803)) (-4 *6 (-860))
- (-5 *1 (-460 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-372))
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))
+ (-5 *2 (-1053)) (-5 *1 (-315)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-2 (|:| R (-699 *6)) (|:| A (-699 *6)) (|:| |Ainv| (-699 *6))))
- (-5 *1 (-994 *6)) (-5 *3 (-699 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-781)) (-5 *1 (-228))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-171 (-227))) (-5 *3 (-781)) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-566)) (-5 *1 (-441 *3 *2)) (-4 *2 (-440 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1155))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-374 *2)) (-4 *2 (-1116))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-1215)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-462)) (-4 *6 (-803)) (-4 *7 (-860))
- (-4 *3 (-1081 *5 *6 *7)) (-5 *2 (-654 *4))
- (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1087 *5 *6 *7 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1234)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-654 *2)) (-4 *2 (-440 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-566)))))
+ (-656
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-805)) (-4 *3 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *1 (-461 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-937)) (-5 *1 (-798)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-574))
- (-14 *6 (-781)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576))
+ (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *9)) (-4 *9 (-1065)) (-4 *5 (-860)) (-4 *6 (-803))
- (-4 *8 (-1065)) (-4 *2 (-963 *9 *7 *5))
- (-5 *1 (-738 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-803))
- (-4 *4 (-963 *8 *6 *5)))))
+ (-12 (-5 *3 (-656 *9)) (-4 *9 (-1067)) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *8 (-1067)) (-4 *2 (-965 *9 *7 *5))
+ (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805))
+ (-4 *4 (-965 *8 *6 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1065)) (-4 *4 (-802))
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1067)) (-4 *4 (-804))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1116)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148))) (-4 *6 (-803))
- (-4 *7 (-860)) (-4 *8 (-1081 *5 *6 *7)) (-5 *2 (-654 *3))
- (-5 *1 (-601 *5 *6 *7 *8 *3)) (-4 *3 (-1125 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148)))
- (-5 *2
- (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5))))))
- (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5)))
- (-14 *6 (-654 (-1193)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-315) (-148)))
- (-5 *2
- (-654 (-2 (|:| -1709 (-1189 *4)) (|:| -2282 (-654 (-966 *4))))))
- (-5 *1 (-1094 *4 *5)) (-5 *3 (-654 (-966 *4)))
- (-14 *5 (-654 (-1193)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-315) (-148)))
- (-5 *2
- (-654 (-2 (|:| -1709 (-1189 *5)) (|:| -2282 (-654 (-966 *5))))))
- (-5 *1 (-1094 *5 *6)) (-5 *3 (-654 (-966 *5)))
- (-14 *6 (-654 (-1193))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1118)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-307 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1110 (-853 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-313))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-372)) (-4 *4 (-803)) (-4 *5 (-860)) (-5 *2 (-112))
- (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-963 *3 *4 *5)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-966 *5)) (-4 *5 (-1065)) (-5 *2 (-491 *4 *5))
- (-5 *1 (-958 *4 *5)) (-14 *4 (-654 (-1193))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-805)) (-4 *7 (-965 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1157))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1189 (-417 (-966 *3)))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-566)))))
-(((*1 *2 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-623 (-872)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-886))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-886))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-574))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-516))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-602))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-488))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1183))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-636))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1106))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1089))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-986))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-182))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1052))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-319))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-681))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1167))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-535))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1295))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1082))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-527))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-691))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1131))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-134))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-616))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1294))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-686))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-220))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-534))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-574)) (-5 *1 (-1198)))))
-(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-335 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-654 *3)) (-4 *3 (-1234)) (-5 *1 (-526 *3 *4))
- (-14 *4 (-574)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-404))))
- ((*1 *2 *1) (-12 (-5 *2 (-654 (-1175))) (-5 *1 (-1214)))))
-(((*1 *2)
- (-12 (-4 *1 (-358))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-12 (-4 *4 (-1118)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1118)) (-4 *5 (-678 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-982 *4)) (-4 *4 (-1118)) (-5 *2 (-1120 *4))
+ (-5 *1 (-983 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1177))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-518))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-604))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-490))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1185))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-638))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1091))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-988))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-182))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1054))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-321))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-683))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1169))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-537))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1297))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1084))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-529))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-693))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-618))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1296))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-688))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-220))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-536))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1118)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1067)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *5 (-1067))
+ (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-923)) (-4 *5 (-803)) (-4 *6 (-860))
- (-4 *7 (-963 *4 *5 *6)) (-5 *2 (-428 (-1189 *7)))
- (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-1189 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-923)) (-4 *5 (-1260 *4)) (-5 *2 (-428 (-1189 *5)))
- (-5 *1 (-921 *4 *5)) (-5 *3 (-1189 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-654 *7)) (-4 *7 (-1081 *4 *5 *6)) (-4 *4 (-566))
- (-4 *5 (-803)) (-4 *6 (-860)) (-5 *2 (-654 (-1297 *4 *5 *6 *7)))
- (-5 *1 (-1297 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1081 *6 *7 *8)) (-4 *6 (-566))
- (-4 *7 (-803)) (-4 *8 (-860)) (-5 *2 (-654 (-1297 *6 *7 *8 *9)))
- (-5 *1 (-1297 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1160)) (-5 *3 (-145)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-920 (-576))) (-5 *1 (-933))))
+ ((*1 *2) (-12 (-5 *2 (-920 (-576))) (-5 *1 (-933)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (-145)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-654 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-574))
- (-14 *4 (-781)) (-4 *5 (-174)))))
+ (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
(((*1 *1 *1) (-4 *1 (-249)))
((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-297 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1260 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-2833 (-12 (-5 *1 (-302 *2)) (-4 *2 (-372)) (-4 *2 (-1234)))
- (-12 (-5 *1 (-302 *2)) (-4 *2 (-483)) (-4 *2 (-1234)))))
- ((*1 *1 *1) (-4 *1 (-483)))
- ((*1 *2 *2) (-12 (-5 *2 (-1284 *3)) (-4 *3 (-358)) (-5 *1 (-538 *3))))
+ (-2838 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236)))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236)))))
+ ((*1 *1 *1) (-4 *1 (-485)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-725 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-807 *2)) (-4 *2 (-174)) (-4 *2 (-372)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-748)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1081 *2 *3 *4)) (-4 *2 (-1065)) (-4 *3 (-803))
- (-4 *4 (-860)) (-4 *2 (-462)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-417 (-966 *3))) (-5 *1 (-463 *3 *4 *5 *6))
- (-4 *3 (-566)) (-4 *3 (-174)) (-14 *4 (-935))
- (-14 *5 (-654 (-1193))) (-14 *6 (-1284 (-699 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-574)) (-5 *1 (-571))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1189 (-417 (-574)))) (-5 *1 (-956)) (-5 *3 (-574)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-376 *3)) (-4 *3 (-174)) (-4 *3 (-566))
- (-5 *2 (-1189 *3)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-872))) ((*1 *1 *1 *1) (-5 *1 (-872)))
- ((*1 *1 *1) (-5 *1 (-872))))
-(((*1 *2 *1) (-12 (-5 *2 (-1289)) (-5 *1 (-832)))))
-(((*1 *2 *1) (-12 (-5 *2 (-654 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-699 *2)) (-5 *4 (-574))
- (-4 *2 (-13 (-315) (-10 -8 (-15 -3171 ((-428 $) $)))))
- (-4 *5 (-1260 *2)) (-5 *1 (-509 *2 *5 *6)) (-4 *6 (-419 *2 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1289)) (-5 *1 (-446)))))
-((-1318 . 732397) (-1319 . 732206) (-1320 . 732140) (-1321 . 732087)
- (-1322 . 731990) (-1323 . 731896) (-1324 . 731762) (-1325 . 731583)
- (-1326 . 731470) (-1327 . 731401) (-1328 . 730665) (-1329 . 730549)
- (-1330 . 730475) (-1331 . 730058) (-1332 . 729992) (-1333 . 729696)
- (-1334 . 729605) (-1335 . 729486) (-1336 . 729316) (-1337 . 727255)
- (-1338 . 727025) (-1339 . 726838) (-1340 . 726711) (-1341 . 726367)
- (-1342 . 725503) (-1343 . 725340) (-1344 . 724939) (-1345 . 724840)
- (-1346 . 724781) (-1347 . 724601) (-1348 . 724473) (-1349 . 724214)
- (-1350 . 723855) (-1351 . 723609) (-1352 . 723476) (-1353 . 723258)
- (-1354 . 723191) (-1355 . 723063) (-1356 . 722985) (-1357 . 722806)
- (-1358 . 722690) (-1359 . 722444) (-1360 . 722264) (-1361 . 722032)
- (-1362 . 721852) (-1363 . 721751) (-1364 . 721458) (-1365 . 721379)
- (-1366 . 720735) (-1367 . 720657) (-1368 . 720494) (-1369 . 720246)
- (-1370 . 718903) (-1371 . 718734) (-1372 . 718578) (-1373 . 718421)
- (-1374 . 718366) (-1375 . 718148) (-1376 . 717835) (-1377 . 717455)
- (-1378 . 716283) (-1379 . 716113) (-1380 . 716027) (-1381 . 715961)
- (-1382 . 715823) (-1383 . 715757) (-1384 . 715660) (-1385 . 715545)
- (-1386 . 715321) (-1387 . 715226) (-1388 . 715152) (-1389 . 715037)
- (-1390 . 714878) (-1391 . 714822) (-1392 . 714770) (-1393 . 714634)
- (-1394 . 714575) (-1395 . 714474) (-1396 . 714396) (-1397 . 714173)
- (-1398 . 713917) (-1399 . 713819) (-1400 . 713736) (-1401 . 713681)
- (-1402 . 712544) (-1403 . 712452) (-1404 . 712367) (-1405 . 712269)
- (-1406 . 712183) (-1407 . 712088) (-1408 . 711950) (-1409 . 711658)
- (-1410 . 711588) (-1411 . 711470) (-1412 . 711367) (-1413 . 711294)
- (-1414 . 710540) (-1415 . 710349) (-1416 . 710225) (-1417 . 710034)
- (-1418 . 709849) (-1419 . 709553) (-1420 . 709395) (-1421 . 709294)
- (-1422 . 709114) (-1423 . 708738) (-1424 . 708573) (-1425 . 708514)
- (-1426 . 708415) (-1427 . 708329) (-1428 . 708276) (-1429 . 708172)
- (-1430 . 707638) (-1431 . 707460) (-1432 . 706390) (-1433 . 705298)
- (-1434 . 705119) (-1435 . 704777) (-1436 . 704499) (-1437 . 704375)
- (-1438 . 704269) (-1439 . 704185) (-1440 . 704108) (-1441 . 704027)
- (-1442 . 703651) (-1443 . 703598) (-1444 . 703546) (-1445 . 703379)
- (-1446 . 703295) (-1447 . 702651) (-1448 . 702578) (-1449 . 702456)
- (-1450 . 702292) (-1451 . 702123) (-1452 . 701602) (-1453 . 701544)
- (-1454 . 701034) (-1455 . 700951) (-1456 . 700813) (-1457 . 700710)
- (-1458 . 700477) (-1459 . 700425) (-1460 . 699858) (-1461 . 699736)
- (-1462 . 699545) (-1463 . 699364) (** . 696370) (-1465 . 696162)
- (-1466 . 696061) (-1467 . 695943) (-1468 . 695764) (-1469 . 695249)
- (-1470 . 695151) (-1471 . 695083) (-1472 . 695049) (-1473 . 694757)
- (-1474 . 694676) (-1475 . 694624) (-1476 . 694428) (-1477 . 693621)
- (-1478 . 693469) (-1479 . 693395) (-1480 . 693291) (-1481 . 693154)
- (-1482 . 693077) (-1483 . 692927) (-1484 . 692839) (-1485 . 692768)
- (-1486 . 692688) (-1487 . 692361) (-1488 . 692260) (-1489 . 692033)
- (-1490 . 691964) (-1491 . 691863) (-1492 . 691672) (-1493 . 691584)
- (-1494 . 691510) (-1495 . 691174) (-1496 . 690238) (-1497 . 690036)
- (-1498 . 689517) (-1499 . 689264) (-1500 . 688551) (-1501 . 688353)
- (-1502 . 687936) (-1503 . 687733) (-1504 . 687637) (-1505 . 687307)
- (-1506 . 687239) (-1507 . 687186) (-1508 . 687067) (-1509 . 686977)
- (-1510 . 686809) (-1511 . 686728) (-1512 . 686660) (-1513 . 686608)
- (-1514 . 686553) (-1515 . 686424) (-1516 . 686276) (-1517 . 686058)
- (-1518 . 683802) (-1519 . 683500) (-1520 . 683324) (-1521 . 683123)
- (-1522 . 682828) (-1523 . 682462) (-1524 . 682409) (-1525 . 682343)
- (-1526 . 682255) (-1527 . 682203) (-1528 . 682081) (-1529 . 681995)
- (-1530 . 681892) (-1531 . 681836) (-1532 . 681721) (-1533 . 681358)
- (-1534 . 681289) (-1535 . 681217) (-1536 . 681145) (-1537 . 680985)
- (-1538 . 680848) (-1539 . 680746) (-1540 . 680672) (-1541 . 680575)
- (-1542 . 680316) (-1543 . 680246) (-1544 . 680196) (-1545 . 680088)
- (-1546 . 680017) (-1547 . 679610) (-1548 . 679547) (-1549 . 679383)
- (-1550 . 679310) (-1551 . 679282) (-1552 . 679198) (-1553 . 679116)
- (-1554 . 679063) (-1555 . 679010) (-1556 . 678640) (-1557 . 678287)
- (-1558 . 678259) (-1559 . 677625) (-1560 . 677596) (-1561 . 677525)
- (-1562 . 677396) (-1563 . 677324) (-1564 . 677156) (-1565 . 676991)
- (-1566 . 676846) (-1567 . 676791) (-1568 . 676696) (-1569 . 676668)
- (-1570 . 676560) (-1571 . 676488) (-1572 . 676408) (-1573 . 676309)
- (-1574 . 676016) (-1575 . 675353) (-1576 . 674892) (-1577 . 674810)
- (-1578 . 674728) (-1579 . 674539) (-1580 . 674426) (-1581 . 674266)
- (-9 . 674238) (-1583 . 674140) (-1584 . 673787) (-1585 . 673674)
- (-1586 . 671818) (-1587 . 671466) (-1588 . 671360) (-1589 . 671008)
- (-1590 . 670946) (-1591 . 670739) (-1592 . 670497) (-1593 . 670361)
- (-1594 . 669333) (-8 . 669305) (-1596 . 669206) (-1597 . 669077)
- (-1598 . 668978) (-1599 . 668874) (-1600 . 668769) (-1601 . 668673)
- (-1602 . 668517) (-1603 . 668462) (-1604 . 668355) (-1605 . 667819)
- (-7 . 667791) (-1607 . 667635) (-1608 . 666975) (-1609 . 666800)
- (-1610 . 666406) (-1611 . 666281) (-1612 . 666218) (-1613 . 666187)
- (-1614 . 665528) (-1615 . 664380) (-1616 . 664275) (-1617 . 663075)
- (-1618 . 663020) (-1619 . 662920) (-1620 . 662820) (-1621 . 662792)
- (-1622 . 662574) (-1623 . 662473) (-1624 . 661830) (-1625 . 661433)
- (-1626 . 661340) (-1627 . 660630) (-1628 . 660601) (-1629 . 660494)
- (-1630 . 660406) (-1631 . 660168) (-1632 . 660043) (-1633 . 659969)
- (-1634 . 659839) (-1635 . 659753) (-1636 . 659576) (-1637 . 659329)
- (-1638 . 659171) (-1639 . 659046) (-1640 . 658866) (-1641 . 658665)
- (-1642 . 658450) (-1643 . 658188) (-1644 . 657762) (-1645 . 657588)
- (-1646 . 657414) (-1647 . 657318) (-1648 . 657246) (-1649 . 657123)
- (-1650 . 656970) (-1651 . 656829) (-1652 . 656741) (-1653 . 656641)
- (-1654 . 656589) (-1655 . 656477) (-1656 . 656411) (-1657 . 656359)
- (-1658 . 656277) (-1659 . 656036) (-1660 . 655968) (-1661 . 655900)
- (-1662 . 655812) (-1663 . 654996) (-1664 . 654845) (-1665 . 654558)
- (-1666 . 654043) (-1667 . 653936) (-1668 . 653862) (-1669 . 653667)
- (-1670 . 653572) (-1671 . 653388) (-1672 . 653292) (-1673 . 653237)
- (-1674 . 653056) (-1675 . 652927) (-1676 . 652596) (-1677 . 652498)
- (-1678 . 652335) (-1679 . 652284) (-1680 . 652181) (-1681 . 651903)
- (-1682 . 651607) (-1683 . 651433) (-1684 . 651367) (-1685 . 651244)
- (-1686 . 651140) (-1687 . 650918) (-1688 . 650813) (-1689 . 650746)
- (-1690 . 650684) (-1691 . 650586) (-1692 . 650198) (-1693 . 650135)
- (-1694 . 649873) (-1695 . 649792) (-1696 . 649692) (-1697 . 649495)
- (-1698 . 649349) (-1699 . 649297) (-1700 . 649043) (-1701 . 648919)
- (-1702 . 648729) (-1703 . 648678) (-1704 . 644135) (-1705 . 644084)
- (-1706 . 643932) (-1707 . 643801) (-1708 . 643686) (-1709 . 643371)
- (-1710 . 643319) (-1711 . 643226) (-1712 . 643147) (-1713 . 643076)
- (-1714 . 642659) (-1715 . 642546) (-1716 . 642518) (-1717 . 642399)
- (-1718 . 641403) (-1719 . 641284) (-1720 . 640863) (-1721 . 640804)
- (-1722 . 640667) (-1723 . 640608) (-1724 . 640509) (-1725 . 640245)
- (-1726 . 640102) (-1727 . 640028) (-1728 . 639636) (-1729 . 639489)
- (-1730 . 638879) (-1731 . 638755) (-1732 . 638373) (-1733 . 638037)
- (-1734 . 637912) (-1735 . 637737) (-1736 . 637658) (-1737 . 637591)
- (-1738 . 637520) (-1739 . 637441) (-1740 . 637244) (-1741 . 637082)
- (-1742 . 636975) (-1743 . 636926) (-1744 . 636468) (-1745 . 636313)
- (-1746 . 636088) (-1747 . 635555) (-1748 . 635436) (-1749 . 635325)
- (-1750 . 635103) (-1751 . 634956) (-1752 . 634849) (-1753 . 634473)
- (-1754 . 634360) (-1755 . 634277) (-1756 . 634199) (-1757 . 634142)
- (-1758 . 634089) (-1759 . 634033) (-1760 . 633904) (-1761 . 633839)
- (-1762 . 633617) (-1763 . 633560) (-1764 . 633330) (-1765 . 633216)
- (-1766 . 632916) (-1767 . 632820) (-1768 . 632691) (-1769 . 632533)
- (-1770 . 632362) (-1771 . 632236) (-1772 . 631641) (-1773 . 631326)
- (-1774 . 631140) (-1775 . 631063) (-1776 . 630997) (-1777 . 630892)
- (-1778 . 630608) (-1779 . 630514) (-1780 . 630441) (-1781 . 630388)
- (-1782 . 630079) (-1783 . 629865) (-1784 . 629662) (-1785 . 615430)
- (-1786 . 615334) (-1787 . 615130) (-1788 . 613541) (-1789 . 613424)
- (-1790 . 613170) (-1791 . 612873) (-1792 . 612675) (-1793 . 612622)
- (-1794 . 612563) (-1795 . 612448) (-1796 . 611565) (-1797 . 611420)
- (-1798 . 611342) (-1799 . 611256) (-1800 . 611188) (-1801 . 611109)
- (-1802 . 610972) (-1803 . 610853) (-1804 . 610294) (-1805 . 610226)
- (-1806 . 610068) (-1807 . 609638) (-1808 . 605575) (-1809 . 605541)
- (-1810 . 605492) (-1811 . 605288) (-1812 . 605085) (-1813 . 605036)
- (-1814 . 604962) (-1815 . 604881) (-1816 . 604322) (-1817 . 604172)
- (-1818 . 604030) (-1819 . 603928) (-1820 . 603858) (-1821 . 601630)
- (-1822 . 601387) (-1823 . 601306) (-1824 . 601160) (-1825 . 601060)
- (-1826 . 601008) (-1827 . 600878) (-1828 . 600759) (-1829 . 600692)
- (-1830 . 600613) (-1831 . 600434) (-1832 . 600406) (-1833 . 600334)
- (-1834 . 600283) (-1835 . 600179) (-1836 . 599932) (-1837 . 599865)
- (-1838 . 599712) (-1839 . 599606) (-1840 . 599528) (-1841 . 599254)
- (-1842 . 599014) (-1843 . 598833) (-1844 . 595166) (-1845 . 595042)
- (-1846 . 594614) (-1847 . 594532) (-1848 . 594005) (-1849 . 593709)
- (-1850 . 593562) (-1851 . 593256) (-1852 . 593199) (-1853 . 593098)
- (-1854 . 590753) (-1855 . 590680) (-1856 . 590368) (-1857 . 590141)
- (-1858 . 590009) (-1859 . 589893) (-1860 . 589777) (-1861 . 589550)
- (-1862 . 589457) (-1863 . 589028) (-1864 . 588872) (-1865 . 588752)
- (-1866 . 588394) (-1867 . 588263) (-1868 . 588184) (-1869 . 587959)
- (-1870 . 587882) (-1871 . 587606) (-1872 . 587548) (-1873 . 587306)
- (-1874 . 587227) (-1875 . 587143) (-1876 . 586978) (-1877 . 586926)
- (-1878 . 586743) (-1879 . 583444) (-1880 . 583323) (-1881 . 583117)
- (-1882 . 582806) (-1883 . 582220) (-1884 . 582075) (-1885 . 581684)
- (-1886 . 581618) (-1887 . 581532) (-1888 . 581373) (-1889 . 581104)
- (-1890 . 581030) (-1891 . 580953) (-1892 . 580901) (-1893 . 580397)
- (-1894 . 580141) (-1895 . 579273) (-1896 . 579166) (-1897 . 578997)
- (-1898 . 578901) (-1899 . 578701) (-1900 . 578596) (-1901 . 578502)
- (-1902 . 578360) (-1903 . 578306) (-1904 . 577125) (-1905 . 576998)
- (-1906 . 576964) (-1907 . 576798) (-1908 . 576719) (-1909 . 576626)
- (-1910 . 576354) (-1911 . 576223) (-1912 . 575923) (-1913 . 575165)
- (-1914 . 574577) (-1915 . 574265) (-1916 . 573063) (-1917 . 572807)
- (-1918 . 572713) (-1919 . 572494) (-1920 . 572356) (-1921 . 572306)
- (-1922 . 572176) (-1923 . 571638) (-1924 . 570935) (-1925 . 570197)
- (-1926 . 570092) (-1927 . 569827) (-1928 . 569747) (-1929 . 569443)
- (-1930 . 569391) (-1931 . 569278) (-1932 . 569183) (-1933 . 568905)
- (-1934 . 568846) (-1935 . 568598) (-1936 . 568483) (-1937 . 568409)
- (-1938 . 568279) (-1939 . 568166) (-1940 . 567620) (-1941 . 567060)
- (-1942 . 566855) (-1943 . 566767) (-1944 . 566715) (-1945 . 566602)
- (-1946 . 566498) (-1947 . 566445) (-1948 . 566102) (-1949 . 566001)
- (-1950 . 565862) (-1951 . 565809) (-1952 . 565757) (-1953 . 565700)
- (-1954 . 565117) (-1955 . 564416) (-1956 . 564335) (-1957 . 564071)
- (-1958 . 563858) (-1959 . 563056) (-1960 . 562874) (-1961 . 562802)
- (-1962 . 562471) (-1963 . 562442) (-1964 . 562166) (-1965 . 562096)
- (-1966 . 561963) (-1967 . 561844) (-1968 . 561771) (-1969 . 561718)
- (-1970 . 561606) (-1971 . 561520) (-1972 . 561365) (-1973 . 561202)
- (-1974 . 561145) (-1975 . 561044) (-1976 . 560835) (-1977 . 560669)
- (-1978 . 560462) (-1979 . 560396) (-1980 . 560288) (-1981 . 560019)
- (-1982 . 559720) (-1983 . 559510) (-1984 . 559438) (-1985 . 559410)
- (-1986 . 559260) (-1987 . 559192) (-1988 . 558969) (-1989 . 558854)
- (-1990 . 558771) (-1991 . 558412) (-1992 . 558324) (-1993 . 558271)
- (-1994 . 558218) (-1995 . 558135) (-1996 . 558047) (-1997 . 557875)
- (-1998 . 557791) (-1999 . 557721) (-2000 . 557633) (-2001 . 557241)
- (-2002 . 557116) (-2003 . 556913) (-2004 . 556710) (-2005 . 556326)
- (-2006 . 556122) (-2007 . 556027) (-2008 . 555793) (-2009 . 555654)
- (-2010 . 555597) (-2011 . 555164) (-2012 . 555081) (-2013 . 554947)
- (-2014 . 554751) (-2015 . 553455) (-2016 . 553295) (-2017 . 553263)
- (-2018 . 552812) (-2019 . 552699) (-2020 . 552510) (-2021 . 552457)
- (-2022 . 552302) (-2023 . 552104) (-2024 . 552016) (-2025 . 551942)
- (-2026 . 551889) (-2027 . 551812) (-2028 . 551500) (-2029 . 551357)
- (-2030 . 551323) (-2031 . 549545) (-2032 . 549449) (-2033 . 549340)
- (-2034 . 548950) (-2035 . 548790) (-2036 . 548738) (-2037 . 548208)
- (-2038 . 547996) (-2039 . 547350) (-2040 . 547322) (-2041 . 547265)
- (-2042 . 547170) (-2043 . 546707) (-2044 . 546547) (-2045 . 546451)
- (-2046 . 546341) (-2047 . 545276) (-2048 . 545165) (-2049 . 544821)
- (-2050 . 544715) (-2051 . 544123) (-2052 . 544020) (-2053 . 543843)
- (-2054 . 543733) (-2055 . 543680) (-2056 . 543609) (-2057 . 542428)
- (-2058 . 542334) (-2059 . 542221) (-2060 . 541996) (-2061 . 541356)
- (-2062 . 541166) (-2063 . 541001) (-2064 . 540742) (-2065 . 540603)
- (-2066 . 540163) (-2067 . 540012) (-2068 . 539533) (-2069 . 539440)
- (-2070 . 539285) (-2071 . 539217) (-2072 . 539146) (-2073 . 539079)
- (-2074 . 539013) (-2075 . 538892) (-2076 . 538839) (-2077 . 538736)
- (-2078 . 538624) (-2079 . 538352) (-2080 . 538153) (-2081 . 538111)
- (-2082 . 538001) (-2083 . 537892) (-2084 . 537833) (-2085 . 537661)
- (-2086 . 537609) (-2087 . 537499) (-2088 . 537292) (-2089 . 537149)
- (-2090 . 537093) (-2091 . 536777) (-2092 . 536719) (-2093 . 536478)
- (-2094 . 536385) (-2095 . 536320) (-2096 . 535566) (-2097 . 535496)
- (-2098 . 535440) (-2099 . 534977) (-2100 . 534824) (-2101 . 534509)
- (-2102 . 534300) (-2103 . 534165) (-2104 . 534110) (-2105 . 534008)
- (-2106 . 533943) (-2107 . 533808) (-2108 . 533739) (-2109 . 533403)
- (-2110 . 533323) (-2111 . 533235) (-2112 . 533108) (-2113 . 532943)
- (-2114 . 532857) (-2115 . 532511) (-2116 . 532219) (-2117 . 532121)
- (-2118 . 532059) (-2119 . 531821) (-2120 . 531769) (-2121 . 531520)
- (-2122 . 531452) (-2123 . 531117) (-2124 . 531029) (-2125 . 530585)
- (-2126 . 530532) (-2127 . 530405) (-2128 . 529765) (-2129 . 529590)
- (-2130 . 525927) (-2131 . 525874) (-2132 . 525463) (-2133 . 525189)
- (-2134 . 524925) (-2135 . 524859) (-2136 . 523892) (-2137 . 523794)
- (-2138 . 522952) (-2139 . 522856) (-2140 . 522683) (-2141 . 522409)
- (-2142 . 522190) (-2143 . 522112) (-2144 . 522055) (-2145 . 521978)
- (-2146 . 521921) (-2147 . 521711) (-2148 . 521610) (-2149 . 521443)
- (-2150 . 521370) (-2151 . 521193) (-2152 . 521142) (-2153 . 520895)
- (-2154 . 520788) (-2155 . 519565) (-2156 . 519191) (-2157 . 519020)
- (-2158 . 518935) (-2159 . 518768) (-2160 . 518691) (-2161 . 518473)
- (-2162 . 518400) (-2163 . 518207) (-2164 . 518144) (-2165 . 517816)
- (-2166 . 517700) (-2167 . 517645) (-2168 . 517571) (-2169 . 517490)
- (-2170 . 517400) (-2171 . 517299) (-2172 . 516922) (-2173 . 516435)
- (-2174 . 516248) (-2175 . 515505) (-2176 . 515405) (-2177 . 515352)
- (-2178 . 515298) (-2179 . 515195) (-2180 . 515141) (-2181 . 515056)
- (-2182 . 514917) (-2183 . 514759) (-2184 . 514400) (-2185 . 514287)
- (-2186 . 514162) (-2187 . 514066) (-2188 . 513970) (-2189 . 513876)
- (-2190 . 513673) (-2191 . 513229) (-2192 . 513176) (-2193 . 513148)
- (-2194 . 513077) (-2195 . 512952) (-2196 . 512879) (-2197 . 512633)
- (-2198 . 512422) (-2199 . 512279) (-2200 . 511515) (-2201 . 511285)
- (-2202 . 511226) (-2203 . 511171) (-2204 . 511033) (-2205 . 511005)
- (-2206 . 510759) (-2207 . 506759) (-2208 . 506618) (-2209 . 506122)
- (-2210 . 506051) (-2211 . 505899) (-2212 . 505025) (-2213 . 504888)
- (-2214 . 504773) (-2215 . 504644) (-2216 . 499305) (-2217 . 499168)
- (-2218 . 499042) (-2219 . 498912) (-2220 . 498853) (-2221 . 497123)
- (-2222 . 496989) (-2223 . 496857) (-2224 . 496650) (-2225 . 496546)
- (-2226 . 496404) (-2227 . 496052) (-2228 . 495899) (-2229 . 495840)
- (-2230 . 495754) (-2231 . 495017) (-2232 . 494903) (-2233 . 494786)
- (-2234 . 494702) (-2235 . 494559) (-2236 . 493830) (-2237 . 493700)
- (-2238 . 493559) (-2239 . 493446) (-2240 . 493365) (-2241 . 493271)
- (-2242 . 493183) (-2243 . 493124) (-2244 . 493032) (-2245 . 492829)
- (-2246 . 492651) (-2247 . 491922) (-2248 . 491766) (-2249 . 490568)
- (-2250 . 490416) (-2251 . 490357) (-2252 . 490214) (-2253 . 490128)
- (-2254 . 490004) (-2255 . 489909) (-2256 . 489850) (-2257 . 489758)
- (-2258 . 489082) (-2259 . 488695) (-2260 . 488592) (-2261 . 488449)
- (-2262 . 488397) (-2263 . 488206) (-2264 . 487988) (-2265 . 487682)
- (-2266 . 487300) (-2267 . 487214) (-2268 . 487162) (-2269 . 486598)
- (-2270 . 486501) (-2271 . 486394) (-2272 . 486297) (-2273 . 486045)
- (-2274 . 485678) (-2275 . 485580) (-2276 . 485421) (-2277 . 485213)
- (-2278 . 485039) (-2279 . 484689) (-2280 . 484125) (-2281 . 483995)
- (-2282 . 482803) (-2283 . 482697) (-2284 . 482638) (-2285 . 482495)
- (-2286 . 482395) (-2287 . 482224) (-2288 . 481660) (-2289 . 481558)
- (-2290 . 480807) (-2291 . 480667) (-2292 . 480511) (-2293 . 479987)
- (-2294 . 479885) (-2295 . 479783) (-2296 . 479663) (-2297 . 479352)
- (-2298 . 479229) (-2299 . 479110) (-2300 . 479012) (-2301 . 478338)
- (-2302 . 478077) (-2303 . 478043) (-2304 . 477837) (-2305 . 477781)
- (-2306 . 477465) (-2307 . 477433) (-2308 . 477165) (-2309 . 477114)
- (-2310 . 477083) (-2311 . 476889) (-2312 . 476215) (-2313 . 476085)
- (-2314 . 475829) (-2315 . 475756) (-2316 . 475596) (-2317 . 475543)
- (-2318 . 475386) (-2319 . 475279) (-2320 . 474542) (-2321 . 471761)
- (-2322 . 471648) (-2323 . 471582) (-2324 . 471420) (-2325 . 471289)
- (-2326 . 471195) (-2327 . 470861) (-2328 . 470770) (-2329 . 470550)
- (-2330 . 469988) (-2331 . 469861) (-2332 . 469754) (-2333 . 469438)
- (-2334 . 469315) (-2335 . 469212) (-2336 . 469097) (-2337 . 468993)
- (-2338 . 468707) (-2339 . 468586) (-2340 . 468024) (-2341 . 467883)
- (-2342 . 467726) (-2343 . 467549) (-2344 . 467476) (-2345 . 467230)
- (-2346 . 467163) (-2347 . 467010) (-2348 . 466937) (-2349 . 466375)
- (-2350 . 466116) (-2351 . 466045) (-2352 . 465936) (-2353 . 465850)
- (-2354 . 465749) (-2355 . 465570) (-2356 . 465151) (-2357 . 465037)
- (-2358 . 464362) (-2359 . 464111) (-2360 . 463972) (-2361 . 463888)
- (-2362 . 463851) (-2363 . 463777) (-2364 . 463579) (-2365 . 463484)
- (-2366 . 462917) (-2367 . 462819) (-2368 . 462144) (-2369 . 461925)
- (-2370 . 461772) (-2371 . 461695) (-2372 . 461605) (-2373 . 461499)
- (-2374 . 461467) (-2375 . 461247) (-2376 . 461016) (-2377 . 460963)
- (-2378 . 460753) (-2379 . 460078) (-2380 . 459976) (-2381 . 459835)
- (-2382 . 459739) (-2383 . 459680) (-2384 . 459606) (-2385 . 459534)
- (-2386 . 459433) (-2387 . 459336) (-2388 . 459253) (-2389 . 459201)
- (-2390 . 458638) (-2391 . 458601) (-2392 . 458472) (-2393 . 458185)
- (-2394 . 458040) (-2395 . 457985) (-2396 . 457890) (-2397 . 457856)
- (-2398 . 457569) (-2399 . 457307) (-2400 . 456875) (-2401 . 456801)
- (-2402 . 456616) (-2403 . 456475) (-2404 . 455912) (-2405 . 455859)
- (-2406 . 455612) (-2407 . 455506) (-2408 . 455374) (-2409 . 455273)
- (-2410 . 455049) (-2411 . 454971) (-2412 . 454900) (-2413 . 454712)
- (-2414 . 454617) (-2415 . 454522) (-2416 . 454416) (-2417 . 453853)
- (-2418 . 453800) (-2419 . 453668) (-2420 . 453591) (-2421 . 453534)
- (-2422 . 453130) (-2423 . 452981) (-2424 . 452600) (-2425 . 452482)
- (-2426 . 452364) (-2427 . 452269) (-2428 . 452104) (-2429 . 451542)
- (-2430 . 451476) (-2431 . 451404) (-2432 . 451102) (-2433 . 451019)
- (-2434 . 450964) (-2435 . 450881) (-2436 . 450550) (-2437 . 450522)
- (-2438 . 450374) (-2439 . 450256) (-2440 . 450176) (-2441 . 450147)
- (-2442 . 450013) (-2443 . 449451) (-2444 . 449399) (-2445 . 447857)
- (-2446 . 447702) (-2447 . 447576) (-2448 . 447488) (-2449 . 447375)
- (-2450 . 447311) (-2451 . 446226) (-2452 . 446166) (-2453 . 445998)
- (-2454 . 445713) (-2455 . 445573) (-2456 . 445011) (-2457 . 444806)
- (-2458 . 444754) (-2459 . 444672) (-2460 . 444613) (-2461 . 444540)
- (-2462 . 444313) (-2463 . 443969) (-2464 . 443784) (-2465 . 443537)
- (-2466 . 443463) (-2467 . 443248) (-2468 . 442686) (-2469 . 442454)
- (-2470 . 441916) (-2471 . 441836) (-2472 . 441415) (-2473 . 441183)
- (-2474 . 440856) (-2475 . 440804) (-2476 . 440710) (-2477 . 440449)
- (-2478 . 440386) (-2479 . 440291) (-2480 . 439729) (-2481 . 439655)
- (-2482 . 439575) (-2483 . 439396) (-2484 . 439323) (-2485 . 439088)
- (-2486 . 438904) (-2487 . 438657) (-2488 . 438422) (-2489 . 438328)
- (-2490 . 438200) (-2491 . 437983) (-2492 . 437819) (-2493 . 437725)
- (-2494 . 437444) (-2495 . 437284) (-2496 . 436968) (-2497 . 436861)
- (-2498 . 436689) (-2499 . 436638) (-2500 . 436561) (-2501 . 436407)
- (-2502 . 436375) (-2503 . 436264) (-2504 . 436129) (-2505 . 435951)
- (-2506 . 435894) (-2507 . 435242) (-2508 . 435028) (-2509 . 434888)
- (-2510 . 434736) (-2511 . 434564) (-2512 . 434536) (-2513 . 434120)
- (-2514 . 434064) (-2515 . 433791) (-2516 . 433543) (-2517 . 433155)
- (-2518 . 433054) (-2519 . 432861) (-2520 . 432806) (-2521 . 432754)
- (-2522 . 432582) (-2523 . 432386) (-2524 . 432333) (-2525 . 432301)
- (-2526 . 431969) (-2527 . 431886) (-2528 . 431728) (-2529 . 431676)
- (-2530 . 431503) (-2531 . 431364) (-2532 . 431286) (-2533 . 431114)
- (-2534 . 431085) (-2535 . 430783) (-2536 . 430221) (-2537 . 430043)
- (-2538 . 429833) (-2539 . 429778) (-2540 . 429744) (-2541 . 429317)
- (-2542 . 429214) (-2543 . 429144) (-2544 . 428791) (-2545 . 428729)
- (-2546 . 428563) (-2547 . 428479) (-2548 . 428383) (-2549 . 428333)
- (-2550 . 428127) (-2551 . 428075) (-2552 . 427922) (-2553 . 427827)
- (-2554 . 427316) (-2555 . 427263) (-2556 . 427105) (-2557 . 427022)
- (-2558 . 426949) (-2559 . 426670) (-2560 . 426597) (-2561 . 426524)
- (-2562 . 426418) (-2563 . 426327) (-2564 . 426256) (-2565 . 426148)
- (-2566 . 426034) (-2567 . 425886) (-2568 . 425762) (-2569 . 425625)
- (-2570 . 425464) (-2571 . 425218) (-2572 . 425087) (-2573 . 424523)
- (-2574 . 424471) (-2575 . 424281) (-2576 . 424207) (-2577 . 424103)
- (-2578 . 423942) (-2579 . 423854) (-2580 . 423660) (-2581 . 423532)
- (-2582 . 423479) (-2583 . 423383) (-2584 . 423313) (-2585 . 423167)
- (-2586 . 422015) (-2587 . 421947) (-2588 . 421794) (-2589 . 421433)
- (-2590 . 421215) (-2591 . 420888) (-2592 . 420728) (-2593 . 420567)
- (-2594 . 420452) (-2595 . 420368) (-2596 . 420296) (-2597 . 420214)
- (-2598 . 420140) (-2599 . 420059) (-2600 . 419807) (-2601 . 419482)
- (-2602 . 418594) (-2603 . 418515) (-2604 . 418357) (-2605 . 418300)
- (-2606 . 418182) (-2607 . 418096) (-2608 . 416310) (-2609 . 416236)
- (-2610 . 416137) (-2611 . 415658) (-2612 . 415573) (-2613 . 415489)
- (-2614 . 415290) (-2615 . 415195) (-2616 . 415043) (-2617 . 414983)
- (-2618 . 414857) (-2619 . 414777) (-2620 . 414653) (-2621 . 414597)
- (-2622 . 414108) (-2623 . 413956) (-2624 . 413876) (-2625 . 413805)
- (-2626 . 413777) (-2627 . 413693) (-2628 . 413644) (-2629 . 413469)
- (-2630 . 413323) (-2631 . 413225) (-2632 . 413115) (-2633 . 412995)
- (-2634 . 412843) (-2635 . 412657) (-2636 . 412322) (-2637 . 412012)
- (-2638 . 411789) (-2639 . 411674) (-2640 . 411516) (-2641 . 411406)
- (-2642 . 411307) (-2643 . 411092) (-2644 . 410846) (-2645 . 410628)
- (-2646 . 410518) (-2647 . 410342) (-2648 . 410268) (-2649 . 409857)
- (-2650 . 409699) (-2651 . 409344) (-2652 . 409264) (-2653 . 409203)
- (-2654 . 409097) (-2655 . 409044) (-2656 . 408991) (-2657 . 408896)
- (-2658 . 408793) (-2659 . 408733) (-2660 . 408634) (-2661 . 404684)
- (-2662 . 404589) (-2663 . 404485) (-2664 . 404405) (-2665 . 404260)
- (-2666 . 404097) (-2667 . 403914) (-2668 . 403819) (-2669 . 403706)
- (-2670 . 403491) (-2671 . 403411) (-2672 . 403382) (-2673 . 403229)
- (-2674 . 403105) (-2675 . 402986) (-2676 . 402852) (-2677 . 402686)
- (-2678 . 402600) (-2679 . 402442) (-2680 . 402385) (-2681 . 402315)
- (-2682 . 402218) (-2683 . 402073) (-2684 . 401626) (-2685 . 401503)
- (-2686 . 400663) (-2687 . 400465) (-2688 . 400255) (-2689 . 400176)
- (-2690 . 400106) (-2691 . 399797) (-2692 . 399606) (-2693 . 399462)
- (-2694 . 399090) (-2695 . 399030) (-2696 . 398946) (-2697 . 398791)
- (-2698 . 397918) (-2699 . 397866) (-2700 . 397721) (-2701 . 397655)
- (-2702 . 397475) (-2703 . 397420) (-2704 . 397368) (-2705 . 397239)
- (-2706 . 397058) (-2707 . 396729) (-2708 . 396644) (-2709 . 396406)
- (-2710 . 396275) (-2711 . 396145) (-2712 . 395865) (-2713 . 395776)
- (-2714 . 395693) (-2715 . 395619) (-2716 . 395566) (-2717 . 395514)
- (-2718 . 395262) (-2719 . 394811) (-2720 . 394782) (-2721 . 394584)
- (-2722 . 394138) (-2723 . 394022) (-2724 . 393970) (-2725 . 393915)
- (-2726 . 393863) (-2727 . 393184) (-2728 . 393150) (-2729 . 393003)
- (-2730 . 392905) (-2731 . 392732) (-2732 . 391997) (-2733 . 391895)
- (-2734 . 390593) (-2735 . 390522) (-2736 . 390470) (-2737 . 390100)
- (-2738 . 390026) (-2739 . 389932) (-2740 . 389858) (-2741 . 389588)
- (-2742 . 389469) (-2743 . 389274) (-2744 . 389178) (-2745 . 389041)
- (-2746 . 388938) (-2747 . 388872) (-2748 . 388795) (-2749 . 388745)
- (-2750 . 388713) (-2751 . 388636) (-2752 . 388528) (-2753 . 388031)
- (-2754 . 387563) (-2755 . 387453) (-2756 . 387308) (-2757 . 387235)
- (-2758 . 387175) (-2759 . 386929) (-2760 . 386644) (-2761 . 386549)
- (-2762 . 386457) (-2763 . 386357) (-2764 . 386274) (-2765 . 386210)
- (-2766 . 386050) (-2767 . 385693) (-2768 . 385601) (-2769 . 385277)
- (-2770 . 385132) (-2771 . 385016) (-2772 . 384936) (-2773 . 384783)
- (-2774 . 384731) (-2775 . 384630) (-2776 . 384602) (-2777 . 384465)
- (-2778 . 384394) (-2779 . 384311) (-2780 . 384216) (-2781 . 384163)
- (-2782 . 384111) (-2783 . 383864) (-2784 . 383291) (-2785 . 383092)
- (-2786 . 382661) (-2787 . 382439) (-2788 . 382358) (-2789 . 382303)
- (-2790 . 382208) (-2791 . 382140) (-2792 . 382075) (-2793 . 381822)
- (-2794 . 381707) (-2795 . 381630) (-2796 . 381281) (-2797 . 381158)
- (-2798 . 380676) (-2799 . 380594) (-2800 . 380532) (-2801 . 380435)
- (-2802 . 380377) (-2803 . 380083) (-2804 . 379984) (-2805 . 379840)
- (-2806 . 379717) (-2807 . 379665) (-2808 . 379544) (-2809 . 379458)
- (-2810 . 379327) (-2811 . 379246) (-2812 . 379149) (-2813 . 379076)
- (-2814 . 378966) (-2815 . 378863) (-2816 . 378668) (-2817 . 378567)
- (-2818 . 378511) (-2819 . 378437) (-2820 . 378238) (-2821 . 377711)
- (-2822 . 377288) (-2823 . 377043) (-2824 . 376972) (-2825 . 375973)
- (-2826 . 375698) (-2827 . 375531) (-2828 . 375478) (-2829 . 375395)
- (-2830 . 374923) (-2831 . 374866) (-2832 . 374797) (-2833 . 374625)
- (-2834 . 374521) (-2835 . 373898) (-2836 . 373824) (-2837 . 373602)
- (-2838 . 373525) (-2839 . 373423) (-2840 . 373260) (-2841 . 373195)
- (-2842 . 373161) (-2843 . 372969) (-2844 . 372672) (-2845 . 372585)
- (-12 . 372413) (-2847 . 372360) (-2848 . 372299) (-2849 . 371846)
- (-2850 . 371773) (-2851 . 371650) (-2852 . 370686) (-2853 . 369825)
- (-2854 . 369730) (-2855 . 369574) (-2856 . 369256) (-2857 . 369134)
- (-2858 . 368886) (-2859 . 368762) (-2860 . 368529) (-2861 . 368150)
- (-2862 . 368066) (-2863 . 368032) (-2864 . 367945) (-2865 . 367868)
- (-2866 . 367650) (-2867 . 367495) (-2868 . 367201) (-2869 . 366359)
- (-2870 . 366256) (-2871 . 366173) (-2872 . 365968) (-2873 . 365766)
- (-2874 . 365707) (-2875 . 365624) (-2876 . 365527) (-2877 . 365110)
- (-2878 . 364794) (-2879 . 364681) (-2880 . 364562) (-2881 . 363116)
- (-2882 . 359507) (-2883 . 359344) (-2884 . 359191) (-2885 . 358849)
- (-2886 . 358783) (-2887 . 357681) (-2888 . 357559) (-2889 . 357462)
- (-2890 . 357431) (-2891 . 357379) (-2892 . 357176) (-2893 . 356883)
- (-2894 . 356826) (-2895 . 356546) (-2896 . 356518) (-2897 . 355991)
- (-2898 . 355737) (-2899 . 355571) (-2900 . 355512) (-2901 . 355461)
- (-2902 . 355384) (-2903 . 355299) (-2904 . 355204) (-2905 . 355044)
- (-2906 . 354946) (-2907 . 354360) (-2908 . 354089) (-2909 . 353839)
- (-2910 . 353293) (-2911 . 353182) (-2912 . 352791) (-2913 . 352670)
- (-2914 . 352222) (-2915 . 352004) (-2916 . 351844) (-2917 . 351625)
- (-2918 . 351479) (-2919 . 351204) (-2920 . 351118) (-2921 . 350937)
- (-2922 . 350784) (-2923 . 350750) (-2924 . 350316) (-2925 . 349703)
- (-2926 . 349212) (-2927 . 349105) (-2928 . 349050) (-2929 . 348991)
- (-2930 . 348902) (-2931 . 348830) (-2932 . 348738) (-2933 . 348667)
- (-2934 . 348633) (-2935 . 348206) (-2936 . 348080) (-2937 . 347948)
- (-2938 . 347766) (-2939 . 347413) (-2940 . 347329) (-2941 . 347245)
- (-2942 . 347079) (-2943 . 346487) (-2944 . 346408) (-2945 . 346343)
- (-2946 . 346225) (-2947 . 346166) (-2948 . 346100) (-2949 . 345987)
- (-2950 . 345658) (-2951 . 327083) (* . 322970) (-2953 . 322793)
- (-2954 . 322399) (-2955 . 322330) (-2956 . 322231) (-2957 . 322162)
- (-2958 . 322091) (-2959 . 321950) (-2960 . 321922) (-2961 . 321414)
- (-2962 . 321324) (-2963 . 318503) (-2964 . 318384) (-2965 . 318296)
- (-2966 . 317812) (-2967 . 317502) (-2968 . 317404) (-2969 . 317062)
- (-2970 . 316358) (-2971 . 316277) (-2972 . 315786) (-2973 . 315703)
- (-2974 . 315558) (-2975 . 314947) (-2976 . 314669) (-2977 . 314592)
- (-2978 . 314344) (-2979 . 314248) (-2980 . 313567) (-2981 . 313511)
- (-2982 . 313240) (-2983 . 312857) (-2984 . 312802) (-2985 . 312705)
- (-2986 . 312433) (-2987 . 312382) (-2988 . 311990) (-2989 . 311827)
- (-2990 . 311767) (-2991 . 311576) (-2992 . 311316) (-2993 . 311037)
- (-2994 . 310903) (-2995 . 310750) (-2996 . 310460) (-2997 . 310356)
- (-2998 . 310319) (-2999 . 310267) (-3000 . 310049) (-3001 . 309169)
- (-3002 . 309040) (-3003 . 308821) (-3004 . 308568) (-3005 . 308473)
- (-3006 . 308421) (-3007 . 308229) (-3008 . 308176) (-3009 . 307945)
- (-3010 . 307849) (-3011 . 307719) (-3012 . 307652) (-3013 . 307349)
- (-3014 . 306972) (-3015 . 306725) (-3016 . 306559) (-3017 . 306422)
- (-3018 . 306356) (-3019 . 306211) (-3020 . 306124) (-3021 . 306026)
- (-3022 . 305908) (-3023 . 305830) (-3024 . 305668) (-3025 . 305526)
- (-3026 . 304944) (-3027 . 304892) (-3028 . 304718) (-3029 . 304592)
- (-3030 . 304476) (-3031 . 304317) (-3032 . 304161) (-3033 . 303988)
- (-3034 . 303960) (-3035 . 303802) (-3036 . 303593) (-3037 . 302795)
- (-3038 . 302700) (-3039 . 302605) (-3040 . 302549) (-3041 . 302408)
- (-3042 . 302321) (-3043 . 302269) (-3044 . 302203) (-3045 . 301985)
- (-3046 . 301913) (-3047 . 301839) (-3048 . 301731) (-3049 . 301659)
- (-3050 . 301564) (-3051 . 301453) (-3052 . 301380) (-3053 . 301292)
- (-3054 . 300883) (-3055 . 300795) (-3056 . 300692) (-3057 . 300477)
- (-3058 . 300227) (-3059 . 300084) (-3060 . 300014) (-3061 . 299928)
- (-3062 . 299831) (-3063 . 299803) (-3064 . 299715) (-3065 . 299423)
- (-3066 . 299128) (-3067 . 299031) (-3068 . 298936) (-3069 . 298856)
- (-3070 . 297990) (-3071 . 297935) (-3072 . 297882) (-3073 . 297764)
- (-3074 . 296578) (-3075 . 296526) (-3076 . 296453) (-3077 . 296397)
- (-3078 . 296295) (-3079 . 295982) (-3080 . 295894) (-3081 . 295825)
- (-3082 . 295760) (-3083 . 288817) (-3084 . 287896) (-3085 . 287615)
- (-3086 . 287521) (-3087 . 287185) (-3088 . 286005) (-3089 . 285928)
- (-3090 . 284746) (-3091 . 284693) (-3092 . 284457) (-3093 . 284374)
- (-3094 . 284278) (-3095 . 284098) (-3096 . 284024) (-3097 . 283790)
- (-3098 . 283271) (-3099 . 281063) (-3100 . 280909) (-3101 . 280837)
- (-3102 . 280530) (-3103 . 280400) (-3104 . 280343) (-3105 . 280212)
- (-3106 . 280033) (-3107 . 279960) (-3108 . 279842) (-3109 . 279714)
- (-3110 . 279404) (-3111 . 279311) (-3112 . 279210) (-3113 . 277984)
- (-3114 . 277387) (-3115 . 277251) (-3116 . 276910) (-3117 . 276735)
- (-3118 . 276585) (-3119 . 276358) (-3120 . 276264) (-3121 . 276169)
- (-3122 . 276048) (-3123 . 275962) (-3124 . 275788) (-3125 . 275613)
- (-3126 . 275387) (-3127 . 275291) (-3128 . 275232) (-3129 . 275104)
- (-3130 . 274977) (-3131 . 274752) (-3132 . 274465) (-3133 . 274338)
- (-3134 . 274109) (-3135 . 272805) (-3136 . 272582) (-3137 . 272505)
- (-3138 . 272456) (-3139 . 272166) (-3140 . 272106) (-3141 . 272029)
- (-3142 . 271744) (-3143 . 271565) (-3144 . 271441) (-3145 . 271305)
- (-3146 . 271077) (-3147 . 270992) (-3148 . 270778) (-3149 . 270292)
- (-3150 . 269963) (-3151 . 269793) (-3152 . 269635) (-3153 . 269562)
- (-3154 . 268264) (-3155 . 268073) (-3156 . 268039) (-3157 . 267712)
- (-3158 . 267549) (-3159 . 267398) (-3160 . 267222) (-3161 . 267073)
- (-3162 . 266999) (-3163 . 266806) (-3164 . 266704) (-3165 . 266616)
- (-3166 . 266542) (-3167 . 266375) (-3168 . 266319) (-3169 . 266291)
- (-3170 . 266203) (-3171 . 264930) (-3172 . 264720) (-3173 . 264502)
- (-3174 . 264374) (-3175 . 264301) (-3176 . 264228) (-3177 . 264133)
- (-3178 . 264105) (-3179 . 263659) (-3180 . 263563) (-3181 . 263511)
- (-3182 . 263444) (-3183 . 263198) (-3184 . 262971) (-3185 . 262903)
- (-3186 . 262770) (-3187 . 262587) (-3188 . 262302) (-3189 . 262241)
- (-3190 . 262151) (-3191 . 262080) (-3192 . 261705) (-3193 . 261649)
- (-3194 . 261530) (-3195 . 261166) (-3196 . 261039) (-3197 . 260615)
- (-3198 . 260472) (-3199 . 260232) (-3200 . 260135) (-3201 . 259848)
- (-3202 . 259750) (-3203 . 259539) (-3204 . 259460) (-3205 . 259386)
- (-3206 . 259307) (-3207 . 259208) (-3208 . 258828) (-3209 . 258573)
- (-3210 . 258489) (-3211 . 258403) (-3212 . 258274) (-3213 . 258196)
- (-3214 . 258130) (-3215 . 257975) (-3216 . 257910) (-3217 . 257757)
- (-3218 . 257604) (-3219 . 257503) (-3220 . 257081) (-3221 . 256977)
- (-3222 . 256797) (-3223 . 256564) (-3224 . 256427) (-3225 . 256157)
- (-3226 . 255999) (-3227 . 255789) (-3228 . 255603) (-3229 . 255502)
- (-3230 . 255399) (-3231 . 255041) (-3232 . 254771) (-3233 . 254167)
- (-3234 . 254073) (-3235 . 253989) (-3236 . 253940) (-3237 . 253885)
- (-3238 . 253672) (-3239 . 253591) (-3240 . 253538) (-3241 . 253288)
- (-3242 . 253184) (-3243 . 253122) (-3244 . 253034) (-3245 . 252919)
- (-3246 . 252810) (-3247 . 252652) (-3248 . 252433) (-3249 . 252380)
- (-3250 . 252327) (-3251 . 252257) (-3252 . 252098) (-3253 . 251928)
- (-3254 . 251811) (-3255 . 251751) (-3256 . 251673) (-3257 . 251440)
- (-3258 . 251330) (-3259 . 251217) (-3260 . 251071) (-3261 . 251011)
- (-3262 . 250902) (-3263 . 250584) (-3264 . 250512) (-3265 . 250439)
- (-3266 . 250316) (-3267 . 250207) (-3268 . 249989) (-3269 . 249866)
- (-3270 . 249640) (-3271 . 249519) (-3272 . 249329) (-3273 . 249246)
- (-3274 . 249214) (-3275 . 249140) (-3276 . 249055) (-3277 . 248923)
- (-3278 . 248826) (-3279 . 248658) (-3280 . 248523) (-3281 . 248427)
- (-3282 . 248328) (-3283 . 248297) (-3284 . 248247) (-3285 . 248151)
- (-3286 . 247965) (-3287 . 247869) (-3288 . 247674) (-3289 . 247492)
- (-3290 . 247448) (-3291 . 245480) (-3292 . 245430) (-3293 . 244956)
- (-3294 . 244873) (-3295 . 244699) (-3296 . 244500) (-3297 . 244444)
- (-3298 . 244299) (-3299 . 243853) (-3300 . 243800) (-3301 . 243729)
- (-3302 . 243650) (-3303 . 243470) (-3304 . 243270) (-3305 . 243217)
- (-3306 . 243102) (-3307 . 242944) (-3308 . 242804) (-3309 . 242751)
- (-3310 . 242660) (-3311 . 242061) (-3312 . 241959) (-3313 . 241852)
- (-3314 . 241687) (-3315 . 240255) (-3316 . 240203) (-3317 . 239888)
- (-3318 . 239757) (-3319 . 239671) (-3320 . 238094) (-3321 . 237986)
- (-3322 . 237884) (-3323 . 237713) (-3324 . 237577) (-3325 . 237483)
- (-3326 . 237342) (-3327 . 237208) (-3328 . 237035) (-3329 . 236947)
- (-3330 . 236876) (-3331 . 236654) (-3332 . 236323) (-3333 . 236266)
- (-3334 . 235892) (-3335 . 235858) (-3336 . 235792) (-3337 . 235687)
- (-3338 . 235609) (-3339 . 235511) (-3340 . 235411) (-3341 . 235253)
- (-3342 . 234864) (-3343 . 234726) (-3344 . 234618) (-3345 . 234546)
- (-3346 . 234392) (-3347 . 234246) (-3348 . 233951) (-3349 . 233829)
- (-3350 . 233170) (-3351 . 232624) (-3352 . 232424) (-3353 . 232320)
- (-3354 . 232260) (-3355 . 232165) (-3356 . 232040) (-3357 . 231821)
- (-3358 . 231225) (-3359 . 231159) (-3360 . 231125) (-3361 . 231093)
- (-3362 . 230602) (-3363 . 230458) (-3364 . 230185) (-3365 . 230103)
- (-3366 . 229964) (-3367 . 229893) (-3368 . 229749) (-3369 . 229567)
- (-3370 . 229515) (-3371 . 229323) (-3372 . 229273) (-3373 . 229111)
- (-3374 . 228968) (-3375 . 228860) (-3376 . 228761) (-3377 . 228660)
- (-3378 . 228441) (-3379 . 228303) (-3380 . 228200) (-3381 . 228077)
- (-3382 . 227566) (-3383 . 227306) (-3384 . 227034) (-3385 . 226366)
- (-3386 . 226225) (-3387 . 225933) (-3388 . 225861) (-3389 . 225750)
- (-3390 . 225684) (-3391 . 225606) (-3392 . 225494) (-3393 . 225315)
- (-3394 . 225186) (-3395 . 225052) (-3396 . 224924) (-3397 . 224531)
- (-3398 . 224179) (-3399 . 224064) (-3400 . 224032) (-3401 . 223793)
- (-3402 . 223713) (-3403 . 223627) (-3404 . 223511) (-3405 . 223441)
- (-3406 . 222323) (-3407 . 222193) (-3408 . 222097) (-3409 . 222044)
- (-3410 . 221729) (-3411 . 221384) (-3412 . 221318) (-3413 . 221154)
- (-3414 . 221056) (-3415 . 220678) (-3416 . 220560) (-3417 . 220395)
- (-3418 . 220342) (-3419 . 220272) (-3420 . 220129) (-3421 . 220069)
- (-3422 . 219762) (-3423 . 219609) (-3424 . 219323) (-3425 . 219179)
- (-3426 . 209729) (-3427 . 209528) (-3428 . 209499) (-3429 . 209378)
- (-3430 . 209306) (-3431 . 209205) (-3432 . 209090) (-3433 . 209021)
- (-3434 . 208993) (-3435 . 208851) (-3436 . 208597) (-3437 . 208514)
- (-3438 . 208309) (-3439 . 207879) (-3440 . 207825) (-3441 . 207737)
- (-3442 . 206821) (-3443 . 206675) (-3444 . 206197) (-3445 . 205712)
- (-3446 . 205337) (-3447 . 205210) (-3448 . 205160) (-3449 . 205090)
- (-3450 . 204998) (-3451 . 204938) (-3452 . 204801) (-3453 . 204707)
- (-3454 . 204323) (-3455 . 204246) (-3456 . 204189) (-3457 . 204127)
- (-3458 . 203983) (-3459 . 203537) (-3460 . 203485) (-3461 . 203402)
- (-3462 . 203320) (-3463 . 203177) (-3464 . 203122) (-3465 . 203070)
- (-3466 . 202970) (-3467 . 202901) (-3468 . 202763) (-3469 . 202647)
- (-3470 . 202595) (-3471 . 202510) (-3472 . 202072) (-3473 . 201927)
- (-3474 . 201307) (-3475 . 201224) (-3476 . 201096) (-3477 . 200898)
- (-3478 . 200742) (-3479 . 200638) (-3480 . 200604) (-3481 . 200549)
- (-3482 . 200472) (-3483 . 200064) (-3484 . 199956) (-3485 . 199717)
- (-3486 . 199689) (-3487 . 199517) (-3488 . 199465) (-3489 . 199287)
- (-3490 . 199186) (-3491 . 198988) (-3492 . 198830) (-3493 . 198708)
- (-3494 . 198586) (-3495 . 198533) (-3496 . 198481) (-3497 . 198427)
- (-3498 . 198109) (-3499 . 198003) (-3500 . 197952) (-3501 . 197881)
- (-3502 . 197737) (-3503 . 197653) (-3504 . 197590) (-3505 . 197458)
- (-3506 . 197116) (-3507 . 196972) (-3508 . 196817) (-3509 . 196739)
- (-3510 . 196596) (-3511 . 196513) (-3512 . 196427) (-3513 . 196348)
- (-3514 . 196252) (-3515 . 195988) (-3516 . 195729) (-3517 . 195634)
- (-3518 . 195449) (-3519 . 195376) (-3520 . 195003) (-3521 . 194550)
- (-3522 . 194494) (-3523 . 194406) (-3524 . 194311) (-3525 . 193635)
- (-3526 . 193396) (-3527 . 193030) (-3528 . 192797) (-3529 . 192729)
- (-3530 . 192557) (-3531 . 192471) (-3532 . 192089) (-3533 . 191969)
- (-3534 . 191780) (-3535 . 190352) (-3536 . 190294) (-3537 . 190110)
- (-3538 . 189871) (-3539 . 189816) (-3540 . 189750) (-3541 . 189431)
- (-3542 . 189295) (-3543 . 189085) (-3544 . 188932) (-3545 . 188846)
- (-3546 . 188581) (-3547 . 188485) (-3548 . 188244) (-3549 . 188037)
- (-3550 . 187695) (-3551 . 187621) (-3552 . 187543) (-3553 . 187385)
- (-3554 . 187217) (-3555 . 186936) (-3556 . 186884) (-3557 . 186800)
- (-3558 . 185550) (-3559 . 185372) (-3560 . 185178) (-3561 . 185062)
- (-3562 . 184974) (-3563 . 184801) (-3564 . 184773) (-3565 . 184135)
- (-3566 . 184007) (-3567 . 183834) (-3568 . 183752) (-3569 . 183585)
- (-3570 . 183382) (-3571 . 182894) (-3572 . 182842) (-3573 . 182694)
- (-3574 . 182526) (-3575 . 182344) (-3576 . 182073) (-3577 . 181722)
- (-3578 . 181314) (-3579 . 181248) (-3580 . 180360) (-3581 . 179975)
- (-3582 . 179905) (-3583 . 179750) (-3584 . 179646) (-3585 . 178768)
- (-3586 . 178672) (-3587 . 178557) (-3588 . 178504) (-3589 . 178446)
- (-3590 . 178343) (-3591 . 178227) (-3592 . 178174) (-3593 . 178075)
- (-3594 . 178010) (-3595 . 177982) (-3596 . 177850) (-3597 . 175009)
- (-3598 . 174687) (-3599 . 174610) (-3600 . 174067) (-3601 . 173988)
- (-3602 . 173919) (-3603 . 173824) (-3604 . 173663) (-3605 . 173604)
- (-3606 . 173472) (-3607 . 173317) (-3608 . 173179) (-3609 . 173102)
- (-3610 . 173016) (-3611 . 172858) (-3612 . 171641) (-3613 . 171575)
- (-3614 . 171456) (-3615 . 171331) (-3616 . 171257) (-3617 . 171101)
- (-3618 . 171042) (-3619 . 170903) (-3620 . 170399) (-3621 . 170371)
- (-3622 . 170344) (-3623 . 170294) (-3624 . 170056) (-3625 . 170022)
- (-3626 . 169956) (-3627 . 169834) (-3628 . 169697) (-3629 . 169592)
- (-3630 . 169434) (-3631 . 169318) (-3632 . 169200) (-3633 . 169075)
- (-3634 . 168797) (-3635 . 168745) (-3636 . 168659) (-3637 . 168574)
- (-3638 . 168503) (-3639 . 168407) (-3640 . 168324) (-3641 . 167878)
- (-3642 . 167720) (-3643 . 167254) (-3644 . 166750) (-3645 . 166657)
- (-3646 . 166584) (-3647 . 166160) (-3648 . 165966) (-3649 . 165911)
- (-3650 . 165883) (-3651 . 165787) (-3652 . 165621) (-3653 . 165112)
- (-3654 . 164869) (-3655 . 163909) (-3656 . 163816) (-3657 . 163464)
- (-3658 . 163318) (-3659 . 163189) (-3660 . 163140) (-3661 . 163007)
- (-3662 . 162789) (-3663 . 162601) (-3664 . 162527) (-3665 . 162335)
- (-3666 . 162217) (-3667 . 162063) (-3668 . 162010) (-3669 . 161658)
- (-3670 . 161589) (-3671 . 161222) (-3672 . 160620) (-3673 . 160524)
- (-3674 . 160453) (-3675 . 159846) (-3676 . 159818) (-3677 . 159340)
- (-3678 . 159272) (-3679 . 159171) (-3680 . 159053) (-3681 . 159000)
- (-3682 . 158941) (-3683 . 158783) (-3684 . 158687) (-3685 . 158550)
- (-3686 . 158494) (-3687 . 158435) (-3688 . 158271) (-3689 . 157936)
- (-3690 . 157848) (-3691 . 157789) (-3692 . 157712) (-3693 . 157167)
- (-3694 . 157087) (-3695 . 156946) (-3696 . 156610) (-3697 . 156508)
- (-3698 . 156438) (-3699 . 156322) (-3700 . 156219) (-3701 . 155401)
- (-3702 . 155319) (-3703 . 155245) (-3704 . 154853) (-3705 . 152438)
- (-3706 . 152341) (-3707 . 152285) (-3708 . 151662) (-3709 . 151241)
- (-3710 . 151162) (-3711 . 150923) (-3712 . 150810) (-3713 . 150711)
- (-3714 . 150609) (-3715 . 150489) (-3716 . 150051) (-3717 . 149893)
- (-3718 . 149625) (-3719 . 149507) (-3720 . 149364) (-3721 . 149179)
- (-3722 . 149044) (-3723 . 149016) (-3724 . 148931) (-3725 . 148876)
- (-3726 . 148763) (-3727 . 148605) (-3728 . 148021) (-3729 . 147891)
- (-3730 . 147750) (-3731 . 147620) (-3732 . 147570) (-3733 . 147511)
- (-3734 . 147355) (-3735 . 145241) (-3736 . 145146) (-3737 . 145069)
- (-3738 . 144409) (-3739 . 144285) (-3740 . 144218) (-3741 . 144080)
- (-3742 . 143529) (-3743 . 143477) (-3744 . 143406) (-3745 . 143217)
- (-3746 . 143140) (-3747 . 142923) (-3748 . 142823) (-3749 . 142789)
- (-3750 . 142734) (-3751 . 142429) (-3752 . 142227) (-3753 . 142097)
- (-3754 . 141914) (-3755 . 141830) (-3756 . 141752) (-3757 . 141536)
- (-3758 . 141286) (-3759 . 141182) (-3760 . 140964) (-3761 . 140866)
- (-3762 . 140739) (-3763 . 140629) (-3764 . 139859) (-3765 . 139678)
- (-3766 . 139550) (-3767 . 139462) (-3768 . 139410) (-3769 . 139267)
- (-3770 . 139200) (-3771 . 139168) (-3772 . 138997) (-3773 . 138915)
- (-3774 . 138863) (-3775 . 138750) (-3776 . 138351) (-3777 . 138317)
- (-3778 . 138256) (-3779 . 138160) (-3780 . 138129) (-3781 . 138098)
- (-3782 . 137880) (-3783 . 137746) (-3784 . 137662) (-3785 . 137549)
- (-3786 . 137456) (-3787 . 137368) (-3788 . 137314) (-3789 . 137179)
- (-3790 . 137108) (-3791 . 136920) (-3792 . 136795) (-3793 . 136673)
- (-3794 . 136455) (-3795 . 136384) (-3796 . 132224) (-3797 . 132125)
- (-3798 . 132004) (-3799 . 131910) (-3800 . 131823) (-3801 . 131728)
- (-3802 . 131650) (-3803 . 131402) (-3804 . 131374) (-3805 . 130660)
- (-3806 . 130384) (-3807 . 130196) (-3808 . 130147) (-3809 . 130003)
- (-3810 . 129941) (-3811 . 129850) (-3812 . 129727) (-3813 . 127946)
- (-3814 . 127784) (-3815 . 127701) (-3816 . 127326) (-3817 . 127188)
- (-3818 . 127139) (-3819 . 126954) (-3820 . 126880) (-3821 . 126827)
- (-3822 . 126568) (-3823 . 126490) (-3824 . 126328) (-3825 . 126191)
- (-3826 . 125860) (-3827 . 125786) (-3828 . 125703) (-3829 . 125583)
- (-3830 . 125524) (-3831 . 125319) (-3832 . 125105) (-3833 . 125009)
- (-3834 . 124928) (-3835 . 124733) (-3836 . 124632) (-3837 . 124529)
- (-3838 . 124382) (-3839 . 123968) (-3840 . 123690) (-3841 . 123634)
- (-3842 . 123427) (-3843 . 123284) (-3844 . 123234) (-3845 . 122917)
- (-3846 . 122796) (-3847 . 122659) (-3848 . 122541) (-3849 . 122430)
- (-3850 . 122326) (-3851 . 122053) (-3852 . 122000) (-3853 . 121633)
- (-3854 . 121449) (-3855 . 121305) (-3856 . 121239) (-3857 . 121116)
- (-3858 . 120149) (-3859 . 119853) (-3860 . 119763) (-3861 . 119580)
- (-3862 . 119340) (-3863 . 119147) (-3864 . 119005) (-3865 . 118667)
- (-3866 . 118590) (-3867 . 118507) (-3868 . 118350) (-3869 . 118151)
- (-3870 . 118082) (-3871 . 118021) (-3872 . 117922) (-3873 . 117387)
- (-3874 . 117209) (-3875 . 117122) (-3876 . 116943) (-3877 . 116851)
- (-3878 . 116513) (-3879 . 114429) (-3880 . 114375) (-3881 . 114246)
- (-3882 . 114122) (-3883 . 114055) (-3884 . 113939) (-3885 . 113853)
- (-3886 . 113772) (-3887 . 113611) (-3888 . 113493) (-3889 . 113377)
- (-3890 . 113216) (-3891 . 113146) (-3892 . 113003) (-3893 . 112937)
- (-3894 . 112644) (-3895 . 112481) (-3896 . 112429) (-3897 . 112366)
- (-3898 . 112207) (-3899 . 112118) (-3900 . 112052) (-3901 . 111511)
- (-3902 . 111425) (-3903 . 111103) (-3904 . 111008) (-3905 . 110838)
- (-3906 . 110768) (-3907 . 110595) (-3908 . 110310) (-3909 . 110215)
- (-3910 . 110073) (-3911 . 109999) (-3912 . 109639) (-3913 . 109459)
- (-3914 . 109386) (-3915 . 109334) (-3916 . 109227) (-3917 . 109144)
- (-3918 . 109036) (-3919 . 108828) (-3920 . 108518) (-3921 . 107932)
- (-3922 . 107802) (-3923 . 107743) (-3924 . 107648) (-3925 . 107255)
- (-3926 . 107227) (-3927 . 106709) (-3928 . 106628) (-3929 . 106526)
- (-3930 . 106363) (-3931 . 106152) (-3932 . 106100) (-3933 . 105851)
- (-3934 . 105765) (-3935 . 105279) (-3936 . 104963) (-3937 . 104823)
- (-3938 . 104753) (-3939 . 104536) (-3940 . 104482) (-3941 . 104381)
- (-3942 . 104320) (-3943 . 104033) (-3944 . 103857) (-3945 . 103779)
- (-3946 . 103619) (-3947 . 103524) (-3948 . 103193) (-3949 . 102954)
- (-3950 . 102838) (-3951 . 102810) (-3952 . 102738) (-3953 . 102682)
- (-3954 . 102648) (-3955 . 102483) (-3956 . 102370) (-3957 . 102298)
- (-3958 . 102188) (-3959 . 101761) (-3960 . 101661) (-3961 . 101259)
- (-3962 . 101199) (-3963 . 101075) (-3964 . 100681) (-3965 . 100578)
- (-3966 . 100510) (-3967 . 100426) (-3968 . 100328) (-3969 . 100259)
- (-3970 . 100203) (-3971 . 100069) (-3972 . 100041) (-3973 . 99939)
- (-3974 . 99835) (-3975 . 99807) (-3976 . 99737) (-3977 . 99669)
- (-3978 . 99597) (-3979 . 99459) (-3980 . 99407) (-3981 . 99178)
- (-3982 . 99033) (-3983 . 98980) (-3984 . 98906) (-3985 . 98764)
- (-3986 . 98632) (-3987 . 98536) (-3988 . 98457) (-3989 . 98356)
- (-3990 . 98045) (-3991 . 97774) (-3992 . 97484) (-3993 . 97347)
- (-3994 . 96921) (-3995 . 96669) (-3996 . 96329) (-3997 . 96272)
- (-3998 . 96220) (-3999 . 96083) (-4000 . 95873) (-4001 . 95705)
- (-4002 . 95469) (-4003 . 95310) (-4004 . 95257) (-4005 . 95186)
- (-4006 . 95126) (-4007 . 94835) (-4008 . 94758) (-4009 . 94447)
- (-4010 . 94303) (-4011 . 93941) (-4012 . 93620) (-4013 . 93500)
- (-4014 . 93359) (-4015 . 93295) (-4016 . 93150) (-4017 . 93097)
- (-4018 . 93013) (-4019 . 92929) (-4020 . 92856) (-4021 . 92786)
- (-4022 . 92715) (-4023 . 92588) (-4024 . 92536) (-4025 . 92484)
- (-4026 . 92413) (-4027 . 91987) (-4028 . 91918) (-4029 . 91142)
- (-4030 . 91090) (-4031 . 90942) (-4032 . 90841) (-4033 . 90685)
- (-4034 . 90405) (-4035 . 90350) (-4036 . 90255) (-4037 . 90153)
- (-4038 . 89931) (-4039 . 89872) (-4040 . 89432) (-4041 . 89373)
- (-4042 . 89213) (-4043 . 89081) (-4044 . 88974) (-4045 . 88816)
- (-4046 . 88564) (-4047 . 88177) (-4048 . 88053) (-4049 . 87965)
- (-4050 . 87928) (-4051 . 87683) (-4052 . 87584) (-4053 . 87452)
- (-4054 . 87297) (-4055 . 87187) (-4056 . 87113) (-4057 . 86861)
- (-4058 . 86717) (-4059 . 86633) (-4060 . 86562) (-4061 . 86506)
- (-4062 . 86454) (-4063 . 86233) (-4064 . 86156) (-4065 . 86056)
- (-4066 . 86007) (-4067 . 85757) (-4068 . 85695) (-4069 . 85625)
- (-4070 . 85539) (-4071 . 85173) (-4072 . 85096) (-4073 . 84972)
- (-4074 . 84584) (-4075 . 84338) (-4076 . 84158) (-4077 . 83906)
- (-4078 . 83681) (-4079 . 83599) (-4080 . 83467) (-4081 . 83351)
- (-4082 . 83256) (-4083 . 83204) (-4084 . 83088) (-4085 . 82941)
- (-4086 . 82812) (-4087 . 82702) (-4088 . 82535) (-4089 . 82309)
- (-4090 . 82029) (-4091 . 81896) (-4092 . 81730) (-4093 . 81670)
- (-4094 . 81188) (-4095 . 81045) (-4096 . 80891) (-4097 . 80681)
- (-4098 . 80492) (-4099 . 80396) (-4100 . 80265) (-4101 . 80092)
- (-4102 . 79783) (-4103 . 79682) (-4104 . 79543) (-4105 . 79455)
- (-4106 . 79403) (-4107 . 78917) (-4108 . 78801) (-4109 . 78125)
- (-4110 . 78030) (-4111 . 77958) (-4112 . 77678) (-4113 . 77536)
- (-4114 . 77365) (-4115 . 75233) (-4116 . 75184) (-4117 . 74994)
- (-4118 . 74410) (-4119 . 74330) (-4120 . 74233) (-4121 . 74179)
- (-4122 . 73912) (-4123 . 72650) (-4124 . 72579) (-4125 . 72472)
- (-4126 . 72378) (-4127 . 72301) (-4128 . 72202) (-4129 . 72069)
- (-4130 . 71972) (-4131 . 71791) (-4132 . 71161) (-4133 . 71034)
- (-4134 . 70871) (-4135 . 70276) (-4136 . 69855) (-4137 . 69789)
- (-4138 . 69758) (-4139 . 69699) (-4140 . 69637) (-4141 . 69606)
- (-4142 . 69553) (-4143 . 69443) (-4144 . 69302) (-4145 . 69205)
- (-4146 . 69131) (-4147 . 68916) (-4148 . 68528) (-4149 . 68389)
- (-4150 . 67222) (-4151 . 66993) (-4152 . 66941) (-4153 . 66913)
- (-4154 . 66693) (-4155 . 66466) (-4156 . 66166) (-4157 . 65887)
- (-4158 . 65543) (-4159 . 65460) (-4160 . 65346) (-4161 . 65139)
- (-4162 . 64990) (-4163 . 64940) (-4164 . 64826) (-4165 . 64752)
- (-4166 . 64675) (-4167 . 64576) (-4168 . 64480) (-4169 . 64082)
- (-4170 . 64008) (-4171 . 63956) (-4172 . 62554) (-4173 . 62173)
- (-4174 . 61915) (-4175 . 61800) (-4176 . 61740) (-4177 . 61688)
- (-4178 . 61209) (-4179 . 61013) (-4180 . 60904) (-4181 . 60842)
- (-4182 . 60633) (-4183 . 60605) (-4184 . 60552) (-4185 . 60486)
- (-4186 . 60368) (-4187 . 60310) (-4188 . 60077) (-4189 . 60006)
- (-4190 . 59598) (-4191 . 59501) (-4192 . 59359) (-4193 . 59251)
- (-4194 . 59039) (-4195 . 58851) (-4196 . 58601) (-4197 . 58539)
- (-4198 . 58486) (-4199 . 58391) (-4200 . 58305) (-4201 . 52791)
- (-4202 . 52217) (-4203 . 52159) (-4204 . 51634) (-4205 . 51560)
- (-4206 . 51467) (-4207 . 51339) (-4208 . 51247) (-4209 . 51061)
- (-4210 . 50987) (-4211 . 50844) (-4212 . 50451) (-4213 . 50335)
- (-4214 . 50282) (-4215 . 50230) (-4216 . 50102) (-4217 . 49949)
- (-4218 . 49419) (-4219 . 49260) (-4220 . 49208) (-4221 . 48986)
- (-4222 . 48648) (-4223 . 48206) (-4224 . 48132) (-4225 . 47959)
- (-4226 . 47707) (-4227 . 47603) (-4228 . 47421) (-4229 . 47255)
- (-4230 . 46884) (-4231 . 46575) (-4232 . 46489) (-4233 . 46379)
- (-4234 . 46044) (-4235 . 45967) (-4236 . 45877) (-4237 . 45825)
- (-4238 . 45725) (-4239 . 45473) (-4240 . 45445) (-4241 . 45378)
- (-4242 . 45300) (-4243 . 45101) (-4244 . 44978) (-4245 . 44370)
- (-4246 . 44289) (-4247 . 44209) (-4248 . 44110) (-4249 . 43995)
- (-4250 . 43889) (-4251 . 43790) (-4252 . 43671) (-4253 . 43434)
- (-4254 . 43382) (-4255 . 42934) (-4256 . 42828) (-4257 . 42609)
- (-4258 . 42267) (-4259 . 41678) (-4260 . 41649) (-4261 . 41436)
- (-4262 . 41345) (-4263 . 41262) (-4264 . 41206) (-4265 . 40914)
- (-4266 . 40739) (-4267 . 40637) (-4268 . 40512) (-4269 . 40297)
- (-4270 . 40195) (-4271 . 40040) (-4272 . 39961) (-4273 . 39906)
- (-4274 . 39089) (-4275 . 38941) (-4276 . 38777) (-4277 . 37437)
- (-4278 . 37385) (-4279 . 37257) (-4280 . 37201) (-4281 . 37077)
- (-4282 . 36788) (-4283 . 36245) (-4284 . 36085) (-4285 . 36006)
- (-4286 . 35974) (-4287 . 35766) (-4288 . 35603) (-4289 . 35457)
- (-4290 . 35355) (-4291 . 35214) (-4292 . 35056) (-4293 . 34969)
- (-4294 . 34919) (-4295 . 34863) (-4296 . 34790) (-4297 . 34708)
- (-4298 . 34637) (-4299 . 34566) (-4300 . 33747) (-4301 . 33695)
- (-4302 . 33640) (-4303 . 33432) (-4304 . 33284) (-4305 . 33201)
- (-4306 . 33043) (-4307 . 32900) (-4308 . 32814) (-4309 . 32061)
- (-4310 . 31865) (-4311 . 31378) (-4312 . 31226) (-4313 . 31080)
- (-4314 . 31021) (-4315 . 30794) (-4316 . 30700) (-4317 . 30547)
- (-4318 . 30451) (-4319 . 30355) (-4320 . 30243) (-4321 . 30094)
- (-4322 . 29460) (-4323 . 29407) (-4324 . 29290) (-4325 . 29188)
- (-4326 . 28760) (-4327 . 28479) (-4328 . 26849) (-4329 . 26679)
- (-4330 . 26627) (-4331 . 26113) (-4332 . 25323) (-4333 . 25192)
- (-4334 . 24886) (-4335 . 24798) (-4336 . 24679) (-4337 . 24589)
- (-4338 . 24473) (-4339 . 23614) (-4340 . 23477) (-4341 . 23399)
- (-4342 . 23259) (-4343 . 23158) (-4344 . 23105) (-4345 . 23028)
- (-4346 . 22913) (-4347 . 22797) (-4348 . 22464) (-4349 . 22346)
- (-4350 . 21050) (-4351 . 20982) (-4352 . 20888) (-4353 . 20526)
- (-4354 . 20373) (-4355 . 20202) (-4356 . 19974) (-4357 . 19829)
- (-4358 . 19671) (-4359 . 19619) (-4360 . 19457) (-4361 . 19263)
- (-4362 . 19148) (-4363 . 18971) (-4364 . 18884) (-4365 . 18832)
- (-4366 . 18604) (-4367 . 18526) (-4368 . 18228) (-4369 . 18172)
- (-4370 . 18086) (-4371 . 17965) (-4372 . 17881) (-4373 . 17674)
- (-4374 . 17602) (-4375 . 17218) (-4376 . 17078) (-4377 . 16944)
- (-4378 . 16820) (-4379 . 16432) (-4380 . 16404) (-4381 . 16310)
- (-4382 . 16071) (-4383 . 16012) (-4384 . 15686) (-4385 . 15600)
- (-4386 . 15314) (-4387 . 15228) (-4388 . 15171) (-4389 . 15059)
- (-4390 . 14921) (-4391 . 14270) (-4392 . 13803) (-4393 . 13679)
- (-4394 . 13623) (-4395 . 13543) (-4396 . 13140) (-4397 . 13087)
- (-4398 . 12944) (-4399 . 12856) (-4400 . 12697) (-4401 . 12403)
- (-4402 . 10637) (-4403 . 10034) (-4404 . 9982) (-4405 . 9839)
- (-4406 . 9652) (-4407 . 9555) (-4408 . 9305) (-4409 . 8628)
- (-4410 . 8600) (-4411 . 8382) (-4412 . 8345) (-4413 . 8088)
- (-4414 . 6633) (-4415 . 6418) (-4416 . 6390) (-4417 . 6340)
- (-4418 . 6216) (-4419 . 5789) (-4420 . 5735) (-4421 . 5636)
- (-4422 . 5551) (-4423 . 5443) (-4424 . 5294) (-4425 . 5069)
- (-4426 . 3579) (-4427 . 3152) (-4428 . 2879) (-4429 . 2786)
- (-4430 . 2703) (-4431 . 2370) (-4432 . 2291) (-4433 . 2191)
- (-4434 . 1995) (-4435 . 1650) (-4436 . 572) (-4437 . 472)
- (-4438 . 261) (-4439 . 30)) \ No newline at end of file
+ ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750)))))
+(((*1 *1) (-5 *1 (-590))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8))
+ (-4 *7 (-862)) (-4 *8 (-1067)) (-4 *9 (-965 *8 *6 *7))
+ (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-317))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2981 *1)))
+ (-4 *1 (-317)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-958)) (-5 *3 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))))
+((-1320 . 732855) (-1321 . 732778) (-1322 . 732712) (-1323 . 732657)
+ (-1324 . 732556) (-1325 . 732494) (-1326 . 732281) (-1327 . 732074)
+ (-1328 . 732046) (-1329 . 731977) (-1330 . 731241) (-1331 . 731125)
+ (-1332 . 731051) (-1333 . 730914) (-1334 . 730819) (-1335 . 730572)
+ (-1336 . 730544) (-1337 . 730463) (-1338 . 728402) (-1339 . 728184)
+ (-1340 . 727957) (-1341 . 727719) (-1342 . 727638) (-1343 . 727495)
+ (-1344 . 727358) (-1345 . 727195) (-1346 . 726794) (-1347 . 726726)
+ (-1348 . 726652) (-1349 . 726413) (-1350 . 726193) (-1351 . 725817)
+ (-1352 . 725748) (-1353 . 725695) (-1354 . 725643) (-1355 . 725572)
+ (-1356 . 725522) (-1357 . 725394) (-1358 . 725236) (-1359 . 724870)
+ (-1360 . 724655) (-1361 . 724602) (-1362 . 724375) (-1363 . 724274)
+ (-1364 . 724206) (-1365 . 723956) (-1366 . 723873) (-1367 . 723556)
+ (-1368 . 722912) (-1369 . 722834) (-1370 . 722404) (-1371 . 722171)
+ (-1372 . 721939) (-1373 . 721887) (-1374 . 721587) (-1375 . 721396)
+ (-1376 . 721061) (-1377 . 720957) (-1378 . 720862) (-1379 . 720741)
+ (-1380 . 719569) (-1381 . 719535) (-1382 . 719467) (-1383 . 718929)
+ (-1384 . 718650) (-1385 . 718483) (-1386 . 718395) (-1387 . 718333)
+ (-1388 . 717889) (-1389 . 717752) (-1390 . 717699) (-1391 . 717584)
+ (-1392 . 717425) (-1393 . 717376) (-1394 . 717204) (-1395 . 717124)
+ (-1396 . 716780) (-1397 . 716696) (-1398 . 716618) (-1399 . 716544)
+ (-1400 . 716456) (-1401 . 716329) (-1402 . 716277) (-1403 . 716159)
+ (-1404 . 715022) (-1405 . 714930) (-1406 . 714726) (-1407 . 714640)
+ (-1408 . 714219) (-1409 . 714136) (-1410 . 713492) (-1411 . 713156)
+ (-1412 . 713041) (-1413 . 712401) (-1414 . 712290) (-1415 . 712043)
+ (-1416 . 711289) (-1417 . 711086) (-1418 . 710704) (-1419 . 710377)
+ (-1420 . 710263) (-1421 . 710061) (-1422 . 710008) (-1423 . 709899)
+ (-1424 . 709326) (-1425 . 709222) (-1426 . 709173) (-1427 . 709053)
+ (-1428 . 709001) (-1429 . 708794) (-1430 . 708541) (-1431 . 708383)
+ (-1432 . 707972) (-1433 . 707773) (-1434 . 707720) (-1435 . 707582)
+ (-1436 . 707501) (-1437 . 707407) (-1438 . 707218) (-1439 . 707069)
+ (-1440 . 706356) (-1441 . 706082) (-1442 . 705863) (-1443 . 705641)
+ (-1444 . 705274) (-1445 . 705124) (-1446 . 704940) (-1447 . 704679)
+ (-1448 . 704629) (-1449 . 704431) (-1450 . 704378) (-1451 . 704114)
+ (-1452 . 704033) (-1453 . 703849) (-1454 . 703328) (-1455 . 703089)
+ (-1456 . 702947) (-1457 . 702884) (-1458 . 702746) (-1459 . 702632)
+ (-1460 . 702215) (-1461 . 702149) (-1462 . 702096) (-1463 . 702041)
+ (-1464 . 701897) (-1465 . 701716) (** . 698721) (-1467 . 698619)
+ (-1468 . 698524) (-1469 . 698469) (-1470 . 698395) (-1471 . 697880)
+ (-1472 . 697677) (-1473 . 697607) (-1474 . 697509) (-1475 . 697414)
+ (-1476 . 697347) (-1477 . 697295) (-1478 . 697225) (-1479 . 697151)
+ (-1480 . 697084) (-1481 . 697007) (-1482 . 696911) (-1483 . 696069)
+ (-1484 . 695910) (-1485 . 695842) (-1486 . 695719) (-1487 . 693491)
+ (-1488 . 693172) (-1489 . 693092) (-1490 . 692993) (-1491 . 692663)
+ (-1492 . 692493) (-1493 . 692397) (-1494 . 692332) (-1495 . 691365)
+ (-1496 . 691186) (-1497 . 690943) (-1498 . 690807) (-1499 . 689871)
+ (-1500 . 689352) (-1501 . 689256) (-1502 . 689188) (-1503 . 689071)
+ (-1504 . 688898) (-1505 . 688645) (-1506 . 688349) (-1507 . 688139)
+ (-1508 . 688058) (-1509 . 687985) (-1510 . 687866) (-1511 . 687468)
+ (-1512 . 687415) (-1513 . 687196) (-1514 . 687136) (-1515 . 687046)
+ (-1516 . 686931) (-1517 . 686802) (-1518 . 686656) (-1519 . 686421)
+ (-1520 . 686268) (-1521 . 686194) (-1522 . 686125) (-1523 . 686035)
+ (-1524 . 685957) (-1525 . 685879) (-1526 . 685696) (-1527 . 685619)
+ (-1528 . 685519) (-1529 . 685433) (-1530 . 685249) (-1531 . 685197)
+ (-1532 . 685141) (-1533 . 684950) (-1534 . 684782) (-1535 . 684725)
+ (-1536 . 684492) (-1537 . 684252) (-1538 . 683903) (-1539 . 683851)
+ (-1540 . 683586) (-1541 . 683339) (-1542 . 682958) (-1543 . 682835)
+ (-1544 . 682754) (-1545 . 682644) (-1546 . 682567) (-1547 . 682514)
+ (-1548 . 682321) (-1549 . 682191) (-1550 . 682095) (-1551 . 681860)
+ (-1552 . 681602) (-1553 . 681119) (-1554 . 681051) (-1555 . 680905)
+ (-1556 . 680848) (-1557 . 680751) (-1558 . 680609) (-1559 . 680490)
+ (-1560 . 680249) (-1561 . 680155) (-1562 . 680040) (-1563 . 679830)
+ (-1564 . 679736) (-1565 . 679676) (-1566 . 679594) (-1567 . 679511)
+ (-1568 . 679366) (-1569 . 679299) (-1570 . 679092) (-1571 . 679064)
+ (-1572 . 678936) (-1573 . 678876) (-1574 . 678796) (-1575 . 678639)
+ (-1576 . 678538) (-1577 . 678429) (-1578 . 678367) (-1579 . 678233)
+ (-1580 . 678154) (-1581 . 677937) (-1582 . 677595) (-1583 . 677543)
+ (-1584 . 677485) (-9 . 677457) (-1586 . 677278) (-1587 . 677079)
+ (-1588 . 676761) (-1589 . 676584) (-1590 . 676448) (-1591 . 676342)
+ (-1592 . 676280) (-1593 . 676101) (-1594 . 676027) (-1595 . 675863)
+ (-1596 . 675384) (-8 . 675356) (-1598 . 675287) (-1599 . 674993)
+ (-1600 . 674942) (-1601 . 674870) (-1602 . 674811) (-1603 . 674698)
+ (-1604 . 674542) (-1605 . 674448) (-1606 . 674370) (-1607 . 674174)
+ (-7 . 674146) (-1609 . 674047) (-1610 . 673974) (-1611 . 673867)
+ (-1612 . 673473) (-1613 . 673056) (-1614 . 672521) (-1615 . 672490)
+ (-1616 . 672236) (-1617 . 672078) (-1618 . 671797) (-1619 . 670596)
+ (-1620 . 670487) (-1621 . 670421) (-1622 . 670393) (-1623 . 670270)
+ (-1624 . 669047) (-1625 . 668903) (-1626 . 668725) (-1627 . 668601)
+ (-1628 . 668508) (-1629 . 668348) (-1630 . 668180) (-1631 . 668118)
+ (-1632 . 668009) (-1633 . 667957) (-1634 . 667583) (-1635 . 667287)
+ (-1636 . 667200) (-1637 . 667010) (-1638 . 666729) (-1639 . 666413)
+ (-1640 . 666257) (-1641 . 666048) (-1642 . 665957) (-1643 . 665836)
+ (-1644 . 665657) (-1645 . 665606) (-1646 . 665180) (-1647 . 665023)
+ (-1648 . 664971) (-1649 . 664864) (-1650 . 664836) (-1651 . 664647)
+ (-1652 . 664433) (-1653 . 664347) (-1654 . 664255) (-1655 . 664136)
+ (-1656 . 663984) (-1657 . 663900) (-1658 . 663849) (-1659 . 663796)
+ (-1660 . 663641) (-1661 . 663312) (-1662 . 663142) (-1663 . 663011)
+ (-1664 . 662957) (-1665 . 662141) (-1666 . 662010) (-1667 . 661933)
+ (-1668 . 661755) (-1669 . 661689) (-1670 . 661519) (-1671 . 661321)
+ (-1672 . 661192) (-1673 . 661111) (-1674 . 660881) (-1675 . 660566)
+ (-1676 . 660448) (-1677 . 660290) (-1678 . 660202) (-1679 . 660078)
+ (-1680 . 659891) (-1681 . 659818) (-1682 . 659766) (-1683 . 659692)
+ (-1684 . 659604) (-1685 . 659430) (-1686 . 659372) (-1687 . 659299)
+ (-1688 . 659222) (-1689 . 659155) (-1690 . 659045) (-1691 . 658918)
+ (-1692 . 658825) (-1693 . 657909) (-1694 . 657711) (-1695 . 657478)
+ (-1696 . 656180) (-1697 . 656127) (-1698 . 655783) (-1699 . 655697)
+ (-1700 . 655594) (-1701 . 655515) (-1702 . 655369) (-1703 . 655274)
+ (-1704 . 655203) (-1705 . 655152) (-1706 . 650609) (-1707 . 650418)
+ (-1708 . 650341) (-1709 . 649477) (-1710 . 649362) (-1711 . 649249)
+ (-1712 . 648771) (-1713 . 648204) (-1714 . 647796) (-1715 . 647725)
+ (-1716 . 647308) (-1717 . 646996) (-1718 . 646962) (-1719 . 646779)
+ (-1720 . 646719) (-1721 . 646620) (-1722 . 646592) (-1723 . 646494)
+ (-1724 . 646009) (-1725 . 645950) (-1726 . 645853) (-1727 . 645690)
+ (-1728 . 645547) (-1729 . 645463) (-1730 . 645379) (-1731 . 645320)
+ (-1732 . 645201) (-1733 . 644826) (-1734 . 644607) (-1735 . 644465)
+ (-1736 . 644431) (-1737 . 644280) (-1738 . 644125) (-1739 . 644047)
+ (-1740 . 643867) (-1741 . 643670) (-1742 . 642674) (-1743 . 642547)
+ (-1744 . 642394) (-1745 . 642218) (-1746 . 640440) (-1747 . 640224)
+ (-1748 . 640172) (-1749 . 640044) (-1750 . 639967) (-1751 . 639848)
+ (-1752 . 639798) (-1753 . 639576) (-1754 . 639469) (-1755 . 639399)
+ (-1756 . 639250) (-1757 . 639154) (-1758 . 638904) (-1759 . 638759)
+ (-1760 . 638500) (-1761 . 638430) (-1762 . 638009) (-1763 . 637919)
+ (-1764 . 637697) (-1765 . 637611) (-1766 . 637534) (-1767 . 637425)
+ (-1768 . 637359) (-1769 . 637255) (-1770 . 636896) (-1771 . 636837)
+ (-1772 . 636745) (-1773 . 636150) (-1774 . 636044) (-1775 . 635678)
+ (-1776 . 635288) (-1777 . 635095) (-1778 . 634915) (-1779 . 634817)
+ (-1780 . 634571) (-1781 . 634434) (-1782 . 634374) (-1783 . 634342)
+ (-1784 . 634033) (-1785 . 633956) (-1786 . 633796) (-1787 . 619564)
+ (-1788 . 619462) (-1789 . 619407) (-1790 . 619203) (-1791 . 619093)
+ (-1792 . 618767) (-1793 . 618634) (-1794 . 618535) (-1795 . 618398)
+ (-1796 . 618178) (-1797 . 618054) (-1798 . 617939) (-1799 . 617851)
+ (-1800 . 617799) (-1801 . 617581) (-1802 . 617462) (-1803 . 617281)
+ (-1804 . 617229) (-1805 . 617143) (-1806 . 616584) (-1807 . 616320)
+ (-1808 . 616226) (-1809 . 615995) (-1810 . 611932) (-1811 . 611544)
+ (-1812 . 611470) (-1813 . 611396) (-1814 . 611268) (-1815 . 610738)
+ (-1816 . 610452) (-1817 . 610323) (-1818 . 609764) (-1819 . 609697)
+ (-1820 . 609554) (-1821 . 609344) (-1822 . 608960) (-1823 . 608714)
+ (-1824 . 608502) (-1825 . 608335) (-1826 . 608247) (-1827 . 608066)
+ (-1828 . 607988) (-1829 . 607902) (-1830 . 607828) (-1831 . 607726)
+ (-1832 . 607649) (-1833 . 607469) (-1834 . 607412) (-1835 . 607356)
+ (-1836 . 607299) (-1837 . 607214) (-1838 . 607162) (-1839 . 607134)
+ (-1840 . 606955) (-1841 . 606563) (-1842 . 606422) (-1843 . 606365)
+ (-1844 . 606113) (-1845 . 606018) (-1846 . 602351) (-1847 . 602323)
+ (-1848 . 602180) (-1849 . 601942) (-1850 . 601514) (-1851 . 601402)
+ (-1852 . 601286) (-1853 . 601139) (-1854 . 601077) (-1855 . 600981)
+ (-1856 . 598636) (-1857 . 598411) (-1858 . 598323) (-1859 . 597860)
+ (-1860 . 597729) (-1861 . 597662) (-1862 . 597416) (-1863 . 597278)
+ (-1864 . 596668) (-1865 . 596524) (-1866 . 596465) (-1867 . 596383)
+ (-1868 . 596025) (-1869 . 595865) (-1870 . 594592) (-1871 . 594462)
+ (-1872 . 594430) (-1873 . 594154) (-1874 . 593503) (-1875 . 593379)
+ (-1876 . 593307) (-1877 . 592861) (-1878 . 592729) (-1879 . 592677)
+ (-1880 . 592467) (-1881 . 592371) (-1882 . 592091) (-1883 . 591920)
+ (-1884 . 591453) (-1885 . 591071) (-1886 . 591019) (-1887 . 590918)
+ (-1888 . 590802) (-1889 . 590692) (-1890 . 590474) (-1891 . 590205)
+ (-1892 . 590116) (-1893 . 590034) (-1894 . 589907) (-1895 . 589571)
+ (-1896 . 589474) (-1897 . 589391) (-1898 . 589296) (-1899 . 588231)
+ (-1900 . 588103) (-1901 . 587704) (-1902 . 587621) (-1903 . 587565)
+ (-1904 . 587440) (-1905 . 587358) (-1906 . 587275) (-1907 . 587223)
+ (-1908 . 587189) (-1909 . 586845) (-1910 . 586772) (-1911 . 586738)
+ (-1912 . 586661) (-1913 . 586581) (-1914 . 586406) (-1915 . 586354)
+ (-1916 . 586211) (-1917 . 586095) (-1918 . 584893) (-1919 . 584798)
+ (-1920 . 584692) (-1921 . 584639) (-1922 . 584578) (-1923 . 584175)
+ (-1924 . 584096) (-1925 . 584059) (-1926 . 584004) (-1927 . 583857)
+ (-1928 . 583829) (-1929 . 583726) (-1930 . 583674) (-1931 . 583578)
+ (-1932 . 583525) (-1933 . 583458) (-1934 . 583406) (-1935 . 583277)
+ (-1936 . 583148) (-1937 . 582971) (-1938 . 582525) (-1939 . 582273)
+ (-1940 . 582055) (-1941 . 581912) (-1942 . 581732) (-1943 . 581661)
+ (-1944 . 581561) (-1945 . 581274) (-1946 . 581164) (-1947 . 581068)
+ (-1948 . 580958) (-1949 . 580507) (-1950 . 580373) (-1951 . 580141)
+ (-1952 . 580053) (-1953 . 579974) (-1954 . 579905) (-1955 . 579760)
+ (-1956 . 579593) (-1957 . 579423) (-1958 . 579371) (-1959 . 579318)
+ (-1960 . 579289) (-1961 . 579205) (-1962 . 579046) (-1963 . 578884)
+ (-1964 . 578812) (-1965 . 578757) (-1966 . 578619) (-1967 . 578393)
+ (-1968 . 578307) (-1969 . 578236) (-1970 . 578169) (-1971 . 577971)
+ (-1972 . 577858) (-1973 . 577564) (-1974 . 577409) (-1975 . 577352)
+ (-1976 . 577245) (-1977 . 577150) (-1978 . 577034) (-1979 . 576754)
+ (-1980 . 576547) (-1981 . 576453) (-1982 . 576207) (-1983 . 576091)
+ (-1984 . 575998) (-1985 . 575395) (-1986 . 575346) (-1987 . 575312)
+ (-1988 . 575260) (-1989 . 575127) (-1990 . 574904) (-1991 . 574791)
+ (-1992 . 574564) (-1993 . 574476) (-1994 . 574424) (-1995 . 574371)
+ (-1996 . 574319) (-1997 . 573861) (-1998 . 573574) (-1999 . 573489)
+ (-2000 . 573323) (-2001 . 573269) (-2002 . 573044) (-2003 . 572976)
+ (-2004 . 572789) (-2005 . 572734) (-2006 . 572531) (-2007 . 572147)
+ (-2008 . 571992) (-2009 . 571915) (-2010 . 571477) (-2011 . 571417)
+ (-2012 . 571360) (-2013 . 570720) (-2014 . 570587) (-2015 . 570535)
+ (-2016 . 570400) (-2017 . 570303) (-2018 . 569007) (-2019 . 568782)
+ (-2020 . 568597) (-2021 . 568452) (-2022 . 567969) (-2023 . 567916)
+ (-2024 . 567733) (-2025 . 567543) (-2026 . 567472) (-2027 . 567438)
+ (-2028 . 567188) (-2029 . 566655) (-2030 . 566035) (-2031 . 565894)
+ (-2032 . 565751) (-2033 . 565466) (-2034 . 565301) (-2035 . 565113)
+ (-2036 . 564966) (-2037 . 564289) (-2038 . 564236) (-2039 . 564117)
+ (-2040 . 564034) (-2041 . 563388) (-2042 . 563360) (-2043 . 563206)
+ (-2044 . 563145) (-2045 . 562886) (-2046 . 562788) (-2047 . 562666)
+ (-2048 . 562638) (-2049 . 562527) (-2050 . 562416) (-2051 . 562288)
+ (-2052 . 562041) (-2053 . 561449) (-2054 . 561260) (-2055 . 561121)
+ (-2056 . 561031) (-2057 . 560813) (-2058 . 560640) (-2059 . 559459)
+ (-2060 . 559241) (-2061 . 559094) (-2062 . 558896) (-2063 . 558790)
+ (-2064 . 558694) (-2065 . 558254) (-2066 . 558183) (-2067 . 558112)
+ (-2068 . 557377) (-2069 . 557340) (-2070 . 556964) (-2071 . 556808)
+ (-2072 . 556584) (-2073 . 556453) (-2074 . 556382) (-2075 . 556007)
+ (-2076 . 555856) (-2077 . 555754) (-2078 . 551594) (-2079 . 551337)
+ (-2080 . 551224) (-2081 . 551120) (-2082 . 551042) (-2083 . 550869)
+ (-2084 . 550760) (-2085 . 550701) (-2086 . 550529) (-2087 . 550473)
+ (-2088 . 549994) (-2089 . 549895) (-2090 . 548593) (-2091 . 548378)
+ (-2092 . 548295) (-2093 . 548224) (-2094 . 548190) (-2095 . 547881)
+ (-2096 . 547816) (-2097 . 547697) (-2098 . 547604) (-2099 . 547483)
+ (-2100 . 547412) (-2101 . 547384) (-2102 . 547069) (-2103 . 546991)
+ (-2104 . 546936) (-2105 . 546748) (-2106 . 546609) (-2107 . 546544)
+ (-2108 . 546389) (-2109 . 546025) (-2110 . 545931) (-2111 . 545879)
+ (-2112 . 545829) (-2113 . 545717) (-2114 . 545660) (-2115 . 545565)
+ (-2116 . 545157) (-2117 . 545069) (-2118 . 544942) (-2119 . 544844)
+ (-2120 . 544776) (-2121 . 544406) (-2122 . 544319) (-2123 . 544070)
+ (-2124 . 543946) (-2125 . 543851) (-2126 . 543763) (-2127 . 543710)
+ (-2128 . 543602) (-2129 . 543549) (-2130 . 543063) (-2131 . 542888)
+ (-2132 . 539225) (-2133 . 539158) (-2134 . 538734) (-2135 . 538639)
+ (-2136 . 538565) (-2137 . 538138) (-2138 . 538082) (-2139 . 537115)
+ (-2140 . 536876) (-2141 . 536770) (-2142 . 536654) (-2143 . 536380)
+ (-2144 . 536237) (-2145 . 536170) (-2146 . 536076) (-2147 . 535998)
+ (-2148 . 535944) (-2149 . 535916) (-2150 . 535749) (-2151 . 535620)
+ (-2152 . 535567) (-2153 . 535494) (-2154 . 535399) (-2155 . 535152)
+ (-2156 . 535055) (-2157 . 534934) (-2158 . 534686) (-2159 . 534612)
+ (-2160 . 534513) (-2161 . 534448) (-2162 . 534281) (-2163 . 534109)
+ (-2164 . 533977) (-2165 . 533905) (-2166 . 533842) (-2167 . 533555)
+ (-2168 . 533375) (-2169 . 533322) (-2170 . 533294) (-2171 . 533024)
+ (-2172 . 532934) (-2173 . 532849) (-2174 . 532362) (-2175 . 532305)
+ (-2176 . 532253) (-2177 . 532176) (-2178 . 531896) (-2179 . 531843)
+ (-2180 . 531745) (-2181 . 531644) (-2182 . 531541) (-2183 . 530827)
+ (-2184 . 530708) (-2185 . 530600) (-2186 . 530370) (-2187 . 530192)
+ (-2188 . 529788) (-2189 . 529646) (-2190 . 529435) (-2191 . 529163)
+ (-2192 . 528968) (-2193 . 528780) (-2194 . 528631) (-2195 . 528517)
+ (-2196 . 528368) (-2197 . 528267) (-2198 . 528096) (-2199 . 527850)
+ (-2200 . 527771) (-2201 . 527572) (-2202 . 527523) (-2203 . 527427)
+ (-2204 . 527000) (-2205 . 526802) (-2206 . 526421) (-2207 . 526372)
+ (-2208 . 526126) (-2209 . 522126) (-2210 . 522052) (-2211 . 522010)
+ (-2212 . 521873) (-2213 . 521729) (-2214 . 521456) (-2215 . 521255)
+ (-2216 . 515916) (-2217 . 515798) (-2218 . 515640) (-2219 . 515450)
+ (-2220 . 515371) (-2221 . 515261) (-2222 . 515158) (-2223 . 515096)
+ (-2224 . 514964) (-2225 . 514871) (-2226 . 514664) (-2227 . 514449)
+ (-2228 . 514354) (-2229 . 514232) (-2230 . 513648) (-2231 . 513596)
+ (-2232 . 513497) (-2233 . 513406) (-2234 . 513339) (-2235 . 513256)
+ (-2236 . 512994) (-2237 . 512877) (-2238 . 512147) (-2239 . 512017)
+ (-2240 . 511852) (-2241 . 511730) (-2242 . 511650) (-2243 . 511591)
+ (-2244 . 511541) (-2245 . 511418) (-2246 . 511244) (-2247 . 510911)
+ (-2248 . 510819) (-2249 . 510089) (-2250 . 510037) (-2251 . 509970)
+ (-2252 . 509873) (-2253 . 509290) (-2254 . 502347) (-2255 . 500566)
+ (-2256 . 500534) (-2257 . 500455) (-2258 . 500363) (-2259 . 500186)
+ (-2260 . 499509) (-2261 . 499437) (-2262 . 499383) (-2263 . 498121)
+ (-2264 . 497420) (-2265 . 497139) (-2266 . 496977) (-2267 . 496900)
+ (-2268 . 496814) (-2269 . 496714) (-2270 . 496149) (-2271 . 496053)
+ (-2272 . 495751) (-2273 . 495433) (-2274 . 495362) (-2275 . 495281)
+ (-2276 . 495187) (-2277 . 495104) (-2278 . 494996) (-2279 . 494788)
+ (-2280 . 494592) (-2281 . 494520) (-2282 . 493955) (-2283 . 493848)
+ (-2284 . 493733) (-2285 . 493469) (-2286 . 492289) (-2287 . 492151)
+ (-2288 . 491654) (-2289 . 491309) (-2290 . 491186) (-2291 . 490621)
+ (-2292 . 489953) (-2293 . 489429) (-2294 . 489335) (-2295 . 489111)
+ (-2296 . 488898) (-2297 . 488821) (-2298 . 488772) (-2299 . 488652)
+ (-2300 . 488184) (-2301 . 488065) (-2302 . 486987) (-2303 . 486834)
+ (-2304 . 486159) (-2305 . 486057) (-2306 . 485916) (-2307 . 485839)
+ (-2308 . 485786) (-2309 . 484984) (-2310 . 484799) (-2311 . 484689)
+ (-2312 . 484589) (-2313 . 484448) (-2314 . 484417) (-2315 . 483742)
+ (-2316 . 483450) (-2317 . 483348) (-2318 . 483249) (-2319 . 483013)
+ (-2320 . 482831) (-2321 . 482620) (-2322 . 482532) (-2323 . 482425)
+ (-2324 . 481687) (-2325 . 481376) (-2326 . 481304) (-2327 . 481171)
+ (-2328 . 481088) (-2329 . 480757) (-2330 . 480708) (-2331 . 480544)
+ (-2332 . 480433) (-2333 . 480202) (-2334 . 480102) (-2335 . 479539)
+ (-2336 . 479432) (-2337 . 479309) (-2338 . 479212) (-2339 . 479109)
+ (-2340 . 479080) (-2341 . 478984) (-2342 . 478649) (-2343 . 478503)
+ (-2344 . 478451) (-2345 . 477888) (-2346 . 477821) (-2347 . 477723)
+ (-2348 . 477542) (-2349 . 477468) (-2350 . 477192) (-2351 . 477094)
+ (-2352 . 477006) (-2353 . 476894) (-2354 . 476331) (-2355 . 476072)
+ (-2356 . 475811) (-2357 . 475733) (-2358 . 475663) (-2359 . 475429)
+ (-2360 . 475370) (-2361 . 475250) (-2362 . 475183) (-2363 . 474507)
+ (-2364 . 474473) (-2365 . 474361) (-2366 . 474262) (-2367 . 474202)
+ (-2368 . 474069) (-2369 . 473550) (-2370 . 473398) (-2371 . 473321)
+ (-2372 . 473269) (-2373 . 472593) (-2374 . 472414) (-2375 . 472208)
+ (-2376 . 472139) (-2377 . 472062) (-2378 . 471943) (-2379 . 471871)
+ (-2380 . 471326) (-2381 . 470991) (-2382 . 470938) (-2383 . 470856)
+ (-2384 . 470180) (-2385 . 470124) (-2386 . 469995) (-2387 . 469684)
+ (-2388 . 469613) (-2389 . 469539) (-2390 . 469466) (-2391 . 469159)
+ (-2392 . 469079) (-2393 . 468769) (-2394 . 468205) (-2395 . 467964)
+ (-2396 . 467830) (-2397 . 467514) (-2398 . 467370) (-2399 . 467229)
+ (-2400 . 467176) (-2401 . 467035) (-2402 . 466812) (-2403 . 466682)
+ (-2404 . 466420) (-2405 . 465988) (-2406 . 465871) (-2407 . 465803)
+ (-2408 . 465775) (-2409 . 465211) (-2410 . 465179) (-2411 . 465051)
+ (-2412 . 464689) (-2413 . 464557) (-2414 . 464456) (-2415 . 464399)
+ (-2416 . 464287) (-2417 . 464129) (-2418 . 463793) (-2419 . 463691)
+ (-2420 . 463423) (-2421 . 463355) (-2422 . 462791) (-2423 . 462470)
+ (-2424 . 462077) (-2425 . 461569) (-2426 . 461512) (-2427 . 461426)
+ (-2428 . 461316) (-2429 . 461185) (-2430 . 461069) (-2431 . 460951)
+ (-2432 . 460523) (-2433 . 460435) (-2434 . 459872) (-2435 . 459520)
+ (-2436 . 459469) (-2437 . 459349) (-2438 . 459259) (-2439 . 459080)
+ (-2440 . 459000) (-2441 . 458901) (-2442 . 458738) (-2443 . 458635)
+ (-2444 . 458517) (-2445 . 458236) (-2446 . 458207) (-2447 . 457644)
+ (-2448 . 457493) (-2449 . 457378) (-2450 . 457184) (-2451 . 457065)
+ (-2452 . 456924) (-2453 . 456709) (-2454 . 456636) (-2455 . 456535)
+ (-2456 . 455717) (-2457 . 455657) (-2458 . 455487) (-2459 . 455405)
+ (-2460 . 455118) (-2461 . 454555) (-2462 . 454425) (-2463 . 454393)
+ (-2464 . 454305) (-2465 . 454241) (-2466 . 454014) (-2467 . 453896)
+ (-2468 . 453687) (-2469 . 453605) (-2470 . 453387) (-2471 . 453335)
+ (-2472 . 452820) (-2473 . 452257) (-2474 . 452018) (-2475 . 451762)
+ (-2476 . 451617) (-2477 . 451133) (-2478 . 451059) (-2479 . 450893)
+ (-2480 . 450765) (-2481 . 450533) (-2482 . 450357) (-2483 . 449843)
+ (-2484 . 449736) (-2485 . 449173) (-2486 . 449100) (-2487 . 449020)
+ (-2488 . 448967) (-2489 . 448657) (-2490 . 448590) (-2491 . 448280)
+ (-2492 . 448206) (-2493 . 447814) (-2494 . 447024) (-2495 . 446950)
+ (-2496 . 446790) (-2497 . 446704) (-2498 . 446620) (-2499 . 446522)
+ (-2500 . 446429) (-2501 . 446018) (-2502 . 445910) (-2503 . 445738)
+ (-2504 . 443323) (-2505 . 443192) (-2506 . 442997) (-2507 . 442843)
+ (-2508 . 442727) (-2509 . 442674) (-2510 . 442332) (-2511 . 442248)
+ (-2512 . 441979) (-2513 . 441821) (-2514 . 441720) (-2515 . 441548)
+ (-2516 . 441451) (-2517 . 441145) (-2518 . 441050) (-2519 . 440634)
+ (-2520 . 440477) (-2521 . 440407) (-2522 . 440326) (-2523 . 440253)
+ (-2524 . 439656) (-2525 . 439357) (-2526 . 438734) (-2527 . 438379)
+ (-2528 . 438207) (-2529 . 438119) (-2530 . 437935) (-2531 . 435154)
+ (-2532 . 434036) (-2533 . 433966) (-2534 . 433475) (-2535 . 433302)
+ (-2536 . 433241) (-2537 . 433069) (-2538 . 432859) (-2539 . 432723)
+ (-2540 . 432302) (-2541 . 431739) (-2542 . 431620) (-2543 . 431537)
+ (-2544 . 431441) (-2545 . 431311) (-2546 . 431198) (-2547 . 431115)
+ (-2548 . 431044) (-2549 . 430703) (-2550 . 430631) (-2551 . 430392)
+ (-2552 . 430286) (-2553 . 430196) (-2554 . 430141) (-2555 . 429935)
+ (-2556 . 429868) (-2557 . 429772) (-2558 . 429645) (-2559 . 429500)
+ (-2560 . 429472) (-2561 . 429297) (-2562 . 429244) (-2563 . 429131)
+ (-2564 . 428852) (-2565 . 428736) (-2566 . 428683) (-2567 . 428502)
+ (-2568 . 428450) (-2569 . 428288) (-2570 . 428233) (-2571 . 427955)
+ (-2572 . 427805) (-2573 . 427655) (-2574 . 427556) (-2575 . 427503)
+ (-2576 . 427366) (-2577 . 427314) (-2578 . 427185) (-2579 . 427054)
+ (-2580 . 426739) (-2581 . 426662) (-2582 . 426577) (-2583 . 426509)
+ (-2584 . 426282) (-2585 . 426180) (-2586 . 426085) (-2587 . 426007)
+ (-2588 . 425954) (-2589 . 425706) (-2590 . 424554) (-2591 . 424223)
+ (-2592 . 424129) (-2593 . 423784) (-2594 . 423713) (-2595 . 423495)
+ (-2596 . 423168) (-2597 . 423053) (-2598 . 422959) (-2599 . 422521)
+ (-2600 . 422418) (-2601 . 422278) (-2602 . 422180) (-2603 . 421846)
+ (-2604 . 421779) (-2605 . 421710) (-2606 . 421614) (-2607 . 421531)
+ (-2608 . 421436) (-2609 . 421278) (-2610 . 421218) (-2611 . 421117)
+ (-2612 . 420999) (-2613 . 420836) (-2614 . 420745) (-2615 . 420581)
+ (-2616 . 419805) (-2617 . 419749) (-2618 . 419390) (-2619 . 419269)
+ (-2620 . 419170) (-2621 . 419052) (-2622 . 418999) (-2623 . 418947)
+ (-2624 . 418896) (-2625 . 418798) (-2626 . 418578) (-2627 . 417235)
+ (-2628 . 416964) (-2629 . 416884) (-2630 . 416796) (-2631 . 416710)
+ (-2632 . 416615) (-2633 . 416472) (-2634 . 416297) (-2635 . 416220)
+ (-2636 . 416051) (-2637 . 415941) (-2638 . 415838) (-2639 . 415460)
+ (-2640 . 415333) (-2641 . 415147) (-2642 . 414764) (-2643 . 414616)
+ (-2644 . 414501) (-2645 . 414327) (-2646 . 414274) (-2647 . 414170)
+ (-2648 . 413985) (-2649 . 413870) (-2650 . 413624) (-2651 . 413514)
+ (-2652 . 413236) (-2653 . 412920) (-2654 . 412802) (-2655 . 412747)
+ (-2656 . 412646) (-2657 . 412566) (-2658 . 412483) (-2659 . 412308)
+ (-2660 . 412163) (-2661 . 412135) (-2662 . 412019) (-2663 . 411896)
+ (-2664 . 411600) (-2665 . 411435) (-2666 . 407485) (-2667 . 407329)
+ (-2668 . 407232) (-2669 . 407152) (-2670 . 406926) (-2671 . 406838)
+ (-2672 . 406753) (-2673 . 406590) (-2674 . 406257) (-2675 . 406191)
+ (-2676 . 406076) (-2677 . 406023) (-2678 . 405743) (-2679 . 405692)
+ (-2680 . 405520) (-2681 . 405424) (-2682 . 405241) (-2683 . 405186)
+ (-2684 . 405068) (-2685 . 404945) (-2686 . 404875) (-2687 . 404771)
+ (-2688 . 404716) (-2689 . 404324) (-2690 . 404201) (-2691 . 404142)
+ (-2692 . 404058) (-2693 . 403963) (-2694 . 403850) (-2695 . 403782)
+ (-2696 . 403473) (-2697 . 403369) (-2698 . 403226) (-2699 . 402940)
+ (-2700 . 402777) (-2701 . 402682) (-2702 . 402584) (-2703 . 401711)
+ (-2704 . 401641) (-2705 . 401513) (-2706 . 401355) (-2707 . 401242)
+ (-2708 . 401148) (-2709 . 400926) (-2710 . 400805) (-2711 . 400745)
+ (-2712 . 400416) (-2713 . 400314) (-2714 . 400254) (-2715 . 400168)
+ (-2716 . 400080) (-2717 . 399953) (-2718 . 399738) (-2719 . 399154)
+ (-2720 . 399001) (-2721 . 398896) (-2722 . 398755) (-2723 . 398448)
+ (-2724 . 398226) (-2725 . 398035) (-2726 . 397589) (-2727 . 397197)
+ (-2728 . 396972) (-2729 . 396892) (-2730 . 396762) (-2731 . 396591)
+ (-2732 . 395912) (-2733 . 395845) (-2734 . 395692) (-2735 . 395535)
+ (-2736 . 395476) (-2737 . 395216) (-2738 . 395089) (-2739 . 394964)
+ (-2740 . 394823) (-2741 . 394794) (-2742 . 394566) (-2743 . 394504)
+ (-2744 . 394218) (-2745 . 394041) (-2746 . 393601) (-2747 . 393322)
+ (-2748 . 393093) (-2749 . 392890) (-2750 . 392737) (-2751 . 392607)
+ (-2752 . 392462) (-2753 . 392385) (-2754 . 392287) (-2755 . 392214)
+ (-2756 . 392070) (-2757 . 391936) (-2758 . 391877) (-2759 . 391654)
+ (-2760 . 391450) (-2761 . 391391) (-2762 . 391264) (-2763 . 391106)
+ (-2764 . 390718) (-2765 . 390472) (-2766 . 381022) (-2767 . 380862)
+ (-2768 . 380709) (-2769 . 380614) (-2770 . 380537) (-2771 . 380418)
+ (-2772 . 380262) (-2773 . 380210) (-2774 . 380147) (-2775 . 380080)
+ (-2776 . 379879) (-2777 . 379589) (-2778 . 379482) (-2779 . 379248)
+ (-2780 . 379199) (-2781 . 379065) (-2782 . 376951) (-2783 . 376789)
+ (-2784 . 376527) (-2785 . 376498) (-2786 . 376345) (-2787 . 376241)
+ (-2788 . 375989) (-2789 . 375699) (-2790 . 375560) (-2791 . 375129)
+ (-2792 . 375034) (-2793 . 374868) (-2794 . 374674) (-2795 . 374593)
+ (-2796 . 374520) (-2797 . 374399) (-2798 . 374362) (-2799 . 373975)
+ (-2800 . 373915) (-2801 . 373482) (-2802 . 373405) (-2803 . 373319)
+ (-2804 . 373204) (-2805 . 373104) (-2806 . 373007) (-2807 . 372936)
+ (-2808 . 372864) (-2809 . 372740) (-2810 . 372688) (-2811 . 372565)
+ (-2812 . 372488) (-2813 . 372405) (-2814 . 371745) (-2815 . 371587)
+ (-2816 . 371410) (-2817 . 371213) (-2818 . 371116) (-2819 . 371015)
+ (-2820 . 370906) (-2821 . 370818) (-2822 . 370600) (-2823 . 370544)
+ (-2824 . 370410) (-2825 . 370211) (-2826 . 369926) (-2827 . 369681)
+ (-2828 . 369624) (-2829 . 369500) (-2830 . 369413) (-2831 . 369267)
+ (-2832 . 369152) (-2833 . 369066) (-2834 . 369029) (-2835 . 368149)
+ (-2836 . 368092) (-2837 . 367913) (-2838 . 367741) (-2839 . 367545)
+ (-2840 . 366922) (-2841 . 366852) (-2842 . 366785) (-2843 . 366733)
+ (-2844 . 366681) (-2845 . 366518) (-2846 . 366449) (-2847 . 366348)
+ (-2848 . 366219) (-2849 . 365974) (-2850 . 365887) (-12 . 365715)
+ (-2852 . 365591) (-2853 . 365431) (-2854 . 365293) (-2855 . 365196)
+ (-2856 . 364968) (-2857 . 364940) (-2858 . 364079) (-2859 . 363900)
+ (-2860 . 363744) (-2861 . 363525) (-2862 . 363426) (-2863 . 363290)
+ (-2864 . 363258) (-2865 . 363206) (-2866 . 363061) (-2867 . 362983)
+ (-2868 . 362690) (-2869 . 362603) (-2870 . 362461) (-2871 . 362042)
+ (-2872 . 361947) (-2873 . 361792) (-2874 . 360950) (-2875 . 360722)
+ (-2876 . 360271) (-2877 . 360212) (-2878 . 360141) (-2879 . 359694)
+ (-2880 . 359396) (-2881 . 358733) (-2882 . 358316) (-2883 . 358202)
+ (-2884 . 357948) (-2885 . 357838) (-2886 . 357646) (-2887 . 354037)
+ (-2888 . 353952) (-2889 . 353112) (-2890 . 352999) (-2891 . 352810)
+ (-2892 . 351708) (-2893 . 351652) (-2894 . 351191) (-2895 . 351160)
+ (-2896 . 350909) (-2897 . 350826) (-2898 . 350773) (-2899 . 350699)
+ (-2900 . 350622) (-2901 . 350594) (-2902 . 350396) (-2903 . 350310)
+ (-2904 . 350228) (-2905 . 350089) (-2906 . 349884) (-2907 . 349788)
+ (-2908 . 349536) (-2909 . 349418) (-2910 . 349311) (-2911 . 349101)
+ (-2912 . 348884) (-2913 . 348763) (-2914 . 348681) (-2915 . 348251)
+ (-2916 . 348167) (-2917 . 347776) (-2918 . 347646) (-2919 . 347502)
+ (-2920 . 347424) (-2921 . 347255) (-2922 . 347155) (-2923 . 347076)
+ (-2924 . 346992) (-2925 . 346803) (-2926 . 346769) (-2927 . 346732)
+ (-2928 . 346678) (-2929 . 346244) (-2930 . 345631) (-2931 . 345564)
+ (-2932 . 345480) (-2933 . 345384) (-2934 . 345222) (-2935 . 345152)
+ (-2936 . 345118) (-2937 . 344911) (-2938 . 344798) (-2939 . 344764)
+ (-2940 . 344337) (-2941 . 344034) (-2942 . 343963) (-2943 . 343763)
+ (-2944 . 343621) (-2945 . 343537) (-2946 . 343482) (-2947 . 343291)
+ (-2948 . 343219) (-2949 . 343059) (-2950 . 342925) (-2951 . 342831)
+ (-2952 . 342775) (-2953 . 342398) (-2954 . 341816) (-2955 . 341711)
+ (-2956 . 323136) (* . 319023) (-2958 . 318879) (-2959 . 318574)
+ (-2960 . 318190) (-2961 . 318092) (-2962 . 317951) (-2963 . 317847)
+ (-2964 . 317600) (-2965 . 317548) (-2966 . 317496) (-2967 . 317402)
+ (-2968 . 314581) (-2969 . 314209) (-2970 . 314079) (-2971 . 313939)
+ (-2972 . 313586) (-2973 . 313452) (-2974 . 313310) (-2975 . 313173)
+ (-2976 . 312469) (-2977 . 312248) (-2978 . 312074) (-2979 . 311932)
+ (-2980 . 311798) (-2981 . 311187) (-2982 . 311074) (-2983 . 310722)
+ (-2984 . 310549) (-2985 . 310449) (-2986 . 310382) (-2987 . 309701)
+ (-2988 . 309674) (-2989 . 309620) (-2990 . 309494) (-2991 . 309222)
+ (-2992 . 309108) (-2993 . 308984) (-2994 . 307128) (-2995 . 307040)
+ (-2996 . 306887) (-2997 . 306742) (-2998 . 306693) (-2999 . 306577)
+ (-3000 . 305396) (-3001 . 305346) (-3002 . 305198) (-3003 . 304810)
+ (-3004 . 304458) (-3005 . 304399) (-3006 . 304328) (-3007 . 304078)
+ (-3008 . 303980) (-3009 . 303727) (-3010 . 303675) (-3011 . 303548)
+ (-3012 . 303392) (-3013 . 303154) (-3014 . 302923) (-3015 . 302799)
+ (-3016 . 302771) (-3017 . 302419) (-3018 . 302197) (-3019 . 302111)
+ (-3020 . 301938) (-3021 . 301772) (-3022 . 301635) (-3023 . 301469)
+ (-3024 . 301382) (-3025 . 301315) (-3026 . 301221) (-3027 . 301014)
+ (-3028 . 300277) (-3029 . 300220) (-3030 . 300142) (-3031 . 300045)
+ (-3032 . 300017) (-3033 . 299938) (-3034 . 299779) (-3035 . 299642)
+ (-3036 . 299481) (-3037 . 299242) (-3038 . 299000) (-3039 . 298966)
+ (-3040 . 298852) (-3041 . 298800) (-3042 . 298640) (-3043 . 298348)
+ (-3044 . 298255) (-3045 . 298097) (-3046 . 297851) (-3047 . 297764)
+ (-3048 . 297659) (-3049 . 297600) (-3050 . 297464) (-3051 . 297397)
+ (-3052 . 297313) (-3053 . 297218) (-3054 . 297015) (-3055 . 296945)
+ (-3056 . 296673) (-3057 . 296464) (-3058 . 296333) (-3059 . 296175)
+ (-3060 . 295147) (-3061 . 295042) (-3062 . 294899) (-3063 . 294568)
+ (-3064 . 294275) (-3065 . 294159) (-3066 . 294028) (-3067 . 293230)
+ (-3068 . 293112) (-3069 . 292548) (-3070 . 292206) (-3071 . 292107)
+ (-3072 . 292029) (-3073 . 291888) (-3074 . 291772) (-3075 . 291715)
+ (-3076 . 291620) (-3077 . 291502) (-3078 . 291450) (-3079 . 291150)
+ (-3080 . 291047) (-3081 . 289861) (-3082 . 289272) (-3083 . 289143)
+ (-3084 . 288830) (-3085 . 288732) (-3086 . 288663) (-3087 . 288635)
+ (-3088 . 288522) (-3089 . 288242) (-3090 . 287321) (-3091 . 287226)
+ (-3092 . 286890) (-3093 . 286132) (-3094 . 285942) (-3095 . 285817)
+ (-3096 . 284635) (-3097 . 284606) (-3098 . 284507) (-3099 . 284327)
+ (-3100 . 284227) (-3101 . 284146) (-3102 . 284074) (-3103 . 283547)
+ (-3104 . 283495) (-3105 . 283341) (-3106 . 283285) (-3107 . 282697)
+ (-3108 . 280489) (-3109 . 280412) (-3110 . 280199) (-3111 . 280095)
+ (-3112 . 279937) (-3113 . 279843) (-3114 . 279589) (-3115 . 279555)
+ (-3116 . 279243) (-3117 . 279102) (-3118 . 277875) (-3119 . 277789)
+ (-3120 . 277685) (-3121 . 277594) (-3122 . 277489) (-3123 . 277401)
+ (-3124 . 277012) (-3125 . 276847) (-3126 . 276681) (-3127 . 276629)
+ (-3128 . 276373) (-3129 . 276212) (-3130 . 276127) (-3131 . 276044)
+ (-3132 . 275948) (-3133 . 275840) (-3134 . 275637) (-3135 . 275578)
+ (-3136 . 275465) (-3137 . 275178) (-3138 . 275111) (-3139 . 275017)
+ (-3140 . 273713) (-3141 . 273625) (-3142 . 273554) (-3143 . 273498)
+ (-3144 . 273443) (-3145 . 273371) (-3146 . 273193) (-3147 . 273142)
+ (-3148 . 273070) (-3149 . 272851) (-3150 . 272633) (-3151 . 272439)
+ (-3152 . 272343) (-3153 . 272051) (-3154 . 271565) (-3155 . 271458)
+ (-3156 . 271304) (-3157 . 271148) (-3158 . 271071) (-3159 . 270961)
+ (-3160 . 270889) (-3161 . 270751) (-3162 . 270424) (-3163 . 270341)
+ (-3164 . 270213) (-3165 . 270111) (-3166 . 269575) (-3167 . 268377)
+ (-3168 . 268231) (-3169 . 268146) (-3170 . 267719) (-3171 . 267645)
+ (-3172 . 267595) (-3173 . 267149) (-3174 . 267053) (-3175 . 266928)
+ (-3176 . 266772) (-3177 . 266477) (-3178 . 266325) (-3179 . 266225)
+ (-3180 . 266130) (-3181 . 266057) (-3182 . 265949) (-3183 . 265819)
+ (-3184 . 265661) (-3185 . 265591) (-3186 . 265436) (-3187 . 264776)
+ (-3188 . 264717) (-3189 . 264595) (-3190 . 264193) (-3191 . 264033)
+ (-3192 . 263938) (-3193 . 263400) (-3194 . 263328) (-3195 . 262862)
+ (-3196 . 262716) (-3197 . 262637) (-3198 . 262462) (-3199 . 261803)
+ (-3200 . 261660) (-3201 . 261562) (-3202 . 261502) (-3203 . 261428)
+ (-3204 . 261188) (-3205 . 261093) (-3206 . 260390) (-3207 . 260322)
+ (-3208 . 260229) (-3209 . 260174) (-3210 . 260049) (-3211 . 259963)
+ (-3212 . 259417) (-3213 . 259293) (-3214 . 258707) (-3215 . 258596)
+ (-3216 . 257858) (-3217 . 257705) (-3218 . 257632) (-3219 . 256815)
+ (-3220 . 256752) (-3221 . 256552) (-3222 . 256428) (-3223 . 256034)
+ (-3224 . 255763) (-3225 . 255658) (-3226 . 255585) (-3227 . 255161)
+ (-3228 . 254800) (-3229 . 254652) (-3230 . 254382) (-3231 . 254287)
+ (-3232 . 253628) (-3233 . 253378) (-3234 . 253274) (-3235 . 253171)
+ (-3236 . 252813) (-3237 . 252543) (-3238 . 252278) (-3239 . 252190)
+ (-3240 . 251996) (-3241 . 251836) (-3242 . 251672) (-3243 . 250524)
+ (-3244 . 250429) (-3245 . 250370) (-3246 . 249824) (-3247 . 249756)
+ (-3248 . 249676) (-3249 . 249267) (-3250 . 249212) (-3251 . 249051)
+ (-3252 . 247711) (-3253 . 247606) (-3254 . 247219) (-3255 . 247094)
+ (-3256 . 247010) (-3257 . 246899) (-3258 . 246843) (-3259 . 246755)
+ (-3260 . 246451) (-3261 . 246423) (-3262 . 246308) (-3263 . 246256)
+ (-3264 . 246135) (-3265 . 246080) (-3266 . 245977) (-3267 . 245758)
+ (-3268 . 245706) (-3269 . 245608) (-3270 . 245445) (-3271 . 245332)
+ (-3272 . 245280) (-3273 . 245177) (-3274 . 245081) (-3275 . 244997)
+ (-3276 . 244869) (-3277 . 244769) (-3278 . 244626) (-3279 . 244030)
+ (-3280 . 243961) (-3281 . 243513) (-3282 . 243265) (-3283 . 243152)
+ (-3284 . 242937) (-3285 . 242771) (-3286 . 242699) (-3287 . 242643)
+ (-3288 . 242543) (-3289 . 242491) (-3290 . 242424) (-3291 . 242368)
+ (-3292 . 242150) (-3293 . 242055) (-3294 . 241805) (-3295 . 241723)
+ (-3296 . 241214) (-3297 . 240671) (-3298 . 240453) (-3299 . 240419)
+ (-3300 . 240228) (-3301 . 240094) (-3302 . 239934) (-3303 . 239656)
+ (-3304 . 239513) (-3305 . 239439) (-3306 . 239196) (-3307 . 239036)
+ (-3308 . 238935) (-3309 . 238717) (-3310 . 238685) (-3311 . 238657)
+ (-3312 . 238438) (-3313 . 238368) (-3314 . 238055) (-3315 . 237996)
+ (-3316 . 237397) (-3317 . 237316) (-3318 . 236356) (-3319 . 236324)
+ (-3320 . 235681) (-3321 . 235375) (-3322 . 234884) (-3323 . 234782)
+ (-3324 . 234636) (-3325 . 234256) (-3326 . 234170) (-3327 . 233922)
+ (-3328 . 233670) (-3329 . 233577) (-3330 . 233369) (-3331 . 232972)
+ (-3332 . 232828) (-3333 . 232446) (-3334 . 232171) (-3335 . 232067)
+ (-3336 . 231970) (-3337 . 231639) (-3338 . 231265) (-3339 . 231150)
+ (-3340 . 230798) (-3341 . 230473) (-3342 . 230310) (-3343 . 229600)
+ (-3344 . 229327) (-3345 . 229275) (-3346 . 229189) (-3347 . 229161)
+ (-3348 . 229023) (-3349 . 228949) (-3350 . 228921) (-3351 . 228775)
+ (-3352 . 227887) (-3353 . 227741) (-3354 . 227712) (-3355 . 227630)
+ (-3356 . 227533) (-3357 . 227352) (-3358 . 227282) (-3359 . 227222)
+ (-3360 . 227134) (-3361 . 227004) (-3362 . 226875) (-3363 . 226796)
+ (-3364 . 226638) (-3365 . 226531) (-3366 . 226392) (-3367 . 226285)
+ (-3368 . 226132) (-3369 . 226064) (-3370 . 225772) (-3371 . 225659)
+ (-3372 . 225558) (-3373 . 225400) (-3374 . 225267) (-3375 . 225180)
+ (-3376 . 225092) (-3377 . 224995) (-3378 . 224924) (-3379 . 224433)
+ (-3380 . 224361) (-3381 . 224138) (-3382 . 223843) (-3383 . 223297)
+ (-3384 . 223079) (-3385 . 223022) (-3386 . 222972) (-3387 . 222734)
+ (-3388 . 222590) (-3389 . 222338) (-3390 . 222231) (-3391 . 222179)
+ (-3392 . 222082) (-3393 . 221522) (-3394 . 221436) (-3395 . 221248)
+ (-3396 . 221192) (-3397 . 221067) (-3398 . 220885) (-3399 . 220518)
+ (-3400 . 220463) (-3401 . 220234) (-3402 . 220139) (-3403 . 219934)
+ (-3404 . 218148) (-3405 . 217956) (-3406 . 217883) (-3407 . 217809)
+ (-3408 . 217711) (-3409 . 217659) (-3410 . 217514) (-3411 . 217455)
+ (-3412 . 217375) (-3413 . 217287) (-3414 . 217169) (-3415 . 217095)
+ (-3416 . 217013) (-3417 . 216883) (-3418 . 216691) (-3419 . 216532)
+ (-3420 . 216443) (-3421 . 216390) (-3422 . 216338) (-3423 . 215472)
+ (-3424 . 215419) (-3425 . 215320) (-3426 . 215249) (-3427 . 215163)
+ (-3428 . 214989) (-3429 . 214939) (-3430 . 214865) (-3431 . 214793)
+ (-3432 . 214680) (-3433 . 214625) (-3434 . 214146) (-3435 . 213794)
+ (-3436 . 213723) (-3437 . 213546) (-3438 . 213196) (-3439 . 213034)
+ (-3440 . 212942) (-3441 . 212800) (-3442 . 212696) (-3443 . 212643)
+ (-3444 . 212574) (-3445 . 212489) (-3446 . 211670) (-3447 . 211423)
+ (-3448 . 211280) (-3449 . 211150) (-3450 . 211079) (-3451 . 210947)
+ (-3452 . 210894) (-3453 . 210776) (-3454 . 210692) (-3455 . 210325)
+ (-3456 . 210270) (-3457 . 210112) (-3458 . 208920) (-3459 . 208812)
+ (-3460 . 208686) (-3461 . 208590) (-3462 . 207988) (-3463 . 207936)
+ (-3464 . 207593) (-3465 . 207394) (-3466 . 207138) (-3467 . 206930)
+ (-3468 . 206805) (-3469 . 206706) (-3470 . 206600) (-3471 . 206521)
+ (-3472 . 206389) (-3473 . 206294) (-3474 . 206193) (-3475 . 206120)
+ (-3476 . 206024) (-3477 . 205926) (-3478 . 205778) (-3479 . 205598)
+ (-3480 . 205497) (-3481 . 205438) (-3482 . 205256) (-3483 . 205155)
+ (-3484 . 205099) (-3485 . 204960) (-3486 . 204808) (-3487 . 204737)
+ (-3488 . 204660) (-3489 . 204577) (-3490 . 204434) (-3491 . 204215)
+ (-3492 . 203944) (-3493 . 203591) (-3494 . 203538) (-3495 . 203436)
+ (-3496 . 202829) (-3497 . 202769) (-3498 . 202611) (-3499 . 202559)
+ (-3500 . 202506) (-3501 . 202406) (-3502 . 202268) (-3503 . 202184)
+ (-3504 . 201894) (-3505 . 201823) (-3506 . 201735) (-3507 . 201683)
+ (-3508 . 201655) (-3509 . 201529) (-3510 . 201386) (-3511 . 201331)
+ (-3512 . 201160) (-3513 . 201057) (-3514 . 200891) (-3515 . 200754)
+ (-3516 . 200689) (-3517 . 200632) (-3518 . 200154) (-3519 . 200074)
+ (-3520 . 199988) (-3521 . 199840) (-3522 . 199717) (-3523 . 199615)
+ (-3524 . 199023) (-3525 . 198597) (-3526 . 198473) (-3527 . 198405)
+ (-3528 . 197652) (-3529 . 197434) (-3530 . 196758) (-3531 . 196007)
+ (-3532 . 195496) (-3533 . 195244) (-3534 . 195165) (-3535 . 195093)
+ (-3536 . 195037) (-3537 . 194936) (-3538 . 194740) (-3539 . 193312)
+ (-3540 . 191056) (-3541 . 190998) (-3542 . 190858) (-3543 . 190598)
+ (-3544 . 190258) (-3545 . 190193) (-3546 . 190142) (-3547 . 190089)
+ (-3548 . 189600) (-3549 . 189113) (-3550 . 188811) (-3551 . 188655)
+ (-3552 . 188383) (-3553 . 188326) (-3554 . 188208) (-3555 . 188104)
+ (-3556 . 188045) (-3557 . 187893) (-3558 . 187741) (-3559 . 187565)
+ (-3560 . 187513) (-3561 . 187454) (-3562 . 187207) (-3563 . 185957)
+ (-3564 . 185886) (-3565 . 185728) (-3566 . 185669) (-3567 . 185498)
+ (-3568 . 185297) (-3569 . 184659) (-3570 . 184441) (-3571 . 184304)
+ (-3572 . 184237) (-3573 . 184155) (-3574 . 184088) (-3575 . 184060)
+ (-3576 . 183964) (-3577 . 183912) (-3578 . 183685) (-3579 . 183390)
+ (-3580 . 183222) (-3581 . 183099) (-3582 . 183014) (-3583 . 182846)
+ (-3584 . 182779) (-3585 . 182666) (-3586 . 182513) (-3587 . 182429)
+ (-3588 . 182292) (-3589 . 182198) (-3590 . 181143) (-3591 . 180777)
+ (-3592 . 180551) (-3593 . 180474) (-3594 . 180336) (-3595 . 180100)
+ (-3596 . 179771) (-3597 . 179665) (-3598 . 179512) (-3599 . 179294)
+ (-3600 . 179241) (-3601 . 179120) (-3602 . 176279) (-3603 . 176102)
+ (-3604 . 175943) (-3605 . 175865) (-3606 . 175833) (-3607 . 175639)
+ (-3608 . 175543) (-3609 . 175476) (-3610 . 175286) (-3611 . 175213)
+ (-3612 . 175160) (-3613 . 174766) (-3614 . 174492) (-3615 . 174381)
+ (-3616 . 174265) (-3617 . 174169) (-3618 . 174081) (-3619 . 173998)
+ (-3620 . 173805) (-3621 . 173736) (-3622 . 173665) (-3623 . 173425)
+ (-3624 . 173337) (-3625 . 173202) (-3626 . 173090) (-3627 . 173038)
+ (-3628 . 172710) (-3629 . 172678) (-3630 . 172644) (-3631 . 172463)
+ (-3632 . 172341) (-3633 . 172163) (-3634 . 171990) (-3635 . 171841)
+ (-3636 . 171767) (-3637 . 171645) (-3638 . 171529) (-3639 . 171251)
+ (-3640 . 171056) (-3641 . 170975) (-3642 . 170851) (-3643 . 170823)
+ (-3644 . 170766) (-3645 . 170132) (-3646 . 170046) (-3647 . 169961)
+ (-3648 . 169906) (-3649 . 169402) (-3650 . 169301) (-3651 . 169140)
+ (-3652 . 169058) (-3653 . 168930) (-3654 . 168278) (-3655 . 168225)
+ (-3656 . 168122) (-3657 . 168048) (-3658 . 167916) (-3659 . 167842)
+ (-3660 . 167724) (-3661 . 167197) (-3662 . 166983) (-3663 . 166810)
+ (-3664 . 166713) (-3665 . 166598) (-3666 . 166549) (-3667 . 166433)
+ (-3668 . 166352) (-3669 . 166278) (-3670 . 165751) (-3671 . 165455)
+ (-3672 . 165301) (-3673 . 165134) (-3674 . 164994) (-3675 . 164886)
+ (-3676 . 164523) (-3677 . 164355) (-3678 . 164254) (-3679 . 164093)
+ (-3680 . 163670) (-3681 . 163523) (-3682 . 163320) (-3683 . 163168)
+ (-3684 . 162956) (-3685 . 162838) (-3686 . 162703) (-3687 . 162634)
+ (-3688 . 162257) (-3689 . 162187) (-3690 . 162131) (-3691 . 162060)
+ (-3692 . 162001) (-3693 . 161695) (-3694 . 161667) (-3695 . 161179)
+ (-3696 . 160991) (-3697 . 160919) (-3698 . 160732) (-3699 . 160636)
+ (-3700 . 160493) (-3701 . 159494) (-3702 . 159392) (-3703 . 159322)
+ (-3704 . 159265) (-3705 . 159209) (-3706 . 159061) (-3707 . 158811)
+ (-3708 . 158755) (-3709 . 158683) (-3710 . 157940) (-3711 . 157841)
+ (-3712 . 157774) (-3713 . 157499) (-3714 . 157398) (-3715 . 157319)
+ (-3716 . 157046) (-3717 . 156864) (-3718 . 156811) (-3719 . 156716)
+ (-3720 . 156596) (-3721 . 156436) (-3722 . 156143) (-3723 . 156112)
+ (-3724 . 156012) (-3725 . 155845) (-3726 . 155577) (-3727 . 155442)
+ (-3728 . 155369) (-3729 . 155098) (-3730 . 154850) (-3731 . 154755)
+ (-3732 . 154618) (-3733 . 154568) (-3734 . 154514) (-3735 . 154461)
+ (-3736 . 154298) (-3737 . 154248) (-3738 . 153936) (-3739 . 153585)
+ (-3740 . 153197) (-3741 . 153111) (-3742 . 153009) (-3743 . 152906)
+ (-3744 . 152810) (-3745 . 152727) (-3746 . 152675) (-3747 . 152124)
+ (-3748 . 151897) (-3749 . 151489) (-3750 . 151388) (-3751 . 150814)
+ (-3752 . 150740) (-3753 . 150554) (-3754 . 150500) (-3755 . 150437)
+ (-3756 . 149965) (-3757 . 149763) (-3758 . 149631) (-3759 . 149438)
+ (-3760 . 149371) (-3761 . 149313) (-3762 . 149244) (-3763 . 149147)
+ (-3764 . 149062) (-3765 . 148844) (-3766 . 148748) (-3767 . 148589)
+ (-3768 . 148462) (-3769 . 147692) (-3770 . 147576) (-3771 . 147521)
+ (-3772 . 146633) (-3773 . 146108) (-3774 . 145849) (-3775 . 145654)
+ (-3776 . 145565) (-3777 . 145426) (-3778 . 145322) (-3779 . 145270)
+ (-3780 . 145157) (-3781 . 145041) (-3782 . 144656) (-3783 . 144604)
+ (-3784 . 144530) (-3785 . 144456) (-3786 . 144425) (-3787 . 144355)
+ (-3788 . 144197) (-3789 . 144015) (-3790 . 143984) (-3791 . 143917)
+ (-3792 . 143690) (-3793 . 143620) (-3794 . 143424) (-3795 . 143331)
+ (-3796 . 143206) (-3797 . 143156) (-3798 . 143112) (-3799 . 142753)
+ (-3800 . 142531) (-3801 . 141990) (-3802 . 141897) (-3803 . 141844)
+ (-3804 . 141689) (-3805 . 141561) (-3806 . 141484) (-3807 . 141376)
+ (-3808 . 141263) (-3809 . 139295) (-3810 . 139209) (-3811 . 138933)
+ (-3812 . 138504) (-3813 . 138400) (-3814 . 138368) (-3815 . 138276)
+ (-3816 . 138174) (-3817 . 138103) (-3818 . 138053) (-3819 . 137928)
+ (-3820 . 137606) (-3821 . 137231) (-3822 . 137075) (-3823 . 136743)
+ (-3824 . 136647) (-3825 . 136461) (-3826 . 136054) (-3827 . 135580)
+ (-3828 . 135484) (-3829 . 135389) (-3830 . 135324) (-3831 . 135204)
+ (-3832 . 135089) (-3833 . 135006) (-3834 . 134932) (-3835 . 134762)
+ (-3836 . 134699) (-3837 . 134616) (-3838 . 134520) (-3839 . 134439)
+ (-3840 . 134405) (-3841 . 134274) (-3842 . 134116) (-3843 . 134063)
+ (-3844 . 133920) (-3845 . 133642) (-3846 . 133478) (-3847 . 133384)
+ (-3848 . 133210) (-3849 . 133140) (-3850 . 132948) (-3851 . 132869)
+ (-3852 . 132811) (-3853 . 132759) (-3854 . 132643) (-3855 . 132570)
+ (-3856 . 132297) (-3857 . 132098) (-3858 . 131895) (-3859 . 131598)
+ (-3860 . 131425) (-3861 . 131200) (-3862 . 131061) (-3863 . 130958)
+ (-3864 . 130905) (-3865 . 130877) (-3866 . 130821) (-3867 . 130377)
+ (-3868 . 130092) (-3869 . 130039) (-3870 . 129701) (-3871 . 129624)
+ (-3872 . 129547) (-3873 . 129469) (-3874 . 129353) (-3875 . 129301)
+ (-3876 . 129240) (-3877 . 129156) (-3878 . 129057) (-3879 . 129004)
+ (-3880 . 128859) (-3881 . 128764) (-3882 . 128703) (-3883 . 128365)
+ (-3884 . 126104) (-3885 . 126046) (-3886 . 125993) (-3887 . 125964)
+ (-3888 . 125836) (-3889 . 125720) (-3890 . 125638) (-3891 . 125345)
+ (-3892 . 125317) (-3893 . 124871) (-3894 . 124729) (-3895 . 124276)
+ (-3896 . 124034) (-3897 . 123935) (-3898 . 123633) (-3899 . 123480)
+ (-3900 . 123427) (-3901 . 123348) (-3902 . 123277) (-3903 . 123224)
+ (-3904 . 123150) (-3905 . 123077) (-3906 . 122998) (-3907 . 122933)
+ (-3908 . 122755) (-3909 . 122225) (-3910 . 122172) (-3911 . 122101)
+ (-3912 . 121976) (-3913 . 121853) (-3914 . 121493) (-3915 . 121409)
+ (-3916 . 121381) (-3917 . 121171) (-3918 . 121012) (-3919 . 120642)
+ (-3920 . 120563) (-3921 . 120490) (-3922 . 119526) (-3923 . 119346)
+ (-3924 . 119181) (-3925 . 119126) (-3926 . 118994) (-3927 . 118942)
+ (-3928 . 118589) (-3929 . 118378) (-3930 . 118198) (-3931 . 118103)
+ (-3932 . 118030) (-3933 . 117847) (-3934 . 117525) (-3935 . 117491)
+ (-3936 . 117269) (-3937 . 117241) (-3938 . 116992) (-3939 . 116792)
+ (-3940 . 116649) (-3941 . 116597) (-3942 . 116279) (-3943 . 116209)
+ (-3944 . 112910) (-3945 . 112856) (-3946 . 112779) (-3947 . 112352)
+ (-3948 . 112014) (-3949 . 111380) (-3950 . 110616) (-3951 . 110563)
+ (-3952 . 110441) (-3953 . 110334) (-3954 . 110095) (-3955 . 109974)
+ (-3956 . 109431) (-3957 . 109328) (-3958 . 109272) (-3959 . 109198)
+ (-3960 . 109169) (-3961 . 109054) (-3962 . 108824) (-3963 . 108576)
+ (-3964 . 108493) (-3965 . 108287) (-3966 . 108208) (-3967 . 108138)
+ (-3968 . 107965) (-3969 . 107894) (-3970 . 107835) (-3971 . 107677)
+ (-3972 . 107553) (-3973 . 107445) (-3974 . 107134) (-3975 . 106781)
+ (-3976 . 106712) (-3977 . 106460) (-3978 . 106405) (-3979 . 106276)
+ (-3980 . 106136) (-3981 . 106069) (-3982 . 105836) (-3983 . 105628)
+ (-3984 . 105490) (-3985 . 104904) (-3986 . 104809) (-3987 . 104747)
+ (-3988 . 104643) (-3989 . 104505) (-3990 . 104433) (-3991 . 104380)
+ (-3992 . 104283) (-3993 . 103973) (-3994 . 103594) (-3995 . 103283)
+ (-3996 . 103138) (-3997 . 102972) (-3998 . 102811) (-3999 . 102629)
+ (-4000 . 102461) (-4001 . 102433) (-4002 . 102342) (-4003 . 102258)
+ (-4004 . 101672) (-4005 . 101462) (-4006 . 101071) (-4007 . 100987)
+ (-4008 . 100928) (-4009 . 100762) (-4010 . 100621) (-4011 . 100456)
+ (-4012 . 100354) (-4013 . 100063) (-4014 . 100029) (-4015 . 99899)
+ (-4016 . 99833) (-4017 . 99701) (-4018 . 99605) (-4019 . 99234)
+ (-4020 . 99179) (-4021 . 98683) (-4022 . 98576) (-4023 . 98517)
+ (-4024 . 98440) (-4025 . 98354) (-4026 . 98199) (-4027 . 98149)
+ (-4028 . 97840) (-4029 . 97745) (-4030 . 97580) (-4031 . 97509)
+ (-4032 . 97083) (-4033 . 96988) (-4034 . 96770) (-4035 . 96611)
+ (-4036 . 96559) (-4037 . 96421) (-4038 . 96335) (-4039 . 96227)
+ (-4040 . 96075) (-4041 . 94643) (-4042 . 94488) (-4043 . 94095)
+ (-4044 . 94021) (-4045 . 93944) (-4046 . 93791) (-4047 . 93681)
+ (-4048 . 93629) (-4049 . 93497) (-4050 . 93425) (-4051 . 93267)
+ (-4052 . 92393) (-4053 . 92365) (-4054 . 92071) (-4055 . 91994)
+ (-4056 . 91899) (-4057 . 91813) (-4058 . 91681) (-4059 . 91591)
+ (-4060 . 91492) (-4061 . 91355) (-4062 . 91040) (-4063 . 90937)
+ (-4064 . 90419) (-4065 . 90367) (-4066 . 90209) (-4067 . 89698)
+ (-4068 . 89646) (-4069 . 89569) (-4070 . 89454) (-4071 . 89392)
+ (-4072 . 89261) (-4073 . 89178) (-4074 . 89097) (-4075 . 88589)
+ (-4076 . 88536) (-4077 . 87319) (-4078 . 87219) (-4079 . 87146)
+ (-4080 . 87060) (-4081 . 86931) (-4082 . 86829) (-4083 . 86624)
+ (-4084 . 86368) (-4085 . 86210) (-4086 . 86143) (-4087 . 85891)
+ (-4088 . 85769) (-4089 . 85632) (-4090 . 84055) (-4091 . 83853)
+ (-4092 . 83690) (-4093 . 82822) (-4094 . 82739) (-4095 . 82620)
+ (-4096 . 82553) (-4097 . 82389) (-4098 . 82178) (-4099 . 82052)
+ (-4100 . 81944) (-4101 . 81861) (-4102 . 81651) (-4103 . 81578)
+ (-4104 . 81453) (-4105 . 81375) (-4106 . 81206) (-4107 . 81154)
+ (-4108 . 81053) (-4109 . 80923) (-4110 . 80821) (-4111 . 80769)
+ (-4112 . 80672) (-4113 . 80372) (-4114 . 79696) (-4115 . 79622)
+ (-4116 . 79549) (-4117 . 79350) (-4118 . 79292) (-4119 . 78976)
+ (-4120 . 78805) (-4121 . 78746) (-4122 . 78660) (-4123 . 76528)
+ (-4124 . 76432) (-4125 . 76378) (-4126 . 76111) (-4127 . 76038)
+ (-4128 . 75882) (-4129 . 75759) (-4130 . 75249) (-4131 . 73519)
+ (-4132 . 73383) (-4133 . 73270) (-4134 . 72784) (-4135 . 72655)
+ (-4136 . 72025) (-4137 . 71966) (-4138 . 71860) (-4139 . 71252)
+ (-4140 . 71169) (-4141 . 71138) (-4142 . 71076) (-4143 . 70957)
+ (-4144 . 70641) (-4145 . 70483) (-4146 . 70344) (-4147 . 70253)
+ (-4148 . 70172) (-4149 . 70069) (-4150 . 69959) (-4151 . 69579)
+ (-4152 . 68133) (-4153 . 66966) (-4154 . 66826) (-4155 . 66655)
+ (-4156 . 66582) (-4157 . 66511) (-4158 . 66007) (-4159 . 65908)
+ (-4160 . 65675) (-4161 . 65468) (-4162 . 65213) (-4163 . 65050)
+ (-4164 . 64833) (-4165 . 64707) (-4166 . 64516) (-4167 . 64488)
+ (-4168 . 64380) (-4169 . 64265) (-4170 . 64213) (-4171 . 64129)
+ (-4172 . 63986) (-4173 . 63833) (-4174 . 62431) (-4175 . 62330)
+ (-4176 . 62015) (-4177 . 61891) (-4178 . 61785) (-4179 . 61218)
+ (-4180 . 61162) (-4181 . 61076) (-4182 . 60734) (-4183 . 60673)
+ (-4184 . 60487) (-4185 . 60381) (-4186 . 60298) (-4187 . 60107)
+ (-4188 . 60008) (-4189 . 59886) (-4190 . 59757) (-4191 . 59441)
+ (-4192 . 59154) (-4193 . 59088) (-4194 . 59011) (-4195 . 58960)
+ (-4196 . 58905) (-4197 . 58720) (-4198 . 58601) (-4199 . 58539)
+ (-4200 . 58348) (-4201 . 58290) (-4202 . 58212) (-4203 . 58090)
+ (-4204 . 57914) (-4205 . 52400) (-4206 . 52333) (-4207 . 52250)
+ (-4208 . 52106) (-4209 . 51810) (-4210 . 51758) (-4211 . 51550)
+ (-4212 . 51483) (-4213 . 51242) (-4214 . 50849) (-4215 . 50744)
+ (-4216 . 50413) (-4217 . 50329) (-4218 . 50171) (-4219 . 49723)
+ (-4220 . 49622) (-4221 . 49467) (-4222 . 49374) (-4223 . 49300)
+ (-4224 . 49155) (-4225 . 48713) (-4226 . 48429) (-4227 . 48401)
+ (-4228 . 48338) (-4229 . 48237) (-4230 . 48131) (-4231 . 48013)
+ (-4232 . 47948) (-4233 . 47194) (-4234 . 47121) (-4235 . 47068)
+ (-4236 . 46733) (-4237 . 46656) (-4238 . 46562) (-4239 . 46430)
+ (-4240 . 46282) (-4241 . 46102) (-4242 . 46074) (-4243 . 45855)
+ (-4244 . 45676) (-4245 . 45523) (-4246 . 45453) (-4247 . 45194)
+ (-4248 . 45134) (-4249 . 45054) (-4250 . 44981) (-4251 . 44847)
+ (-4252 . 44505) (-4253 . 44129) (-4254 . 44031) (-4255 . 43794)
+ (-4256 . 43738) (-4257 . 43585) (-4258 . 43507) (-4259 . 43261)
+ (-4260 . 43208) (-4261 . 43064) (-4262 . 43012) (-4263 . 42885)
+ (-4264 . 42720) (-4265 . 42652) (-4266 . 42477) (-4267 . 42014)
+ (-4268 . 41913) (-4269 . 41628) (-4270 . 41466) (-4271 . 41251)
+ (-4272 . 41149) (-4273 . 40935) (-4274 . 39393) (-4275 . 39238)
+ (-4276 . 39179) (-4277 . 39016) (-4278 . 38594) (-4279 . 38560)
+ (-4280 . 38465) (-4281 . 38312) (-4282 . 38188) (-4283 . 38051)
+ (-4284 . 37762) (-4285 . 37684) (-4286 . 37481) (-4287 . 37326)
+ (-4288 . 37247) (-4289 . 37148) (-4290 . 36553) (-4291 . 36261)
+ (-4292 . 36159) (-4293 . 36055) (-4294 . 35846) (-4295 . 35705)
+ (-4296 . 35613) (-4297 . 35282) (-4298 . 35186) (-4299 . 35060)
+ (-4300 . 34917) (-4301 . 34831) (-4302 . 34410) (-4303 . 34358)
+ (-4304 . 34277) (-4305 . 34142) (-4306 . 33962) (-4307 . 33888)
+ (-4308 . 33788) (-4309 . 32199) (-4310 . 32116) (-4311 . 32028)
+ (-4312 . 31961) (-4313 . 31908) (-4314 . 31712) (-4315 . 31566)
+ (-4316 . 31511) (-4317 . 31278) (-4318 . 31195) (-4319 . 31112)
+ (-4320 . 30995) (-4321 . 30909) (-4322 . 30796) (-4323 . 30737)
+ (-4324 . 30633) (-4325 . 29826) (-4326 . 29724) (-4327 . 29587)
+ (-4328 . 29523) (-4329 . 29403) (-4330 . 27773) (-4331 . 27519)
+ (-4332 . 27440) (-4333 . 27376) (-4334 . 27345) (-4335 . 26811)
+ (-4336 . 26659) (-4337 . 26501) (-4338 . 26366) (-4339 . 26307)
+ (-4340 . 26147) (-4341 . 25288) (-4342 . 24991) (-4343 . 23906)
+ (-4344 . 23810) (-4345 . 23757) (-4346 . 23579) (-4347 . 23505)
+ (-4348 . 23295) (-4349 . 23226) (-4350 . 23021) (-4351 . 22664)
+ (-4352 . 21368) (-4353 . 21200) (-4354 . 21002) (-4355 . 20738)
+ (-4356 . 20376) (-4357 . 20266) (-4358 . 19196) (-4359 . 19092)
+ (-4360 . 18756) (-4361 . 18570) (-4362 . 18478) (-4363 . 18264)
+ (-4364 . 18211) (-4365 . 17926) (-4366 . 17667) (-4367 . 17526)
+ (-4368 . 16434) (-4369 . 16297) (-4370 . 16217) (-4371 . 16116)
+ (-4372 . 15792) (-4373 . 15696) (-4374 . 15637) (-4375 . 15542)
+ (-4376 . 15402) (-4377 . 15223) (-4378 . 15126) (-4379 . 15049)
+ (-4380 . 14961) (-4381 . 14858) (-4382 . 14713) (-4383 . 14518)
+ (-4384 . 13635) (-4385 . 13430) (-4386 . 13245) (-4387 . 12903)
+ (-4388 . 12826) (-4389 . 12676) (-4390 . 12072) (-4391 . 11945)
+ (-4392 . 11829) (-4393 . 11728) (-4394 . 11583) (-4395 . 11531)
+ (-4396 . 11458) (-4397 . 11180) (-4398 . 10965) (-4399 . 10877)
+ (-4400 . 10712) (-4401 . 10618) (-4402 . 10538) (-4403 . 10435)
+ (-4404 . 8669) (-4405 . 8591) (-4406 . 8448) (-4407 . 8389)
+ (-4408 . 8016) (-4409 . 7628) (-4410 . 7504) (-4411 . 7433)
+ (-4412 . 7349) (-4413 . 7262) (-4414 . 7109) (-4415 . 6962)
+ (-4416 . 5507) (-4417 . 5421) (-4418 . 5348) (-4419 . 4895)
+ (-4420 . 4756) (-4421 . 4650) (-4422 . 4570) (-4423 . 4224)
+ (-4424 . 4175) (-4425 . 3761) (-4426 . 3709) (-4427 . 3484)
+ (-4428 . 1994) (-4429 . 1926) (-4430 . 1870) (-4431 . 1526)
+ (-4432 . 1442) (-4433 . 1213) (-4434 . 886) (-4435 . 594)
+ (-4436 . 539) (-4437 . 438) (-4438 . 382) (-4439 . 303) (-4440 . 215)
+ (-4441 . 30)) \ No newline at end of file